ModelMaker 6

User Manual
ModelMaker 6.20

ModelMaker Tools
Stenenkruis 27 B
6862 XG Oosterbeek
The Netherlands

http:\\www.modelmakertools.com
info@modelmakertools.com

http:\\www.modelmaker.demon.nl
info@modelmaker.demon.nl

ModelMaker version 6.20

Copyright © 1997-2002 by:

ModelMaker Tools
Stenenkruis 27 B
6862 X G Oosterbeek
The Netherlands

http:\\www.modelmakertools.com
info@modelmakertools.com

http:\\www.modelmaker.demon.nl
info@modelmaker.demon.nl

All rights reserved.

All brand and product names are trademarks or registered trademarks of their respective
holders.

This user manual focuses on essentials and how things are donein
ModelMaker. A GUI reference is available as context sensitive help file. This
contains the latest GUI details. The Design Patterns manual focuses on
ModelMaker’ s Design patterns and contains another step by step demo.

Author: G. Beuze

usermanual 620.doc May 7" 2002

ModelMaker version 6.20

Contents

Introduction

Installation

Contacting ModelMaker Tools

Getting started

Getting a first impression

Loading an example model
Visualizing existing code

Creating code with ModelMaker, overview

The demo component: TIntLabel
The ModelMaker Class Creation Wizard

Creating a new project

Creating new classes

Adding properties and methods to a class
Implementing methods

Creating a source file

Creating a Unit
Generating the source file

Adding the component to the VCL

Debugging your component
Compiling errors
Adding the component to the VCL

Improving the component in ModelMaker

Keep editing your code in Model M aker
Overriding the constructor Create
Implementing Create, non-user sectionsin code

Instant code generation

Documenting your component

Adding documentation to your component
Creating a help file
Integrating your help files with Delphi’s on line help

Documenting the design in a diagram

Symbol stylesin Diagrams: displaying members
Visualizing the unit IntLabel.pas
Visualizing the Documentation

Summary

Where to now?

usermanual 620.doc May 7" 2002

10

10

10
10

11

11
12

12
12
13
15

18

18
20

21

21
21
21

22

22
22
23

24

25

25
27
28

28

30
31
33

34

35

ModelMaker version 6.20

Basic Concepts

Overview
Code Model contents

Diagrams

Working with models
Model files

Model templates
Editing a model

Ownership in ModelMaker

Team development, Model boundaries and Version Control

Generation source code

Overview

Code generation control tags

Classrelated tags

Event type declaration tag

Editing marker tags

Macro expansion control tags
Unit documentation tag (obsolete)
Obsol ete tags

Code generation options

Maintaining Code Order / Custom member order
Adjusting the unit template

Unit Time Stamp Checking

Source Aliases

Version Control support and Aliases

Using ModelMaker to generate Instrumentation code

Importing source code
Background

Importing a source file
Importing (adding) versus Refreshing
Avoiding creep - removing code during import

usermanual 620.doc May 7" 2002

36
36

38

39

41
41

41
42
43

43

45
45

46

46
47
47
47
48
48

49
49
50
51
52
53

54

56
56

57
59
59

ModelMaker version 6.20

STARTREMOVE and ENDREMOVE tags
Comments with remove signature

Import restrictions and limitations

Class and Interface interfaces
Method implementation
Comments and white space
Unsupported language constructs

Conversion errors

Auto Refresh Import

How it works
How it is activated and controlled
Warnings

Editing Form source files

In source documentation

Overview
Generating in-source documentation

Importing in-source documentation

Code templates

Creating a Code template
Applying a Code template
Registering a Code template

Parameterize a Code template using macros

Macros

Overview

Macros in Code generation
Predefined macros
Using Macros in code

Using macros in the code editors
Using macros in your default unit template
Diagrams

Diagrams, Diagram List view

Symbols and visual containment
Associations

usermanual 620.doc May 7" 2002

59
60

60

60
61
62
62

64

65

65
65
65

66

67
67

67

68

71
71

71
72

72

74
74

74
75
77

79

79

80
80
80
81

ModelMaker version 6.20

Visual styles

Style hierarchy

Visual style properties
Controlling & assigning styles
Style Manager

Printing Style

Symbol (contents) style

Style hierarchy

Controlling & assigning styles
Class & Interface symbols
Package symbols (units)

Size and Alignment

The Drawing Grid
Align & Size Palette

Hyperlinks, navigation
External documents
Coupling Symbols to the Code Model

HotLinks
Specialized symbols and associations

Documentation & OneLiners

Floating Documentation view
Linked Annotations

Diagram Editor

Properties
Keyboard and Mouse control

Drag & Drop and conversions

Classes view

Internal (tree mode)
Internal (list mode)
Source
Target

Members view

Internal
Source
Target

Units view

Internal (tree mode only)
Source
Target

Method Implementation view

Method Local Code Explorer
Method Implementation Section list

Method Implementation Code Editor

Internal

usermanual 620.doc May 7" 2002

83

84
84
85
86
87

87

87
88
89
89

90

90
90

90
91
92

92
93

94

94
94

95

95
95

97

97

97
97
97
97

98

98
98
98

99

99
99
99

100

100
100

101
101

ModelMaker version 6.20

Source
Target

Unit Code view

Unit Code Explorer
Unit Code Editor

Event Library view

Internal
Source
Target

Diagrams view

Internal (tree mode only)
Source
Target

Diagram Editor

Internal
Source
Target

Customizing ModelMaker

Integration with the Delphi IDE
Integration with Delphi 3 and higher

Delphi 4 and higher
Delphi 4 and higher syntax highlighting scheme
Uninstalling IDE integration experts

Integration with Delphi 1 and 2

Installing the integration unit in Delphi 1 /2
Installing UNITIMP.EXE asa DELPHI 1/2 IDE tool

MMToolsApi primer

Interfaces basics

Expert DLL basics

MMToolsApi version control
Interfaces and memory management
Adding an expert and menu items
Accessing Diagrams through the API

Accessing Experts through scripting

usermanual 620.doc May 7" 2002

101
101

101

101
102

102

102
102
102

102

102
103
103

103

103
103
103

104

105
105

106
106
107

107

107
108

109
109

109
110
110
111
112

113

ModelMaker version 6.20

Introduction

ModelMaker represents a brand new way to develop classes and component packages for
Borland Delphi 1-6. ModelMaker is atwo-way class tree oriented productivity, refactoring
and UML-style CASE tool specifically designed for generating native Delphi code (in fact it
was made using Delphi and ModelMaker). Delphi’s Object Pascal language is fully supported
by ModelMaker. From the start Model Maker was designed to be a smart and highly
productive tool. It has been used to create classes for both real-time / technical and database
type applications. ModelMaker has full reverse engineering capabilities.

ModelMaker supports drawing a set of UML diagrams and from that perspective it looks
much like atraditional CASE tool. The key to ModelMaker’'s magic, speed and power
however is the active modeling engine which stores and maintains all relationships between
classes and their members. Renaming a class or changing its ancestor will immediately
propagate to the automatically generated source code. Tasks like overriding methods, adding
events, properties and access methods are reduced to selecting and clicking.

The main difference between ModelMaker and other CASE toolsisthat design is strictly
related to and native expressed in Delphi code. Thisway there is a seamless transition from
design to implementation currently not found in any other CASE tool. This approach makes
sure your designs remain down to earth. The main difference between ModelMaker and other
Delphi code generators are it’s high level overview and restructuring capabilities letting you
deal with complex designs.

A unique feature, currently not found in any devel opment environment for Delphi, isthe
support for design patterns. A number of patterns are implemented as ‘ready to use’ active
agents. A ModelMaker Pattern will not only insert Delphi style code fragments to implement a
specific pattern, but it also stays ‘alive’ to update this code to reflect any changes made to the
design

Asaresult, ModelMaker lets you:

» Speed up development

» Produce designs and code of unequaled quality.

» Think of designing code instead of typing code.

» Design without compromising.

» Refine and experiment with your designs until they are just right.

» Create and maintain magnitudes larger models in magnitudes less time.
» Document you designsin UML style diagrams.

» Document your unitsin help files by clicking a single button.

* Inshort: save time and money, making better software.

ModelMaker version 6.20

Installation

For installation details, refer to the readme.txt which is part of all ModelMaker distribution
archives. We suggest you read this file before installing. The readme.txt also contains the
latest information available on precautions related to upgrading.

ModelMaker requires Windows 95/98/M E/2000 or Windows NT 4.0 Both Borland Delphi
and ModelMaker use alot of resources. This might lead to problems under resource limited
systems as Win95/98/ME.

ModelMaker is designed to work on a high resolution monitor (800x600 or better).

Contacting ModelMaker Tools

We at find it important to support you in your use of ModelMaker all the ways we can. You
can find ModelMaker on the Internet at http:\\www.model makertools.com or alternatively
http:\\www.model maker.demon.nl At this web site:

» We'll update you on the most recent news concerning ModelMaker and it’s devel opment.
» WEe'll have the latest demo versions available.

* You can consult the Tips, FAQ pages.

* You'll find links to the web-based M odelMaker newsgroups.

* You can leave hints or requests for future versions of ModelMaker.

* You can report bugs.

All “how to do this' are best asked in the ModelMaker newsgroups. For other questions, the
address to contact us is: info@model makertools.com or info@model maker.demon.nl.

usermanual 620.doc May 7" 2002

ModelMaker version 6.20

Getting started

Getting a first impression

Here are some examples to get you started without reading lots of text. The devel opment
model will be explained in detail in the next chapters.

Loading an example model

Open model Diagram editor

Diagrams
_\,
iﬁ}tiévﬂ‘éilélglﬁvﬁﬂﬁmlfi HEHEBEE®EDRD

_ Import in _ Import Classes j ,_ Units

new model source file

To get afirst impression of what ModelMaker is capable of, load the model
.\ModelMaker\6.0\Demos\M M Tool sApi.mpb. It contains the interfaces making up
ModelMaker’s open tools API. In diagrams the relations between the interfaces defining this
API are visualized. The Classes view shows the inheritance relations of this unit.

Then, to see how ModelMaker treats classes and units, use the 'Import source filein new
Model’ command from the toolbar. Thiswill create anew model and import a Delphi unit
(such asaform unit or aVCL unit). The model is named after the unit: Importing unitl.pas
will create model unitl.mpb. Note the use of source aliasesin the popup menu associated with
the tool button. Source aliases are used to locate the source file and will be explained in
chapter Source Aliases, page 52

Visualizing existing code

Visualizing existing code is a also good way too of getting started with ModelMaker. To

visualize code:

1. Import the units containing the classes to visualize. Use the 'import source fil€" tool button
in the main toolbar or drag drop source files on the 'unit's view’ (View|Units)

2. Create or select anew class diagram in the 'diagrams’ view (View|Diagrams)

3. Inthe Diagram editor (View|Diagram Editor) select the visualization wizard from the
Wizard popup-up sub-menu.

4. Use thiswizard to select the classes and interfaces to visualize and the kind of relations to
visualize (inheritance, uses, supports etc.)

5. Completing the wizard gives you an instant diagram of the code just imported.

Y ou might want to move around classes or interfaces (Drag move) or select different display
options for classes or interfaces (Double click on the symbol) or the diagram as awhole

usermanual 620.doc May 7" 2002 10

ModelMaker version 6.20

(Double click in empty space). Try to turn on and off member display, select interface style
etc.

Creating code with ModelMaker, overview

A ModelMaker model contains a Code Model and Diagrams. The Code Model contains the
classes, class members (properties, methods), units etc. that map to the corresponding entities
in Delphi’s Object Pascal. Diagrams are used to visualize aspects of the code model or entities
that do not exists in the code model at all such as use cases. This * Getting started’ example
will focus on the code model and demonstrate creating a new unit containing a new
component class.

To create code for anew (component) class (or interface) in ModelMaker you will at a
minimum need to,

1. Create anew model in which you want to put related classes, if you don’t want to add the
new class to the current model.

Add anew class to the model defining it’s class name and ancestor.

Add (or override) properties, methods and events to the class' s interface.
Implement the new methods.

Add the new classto a (new) unit.

Generate the unit to actually create or update a source file on disk.

In Delphi, debug the unit, and if it contains components, add it to the VCL.

While debugging, keep editing your code in ModelMaker, switching between Delphi and
ModelMaker using ModelMaker’ s integration experts

O N Ok wWwDN

An aternative way isto import existing filesinto a new model to either maintain these units
in ModelMaker or to derive new classes from. Thiswill be explained in detail in the Import
demo.

The more advanced features of ModelMaker demonstrated in this example include:
9. Creating documentation for your component.

10.Generating aHelp file.

11.Creating a class diagram to document your design.

The demo component: TintLabel

Let’s examine these steps alittle closer by creating an new component class Ti nt Label which
isaTLabel descendant. TI nt Label adds a property Nunval ue of type integer which simple
convertsthe Capt i on property to an Integer. We'll store thisclassin anew file | NTLABEL. PAS
and register it on page ‘MM Demo’ inthe VCL. WE€'ll also create the help file | NTLABEL. HLP
and integrate it with Delphi’s on line help.

usermanual 620.doc May 7" 2002 11

ModelMaker version 6.20

This demo project is aso shipped with ModelMaker. Y ou can load the GETSTART. npb in the
[installdir]\DEMOS folder. The sourcefilel NTLABEL. PAS isaso in thisfolder.

The ModelMaker Class Creation Wizard

If you start up ModelMaker the first time you' |l see the Class Creation Wizard. Thiswizard
makes it easy to create new classes and add them to a (new) unit. Thiswizard can be found at
the main menu ‘ Tool §|Create Class wizard'.

The wizard is great for adding classes, but for demonstrating the ModelMaker development
mode it’s more instructive to create a new class manually. Therefore, if you started
ModelMaker and the wizard is automatically started, abort the wizard by clicking ‘ Cancel’.

Y ou might also want to uncheck the option ‘ Show at start up’ which will stop the wizard from
appearing each time you run ModelMaker.

Creating a new project

There are three ways to create a new project (or model):

» Select ‘File]New’, you'll get aclean project just containing the default ancestors TObj ect
and | Unknown.

» Select ‘File]New from default’, you' [l get anew project loaded from the default template.

» Select ‘FileNew from template’, you'll select atemplate other than the default to create a
new project.

In this case select ‘File]New from default’ to create a project which at least contains the

TConponent class, if you didn't modify the default project shipped with ModelMaker

[installdir]\BlIN\DEFAULT. npb.

Creating new classes

WEe'll use the Classes view to create anew class. In this view you add anew classas a
descendant to another classin the

model. The Classesview is

E1-=: TObject
= TLisgt depicted here.
== TPersistent
T _T_'_ZDTmLPTjnTﬂt - CI?SS trﬁel étontaini:gl The ancestor class must always be
| EMT: TLabe place holder TLabel nart of the model since
= TgElgllntLabd and real class TIntLabel ModelMaker needs it to correctly
=2 [Unknown generate the class declaration. In
our case thisimplicates that before
adding the TI nt Label class, it's

ancestor TLabel must exist in the
model. Thisraises aproblem. If you

started with the same default model, or with a template model that did not contain the class

usermanual 620.doc

May 7" 2002

12

ModelMaker version 6.20

TLabel , you will have to add the TLabel classfirst. But, in order to correctly add a class
TLabel toyour model, you now need to add it’ s ancestor first, and before that, etc.... help!

Since you do not intend to create code for TLabel , but only use it as an ancestor, thereis no
need to have the correct ancestor for TLabel . In our example the ancestor for TLabel could be
anything, for example TObj ect . A better fitting ancestor is of course TConponent . Classes
like TLabel in our example are called ‘ placeholder’ classes as opposed to ‘real’ classes such
as Tl nt Label . Other examples of placeholders are Tbj ect , Delphi’ s default class ancestor
and TConponent .

What we have to do now, is add two classes TLabel (‘placeholder’) and then add TI nt Label
(‘real’ class).

To do so:

1. Makethe Classes view visible by selecting ‘ View|Classes' (or press F3)

2. Select TConponent by clicking it.

3. Pressthe”Ins’ key or select add ‘ Add descendant’ from the popup menu.

4. Enter TLabel asclassname. Y ou might want double click the class and in the class editor
dialog check the option ‘ placeholder’ to make it clear that TLabel isjust asubstitute for the
real TLabel (whichisinunitstdcirls).

5. Now add the class TI nt Label using the TLabel asit’'sancestor the same way. Of course
you don’t check ‘ placeholder’ here.

In the Classes view you'll see atree or list based overview of all classes (and interfaces) in the
model. Use the popup menu to toggle between tree and list style.

Adding properties and methods to a class

In our example we now need to add a new property and aread and write access method to the
interface of the class Tl nt Label , to get something like:

type
TI nt Label = class (TLabel)
protected
function Get Nunval ue: | nteger;
procedur e Set NunVal ue(Val ue: Integer);
publ i shed
property NunVal ue: Integer read GetNunVal ue write SetNunVal ue;
end;

To do thiswe'll use the Class Members view - the bottom left window in the main window.

Class Members are the fields, methods, properties (and event type properties) that make up a
class sinterface. The Class Members view is depicted here.

usermanual 620.doc May 7" 2002 13

ModelMaker version 6.20

Add new property w
: % %0 ,/—' g Showalltypes 9 |n thisview
Type filter F [[P E | R £ ol vicib " 4l members
3 «—1 Show all visibilities
Visibility fiter 7 | @| P @] Pu s 4 an for the
w4l categon -
Category filter 7 I e J currently
. GetMumtalue: Integer; selected
. SetMumyaluelvalue: [nteger] class are
Pu(il¥ Create(a0wner: TComponent displayed.
P [Nurivalue : Integer Filterson
type (Field,
Method
etc.),
visibility

No ok o

(private, protected etc.) and category let you filter which members are displayed. Reset the
filters by selecting ‘ Reset Filter’ from the pop-up menu or by clicking the buttons * Show
all types and ‘Show all visibilities'. All filter buttons should bein a‘down’ state now,
except of course the * Show all..” buttons which do nothing but (p)reset the filters. Make
sure the category filter shows <all categories>. The member list is still empty because we
didn’t create any new Class Members yet. Note that the filter layout can be toggled using
the popup menu ‘filter layout or double clicking on the filter area.

Click the *Add property’ button.

The property editor dialog will appear. See picture below.

Enter Numval ue as the property’s name.

Select the visibility ‘ published’.

Make sure the property’ s datatypeis‘Integer’.

Select for Read Access ‘Method'. This defines that the property has read access and you
want to use a method to accessiit, rather than afield.

Select for Write Access ‘Method' This defines that the property has write access and you
want to use a method to accessiit, rather than afield.

Leave the other settingsin their default values and click OK. In the property editor’s
picture below the correct settings are displayed.

usermanual 620.doc May 7" 2002 14

ModelMaker version 6.20

TintLabel property

Standard l.-’-‘-.dditiu:unall Dncumentatinn] "-Iisualizatiu:unl

OF.

"Wizibility
" default " public
" private {*" publizhed
[~ PFroperty Qveride " protected " automated
D ata type
{» |nteger " Long'ford " shring " Clazz
" Longlnt " Boolean " AnziString " “anant
i Bute i Extended " Char ¢ OLEWariant
" |ntEd " Diouble " PChar s
" wford " Currency " Pointer i
\ Standard 4 More /
Clazzes Data Type Mame
| [] |
Read Access Wirite fooess [State Field
" Mohe " Mohe
" Field " Field I
& Method (= Method r
" Custom " Cusgtam M

| =i

[User named acoess specifiers

=

[armay property |

[Stared specifier |

Drefailt |unspecified ﬂ |

LCategory | zMones

|+

Wfrite parameter

|"»-"alue

| 'const' param

Cancel

Now have alook again in your Class Members view:
You'll not only see a property Numval ue, but also two property access methods Get Nunval ue
and Set Numval ue. Thisis because properties create and update their access fields and
methods automatically. Now that saves time!

The TI nt Label class sinterfaceis now defined, but the methods Get Nunval ue and

Set Nunval ue still need to be impl

Implementing meth

emented.

ods

In our example we will need to add code to the implementation of the methods Get Nunval ue
and Set Nunval ue. This code should be something like:

function TIntLabel . Get NunVval ue:
begin

usermanual 620.doc

I nt eger;

May 7" 2002

15

ModelMaker version 6.20

Result := StrTolntDef (Caption, 0);
end;

procedure TIntLabel . Set NunVal ue(Val ue: | nteger);
begin

Caption := IntToStr(Val ue);
end;

To add code to a method' s implementation you use the (Method) Implementation view.

1. Select the method you want to implement in the Class Member view, in this case the
method Get Nunval ue.

2. To make the Method Implementation view visible, select * View|Implementation’.

Add new section

Method declaration WPk | EE O MR - oo
(Inplace editable)

'_’I[TIntLabel]: function GetNumVWalue: Integer:

Method One Liner —>|

povar Besult := S3trTolntDef (Caption, 0);

Local code explorer /4 local code
Displaying local vars
and local procedures

Section list ~{gegin
I Besult := 3Strl

User owned /

section, L Code editor
currently active
in code editor

end ;

The picture above shows the Method Implementation view. This editor is perhaps the element
of ModelMaker that is the most different from other editors. To understand how this editor
works you need to know alittle more about how ModelMaker generates code for a method' s
implementation.

usermanual 620.doc May 7" 2002 16

ModelMaker version 6.20

Let'shave acloser look at the Get Numval ue method. Thisisjust a simple method, not
containing any local variables or local procedures.

ModelMaker will generate the
method’s header as defined in
the interface

This is a section of code you

add to actually implement the .) .
method. ModelMaker will ngﬂnl on TInt Label . Get Nunival ue: | nt eger;

indent this section for you. —— Result := StrTolntDef(Caption, 0);
end;

ModelMaker will insc—;-rt the
reserved words begi n and end,

The body of a method’ simplementation consists of alist of local variables, local procedures
and sections of code which implement the block between begi n. . end. A section can take up
any number of lines of code. All sections together make up the actual implementation. Using
sections, ModelMaker is able to identify certain lines of code within the body. Thisisfor
example used to automatically add and update a call to the inherited method, as we'll see later.

On the left side of the method code editor the complete method’ s code is displayed, although
maybe collapsed if necessary. On the right we find the actual code editor. It is used to edit the
section of code selected in the sections list. The same editor is aso used to edit the local
procedures code.

Aswe see in the above picture, the only thing we need to do, is add a section of code
containing the statement:

Result := StrTol ntDef (Caption, 0);

To do this, first create a new section. If you didn’t change the code options settingsin
‘Options|Code options' a new section is automatically created if the method does not contain
any sections yet.

1. If necessary, add a new section by clicking the ‘ Add section’ button.

2. Enter the statement in the code editor. There' s no need to indent the code with spaces since
thiswill be done automatically by ModelMaker.

3. Click the ‘save code’ button. Thisis not really necessary, since ModelMaker will
automatically save the section as soon as you select a new section or a new method.

Notice that the section is now also displayed in the section list, and is marked with agreen
line. This green lineinforms you that you created this section and are it's owner. Red lines
indicate that a section is not owned by you, but, for example, isinserted by a pattern which
has the only rights to update it. If a section contains more lines than the current ‘ Fold height’
(adjustable in the Environment options tab Editors), the section will be collapsed. Collapsed
sections are marked with a second purple line with amark on the collapsing position. More
about this later.

usermanual 620.doc May 7" 2002 17

ModelMaker version 6.20

Now you should be able to implement the Set Nunval ue method the same way: select the
method in the Class Members view, add a section if necessary and enter your code.

