
Condor Version 6.1.17 Manual

Condor Team, University of Wisconsin–Madison

February 12, 2001

CONTENTS

1 Overview 1

1.1 What is High-Throughput Computing (HTC) ? 1

1.2 HTC and Distributed Ownership . 1

1.3 What is Condor ? . 2

1.3.1 A Hunter of Available Workstations . 2

1.3.2 Effective Resource Management . 3

1.4 Distinguishing Features . 3

1.5 Current Limitations . 4

1.6 Availability . 5

1.7 Contact Information . 6

2 Users’ Manual 8

2.1 Welcome to Condor . 8

2.2 What does Condor do? . 8

2.3 Condor Matchmaking with ClassAds . 9

2.3.1 Inspecting Machine ClassAds with condor status 10

2.4 Road-map for running jobs with Condor . 11

2.4.1 Choosing a Condor Universe . 12

2.5 Submitting a Job to Condor . 15

i

CONTENTS ii

2.5.1 Sample submit description files . 16

2.5.2 About Requirements and Rank . 18

2.5.3 Heterogeneous Submit: Execution on Differing Architectures 23

2.5.4 Vanilla Universe Example for Execution on Differing Architectures 23

2.5.5 Standard Universe Example for Execution on Differing Architectures . . . 25

2.6 Managing a Condor Job . 26

2.6.1 Checking on the progress of jobs . 27

2.6.2 Removing a job from the queue . 29

2.6.3 Changing the priority of jobs . 29

2.6.4 Why does the job not run? . 30

2.6.5 Job Completion . 31

2.7 Priorities in Condor . 32

2.7.1 Job Priority . 33

2.7.2 User priority . 33

2.8 Parallel Applications in Condor: Condor-PVM 34

2.8.1 Effective Usage: the Master-Worker Paradigm 34

2.8.2 Binary Compatibility and Runtime Differences 35

2.8.3 Sample PVM submit file . 37

2.9 Running MPICH jobs in Condor . 39

2.9.1 Caveats . 39

2.9.2 Getting the Binaries . 40

2.9.3 Configuring Condor . 40

2.9.4 Managing Dedicated Machines . 41

2.9.5 Submitting to Condor . 42

2.10 Extending your Condor pool with Glidein . 44

2.10.1 condor glidein Requirements . 45

2.10.2 What condor glidein Does . 45

2.11 Inter-job Dependencies: DAGMan Meta-Scheduler 46

Condor Version 6.1.17 Manual

CONTENTS iii

2.11.1 Input File describing the DAG . 47

2.11.2 Condor Submit Description File . 50

2.11.3 Job Submission . 50

2.11.4 Job Monitoring . 51

2.11.5 Job Failure and Job Removal . 51

2.11.6 Job Recovery: The Rescue DAG . 52

2.12 About How Condor Jobs Vacate Machines . 53

2.13 Special Environment Considerations . 53

2.13.1 AFS . 53

2.13.2 NFS Automounter . 54

2.13.3 Using Globus software with Condor . 54

2.13.4 Condor Daemons That Do Not Run as root 55

2.14 Potential Problems . 56

2.14.1 Renaming of argv[0] . 56

3 Administrators’ Manual 57

3.1 Introduction . 57

3.1.1 The Different Roles a Machine Can Play 58

3.1.2 The Condor Daemons . 59

3.2 Installation of Condor . 61

3.2.1 Obtaining Condor . 61

3.2.2 Condor Distribution Contents . 62

3.2.3 Preparation . 62

3.2.4 Installation Procedure . 68

3.2.5 Condor is installed... now what? . 72

3.2.6 Starting up the Condor daemons . 73

3.2.7 The Condor daemons are running... now what? 74

3.3 Configuring Condor . 75

Condor Version 6.1.17 Manual

CONTENTS iv

3.3.1 Introduction to Configuration Files . 75

3.3.2 Condor-wide Configuration File Entries 78

3.3.3 Daemon Logging Config File Entries . 81

3.3.4 DaemonCore Config File Entries . 83

3.3.5 Shared File System Configuration File Macros 85

3.3.6 Checkpoint Server Configuration File Macros 88

3.3.7 condor master Configuration File Macros 89

3.3.8 condor startd Configuration File Macros 92

3.3.9 condor schedd Configuration File Entries 95

3.3.10 condor shadow Configuration File Entries 97

3.3.11 condor shadow.pvm Configuration File Entries 98

3.3.12 condor starter Configuration File Entries 98

3.3.13 condor submit Configuration File Entries 99

3.3.14 condor preen Configutation File Entries 100

3.3.15 condor collector Configuration File Entries 101

3.3.16 condor negotiator Configuration File Entries 102

3.3.17 condor eventd Configuration File Entries 103

3.4 Installing Contrib Modules . 104

3.4.1 Installing CondorView Contrib Modules 104

3.4.2 Installing the CondorView Server Module 104

3.4.3 Installing the CondorView Client Contrib Module 107

3.4.4 Installing a Checkpoint Server . 110

3.4.5 Installing PVM Support in Condor . 115

3.4.6 Installing MPI Support in Condor . 115

3.4.7 Condor Event Daemon . 115

3.5 User Priorities in the Condor System . 117

3.5.1 Real User Priority (RUP) . 118

3.5.2 Effective User Priority (EUP) . 118

Condor Version 6.1.17 Manual

CONTENTS v

3.5.3 Priorities and Preemption . 119

3.5.4 Priority Calculation . 119

3.6 Configuring The Startd Policy . 120

3.6.1 Startd ClassAd Attributes . 120

3.6.2 Job ClassAd Attributes . 123

3.6.3 The START expression . 124

3.6.4 The RANK expression . 125

3.6.5 Machine States . 126

3.6.6 Machine Activities . 127

3.6.7 State and Activity Transitions . 130

3.6.8 State/Activity Transition Expression Summary 135

3.6.9 Example Policy Settings . 136

3.6.10 Differences from the Version 6.0 Policy Settings 142

3.7 DaemonCore . 142

3.7.1 DaemonCore and UNIX signals . 143

3.7.2 DaemonCore and Command-line Arguments 143

3.8 Setting Up IP/Host-Based Security in Condor . 145

3.8.1 How does it work? . 145

3.8.2 Security Access Levels . 145

3.8.3 Configuring your Pool . 146

3.8.4 Access Levels each Daemons Uses . 148

3.8.5 Access Level Examples . 149

3.9 Using X.509 Certificates for Authentication . 150

3.9.1 Introduction to X.509 Authentication . 150

3.9.2 Using X.509 Authentication in Condor 151

3.10 Managing your Condor Pool . 153

3.10.1 Shutting Down and Restarting your Condor Pool 153

3.10.2 Reconfiguring Your Condor Pool . 156

Condor Version 6.1.17 Manual

CONTENTS vi

3.11 Setting up Condor for Special Environments . 156

3.11.1 Using Condor with AFS . 156

3.11.2 Configuring Condor for Multiple Platforms 158

3.11.3 Full Installation of condor compile . 160

3.11.4 Installing the condor kbdd . 162

3.11.5 Installing a Checkpoint Server . 163

3.11.6 Flocking: Configuring a Schedd to Submit to Multiple Pools 168

3.11.7 Configuring The Startd for SMP Machines 169

3.11.8 Configuring Condor for Machines With Multiple Network Interfaces . . . 174

3.12 Security In Condor . 174

3.12.1 Running Condor as Non-Root . 175

3.12.2 UIDs in Condor . 176

3.12.3 Root Config Files . 176

4 Miscellaneous Concepts 177

4.1 An Introduction to Condor’s ClassAd Mechanism 177

4.1.1 Syntax . 178

4.1.2 Evaluation Semantics . 179

4.1.3 ClassAds in the Condor System . 181

4.2 An Introduction to Condor’s Checkpointing Mechanism 183

4.2.1 Standalone Checkpointing . 185

4.2.2 Checkpoint Library Interface . 185

4.3 The Condor Perl Module . 186

4.3.1 Subroutines . 186

4.3.2 An Example . 188

5 Condor for Microsoft Windows NT 4.0 190

5.1 Introduction to Condor NT Preview . 190

5.2 Release Notes for Condor NT Preview 6.1.8 . 191

Condor Version 6.1.17 Manual

CONTENTS vii

5.2.1 Condor File Transfer Mechanism . 192

5.2.2 Some details on how Condor NT starts/stops a job 194

5.2.3 Security considerations in Condor NT Preview 196

5.2.4 Interoperability between Condor for Unix and Condor NT 197

5.2.5 Some differences between Condor for Unix -vs- Condor NT 198

5.3 Installation of Condor on Windows NT . 198

5.3.1 Installation Requirements . 199

5.3.2 Preparing to Install Condor under Windows NT 199

5.3.3 Installation Procedure using the included Setup Program 200

5.3.4 Manual Installation Condor on Windows NT 203

5.3.5 Condor is installed... now what? . 204

5.3.6 Condor is running... now what? . 205

6 Frequently Asked Questions (FAQ) 206

6.1 Obtaining & Installing Condor . 206

6.1.1 Where can I download Condor? . 206

6.1.2 When I click to download Condor, it sends me back to the downloads page! 206

6.1.3 What platforms do you support? . 206

6.1.4 Do you distribute source code? . 207

6.1.5 What is “Personal Condor”? . 207

6.2 Setting up Condor . 207

6.2.1 How do I get more than one job to run on my SMP machine? 207

6.2.2 How do I set up my machines so that only certain users’s jobs will run on
them? . 207

6.2.3 How do I configure Condor to run my jobs only on machines that have the
right packages installed? . 208

6.3 Running Condor Jobs . 208

6.3.1 I’m at the University of Wisconsin-Madison Computer Science Dept., and I
am having problems! . 208

Condor Version 6.1.17 Manual

CONTENTS viii

6.3.2 I’m getting a lot of email from Condor. Can I just delete it all? 208

6.3.3 Why will my vanilla jobs only run on the machine where I submitted them
from? . 209

6.3.4 My job starts but exits right away with signal 9. 209

6.3.5 Why aren’t any or all of my jobs running? 209

6.3.6 Can I submit my standard universe SPARC Solaris 2.6 jobs and have them
run on a SPARC Solaris 2.7 machine? . 210

6.4 Condor on Windows NT / Windows 2000 . 210

6.4.1 Will Condor work on a network of mixed Unix and NT machines? 210

6.4.2 When I run condor status I get a communication error, or the Condor dae-
mon log files report a failure to bind. 211

6.4.3 My job starts but exits right away with status 128. 211

6.5 Troubleshooting . 211

6.5.1 What happens if the central manager crashes? 211

6.6 Other questions . 211

6.6.1 Is Condor Y2K-compliant? . 211

6.6.2 Is there a Condor mailing-list? . 212

6.6.3 Do you support Globus? . 212

6.6.4 My question isn’t in the FAQ! . 212

7 Condor Version History 213

7.1 Introduction to Condor Versions . 213

7.1.1 Condor Version Number Scheme . 213

7.1.2 The Stable Release Series . 214

7.1.3 The Development Release Series . 214

7.2 Stable Release Series 6.2 . 214

7.3 Development Release Series 6.1 . 215

7.3.1 Version 6.1.17 . 215

7.3.2 Version 6.1.16 . 217

Condor Version 6.1.17 Manual

CONTENTS ix

7.3.3 Version 6.1.15 . 218

7.3.4 Version 6.1.14 . 220

7.3.5 Version 6.1.13 . 221

7.3.6 Version 6.1.12 . 225

7.3.7 Version 6.1.11 . 226

7.3.8 Version 6.1.10 . 228

7.3.9 Version 6.1.9 . 229

7.3.10 Version 6.1.8 . 231

7.3.11 Version 6.1.7 . 234

7.3.12 Version 6.1.6 . 234

7.3.13 Version 6.1.5 . 236

7.3.14 Version 6.1.4 . 238

7.3.15 Version 6.1.3 . 238

7.3.16 Version 6.1.2 . 240

7.3.17 Version 6.1.1 . 241

7.3.18 Version 6.1.0 . 241

7.4 Stable Release Series 6.0 . 242

7.4.1 Version 6.0.3 . 242

7.4.2 Version 6.0.2 . 243

7.4.3 Version 6.0.1 . 243

7.4.4 Version 6.0 pl4 . 244

7.4.5 Version 6.0 pl3 . 245

7.4.6 Version 6.0 pl2 . 246

7.4.7 Version 6.0 pl1 . 247

7.4.8 Version 6.0 pl0 . 247

8 Command Reference Manual (man pages) 248

condor checkpoint . 249

Condor Version 6.1.17 Manual

CONTENTS x

condor compile . 251

condor config val . 254

condor findhost . 257

condor history . 259

condor hold . 261

condor master . 263

condor master off . 264

condor off . 266

condor on . 268

condor preen . 270

condor prio . 272

condor q . 274

condor qedit . 279

condor reconfig . 281

condor reconfig schedd . 283

condor release . 285

condor reschedule . 287

condor restart . 289

condor rm . 291

condor run . 293

condor stats . 296

condor status . 300

condor submit . 305

condor submit dag . 315

condor userlog . 317

condor userprio . 320

condor vacate . 323

Condor Version 6.1.17 Manual

CONTENTS xi

Copyright and Disclaimer

Copyright c© 1990-2000 Condor Team, Computer Sciences Department, University of Wisconsin-Madison,
Madison, WI. All Rights Reserved. No use of the Condor Software Program Object Code (Condor) is autho-
rized without the express consent of the Condor Team. For more information contact: Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685, (608) 262-
0856 or miron@cs.wisc.edu.

Some distributions of Condor include a compiled, unmodified version of the GNU C library. The complete
source code to GNU glibc can be found at http://www.gnu.org/software/libc/.

Allowed Uses: User may use Condor only in accordance with the appropriate Usage License, which are
detailed below. Academic institutions should agree to the Academic Use License for Condor, while all others
should agree to the Internal Use License for Condor.

Use Restrictions: User may not and User may not permit others to (a) decipher, disassemble, decompile,
translate, reverse engineer or otherwise derive source code from Condor, (b) modify or prepare derivative works
of Condor, (c) copy Condor, except to make a single copy for archival purposes only, (d) rent or lease Condor,
(e) distribute Condor electronically, (f) use Condor in any manner that infringes the intellectual property or
rights of another party, or (g) transfer Condor or any copy thereof to another party.

Warranty Disclaimer: USER ACKNOWLEDGES AND AGREES THAT: (A) NEITHER THE Condor
TEAM NOR THE BOARD OF REGENTS OF THE UNIVERSITY OF WISCONSIN SYSTEM (REGENTS)
MAKE ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER ABOUT THE SUITABILITY OF
Condor FOR ANY PURPOSE; (B) Condor IS PROVIDED ON AN ”AS IS, WITH ALL DEFECTS” BASIS
WITHOUT EXPRESS OR IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT; (C) NEITHER THE
Condor TEAM NOR THE REGENTS SHALL BE LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND
ARISING OUT OF OR RESULTING FROM USER’S POSSESSION OR USE OF Condor (INCLUDING
DATA LOSS OR CORRUPTION), REGARDLESS OF WHETHER SUCH LIABILITY IS BASED IN TORT,
CONTRACT, OR OTHERWISE; AND (D) NEITHER THE Condor TEAM NOR THE REGENTS HAVE
AN OBLIGATION TO PROVIDE DEBUGGING, MAINTENANCE, SUPPORT, UPDATES, ENHANCE-
MENTS, OR MODIFICATIONS.

Damages Disclaimer: USER ACKNOWLEDGES AND AGREES THAT IN NO EVENT WILL THE
Condor TEAM OR THE REGENTS BE LIABLE TO USER FOR ANY SPECIAL, CONSEQUENTIAL, IN-
DIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR LOST DATA ARISING OUT
OF THE USE OR INABILITY TO USE Condor EVEN IF THE Condor TEAM OR THE REGENTS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Attribution Requirement: User agrees that any reports, publications, or other disclosure of results obtained
with Condor will attribute its use by an appropriate citation. The appropriate reference for Condor is ”The
Condor Software Program (Condor) was developed by the Condor Team at the Computer Sciences Department
of the University of Wisconsin-Madison. All rights, title, and interest in Condor are owned by the Condor
Team.”

Compliance with Applicable Laws: User agrees to abide by copyright law and all other applicable laws of
the United States including, but not limited to, export control laws. User acknowledges that Condor in source
code form remains a confidential trade secret of the Condor Team and/or its licensors and therefore User agrees
not to modify Condor or attempt to decipher, decompile, disassemble, translate, or reverse engineer Condor,
except to the extent applicable laws specifically prohibit such restriction.

Condor Version 6.1.17 Manual

CONTENTS xii

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention: Professor Miron Livny, 7367 Computer
Sciences, 1210 W. Dayton St., Madison, WI 53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

Condor Usage Licenses

Following are licenses for use of Condor Version 6. Academic institutions should agree to the Academic Use
License for Condor, while all others should agree to the Internal Use License for Condor.

Internal Use License for Condor

This is an Internal Use License for Condor Version 6. This License is to be signed by RECIPIENT (the
”RECIPIENT”), and returned to the Condor Team at the Computer Sciences Department of the University
of Wisconsin-Madison (the ”PROVIDER”). The Condor Version 6 software program was developed by the
Condor Team. All rights, title, and interest in Condor Version 6 are owned by the Condor Team. The subject
computer program, including source code, executables, and documentation shall be referred to as the ”SOFT-
WARE.”

RECIPIENT and PROVIDER agree as follows:

1. Definitions.

(a) The ”Object Code” of the SOFTWARE means the SOFTWARE assembled or compiled in mag-
netic or electronic binary form on software media, which are readable and usable by machines,
but not generally readable by humans without reverse assembly, reverse compiling, or reverse
engineering.

(b) The ”Source Code” of the SOFTWARE means the SOFTWARE written in programming lan-
guages, such as C and FORTRAN, including all comments and procedural code, such as job
control language statements, in a form intelligible to trained programmers and capable of being
translated into Object Code for operation on computer equipment through assembly or compiling,
and accompanied by documentation, including flow charts, schematics, statements of principles
of operations, and architecture standards, describing the data flows, data structures, and control
logic of the SOFTWARE in sufficient detail to enable a trained programmer through study of such
documentation to maintain and/or modify the SOFTWARE without undue experimentation.

(c) A ”Derivative Work” means a work that is based on one or more preexisting works, such as a
revision, enhancement, modification, translation, abridgment, condensation, expansion, or any
other form in which such preexisting works may be recast, transformed, or adapted, and that,
if prepared without authorization of the owner of the copyright in such preexisting work, would
constitute a copyright infringement. For purposes hereof, a Derivative Work shall also include
any compilation that incorporates such a preexisting work. Unless otherwise provided in this
License, all references to the SOFTWARE include any Derivative Works provided by PROVIDER
or authorized to be made by RECIPIENT hereunder.

(d) ”Support Materials” means documentation that describes the function and use of the SOFTWARE
in sufficient detail to permit use of the SOFTWARE.

Condor Version 6.1.17 Manual

CONTENTS xiii

2. Copying of SOFTWARE and Support Materials. PROVIDER grants RECIPIENT a non-exclusive, non-
transferable use license to copy and distribute internally the SOFTWARE and related Support Materials
in support of RECIPIENT’s use of the SOFTWARE. RECIPIENT agrees to include all copyright, trade-
mark, and other proprietary notices of PROVIDER in each copy of the SOFTWARE as they appear in
the version provided to RECIPIENT by PROVIDER. RECIPIENT agrees to maintain records of the
number of copies of the SOFTWARE that RECIPIENT makes, uses, or possesses.

3. Use of Object Code. PROVIDER grants RECIPIENT a royalty-free, non-exclusive, non-transferable
use license in and to the SOFTWARE, in Object Code form only, to:

(a) Install the SOFTWARE at RECIPIENT’s offices listed below;

(b) Use and execute the SOFTWARE for research or other internal purposes only;

(c) In support of RECIPIENT’s authorized use of the SOFTWARE, physically transfer the SOFT-
WARE from one (1) computer to another; store the SOFTWARE’s machine-readable instructions
or data on a temporary basis in main memory, extended memory, or expanded memory of such
computer system as necessary for such use; and transmit such instructions or data through com-
puters and associated devices.

4. Delivery. PROVIDER will deliver to RECIPIENT one (1) executable copy of the SOFTWARE in Object
Code form, one (1) full set of the related documentation, and one (1) set of Support Materials relating to
the SOFTWARE within fifteen (15) business days after the receipt of the signed License.

5. Back-up Copies. RECIPIENT may make up to two (2) copies of the SOFTWARE in Object Code form
for nonproductive backup purposes only.

6. Term of License. The term of this License shall be one (1) year from the date of this License. However,
PROVIDER may terminate RECIPIENT’s License without cause at any time. All copies of the SOFT-
WARE, or Derivative Works thereof, shall be destroyed by the RECIPIENT upon termination of this
License.

7. Proprietary Protection. PROVIDER shall have sole and exclusive ownership of all right, title, and in-
terest in and to the SOFTWARE and Support Materials, all copies thereof, and all modifications and
enhancements thereto (including ownership of all copyrights and other intellectual property rights per-
taining thereto). Any modifications or Derivative Works based on the SOFTWARE shall be considered
a part of the SOFTWARE and ownership thereof shall be retained by the PROVIDER and shall be made
available to the PROVIDER upon request. This License does not provide RECIPIENT with title or
ownership of the SOFTWARE, but only a right of internal use.

8. Limitations on Use, Etc. RECIPIENT may not use, copy, modify, or distribute the SOFTWARE (elec-
tronically or otherwise) or any copy, adaptation, transcription, or merged portion thereof, except as
expressly authorized in this License. RECIPIENT’s license may not be transferred, leased, assigned, or
sublicensed without PROVIDER’s prior express authorization.

9. Data. RECIPIENT acknowledges that data conversion is subject to the likelihood of human and machine
errors, omissions, delays, and losses, including inadvertent loss of data or damage to media, that may
give rise to loss or damage. PROVIDER shall not be liable for any such errors, omissions, delays, or
losses, whatsoever. RECIPIENT is also responsible for complying with all local, state, and federal laws
pertaining to the use and disclosure of any data.

10. Warranty Disclaimer. RECIPIENT ACKNOWLEDGES AND AGREES THAT: (A) NEITHER THE
CONDOR TEAM NOR THE BOARD OF REGENTS OF THE UNIVERSITY OF WISCONSIN SYS-
TEM (REGENTS) MAKE ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER ABOUT
THE SUITABILITY OF THE SOFTWARE FOR ANY PURPOSE; (B) THE SOFTWARE IS PRO-
VIDED ON AN ”AS IS, WITH ALL DEFECTS” BASIS WITHOUT EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE OR NONINFRINGEMENT; (C) NEITHER THE CONDOR TEAM NOR THE

Condor Version 6.1.17 Manual

CONTENTS xiv

REGENTS SHALL BE LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND ARISING OUT OF
OR RESULTING FROM RECIPIENT’S POSSESSION OR USE OF THE SOFTWARE (INCLUDING
DATA LOSS OR CORRUPTION), REGARDLESS OF WHETHER SUCH LIABILITY IS BASED
IN TORT, CONTRACT, OR OTHERWISE; AND (D) NEITHER THE CONDOR TEAM NOR THE
REGENTS HAVE AN OBLIGATION TO PROVIDE DEBUGGING, MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

11. Damages Disclaimer. RECIPIENT ACKNOWLEDGES AND AGREES THAT IN NO EVENT WILL
THE CONDOR TEAM OR THE REGENTS BE LIABLE TO RECIPIENT FOR ANY SPECIAL,
CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR
LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF
THE CONDOR TEAM OR THE REGENTS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

12. Compliance with Applicable Laws. RECIPIENT agrees to abide by copyright law and all other applica-
ble laws of the United States including, but not limited to, export control laws.

13. U.S. Government Rights Restrictions. Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention: Professor
Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685, (608) 262-0856
or miron@cs.wisc.edu.

14. Governing Law. This License shall be governed by and construed and enforced in accordance with the
laws of the State of Wisconsin as it applies to a contract made and performed in such state, except to the
extent such laws are in conflict with federal law.

15. Modifications and Waivers. This License may not be modified except by a writing signed by authorized
representatives of both parties. A waiver by either party of its rights hereunder shall not be binding
unless contained in a writing signed by an authorized representative of the party waiving its rights. The
nonenforcement or waiver of any provision on one (1) occasion shall not constitute a waiver of such
provision on any other occasions unless expressly so agreed in writing. It is agreed that no use of
trade or other regular practice or method of dealing between the parties hereto shall be used to modify,
interpret, supplement, or alter in any manner the terms of this License.