Although we have finished implementing the class TI nt Label for now, all code existsonly in
the ModelMaker model, so the next thing to do is to generate a source file.

Creating a source file

Units are the gateways to source files on disk. They provide alink between al datain a
ModelMaker project such as classes, method implementations etc. and an Object Pascal style
unit file which Delphi is able to compile.

Creating a Unit

In this example we need to create a unit which, after it has been generated, should |ook
something like:

unit | ntLabel;
interface

uses
SysUtils, Wndows, Messages, Cl asses, Gaphics, Controls,
Forns, Dialogs, StdCtrls;

type
TI nt Label = class (TLabel)
prot ect ed
function Get Nunval ue: I nteger;
procedure Set NunVal ue(Val ue: Integer);
publ i shed
property NumVal ue: Integer read Get NunVal ue write SetNumval ue;
end;

procedur e Register;
i pl enent ati on

procedur e Register;
begi n

Regi st er Component s(’ MM Denp’, [Tl ntLabel])
end;

function TIntLabel . Get NunVal ue: |nteger;
begin

Result := StrTol ntDef(Caption, 0);
end;

procedure TIntLabel . Set Nunval ue(Val ue: | nteger);
begi n

Caption := IntToStr(Val ue);
end;

end.

To create anew unit we use the Unit List view which is depicted below,

usermanual 620.doc May 7" 2002 18

ModelMaker version 6.20

Generate unit
View Unit List
Add unit Unlock code View Unit

Enable Auto ;)
generation generation Code Editor

ModelM aker 6 - Getstart

o ga%| e v-@lon ER BREEEDE
v

B dboR| Vo # 8- 0| <]

I«.,-;-,'" categoriess j PI.JI-_::.I Di EI wnit «/UnitName!=; I
=1 4% Intlabel in E-\Releases'm | P2 || [e _

- E e | _ interface

II@ Clazzes not azzigned bo u Pu Register;

Pu nterface uses claus (USes
‘I I _"I SyzlUtils, Windows, Messages, Classes,
Forms, S5tdCtrls, Dialogs:

[[(& (& Gh| g - type I
F =Pl E TR] MMETH : STARTINTERFACE

@ | Pi| @) Pu 5 AN MMWIN: CLASSINTERFACE TIntLabel; ID=533.
I«.-'l'-.ll categoriess j procedure Register:

.m Gethumt alue: Intege 2

.m SetMumt aluely alue: | implementatibn -
Tl Frea_h.a[..alilwr.'ler: TCon ﬂ « ‘ | LIJ
[a3 | H | | [Inzert |ur:\'\tlntlabel;1 Clazs(es). 0 Event(z). 0 unit(z) F -

\
_ Unit Code Explorer _ Unit Code Editor

1. To makethe Unit list view visible, select ‘View|Units . Repeat this for the Unit Code
editor.

2. Inthe Unit list click the *Add unit’ button, a unit properties dialog will now appear.

In the Unit editor dialog you define:

1. Leavethe source path alias<no al i as> unchanged.

2. The source file name (the full path including drive and folders), to define the path you
could use an source alias, but for now just click the browse button and locate the
\ Model Maker\ 6. 0\ TEST folder (or Model Maker\ 6. 0\ Test depending on the base path you
installed ModelMaker in) and enter the file name | nt Label . PAS.

3. Onthetab sheet ‘Classes add the class TI nt Label to thelist on the right either by
dragging or by selecting it and clicking the ‘ Add selected’ (*) button or by double-
clicking.

4. Changethe‘VCL page from <unr egi st er ed>to ‘MM Deno’ by entering this namein the
string grid.

5. Click OK.

WEe'll seethe newly created unit now listed in the unit list on the left. In this editor unit’s code
containing atext which should look something like:

unit <!Unit Nane! >;

usermanual 620.doc May 7" 2002 19

ModelMaker version 6.20

interface

uses
SysUtils, Wndows, Messages, C asses, G aphics,
Controls, Forns, Dialogs;

type
MWY N: STARTI NTERFACE
MWW N: CLASSI NTERFACE TI nt Label ; 1D=7;

procedur e Register;
i mpl enent ati on

procedur e Register;

begi n

MWA N: CLASSREGQ STRATI ON Tl nt Label ; | D=7; Page=" MM Denvo’ ;
end;

MMAI'N: STARTI MPLEMENTATI ON
MW N: CLASSI MPLEMENTATI ON Tl nt Label ; | D=7;

end.

For now, it is enough to understand that ModelMaker usestags (like

MWW N: CLASSI NTERFACE) to insert the interface, VCL registration and implementation of a
classin otherwise ‘plain’ text that you define. Thereis one problem however: if you look at
the uses clausein the interface, you'll see that the unit St dct r I s which defines the ancestor
class TLabel , ismissing. That is because the default unit template we are using does not
contain this unit. For changing this template refer to * Customizing ModelMaker’. For now, we
will haveto add st dct r I s manually.

To dothis,
1. Inthe unit code editor add St dCt r | s to the uses clause.
2. Click the ‘Save code’ button in the toolbar above the editor.

Generating the source file

To generate the source file and create or update afile on disk,

1. Make sure that code generation is not locked. Locking is explained later, for now make
sure the button ‘unlock code generation’ in the ModelMaker toolbar is pressed down.

2. Click the ‘Generate current unit’ button in the unit list view.
Start Delphi (if it was not running already).

4. Either manually switch to Delphi or - much more instructive - click the ‘ Locate in Delphi’
button in the main tool bar - or smply press Ctrl+F11. Thiswill open the unit and locate
the entity currently selected in Model M aker.

w

The generated source file should look pretty much the same as we wanted it to be.
(Differences may occur if you modified your file DEFUNI T. PAS in ModelMaker’s\ BI N
folder.)

WE're ready to debug the TI nt Label now, and install it in our VCL.

Before doing thisit’s a good idea to save our model. Thisis very much like in other windows
applications, so it won't be explained here. We could usethe[i nst al | di r]\ TEST folder to

usermanual 620.doc May 7" 2002 20

ModelMaker version 6.20

save this project. Practice shows that it is convenient to name your model after the main
source file you create with it, or the main set of components. In this case | NTLABEL. npb
seems an obvious name.

Adding the component to the VCL

Debugging your component

A good practice, isto debug your new component before adding it to the VCL. Do thisfor
example by adding the source file to the current Delphi project (e.g. by using Delphi’s project
manager) and re-compile the project. This should at least filter out all syntax errors. Either use
‘Compile or ‘Syntax Check’ since Delphi does not always correctly manage the file's
date/time and modified statusif you just ‘Run’ the project.

Compiling errors

If you didn’t make any mistakes, the unit should compile all right. If it doesn’t: change the
code in the appropriate place in ModelMaker. That is:

» For missing units in the unit’s uses clause: the unit code editor.

» For any code not part of the class: the unit editor.

» For errorsin the class' s name or ancestor name: the Class view.

» For errorsin the class sinterface declaration: the Class Members view.

» For errorsin amethod' s implementation: the Method Implementation view.

Switch to ModelMaker and fix the code. Use the integration expert’s menu ‘ Jump to
ModelMaker’ to jump straight from Delphi’ s code editor to the corresponding position in
ModelMaker. Finally, in the Unit list view click the button ‘ Generate’ again and re-compile
the Delphi project. If you are having trouble with this: look ahead where we are adding new
behavior and editing code is explained.

Adding the component to the VCL

After debugging your new file, add it to the Delphi’s VCL.

In Delphi 1.0: select menu * Options|install Components’, select ‘Add’ and browse to find the
unit | NTLABEL. PAS in folder ..\Mbdel Maker\ 6. O\ TEST\ .

In Delphi 2.0: Select menu ‘ Component|install’, select * Add’ and browse to find the unit

| NTLABEL. PAS. Refer to your Delphi User guide for more information about installing
components.

In Delphi 3 and higher: you must install the new component in a package. Select a new
package called MMtest in the ..ModelMaker\6.0\Test folder. Please refer to your user guide
for installing packages.

usermanual 620.doc May 7" 2002 21

ModelMaker version 6.20

After recompiling the VCL the new TI nt Label component should be on the pal ette page
where you registered it: MM Demo. To test it, add a Tl nt Label component to a (new) form.

Y ou can use the Object Inspector now to set the ‘Nunval ue’ property and see the caption
change. But the component can be improved!

Improving the component in ModelMaker

If you watch carefully, you'll seethat a Tl nt Label when dropped on aform, initialy has the
caption ‘I nt Label 1’ rather than ‘0’. The Numval ue however is0. Thisis conflicting and not
very nice. To improve the component we'll have to override the constructor Creste like this:

(refer to Delphi’ s on-line help for the TCont r ol . Cont r ol Styl e property)

constructor TIntLabel.Create(AOaner: TConponent);
begi n
i nherited Create(AOmer);
{ Don't let the Object Inspector set a caption }
Control Style := Control Style - [csSet Caption];
{ Instead pre-set the Caption ourselves }
Nunval ue : = 0;
end;

To do thiswe need to return to Model M aker.

Keep editing your code in ModelMaker

We could of course change TI nt Label ’s code in Delphi, but then the ModelMaker model and
the modified source file would be out of sync. The next time we would (re-)generate the file
from within ModelMaker, the changes made in the Delphi Editor will be lost. Of course, if we
do not intend to maintain our code any longer in ModelMaker that’ s fine, but we won’t benefit
the advantages ModelMaker offers during maintenance and documentation. And although it
may seem a burden at first, after getting used to it, the benefits of keeping the master code in
ModelMaker are much higher than the costs. So resist the itch in your fingers and return to
ModelMaker now.

Overriding the constructor Create

To override the constructor Cr eat e, we could add a method in the Class Members view
clicking ‘Add method’, name it ‘ Create’ adjust it’s other attributes such as parameters
‘AOaner: TConponent ', method kind ‘ constructor’, etc. but overriding methods can be done
far more easy. The only thing is: in order to override a method (or property) the method to be
overridden must exist in the model. If you used the default project template as was shipped
with ModelMaker (which also contains the class TConponent), the virtual constructor
TConponent . Cr eat e iSin your model with the correct attributes, ready to be overridden.

To do so:
1. Inthe Members view tool bar click the ‘Wizards' button, and

usermanual 620.doc May 7" 2002 22

ModelMaker version 6.20

2. Select ‘Method override wizard'. Alternatively use the same function from the Wizards
popup sub menu.
3. Inthe ‘Override Methods' dialog select the ‘Cr eat e’ method.

4. Make sure the option * Call inherited method’ is checked. Thiswill instruct ModelMaker to
add a section of code containing a call to the inherited method.

5. Click OK.

In the Class Members view we' |l see that a method called Cr eat e isadded to the list. Just for
your information you may check the methods attributes by selecting it in the member list and
clicking the ‘ Edit Member’ button, or double clicking it in the member list.

Notice that al relevant attributes are copied from TConponent . Cr eat e:

* Themethods nameisCreat e.

» The parameter list isAOmer: TConponent .

* Themethod is‘public’.

* Thedatatypeis‘void'.

* The method typeis‘constructor’.

» Thebinding kind is‘override’ (since TConponent . Cr eat e iSvirtual).

» Theoption ‘Call inherited' is checked because we checked the option ‘ Call inherited
method’ running the override wizard.

» Theoption ‘Inheritance restricted’ is checked. If this option is checked, the method will
automatically be updated to reflect any changes applied to the overridden method in the
ancestor class.

Click Cancel to leave the method init’s original state.

Implementing Create, non-user sections in code

To implement the method Cr eat e switch to the Method Implementation view again. Notice
that in the section list on the left, already one section is added containing the code:

inherited Create(AOaner);

This section is marked with ared line, indicating that we cannot edit it’s contents. The section
was added because the method’ s option ‘ Call inherited’ is checked.

To add the other lines of code,

1. Add anew section by clicking the * Add section’ button.
2. Enter the code in the code editor on the right.

3. Click the ‘Save code' button

usermanual 620.doc May 7" 2002 23

ModelMaker version 6.20

In the section list on the left we'll see the complete implementation of Cr eat e.

Section to call

inherited method. constructor TIntLabel . Create(AOwmer: TConponent);
automatically added begi n

and updated.

i nherited Create(AOner);

Section in which you . .
y { Don't let the (Object Inspector set a caption }

enter your code. Control Style := Control Style - [csSet Caption];

You must create { Instead preset the Caption ourselves }
and update this Nunval ue : = O;

section yourself. end:;

Instant code generation

If we have alook in the Delphi editor, we'll see that the source file has not been updated yet.
To do this we need to regenerate the unit. Therefore switch to the Unit list view again.

Regenerating the unit could be done by clicking the ‘ Generate’ button again, but it ismore
instructive to demonstrate ModelMaker ‘s instant code generation feature. Rather than having
to manually regenerate a source file whenever something has changed, it is possible to
‘Enable Auto generation’ for aunit. The source file will then be regenerated each time
anything changesin the Model that affects the sourcefile. It is anice feature that M odel M aker
not only regenerates the source file, but also instructs Delphi to reload the file if it’s opened in
Delphi’s code editor. Refer to Integration with Delphi.

To watch this:

1. Make sure you have the I NTLABEL. PAS file loaded and is on top in the Delphi code editor.
2. Click the *Enable auto generation’ unit button in the Unit view tool bar.

3. See how the Delphi editor now reflects the last changes in your file.

Now return to ModelMaker again, and let’s play around:

1. Switch to the Class Members view.

2. Edit the Create Method (Double click or click the Edit button).
3. Now uncheck the ‘Call inherited’ option and click OK.

4. Watch the code being updated in Delphi.

5. Now check the *Call inherited’ option again.

To have acloser look at the Method Code editor,

1. Inthe Create method’ s section list you can drag sections up and down, do this and see how
Delphi’ s code editor follows your changes.

Lets have play around with the units view:

usermanual 620.doc May 7" 2002 24

ModelMaker version 6.20

1. Make surethe unitsview isin ‘display as tree mode' (popup menu)
2. Select the class TI nt Label by clicking it.

3. Pressthe Del key once, thiswill remove the class from the unit. The classis still in the
code model. In fact, the classis listed under the ‘ classes not assigned to units' node. Check
the code in the IDE: you'll see that the entire interface and declaration have been removed.

4. Dragthe class on the IntLabel unit. Thiswill add the class to the unit again. Note that the
VCL Component registration page is now reset to ‘none’. Edit the unit (double click unit or
use toolbar) to change this back to ‘MM Demo’.

After you have played around with the instant code generation feature, make sure the
TI nt Label classstill isasyou want it to be. In order to actually see the improved behavior,

1. Rebuild your VCL in Delphi.

Delphi 1: menu ‘ Options|Rebuild library’.

Delphi 2: menu ‘ Component|Rebuild library’.

Delphi 3 and higher: recompile the package MMtest.dpk.
2. Remove any old TI nt Label components from forms.

3. Add anew TI nt Label toaform and notice how the Captionisset to ‘0O’ now.

Documenting your component

ModelMaker not only supports source code generation for your component, but it has al'so
advanced wizards and generators to document your component. These include

« Documentation wizard which inserts basic standard documentation for all membersin a
class.

* |n source documentation.
» Help file generation.

* Instant visualizing in class diagrams. Although creating diagramsis usually donein the
design process, it is also possible to create diagrams from existing code.

To demonstrate these features we will now create a help file and a class diagram for the
Tl nt Label component.

Adding documentation to your component

Each unit, class, all members of a class, ebent types and symbols in diagrams can be
documented with a short description named One Liner and alonger text named
Documentation. For editing One Liner and documentation we'll use the Documentation view.
Alternatively we could have used the floating documentation window which is available from
the main menu “Views’.

usermanual 620.doc May 7" 2002 25

ModelMaker version 6.20

Documentation

Wizard X

Save A 0 |ig) B 5 |[unie] e

documentation

Create Help file Edited type

One Liner |L|nit IntLabel containg the MM demo compaonent TintLabel

/

One Liner //’ﬁﬁTEVIntLahEl contains a demo component TIntLabel. It was
created with ModelMaker to demonstrate the creation of a new
Ccomponent .

Documentation
editor

v

To make thisview visible: Select menu ‘ View|Documentation Editor.

With this Documentation editor you add a One Liner and a more descriptive text to each unit,
class and member (method, property etc.). That can be quite ajob, so ModelMaker includes a
documentation wizard, which does some of the nasty work for you. Thiswizard will insert
pieces of documentation in the currently selected class.

To demonstrate this:

1. Select the class TI nt Label inthe Classes or Units view.

2. Inthe Documentation view click the button ‘ Documentation Wizard'.
3. Click OK to confirm creation of standard documentation.

4. In the drop-down box ‘ Edited type’ select ‘ class members'.

5. Inthe Class Members view select the Get Nunval ue method.

What you see now in the documentation editor is that the wizard inserted text like:
GetNumValue is the read access method for the NumValue property.

Usually thisis sufficient to document Get Nunval ue, since you will be documenting the exact
meaning of the property Nunval ue and this avoids redundancy.

Selecting the method Set Numval ue in the Class Members view makes the documentation for

Set Nunval ue visible:
SetNumValue is the write access method of the NumValue property.
Again thisis usually sufficient to document the Set Numval ue method.

What remains to be done is documenting the constructor Cr eat e and the property Nunval ue.
But here too, the wizard inserted already some useful text.

Select the documentation for the constructor Cr eat e and change this to:

Constructor Create overrides the inherited Create. First inherited Create is called,

then the Caption is pre-set to 0, reflecting the initial NumValue state. ControlStyle is modified to
exclude csSetCaption.

Now select the Nunval ue property’ s documentation and change this to:
Property NumValue is read/write at run time and design time.

usermanual 620.doc May 7" 2002 26

ModelMaker version 6.20

It reads and writes the Caption property as an Integer.

To edit the documentation for the class Tl nt Label :
1. Make sureclass TI nt Label issdected in the Classes or Units view,
2. In the Documentation view, select ‘classes' in the drop-down box ‘ Edited type'.

Enter the text:

TIntLabel is a simple TLabel descendant created with ModelMaker.

It adds the property NumValue which reads and writes the Caption property
as an Integer.

To edit the documentation for unit IntLabel which containsthe TI nt Label class;
1. Make surethe unit I nt Label issdected in the Units view.
2. In the Documentation view, select ‘units' in the drop-down box ‘ Edited type'.

Enter the text.
Unit IntLabel contains a demo component TintLabel. It was created with
ModelMaker to demonstrate the creation of a new component.

Theunit | nt Label isnow completely documented. Documentation is typically used to create
a helpfile or for in-source documentation. Third party plug-in experts use the Model M aker
ToolsApi to output documentation to other formats.

Y ou add One Liners (short, single line descriptions) the same way. In the Views menu you’ Il
find a‘ Floating documentation’ view. This view can be used to insert One Liners and
documentation too. This view can be docked or stay floating. The edited entity typein this
view is automatically updated to reflect the last focused view in ModelM aker.

Creating a help file

ModelMaker can create a Borland style help file from your documentation. This includes the
generation of the Borland / B keywords which are necessary for interaction with Delphi’s on-
line context sensitive Help. Help files are generated from unit’s. In our example we'll create a
help filefor unit | NTLABEL.

ModelMaker let’s you select the visibilities you want to include in your help file. These are:
e ‘User’ (public, published, automated and default)

» ‘Component writer’ (user visibilities plus protected)

» ‘Developer’ (al visihilities)

The default visibility ‘User’ isthe most restricted, since thiswill include only help for the
public, published or automated interface of a class. Use thisfilter to create a help file you
distribute with your components. Selecting the * Component writer’ visibilities will also
include help for the protected interface. Thisis the type of help file you would typically
distribute with components if other devel opers should be able to derive a descendant class
from your component. The last selection includes also the private details (typically fields and
or property access methods etc.) which you might want to have documented internally.

usermanual 620.doc May 7" 2002 27

ModelMaker version 6.20

To create ahelp file for the TI nt Label component,
1. Make suretheunit I nt Label isselected inthe Unitsview.
2. In the Documentation view, click the button *Create help file'.

3. Inthe‘Create help file' dialog you’'ll be prompted to enter afile name for the unit's RTF
file. A help project file with the same name and extension . HPJ will automatically be
created. In our example enter [i nst al | di r]\ TEST\ | NTLABEL. RTF.

4. In the same diaog, select the visibilities you want to include in your help file. In this
example we'll go for the * Component writers’ visibility.

5. Leave the reformat paragraphs option checked and Click OK.

6. Open the explorer (file manager) and notice that both | NTLABEL. RTF and | NTLABEL. HPJ
have been created.

7. Run your Delphi help compiler with the | NTLABEL. HPJ project. Be aware that you need to
use the help compiler that was shipped with the Delphi version you want to create help for.
For Delphi 1.0: Use DELPHI \ BI N\ HC31. EXE in a DOS box and run it from the folder your
HPJfileisin. For example: DELPHI \ BI N\ HC31. EXE | NTLABEL. HPJ
For Delphi 2, 3 and higher: Usethe Del phi 2(or 3 / 4/5/6).0\ HELP\ TOOLS\ HCW EXE
to compile your project: double clicking the | NTLABEL. HPJ file in the explorer should be
enough.

The help files have been created now. Y ou might want to have alook at them, using windows
help. Double clicking the newly generated | NTLABEL. HLP starts help.

The Help File Generator source is available as plug-in expert on request. It can be extended to
create help for multiple units at once etc.

Integrating your help files with Delphi’s on line help

To be able to invoke Delphi’s help on your TI nt Label component you must integrate your
| NTLABEL. HLP help file with the Delphi 1 and 2 on line help. To do this:

1. Generate key words using KWGEN. EXE
2. Install help using HELPI NST. EXE

Installing help in Delphi 3 and higher is documented in Delphi’s Component Writers Guide /
User’s Guide.

Documenting the design in a diagram

Although creating diagrams is usually done in the first stages of the design process, it isalso
possible to create diagrams from existing models using ModelM aker’ s instant visualization
feature. A list of diagramsin the mode is edited in the Diagram List view. The actua
diagrams are edited in the Diagram Editor.

usermanual 620.doc May 7" 2002 28

ModelMaker version 6.20

ModelMaker b - Getstark

B =10l x|

File Miew Options Delphi Tools Help

the-d%(8e ¥ mon EFLE E LD EE

|
T _ v ®|‘ b | L] 1':":'3555 j"[ﬁemndiagram j|
- F B E | S=mal¢ -@E

R8IE: D e diagram IE}(_2_“3 = (% & 83 ﬁ +I = _|
\ -—:v—[>j—o|t||1l|ip|r"3*;'|}f|*i"f;?@t}*
P R T -

||Ii|[ﬁ]|[|1h||‘iﬁ|ﬂ@|_*

ﬁ-ﬂ-dﬂ%@v{v Zﬁ

P Tmtaber |l
@| 7 @ po B AN M =T T TR R
71 8] v alue © Integer CE operations | ...
@R beiuniiaie: isger | | |crester.) S RS HE

.E EtNuml'\"laluE!walLlE: |r L —_—_————— . . e

| ‘ 5] ;IZZXZZZZZZZZZZZZZZZIZZZZZZZZﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁf

\ | n | | \ |Insert |Dem-:| diagram -

\ View Diagram List —I
Diagram List _l

View Diagram Editor

L Add Class Diagram Diagram Editor

Make the Diagrams List view and Diagram Editor visible:

1. Select menu ‘View|Diagrams . Thiswill make the diagram list visible in the top left
window.

2. Select menu *View|Diagram Editor’. Thiswill make the diagram editor visiblein the editor
pane on the right

3. Inthe Diagram list create a new class diagram by clicking the * Add Class diagram’ button.

4. You can inplace edit the diagram’ s name. Enter * Demo diagram’. The name is intended
only to distinguish different diagrams.