Academic Use License for Condor

This is an Academic Object Code Use License for Condor. This license is between you (the ”RECIPIENT”),
and the Condor Team at the Computer Sciences Department of the University of Wisconsin-Madison (the
”PROVIDER”). The Condor software program was developed by the Condor Team. All rights, title, and
interest in Condor are owned by the Condor Team. The subject computer program, including executables and
supporting documentation, shall be referred to as the ”SOFTWARE”.

RECIPIENT and PROVIDER agree as follows:

1. A non-exclusive, non-transferable academic use license is granted to the RECIPIENT to install and use
the SOFTWARE on any appropriate computer systems located at the RECIPIENT’s institution to which
the RECIPIENT has authorized access. Use of the SOFTWARE is restricted to the RECIPIENT and
collaborators at RECIPIENT’s institution who have agreed to accept the terms of this license.

2. The PROVIDER shall retain ownership of all materials (including magnetic tape, unless provided by
the RECIPIENT) and SOFTWARE delivered to the RECIPIENT. Any modifications or derivative works

Condor Version 6.1.17 Manual

CONTENTS xv

based on the SOFTWARE shall be considered part of the SOFTWARE and ownership thereof shall be
retained by the PROVIDER and shall be made available to the PROVIDER upon request.

3. The RECIPIENT may make a reasonable number of copies of the SOFTWARE for the purpose of backup
and maintenance of the SOFTWARE, or for development of derivative works based on the SOFTWARE.
The RECIPIENT agrees to include all copyright or trademark notices on any copies of the SOFTWARE
or derivatives thereof. All copies of the SOFTWARE, or derivatives thereof, shall be destroyed by the
RECIPIENT upon termination of this license.

4. The RECIPIENT shall use the SOFTWARE for research, educational, or other non-commercial purposes
only. The RECIPIENT acknowledges that this license grants no rights whatsoever for commercial use
of the SOFTWARE or in any commercial version(s) of the SOFTWARE. The RECIPIENT is strictly
prohibited from deciphering, disassembling, decompiling, translating, reverse engineering or otherwise
deriving source code from the SOFTWARE, except to the extent applicable laws specifically prohibit
such restriction.

5. The RECIPIENT shall not disclose in any form either the delivered SOFTWARE or any modifications or
derivative works based on the SOFTWARE to any third party without prior express authorization from
the PROVIDER.

6. If the RECIPIENT receives a request to furnish all or any portion of the SOFTWARE to any third party,
RECIPIENT shall not fulfill such a request, and further agrees to refer the request to the PROVIDER.

7. The RECIPIENT agrees that the SOFTWARE is furnished on an ”as is, with all defects” basis, without
maintenance, debugging, support or improvement, and that neither the PROVIDER nor the Board of
Regents of the University of Wisconsin System warrant the SOFTWARE or any of its results and are in
no way liable for any use that the RECIPIENT makes of the SOFTWARE.

8. The RECIPIENT agrees that any reports, publications, or other disclosure of results obtained with the
SOFTWARE will acknowledge its use by an appropriate citation. The appropriate reference for the
SOFTWARE is ”The Condor Software Program (Condor) was developed by the Condor Team at the
Computer Sciences Department of the University of Wisconsin-Madison. All rights, title, and interest in
Condor are owned by the Condor Team.”

9. The term of this license shall not be limited in time. However, PROVIDER may terminate RECIPIENT’s
license without cause at any time.

10. Source code for the SOFTWARE is available upon request and at the sole discretion of the PROVIDER.

11. This license shall be construed and governed in accordance with the laws of the State of Wisconsin.

For more information:
Condor Team
Attention: Professor Miron Livny
7367 Computer Sciences
1210 W. Dayton St.
Madison, WI 53706-1685
miron@cs.wisc.edu
http://www.cs.wisc.edu/˜miron/miron.html

Condor Version 6.1.17 Manual

CHAPTER

ONE

Overview

This chapter provides a basic, high-level overview of Condor, including Condor’s major features and
limitations. Because Condor is a system to implement a High-Throughput Computing environment,
this section begins defining what is meant by High-Throughput Computing.

1.1 What is High-Throughput Computing (HTC) ?

For many research and engineering projects, the quality of the research or the product is heavily
dependent upon the quantity of computing cycles available. It is not uncommon to find problems
that require weeks or months of computation to solve. Scientists and engineers engaged in this sort of
work need a computing environment that delivers large amounts of computational power over a long
period of time. Such an environment is called a High-Throughput Computing (HTC) environment.

In contrast, High Performance Computing (HPC) environments deliver a tremendous amount
of compute power over a short period of time. HPC environments are often measured in terms
of FLoating point Operations per Second (FLOPS). A growing community is not concerned about
FLOPS, as their problems are of a much larger scale. These people are concerned with floating point
operations per month or per year. They are more interested in how many jobs they can complete
over a long period of time instead of how fast an individual job can complete.

1.2 HTC and Distributed Ownership

The key to HTC is to efficiently harness the use of all available resources. Years ago, the engineering
and scientific community relied on large centralized mainframe and/or big-iron supercomputers to
do computational work. A large number of individuals and groups needed to pool their financial

1

1.3. What is Condor ? 2

resources to afford such a machine. Users had to wait for their turn on the mainframe, and they only
had a certain amount of time allocated to them. While this environment was inconvenient for users,
it was very efficient, because the mainframe was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized main-
frames and purchased personal desktop workstations and PCs. An individual or small group could
afford a computing resource that was available whenever they wanted it. The personal computer
was usually far slower than the large centralized machine, but it was worthwhile due to its exclusive
access. Now, instead of one giant computer for a large institution, there might be hundreds or thou-
sands of personal computers. This is an environment of distributed ownership, where individuals
throughout an organization own their own resources. The total computational power of the insti-
tution as a whole might rise dramatically as the result of such a change, but because of distributed
ownership, individuals could not capitalize on the institutional growth of computing power. And
while distributed ownership is more convenient for the users, it is much less efficient. Many per-
sonal desktop machines sit idle for very long periods of time while their owners are busy doing other
things (such as being away at lunch, in meetings, or at home sleeping).

1.3 What is Condor ?

Condor is a software system that creates a High-Throughput Computing (HTC) environment by
effectively harnessing the power of a cluster of UNIX or NT workstations on a network. Although
Condor can manage a dedicated cluster of workstations, a key appeal of Condor is its ability to
effectively harness non-dedicated, preexisting resources in a distributed ownership setting such as
machines sitting on people’s desks in offices and labs.

1.3.1 A Hunter of Available Workstations

Instead of running a CPU-intensive job in the background on their own workstation, a user submits
their job to Condor. Condor finds an available machine on the network and begins running the job on
that machine. When Condor detects that a machine running a Condor job is no longer available (per-
haps because the owner of the machine came back from lunch and started typing on the keyboard),
Condor checkpoints the job and migrates it over the network to a different machine which would
otherwise be idle. Condor restarts the job on the new machine to continue from precisely where it
left off. If no machine on the network is currently available, then the job is stored in a queue on disk
until a machine becomes available.

As an example, a compute job that typically takes 5 hours to run is submitted to Condor. Condor
may start running the job on Machine A, but after 3 hours Condor detects activity on the keyboard.
Condor will checkpoint the job and migrates it to Machine B. After two hours on Machine B, the
job completes (notifying the submitter via e-mail).

Perhaps this 5 hour compute job must be run 250 different times (perhaps on 250 different data
sets). In this case, Condor can be a real time saver. With one command, all 250 runs are submitted

Condor Version 6.1.17 Manual

1.4. Distinguishing Features 3

to Condor. Depending upon the number of machines in the organization’s Condor pool, there could
be dozens or even hundreds of otherwise idle machines running the job at any given moment.

Condor makes it easy to maximize the number of machines which can run a job. Because
Condor does not require participating machines to share file systems (via NFS or AFS for example),
machines across the entire enterprise can run a job, including machines in different administrative
domains. Condor does not require an account (login) on machines where it runs a job. Condor
can do this because of its remote system call technology, which traps operating system calls for
such operations as reading or writing from disk files and sends them back over the network to be
performed on the machine where the job was submitted.

1.3.2 Effective Resource Management

In addition to migrating jobs to available machines, Condor provides sophisticated and distributed
resource management. Match-making resource owners with resource consumers is the cornerstone
of a successful HTC environment. Unlike many other compute cluster resource management sys-
tems which attach properties to the job queues themselves (resulting in user confusion over which
queue to use as well as administrative hassle in constantly adding and editing queue properties to
satisfy user demands), Condor implements a clean design called ClassAds.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All ma-
chines in the Condor pool advertise their resource properties, such as available RAM memory, CPU
type and speed, virtual memory size, physical location, current load average, and many other static
and dynamic properties, into a resource offer ad. Likewise, when submitting a job, users can specify
a resource request ad which defines both the required and a desired set of properties to run the job.
Similarly, a resource offer ad can define requirements and preferences. Condor acts as a broker by
matching and ranking resource offer ads with resource request ads, making certain that all require-
ments in both ads are satisfied. During this match-making process, Condor also takes several layers
of priority values into consideration: the priority the user assigned to the resource request ad, the
priority of the user which submitted the ad, and desire of machines in the pool to accept certain types
of ads over others.

1.4 Distinguishing Features

Checkpoint and Migration. Users of Condor may be assured that their jobs will eventually com-
plete even in an opportunistic computing environment. If a user submits a job to Condor
which runs on another’s workstation, but the job is not finished when the workstation owner
returns, the job can be checkpointed. The job continues by migrating to another machine.
It makes progress toward its completion by the checkpoint and migration feature. Condor’s
periodic checkpoint feature periodically checkpoints a job even in lieu of migration in order to
safeguard the accumulated computation time on a job from being lost in the event of a system
failure such as the machine being shutdown or a crash.

Remote System Calls. Despite running jobs on remote machines, the Condor standard universe

Condor Version 6.1.17 Manual

1.5. Current Limitations 4

execution mode preserves the local execution environment via remote system calls. Users do
not have to worry about making data files available to remote workstations or even obtaining
a login account on remote workstations before Condor executes their programs there. The
program behaves under Condor as if it were running as the user that submitted the job on the
workstation where it was originally submitted, no matter on which machine it really ends up
executing on.

No Changes Necessary to User’s Source Code. No special programming is required to use Con-
dor. Condor is able to run normal non-interactive UNIX or NT programs. The checkpoint
and migration of programs by Condor is transparent and automatic, as is the use of remote
system calls. If these facilities are desired, the user only re-links the program. The code is not
compiled or changed.

Sensitive to the Desires of Workstation Owners. The owner of a workstation has complete prior-
ity over the workstation, by default. A workstation owner is generally happy to let others
compute on the workstation while it is idle, but wants the workstation back promptly upon
returning. The owner does not want to take special action to regain control. Condor handles
this automatically.

ClassAds. The ClassAd mechanism in Condor provides an extremely flexible, expressive frame-
work for matchmaking resource requests with resource offers. One result is that users can
easily request practically any resource, both in terms of job requirements and job desires. For
example, a user can require that a job run on a machine with 64 Mbytes of RAM, but state
a preference for 128 Mbytes if available. Likewise, a workstation can state a preference in
a resource offer to run jobs from a specified set of users, and it can require that there be no
interactive workstation activity detectable between 9 am and 5 pm before starting a job. Job
requirements/preferences and resource availability constraints can be described in terms of
powerful expressions, resulting in Condor’s adaptation to nearly any desired policy.

1.5 Current Limitations

Limitations on Jobs which can Checkpointed Although Condor can schedule and run any type
of process, Condor does have some limitations on jobs that it can transparently checkpoint
and migrate:

1. Multi-process jobs are not allowed. This includes system calls such as fork(),
exec(), and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared
memory.

3. Network communication must be brief. A job may make network connections using
system calls such as socket(), but a network connection left open for long periods
will delay checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is not allowed. Condor reserves
these signals for its own use. Sending or receiving all other signals is allowed.

Condor Version 6.1.17 Manual

1.6. Availability 5

5. Alarms, timers, and sleeping are not allowed. This includes system calls such as
alarm(), getitimer(), and sleep().

6. Multiple kernel-level threads are not allowed. However, multiple user-level threads are
allowed.

7. Memory mapped files are not allowed. This includes system calls such as mmap() and
munmap().

8. File locks are allowed, but not retained between checkpoints.

9. All files must be opened read-only or write-only. A file opened for both reading and
writing will cause trouble if a job must be rolled back to an old checkpoint image. For
compatibility reasons, a file opened for both reading and writing will result in a warning
but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing
a job’s checkpoint images. A checkpoint image is approximately equal to the virtual
memory consumed by a job while it runs. If disk space is short, a special checkpoint
server can be designated for storing all the checkpoint images for a pool.