In the newly created diagram we' |l demonstrate ModelMaker’ s instant visualization feature:
1. Make sure the Classes or Unitsview isvisible (View|Classes or Units)

2. Drag the class TLabel from the Classes or Units view and drop it on the diagram editor.
3. Do the same with TiI nt Label .

4. Savethe Class diagram by clicking the ‘ Save diagram’ button.

Notice how the inheritance relation TI nt | abel = cl ass (TLabel) isautomatically

visualized. If appropriate, ModelMaker will also visualize ‘uses relationsif aclassis dragged
onto a diagram.

usermanual 620.doc May 7" 2002 29

ModelMaker version 6.20

Y ou can copy the current selected diagram to the clipboard (in WMF format) and paste it in
your word processor to document your design. To do this: pressshi ft +Ct r1 +C or use the
local menu ‘ Export as Image' | Clipboard’ . Alternatively you could export theimageto afile
(bmp, wmf and jpg). To print the diagram, press Ct r | +P or use the pop-up menu.

Symbol styles in Diagrams: displaying members

ModelMaker supports many UML styles of displaying classes and interfaces. show module
(unit) names, show members, collapse interfaces etc. To demonstrate afew and give you an
idea of what is possible we'll change the symbol style for the Ti nt Label class symbol.
Symbol styles define how a symbol is displayed in adiagram. Note: the visual appearance
(colors, fonts etc) is controlled by the visual style which is not part of the symbol style; check
this manual for details. Default all symbol styles are “as defined in current diagram”. The
diagram symbol style defaults to “as defined in the current project”. This gives you the
possibility to change style on any level you like: just asingle class symbol, all class symbols
inadiagram or al diagramsin a project.

Here we'll change the symbol for TintLabel only. Double click on the TIntLabel class symbol.
Thiswill show the class symbol editor.

Class Symbol : x|

Clazs | Documentation Swmbol stle |*v"isua| st_l,llel Hyperlink.s

—rdember filter —tember dizplay options———————

kember lizt style [Shaow wisibility

Auto Member list

 Select display

Select member [Show data type aptions

list style '
Custom member tupe filker [™ Show parameter lists
[~ Eields [¥ Show categories
v P ti . .
select r?;amher_ I¥' Bropeities [¥ Ewents in hew compartiment
type filter E 1 . . .
" me [~ LCombine operations & attributes
v Method fi
v Methods [operstions| [¥ Show empty compartmetts
b ember wizibility filber U
Select member | | publc, published S| | coatomeomns T2
visibility filter

[¥ Include default wisibility

. —Symbal displ ong————————
Cateqary filker ML SRR = St

j [¥ Shaow module [unit] name

I«Diagram defineds
[~ word Break name

—bdember arder [T &uto size width
bember grouping v Auto size height
IDiagram grouping =l Custom colar. ..
kember sarting
IDiagram zorting j

Grayed checkbox iz diagram style

Ok I Cancel

First you define which members are displayed. In this dialog change the Member list style
from “Diagram Auto Member list” to “Auto Member list”. This style will automatically add
all members defined by the member filter in this editor. In the Member filter check

usermanual 620.doc May 7" 2002 30

ModelMaker version 6.20

“Properties’ and “Methods’. Change the visibility filter to public and published members
only. Thiswill suppress display of the protected property access methods GetNumV aue and
SetNumValue.

Then you define how members are displayed. Use the Member display options to modify this.
Check “Show Datatype” and “Eventsin new Compartment”. Note that a grayed option
reverts the option to the parent (diagram) style.

To display the name of the unit that contains this class in the symbol name compartment,
check the “ Show module name” option.

After clicking OK you should have a diagram that |ooks something like this (you can stretch a
class symbol as needed depending on the Auto Size options — check the class symbol dialog).
The property NumValue is displayed in the “attributes compartment and the method Cresateis
displayed in the ‘operations’ compartment. Likewise events can be displayed in a separate
compartment or combined with the attributes. If you wish you could even combine all
members into a single compartment.

TLabel

T

= Intlabel:TintLabel

= attributes
Mum'/alue: Integer;

= operations
Creater.)

Visualizing the unit IntLabel.pas

Just like classes can be visualized by class symbols, the unit IntLabel which contains
TIntLabel can be visualized. To do this, click the “Add Unit Package” tool on the diagram
editor tool bar and then click on the diagram. The following dialog will appear which lets you
select the unit to visualize in the package. In this dialog, select “IntLabel” and click OK.

usermanual 620.doc May 7" 2002 31

ModelMaker version 6.20

*> Select link i =10 x|

+- classzes QK

[+ interfaces

Elm Cancel
U Intlabel —_—
+- events

MHew...

Now the Package Symbol editor will be visible, which is used to edit the visualization of the
linked unit.

Package symbuol il : |

5jr'l'l'l|3"2'||I:il|:u:um|ar1t.5|ti|:|n Hyperlinks | Yisual st_l,llel

Narne |Ir'|tla|:|el o B0
Cateqaory Iunit | A&
—Option
[T Abstact package
Package style I package j
M ame pozitian IName in kain compartment j
[T Display tab

Hat linked unit's contents
v Show contained classes

[¥ Show contained event types

[~ “word Break name
v Auta size width
v Ao size height

Hame

Custom color....

- hatlinked to Intlabel ok Cancel

In this dialog, Make sure the “ Show contained classes’ option is checked (not grayed) and
click OK. Y our diagram should now look something like the picture below.

usermanual 620.doc May 7" 2002 32

ModelMaker version 6.20

TLabel
= LNt
[‘3 Intlabel
(=] TirtLakel
= Intlabel: TintLabel

=] attributes
Mumy/alue: Integer;

= operations
Crester..)

The package symbol displaysit’s contained classes (TIntLabel) and has a stereotype
(category) named <<unit>>. Of course, if you add more classes to the unit, the symbol will be
updated automatically.

Visualizing the Documentation

The UML uses Annotation symbols to add notes to diagrams. ModelMaker supports
hotlinking annotations to symbol documentation (or OneLiners). Thisisatwo way hot link:
the annotation text will automatically show the symbol’ s documentation and editing the
annotation text will update the symbol’ s documentation. To demonstrate this, we'll add a
linked annotation to the class symbol TintLabel and to the unit package symbol IntLabel.pas.

On the diagram editor toolbar select the “ Add Auto Documentation linked Annotation” tool.
Thistool allowsthree link styles which can be selected with the drop down button next to it.
Links styles are: passive (not linked), documentation and one liner. Make sure the
Documentation style is selected.

| 11003 j”DemD diagram j“ j| = H | g - | =
O E - — > dioDm @ ° - R -
by
B cunits Add Auto Documentation linked Annotation
Intlabel
=] TintLakel

Then after selecting thistool, click on the class symbol and drag the mouse below it. Thiswill
create the link and annotation. Repeat this for the package symbol that is linked to unit
IntLabel. Y our diagram will now look something like this.

usermanual 620.doc May 7" 2002 33

ModelMaker version 6.20

= slnits
TLabel
ane Intlabel
Z‘X =] TrtLabel
= Intlabel:TintLabel i
= attributes *
Mum*alue: Integer;
= operations Unit IntLakel contsing & demo
Creater..) component TintLabel. it was
created with Modelbaker to
. demonstrate the creation of a
MEyy Component.
TirtLakel iz & simple TLakel descendant

created with Modelaker. | adds the
property Mumyalue to wwhich reads and
writes the Caption property as an Integer.

Now try to edit the documentation for TintLabel in the annotation and see it changein the
class dialog and the diagram. To do this, click TIntLabel’ s annotation and press F2. This
invokes the annotation’ s inplace editor. Change the text to your liking and after pressing the
Enter key, check the documentation tab in the class editor dialog (classes view). Similar to
linking the documentation, a symbol’s One Liner can be linked to an annotation.

Summary

In this chapter you got afirst glimpse of some basic featuresin ModelMaker.
» ModelMaker isall about creating classes.

* Itisimportant to start with the right project template especialy if you want to override
methods or properties.

» Theinterface of aclass consists of Class Members (fields, methods and properties).
* Properties create and update their access fields and methods.
» Method code consists of sections, which can either be created automatically or manually.

* A Unit provides alink with a source file. Units can have ‘auto generation’ enabled to
instantly reflect any change in the model to the source file.

» ModelMaker’s IDE integration experts will take care of reloading unitsin Delphi’s code
editor.

* Tojump from ModelMaker to the IDE and back, use the Locate in Delphi and Locate in
ModelMaker commands.

* It'seasy to document a design using the documentation wizard.
» Help files can be created for aunit, which are ready to integrate with Delphi’s on-line help.
* Instant visualization in class diagrams can be used to document your design.

» Class symbols can automatically display contained members, package symbols can
automatically display classes contained by a unit (source module).

usermanual 620.doc May 7" 2002 34

ModelMaker version 6.20

» Symbols can be hotlinked to annotations, which will then display documentation or One
Liners.

» Diagrams support multiple symbol styles that can be defined at different levels.

Where to now?

Now you’ ve seen ModelMaker’ s basic mechanisms. Y ou can have alook at the following
topics:

» Thereisanother step-by-step example in the Design Patterns manual that demonstrates the
use of design patterns. Y ou should have enough background now to work through this
demo.

* ModelMaker’s Basic Concepts page 36.

» The other chaptersin this manual focusin greater detail on common aspects of
ModelMaker such as diagrams, code generation and import.

usermanual 620.doc May 7" 2002 35

ModelMaker version 6.20

Basic Concepts

Overview

Editing Editing
Patterns ToolsApi
XML, XMI, EMF

codenodet N] perene m

CodeTemplates

Source Import

Uk

ModelMaker Team Development

Macros

Generate, Import Customizing
SourceFiles Docum entation

DelphilDE HelpFile

MMExplorer

This picture gives an impression of ModelMaker’s main parts and how they relate.

The two main entities are the Code Model and the Diagrams. Around them you' Il find
importing and generating source code, interaction with the Delphi IDE, saving models etc.
Going around this picture more or less anti-clockwise we' |l see:

ProjectTemplates

Difference

Code Generation

The Code Model contains the classes, members, units etc. that map to the corresponding
conceptsin Delphi’s Object Pascal. The Classes view, Members view, Method
Implementation view and Units (Code) view all deal with visualizing and manipulating the
code model directly.

Code Generation is the process of creating an Object Pascal source file containing classes,
members and unit code. Units provide the link between the Code Model and a sourcefile. A
unit contains classes and/or event type declarations plus user defined unit code such as

usermanual 620.doc May 7" 2002 36

ModelMaker version 6.20

module procedures. Refer to Code Generation, page 45, for a more detailed description of
source code generation. Code generation is typically, but not only, controlled from the Units
view.

Code Import is the process of reverse engineering an Object Pascal source file into entities
that make up the Code Model. This can be initial importing - the unit and / or classesit
contains did previously not exist in the Code Model - or refresh import - re-importing an
existing unit and / or the classesit containsin order to synchronize the Code Model and
source file. Code Import is typically controlled from the Units view. It is amongst others also
available in the classes view and difference view. Code Import is described in detail in chapter
Importing Source Code, page 56

Design patterns are proven solutions for a general design problem. It consists of
communicating classes and objects that are customized to solve the problem in a particul ar
context. In ModelMaker patterns are active agents that will insert code into the model and stay
alive to reflect changes in the model to the pattern related code. Design patterns currently only
relate to the Code Model. Patterns are manipulated in the Patterns view. There is more on
patterns in the Design Patterns manual.

Code Templates are user definable and parameterizable snippets of related code. They are like
user definable patterns. Code templates can be created form the Members view and applied
from the Patterns view or Members view. There’smore in Code Templates page 71

ModelMaker’s Delphi I DE integration takes care of synchronizing the Delphi IDE editor
buffers whenever afileis (re-)generated by ModelMaker. Depending on the Delphi version
there are other functions available like: add IDE editor file to model, refresh IDE editor file
etc. There’ smore in chapter Integration with the IDE page 105

The ModelMaker Code Explorer is a separate ModelMaker Tools product that brings basic
ModelMaker Code Model related functionality into the Delphi IDE. With this explorer you
can navigate and add, edit, copy properties, methods or even entire classes with the same ease
and concepts as in ModelMaker, usually even with the same dialogs.

A Macro isafragment of text that isidentified by amacro identifier. While generating source
code and in-source documentation, ModelMaker will expand the text, replacing macro
identifiers with the macro’ s text. Macros are also used to customize certain parts of the
generation process (custom class separator, method section separator etc.). Macros are
maintained in the Macros view. Macros are described in detail in chapter Macros, page 74
Macros are also used to parameterize Code Templates as described in chapter Code templ ates,

page 71

All Code Model entities and Diagram symbols can be documented with Documentation and a
One Liner. In al relevant editors you' Il find a Documentation tab. The Documentation view
and Floating Documentation view are dedicated to editing One Liners and Documentation.
Emitting “in-source documentation” during code generation is controlled by macros. Y ou can
redefine these macros to customize the documentation format.

usermanual 620.doc May 7" 2002 37

ModelMaker version 6.20

Documentation can be converted to a unit based Help File. Thisis done in the Documentation
view. Other documentation output formats can be created with (third party) plug-in experts
that use the MM ToolsApi to access the model.

The Diagrams contains multiple types of diagrams. Some diagrams visualize aspects of the
Code Model in UML-style. Others visualize entities such as Use Cases that only exist in
Diagrams. Most symbols can be ‘HotLinked” to entities in the code model. Class symbols for
example are linked strictly to classesin the Code Model: changing the class in a diagram will
also change the class in the code model. Messages in sequence diagrams can be weak linked:
they can or cannot be linked to a class member. If they are not linked the message name is just
text. Symbols such as Use Case symbols only exist in the Diagram model and have usually no
relation with the code model. It isimportant to realize that symbols linked to the code model
(for example Class symbolsin class diagrams) only visualize an entity (class) in the code
model. The same class can be visualized many timesin multiple diagramsin different styles
depending on the context. Diagrams are created and maintained in the Diagram list view. The
actual diagrams are edited in the Diagram Editor view. There’s more in chapter Diagrams,

page 39

Diagrams can be exported as image, native XML format or in XMI format (third party plug-in
expert).

The Environment and Project options are a first means to Customizing ModelMaker to your
taste or coding style.

In Chapter “Customizing” page 80 there’s more on customizing Model M aker.

ModelMaker Projects or Models contain both Code Model and Diagrams. In Model M aker
you work on asingle model at atime. Opening a different model will close the model you
were working on.

Working with models requires care in the areas team devel opment and model (system)
boundaries as described in chapter Team development. Model boundaries and Version
Control, page 43

The Difference view is used to compare a model unit to the associated file on disk. Most
powerful isthe structured difference that does a syntactical comparison rather than aplain file
based comparison. Also use the Difference view to compare any disk file or model unit with
any other file or model unit or to compare two classes.

Code Model contents

A Classisthe most important entity in the Code model, it matches the corresponding concept
in Delphi and it is a container of Class Members. Classes always have an ancestor (super)
class and sometimes have descendent (sub) classes. The default class ancestor TQbj ect IS
always present in the model.

usermanual 620.doc May 7" 2002 38

ModelMaker version 6.20

An Interfaceis similar to aclass, asit matches the corresponding concept in Delphi. It isalso
acontainer of arestricted set of Class Members. Interfaces always have an ancestor (super)
interface and sometimes have descendent (sub) interfaces. From Delphi 6 onwards there are
two interface roots; IUnknown and lInterface. These default interface ancestors are aways
present in the model. Because classes and interfaces are so similar, in the remainder of this
manual usually where you read class you can also read interface. Both are

Class Members are the fields, methods, properties and events making up a class's interface.
They always belong to a class (or interface).

Fields, Methods and Properties match the corresponding concepts in Delphi. Fields are used
to store aclass's state and/or data. Methods are used to implement behavior. A method’'s
implementation consists of sections of code. This alows ModelMaker to locate specific code
within the method’ s body. Properties let you have controlled access to a class s attributes as
though they were fields. Events are a specia kind of properties. They are used to represent
method pointer type properties (delegates). This way ModelMaker makes the same distinction
as Delphi’ s Object Inspector does. It is possible to create a property of type TNot i f yEvent
and ModelMaker will generate the correct code for the property, but ModelMaker will not
recognize this property as an event. Therefore: use Events rather than properties to model
event types.

Event type definitions are used to define the signature of event type properties. Model M aker
relies on these definitions to create and update event handler methods and event dispatch
methods. The most used event type TNot i f yEvent isautomatically inserted in each model.
Event types are maintained in the Events view.

Design patterns and Units as described earlier complete the code model contents.

Diagrams

ModelMaker supports a set of UML diagrams:

Class diagram or static structure diagram

Sequence diagram

Collaboration diagram

Use case diagram

Robustness analyses diagram (not defined in the UML)

Activity diagram

State chart diagram

Package diagram or Unit dependency diagram, a static structure diagram, just showing unit
package symbols.

9. Implementation diagrams: Deployment diagram and Component Diagram
10.Mind Map diagram (not defined in the UML)

NGO~ E

The basic elements of diagrams are symbols and associations. The meaning and attributes of
the symbols and association used are according to the UML specification. This manual will
not explain the meaning and details of each symbol. In the ModelMaker on-line help you'll

usermanual 620.doc May 7" 2002 39

ModelMaker version 6.20

find a short description for each symbol and association and it’s attributes. There are a number
of good books available on the UML. Alternatively you could download the latest version of
the UML specification as available for free on the Rational web site.

The Chapter “Diagrams’ contains a detailed description of organization and editing of
diagramsin ModelMaker.

usermanual 620.doc May 7" 2002 40

ModelMaker version 6.20

Working with models

In this chapter, amodel is the equivalent of a ModelMaker project that contains both Code
Model and Diagrams.

Model files

Native ModelMaker will save amodel into set of files:
<model>.mpr; contains the project settings.
<model>.mma; contains the project related macros.
<model>.mmb; contains the code model data
<model>.mmc; contains the documentation for the model.
<model>.mmd; contains the diagrams.

<model>.mme; contains the event type definitions.
<model>.mmf; contains the project messages.

N ak~wdhRE

If you manage your source files using a version control system, you should add these model
files to version control too.

However, ModelMaker is able to bundle the project files into asingle project bundle: *.mpb.
To enable this, check the option 'Bundle project files in “Options|Environment|Genera”. This
option is checked by default. If this option is checked, the file Open and Save dialogs will
have the *.mpb file type as well as the *.mpr. Using single file bundles makes it easier to
work with ModelMaker projects. To convert existing projects to single file project bundles,
use File|Save as and manually change the .mpr extension to an .mpb for the project. In very
large projects you may find that saving and loading bundles takes some more time than the
multi file projects. When using project bundlesit is sufficient to add the <model>.mpb file to
version control.

ModelMaker cooperates with version control systems by not allowing you to save a project
that exists with read-only file attributes. Note that only the file <model>.mpr or .mpbis
checked for read only attributes. In an unbundled project file the *.mma*.mme files are not
checked.

Model templates

Asyou probably have noticed (for example in the Getting Started demo), one of
ModelMaker’ s powerful featuresisthat it's easy to override methods and properties and that
changes are automatically propagated down the inheritance tree. But to let thiswork, the

usermanual 620.doc May 7" 2002 41

ModelMaker version 6.20

ancestor class and the methods and properties to override must be part of the model. So it is
important with which (new) model you start.

Now you may ask: why didn’t | get the complete VCL as default model? This would contain

all classes | ever need! The answer isthat thiswould result in very large models, through
which it is hard to navigate. We have been working with ModelM aker for quite afew years
now, and it showsthat it ismost practical if models contain classes of a single domain only.
Classes contained in a single component package typically reside in single model too.
Generaly thisresult in models typically containing 5 to 20 classes or may be up to 50 for
really large models.

And that’ s where you need templates. Templates are just ordinary models containing classes

for acertain domain that you use to derive new classes with in a certain domain. Sinceit’s
possible to have as many templates as you like, you can create nice compact templates for

each relevant sub-domain: like atemplate for creating simple components, one for simple

TCustomPanel descendants etc.

Y ou load atemplate by selecting ‘ File]New from template’ which will load the template

model and then reset the model’ s name to ‘untitled’. Any model can be used as a template, but

by design ModelMaker looksinthe[i nstal | di r]\ TEMPLATE folder for template models.

ModelMaker has one special template that it uses as default. Thisis the model
[i nstal | dir]\DEFAULT. npb. You may open this model and changeit to your needs or
overwrite it with another template model.

Editing a model

To edit amodel, ModelMaker has multiple views on the model. Most of these views are
interlinked: selecting something in one view will show related information in another.
Interlinking is based on:

» Thecurrent class, selected in the Classes view or Diagrams view. For example, the Class
Members view displays the members of the current class.

« Thecurrent class member (if any), selected in the Class Members view.

» The current method (if any), equal to the current class member if that is a method. For
example, the Method Implementation view displays the implementation of the current
method.

e Thecurrent unit, selected from the Units view.

The other view like the Macros view and the Event Library view are (more or 1ess)
independent from these selections.

In the Environment options Navigation tab you'll find options to synchronize and activate
views on certain events.

usermanual 620.doc May 7" 2002

42

ModelMaker version 6.20

Ownership in ModelMaker

ModelMaker assigns an owner to each entity in the model. Entities can be anything from
classes to methods or a section of code in a method. The owner of an entity created the entity
and has exclusive rights to update or delete it whenever suitable. Usually you, ‘User’ will be
the owner since you create most classes, class members etc. ModelMaker does not
discriminate between users: it does not remember that John created this class and Mary that

property.

Deleting an entity will automatically delete all entitiesit ownstoo. For example: a property
owns it’s read access method. Y ou cannot delete or edit these methods, other than by deleting
or editing the property.

Team development, Model boundaries and Version
Control

In ModelMaker team development support and model boundaries are related issues as they
both deal with the question: what should and what should not be in amodel. There are afew
important reasons to use multiple relative small models according to logical boundaries rather
than one big model containing all classes and diagrams you have.

1. It enables team devel opment: while one developer works on one model that is part of a
larger project, the other can work on another. There are limited possibilities to merge
changes made to the same model. Therefore only one developer can work on asingle
model at the time.

2. Itimproved ease of navigation and overview

3. Itimproves performance.

Usually you'll find logical boundariesto split up models - and usually well-designed modules
(asinunits or classes) have low coupling and dependencies. Boundaries could be: unitsin a
certain Delphi package, units containing classes that perform arelated task etc. In
ModelMaker itself for example, we have lots of models, sometimes only containing asingle
unit. Large models for example contain all classes related to diagrams, the entire code engine
or the source importer. And yet other models contain units that are used in many projects:
timers, filters etc.

Although we have some happy customers that have models containing 300+ classesin 150+
units, practice shows that a good model sizeis about 1 to 30 classesin 1..10 units.

The drawback on having multiple smaller modelsis that Model Maker maintains active
relations only within the same model and not beyond model boundaries. As aresult you
occasionally might need to re-import a unit after it has been atered in another model.

It'sagood ideato use aversion control system and put the model files under version control
too. Although amodel contains everything that is needed to (re-)generate the source filesit

usermanual 620.doc May 7" 2002 43

ModelMaker version 6.20

contains, you should always store the actual source files under version control too. It's from
the source files that you build your product, not the model.

Merging modelsis only partly supported: source code can be generated and imported and
diagrams can be exported/imported. However no code model meta-information can be
exported/imported. Because ModelMaker storesits datain a native binary format, you cannot
use the merging capabilities of a Version Control System without corrupting the model.