11. On Digital Unix (OSF/1), HP-UX, and Linux, your job must be statically linked. Dy-
namic linking is allowed on all other platforms.

Note: these limitations only apply to jobs which Condor has been asked to transparently
checkpoint. If job checkpointing is not desired, the limitations above do not apply.

Security Implications. Condor does a significant amount of work to prevent security hazards, but
loopholes are known to exist. Condor can be instructed to run user programs only as the UNIX
user nobody, a user login which traditionally has very restricted access. But even with access
solely as user nobody, a sufficiently malicious individual could do such things as fill up /tmp
(which is world writable) and/or gain read access to world readable files. Furthermore, where
the security of machines in the pool is a high concern, only machines where the UNIX user
root on that machine can be trusted should be admitted into the pool. Condor provides the
administrator with IP-based security mechanisms to enforce this.

Jobs Need to be Re-linked to get Checkpointing and Remote System Calls Although typically
no source code changes are required, Condor requires that the jobs be re-linked with the Con-
dor libraries to take advantage of checkpointing and remote system calls. This often precludes
commercial software binaries from taking advantage of these services because commercial
packages rarely make their object code available. Condor’s other services are still available
for these commercial packages.

1.6 Availability

Condor is currently available as a free download from the Internet via the World Wide Web at URL
http://www.cs.wisc.edu/condor/downloads. Binary distributions of Condor version 6.x are available
for the platforms detailed in Table 1.1. A platform is an architecture/operating system combination.
Condor binaries are available most major versions of UNIX, as well as Windows NT.

Condor Version 6.1.17 Manual

1.7. Contact Information 6

In the table, clipped means that Condor does not support checkpointing or remote system calls
on the given platform. This means that standard jobs are not supported, only vanilla jobs. See
section 2.4.1 on page 12 for more details on job universes within Condor and their abilities and
limitations.

The Condor source code is no longer available for public download from the Internet. If you
desire the Condor source code, please contact the Condor Team in order to discuss it further (see
Section 1.7, on page 6).

Architecture Operating System

Hewlett Packard PA-RISC (both PA7000 and PA8000 series) HPUX 10.20
Sun SPARC Sun4m,c, Sun UltraSPARC Solaris 2.5.x, 2.6, 2.7
Silicon Graphics MIPS (R4400, R4600, R8000, R10000) IRIX 6.2, 6.3, 6.4

IRIX 6.5
Intel x86 RedHat Linux 5.2, 6.x

Solaris 2.5.x, 2.6, 2.7
Windows NT 4.0 (“clipped”)

Digital ALPHA OSF/1 (Digital Unix) 4.x
Linux 2.0.x, Linux 2.2.x (“clipped”)

Table 1.1: Condor Version 6.1.17 supported platforms

NOTE: Other Linux distributions (Debian, etc.) may work, but are not tested or supported.

1.7 Contact Information

The latest software releases, publications/papers regarding Condor and other High-
Throughput Computing research can be found at the official web site for Condor at
http://www.cs.wisc.edu/condor.

In addition, there is an e-mail list at mailto:condor-world@cs.wisc.edu. The Condor Team uses
this e-mail list to announce new releases of Condor and other major Condor-related news items.
Membership into condor-world is automated by MajorDomo software. To subscribe or unsubscribe
from the the list, follow the instructions at http://www.cs.wisc.edu/condor/condor-world/condor-
world.html. Because many of us receive too much e-mail as it is, you’ll be happy to know that
the condor-world e-mail listgroup is moderated and only major announcements of wide interest are
distributed.

Finally, you can reach the Condor Team directly. The Condor Team is comprised of the de-
velopers and administrators of Condor at the University of Wisconsin-Madison. Condor questions,
comments, pleas for help, and requests for commercial contract consultation or support are all wel-
come; just send Internet e-mail to mailto:condor-admin@cs.wisc.edu. Please include your name,

Condor Version 6.1.17 Manual

1.7. Contact Information 7

organization, and telephone number in your message. If you are having trouble with Condor, please
help us troubleshoot by including as much pertinent information as you can, including snippets of
Condor log files.

Condor Version 6.1.17 Manual

CHAPTER

TWO

Users’ Manual

2.1 Welcome to Condor

Presenting Condor Version 6.1.17! Condor is developed by the Condor Team at the University
of Wisconsin-Madison (UW-Madison), and was first installed as a production system in the UW-
Madison Computer Sciences department nearly 10 years ago. This Condor pool has since served
as a major source of computing cycles to UW faculty and students. For many, it has revolutionized
the role computing plays in their research. An increase of one, and sometimes even two, orders
of magnitude in the computing throughput of a research organization can have a profound impact
on its size, complexity, and scope. Over the years, the Condor Team has established collaborations
with scientists from around the world and has provided them with access to surplus cycles (one of
whom has consumed 100 CPU years!). Today, our department’s pool consists of more than 700
desktop UNIX workstations. On a typical day, our pool delivers more than 500 CPU days to UW
researchers. Additional Condor pools have been established over the years across our campus and
the world. Groups of researchers, engineers, and scientists have used Condor to establish compute
pools ranging in size from a handful to hundreds of workstations. We hope that Condor will help
revolutionize your compute environment as well.

2.2 What does Condor do?

In a nutshell, Condor is a specialized batch system for managing compute-intensive jobs. Like
most batch systems, Condor provides a queueing mechanism, scheduling policy, priority scheme,
and resource classifications. Users submit their compute jobs to Condor, Condor puts the jobs in a
queue, runs them, and then informs the user as to the result.

8

2.3. Condor Matchmaking with ClassAds 9

Batch systems normally operate only with dedicated machines. Often termed compute servers,
these dedicated machines are typically owned by one organization and dedicated to the sole purpose
of running compute jobs. Condor can schedule jobs on dedicated machines. But unlike traditional
batch systems, Condor is also designed to effectively utilize non-dedicated machines to run jobs. By
being told to only run compute jobs on machines which are currently not being used (no keyboard
activity, no load average, no active telnet users, etc), Condor can effectively harness otherwise idle
machines throughout a pool of machines. This is important because often times the amount of
compute power represented by the aggregate total of all the non-dedicated desktop workstations
sitting on people’s desks throughout the organization is far greater than the compute power of a
dedicated central resource.

Condor has several unique capabilities at its disposal which are geared towards effectively utiliz-
ing non-dedicated resources that are not owned or managed by a centralized resource. These include
transparent process checkpoint and migration, remote system calls, and ClassAds. Read section 1.3
for a general discussion of these features before reading any further.

2.3 Condor Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to understand how Condor allocates
resources. Understanding the unique framework by which Condor matches submitted jobs with
machines is the key to getting the most from Condor’s scheduling algorithm.

Condor simplifies job submission by acting as a matchmaker of ClassAds. Condor’s ClassAds
are analogous to the classified advertising section of the newspaper. Sellers advertise specifics about
what they have to sell, hoping to attract a buyer. Buyers may advertise specifics about what they
wish to purchase. Both buyers and sellers list constraints that need to be satisfied. For instance, a
buyer has a maximum spending limit, and a seller requires a minimum purchase price. Furthermore,
both want to rank requests to their own advantage. Certainly a seller would rank one offer of $50
dollars higher than a different offer of $25. In Condor, users submitting jobs can be thought of as
buyers of compute resources and machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available RAM memory, CPU
type and speed, virtual memory size, current load average, along with other static and dynamic
properties. This machine ClassAd also advertises under what conditions it is willing to run a Condor
job and what type of job it would prefer. These policy attributes can reflect the individual terms and
preferences by which all the different owners have graciously allowed their machine to be part of
the Condor pool. You may advertise that your machine is only willing to run jobs at night and when
there is no keyboard activity on your machine. In addition, you may advertise a preference (rank)
for running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your requirements and preferences.
The ClassAd includes the type of machine you wish to use. For instance, perhaps you are looking
for the fastest floating point performance available. You want Condor to rank available machines
based upon floating point performance. Or, perhaps you care only that the machine has a minimum
of 128 Mbytes of RAM. Or, perhaps you will take any machine you can get! These job attributes

Condor Version 6.1.17 Manual

2.3. Condor Matchmaking with ClassAds 10

and requirements are bundled up into a job ClassAd.

Condor plays the role of a matchmaker by continuously reading all the job ClassAds and all the
machine ClassAds, matching and ranking job ads with machine ads. Condor makes certain that all
requirements in both ClassAds are satisfied.

2.3.1 Inspecting Machine ClassAds with condor status

Once Condor is installed, you will get a feel for what a machine ClassAd does by trying the con-
dor status command. Try the condor status command to get a summary of information from Class-
Ads about the resources available in your pool. Type condor status and hit enter to see a summary
similar to the following:

Name Arch OpSys State Activity Loa-
dAv Mem ActvtyTime

adriana.cs INTEL SOLARIS251 Claimed Busy 1.000 64 0+01:10:00
alfred.cs. INTEL SOLARIS251 Claimed Busy 1.000 64 0+00:40:00
amul.cs.wi SUN4u SOLARIS251 Owner Idle 1.000 128 0+06:20:04
anfrom.cs. SUN4x SOLARIS251 Claimed Busy 1.000 32 0+05:16:22
anthrax.cs INTEL SOLARIS251 Claimed Busy 0.285 64 0+00:00:00
astro.cs.w INTEL SOLARIS251 Claimed Busy 0.949 64 0+05:30:00
aura.cs.wi SUN4u SOLARIS251 Owner Idle 1.043 128 0+14:40:15

. . .

The condor status command has options that summarize machine ads in a variety of ways. For
example,

condor status -available shows only machines which are willing to run jobs now.

condor status -run shows only machines which are currently running jobs.

condor status -l lists the machine ClassAds for all machines in the pool.

Refer to the condor status command reference page located on page 300 for a complete descrip-
tion of condor status command.

Figure 2.1 shows the complete machine ad for a single workstation: alfred.cs.wisc.edu. Some of
the listed attributes are used by Condor for scheduling. Other attributes are for information purposes.
An important point is that any of the attributes in a machine ad can be utilized at job submission
time as part of a request or preference on what machine to use. Additional attributes can be easily
added. For example, your site administrator can add a physical location attribute to your machine
ClassAds.

Condor Version 6.1.17 Manual

2.4. Road-map for running jobs with Condor 11

MyType = "Machine"
TargetType = "Job"
Name = "alfred.cs.wisc.edu"
Machine = "alfred.cs.wisc.edu"
StartdIpAddr = "<128.105.83.11:32780>"
Arch = "INTEL"
OpSys = "SOLARIS251"
UidDomain = "cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
State = "Unclaimed"
EnteredCurrentState = 892191963
Activity = "Idle"
EnteredCurrentActivity = 892191062
VirtualMemory = 185264
Disk = 35259
KFlops = 19992
Mips = 201
LoadAvg = 0.019531
CondorLoadAvg = 0.000000
KeyboardIdle = 5124
ConsoleIdle = 27592
Cpus = 1
Memory = 64
AFSCell = "cs.wisc.edu"
START = LoadAvg - CondorLoadAvg <= 0.300000 && KeyboardI-
dle > 15 * 60
Requirements = TRUE
Rank = Owner == "johndoe" || Owner == "friendofjohn"
CurrentRank = - 1.000000
LastHeardFrom = 892191963

Figure 2.1: Sample output from condor status -l alfred

2.4 Road-map for running jobs with Condor

The road to using Condor effectively is a short one. The basics are quickly and easily learned.

Here are all the steps needed to run a job using Condor.

Code Preparation. A job run under Condor must be able to run as a background batch job. Condor
runs the program unattended and in the background. A program that runs in the background
will not be able to do interactive input and output. Condor can redirect console output (stdout
and stderr) and keyboard input (stdin) to and from files for you. Create any needed files that
contain the proper keystrokes needed for program input. Make certain the program will run
correctly with the files.