If models do get out of sync with the source code or other models you've always got the
Difference View with it's powerful structural difference function to help getting the model
synchronized with source or other models.

Using source aiases rather than hard coded directoriesis a must in team development. Check
chapter Source Aliases, page 52 on source aliases.

usermanual 620.doc May 7" 2002 44

ModelMaker version 6.20

Generation source code

Overview

In ModelMaker units are the gateways to source files on disk. During code generation, unit
code, classes and class members from the code model are combined into a sourcefile. A
unit’ s unit code contains (can contain) code generation control tags. At the position of atag
ModelMaker will insert the associated entity such as class interface or implementation. Here

Class Class member
cl ass\TSarrp e (Toject) _
unit Sanpl es;
v _ .
procedure Action; interface
t ype
TSanpl e = cl ass
unit Sanpl es; procedure Action;
end;
i nterface
i npl erent ati on
type
MW N: CLASSI NTERFACE TSanpl procedure TSanpl e. Acti on;
begi n
i npl ement ati on end;
MWV N. CLASSI MPLEMENTATI ON T end.
end.
Unit code j \— Code generation Source code
control tag

isapicture that visualizes this process.

The unit code is read line-by-line and scanned for code generation control tags. If aline
contains a code generation control tag, the entity as defined by that tag is inserted instead of
the tag. Any lines not containing code tags are just copied to the source file.

During code generation macros in both unit code and method implementation code will be
expanded using the predefined macros and the project and environment macros you define
yourself. Macro expansion and line formatting are the last stages in the source code generation
process for both text generated from code tags and text just copied from a unit’s unit code.
Macros are explained in detail in chapter Macros, page 74

During generation of the implementation section, class separators, method separators and

method section separators can be emitted. Thisis controlled by code generation settings and
macros.

usermanual 620.doc May 7" 2002 45

ModelMaker version 6.20

Insertion of in-source documentation can also be part of the generation. Thisis explained in
detail in chapter “In source Documentation” , page 67.

Code generation control tags

ModelMaker uses code generation control tags to control source file generation. Only code
generation control tags placed in the unit code are interpreted. Tagsin amethod's
implementation are not interpreted. Here are the rules that apply to code generation control

tags:

1. Code generation control tags are case insensitive.

All code generation control tags start with M N at the first position of aline.
Code generation control tags must reside on asingle line.

Any semi-colons or equal signs defined in atag are obligatory.

Code generation control tags can contain any white space after the v N: definition. For
example: MW N: STARTI NTERFACE isthe same astag MWW N: START | NTERFACE

o ks~ WD

Class related tags

These code generation control tags are used to define the insertion position of class and
interface related code:

MVWN N: CLASS | NTERFACE cl assname ; | D=###;

MVWN N: CLASS | MPLEMENTATI ON cl assnane ; | D=###;

MWV N: CLASS REG STRATI ON cl assnane ; | D=###; PACE=vcl page nane
MMAN N: CLASS | NI TI ALI ZATI ON cl assnane; | D=###; [/ OBSOLETE

These class related tags are automatically inserted and maintained by Model M aker whenever
you add a class to a unit or remove it again. Normally you would use the Unit editor dialog or
drag and drop in the Units view to insert or delete classes in/from a unit or change the relative
position within a unit. However, in special cases you can manually move these tags to any
other position in the unit code. Thisisfor example useful if you want the interface of a class
to reside in the unit’s implementation.

In these tags ModelMaker ignoresthe ‘cl assnanme’ and just usesthe ‘| D=###" tag to identify
the class. The class nameisinserted just for your convenience. Modifying it will have no
effect.

Normally, for classes both the CLASS | NTERFACE and CLASS | MPLEMENTATI ON tags should
be put in the unit code. If either one is missing after you’ ve edited the unit code manually,
you’'ll get awarning. In specia cases - for example in include or documentation files - you
may manually remove either the interface or implementation tag. Interfaces (as opposed to
classes) ignore the | MPLEMENTATI ON tag.

The CLASS REG STRATI ONtag isoptiona and is used to insert a snippet of code to register the
class as component. Y ou may manually remove them from the unit code. Y ou can manually

usermanual 620.doc May 7" 2002 46

ModelMaker version 6.20

editthe‘vcl page name=...’ textin theregistration tag to change the VCL registration
page. However, usually you would do thisin the unit editor dialog. If you remove the
registration tag or the page name, no registration code will be generated for the class.

When importing a unit containing a procedure Register, the registration code is automatically
converted to tags.

Thetag CLASS | NI TI ALI ZATI ON is obsolete from version MMv6.0 onwards. Thistag is
maintained for backward compatibility only. The tag is used to insert initialization code for
TSt reamabl e descendants: Regi st er St reamabl e(..); If you remove theinitialization tag,
no initialization code will be generated for the class.

Event type declaration tag

This code generation control tag is used to define the insertion position of an event type
declaration.

MMA N: EVENT DEFI NI TI ON event nane type decl arati on; | D=###;

This declaration is maintained by ModelMaker and is obligatory for each event definitionin a
unit. Normally you use the unit editor dialog or drag and drop from the Events and Units view
to insert or remove event type definitions in/from a unit, or change their relative positions
within a unit. However, you may manually move these tags to any other position. If you
remove them, the event type definition is also removed from the unit. The ‘event nane’ and
‘type decl aration’ textsareignored, only ‘I D=###" is used to identify an event type
definition.

Editing marker tags

These code generation control tags are used to mark the positions at which you want
ModelMaker to insert the first class or event type declaration in a unit.

MW N: STARTI NTERFACE
MW N: STARTI MPLEMENTATI ON

These tags are for editing purposes only and they have no role in the code generation process.
There's one exception to this. The MWAI N: STARTI NTERFACE tag is a so used to determine the
insertion position of class forward declarations - if any. If thisS MWW N: STARTI NTERFACE tag is
absent, class forward declarations will be inserted before the first event type declaration or
classinterface, which ever comesfirst.

Macro expansion control tags

These code generation control tags are used to switch on and off macro expansion during code
generation:

MMA N: START EXPAND
MMA N: END EXPAND

usermanual 620.doc May 7" 2002 47

ModelMaker version 6.20

By default the expansion is switched ON. Y ou need these tags if your unit or method code
containsthe text “<! ” (“” not included). The macro expander will interpret the sequences

“<I” + ldentifier + “I>" on a single line
“<I” + |dentifier + “(“ paramlist + “)” + “I>"

asamacro. “ldentifier” (the macro name) can consist of characters['0'..'9', 'a..'z','A".."Z"," 1.
Which is similar to Object Pascal identifiers, athough macro names can start with a number.
White space surrounding the identifier isignored.

Because macros can be in any text including comments and strings, this would make it
impossible to generate code for units that contain avalid macro sequence <!ident!>.

There are afew workarounds for this problem. The most sensible uses these control tagsin the

unit code - remember the tags do not work in method code!
MV N: ENDEXPAND
const
HTM_LComment Start = ‘<!’ ;
HTM_.Comment End = ‘!>’ ;
MV N: STARTEXPAND

In the rest of the code you can now use the constants and still 1eave the macro expansion on.

Note that these tags do not affect generation of in-source documentation, which is also based
on macros. Documentation related macros are aways expanded regardless of the setting of
these switches.

Unit documentation tag (obsolete)

This code generation control tags defines the insertion position of a unit’s documentation.
Because inserting unit documentation is much better controlled with the ‘ In-source
documentation generation’ options, we recommend avoiding the use of thistag although it’s
still supported for backward compatibility.

MM N: | NCLUDE UNI TDCC; | NDENT=##;

Thetag ‘I NCLUDE UNI T DOC defines the position at which ModelMaker will insert the unit’s
documentation. The unit’s documentation can be edited in the Documentation view. The

‘I NDENT=##; ' extension isoptiona and may be omitted. This defines an indention for the
documentation of ## spaces. A typical use would be:

{

MM N: | NCLUDE UNI' T DOC; | NDENT=2;
}

unit <!Unit Nane! >

Obsolete tags

These code generation control tags are obsolete from MMv6.0 onwards.

MW N: STARTREG STRATI ON
MW N: STARTI NI TI ALI ZATI ON

usermanual 620.doc May 7" 2002 48

ModelMaker version 6.20

On loading amodel, ModelMaker will remove these tags from the unit code. If you add them
manually they will simply be ignored.

Code generation options

In the Project options|Code Generation tab you will find options that control code generation:
1. Formatting the layout of source code

2. Sorting of class members and method implementations

3. Inserting a (custom) class header to that precedes the class's method implementations

4. Inserting a (custom) method separator to that precedes each method’ s implementation

5. Inserting a (custom) method section divider in between each section.

The on-line help file explains the meaning of these options.

The Project options|Source Doc generation tab controls the generation of in-source
documentation. Thisis explained in detail in the chapter on “In source Documentation”,

page 67.

Maintaining Code Order / Custom member order

ModelMaker supports a user definable custom member interface and method implementation
order.

These custom orders can be assigned during import used during code generation. When that
is done, the effect is that ModelMaker will maintain the imported code order during
generation.

Thisis how it works:

In the Project options Code Generation tab you define a member sorting schemein class
interface and implementation generation. In these sorting schemes Custom orders can be used
as agrouping or additional sorting property.

When grouped on custom order, members will be sorted according to the (original) custom
code order. Members that have been added later with an unspecified custom order, will be
placed after all members with a specified order.

When using the custom order to perform additional sorting, the default sorting scheme will
be applied and within each 'section’ (visibility etc.), the custom order will be applied.

If class members have an unspecified order (which is the default for new members), the effect
of enabling Custom Order during Generation or in the Memberslist isnull.

Custom orders can be assigned during Import. In the Project options|Code Import tab you'll

find settings to enable / disable assigning the custom order during import. The import dialog
allows temporarily overruling these settings.

usermanual 620.doc May 7" 2002 49

ModelMaker version 6.20

If the Importer assigns custom orders and Generation uses grouping on Custom Order
ModelMaker will effectively maintain the original code order during refresh import’ and
append new members at the end.

Additionally Custom orders can manually be defined - per class - with the "Members custom
order" dialog or with the Members view ‘ Rearrange mode'.

The Rearrange dialog is avail able from the Members and Classes view 'Wizards' local sub
menus and from the Units view ‘classes local sub menu. In this dialog you either you drag and
drop to rearrange a class interface and method order or use one of the predefined sorting
schemes. The dialog can be also used to clear an interface or implementation custom order.
Note that manually defining a custom order will erase an imported code order.

The Members view has a'Rearrange mode' (members local menu). In this mode an interface
custom order can be assigned using drag and drop in the members view itself. For method
implementation order you must use the Rearrange dialog. In the in the rearrange mode the
Members view filter settings (visibility, type, category) are ignored to make sure all members
are displayed. Also Members view grouping isimplicitly set to "Custom Order" and sorting is
predefined and cannot be changed. As avisual feedback, the background of the membersis
changed to a silver color in this mode.

Adjusting the unit template

Whenever you add a new unit to amodel, ModelMaker looks for the file DEFUNI T. PAS in the
folder Model Maker\ 6. 0\ Bl N. The default unit may also be (re-)defined when adding a new
unit. Thistext fileis used as atemplate for the newly created unit code. Y ou may edit thisfile
to your needs. Y ou can use these code generation control tags to mark the insertion position
for thefirst class ModelMaker will insert in the unit:

MVW N: START | NTERFACE
MVW N: START | MPLEVENTATI ON

Y ou might want to adjust the default unit template in order to:

» Customizetheuses clausesintheunitinterface andi npl enent ati on.
* Add acompany-defined header.

» Control macro expansion.

As an example: here’ s a unit template we use for freeware units. In the chapter Macros the
same template extensively using macros is shown.

{

File : <!'UnitNane! >
Ver si on . <!'Version!>
Commrent ;. <l Comment! >
Dat e . <IDate!>

Ti nme D <ITine!>

Aut hor . <! Aut hor! >

Conpiler : <! Conpiler!>

usermanual 620.doc May 7" 2002 50

ModelMaker version 6.20

| DI SCLAI MER:

| THI'S SOURCE |'S FREEWARE. YOU ARE ALLOWED TO USE I T IN YOUR OWN PRQIECTS

| W THOUT ANY RESTRI CTI ONS. YOU ARE NOT ALLOAED TO SELL THE SOURCE CODE.

| THERE 1S NO WARRANTY AT ALL - YOU USE I T ON YOUR OWN RI SC. AUTHOR DCES

| NOT ASSUME ANY RESPONSI BI LI TY FOR ANY DAMAGE OR ANY LOSS OF TIME OR MONEY
| DUE THE USE OF ANY PART OF THI'S SOURCE CODE.

unit <!UnitNane! >;
interface
uses

SysUtils, Wndows, Messages, Cl asses, Gaphics, Controls,
Forns, Di al ogs;

type
MMAI'N: START | NTERFACE

procedure Register;

i mpl enent ati on

uses StruUtils, Numktils;

procedur e Register;

begin

end;

MM N: START | MPLEMENTATI ON

initialization

end.

Notice how this template contains (from top to bottom):
» A simple standard header and a free ware disclaimer.
* Some statistics macros, like <! Dat e! > and <! Uni t Nane! >

» Thebasic unit structure:
unit..interface..uses..inplenentation..uses..initialization..end.

e A macro <! Uni t Nane! > to define the unit’ s name.

* Theprocedure Register; definition and implementation for registering components.

» A default uses clause in the unit’s implementation to include some often-used units
Strutils andNunmtils.

Unit Time Stamp Checking

The ModelMaker code generator by default uses Time Stamp checking to prevent overwriting
source files that may have been changed outside ModelMaker. It checks if thefileon disk is
newer than the last time a unit was generated. If thisis the case you'll be warned that you are

about to overwrite that modified file.
Y ou can switch on and off time stamp checking in the Environment options|General tab.

There is alimitation on time stamp checking you must be aware of .

usermanual 620.doc May 7" 2002

ModelMaker version 6.20

1. If you rename aunit in ModelMaker the time stamp is not reset to ‘unknown’, so if you
have an existing file on disk which is NEWER than the last time the unit was generated
(with the old name) you will NOT get awarning. The Unit editor dialog warns you for this
(file xxxx aready exists, overwrite?), but the in place editor in the Units view does NOT.

The Unit difference View displays the time stamp comparison on activation. The function
"Check Time stamps' refreshes this comparison.

Source Aliases

ModelMaker supports source path aliases in units to avoid hard-coded directories and make
your models machine-independent. An aiasis associated with an aliased directory, similar to
database aliases. In the model a unit’s aliasis saved rather than the aliased directory. On each
machine aliased paths can be defined differently. This allows you to transport models to other
machines.

Source aliases are amust in team development.
Example:

Suppose on machine A you have a source directory:
C: \ DATA\ PROJECTS\ COMVON

An alias defining this directory could be COMMON.

On machine B, COMMON could de defined as
\ \ PRQJECTDATA\ COVMON

Y ou add aliases from the main menu "Options|Source aliases’, or from the Units view popup
menul.

To avoid that you need to mimic alarge directory structure in aiases, unit names can be
relative to an aias. That way you only need to define afew aliases for root paths.

Here's an example:
Suppose you have adirectory structure which looks like this:

C:\Project1\App_a\lsource
C:\Project1\App_alcomponents
C:\Projectl\App_alutils
C:\Project1\App_b\source
C:\Project1\App_b\components
C:\Projectl\App_b\utils
C:\AIIProjects\source
C:\AIIProjects\components

etc.

Y ou could define three aliases
App_a=C:\Projectl\App_a

usermanual 620.doc May 7" 2002 52

ModelMaker version 6.20

App_b = C:\Projectl\App_b
AllProjects = C:\AllProjects

A unit named C:\Project1\App_a\source\Samples.pas could then use

Alias="“App_a’ (omit the*”)
Relative unit name = “ source\Samples.pas’ (omit the*”)

Source code aliases are also used to offset the Import source code dialog'sinitia directory. If
you define an alias VCL Source for C:\Program files\Borland\Delphi 3.0\Source\Vcl, the
import dialog can be offset to this directory by simply selecting this alias from the drop down
menu.

Source aliases also participate in Version Control integration. See next chapter.

Version Control support and Aliases

By using a plug-in VCS Expert you can add Version Control capabilitiesto ModelMaker.
Check the ModelMaker Tools web site for ready available third party VCS Experts or create
your own using the MMToolsApi VCS interface.

If aVCS expert isinstaled, in the units view popup menu and main file menu VCS related
menu items are available to manually check-in/out amodel or unit. Also each time aread-only
unit is about to be generated an attempt is made to check the unit out (after your
confirmation). VCS Experts can add more VCS related commands to the popup menu such as
‘Add to project’, ‘History’ etc.

Usually VCS systems usually need a VV CS project name to perform an operation. In
ModelMaker Source aliases are used to store the user definable VCS projects.

Each source alias can (but does not need to) store a Version Control project. Thisstring is
passed on to an installed VCS integration expert whenever aVCSfilerelated action is
performed.

If you install aVCS expert in ModelMaker, the ModelMaker IDE integration experts will use
the same expert to integrate VCS in the Delphi IDE.

For details, refer to your VCS system and MM V CS expert provider.

usermanual 620.doc May 7" 2002 53

ModelMaker version 6.20

Using ModelMaker to generate Instrumentation code

ModelMaker supports generating Method instrumentation. This feature makes Model M aker
suited for generating instrumentation code for CodeSite, GpProfile and other tools
instrumenting source code on a method base for profiling, tracing etc.

Method instrumentation generation is controlled with the option ‘Instrumented’ in the Method
editor dialog. If this option is checked instrumentation code will be generated for the method.
Instrumentation can be (de-) activated for al units at once with "Project options|Code
generation|instrumentation”. The actual instrumentation code is defined by two macros you
must add manually to the environment or project macro list: “MethodEnter|nstrumentation”
and “MethodExitInstrumentation” (omit the “”). These macros are expanded before the first
and after the last section in amethod's main body. For example (note the use of the predefined
macros ClassName and MemberName in these macros)

macro MethodEnter|nstrumentation=

CodeSi t e. Ent er Met hod(’ <! O assNane! >. <! Menber Nane! >’) ;
try

macro MethodExitInstrumentation=

finally
CodeSi t e. Exi t Met hod(’ <! O assNane! >. <! Menber Nane! >’) ;
end;

When thisis applied to:

procedur e TSanpl e. DoSonet hi ng;
begi n

ShowMessage(’ Doi ng sonet hing’);
end;

Thiswill result in the following code:

procedur e TSanpl e. DoSonet hi ng;
begi n
CodeSi t e. Ent er Met hod(’ TSanpl e. DoSonet hi ng’) ;

try
ShowMessage(’ Doi ng sonet hing’);
finally
CodeSi t e. Exi t Met hod(’ TSanpl e. DoSonet hi ng’) ;
end;
end;

To avoid creep when re-importing instrumented methods you can use the code remove tags.
Check chapter “START and REMOVE tags, page 59 for details:

MM N: >>STARTREMOVE
MM N: >>ENDREMOVE

These tags may be part of acomment. Depending on the setting in the Project options|Code
import tab the importer will filter out any code in between a start remove / end remove pair.

The macro M ethodEnter|nstrumentation using these tags would for example look like:

usermanual 620.doc May 7" 2002 54

ModelMaker version 6.20

/1 MWY N: >>STARTREMOVE

CodeSi t e. Ent er Met hod(’ <! A assNane! >. <! Menber Nane! >’) ;
try

/1 MMW N: >>ENDREMOVE

The Member Manipulator can be used to switch on and off Instrumentation for multiple

methods at once. On the ModelMaker Tools web site you'll find athird party plug-in
Instrumentation expert. This expert is dedicated to controlling method instrumentation code.

usermanual 620.doc May 7" 2002 55

ModelMaker version 6.20

Importing source code

Background

ModelMaker imports Delphi Object Pascal source files. This processis basically the inverse
from generating a source file from classes, members and unit code. The class related codeis
converted into Code Model entities such as classes, interfaces, members and method

implementations. All non-class or interface related code is moved into aModelMaker unit’s

Class Class member

unit Sanpl es;

cl ass TSarrp/e (Toj ect)
v

interface procedure Action;
type
TSanpl e = cl ass
procedure Action; unit Sanpl es;
end;
i nterface
i npl ement ati on
t ype
procedure TSanpl e. Acti on; MW N: CLASSI NTERFACE TSanpl
begi n
end; i npl ement ati on
end. MWV N: CLASSI MPLEMENTATI ON T
end.
Source code Unit code / \— Code generation
control tag
unit code.

This processis called reverse engineering.

It isimportant to realize that if an imported classis not currently existing in the model,
members and code sections are inserted as ‘ User created/owned” and no attempt is made to
extract metainformation, such as applied patterns, inherited calls etc. The only exception to
this, are the read and write access members of properties, which are restored and linked to the
property. For example: all code inserted by patternsis read back, but marked as “user” and the
patterns itself is not recreated. The same applies for inherited method calls etc. In general you
loose the meta information.

However, if an imported class already occursin the model it is‘refreshed’ and all meta-
information is restored. Even applied design patterns can be traced back.

Therefore importing source codeis great for:

usermanual 620.doc May 7" 2002 56

ModelMaker version 6.20

» Importing (an interface of) a class you want to inherit from or use as a client.
» Importing existing code originally not developed with ModelMaker
» Updating an existing class from source code

However it is advised that once imported, you keep editing your code in ModelMaker. The
only exceptions to this are form and (other resource modul€'s) source files which by their
nature you (partially) need to edit in Delphi.

Importing a source file

The main toolbar and units view pop-up menu contain buttons and commands to
» Import asource file (in the current model or a new model).
» Refresh import sourcefile.

Additionally you' Il find import functions in the Classes view (refresh class or associated unit)
and the Difference view (refresh unit, class or method).

In the Project options|Code Import tab you'll find the options to control source code import.
Check the on-line help file for a detailed description on each option. The project options are
used for all (refresh) imports except when you use the Import dialog to interactively import a
file. The import dialog allows temporarily overruling some project import control options.
The import dialog has some other options that by their nature are not in the project options,
typically related to initial first timeimport. The optionsin the import dialog are preset (each
time!) to the project options.

Theimport dialog’ sinitial directory is pre-set by selecting a source code aias. You'll find
more on (defining) Source code aliases on page 52.

When importing a source file using the import dialog, you enter a source file name and set
filters and options to control the import. Most options are rather self-explanatory.

usermanual 620.doc May 7" 2002 57

ModelMaker version 6.20

Import zource file |
Look. in; I i el j ﬁl

’f actrlist. pas ’f bdeconst. paz ’f comctrls. pas f ol
’f adoconst pag ’f bdemts.pas ’f comszlre. pag T oo
’f adodb.paz f buttans. paz ’f Carzts. pas ’f o
’f adoint. paz i checklst pas ’f canthrs. pas T cil
’f‘ appevnts. pas T c 133 f Controls. pas T de
i awctils. pas i clipbrd pas i corbacon pas i de
KN I— 0

File narme: Iclasses.pas Open I
Member filter %‘DWF‘E: | Source files = Cancel |

—Members————

¥ Fields IH'S“:""”" - Complete | %
- Complete [+ private] | —— ;
v Method < Presets
e ol sl _— Interfaces
Visibility filter —fF—Propeties | -
¥ Res clauzes Custom gource doc impoark Dptinns.iJ Clazsg interface
O ption
¥ Include Unit code and create unit [Import Clazzes az Placeholder In-source)
nclude Method il : Assian interf de ord documentation
¥ Include Method implementation [T Aszsiogn interface code order import control
[T Select Claszes and Events lypes [T Assign implementation code arder

If the option “Include Unit code and create unit” is checked, not only the classes will be
imported, but also the non-class related unit code. Check this option if you want a complete
import. If you just need a class's interface this option can be unchecked.

If the option “ Select Classes and Eventsto import” is checked, you may select which of the
classes or events found in the source file will actually be imported in the model. Useful if
you're not interested in all classes and events contained by a unit.

If the option “Import Classes as Placeholder” is checked all imported classes will be marked
placeholder. If it is unchecked classes will remain their current state or ‘real’ if not found in
the current model.

There are three pre-set buttons, which set the filtersto a“ complete”, “interfaces only” “class
interfaces” mode. The default settings (as displayed) are those for a complete import.

The In-source documentation import control settings are explained in detail in chapter
“Importing a source file” page 57.

usermanual 620.doc May 7" 2002 58

ModelMaker version 6.20

Importing (adding) versus Refreshing

‘Refresh Import’ and Import asin ‘Add to Model’ act similar - the difference is how existing
units and classes are treated.

Importing with the ‘ Add to Model’ function (in the IDE or ModelMaker) will add non-
existing units or classes contained in the added unit. If either unit or class aready existsin the
model it will be refreshed.

‘Refresh Import’ issued from the IDE integration expert will only refresh the unit if already
existed in the model and will not add a unit not currently in the model. In ModelMaker you
can only refresh an existing unit.

Avoiding creep - removing code during import

ModelMaker supports removing certain fragments of code during import to avoid creep in a
full generation / re-import cycle.

ModelMaker generated default class separators such as

khkkhkhkhkhkkhhkhkhkhkhhkhrhkhkhhkhrhkhkdhhkhdkxx khkkhkhkkhkkhhkhkhkhkhhkhrhkhkhhkhrkhkhkdhhkhdkxx
TSanpl e

}

and ModelMaker generated default category markers such as
{ <<Category>>: Model linking}

are automatically removed.

Additionally ModelMaker will remove the following code:

1. All code marked by a MMWIN:>>STARTREMOVE and MMWIN:>>ENDREMOVE
pair.

2. All comments with the ‘removal signature’ as defined in the Code Import options.

3. Matched (and optionally unmatched) comments according to the documentation style
comment.

For importing “In source documentation” and removing comments with the documentation
signature(s), refer to chapter on “Importing in source Documentation”, page 68.

STARTREMOVE and ENDREMOVE tags

Y ou can use these tags in any code, comment or string to instruct ModelMaker to remove all

code between the tags including the tags themsel ves:
MV N: >>STARTREMOVE
MWV N: >>ENDREMOVE

The corresponding setting in the Project options|Code import tab will enable/disable filtering
based on these tags.

usermanual 620.doc May 7" 2002 59

ModelMaker version 6.20

These tags are commonly used to remove (part of) a macro that was generated by
ModelMaker from the input file. Check the chapter on generating Method Instrumentation
code for an example.

Comments with remove signature

If you want to remove certain comments from the source file you can use comments with the
Removal Signature. This signature is defined in the Project options|Code import tab which
also enables and disables removing comments with this signature.

Y ou will need to use this type of comment remove filter if you

1. Define a custom class separator,

2. Define a custom method separator,

3. Define a custom method section separator

4. Redefine the category expansion macros 'Intf Category’ or 'Impl Category’

Assuming {- } to betheremoval style comment, a custom class header should look like

LR I S O

*

* <! d assnane! >
*

LR I R O S O

}

Similar, a custom category expansion tag could look like
{- Category: <!Category!>}

Note that Method End Documentation is automatically removed due to the fact that the
importer will remove the method including the line containing the method’ s final end; .

Import restrictions and limitations

ModelMaker usually imports in about 99.9 % of all cases without problems. If ModelMaker
generated the source file, the imported code is usually 100 % correct. ModelMaker uses a
combination of syntactical analyses and line based extraction to support importing of code
that is not entirely syntactically correct.

ModelMaker’ s import mechanism imposes the following restrictions on source filesin order
to be imported correct. ModelMaker’ simporter uses the same parser as the ModelMaker Code
Explorer. The ModelMaker Code Explorer that integrates in the Delphi IDE will display alist

of parse errors. That way it acts more or less astool to check code before importing into
ModelMaker.

Class and Interface interfaces

Restrictions in class and interface declarations.

usermanual 620.doc May 7" 2002 60

ModelMaker version 6.20

Any comments, compiler directives and white space in a class' sinterface are/is ignored except
in method parameter lists.

Comma separated Field declarations are converted into separate fields:
FA, FB: |nteger,

isimported as
FA: I nteger;
FB: Integer;

Procedure or method pointers that are not defined as an type are not imported correct. The
work around is to use atype definition.

The following code causes import errors.

TSanpl e = cl ass(Toj ect)
FEvent: procedure of object;
end;

Which can be replaced by this code that will import correct:
TMyEvent = procedure of object;

TSanpl e = cl ass(Toj ect)
FEvent: TnyEvent;
end;

Method implementation

Restrictions in method declarations.
Any comments, compiler directives and white space in aref/is ignored except in parameter
lists.

Local variables immediately following the method declaration will be converted to
ModelMaker method variables. If local variables for example are preceded by at ype or
const declaration, they will be added to the method' s local code section, just like all other
local code for that method.

In the following example the local vars. |, Jand Swill be converted to ModelMaker local
vars., the const declaration and procedure Checklt will be placed in the method’ s local code
section.

procedure TSanpl e. Acti on;
var
I, J: Integer;
S: string;
const CheckSum = $AAAA; // this will go into |local code
procedure Checklt;
begin
end; // this is the end of the |ocal section
begin
Checkl t;
end;

usermanual 620.doc May 7" 2002 61

ModelMaker version 6.20

In the following example the local vars. |, Jand Swill be placed in the method' s local code
section together with the const declaration:

procedure TSanpl e. Acti on;
const CheckSum = $AAAA; // this will go into |ocal code including the vars
var

I, J: Integer;

S: string;

procedure Checklt;

begi n

end; // end of |ocal code section
begi n

Checkl t;
end;

During refresh import of a method already existing in the model, the importer will leave the

code sections intact wherever possible. If the importer cannot |ocate a non-user owned section
of code, it will simply leave the section in the method and give a warning.

Comments and white space

The following table shows how ModelMaker treats comments and compiler directives

Comment or compiler directivein: | Import result

Classinterface Ignored

Method header Ignored except in
parameter list

Local vars. Ignored

Method local code and body Copied to method

All other code Copied to unit code

Check the ModelM aker generated default class separators such as

IR R I I S IR R R I I O O
TSanpl e

}

and ModelMaker generated default category markers such as
{ <<Category>>: Moddl linking }

are automatically removed.
If you define a custom class separator, method section separator, or redefine for example the

category expansion macro TODO, you should use the remove style comments to avoid creep
during import. Check paragraph “ Comments with remove signature”, page 60.

Unsupported language constructs
Include files are not read during import, so if you find yourself thinking: “where’ s my method

implementation gone?’ you probably need to add the included files to the imported unit using
atext editor and re-import thefile.

usermanual 620.doc May 7" 2002 62

ModelMaker version 6.20

Compiler directivesin class interfaces are not supported and are a potential problem source.
Using inheritance may sometimes solve this. Worst case you need to create two units.

Compiler directives around method implementations are not supported. Placing the directives
inside the method can solve this:

{ $I| FDEF DEMO}
procedure TSanpl e. Acti on;
begi n
end;
{ $ELSE}
procedure TSanpl e. Acti on;
begin
{ actually do sonething useful }
end;
{ $ENDI F}

Won't be imported correct, but can be replaced by the following code which will be imported
fine:

procedure TSanpl e. Acti on;

begi n

{ $| FDEF DEMO}

{ $ELSE}

{ actually do sonething useful }
{ $ENDI F}

end;

The importer matchesbegi n. . end try..end, case..end pairsetc. to locate methods.
Because conditional defines are not interpreted, using conditional defines you can create code
that will compile correct but will not import correct. In fact The Delphi IDE background
compiler uses a similar mechanism and will not be able to function properly either when
inserting new methods in code completion or creating a new event handler.

This code for example will confuse the importer’s begin end matching. The method will not
be imported correct.

procedure TSanpl e. Acti on;
{$| FDEF DEM3}
var
S: string;
begin
S := 'Denv’;
Showvessage(S) ;
{ $ELSE}
begin
{ $ENDI F}
end;

Y ou can replace the previous code by the following code that will import correct and as aside
effect allows the Delphi IDE to stay on track too:

procedure TSanpl e. Acti on;
{$| FDEF DEMO}
var
S: string;
{ $ENDI F}
begin
{$| FDEF DEMO}

usermanual 620.doc May 7" 2002 63

ModelMaker version 6.20

S := 'Deno’;
ShowMessage(S) ;

{ $ENDI F}

end;

Pure assembler methods are not supported:

procedure TSanpl e. Fast; assenbl er;
asm
end;

Expressions in an indexed property’ sindex specifier are not supported:

property FirstPicture: TBitmap i ndex BM USER + O read CGetPicture;
property SecondPi cture: TBitmap i ndex BM USER + 1 read CetPicture;
property ThirdPicture: TBitmap i ndex BM USER + 2 read CGetPicture;

This can be solved like:

property FirstPicture: TBitmap i ndex BM FIRST read GetPicture;
property SecondPi cture: TBitmap i ndex BM SECOND read GetPicture;
property ThirdPicture: TBitmap index BM TH RD read GetPi cture;

Conversion errors

Any import conversion errors or warnings will be displayed in the Message View. The
messages may be printed, saved etc.

Not reported conversion errors are:
1. Minor changesin property access method parameters lists.
2. Positioning of code generation tags in the unit code.

The best thing to do after importing a complex unit, isto perform a Delphi syntax check on
the re-generated unit. From our experience it showsthat if there are any remaining errors, they
will evolve here.

Another option isto make afile based difference in the Difference view between the imported
unit and the original source file. Y ou should make sure that Code generation sorting scheme
matches the scheme used in the original file. Y ou might need to import Custom Code order
and use the same order during generation to maintain code order. Check chapter “Maintaining
Code Order / Custom member order” on page 49.

Note that to build a structured difference the same importer is used that will hide the same
type of errors!

usermanual 620.doc May 7" 2002 64

ModelMaker version 6.20

Auto Refresh Import

The Auto Refresh Import feature is only available together with the Delphi 4 and higher. This
function will automatically refresh aunit in ModelMaker if you save the unit in the Delphi
IDE. Thisimproves synchronization of code developed both in ModelMaker and the Delphi
IDE at the same time. However there are some serious warnings.

How it works

If you change a unit in the IDE editor that is also maintained in a ModelMaker model, the
model and source file will be out of sync. Normally you have to refresh import’ the unit to
synchronize the model with the changes on disk. The auto-refresh import feature will do this
automatically each time you save a unit in the IDE.

How it is activated and controlled

In the ModelMaker menu in the Delphi 4 (and higher) IDE check the item 'Enable Auto
Refresh'. If this option is set, each time you save a unit (or project) in the IDE, the 'Auto
Refresh command is send to ModelMaker which checksiif:

1. The Environment option 'Auto refresh Import’ is checked

2. Theunit isin the current model

3. Unit generation is not (user) locked

4. The unit has "auto code generation’ enabled

If al above conditions are met, ModelMaker will do arefresh import and unlike after a
manual 'refresh import’ leave the unit in "auto generation enabled’ mode and - thisis very
important - regenerate the unit.

Effectively Auto Refresh improves synchronization between ModelMaker and the Del phi
IDE: whenever you change something in Model M aker, the auto-generation enabled unit will
regenerate the file and reload it in the IDE. Whenever you change and save afilein the IDE,
ModelMaker will resynchronize it in the model.

Warnings

In the normal, non-auto refresh devel opment model you always have one master and slave:
either ModelM aker refreshes the IDE using automatic code generation or you manually
refresh the ModelMaker model with the IDE if you want to resynchronize again. With this
feature there’s no master or slave anymore. This can seriously damage your work as may be
clear from the following example: When refreshing the unit, Model Maker assumes it’s reading
a’compilable unit’. If you for example have omitted a single begin or 'end;’ or worse, comment
out something, have unterminated strings etc. class and method import will be in trouble and
not detect your error but simply remove al 'unwanted’ methods. Since ModelMaker detected a
change the unit is auto-generated and immediately after you saved the unit is reloaded with
disastrous results. Experience shows that it’s easy to loose lots of work instantly. Auto Refresh
must be used with great care. Note that if Auto Save is enabled in the IDE, the Compile/ Run
command will auto save modified units depending on your IDE environment settings.

usermanual 620.doc May 7" 2002 65

ModelMaker version 6.20

If you want more control, rather than just save in the IDE invokes auto refresh, you can use
the ‘Refresh Import’ command from the ModelMaker IDE expert to save afile. This
command will not only generate a manual refresh import command but also automatically
save your unit in the IDE. Therefore you could use this command with shortcut Ctrl+Shift+H
rather than the conventional Ctrl+S to save and refresh. Y ou can add the Model M aker Refresh
command to the IDE tool bar. Check chapter (Integration in) Delphi IDE page 106.

Editing Form source files

ModelMaker Tools developed the ModelMaker Code Explorer to help editing Form, Data
Module and other resource module source files. Due to the nature of these resource module
filesthe IDE editor is more suitable for editing them. The ModelMaker Code Explorer will
dock into the IDE editor and bring basic Code Model editing and navigation actions right into
the IDE.

If you do not have the ModelMaker Code Explorer installed, you can edit form (and other

resource module) source fileswith ModelMaker. This offers many advantages:

1. Use ModelMaker’s high level view and filters to navigate through your form code.

2. Automatically restructure your source files by regenerating them.

3. Improve your form code quality by adding methods and (array) properties with the same
ease as for “normal” non form classes. Especially when you turn your forms into
components, you want them to have nice and clean code to improve maintainability.

4. In general speed up form implementation.

For a smooth cooperation between Delphi and ModelMaker, stick to these rules:

In Delphi,

* Create and rename the form and unit.

* Add, delete and rename components.

» Set component properties.

* Create, rename and delete event handler methods.

Delphi adds al it's components and event handler methods with the default visibility, so they
are easy recognized in ModelMaker (use the membersfilter to filter out default visibility).

In ModelMaker,

1. Import your form file in an (empty) ModelMaker model.
2. Add, edit and delete all other members

3. Add additional classes to the unit.

To synchronize between Delphi and ModelMaker,

1. Regenerate the ModelMaker unit whenever you changed your code in ModelMaker. The
auto-generate feature will help you doing this automatically.

2. Refresh the ModelMaker unit whenever you changed your code in Delphi, the integration
experts will help you doing this automatically.

usermanual 620.doc May 7" 2002 66

ModelMaker version 6.20

In source documentation

Overview

ModelMaker supports generating and importing "in-source” documentation. That is. the
documentation and One Liner attributes of Code Model entities can be inserted during code
generation and / or read (back) during import. Generation and importing of in-source
documentation is controlled by the Project options tab “ Source Doc Generation” and “ Source
Doc Import”. The Import source dialog allows temporarily overruling the import settings.

"In-source" documentation must be marked with special (user definable) documentation and
one liner signature tags, more or less like in Java Doc. These signatures must be an Object
Pascal comment symbol followed by one or more letters, Common used signatures are:

Documentation tags:
{{

{:

(* %

(*:

Oneliner tags:
{1

Il

111

Generation isinternally based on macros. To customize the generated format, you can
redefine these macros. To ensure a correct round trip (generation followed by a re-import) the
generation and import settings must match. Normally ModelMaker enforces a correct match
by using the essential import settings for generation. If you redefine the documentation
generation macros, you must ensure correct matching.

Generating in-source documentation

ModelMaker supports generating and importing ‘in-source’ documentation in source files.
Generation is controlled by the Project options on tab ‘ Source Doc Generation’” and some
macros (refer to Macros). Y ou do not need to define these macros, as ModelMaker will on the
fly insert the required macros. Y ou can however redefine them either as environment or as
project macro to customize the generated format.

usermanual 620.doc May 7" 2002 67

ModelMaker version 6.20

Documentation macros

Macro name Description Example
i dul
ModuleDeclDoc | Used to expand Module (unit) S
documentation. Check Module |y
related macros
tt
EventDoc Used to expand Event Type L ovent 1ype
documentation }
ClassintDoc Used to expand Class H slass < Jasshamel>
. . 1 assDoc! >
documentation in the class }
declaration
ClassimpDoc Used to expand Class {{ class <! asshane!>

documentation in the class
implementation (emitted just
before the first method
implementation)

<! d assDoc! >

}

MemberintDoc

Used to expand member
documentation in the class
interface

{{ <!'d assNane! >. <! Menber Nane! >
<! Menber Doc! >

}

MemberimpDoc

Used to expand method
implementation
documentation

{{ <!'d assNane! >. <! Menber Nane! >
<! Menber Doc! >

}

MemberEndM acro

used to expand method
termination documentation

{ <!'d assNane! >. <! Menber Nane! >

OneLinerMacro

Used to expand onelinersin
classes, members, units and
event types

[1: Summary: <!OneLiner!>

In the examplesit is assumed that {{ is the documentation signature and //: isthe One Liner

signature.

Asyou seein the examples, you can use any of the predefined macros such as <!ClassName! >
inside the documentation macros.

However, ModelMaker is only able to import certain styles of source documentation. Thisis
important if you want to ‘ Refresh Import’ a unit.

Importing in-source documentation

ModelMaker supports importing "in-source" documentation. Importing source documentation
is controlled by settings in the Project options tab “ Source Doc Import” and the Import source
dialog. As explained: "In-source" documentation and One Liners must be marked with special
(user definable) documentation signature tags. More or lesslike in Java Doc.

An example:

usermanual 620.doc May 7" 2002 68

ModelMaker version 6.20

/11 SomeMet hod does sonethi ng useful.

{{
procedur e TSanpl e. SoneMet hod

This method does sonet hi ng usef ul
It would take pages to tell what.

}
procedur e TSanpl e. SoneMet hod;

begi n
end;

In the above example the OneLiner signature is defined as //1 and the documentation signature
is defined as {{. The whole comment until the matching comment end symbol is treated as
documentation for the first entity defined following or preceding it - depending on the
documentation import options. In the example above the comment will be assigned to
TSample.SomeMethod. Y ou cannot use multiple line // style comments for documentation.

In the Source documentation options there are three documentation import modes:

1. Import: enables source documentation import and replaces documentation in the model
with that in the sourcefile,

2. Clean up: leaves the documentation in the model unaffected, but removes documentation
from the unit-code

3. Inactive: which does nothing and |eaves the documentation in the unit code.

The option * Remove unmatched documentation determines if only matched documentation
should be removed or just any comment with the documentation signatures.

When assigning the comment to the Documentation attribute, the first and last #n lines are
ignored. Defining any other value than 1 (one) is only useful if you redefine the
documentation generation macros. The standard macros assume a value of 1.

Y ou could use the fact that the first n lines (user definable) are ignored and place there the
additional macros you'd like to generate. For example:

{{
<! d assNane! >. <! Menber Nane! >

(<!'Visibility!>)
<! Menber Doc! >
}

This macro would require the first three (3) lines and the last one (1) to be skipped. Using this
technique the member documentation won't grow each time you (refresh) import a unit.
Another option is to use the Import "clean-up" import mode after in-source documentation has
been imported once.

Alternatively you could leave the number of linesto be skipped at 1, and use additional
removal style comments to customize your in-source documentation format.

For example:
macro ClassIntDoc =

{_ kkhkkkkikkkikkkk*k

<IClassName!>

usermanual 620.doc May 7" 2002 69

ModelMaker version 6.20

**************}

{{
<IClassDoc!>

}

Note the removal style comment in thefirst part of this macro. Check chapter “ Comments
with Remove signature’, page 60.

Related to thisis the use of a custom ClassSeparator or MethodSeparator to emit more than
just the documentation preceeding the class or a method implementation. Refer to Code
Generation options. Using custom separators has the advantage of not needing the redefine the
documentation macros and that way ensuring that all expanded documentation looks similar.

For example, defining a MethodSeparator macro like this:
{- <!'d assNane! >. <! Menber Nane! >
(<'Visibility!>) }

Combined with enabling the method implementation in source documentation (without
redefining the related macro), this behaves as if the entire macro were:

{- <!'d assNane! >. <! Menber Nane! >
(<!'Visibility!>) }
{{

<! Menber Doc! >
}

Which would be emitted for example like this:
{- TSanpl e. SoneMet hod
(public) }

This is the docunentation for the nethod

}

Note the use of removal style comments for the MethodSeparator that avoids creep when re-
importing the generated code.

usermanual 620.doc May 7" 2002 70

ModelMaker version 6.20

Code templates

ModelMaker supports the use of code templates. They are like user definable patterns and
consist of a (usually consistent) set of members that is put in a code template sourcefile. This
template can then be applied whenever needed again. The template file acts like a structured
persistent copy / paste buffer. The powerful aspect is that templates can be parameterized
using user definable macros. ModelMaker will extract the macros, let you edit them and
expand the macros before importing the template file. The template files can be edited in
Delphi, but should not be imported in ModelMaker directly.

Creating a Code template

To create a code template, in the Members view select the members you want the template to
contain use the popup menu 'Create code template’. Y ou'll be prompted for afile name.
ModelMaker then generates the selected members as part of a stand-in class named
TCodeTenpl at e. Here's an example of asimple template file containing asimple| t ems
property with a standard TLi st implementation

unit Sinpleltens;

TCodeTenpl ate = cl ass (TObj ect)

private
Fltems: TList;
protect ed
function Getltens(lndex: Integer): TObject;
public
property ltens[lndex: Integer]: TCbject read Getltens;
end;

function TCodeTenpl ate. Getltens(lndex: Integer): TCObject;
begin

Result := TOoject(Fltens[lndex]);
end;

Applying a Code template

To apply apreviously created template, select the popup menu 'Apply template’ from the
Members view. You'll be prompted for atemplate file name. ModelMaker will import the
members contained by the first class in the template unit and add them to the currently
selected class. Other classes and all other code in the unit are/isignored. There's one
exception: event type definitions can also be added to a code template, they will automatically
be added to the event library when applying the template.

usermanual 620.doc May 7" 2002 71

ModelMaker version 6.20

Registering a Code template

Code Templates can be registered on the patterns pal ette (patterns view) and Code Template
pal ette (members view popup menu). These palettes that ook like the Delphi component
palette make it even easier to apply a Code Template. To (un)register atemplate use the popup
menu functions in the palettes or select the corresponding option when you create a Code
Template. Code Templates are shared with the ModelMaker Code Explorer.

Parameterize a Code template using macros

Y ou can parameterize a code template by adding macros to the template unit. When applying
atemplate, ModelMaker will first extract the macro parameters, let you edit them, expand the
code template and finally apply the template. This alows you to create more generic
templates. A macro definition should be formatted as

/ | DEFI NEMACRO macr onanme=nacr o descri ption

The standard ModelMaker macro rules apply. For example: macroname must be an identifier.
Parameterizing the above example could for example be done like this.

unit Sinpleltens;

/ | DEFI NEMACRO | t ems=nane of array property

/ | DEFI NEMACRO TObj ect =t ype of array property

/ | DEFI NEMACRQO | t emCount =Met hod returning # itens
/ | DEFI NEMACRO: Flt ens=TLi st Field storing itens

TCodeTenpl ate = class (TOhj ect)
private
<IFltens!>: TList;
prot ected
function Get<!Itens!>(Index: Integer): <!Thject!>;
public
property <!Itens!>[Index: Integer]: <! TQhject!> read Get<!ltens!>;
end;

function TCodeTenpl ate. Get<!ltens!>(Index: Integer): <! TObject!>;
begin

Result := <! TQbject!>(<!Fltens!>[|ndex]);
end;

usermanual 620.doc May 7" 2002 72

ModelMaker version 6.20

Template parameters
Farameter | Description |
[tems name of array property
TObject type of aray property
[ternCaount kethod returning # items
Flterms TLizt Field staring items

ok, Cancel

If you apply thistemplate, ModelMaker will show adialog with the list of parameters you
defined: Items, TObject, ItemCount and Fltems allowing you to change them for examplein
Members, TMember, MemberCount and FMembers. This way the template can be added
multiple times in different contexts. ItemCount is not used in this example, but in the sample
code template that is shipped with ModelMaker method ItemCount is part of the template.