Condor Version 6.1.17 Manual

2.4. Road-map for running jobs with Condor 12

The Condor Universe. Condor has five runtime environments (called a universe) from which to
choose. Of the five, two are likely choices when learning to submit a job to Condor: the
standard universe and the vanilla universe. The standard universe allows a job running under
Condor to handle system calls by returning them to the machine where the job was submit-
ted. The standard universe also provides the mechanisms necessary to take a checkpoint and
migrate a partially completed job, should the machine on which the job is executing become
unavailable. To use the standard universe, it is necessary to relinking the program with the
Condor library using the condor compile command. The manual page on page 305 has details.

The vanilla universe provides a way to run jobs that cannot be ?. It depends on a shared file
system for access to input and output files, and there is no way to take a checkpoint or migrate
a job executed under the vanilla universe.

Choose a universe under which to run the Condor program, and re-link the program if neces-
sary.

Submit description file. Controlling the details of a job submission is a submit description file.
The file contains information about the job such as what executable to run, the files to use for
keyboard and screen data, the platform type required to run the program, and where to send
e-mail when the job completes. You can also tell Condor how many times to run a program;
it is simple to run the same program multiple times with multiple data sets.

Write a submit description file to go with the job, using the examples provided in section 2.5.1
for guidance.

Submit the Job. Submit the program to Condor with the condor submit command.

Once submitted, Condor does the rest toward running the job. Monitor the job’s progress with
the condor q and condor status commands. You may modify the order in which Condor will run
your jobs with condor prio. If desired, Condor can even inform you in a log file every time your job
is checkpointed and/or migrated to a different machine.

When your program completes, Condor will tell you (by e-mail, if preferred) the exit status of
your program and various statistics about its performances, including time used and I/O performed.
If you are using a log file for the job(which is recommended) the exit status will be recorded in the
log file. You can remove a job from the queue prematurely with condor rm.

2.4.1 Choosing a Condor Universe

A universe in Condor defines an execution environment. Condor Version 6.1.17 supports five
different universes for user jobs:

• Standard

• Vanilla

• PVM

• MPI

Condor Version 6.1.17 Manual

2.4. Road-map for running jobs with Condor 13

• Globus

The Universe attribute is specified in the submit description file. If the universe is not speci-
fied, then it will default to standard.

The standard universe provides migration and reliability, but has some restrictions on the pro-
grams that can be run. The vanilla universe provides fewer services, but has very few restrictions.
The PVM universe is for programs written to the Parallel Virtual Machine interface. See section 2.8
for more about PVM and Condor. The MPI universe is for programs written to the MPICH interface.
See section 2.9 for more about MPI and Condor. The Globus universe allows users to submit Globus
jobs through the Condor interface. See http://www.globus.org for more about Globus.

Standard Universe

In the standard universe, Condor provides checkpointing and remote system calls. These features
make a job more reliable and allow it uniform access to resources from anywhere in the pool. To
prepare a program as a standard universe job, it must be re-linked with condor compile. Most
programs can be prepared as a standard universe job, but there are a few restrictions.

Condor checkpoints a job at regular intervals. A checkpoint image is like a snapshot of the
current state of a job. If a job must be migrated from one machine to another, Condor makes a
checkpoint image, copies the image to the new machine, and restarts the job right where it left off. If
a machine should crash or fail while it is running a job, Condor can restart the job on a new machine
from the most recent checkpoint image. In this way, jobs can run for months or years even in the
face of occasional computer failures.

Remote system calls make a job perceive that it is executing on its home machine, even though
it may execute on many different machines over its lifetime. When your job runs on a remote
machine, a second process, called a condor shadow runs on the machine where you submitted the
job. Whenever your job attempts a system call, the condor shadow performs it instead and sends
the results back. So, if your job attempts to open a file that is stored only on the submitting machine,
the condor shadow will find it and send the data to the machine where your job happens to be
running.

To convert your program into a standard universe job, you must use condor compile to re-link it
with the Condor libraries. Simply put condor compile in front of your usual link command. You do
not need to modify the program’s source code, but you do need access to its un-linked object files. A
commercial program that is packaged as a single executable file cannot be converted into a standard
universe job.

For example, if you normally link your job by executing:

% cc main.o tools.o -o program

Then you can re-link your job for Condor with:

Condor Version 6.1.17 Manual

2.4. Road-map for running jobs with Condor 14

% condor_compile cc main.o tools.o -o program

There are a few restrictions on standard universe jobs:

1. Multi-process jobs are not allowed. This includes system calls such as fork(), exec(),
and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared
memory.

3. Network communication must be brief. A job may make network connections using system
calls such as socket(), but a network connection left open for long periods will delay
checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is not allowed. Condor reserves these
signals for its own use. Sending or receiving all other signals is allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such as alarm(),
getitimer(), and sleep().

6. Multiple kernel-level threads are not allowed. However, multiple user-level threads are al-
lowed.

7. Memory mapped files are not allowed. This includes system calls such as mmap() and mun-
map().

8. File locks are allowed, but not retained between checkpoints.

9. All files must be opened read-only or write-only. A file opened for both reading and writing
will cause trouble if a job must be rolled back to an old checkpoint image. For compatibility
reasons, a file opened for both reading and writing will result in a warning but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing a job’s
checkpoint images. A checkpoint image is approximately equal to the virtual memory con-
sumed by a job while it runs. If disk space is short, a special checkpoint server can be desig-
nated for storing all the checkpoint images for a pool.

11. On Digital Unix (OSF/1), HP-UX, and Linux, your job must be statically linked. Dynamic
linking is allowed on all other platforms.

Vanilla Universe

The vanilla universe in Condor is intended for programs which cannot be successfully re-linked.
Shell scripts are another case where the vanilla universe is useful. Unfortunately, jobs run under the
vanilla universe cannot checkpoint or use remote system calls. This has unfortunate consequences
for a job that is partially completed when the remote machine running a job must be returned to its
owner. Condor has only two choices. It can suspend the job, hoping to complete it at a later time, or
it can give up and restart the job from the beginning on another machine in the pool.

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 15

Notice:
In UNIX, jobs submitted as vanilla universe jobs can only rely on an external mechanism for access-
ing data files from different machines such as NFS or AFS. The job must be able to access your data
files on any machine on which it could potentially run. As an example, suppose your work machine is
blackbird.cs.wisc.edu and your job requires a particular data file /u/p/s/psilord/data.txt.
You wish to submit to Condor from this machine and the job can potentially run on cardi-
nal.cs.wisc.edu. If the job runs on that machine, it must have /u/p/s/psilord/data.txt
available through either NFS or AFS for your job to run correctly.
Condor deals with this restriction of the vanilla universe by the FileSystemDomain and Uid-
Domain machine ClassAd attributes that reflect the reality of the pool’s disk mounting structure. If
you have a large pool spanning multiple UidDomain and/or FileSystemDomains then you
must specify your requirements to use the correct UidDomain and/or FileSystemDo-
mains that your jobs need to access your data files.
However, under Windows NT, the vanilla universe does not require a shared file system due to the
Condor File Transfer mechanism. Please see chapter 5 for more details about Condor NT.

PVM

The PVM universe allows programs written to the Parallel Virtual Machine interface to be used
within the opportunistic Condor environment. Please see section 2.8 for more details.

MPI

The MPI universe allows programs written to the MPICH interface to be used within the opportunis-
tic Condor environment. Please see section 2.9 for more details.

Globus Universe

The Globus universe in Condor is intended to provide the standard Condor interface to users who
wish to start Globus system jobs from Condor. Each job queued in the job submission file is trans-
lated into a Globus RSL string and used as the arguments to the globusrun program. The manual
page for condor submit has detailed descriptions for the Globus-related attributes.

2.5 Submitting a Job to Condor

A job is submitted for execution to Condor using the condor submit command. condor submit takes
as an argument the name of a file called a submit description file. This file contains commands
and keywords to direct the queuing of jobs. In the submit description file, Condor finds everything
it needs to know about the job. Items such as the name of the executable to run, the initial working

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 16

directory, and command-line arguments to the program all go into the submit description file. con-
dor submit creates a job ClassAd based upon the information, and Condor works toward running
the job.

The contents of a submit file can save time for Condor users. It is easy to submit multiple runs of
a program to Condor. To run the same program 500 times on 500 different input data sets, arrange
your data files accordingly so that each run reads its own input, and each run writes its own output.
Each individual run may have its own initial working directory, stdin, stdout, stderr, command-line
arguments, and shell environment. A program that directly opens its own files will read the file
names to use either from stdin or from the command line. A program that opens a static filename
every time will need to use a separate subdirectory for the output of each run.

The condor submit manual page is on page 305 and contains a complete and full description of
how to use condor submit.

2.5.1 Sample submit description files

In addition to the examples of submit description files given in the condor submit manual page, here
are a few more.

Example 1

Example 1 is the simplest submit description file possible. It queues up one copy of the program
foo(which had been created by condor compile) for execution by Condor. Since no platform is
specified, Condor will use its default, which is to run the job on a machine which has the same ar-
chitecture and operating system as the machine from which it was submitted. No input, output,
and error commands are given in the submit description file, so the files stdin, stdout, and
stderr will all refer to /dev/null. The program may produce output by explicitly opening a
file and writing to it. A log file, foo.log, will also be produced that contains events the job had
during its lifetime inside of Condor. When the job finishes, its exit conditions will be noted in the
log file. It is recommended that you always have a log file so you know what happened to your jobs.

####################
#
Example 1
Simple condor job description file
#
####################

Executable = foo
Log = foo.log
Queue

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 17

Example 2

Example 2 queues two copies of the program mathematica. The first copy will run in directory
run 1, and the second will run in directory run 2. For both queued copies, stdin will be
test.data, stdout will be loop.out, and stderr will be loop.error. There will be
two sets of files written, as the files are each written to their own directories. This is a convenient
way to organize data if you have a large group of Condor jobs to run. The example file shows
program submission of mathematica as a vanilla universe job. This may be necessary if the source
and/or object code to program mathematica is not available.

####################
#
Example 2: demonstrate use of multiple
directories for data organization.
#
####################

Executable = mathematica
Universe = vanilla
input = test.data
output = loop.out
error = loop.error
Log = loop.log

Initialdir = run_1
Queue

Initialdir = run_2
Queue

Example 3

The submit description file for Example 3 queues 150 runs of program foo which has been compiled
and linked for Silicon Graphics workstations running IRIX 6.5. This job requires Condor to run
the program on machines which have greater than 32 megabytes of physical memory, and expresses
a preference to run the program on machines with more than 64 megabytes, if such machines are
available. It also advises Condor that it will use up to 28 megabytes of memory when running. Each
of the 150 runs of the program is given its own process number, starting with process number 0. So,
files stdin, stdout, and stderr will refer to in.0, out.0, and err.0 for the first run of the
program, in.1, out.1, and err.1 for the second run of the program, and so forth. A log file
containing entries about when and where Condor runs, checkpoints, and migrates processes for the
150 queued programs will be written into file foo.log.

####################

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 18

#
Example 3: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Requirements = Memory >= 32 && OpSys == "IRIX65" && Arch =="SGI"
Rank = Memory >= 64
Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log

Queue 150

2.5.2 About Requirements and Rank

The requirements and rank commands in the submit description file are powerful and flexible.
Using them effectively requires care, and this section presents those details.

Both requirements and rank need to be specified as valid Condor ClassAd expressions,
however, default values are set by the condor submit program if these aren’t defined in the submit
description file. From the condor submit manual page and the above examples, you see that writing
ClassAd expressions is intuitive, especially if you are familiar with the programming language C.
There are some pretty nifty expressions you can write with ClassAds. A complete description of
ClassAds and their expressions can be found in section 4.1 on page 177.

All of the commands in the submit description file are case insensitive, except for the ClassAd
attribute string values. ClassAds attribute names are case insensitive, but ClassAd string values are
always case sensitive. The correct specification for an architecture is

requirements = arch == "ALPHA"

so an accidental specification of

requirements = arch == "alpha"

will not work due to the incorrect case.

The allowed ClassAd attributes are those that appear in a machine or a job ClassAd. To see all
of the machine ClassAd attributes for all machines in the Condor pool, run condor status -l. The -l

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 19

argument to condor status means to display all the complete machine ClassAds. The job ClassAds,
if there jobs in the queue, can be seen with the condor q -l command. This will show you all the
available attributes you can play with.

To help you out with what these attributes all signify, descriptions follow for the attributes which
will be common to every machine ClassAd. Remember that because ClassAds are flexible, the
machine ads in your pool may include additional attributes specific to your site’s installation and
policies.