ModelMaker predefines one macro: “ ClassName” contains the name of the classthe macrois
applied to. Y ou can redefine ClassName when parameterizing a template. Use ClassName for
example to create a singleton implementation macro:

functi on TCodeTenpl ate. | nstance: <! d assNane! >;
begi n

/1 return the single instance.
end;

When applied to a class named TMySample this will expand to:

functi on TMySanpl e. | nstance: TMySanpl e;
begi n

/1 return the single instance.
end;

usermanual 620.doc May 7" 2002 73

ModelMaker version 6.20

Macros

Overview

A macro in ModelMaker is an identifier placed between <! and !> tags. They may also include
an optional parameter list. When the macro is expanded, the macro identifier and tags are
substituted by the text associated to the macro. For example macro <!UnitName!> will (in

unit Samples) be expanded to the actual unit’s name ‘ Samples'.

Macros are used in

» Code Generation.

» Customizing certain aspects of code generation such as a custom class separator, inserting
categories etc.

» Generating in-source documentation.

» Parameter zing Code Templates

* ModelMaker Code editor.

During code generation ModelMaker predefines some model statistics macros at run time.
Such as<!Uni t Nae! >, <! Dat e! > €fC.

Y ou define your own macros in the Macros view. Macros are defined per desktop
(environment) and per project. If amacro is both in the project and the environment macros,
the project macro overrules (redefines) the environment macro.

For Parameterizing Code Templates using Macros, refer to chapter Parameterize a template
using macros, page 72. To expand a Code Template the predefined macros and project and
environment macros are not used.

Macros in Code generation

When generating a source file from a ModelMaker unit (refer to chapter Code Generation
page 45), ModelMaker will expand macrosin all text that is send to the output file. Therefore
macros can be placed in any code: in unit code, in a section of a method’ s implementation or
even in alocal var definition. Macro expansion is switched on and of with the generation
control tags MMAI N: START EXPAND and MM N: END EXPAND By default the expansionis
switched ON. Check chapter “Macro expansion control tags’, page 47 for an example.

When expanding a macro, first the list with predefined macros is checked, then the Project
macros and finally the environment macros. If an identifier is not found, the macro text is

usermanual 620.doc May 7" 2002 74

ModelMaker version 6.20

either just removed or generation is aborted depending on the setting of
‘I gnore undefined macros’ inthe Project options Code Generation tab.

Predefined macros

This table shows the macros ModelMaker predefines when generating a source code file.

Some macros may be redefined - especially the documentation expanders, others such as Date

and ClassName are fixed.

Allows
override

Macro Name

Description

Example

Generic predefined macros

Dat e No

Generation date, for example:
19- 02- 2003

Ti me

No

Generation time, for example:
12: 34: 56

Li neNr

The 1-based line number in the

resulting source file at which the

macro is defined.

Documentation expanders

Modul eDecl Doc Y es

Used to expand Module (unit)
documentation. Check Module
related macros

{{
<! Modul eDoc! >
}

Event Doc Y es

Used to expand Event Type
documentation

{{
<! Menber Doc! >
}

Cl assl nt Doc Y es

Used to expand Class
documentation in the class
declaration

({

<! Cl assDoc! >

}

Cl assl npDoc Y es

Used to expand Class
documentation in the class
implementation (emitted just
before the first method
Implementation)

({

<! Cl assDoc! >

}

Menber | nt Doc Y es

Used to expand member
documentation in the class
interface

{{
<! Menber Doc! >

}

Menber | npDoc Y es

Used to expand method

Implementation documentation

{{
<! Menber Doc! >

}

Customization Macros

Cl assSepar at or Y es

Custom Class separator, Only
active if corresponding optionis
activated in Project Code

PR b o I

** (Class: <!d assNane! >
** Category: <! Category!>

**********************}

usermanual 620.doc

May 7" 2002

75

ModelMaker version 6.20

Generation options. assuming { - is the comment
remove style
Met hodSeparator |y ag Custom Method implementation {- <!Menber Nane! > -}
separator. Only active if))
corresponding option is activated/@SSUming { - is the comment
in Project Code Generation remove style
options.
Sect i onSepar at or Y es Custom Method section {------- section -------- }
separator. Only active if))
corresponding option is activated/@SSUming { - is the comment
in Project Code Generation remove style
options.
I nt fcat egory Yes |Wrappersfor Category emission [~ Category: <l Category!>}
v 9oy in class or member interface and
Implementation.
OneLi ner Macr o Y es Used to expand one liners (class, //: Summary: <! OnelLiner!>}
member, unit event type)
Met hodEndMacro |y ag Used to expand method end {><! d assNane! >. <! Met hodNane!
documentation. Only active if }
corresponding optionissetin
Project Source documentation
Generation options
Entity specific Macros
OneLi ner No All entities: for Modules only
during Module documentation
generation.
gte'é'ggf; No All entities: for Modules only
during Module documentation
generation.
Mbaut eBoc No M odule specific macros (units).
Modul ePat h Always available (not only in
G‘n: as e module documentation). The
Uni t Pat h UnitXY Z macros exist for
backward compatibility. Use the
ModulexXY Z macrosin new
projects
g g:gﬁgﬁﬁ No Class specific macros. Validin |In unit code use thisto insert
Tri mmedd assName class and members of that class. auto updated global variables or
Ancestor \Valid in unit code after the first |class pointer types:
class has been generated.
TrimmedClassName contains the?a, <! Tri mredd asshane! >
class name with the first type <!'d assNane! >0 ass =
character ('T' / ’t') removed. cl ass of <! assNane! >;
Member Do No Member specific macros. Vaid
Visibility during generation of declaration,
Dat aType documentation and method
usermanual 620.doc May 7" 2002

76

ModelMaker version 6.20

Implementation code.

parameter s No Method specific macros. Valid
Met hodKi nd during generation of declaration,

documentation and method
Implementation code.

Event Types use the same
macros as methods. Except:
Category and Visibility which
are undefined

The Documentation Expander macros are used to generate in-source documentation. To
customize the generated format, you must redefine these macros, either in the project or
environment macros. Refer to chapter “ Generating in source documentation”, page 67.

The Customization macros can be (re)defined to customize the format of the related aspect.
ClassSeparator, MethodSeparator and SectionSeparator are only active if the corresponding
options are checked in the project Code Generation options. Refer to chapter “ Code
Generation Options’, page 49.

Using Macros in code

Some rules that apply to using macros:

* Anentire macro including start and end tags must reside on asingle line.

e Macroidentifiers can contain characters['0'..'9', 'd..'z', 'A".."Z'," ']. Thisissimilar to
Object Pascal identifiers, although macro names can start with a number.

* White space surrounding the macro identifier isignored.

» A start tag not followed by avalid identifier is not considered to be a macro

» |If the macro identifier is not followed by either the end tag or the parameter list, the
macro is not considered to be a macro.

Rather than presenting the macro syntax diagram, an example will demonstrate the use and
definition of macros.

Assume these (user) macros to be defined, in either the project macro list or in the
environment macro list.

Name: Aut hor
Parameters:

Text:
SSMA RT. Progranmmrer

Name: Assert
Parameters. Cond, Msg

Text:
{$1 FOPT D+}
if not (<!Cond!>) then
rai se Exception.Create(’ Assertion error in line <!LineNr!> of unit <!UnitNane!>’

usermanual 620.doc May 7" 2002

+

77

ModelMaker version 6.20

#13 + MsQg);
{ $ENDI F}

Thisis how you could use these macros:

procedure SoneAction(lndex: Integer; C. Char);

begi n
<! Assert(lndex >= 0, ‘Index out of range’)!>
<IAssert(Cin['a, ‘b'], ‘Char out of range)!>

<! Assert(ValidPair(lndex, C, ‘Additional checks failed)!>
ShowMessage(‘ <! Author!> created this code');
end;

Assuming the procedure was placed on line 100 in unit Demos, this text would expand to:

procedure SoneAction(lndex: Integer; C. Char);
begi n
{$I FOPT D+}
if not (Index >= 0) then
rai se Exception.Create('Assertion error in line 102 of unit Denpbs’ +
#13 + ‘Index out of range');
{ SENDI F}
{$I FOPT D+}
if not (Cin['a, ‘b']) then
rai se Exception.Create('Assertion error in line 107 of unit Denpbs’ +
#13 + ‘ Char out of range’);
{ SENDI F}
{$I FOPT D+}
if not (ValidPair(lndex, C) then
rai se Exception.Create('Assertion error in line 112 of unit Denpbs’ +
#13 + ‘ Additional checks failed);
{ SENDI F}

ShowMessage(‘S.M A R T. Programmer created this code’);
end;

The basic rules that apply to the use of macros are:

» When using macros in text, the complete macro including its parameter list must reside on

asingle line. So thiswon’t work:
<! Assert((A > B) and (B > Q),
‘“This is bad input’)!>

* Argumentsin the parameter list are comma delimited, such asin the use of Assert .

» Arguments can contain even pairsof () , [] and*’ characters, such asin sets, arrays and
string literals.

* If no parameters are defined, asin <!Author!>, you omit the brackets when using the
macro.

* Macros can use other macrosin their macro text. In fact even parameters can be macros.
Nesting is alowed up to 15 levels.

» Circular macro definitions areillegal.

* Macros expand to plain text. See for example the use of the predefined LineNr and
UnitName macros in the Assert macro’ s text. The expanded macro LineNr is not an
Integer, and the expanded macro UnitName is not a string.

usermanual 620.doc May 7" 2002 78

ModelMaker version 6.20

Using macros in the code editors

An entirely different use of macrosisto expand a macro in the code editor. To do this, press
Ctrl+Space after typing the macro name - or Shift+Space, depending on your Environment
OptionsEditors settings. Thisis convenient if you create macros like: tryf that could expand
to:

try
>< [/ ><in macro text positions cursor after expansion.

finally
. Free;
end;

Using macros in your default unit template

To demonstrate the use macros, here’ s the effect of using macros on the default unit which
was described in “ Adjusting the unit template” page 50.

{
<! Uni t Header! >

<! FreeWar eDi scl ai ner! >

}

unit <!Unit Nane! >;

interface

/1 rest of the unit tenplate is unchanged

end.

Notice how this template differs from the previous template:

* The company header is now placed in amacro Uni t Header . This saves alot of redundant
text.

* Themacro Uni t Header contains other macros like unit name, model name, etc.
* Thedisclaimer is now placed in the macro Fr eeVar eDi scl ai mer .

usermanual 620.doc May 7" 2002 79

ModelMaker version 6.20

Diagrams

Diagrams, Diagram List view

ModelMaker supports a set of diagram types as defined by the UML. Currently the UML v1.3
styleisimplemented. A model can contain any number of diagrams of any type. The Diagram
list view (Main menu View or F5) contains alist of al diagramsin the model. Diagrams
contain symbols and associations that can be, but do not need to be linked to entitiesin the
code model.

The Diagrams list View is used to create, rename and delete diagrams. Select adiagram in the
Diagrams list view to open it in the diagram editor.

Diagrams are named. Names do not need to be unique.

Hierarchy

Diagrams can be organized hierarchically in the Diagrams view. This organization is pure
visual and has no further meaning in the model. Any diagram can serve as a parent for any
other diagram. To rearrange parent child relations, make sure the list’s “Order by” is set to
Hierarchy (Diagram list Popup menu). Then use drag and drop to rearrange diagrams. If the
Ctrl key is pressed while dropping, the hierarchy is edited; else the order within the current
parent is changed.

Styles

Each diagram has avisual style and a symbol style that define the default styles for the symbol
inside that diagram. Editing these styles (diagram editor popup menu Diagram attributes),
affects the appearance of all symbolsin that diagram. Refer to chapter “Visual styles’ for
more information.

Default properties

Whenever anew diagram is created (except a Cloned diagram), the format (size) and
orientation (portrait or landscape) are set to the defaults as defined in the project options.

Symbols and visual containment

Symbols can visually contain other symbols. For example package symbols can contain class
symbols or other package symbols; and Nodes in a deployment diagram can contain
Component symbols. Visua containment implicates visual ownership only. Visual
containment is not linked to the code model. Inserting a class symbol into a package that is
linked to aunit will not actually move that class to that unit. It isjust visualized as being part
of that unit.

After asymbol is created, visual containment is fixed and cannot be changed in the diagram
editor. The only way to change a symbol’ s parent is to cut the symbol and paste it on the new
parent. Take care: connected associations are only copied if both ends of the association are
copied.

usermanual 620.doc May 7" 2002 80

ModelMaker version 6.20

Symbol names and other visual adornments

Most symbols have a symbol name text adornment. Depending on the visual style options, the
name will display a hotlink status icon, a navigation icon and the hyperlink status. Check
chapters Hyperlinks and Hotlinks. The stereotype (category) of a symbol is also displayed in
the name adornment.

Other visual adornments are depending on the type of symbol. For example: a state region for
aconcurrent state contains a state region divider and icons, a sequence diagram role symbol
contains alifeline etc.

Associations

Basics

Associations are used to model relations between symbols. Some associations such as
“documentation link” and “constraint” can also be connected to other associations. An
association that is not connected to both endsisinvalid and will automatically be removed
from the diagram.

All associations have a direction: they lead from a source symbol to atarget symbol. Usually a
navigation arrow is displayed is appropriate. These arrows can be suppressed in the visual
style on project, diagram or association level.

Usually the visual path of an association is formed by the two association end points. Shape
nodes can be inserted to create more complex paths.

Associations are created by clicking the mouse on the source symbol and while keeping the
mouse down, drag to the target symbol where the mouse is released. Once created,
associations can be connected to different symbols by moving one of the endpoints to the new
source or target symbol.

Anchors

Associations are connected with an anchor point to symbols. Usually the anchor is connected
to the center of a symbol. Y ou can however drag-move the connection anchor point within the
bounds of the connected symbol. Thiswill change the intersection point of symbol and
association. The diagram editor’s popup menu has a function ‘Reset Anchors” which will
reset both anchorsto the symbol’ s center.

Shape Nodes

Shape nodes can be inserted to change the visual path of an association. Shape nodes allow
bending associations visually. The association anchor points (connection points on the
connected symbols) and the association’ s shape nodes make up the actual visual path of the
association. The picture below shows an generalization association from TintLabel to TLabel
with one shape node.

usermanual 620.doc May 7" 2002 81

ModelMaker version 6.20

=]
Shape [— % TLabel
node

= Intlabel:TintLabel

= attributes
Mumyalue: Integer;

= operations
Creater..)

To insert a shape node into an association, press the Ctrl-key and drag on aline segment of an
association. After the mouse is released, a new node isinserted. Alternatively, use Insert
Shape Node from the diagram editor “Association” popup sub menu. This command is
available if you invoke the popup menu on an association.

TLabel

Yt

= Intlabel:TintLabel

Press Ctrl key.
= attributes

Click left mousze

Mum®alue: Integer; button on associstion
=] operations and drag to create
Creste..) noce.

Shape nodes can be moved by selecting the association and then drag them with the mouse.

A shape node can be deleted by aligning it with the two surrounding nodes and is basically the
reverse of creating a new shape node. Alternatively, use Delete Shape Node from the diagram
editor “Association” popup sub menu. This command is available if you invoke the popup
menu on a shape node. The command * Clear shape nodes’ in the same popup menu will clear
all shape nodesin al selected associations.

Recurrent associations

Normally associations connect two different symbols. If both ends of an association are
connected to the same symbol, the association is recurrent. Most associations can be made
recurrent. Some recurrent associations will display arounded curve rather than a square path.
The rounded curve is a bezier that is controlled by two shape nodes. Inserting another shape
node will turn the bezier curve into normal straight lines.

usermanual 620.doc May 7" 2002 82

ModelMaker version 6.20

= Intlahel::TIntLahell

= attributes R
Mum'¥alue: Integer; recurrent association:
=] operations %

Createl..)

To create a new recurrent association, simply make the target symbol the same as the source
symbol. Two shape nodes will automatically be inserted that allow control of the visual path.

An existing non-recurrent association can be made recurrent by moving on of the endpointsto
the same symbol as the other endpoint. Again, two shape nodes will be inserted automatically.

To convert arecurrent association into a non-recurrent associ ation, move either source or
target endpoint to another symbol. The shape nodes will be removed.

Association Name, Qualifiers, Roles and other adornments

Most associations can be named and have an association name adornment. If the nameis
currently not visible, select the association and press F2 to invoke the in place editor.
Depending on the visual style options, the association name will display a hotlink status icon,
anavigation icon and the hyperlink status. Check chapters Hyperlinks and Hotlinks. The
stereotype (category) of the association is also displayed in the name text adornment.

Other adornments include

1. Quadlifiersin qualified association such as class associations. To reduce visual space,
the qualifier’ s type can automatically be suppressed. Thisis controlled with the visual
style options.

2. Role name, both source and target endpoint can be named in for example class
associations and object links.

3. Multiplicity (cardinality), both source and target endpoint can have a multiplicity in for
exampl e class associations and actor communications.

4. Conditions, usually only in the source endpoint of sequence diagram messages and
state transitions.

These adornments are all texts and can be moved freely in the diagram. The word break
property of text adornmentsis controlled with the Word break functions on the “Align and
Size” palette.

Visual styles

All symbols, associations and diagrams have avisua style. It isthisvisual style that defines
how a symbol appears. A visua style contains font settings, a color palette and some options
that control display of icons. The symbol styles, that are discussed in the next chapter, control
what is displayed; the visua styles control how a symbol is displayed.

usermanual 620.doc May 7" 2002 83

ModelMaker version 6.20

Style hierarchy

All visua styles are linked in alookup hierarchy. A style normally looks up an attribute in the
parent style but can also override “ parent” attributes. By default symbol and association styles
are linked to the diagram visual style and have all properties set to “lookup from parent”; that
isoverride or change nothing. As aresult, all symbolswill appear as defined by the diagram
visua style. On their turn, al diagram visual styles are linked to the project visual style and
also have al properties set to “lookup from parent”.

=] . . .
Project Style: VisualStyle [— —|Project visual style defines
project wide defaults
Parert
= _ . . :
Diagram Style: VisualStyle |— —|Disgram visual style defines
diagraim wide overrides
Parent
=]] e
Symbol Style: VizualStyle — —|Symbolidssociation visual
style defines local overrides

This hierarchical structure allows easy adjusting of visual appearance on any level. To change
the appearance of an entire project: change the project style. Y ou can even save the project
settings as default, and new projects will have the same project style. Change the diagram
style to modify the appearance of all symbols a single diagram. To change the appearance of a
single symbol, edit the symbol’s style.

To make reuse of visual styles easy, the visual style manager allows creation of “Named
styles’. Named styles can be used to define a specific appearance that can be reused. A named
styleis applied making it the parent of a diagram or symbol style. Named styles can have
other named styles or the project visual style astheir parent. The diagram editor tool bar
contains a parent style combo which is used for this.

ProjectStyle: YisualStyle — |Project visual style defines
project wide defaults

Parent

_MamedStyle |— —— |Mamed styles define
overrides for common use

Parent

svimbolstyle: VisualStyle —— |SymbolfAszociation visual
style defines local overrides

Visual style properties

A visua style consists of a set of properties. Not all symbols/ associations use all properties.

usermanual 620.doc May 7" 2002 84

ModelMaker version 6.20

1. A mainfont name and size. The main font is used for symbol and association names.
The font’s style, bold, italic and underline, cannot be defined because that is usually
has a syntactical meaning in the symbol as defined in the UML specifications:
classifier names are bold, instances named are underlined etc.

2. Anadornment or text font. Used for all other texts. For example the membersin a
class symbols and the roles in an association.

3. A color palette defining the colors for basic drawing entities such as main font, symbol
compartment, symbol pen, symbol tab, association line etc. Which entries on this
palette are used is dependent on the type of symbol.

4. Optionsthat control display of some visual elements, such as. navigation arrowsin
associations, hotlink icons, navigation (hyperlink) icons etc.

Most symbols properties dialogs and the diagram properties dialog contain a‘visual style’ tab
that allows editing a style. Refer to next paragraph.

Controlling & assigning styles

Most symbols properties dialogs and the diagram properties dialog contain a‘visual style’ tab
that allows editing the symbol’ s visual style. In this tab you change and or edit the parent style
and the styl€' s attributes.

S_I,Iml:unll Dncumentatinnl Hyperlinks Visual style |

— Parent style

|Seleu:1 parent style |— wdiagram style: Rewert.. Edi..
—Font

IS_I,ImI:u::I [main] fort j Fant hame I«F‘arent fonks j

[Arial) [T Custamn font gize m

—LColor Palette

I- Highlight color j [T Cusgtam colar Calar...
—0Option

IShu:uw havigation arrows j Walue IF'arent style [enabled] j

To entirely revert to the parent style, erasing all overridden / redefined attributes, click the
‘Revert’ button.

The diagram editor’ stool bar contains some visual style specific tools.

|.&ssign parent style | |Revert to parent style |

|
||-e:|:|iagram styless j| =i |

Apply calor

The “parent style” combo displays the parent style for the sel ected symbols and associations.
Itisblank if selected symbols have different parents. It allows assigning a new parent for the
selected symbols.

usermanual 620.doc May 7" 2002 85

ModelMaker version 6.20

The “Revert to parent style” tool will reset the visual stylesfor al selected symbols and
associations. Useful to erase any local redefined style attributes.

The Apply color tool will let you select a color and apply it to the selected symbols and
associations. The color is applied asthe “main” feature color. Usually thisis the symbol color
palette entry, but for tabbed symbols like class symbols and package symbols, the symbol tab
color is changed.

The Diagram editor containsa‘Visual style’ sub popup menu that contains some additional
visua style related functions.

Copy Stvle ChrlH-AIEHC
Paste stvle Chrl+alk+Yy
Bl custom Color. ..

Skyle manager. ..
Edit style
Diagram skyle. ..

Project stvle. ..

Ise Printing skyle
Edit Prinking skyle

Most striking functions in this popup menu are:

1. Copy/ Pasteavisua style. Thisisuseful in case you have redefined the style of a
symbol and want to apply the same visual style to a selection of other symbols. Note
that similar functions exist for the symbol style that controls the display of members
etc.

2. Show the Style Manager and it’s named styles, which is described in the next
paragraph.

3. Toggle (and Edit) “Printing Style”. The printing style is described in the next

paragraphs.

Style Manager

The visual Style Manager is used to create and maintain named visua styles. Named styles
can be assigned as parent style for symbols and diagrams. They allow creating a predefined set
of appearances that can be applied by simply assigning the style.

For example, you could create a style named “ System components’ which specifies a specific
blue palette to paint symbols. Another style could be named “GUI components’ and define a
yellow palette to paint symbols.

In class diagrams, you can then easily change the visual appearance of a class symbol by
assigning “ System components” as parent style for the class symbol using the diagram editor’s
tool bar parent combo.

Named Visual styles can be imported or exported with the Style Manager. This allows
synchronizing named stylesin projects.

usermanual 620.doc May 7" 2002 86

ModelMaker version 6.20

Printing Style

ModelMaker allows suppressing a specific set of graphical features when printing diagrams.
These include: printing in black and white (suppressing colors), no navigation icons, no
hotlink icons etc. While these features can help while designing, they may be unwanted in
printed output. The following picture shows the same diagram in normal and printing style.

E p

o ILabel [F] it
“—+Intlabel

Z‘S =] TintLakel

= o Intlabek:TintLabel i
= attributes |

Mum*alue: Integer;

El operations
Createl..)

Unit IntLakel contains & detna
componert TintLakbel. t was
cregted with Maodelaker to
demonstrate the creation of a
NeEsy Component.

TLabel

T

LNt
Intlabel

=] TintLshel

Intlabel:TintLabel

attributes
Mumalue: Integer,

operations
Creater..)

Unit IntLakel contains s dema
component TintLakbel. it was
created with Modelbdaker to
demonstrate the crestion of a
newy companert.

The printing style is defined in the diagram environment options. It is automatically
superimposed on all other styles when printing, and can also be manually activated in the
diagram editor. The diagram editor popup menu “visual style’” menu contains an item that
toggles the “Use Printing style” state. If the printing style is active in the diagram editor, it
will also be effective when creating visual exports asimage file or to the clipboard.

Symbol (contents) style

Just like visual styles hierarchically control the visual appearance of diagrams and symbols,
symbol styles control the contents of displayed symbols. For example: which members are
displayed in aclass symbol and in which format is controlled by the class symbol “symbol
style”. The symbol styles control what is displayed; the visual styles control how it is
displayed. The symbol styles are only applicable for a specific set of symbols such as class,
interface and (unit) package symbols. In classes the symbol style controls which members are
displayed and how they are displayed. In unit packages they control whether contained classes
are automatically displayed.

Style hierarchy

Just like visual styles, all symbol styles are linked in alookup hierarchy and can override
parent style attributes. Symbol styles are linked to the diagram symbol style and have all
properties set to “lookup from parent” that is. override or change nothing. As aresult, al
symbols will appear as defined by the diagram symbol style. On their turn, all diagram symbol
styles are linked to the project symbol style and also have all properties set to “lookup from
parent”.

usermanual 620.doc May 7" 2002 87

ModelMaker version 6.20

project wide defaults

=] . '
Project Style: SymbolStyle |— — Project symbol style deflnesbl

Parent

Diggram symbol style
defines diagram wide
averrides

Diagram Style: SymbolStyle — —

Parent

local overrides

=] ' .
Symbol Style: SymbolStyle|— — |=ymbol's style defines I\j

This hierarchical structure allows easy adjusting of what is displayed within symbols. To
change the style of an entire project: change the project style. Y ou can even save the project
settings as default, and new projects will have the same project style. Change the diagram
style to modify all symbols a single diagram. To change the contents of a single symbol, edit
the symbol’ s style.

Unlike the visua style, the symbol style cannot be linked to named styles.

Controlling & assigning styles

The diagram properties dialog contains a‘ symbol style' tab that allows editing the symbol
style. The project options “symbol style” tab is similar. In these tabs you control how class
and interface symbols display members and unit packages display contained

usermanual 620.doc May 7" 2002 88

ModelMaker version 6.20

classes.
Diagram Style ! x|
Wisual style Symbol style
—Clazz zpmbol member filter——————— [Clasz symbol member dizplay options—
[~ Project member tppe filter [+ Show vizibility
. Clazs svmbol
Clazz Syn_'lba! Eusto.m member bppe filker = S hiow data bype member display
member fiter, [~ Eields m : options
type, vizibilty and . -
categary ¥ Eroperies [# Show categories
[+¥ Ewvents
¥ Methods [operations] [¥ Ewents in new compartiment
" Combine operations & attributes
- [¥ Comb tiong & attribut
tember wisibility filker
- - — [# Show emply compartments
IF'n:n|eu:t defined wvizsibility filker j
7 Include default visibiliy Member colurins
ugtom columnz -
[~ Cust I 1
Cateqory filter
I«F'ru:niecl defineds j —Clazz and Interfface symbols——————
[¥ Show module [unit]) name Iiltasfs and
- erface
Clazs sprbol member order———————— [7 Collapse interfaces symbol options
tember grauping
IF'n:nieu:t defined arouping j —Unit package sumbaols——————
. Unit Package
g::'lz:rvglrgjr I tember zorting 7 Show canta!ned damss symbol options
IF'n:nieu:t defined sorting j [¥ Show contained event ypes
Grayed checkbox iz project style
Ok I Cancel |

The Diagram editor contains a‘ Symbol style’ sub popup menu that contains some symbol
style related functions.

Copy contents skwle ShiftHCEr4C
Paste conkents style Shift+CEr+Y

Diagram skyle. ..

Project style. ..

Most striking functions in this popup menu are Copy / Paste a symbol style. Thisis useful in
case you have redefined the style of afor example a class symbol and want to apply the same
visua style to a selection of other class symbols.

Class & Interface symbols

The symbol style in class and interface symbolsis edited on the “member style” tab of the
symbol’ s dialog. These are basically the same tabs as the diagram symbol style tab, except that
fixed or non-appropriate elements have been removed.

Package symbols (units)

The symbol style in a package symbol is incorporated in the main symbol tab. Here you
control if contained classes and events are displayed. This feature is only available for units
and classes that are (imported) in the model.

usermanual 620.doc May 7" 2002 89

ModelMaker version 6.20

Size and Alignment

The Drawing Grid

The diagram editor’s drawing grid is defined in the project options diagram style tab. It helps
aligning symbols. All symbols are automatically snapped to the drawing grid. And for most
symbols, the extent (bounds) is automatically adjusted to fit on the grid too. The MindMap
node symbol allows enabling/disabling this “Bounds on Grid”.

If you change the grid size, all symbolswill most likely resize too. Because the grid it affects
all diagrams and symbols, it is defined and saved per project.

Align & Size Palette

The Alignment palette, which is available from the diagram editor tool bar, contains a set of
functions to control alignment, auto sizing, text alignment and word break properties. These
functions are similar to those in other applications such as Delphi, and are not explained in
detail.

Hyperlinks, navigation

Virtually all symbols can contain hyperlinks. Hyperlinks can point to other diagrams, code
model entities (class, member, event, unit) or to external documents. Hyperlinks are created
and maintained in the “hyperlinks’ tab of a symbol’ s dialog. Although there can be many
hyperlinks, only oneis the default navigation link. Thisisthe first link that supports
navigation. The default navigation link is underlined in the hyperlinks list. Only HotLinks to
code model entities usually have navigation disabled. Check chapter HotLinks to Code Model.

S_I,Iml:u:ull Documentation Hyperlinks |"-.-’isua| st_l,llel

@ =

E Demo diagram
E Inplace editing
Link to class method —— visualizeClass
E: ik 325DiagramhDiagramFiles. txt

Cefault navigation link -~

Link to external document

4] |

Most symbols will show a nhavigation icon next to their name if a navigation hyperlink is
available. Thisis shown in the picture below. These icons can be suppressed by the visual
style or the printing style. Also, if a symbol has a default navigation link, the symbol’ s name

usermanual 620.doc May 7" 2002 90

ModelMaker version 6.20

will appear underlined and in the hyperlink color as defined in the visual style' s palette. The
picture below shows this. The Hotlink icon is explained in Paragraph “Hotlinks to the code
model”.

_ «Diagram Editors
“* V¥isualizeClass E

/ |

Hat link ican Mavigstion Mavigation icaon
Hyperlink text

If the navigation icon is clicked, ModelMaker will follow the link and navigate to the object.
If thisis another diagram, the current diagram is saved and the referenced diagram is opened
in the diagram editor.

If the link refers to a code model entity, ModelMaker will select the entity (class, member)
and make the classes and members views visible. If the entity is a method, the method editor
will aso be made visible.

If the link refers to an external document, ModelMaker will perform a default “ open”
command on the filename or URL.

Clicking the hotlink icon (left of the symbol name) will edit the hot linked entity rather than
the symbol.

If asymbol contains more than one hyperlink, you can navigate to the non-default hyperlinks
by using the diagram editor’ s popup menu Navigate function. This contains a dynamic
submenu with all hyperlinks available in the focused symbol.

External documents

External documents are defined with the same alias / relative name mechanism as used for
source files. Check chapter ‘source aliases in this manual for details. The use of aliases
avoids the use of hard coded, machine dependent paths.

The standard shell “open” command is performed to navigate to an external document. This
accepts all kinds of external documents such as executables or files that are associated with an
application. For example “c:\temp\manual .doc” will be run MS word and open the document.

URLs to web pages or web sites are also valid. For example:

Alias=""

Relative filename = “http://www.model makertool s.com”

will open aweb browser and navigate to the ModelMaker Tools site. This can be used to
navigate to html documentation etc.

To refer to another ModelM aker modd and start another M odel M aker instance, associate the

ModelMaker project bundle extension *.mpb with the ModelMaker executable in the
Windows shell.

usermanual 620.doc May 7" 2002 01

ModelMaker version 6.20

Coupling Symbols to the Code Model

Most symbols and associations are linked or can be linked to entitiesin the code model. This
is either hard coded or can be done manually by creating a HotLink. A hotlinked symbol will
share name, documentation, one liner, “abstract” state and stereotype (category) with the
linked entity. Modifying one of these propertiesin the symbol reflected to the linked entity
and vice versa.

HotLinks

HotLinks are used to link a symbol or association to another entity, usually a code model
entity like a class or amethod. A hotlink is basically a navigation hyperlink that is (internally)
marked as “hot”. Most symbol dialogs contain a set of buttons next to the name that allow
creating and editing the hotlink. Here is an example from the Action State editor dialog.

Action state symbol |
Surnbal I Docurentation H_I,Iperlinksl Wizual st_l,llel / Create Hot link
we |8 J /s - :
Mame ettt alue T Fe 2F Edit linked propetties
Cat i hall [R
Category | ones [| Break Hot link
[~ Abstract

[T ‘word Break name
v Auto size width

[+ Auta size height

Cusztaorm color....

- hotlinked to GetMum'/alie ok Eeraal

Hat link status

Normally, action states are not coupled to any other entities. If you for example wanted to link
an action state symbol to the TIntLabel.GetNumV alue method, click the “Create HotLink”
button and select the entity to link to. To break the hot link, click the Break hot link button.
Theicon at the bottom left of the dialog displays the hot link status. Not all properties need to
be linked. To edit the linked properties, click “Edit linked properties’. The linked properties
dialog lets you select which properties are linked.

If asymbol is hot linked, a hot link icon is displayed at the left of the symbol’ s name. The

following picture shows this. Hot link icons can be suppressed in the visua style and/or in the
printing style.

usermanual 620.doc May 7" 2002 92

ModelMaker version 6.20

_ «Diagram Editors
“* V¥isualizeClass E

/ |

Hat link ican Mavigstion Mavigation icaon
Hyperlink text

If you click at the hot link icon in the symbol’s name, the linked entity will be edited rather
than the symbol.

If asymbol is hot linked to a code model entity, that entity will be selected if you click on the
symbol or any of its (text) adornments. Unlike navigation through hyperlinks, this will not
ensure that the associated view is made visible.

Delete HotLinked entity

The Diagram Editor toolbar contains two delete tools: one to delete the symbol from the
diagram, one to delete the symbol and the hotlinked entity. The last one will not only delete
the symbol from the diagram but a so remove the linked entity. Y ou will be asked for
confirmation before the linked entity is deleted.

Specialized symbols and associations

Some symbols are linked to the code model by design. These symbols do not allow any other
linking than the built in one.

Class and Interface symbols

Class and Interface symbols are implicitly linked to a class in the code model. If the classis
deleted from the code model, all class symbols linked to that class are removed from all
diagrams.

Property and Field associations
Similar to class symbols, property and field associations are hard linked to properties and
fieldsin aclass. The datatype of these members must match the association target class.

Shared Class Association

Shared class associations are associations between class symbols that allow greater flexibility
than field and property associations. They do not need to be linked to existing code model
members or classes. Because they are shared, they can be auto visualized if both source and
target classes are being visualized on a diagram.

Generalization relation

Generalization (inheritance) relations can be created between all symbols that are
generalizable. In most cases they are not coupled the code model. Only if they connect two
class or interface symbols, they are implicitly linked to the code model. Therefore, changing a
generalization between two use cases does not affect the code model. But creating or changing
ageneralization between classes will be reflected in the code model by changing the class
hierarchy.

usermanual 620.doc May 7" 2002 93

ModelMaker version 6.20

Realization relation

Realization relations (such as interface support) can be created between most symbols that
allow realization. In most cases they are not coupled the code model. Only if they connect a
class and an interface symbol, they are implicitly linked to the code model. Therefore,
changing arealization between a package and interface does not affect the code model. But
creating or changing arealization between a class and interface will be reflected in the code
model by adding or removing interface support to that class.

Package (units)

Units can be visualized as package symbols. Normal hot linking is used to achieve this.
However, unit packages can display the contained classes and events. Thisis controlled by the
diagram symbol style and the related options in the package editor dialog. The displayed
content is read-only.

Documentation & OneLiners

Floating Documentation view

All symbols can be documented with a One Liner and multi line documentation. Most symbol
editor dialogs contain a“ documentation” tab. The standard documentation view cannot be
used to edit the symbol’ s documentation because the diagram editor and documentation view
cannot be visible at the same time. The floating documentation view however is coupled to
the diagram editor’ s focused symbol. This view can conveniently be used to edit symbol
documentation.

If asymbol is hotlinked to a code model entity, the symbol’ s documentation and one liner will
be linked to that of the entity. Changing it in the entity will change it in the symbol and vice
versa. Thisis controlled by hot links and the hot linked properties.

Linked Annotations

Annotations can visually be linked to symbols with documentation links. These links can be
either passive or automatically link documentation or one liner. Here is an example from the
Getting started demo in this manual.

usermanual 620.doc May 7" 2002 94

ModelMaker version 6.20

= slnits
TLabel
Intlabel
Z‘X =] TrtLabel
= Intlabel:TintLabel i
= attributes *
Mum*alue: Integer;
= operations Unit IntLakel contsing & demo
Creater..) component TintLabel. it was
created with Modelbaker to
. demonstrate the creation of a
MEyy Component.
TirtLakel iz & simple TLakel descendant

created with Modelaker. | adds the
property Mumyalue to wwhich reads and
writes the Caption property as an Integer.

The annotations in this example are coupled in auto documentation style; the blue double
arrows on the link paths show this. Changing the annotation text (for example by in place
editing) will change the symbol’ s documentation. In the example the class symbols are
implicitly linked to the code model classes. This means that editing the annotation text will
modify both the symbol and class documentation. This also works the other way round: if the
code model class' s documentation is changed, the annotation text will be updated.

To change the style of adocumentation link, double click on the link path.

Diagram Editor

Properties

The environment options “diagrams’ tab controls the diagram editor’ s properties. These
include: printing style, hint feed back, background color, grid style and color etc.

Keyboard and Mouse control

The diagram editor’ s keyboard short cuts are:

Scroll and Move

Up/Down/Left/Right Scroll
PageUp/PageDown/Home/End | Scroll one page up/down
Ctrl+PageUp/PageDown Scroll to top/bottom
Home/End Scroll one page |eft/right
Ctrl+Home/End Scroll to left, right side of page
Zooming

Numeric + / - Zoom In/Out by 10%

usermanual 620.doc May 7" 2002 95

ModelMaker version 6.20

Ctrl+Shift+l Zoomin

Ctrl+Shift+U Zoom out

Editing

Escape Cancel operation or select containing
(parent) symbol

Ctrl+Z Undo

Ctrl+Shift+Z Redo

F2 Rename (invoke inplace editor)

Ctrl+Up/Down/Left/Right Move selected symbols

Ctrl+C/V/X Copy/Paste/Cut selection

Ctrl+Alt+C/V Copy / Paste visua style

Ctrl+Shift+C/V Copy / Paste symbol style

Del Delete selection

Ctrl+Déd Delete All (clear diagram)

Ctrl+A Select All

Ctrl+P Print Diagram

Ctrl+Alt+P Print Preview Diagram

F12 Toggle full screen mode

Navigation

Ctrl+U Navigate Up; select parent diagram

Ctrl+B Navigate Backward

Ctrl+F Navigate Forward

Mouse selection

Click Select exclusive

Shift+Click Toggle selected state, incluse in selection
Drag Multiple Select(lasso selection)
Shift+Drag Extend selection by lasso selection
Ctrl+Drag Parent selection (only select symbols

within parent, excluding the parent).
Similar to Delphi IDE from designer

Mouse Whed control

Wheel Scroll up/down
Shift+Wheel Scroll left/right
Ctrl+Whed Zoom in/out
usermanual 620.doc May 7" 2002

96

ModelMaker version 6.20

Drag & Drop and conversions

ModelMaker extensively supports drag and drop between the main model views (classes,
members, units, diagrams etc). Each major model view can act as a drag source of entities and
as drop target for entities dragged from most other views. The details of each combination are
described in the next paragraphs. Since there are always two views cooperating in adrag /drop
operation (source and target) the details of conversions are described for the target view only.

Classes view

Internal (tree mode)

» Change inheritance.
* Apply interface support, press Control to invoke interface wizard

Internal (list mode)

» Apply interface support, press Control to invoke interface wizard

Source

Acts as a source for classes (and interfaces)
» Dragaclassor interface to diagram editor for instant visualization.
» Dragaclassto acode editor to insert its name as text.

Target

Accepts members, local vars, procedures and event types:

* Drop membersfrom the members view on a class to copy them to the target class.
Press Shift (before releasing) to Move rather than copying the members. If a property
is copied or moved, it's read and write access members are also copied, even if not
included in the dragged members. Restrictions that apply for interfaces are
automatically applied: fields are ignored, property write access is restricted and
visibility is made default when dropping a class' s members on an interface.

» Drop proceduresfrom Method L ocal Code Explorer to convert them to new
methods.

» Drop proceduresfrom Unit Code Explorer to convert them to new methods.

» Drop local varsfrom the Method L ocal Code Explorer to convert them to new
fields. Press shift on dropping to move rather than copy the var. Since interfaces
cannot contain fields, local vars cannot be dropped on interfaces.

usermanual 620.doc May 7" 2002 97

ModelMaker version 6.20

» Drop event type definitions from Event library view and Units view (tree mode) to
add an event handler or event property using the dragged event as atemplate. On
dropping a popup menu offers the available options.

Members view

Internal

* Incustom order rearrange mode (Ctrl+R toggles this mode), member custom order can
be arranged.

Source

Acts as a source of members.

» Drag members the classes view to copy them to aclass or interface.

* Drag membersto aclassin the units view (tree mode only). Similar to dragging
members to the classes view

» Dragafield or method to the Method L ocal Code Explorer to convert it to alocal
var.

» Drag amethod to the Unit Code Explorer to converted it to alocal procedure.

» Drag amethod to the Method I mplementation view (toolbars, or tabs) to “pin” the
method.

» Drag amethod(s) to the Event Library view to create new event types using the
methods as templ ate.

» Drag amember to acode editor to insert its name as text.

Target

Accepts code sections, local vars, (local) procedures, text, event type definitions and text.

» Drop code sections from the Method | mplementation Section list. The dropped
section is copied to the target method. Only if dropped on a method.

* Dropalocal var from the Method L ocal Code Explorer. If avar isdropped on a
method, the var will be copied to the target method. Press shift to move the var rather
than copying it. If avar is dropped on any other member or empty space in the member
list, the var is converted to a new field. Drag the vars root node in the method local
code explorer instead of asingle var to drag all all varsat once.

» Drop alocal procedurefrom the Method L ocal Code Explorer. If alocal procedure
is dropped on a method, it will be copied to that method. Press shift to move rather
than copy it. If alocal procedure is dropped on any other member or empty spacein
the member list, the local procedure is converted to a new method.

» Drop alocal procedurefrom the Unit Code Explorer. Acts similar aslocal
procedures dragged from the Method Local Code Explorer.

usermanual 620.doc May 7" 2002 98

ModelMaker version 6.20

» Drop Event type definitions from Event Library View and Unitsview (tree mode).
A popup menu will let you select between adding an event handler for an event type or
creating an event property. Multiple event types may be dragged at once.

* Drop Text from the code editors on the “add field” “add method” “add property” and
“add event” buttons in the toolbar. The corresponding member type will be created and
its name will be set to the dragged text. Method parameters are extracted from the
dropped text.

» Drop Text from code editor s dropped on the member list acts similar as text dropped
on the' add method” button.

Units view

Internal (tree mode only)

» Classes and Event types can be copied or moved between units and “ Classes not
assigned to any units’. Pressing Ctrl will copy rather than Move (default). Within the
same unit classes and event types can be rearranged using drag and drop.

Source

In tree mode acts as source for units, classes and event types. In list mode acts as source for
units only.
» Dragaunit to the diagram editor to visualize that unit as a package.
» Dragging aclass or interface to any other view is similar to dragging a class from the
classes view.
» Dragging an event typeis similar to dragging an event type from the event library
view.
» Drag aunit, class or event to acode editor to insert its name as text.

Target

Accepts members, members, (local) procedures, local vars (al in tree mode only) and event
types (both modes).
» Drop an event type from the Event Library view. If dropped on a unit, thiswill add
the event type definition to the unit. If dropped on aclass thiswill add an event
handler or event property using the dragged event as atemplate or alternatively add the
event type to the unit. On dropping a popup menu offers the available options. Applies
to both tree and list mode.
* Dropping entitieson aclassis similar to dropping on a class in the classes view (tree
mode only).
* Event types contained by units do not accept dropped entities.

usermanual 620.doc May 7" 2002 99

ModelMaker version 6.20

Method Implementation view

Method Local Code Explorer

Internal

* Rearrangelocal vars
* Rearrangelocal procedures

Source
Acts asasource for local vars. Dragging the vars root node will drag all vars at once. Press
shift to move rather than copy / convert alocal var.
» Dragaloca var (or theroot “Vars’ node) to aclassin the classes view to convert it to
afield.
» Dragging alLocal var to aclassin the units view (tree mode) is similar as dragging it
to aclassin the classes view.
» Dragaloca var to the member s view to copy it to a method or add anew field in the
class.
» Dragaloca var to acode editor to insert its name as text.

Acts asasource for (local) procedures. Press shift to move rather than copy/convert a
procedure
» Dragalocal procedure to aclassin the classes view. The procedure will be converted
to a method.
» Dragging alocal procedureto aclassin the unitsview (tree mode) issimilar as
dragging it to aclassin the classes view.
» Drag aprocedure to the member s view to copy it to a method or add a new method.
» Dragaprocedure to acode editor to insert its name as text.

Target
Accepts members, local vars, procedures and event types:

» Drop afield or method from membersview. A field will be converted to alocal var,
amethod will be converted to alocal procedure. Thisis usually only relevant for
“pinned” methods as selecting a member to drag it will automatically change the
“current method”.

» Drop text from acode editor containing an “i dent + “:” + type” list to convert the
text to local vars.

Method Implementation Section list

Internal

* Rearrange sections (drag up/down)
* Indent / unindent sections (drag left/right)

usermanual 620.doc May 7" 2002 100

ModelMaker version 6.20

Source

Acts as a source for code sections.
» Drag asection to amethod in the member s view to copy it to that method. Press shift
to move rather than copy the section.

Target
Does not act as external drop target.