ClassAd Machine Attributes

Activity : String which describes Condor job activity on the machine. Can have one of the
following values:

"Idle" : There is no job activity

"Busy" : A job is busy running

"Suspended" : A job is currently suspended

"Vacating" : A job is currently checkpointing

"Killing" : A job is currently being killed

"Benchmarking" : The startd is running benchmarks

Arch : String with the architecture of the machine. Typically one of the following:

"INTEL" : Intel x86 CPU (Pentium, Xeon, etc).

"ALPHA" : Digital Alpha CPU

"SGI" : Silicon Graphics MIPS CPU

"SUN4u" : Sun UltraSparc CPU

"SUN4x" : A Sun Sparc CPU other than an UltraSparc, i.e. sun4m or sun4c CPU found in
older Sparc workstations such as the Sparc 10, Sparc 20, IPC, IPX, etc.

"HPPA1" : Hewlett Packard PA-RISC 1.x CPU (i.e. PA-RISC 7000 series CPU) based
workstation

"HPPA2" : Hewlett Packard PA-RISC 2.x CPU (i.e. PA-RISC 8000 series CPU) based
workstation

ClockDay : The day of the week, where 0 = Sunday, 1 = Monday, . . ., 6 = Saturday.

ClockMin : The number of minutes passed since midnight.

CondorLoadAvg : The portion of the load average generated by Condor (either from remote jobs
or running benchmarks).

ConsoleIdle : The number of seconds since activity on the system console keyboard or console
mouse has last been detected.

Cpus : Number of CPUs in this machine, i.e. 1 = single CPU machine, 2 = dual CPUs, etc.

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 20

CurrentRank : A float which represents this machine owner’s affinity for running the Condor
job which it is currently hosting. If not currently hosting a Condor job, CurrentRank is
-1.0.

Disk : The amount of disk space on this machine available for the job in kbytes (e.g. 23000 = 23
megabytes). Specifically, this is the amount of disk space available in the directory specified
in the Condor configuration files by the EXECUTE macro, minus any space reserved with the
RESERVED DISK macro.

EnteredCurrentActivity : Time at which the machine entered the current Activity (see
Activity entry above). On all platforms (including NT), this is measured in the number of
seconds since the UNIX epoch (00:00:00 UTC, Jan 1, 1970).

FileSystemDomain : A “domain” name configured by the Condor administrator which de-
scribes a cluster of machines which all access the same, uniformly-mounted, networked file
systems usually via NFS or AFS. This is useful for Vanilla universe jobs which require remote
file access.

KeyboardIdle : The number of seconds since activity on any keyboard or mouse associated
with this machine has last been detected. Unlike ConsoleIdle, KeyboardIdle also
takes activity on pseudo-terminals into account (i.e. virtual “keyboard” activity from telnet
and rlogin sessions as well). Note that KeyboardIdle will always be equal to or less than
ConsoleIdle.

KFlops : Relative floating point performance as determined via a Linpack benchmark.

LastHeardFrom : Time when the Condor central manager last received a status update from
this machine. Expressed as seconds since the epoch (integer value). Note: This attribute is
only inserted by the central manager once it receives the ClassAd. It is not present in the
condor startd copy of the ClassAd. Therefore, you could not use this attribute in defining
condor startd expressions (and you would not want to).

LoadAvg : A floating point number with the machine’s current load average.

Machine : A string with the machine’s fully qualified hostname.

Memory : The amount of RAM in megabytes.

Mips : Relative integer performance as determined via a Dhrystone benchmark.

MyType : The ClassAd type; always set to the literal string "Machine".

Name : The name of this resource; typically the same value as the Machine attribute, but could
be customized by the site administrator. On SMP machines, the condor startd will divide the
CPUs up into separate virtual machines, each with with a unique name. These names will be
of the form “vm#@full.hostname”, for example, “vm1@vulture.cs.wisc.edu”, which signifies
virtual machine 1 from vulture.cs.wisc.edu.

OpSys : String describing the operating system running on this machine. For Condor Version
6.1.17 typically one of the following:

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 21

"HPUX10" : for HPUX 10.20

"IRIX6" : for IRIX 6.2, 6.3, or 6.4

"LINUX" : for LINUX 2.0.x or LINUX 2.2.x kernel systems

"OSF1" : for Digital Unix 4.x

"SOLARIS251"

"SOLARIS26"

Requirements : A boolean, which when evaluated within the context of the machine ClassAd
and a job ClassAd, must evaluate to TRUE before Condor will allow the job to use this ma-
chine.

StartdIpAddr : String with the IP and port address of the condor startd daemon which is pub-
lishing this machine ClassAd.

State : String which publishes the machine’s Condor state. Can be:

"Owner" : The machine owner is using the machine, and it is unavailable to Condor.

"Unclaimed" : The machine is available to run Condor jobs, but a good match is either
not available or not yet found.

"Matched" : The Condor central manager has found a good match for this resource, but a
Condor scheduler has not yet claimed it.

"Claimed" : The machine is claimed by a remote condor schedd and is probably running
a job.

"Preempting" : A Condor job is being preempted (possibly via checkpointing) in order
to clear the machine for either a higher priority job or because the machine owner wants
the machine back.

TargetType : Describes what type of ClassAd to match with. Always set to the string literal
"Job", because machine ClassAds always want to be matched with jobs, and vice-versa.

UidDomain : a domain name configured by the Condor administrator which describes a cluster of
machines which all have the same passwd file entries, and therefore all have the same logins.

VirtualMemory : The amount of currently available virtual memory (swap space) expressed in
kbytes.

ClassAd Job Attributes

CkptArch : String describing the architecture of the machine where this job last checkpointed. If
the job has never checkpointed, this attribute is UNDEFINED.

CkptOpSys : String describing the operating system of the machine where this job last check-
pointed. If the job has never checkpointed, this attribute is UNDEFINED.

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 22

ClusterId : Integer cluster identifier for this job. A “cluster” is a group of jobs that were submit-
ted together. Each job has its own unique job identifier within the cluser, but shares a common
cluster identifier.

ExecutableSize : Size of the executable in kbytes.

ImageSize : Estimate of the memory image size of the job in kbytes. The initial estimate may
be specified in the job submit file. Otherwise, the initial value is equal to the size of the
executable. When the job checkpoints, the ImageSize attribute is set to the size of the
checkpoint file (since the checkpoint file contains the job’s memory image).

JobPrio : Integer priority for this job, set by condor submit or condor prio. The default value is
0. The higher the number, the worse the priority.

JobStatus : Integer which indicates the current status of the job, where 1 = Idle, 2 = Running, 3
= Removed, 4 = Completed, and 5 = Held.

JobUniverse : Integer which indicates the job universe, where 1 = Standard, 4 = PVM, 5 =
Vanilla, and 7 = Scheduler.

LastCkptServer : Hostname of the last checkpoint server used by this job. When a pool is
using multiple checkpoint servers, this tells the job where to find its checkpoint file.

LastCkptTime : Time at which the job last performed a successful checkpoint. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

LastVacateTime : Time at which the job was last evicted from a remote workstation. Measured
in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

NumCkpts : A count of the number of checkpoints written by this job during its lifetime.

NumRestarts : A count of the number of restarts from a checkpoint attempted by this job during
its lifetime.

NiceUser : Boolean value which indicates whether this is a nice-user job.

Owner : String describing the user who submitted this job.

ProcId : Integer process identifier for this job. In a cluster of many jobs, each job will have the
same ClusterId but will have a unique ProcId.

QDate : Time at which the job was submitted to the job queue. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

JobStartDate : Time at which the job first began running. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 23

2.5.3 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms of machines in the Condor pool, Condor
can be allowed the choice of a larger number of machines when allocating a machine for a job.
Modifications to the submit description file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but
the submission is done from a different platform. Given the correct executable, the require-
ments command in the submit description file specifies the target architecture. For example, an
executable compiled for a Sun 4, submitted from an Intel architecture running Linux would add the
requirement

requirements = Arch == "SUN4x" && OpSys == "SOLARIS251"

Without this requirement, condor submit will assume that the program is to be executed on a
machine with the same platform as the machine where the job is submitted.

Cross submission works for both standard and vanilla universes. The burden is on the user
to both obtain and specify the correct executable for the target architecture. To list the architecture
and operating systems of the machines in a pool, run condor status.

2.5.4 Vanilla Universe Example for Execution on Differing Architectures

A more complex example of a heterogeneous submission occurs when a job may be executed on
many different architectures to gain full use of a diverse architecture and operating system pool.
If the executables are available for the different architectures, then a modification to the submit
description file will allow Condor to choose an executable after an available machine is chosen.

A special-purpose MachineAd substitution macro can be used in the executable, envi-
ronment, and arguments attributes in the submit description file. The macro has the form

$$(MachineAdAttribute)

Note that this macro is ignored in all other submit description attributes. The $$() informs Condor to
substitute the requestedMachineAdAttribute from the machine where the job will be executed.

An example of the heterogeneous job submission has executables available for three platforms:
LINUX Intel, Solaris26 Intel, and Irix 6.5 SGI machines. This example uses povray to render images
using a popular free rendering engine.

The substitution macro chooses a specific executable after a platform for running the job is
chosen. These executables must therefore be named based on the machine attributes that describe a
platform. The executables named

povray.LINUX.INTEL

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 24

povray.SOLARIS26.INTEL
povray.IRIX65.SGI

will work correctly for the macro

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working direc-
tory so that they may be found by Condor. A submit description file that queues three jobs for this
example:

####################
#
Example of heterogeneous submission
#
####################

universe = vanilla
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "INTEL" && OpSys =="SOLARIS26") || \
(Arch == "SGI" && OpSys == "IRIX65")

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific
platform, it will finish running on that platform. Switching platforms in the middle of job execution
cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-
existent MachineAdAttribute. If the specified MachineAdAttribute does not exist in the
machine’s ClassAd, then Condor will place the job in the machine state of hold until the problem is
resolved.

Condor Version 6.1.17 Manual

2.5. Submitting a Job to Condor 25

The second common error occurs due to an incomplete job set up. For example, the submit
description file given above specifies three available executables. If one is missing, Condor report
back that an executable is missing when it happens to match the job with a resource that requires the
missing binary.

2.5.5 Standard Universe Example for Execution on Differing Architectures

Jobs submitted to the standard universe may produce checkpoints. A checkpoint can then be used
to start up and continue execution of a partially completed job. For a partially completed job, the
checkpoint and the job are specific to a platform. If migrated to a different machine, correct execu-
tion requires that the platform must remain the same.

A more complex requirements expression tells Condor to migrate a partially completed job
to another machine with the same platform.

CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UNDE-
FINED)) && \

((CkptOpSys == OpSys) || (CkptOp-
Sys =?= UNDEFINED))

Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "INTEL" && OpSys =="SOLARIS26") || \
(Arch == "SGI" && OpSys == "IRIX65")) && $(CkptRequirements)

The Requirements expression in the example uses a macro to add an additional expression,
called CkptRequirements. The CkptRequirements expression guarantees correct opera-
tion in the two possible cases for a job. In the first case, the job has not produced a checkpoint. The
ClassAd attributes CkptArch and CkptOpSys will be undefined, and therefore the meta opera-
tor (=?=) evaluates to true. In the second case, the job has produced a checkpoint. The Machine
ClassAd is restricted to require further execution only on a machine of the same platform. The at-
tributes CkptArch and CkptOpSys will be defined, ensuring that the platform chosen for further
execution will be the same as the one used just before the checkpoint.

Note that this restriction of platforms also applies to platforms where the executables are binary
compatible.

The complete submit description file for this example:

####################
#
Example of heterogeneous submission
#
####################

universe = standard
Executable = povray.$$(OpSys).$$(Arch)

Condor Version 6.1.17 Manual

2.6. Managing a Condor Job 26

Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UNDE-
FINED)) && \

((CkptOpSys == OpSys) || (CkptOp-
Sys =?= UNDEFINED))

Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "INTEL" && OpSys =="SOLARIS26") || \
(Arch == "SGI" && OpSys == "IRIX65")) && $(CkptRequirements)

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

2.6 Managing a Condor Job

This section provides a brief summary of what can be done once jobs are submitted. The basic
mechanisms for monitoring a job are introduced, but the commands are discussed briefly. You are
encouraged to look at the man pages of the commands referred to (located in Chapter 8 beginning
on page 248) for more information.

When jobs are submitted, Condor will attempt to find resources to run the jobs. A list of all
those with jobs submitted may be obtained through condor status with the -submitters option. An
example of this would yield output similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs Idle-
Jobs HeldJobs

Condor Version 6.1.17 Manual

2.6. Managing a Condor Job 27

ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5

nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0

Total 7 516 5

2.6.1 Checking on the progress of jobs

At any time, you can check on the status of your jobs with the condor q command. This command
displays the status of all queued jobs. An example of the output from condor q is

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -

10 1.2 hello.remote
127.0 raman 4/11 15:35 0+00:00:00 R 0 1.4 hello
128.0 raman 4/11 15:35 0+00:02:33 I 0 1.4 hello

3 jobs; 2 idle, 1 running, 0 held

This output contains many columns of information about the queued jobs. The ST column (for
status) shows the status of current jobs in the queue. An R in the status column means the the job is
currently running. An I stands for idle. The job is not running right now, because it is waiting for
a machine to become available. The status H is the hold state. In the hold state, the job will not be
scheduled to run until it is released (see condor hold and condor release man pages). Older versions
of Condor used a U in the status column to stand for unexpanded. In this state, a job has never
checkpointed and when it starts running, it will start running from the beginning. Newer versions of
Condor do not use the U state.

The CPU_USAGE time reported for a job is the time that has been committed to the job. It is
not updated for a job until the job checkpoints. At that time, the job has made guaranteed forward
progress. Depending upon how the site administrator configured the pool, several hours may pass
between checkpoints, so do not worry if you do not observe the CPU_USAGE entry changing by the
hour. Also note that this is actual CPU time as reported by the operating system; it is not time as
measured by a wall clock.

Another useful method of tracking the progress of jobs is through the user log. If you have
specified a log command in your submit file, the progress of the job may be followed by viewing
the log file. Various events such as execution commencement, checkpoint, eviction and termination
are logged in the file. Also logged is the time at which the event occurred.

Condor Version 6.1.17 Manual

2.6. Managing a Condor Job 28

When your job begins to run, Condor starts up a condor shadow process on the submit ma-
chine. The shadow process is the mechanism by which the remotely executing jobs can access the
environment from which it was submitted, such as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds of shadows
running on the machine. Since the text segments of all these processes is the same, the load on the
submit machine is usually not significant. If, however, you notice degraded performance, you can
limit the number of jobs that can run simultaneously through the MAX JOBS RUNNING configura-
tion parameter. Please talk to your system administrator for the necessary configuration change.

You can also find all the machines that are running your job through the condor status command.
For example, to find all the machines that are running jobs submitted by “breach@cs.wisc.edu,” type:

% condor_status -constraint ’RemoteUser == "breach@cs.wisc.edu"’

Name Arch OpSys State Activity Loa-
dAv Mem ActvtyTime

alfred.cs. INTEL SOLARIS251 Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL SOLARIS251 Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL SOLARIS251 Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL SOLARIS251 Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL SOLARIS251 Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL SOLARIS251 Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL SOLARIS251 Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL SOLARIS251 Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

% condor_status -run

Name Arch OpSys LoadAv Remo-
teUser ClientMachine

adriana.cs INTEL SOLARIS251 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL SOLARIS251 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi SUN4u SOLARIS251 1.000 nice-
user.condor@cs. chevre.cs.wisc.
anfrom.cs. SUN4x SOLARIS251 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
anthrax.cs INTEL SOLARIS251 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.
astro.cs.w INTEL SOLARIS251 1.000 nice-
user.condor@cs. chevre.cs.wisc.
aura.cs.wi SUN4u SOLARIS251 0.996 nice-
user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL SOLARIS251 1.000 nice-

Condor Version 6.1.17 Manual

2.6. Managing a Condor Job 29

user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL SOLARIS251 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL SOLARIS251 1.000 nice-
user.condor@cs. chevre.cs.wisc.
...

2.6.2 Removing a job from the queue

A job can be removed from the queue at any time by using the condor rm command. If the job that
is being removed is currently running, the job is killed without a checkpoint, and its queue entry is
removed. The following example shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -

10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -

10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

2.6.3 Changing the priority of jobs

In addition to the priorities assigned to each user, Condor also provides each user with the capability
of assigning priorities to each submitted job. These job priorities are local to each queue and range
from -20 to +20, with higher values meaning better priority.

The default priority of a job is 0, but can be changed using the condor prio command. For
example, to change the priority of a job to -15,

% condor_q raman

Condor Version 6.1.17 Manual

2.6. Managing a Condor Job 30

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

% condor_prio -p -15 126.0

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that these job priorities are completely different from the user priorities
assigned by Condor. Job priorities do not impact user priorities. They are only a mechanism for
the user to identify the relative importance of jobs among all the jobs submitted by the user to that
specific queue.

2.6.4 Why does the job not run?

Users sometimes find that their jobs do not run. There are several reasons why a specific job does
not run. These reasons include failed job or machine constraints, bias due to preferences, insuffi-
cient priority, and the preemption throttle that is implemented by the condor negotiator to prevent
thrashing. Many of these reasons can be diagnosed by using the -analyze option of condor q. For
example, the following job submitted by user jbasney was found to have not run for several days.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -

10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Running condor q’s analyzer provided the following information:

% condor_q 125.0 -analyze

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

Condor Version 6.1.17 Manual

2.6. Managing a Condor Job 31

125.000: Run analysis summary. Of 323 resource offers,

323 do not satisfy the request’s constraints
0 resource offer constraints are not satis-

fied by this request
0 are serving equal or higher priority customers
0 are serving more preferred customers
0 cannot preempt because preemption has been held
0 are available to service your request

WARNING: Be advised:
No resources matched request’s constraints
Check the Requirements expression below:

Requirements = Arch == "INTEL" && OpSys == "IRIX6" &&
Disk >= ExecutableSize && VirtualMemory >= ImageSize

For this job, the Requirements expression specifies a platform that does not exist. Therefore,
the expression always evaluates to false.

While the analyzer can diagnose most common problems, there are some situations that it cannot
reliably detect due to the instantaneous and local nature of the information it uses to detect the
problem. Thus, it may be that the analyzer reports that resources are available to service the request,
but the job still does not run. In most of these situations, the delay is transient, and the job will run
during the next negotiation cycle.

If the problem persists and the analyzer is unable to detect the situation, it may be that the job
begins to run but immediately terminates due to some problem. Viewing the job’s error and log files
(specified in the submit command file) and Condor’s SHADOW LOG file may assist in tracking down
the problem. If the cause is still unclear, please contact your system administrator.

2.6.5 Job Completion

When your Condor job completes(either through normal means or abnormal termination by signal),
Condor will remove it from the job queue (i.e., it will no longer appear in the output of condor q)
and insert it into the job history file. You can examine the job history file with the condor history
command. If you specified a log file in your submit description file, then the job exit status will be
recorded there as well.

By default, Condor will send you an email message when your job completes. You can modify
this behavior with the condor submit “notification” command. The message will include the exit
status of your job (i.e., the argument your job passed to the exit system call when it completed)
or notification that your job was killed by a signal. It will also include the following statistics (as
appropriate) about your job:

Submitted at: when the job was submitted with condor submit

Condor Version 6.1.17 Manual

2.7. Priorities in Condor 32

Completed at: when the job completed

Real Time: elapsed time between when the job was submitted and when it completed (days
hours:minutes:seconds)

Run Time: total time the job was running (i.e., real time minus queueing time)

Committed Time: total run time that contributed to job completion (i.e., run time minus the run
time that was lost because the job was evicted without performing a checkpoint)

Remote User Time: total amount of committed time the job spent executing in user mode

Remote System Time: total amount of committed time the job spent executing in system mode

Total Remote Time: total committed CPU time for the job

Local User Time: total amount of time this job’s condor shadow (remote system call server) spent
executing in user mode

Local System Time: total amount of time this job’s condor shadow spent executing in system
mode

Total Local Time: total CPU usage for this job’s condor shadow

Leveraging Factor: the ratio of total remote time to total system time (a factor below 1.0 indicates
that the job ran inefficiently, spending more CPU time performing remote system calls than
actually executing on the remote machine)

Virtual Image Size: memory size of the job, computed when the job checkpoints

Checkpoints written: number of successful checkpoints performed by the job

Checkpoint restarts: number of times the job successfully restarted from a checkpoint

Network: total network usage by the job for checkpointing and remote system calls

Buffer Configuration: configuration of remote system call I/O buffers

Total I/O: total file I/O detected by the remote system call library

I/O by File: I/O statistics per file produced by the remote system call library

Remote System Calls: listing of all remote system calls performed (both Condor-specific and Unix
system calls) with a count of the number of times each was performed

2.7 Priorities in Condor

Condor has two independent priority controls: job priorities and user priorities.

Condor Version 6.1.17 Manual

2.7. Priorities in Condor 33

2.7.1 Job Priority

Job priorities allow the assignment of a priority level to each submitted Condor job in order to
control order of execution. To set a job priority, use the condor prio command — see the example
in section 2.6.3, or the command reference page on page 272. Job priorities do not impact user
priorities in any fashion. Job priorities range from -20 to +20, with -20 being the worst and with +20
being the best.

2.7.2 User priority

Machines are allocated to users based upon a user’s priority. A lower numerical value for user
priority means higher priority, so a user with priority 5 will get more resources than a user with
priority 50. User priorities in Condor can be examined with the condor userprio command (see
page 320). Condor administrators can set and change individual user priorities with the same utility.

Condor continuously calculates the share of available machines that each user should be allo-
cated. This share is inversely related to the ratio between user priorities. For example, a user with
a priority of 10 will get twice as many machines as a user with a priority of 20. The priority of
each individual user changes according to the number of resources the individual is using. Each
user starts out with the best possible priority: 0.5. If the number of machines a user currently has is
greater than the user priority, the user priority will worsen by numerically increasing over time. If
the number of machines is less then the priority, the priority will improve by numerically decreasing
over time. The long-term result is fair-share access across all users. The speed at which Condor
adjusts the priorities is controlled with the configuration macro PRIORITY HALFLIFE , an expo-
nential half-life value. The default is one day. If a user that has user priority of 100 and is utilizing
100 machines removes all his/her jobs, one day later that user’s priority will be 50, and two days
later the priority will be 25.

Condor enforces that each user gets his/her fair share of machines according to user priority both
when allocating machines which become available and by priority preemption of currently allocated
machines. For instance, if a low priority user is utilizing all available machines and suddenly a
higher priority user submits jobs, Condor will immediately checkpoint and vacate jobs belonging
to the lower priority user. This will free up machines that Condor will then give over to the higher
priority user. Condor will not starve the lower priority user; it will preempt only enough jobs so that
the higher priority user’s fair share can be realized (based upon the ratio between user priorities). To
prevent thrashing of the system due to priority preemption, the Condor site administrator can define
a PREEMPTION REQUIREMENTS expression in Condor’s configuration. The default expression
that ships with Condor is configured to only preempt lower priority jobs that have run for at least
one hour. So in the previous example, in the worse case it could take up to a maximum of one hour
until the higher priority user receives his fair share of machines.

User priorities are keyed on “username@domain”, for example “johndoe@cs.wisc.edu”. The
domain name to use, if any, is configured by the Condor site administrator. Thus, user priority and
therefore resource allocation is not impacted by which machine the user submits from or even if the
user submits jobs from multiple machines.

Condor Version 6.1.17 Manual

2.8. Parallel Applications in Condor: Condor-PVM 34

An extra feature is the ability to submit a job as a “nice” job (see page 308). Nice jobs artificially
boost the user priority by one million just for the nice job. This effectively means that nice jobs will
only run on machines that no other Condor job (that is, non-niced job) wants. In a similar fashion,
a Condor administrator could set the user priority of any specific Condor user very high. If done,
for example, with a guest account, the guest could only use cycles not wanted by other users of the
system.

2.8 Parallel Applications in Condor: Condor-PVM

Applications that use PVM (Parallel Virtual Machine) may use Condor. PVM offers a set of message
passing primitives for use in C and C++ language programs. The primitives, together with the
PVM environment allow parallelism at the program level. Multiple processes may run on multiple
machines, while communicating with each other. More information about PVM is available at
http://www.epm.ornl.gov/pvm/.

Condor-PVM provides a framework to run PVM applications in Condor’s opportunistic environ-
ment. Where PVM needs dedicated machines to run PVM applications, Condor does not. Condor
can be used to dynamically construct PVM virtual machines from a Condor pool of machines.