Method Implementation Code Editor

Internal

* Rearrangetext inside editor copy or move.

Source

Acts as a source for text.
» Dragatext to the members view to add a new member, using the text as name (plus
parameter list for methods).

o Dragatext containingan“i dent + “:” + type” listtotheLoca Code Explorer to
convert the text to vars.
Target

Accepts all dragged entities and inserts the associated name at the drop point.

Unit Code view

Unit Code Explorer

Internal
No internal drag and drop support.

Source
Actsasasource for (local) procedures. Press shift to move rather than copy/convert a
procedure.
» Dragaloca procedureto aclassin the classes view to convert it to a method.
» Dragging alocal procedureto aclassin the unitsview (tree mode) is similar as
dragging it to aclassin the classes view.

usermanual 620.doc May 7" 2002 101

ModelMaker version 6.20

» Drag aprocedure to the membersview. Thisis similar to dragging alocal procedure
from the Method Local Code Explorer.
» Drag aprocedure to acode editor to insert its name as text.

Target

Accepts methods and procedures.
» Drop amethod from the member s view to convert it to a module procedure.

Unit Code Editor

Similar to Method Implementation view Code Editor.

Event Library view

Internal

Does not support internal drag and drop.

Source

Acts as a source for event type definitions.
» Drag an event to the membersview or on aclass in the classes view. Thiswill add an
event handler or event property.
» Dragan event to the unitsview. If dropped on a unit, thiswill add the event type
definition to the unit. If dropped on aclassin the units view (tree mode) thisis similar
as dropping it on aclassin the classes view.

Target

Accepts methods.
* Drop amethod from the member s view. For each dropped method an event type will
be created that takes the method’ s signature (name, parameter list, result type etc) asa
template.

Diagrams view

Internal (tree mode only)

* In*“sort hierachical” mode, diagrams can be rearranged. Pressing Shift will change
diagram hierarchy relations. Other modes. no internal drag drop support.

usermanual 620.doc May 7" 2002 102

ModelMaker version 6.20

Source

Does not act as external drag source.

Target

Does not act as external drop target.

Diagram Editor

Internal

The selected editor tool controls the extensive internal drag drop support.

Source

Does not act as external drag source.

Target

Accepts classes and units, depending on the opened diagram.

» A classorinterface dragged from the classes view or units view will be visualized as
class or interface symbol, object flow symbol or role symbol. For class diagrams
relations with other classes are automatically visualized. If three or more classes are
dropped on a class diagram the “drop visualization wizard” will be invoked. This
wizard allows selecting the visualization scheme and relations to visualize.

» A unit dragged from the units view will be visualized as package symbol. Relations
with classes (contained) and other packages (uses and used dependencies) are
automatically visualized.

usermanual 620.doc May 7" 2002 103

ModelMaker version 6.20

Customizing ModelMaker

Here are some links to customizing ModelMaker to your wishes. Most of them you'll find in
the Environment and Project options dialogs. For details refer to the GUI reference, here are
just afew:

» To adjust the appearance of ModelMaker use the Environment options

» Toadjust prefixes of property access methods and fields: use Project Options|Coding style.
» To adjust the layout of the generated source code, use Project Options|Code Generation.

» To adjust the way ModelMaker imports source code: use Project options|Code Import tab.

» To adjust the in-source documentation generation and import settings, check the
corresponding tabs in the project options.

» Todefine abasic diagram visual style: Project optionsg|Diagram Style
» Todefine abasic symbol style (displayed members etc): Project options|Diagram Style
 For defining the code editor’ s shortcut keys, Use Environment Options|Shortcuts.

Here are some other links to customization:

» Add Version Control capabilities by using aplug in expert. (Check ModelMaker web-site
for ready available third party VCS Experts)

» To adjust the unit template used for new units, refer to Adjusting the unit template,
page 50.

» Create Parameterizable Code Templates for pattern like groups of members that appear in
multiple classes and models.

 For creating model templates, refer to Model templates page 41.
» Define and use your own macros for use in code generation or in the code editor.

» Most views have special display settings that are controlled in their popup menu: In
Members view you modify toolbar layout and sorting. In the Classes view you adjust
navigation order and history etc.

» Usethe MM OpenToolsApi to create you own experts.

usermanual 620.doc May 7" 2002 104

ModelMaker version 6.20

Integration with the Delphi IDE

ModelMaker is a stand-alone application and you don’t need Delphi to run it. Integrating

ModelMaker with Delphi’s IDE will enable some additional features.

* ModelMaker will automatically update Delphi’ s code editor whenever asourcefileis (re)
generated.

* You'll be able to access Delphi’ s on-line context sensitive help from within ModelM aker.

» Cadll Delphi’s‘Syntax Check’ “Compile” or “Build” commands from within Model M aker.

» Open source files and locate the member selected in ModelMaker in the Delphi IDE from
within Model M aker

Inside the Delphi IDE integration experts add several features that enable smooth integration:

» Synchronize ModelMaker with the IDE: refresh import a unit and locate the current
member.

* Add (multiple) files to a ModelMaker project

Although it is possible to integrate Model M aker with all versions of Delphi and run multiple
instances or versions of Delphi at the same time, it is recommended that only one is running
when working with ModelMaker, as integration is a based on a one-to-one connection.

For the same reason we suggest that you do not run multiple instances of ModelMaker. In the
environment options General tab you'll find an option that will ensure this.

Integration with Delphi 3 and higher

ModelMaker isintegrated with Delphi 3 and higher by use of an integration expert. These
experts are automatically installed by the setup program for the IDE versions you have
installed on your PC. Y ou can manually (un)install an IDE expert later using the Model M aker
environment options “Delphi IDE” tab.

The experts add a Model Maker main menu item to the IDE’s menu bar. The ModelMaker

menu contains;

* Run ModelMaker, (if not already running)

» Jump to ModelMaker (Ctl+F11 in D3, Ctrl+Shift+M in D4 or higher) - thiswill activate
ModelMaker and select the unit, class and member corresponding to the IDE’ s topmost
editor’s position. Note that inside MM the inverse command 'Locate in Delphi’ - main
menu “Delphi” or main tool bar ‘Locate in Delphi’ - which locates the member selected in
ModelMaker in the Delphi editor. ModelMaker’s * Locate in Delphi’ command also has
shortcut Ctl+F11.

» Addto Model, adds the topmost unit in the Delphi editor to the current MM model.

* Add filesto model, lets you select which filesto import in amodel. In D4 and higher you
may select files contained in a project or files opened in the editor.

» Refreshin Model, will re-import the topmost unit just like add to model, but only if the
unit is aready in the model. If the unit is not in the model, the command is silently ignored.

usermanual 620.doc May 7" 2002 105

ModelMaker version 6.20

» Convert to Model, creates a new model and adds the topmost unit to this new model.
» Convert project to Model, which creates a new model and adds al filesin the current
Delphi project to the new model.

Note that the file in the IDE editor will be SAVED prior to performing the actual command.
Therefore these commands won't work on read-only (project) files.

Delphi 4 and higher

The Delphi 4 and higher integration experts have additional commandsin the IDE’s

ModelMaker menu.

» Open Model, opens the model associated with the top most file in the IDE editor. Check
the web-site 'Tips page for details.

» ‘Enable Auto refresh’ and ‘Lock Auto refresh on Run’. These control the Auto refresh
feature that is described in detail in chapter Auto Refresh Import, page 65.

» Version Control. This menu item is enabled if you integrated a Version Control systemin
ModelMaker using a (third party) VCS expert. The available commands depend on this
V CS-expert. They usually include at a minimum Check-in and Checkout. Check the
ModelMaker Tools web site for available VCS-experts.

Some additional tools and utilities

» Unit Dependency analyzer. This is the same tool as available inside ModelMaker. For a
description, check the ModelMaker on-line help by pressing F1 in this tool in Model M aker.

* Resource string wizard. Thiswill scan aunit for hard coded strings and help in converting
them to a section of resource strings or string constants.

» String to Resource string, similar to the Resource string wizard, but only handles the
current string token in the editor.

 Shortcut wizard: checks the active form for duplicate keyboard hot keys in control captions
like“&Apply this” and “ & Surprise me” and suggests alternatives in case of conflicts.

In Delphi 4 and higher you can also add commands to the IDE toolbars. In Delphi's toolbar
'‘Customize..." dialog, you'll find these commands in the ModelMaker category - right click on
Delphi'stoolbar, go to ‘al commands'.

Delphi 4 and higher syntax highlighting scheme

In ModelMaker you can specify the syntax-highlighting scheme to mimic your settings in the
Delphi IDE. Unlike Delphi 1/2/3, Delphi 4 and higher do not define the default color scheme
in the registry unless you manually (re-)defineit. If the syntax highlighting schemein
ModelMaker is set to "Delphi 4" or higher, it might display strange settings: anything could
happen such as underlined, blue colored normal text.

In order to solve this problem, in Delphi 4+ go to environment options and on the Colors tab

define all fore-and background colors you want by explicitly selecting them rather than relying
on the 'use default' check boxes. The same applies for the font styles: you must explicitly

usermanual 620.doc May 7" 2002 106

ModelMaker version 6.20

select them. After applying these settings and restarting ModelMaker, you should have the
highlighting scheme you selected. The following entries should be explicitly defined:
"Comment”," Identifier”, "Number”, "Plain text", "Reserved word", "String", " Symbol",
"White space" and "Marked block".

Uninstalling IDE integration experts

If after uninstalling ModelMaker you still get a message when starting Delphi 3 or higher
saying: can't find ..\..MMEXPT.DLL or similar, you must manually uninstall the
ModelMaker integration experts.

To do this:

Either use the ModelMaker environment options ‘ Delphi IDE’ tab to uncheck the IDE version
you want uninstall, or

Run RegEdit.exe from the "Start" menu and go to

HKEY _CURRENT_USER\Software\Borland\Del phi\3.0\Experts

There should be an entry called ModelMakerExpert, to uninstall the expert you must manually
remove that entry. Higher versions of Delphi have asimilar registry entry

Integration with Delphi 1 and 2

Integration with Delphi 1 and 2 does not offer the same functions as the Delphi 3 and higher
integration experts. Only basic synchronization functions are supported. And the installer
cannot activate the integration - you must install the integration yourself. Integration consists
of two aspects:
1. Installing the unit MMINTF.PAS (in directory [installdir]\mmintf in your component
library. Installing this unit will enable Model M aker to:
» Automatically update Delphi's code editor whenever a source file is (re)generated.
» Access Delphi's on-line context sensitive help.
» Cdl Delphi's 'Syntax Check' command from within ModelMaker.
2. Installing the utility UNITIMP.EXE in your Delphi Tools menu. Thiswill enable you to
jump from Delphi’ s code editor to the corresponding code in ModelMaker and perform
some basic file related commands.

Installing the integration unit in Delphi 1 /2

1. Start Delphi 1 /2
2. Add the unit Model Maker\ 6. O\ Mni nt f\ MM nt f . pas to your component library, just like
you would do with any other component (refer to your Delphi user manual).
In Delphi 1: Select menu ‘ Optiong|install Components’,
In Delphi 2: Select menu * Component|install’,
select Add and browse to find the unit MM NTF. PAS in folder Model Maker\ 6. 0\ MM nt f\ .

usermanual 620.doc May 7" 2002 107

ModelMaker version 6.20

3. Don't be surprised that you won't see any changes in your VCL component pal ette after
Delphi recompiled the VCL: there is no new component installed, just an integration link,
which is not a component.

Installing UNITIMP.EXE as a DELPHI 1 /2 IDE tool

Installation of UNITIMP is basically the same for Delphi 1 and 2. To install the
UNITIMP.EXE utility, (refer to your Delphi user manual)

1. Start Delphi

2. Select menu ‘Optiong[Tools...”. (Delphil.0)
Select ‘Add’ and add a new toal, title it * Jump &to MM’. (Delphi 1.0)
Select ‘Add’ and add a new toal, title it *Jump to &MM’. (Delphi 2.0

3. Sdect ‘Browse' to locate the UNITIMP.EXE filein the Model Maker\ 6. 0\ BI N folder.

4. Select ‘Macros' to pass the parameters ‘ $ROW $EDNAMVE', the space is required; the single
quotes (‘') should not be entered.

5. Select OK and Closeto add this utility.

Now you'll be able to jump from Delphi’ s code editor to ModelMaker (which should be
running) by pressing Al t +T+T (D1) or Al t +T+M (D2)

UnitJump can be installed more than once as atool to perform different integration tasks, each

time passing different parameters.

1. For automatic refreshing of the top most filein the IDE editor, pass parameters -1
$SEDNAME!, refer to “ Refresh Import” for details. Y ou could enter ‘ & Refresh Import” as
title.

2. To add the topmost in the Delphi editor to the current model, use parameters'-3
$EDNAME'.

3. To create anew model and add the topmost in the Delphi editor to this model, use
parameters -2 $EDNAME'. Y ou could enter ‘& Convert to Model’ astitle.

Y es: you have identical “tools’ UNI TIMP now; the only difference is the parameters passed.

usermanual 620.doc May 7" 2002 108

ModelMaker version 6.20

MMToolsApi primer

This chapter is aintroduction on COM interfaces and using the MM ToolsApi to create your
own experts to ModelMaker’s functionality. Y ou should also check the MM ExptDemo.dpr
that demonstrates most aspects of an expert. If you have not noticed yet: in the
.\ModelMaker\demos directory there’sa model MM ToolsApi.mpb that contains two diagrams
showing relations of the API. Do not use this model to re-create the MM Tool sApi.pas, this
filewill be changed in future versions.

Interfaces basics

Interfaces are like classes in the way that once you've got a pointer to an interface, you can call
methods and read/write properties.

Assume for example you have an interface pointer CodeModel: IMM CodeModel. From the
MMToolsApi unit you can see that this interface supports the ClassCount and Classeg[idx]
properties. Also you can see that Classeg[idx] returns IMMClass interface pointers. Y ou could
now for example iterate the code model for classes and list their namesin alist box

for I := 0 to CodeMddel . d assCount do
Li st Box. I t ens. Add(CodeMbdel . Cl asses[1] . Nane) ;

Expert DLL basics

The big thing is now: how do you get the first interface pointer CodeM odel, because once
you've got hold of that, everything is easy. In the MMToolsApi there is a central access point
called MMTool Services: IMMTool Services that is declared as a global var in unit
MMToolsApi. Thisinterface var isinitialy nil but gives accessto all major aspects of the
MM engine such as the CodeModel in the above example. ModelMaker Experts are dll’'s
which are loaded dynamically (all experts must be placed in directory ..\[installdir]\experts.)
After loading the library MM looks for a procedure called MMExpertEntryProc, as defined in
MMToolsApi.pas and calls this procedure passing the interface pointer of the actual

MM T ool Services object. Y ou should store this interface pointer asit provides your central
access the tools API. Y ou can access this interface and read the CodeM odel: IMM CodeM odel
interface as shown in this example

procedure EntryProc(const Srv: | MJlool sServices); stdcall;

begi n
/'l here you get passed the interface pointer, store it to use later.
MMTool Servi ces : = Srv;

end;

usermanual 620.doc May 7" 2002 109

ModelMaker version 6.20

The entry procedure should be exported named SMM ExpertEntryProc (MM ToolsApi.pas).
There's also an exit procedure, which is called upon termination of ModelMaker. In this
procedure we use the previously stored MM Tool Services as central access point:

for | := 0 to MMIool Servi ces. CodeModel . O assCount do
Li st Box. | t ens. Add(CodeMbdel . O asses[1] . Nane) ;

MMToolsApi version control

The unit MMToolsApi is continuously under construction and version control is governed by
an ExpertVersionProc. Thisisthefirst procedure ModelMaker attemptsto call when loading
the expert. In your expert you must export this function and return the MM ToolsApiVersion
constant as defined in unit MM ToolsApi.pas. ModelMaker will regject any expert not
exporting this procedure or experts that do not match the version of the MM ToolsApi with
which ModelMaker was created.

function ExpertVersion: Longlnt; stdcall;
begin

Result : = MMIool sApi Ver si on;
end;

exports
Expert Ver si on nane SMVExpert Ver si onPr oc;

Interfaces and memory management

Memory management for interfaced classesis controlled by reference counting which is
automatic done for you by the compiler. Even assigning an interface to alocal var will
increase the reference count automatically, as will assigning nil to the var or going out of
scope (exiting a procedure) will decrease the reference-count again. This means you don't
have to worry about freeing classes after creating them. In general al interfaces passed on
from ModelMaker to you are objects existing in MM.exe space. All interface pointers you
pass on to ModelMaker are objects you create (such as an expert) and ModelMaker will only
have access through the interface pointer. Since these objects are reference counted the objects
will disappear after MM and the expert both drop al referencesto it.

For example if you retrieve an IMMClass interface pointer from ModelMaker and useitin
your expert code, the actual interface object will exist aslong as you keep areferenceto it for
example by assigning to aglobal var. The actual class the IMMClass refers to, may be gonein
ModelMaker due to user actions (del ete the class, open a new model) but the interface object
remains live until the expert drops all references. To check whether an interface is actually
connected to areal class you could /should check the Valid property. If Valid is False, the
actual class object does not exist anymore, just the interface object. The interface object will
return default values in al functions (such as GetName =").

usermanual 620.doc May 7" 2002 110

ModelMaker version 6.20

Adding an expert and menu items

After reading the COM interface basics, you might want to create something useful which
initiates on user action. The MM ToolsApi provides the IMMExpert mechanism for this. You
can create an object implementing IMMExpert and register it in ModelM aker, again using the
MMTool Services. The fun about IMMExpert isthat it allows you to insert menu-itemsin the
ModelMaker main menu bar Tools menu and some predefined pop-up menus. Each expert
should support properties Verbs, VerbCount and MenuPositions. VerbCount defines the
number of menu-items you want inserted and Verbs are the actual menu item Captions.
MenuPositiong[..] defines where to which menu an item should be added. If the user clicks
one of these menu-items, the Execute(ldx) method of the expert will be called, where Idx is
[0..VerbCount -1]

There are some more methods supported by IMMExpert, but these are the basics. In the

MM ExptDemo.dpr you'll find an object implementing IlUnknown and IMMExpert. If you go
through the associated code you'll seethat it has only one Verb and does only one thing in
Execute. This demo expert could serve very well as abase for all other experts.

How do you inform ModelMaker that you want such an expert to be installed? Well create it
(instantiate the class) and register the interface pointer with ModelMaker using

MM Tool Services. AddExpert(..). Reference counting will again take care of memory
management. On shutdown you should remove your expert again using the index that was
passed by AddExpert.

var
Expt | ndex: |nteger = -1,

procedure MVExpertEntryProc(Srv: | MVIool Services); stdcall;

begin

MMTool Servi ces : = Srv;

Expt | ndex : = MMTool Servi ces. AddExpert (TM/Expert. Create);
end;

procedure MVExpertExitProc; stdcall;
begi n

if Exptlndex <> - 1 then MMTIool Services. RenbveExpert (Expt | ndex) ;
end;

Suppose you want to create an expert that does two reports "Simple" and "Extended”, you
should create an object that returns VerbCount = 2 and Verb[0] = 'Simple’, Verb[1] =
'Extended’. To add the items to the Tools menu, return mpToolsMenu in GetM enuPositions.
Then in Execute(ldx) you check whether Idx = 0 or 1 to either create the Simple (0) or
extended (1) report. The actual report creation could be something like:

» Createaform containing alist box

e Uuse
for | := 0 to MMIool Services. CodeMdel . d assCount do
Li st Box. | t ems. Add(CodeModel . O asses[|]. Nane) ;

to fill thelist box, and
e Cadll the Form's ShowModa method to show the current class list

usermanual 620.doc May 7" 2002 111

ModelMaker version 6.20

Accessing Diagrams through the API

The following picture explains how to access the Diagrams and their contents through the
MM ToolsAPI.

= IMMDiagram
= IMMDiagramManager Dizarams 5 operations
= attributes Index ——={CreateMataFie: HENHMETAFILE;
Diagrarns[..]: IMMDiagrarn; Explore: IUnknown;
GetContentsasyML: wWideString,
= IMMDi
iagramPage
= attributes Explore
Extent: TPaint;
PageFormat; TPageFormat; Page =l) I
PageCrientation: TPageCrientation; IMMDiagramExplorer
= IMMShape
= attributes Shapes = Vi
Documentation: wideString; f<==—— Index | IMMShapeExplorer
MNarne: WideString; | I | | I
Taggedvalues[..]: wideString; MCes MCIEx
Py Symbols Associations
= IMMSymbol

=l attributes
Bounds: TRect;

TargetShape -)
Sourceshape 9 . Location; TPoint;

IMMAssociation

The IMMDiagramManager property of the MM ToolsServicesisthe entry point that gives
access to al diagrams. The IMMDiagram interfaces are life pointers to the actual diagrams as
displayed in the diagram list view. To get at the contents of a diagram, use the
IMMDiagram.Explore method. Thiswill create a Diagram Explorer similar to the diagram
editor. The interface this method returns can be cast as an IMMDiagramExplorer. The
definition of IMM DiagramExplorer and the symbols can be found in MM DiagramAPI.pas.

Note that each time you call Explore, as new explorer is created. And that the contents of two
explorers are not linked. If you create two explorers and modify adiagram in explorer_1, in
explorer_2 you won't see the change made in explorer_1.

An explorer gives access to a diagram’s symbols and associations. The Shapes property
simply concatenates the symbols and associations properties. An IMM Shape gives access to
basic shape behavior: name, documentation and hyperlinks. An IMMymbol gives acsess to
symbol specific properties like Bounds and Location (which associations do not have).

IMM Asssociation defines the association specific properties like SourceShape and
TargetShape.

usermanual 620.doc May 7" 2002 112

ModelMaker version 6.20

There are many ways to manipulate a diagram, the ModelMaker Tools demo expert shows a
few examples like: create a sequence diagram and create an image containing a single class.

Accessing Experts through scripting

ModelMaker 6 is a self-registering COM server that allows access to plug-in experts that
support IDispatch. The ModelMaker type library can be found in the [installdir]\experts
directory. It contains interface |App that contains a single method: GetExpert.

I App = interface(lD spatch)

['{DO77CEC1- 83F0- 11D5- A1D2- 00CODFE529B9} ']

function GetExpert(const ExpertlD: WdeString): |Di spatch; safecall;
end;

The parameter ExpertID is used to locate the expert based on the value returned by
IMM Expert.ExpertID.

If your expert supports IDispatch and inherits from TAutoObject, you can accessit for
examplein ajavascript like this (assuming your expert has a method named TestM ethod
which takes a single WideString parameter).

/1 Java scri pt

var mm = new Acti veXbj ect (" Model Maker . App") ;

var api = nm Get Expert (" Mbdel Maker Tool s. Scri pti ngDenmoExpert_10");
api . Test Met hod("Hel l o World");

The above example will start ModelMaker or locate the active instance. Then locate the test
expert and call it's method named “ TestMethod”.

This mechanism can be used to expose specific interfaces to scripting. For example, assume
you have areporter plug-in that supports this interface:

type

| MyReporter = interface(lDi spatch)
procedure CreateReport(const Mdel Name, ReportNane: WdeString); safecall;
end;

| MyReporterDi sp = dispinterface

[{F9BA1301- 84EB- 11D5- A1D2- 00CODFE529B9} ' |

procedure CreateReport(const Mdel Name, ReportName: WdeString); dispid 1;
end;

Y ou could then call this expert from a script to load a model and create a report.

To learn more about disp interfaces and IDispatch, please check the Borland Delphi
developers guide.

usermanual 620.doc May 7" 2002 113