In Condor-PVM, Condor acts as the resource manager for the PVM daemon. Whenever a PVM
program asks for nodes (machines), the request is forwarded to Condor. Condor finds a machine in
the Condor pool using usual mechanisms, and adds it to the virtual machine. If a machine needs to
leave the pool, the PVM program is notified by normal PVM mechanisms.

NOTE: Condor-PVM is an optional Condor module. It is not automatically installed with Con-
dor. To check and see if it has been installed at your site, enter the command:

ls -l ‘condor_config_val PVMD‘

Please note the use of back ticks in the above command. They specify to run the condor config val
program. If the result of this program shows the file condor pvmd on your system, then the
Condor-PVM module is installed. If not, ask your site administrator to download and install Condor-
PVM from http://www.cs.wisc.edu/condor/downloads/.

2.8.1 Effective Usage: the Master-Worker Paradigm

There are several different parallel programming paradigms. One of the more common is the master-
worker (or pool of tasks) arrangement. In a master-worker program model, one node acts as the
controlling master for the parallel application and sends pieces of work out to worker nodes. The
worker node does some computation, and it sends the result back to the master node. The master
has a pool of work that needs to be done, so it assigns the next piece of work out to the next worker
that becomes available.

Condor Version 6.1.17 Manual

2.8. Parallel Applications in Condor: Condor-PVM 35

Condor-PVM is designed to run PVM applications which follow the master-worker paradigm.
Condor runs the master application on the machine where the job was submitted and will not preempt
it. Workers are pulled in from the Condor pool as they become available.

Not all parallel programming paradigms lend themselves to Condor’s opportunistic environment.
In such an environment, any of the nodes could be preempted and disappear at any moment. The
master-worker model does work well in this environment. The master keeps track of which piece
of work it sends to each worker. The master node is informed of the addition and disappearance
of nodes. If the master node is informed that a worker node has disappeared, the master places the
unfinished work it had assigned to the disappearing node back into the pool of tasks. This work is
sent again to the next available worker node. If the master notices that the number of workers has
dropped below an acceptable level, it requests more workers (using pvm addhosts()). Alterna-
tively, the master requests a replacement node every time it is notified that a worker has gone away.
The benefit of this paradigm is that the number of workers is not important and changes in the size
of the virtual machine are easily handled.

A tool called MW has been developed to assist in the development of master-worker style
applications for distributed, opportunistic environments like Condor. MW provides a C++ API
which hides the complexities of managing a master-worker Condor-PVM application. We sug-
gest that you consider modifying your PVM application to use MW instead of developing your
own dynamic PVM master from scratch. Additional information about MW is available at
http://www.cs.wisc.edu/condor/mw/.

2.8.2 Binary Compatibility and Runtime Differences

Condor-PVM does not define a new API (application program interface); programs use the existing
resource management PVM calls such as pvm addhosts() and pvm notify(). Because of
this, some master-worker PVM applications are ready to run under Condor-PVM with no changes at
all. Regardless of using Condor-PVM or not, it is good master-worker design to handle the case of a
disappearing worker node, and therefore many programmers have already constructed their master
program with all the necessary fault tolerant logic.

Regular PVM and Condor-PVM are binary compatible. The same binary which runs under
regular PVM will run under Condor, and vice-versa. There is no need to re-link for Condor-PVM.
This permits easy application development (develop your PVM application interactively with the
regular PVM console, XPVM, etc.) as well as binary sharing between Condor and some dedicated
MPP systems.

This release of Condor-PVM is based on PVM 3.4.2. PVM versions 3.4.0 through 3.4.2 are all
supported. The vast majority of the PVM library functions under Condor maintain the same seman-
tics as in PVM 3.4.2, including messaging operations, group operations, and pvm catchout().

The following list is a summary of the changes and new features of PVM running within the
Condor environment:

• Condor introduces the concept of machine class. A pool of machines is likely to contain

Condor Version 6.1.17 Manual

2.8. Parallel Applications in Condor: Condor-PVM 36

machines of more than one platform. Under Condor-PVM, machines of different architectures
belong to different machine classes. With the concept machine class, Condor can be told what
type of machine to allocate. Machine classes are assigned integer values, starting with 0. A
machine class is specified in a submit description file when the job is submitted to Condor.

• pvm addhosts(). When an application adds a host machine, it calls pvm addhosts().
The first argument to pvm addhosts() is a string that specifies the machine class. For
example, to specify class 0, a pointer to the string “0” is the first argument. Condor finds a
machine that satisfies the requirements of class 0 and adds it to the PVM virtual machine.

The function pvm addhosts() does not block. It returns immediately, before hosts are
added to the virtual machine. In a non-dedicated environment the amount of time it takes until
a machine becomes available is not bound. A program should call pvm notify() before
calling pvm addhosts(). When a host is added later, the program will be notified in the
usual PVM fashion (with a PvmHostAdd notification message).

After receiving a PvmHostAdd notification, the PVM master can unpack the following infor-
mation about the added host: an integer specifying the TID of the new host, a string specifying
the name of the new host, followed by a string specifying the machine class of the new host.
The PVM master can then call pvm spawn() to start a worker process on the new host,
specifying this machine class as the architecture and using the appropriate executable path for
this machine class. Note that the name of the host is given by the startd and may be of the
form “vmN@hostname” on SMP machines.

• pvm notify(). Under Condor, there are two additional possible notification types to the
function pvm notify(). They are PvmHostSuspend and PvmHostResume. The pro-
gram calls pvm notify() with a host tid and PvmHostSuspend (or PvmHostResume)
as arguments, and the program will receive a notification for the event of a host being sus-
pended. Note that a notification occurs only once for each request. As an example, a
PvmHostSuspend notification request for tid 4 results in a single PvmHostSuspend
message for tid 4. There will not be another PvmHostSuspendmessage for that tid without
another notification request.

The easiest way to handle this is the following: When a worker node starts up, set up a
notification for PvmHostSuspend on its tid. When that node gets suspended, set up a
PvmHostResume notification. When it resumes, set up a PvmHostSuspend notification.

If your application uses the PvmHostSuspend and PvmHostResume notification types,
you will need to modify your PVM distribution to support them as follows. First, go to your
$(PVM ROOT). In include/pvm3.h, add

#define PvmHostSuspend 6 /* condor suspension */
#define PvmHostResume 7 /* condor resumption */

to the list of ”pvm notify kinds”. In src/lpvmgen.c, in pvm notify(), change

} else {
switch (what) {
case PvmHostDelete:
....

Condor Version 6.1.17 Manual

2.8. Parallel Applications in Condor: Condor-PVM 37

to

} else {
switch (what) {
case PvmHostSuspend: /* for condor */
case PvmHostResume: /* for condor */
case PvmHostDelete:
....

And that’s it. Re-compile, and you’re done.

• pvm spawn(). If the flag in pvm spawn() is PvmTaskArch, then a machine class string
should be used. If there is only one machine class in a virtual machine, “0” is the string for
the desired architecture.

Under Condor, only one PVM task spawned per node is currently allowed, due to Condor’s
machine load checks. Most Condor sites will suspend or vacate a job if the load on its machine
is higher than a specified threshold. Having more than one PVM task per node pushes the load
higher than the threshold.

Also, Condor only supports starting one copy of the executable with each call to
pvm spawn() (i.e., the fifth argument must always be equal to one). To spawn multiple
copies of an executable in Condor, you must call pvm spawn() once for each copy.

A good fault tolerant program will be able to deal with pvm spawn() failing. It happens
more often in opportunistic environments like Condor than in dedicated ones.

• pvm exit(). If a PVM task calls pvm catchout() during its run to catch the output of
child tasks, pvm exit() will attempt to gather the output of all child tasks before returning.
Due to the dynamic nature of the virtual machine in Condor, this cleanup procedure (in the
PVM library and daemon) is error-prone and should be avoided. So, any PVM tasks which
call pvm catchout() should be sure to call it again with a NULL argument to disable
output collection before calling pvm exit().

2.8.3 Sample PVM submit file

PVM jobs are submitted to the PVM universe. The following is an example of a submit description
file for a PVM job. This job has a master PVM program called master.exe.

###
sample_submit
Sample submit file for PVM jobs.
###

The job is a PVM universe job.
universe = PVM

Condor Version 6.1.17 Manual

2.8. Parallel Applications in Condor: Condor-PVM 38

The executable of the master PVM program is ‘‘master.exe’’.
executable = master.exe

input = "in.dat"
output = "out.dat"
error = "err.dat"

################### Machine class 0 ##################

Requirements = (Arch == "INTEL") && (OpSys == "LINUX")

We want at least 2 machines in class 0 before starting the
program. We can use up to 4 machines.
machine_count = 2..4
queue

################### Machine class 1 ##################

Requirements = (Arch == "SUN4x") && (OpSys == "SOLARIS26")

We need at least 1 machine in class 1 before starting the
executable. We can use up to 3 to start with.
machine_count = 1..3
queue

################### Machine class 2 ##################

Requirements = (Arch == "INTEL") && (OpSys == "SOLARIS26")

We don’t need any machines in this class at startup, but we can use
up to 3.
machine_count = 0..3
queue

###
note: the program will not be started until the least
requirements in all classes are satisfied.
###

In this sample submit file, the command universe = PVM specifies that the jobs should be
submitted into PVM universe.

The command executable = master.exe tells Condor that the PVM master program is
master.exe. This program will be started on the submitting machine. The workers should be spawned
by this master program during execution.

Condor Version 6.1.17 Manual

2.9. Running MPICH jobs in Condor 39

The input, output, and error commands specify files that should be redirected to the
standard in, out, and error of the PVM master program. Note that these files will not include output
from worker processes unless the master calls pvm catchout().

This submit file also tells Condor that the virtual machine consists of three different classes
of machine. Class 0 contains machines with INTEL processors running LINUX; class 1 contains
machines with SUN4x (SPARC) processors running SOLARIS26; class 2 contains machines with
INTEL processors running SOLARIS26.

By using machine_count = <min>..<max>, the submit file tells Condor that before the
PVM master is started, there should be at least <min> number of machines of the current class. It
also asks Condor to give it as many as <max> machines. During the execution of the program, the
application may request more machines of each of the class by calling pvm addhosts() with a
string specifying the machine class. It is often useful to specify <min> of 0 for each class, so the
PVM master will be started immediately when the first host from any machine class is allocated.

The queue command should be inserted after the specifications of each class.

2.9 Running MPICH jobs in Condor

In addition to PVM, Condor also supports the execution of parallel jobs that utilize MPI. Our current
implementation supports the following features:

• There are no alterations to the MPICH implementation. You can directly use the version from
Argonne National Labs.

• You do not have to re-compile or re-link your MPICH job. Just compile it using the regular
mpicc. Note that you have to be using the ch p4 subsystem provided by Argonne.

• The communication speed of the MPI nodes is not affected by running it under Condor.

However, there are some limitations to our current implementation.

2.9.1 Caveats

MPICH Your MPI job must be compiled with MPICH, Argonne National Labs’ implementa-
tion of MPI. Specifically, you must use the “ch p4” device for MPICH. For information on
MPICH, see Argonne’s web page at http://www-unix.mcs.anl.gov/mpi/mpich/. Your version
of MPICH must not be compiled with the path to RSH hard-coded into the library (As a result
of running configure as ./configure-rsh=/path/to/your/rsh possilbly.) Condor provides a
special version of rsh that it uses to start jobs.

Dedicated Resources You must make sure that your MPICH jobs will be running on machines that
will not vacate the job before the job terminates naturally. (This is a limitation of MPICH
and the MPI specification.) Unlike PVM (Section 2.8), the current MPICH implementation

Condor Version 6.1.17 Manual

2.9. Running MPICH jobs in Condor 40

does not support dynamic resource management. That is, processes in the virtual machine
may NOT join or leave the computation at any time. If you start an MPI job with 4 nodes,
for example, none of those 4 nodes can be preempted by other Condor jobs or the machine’s
owner.

Scheduling We do not yet have a sophisticated scheduling algorithm in place for MPI jobs. If you
set things up properly, there shouldn’t be much of a problem. However, if there are several
users trying to run MPI jobs on the same machines, it may be the case that no jobs will run at
all and Condor’s scheduling will deadlock. Writing a good scheduler for this environment is
high on the priority list for Condor version 6.5.

“New” shadow and starter We have been developing new versions of the condor shadow and the
condor starter. You have to use these new versions to run MPI jobs. For information on
obtaining these binaries, see below.

Shared File System The machines where you want your MPI job to run must have a shared file
system. There is no remote I/O for our MPI support like there is for our Standard Universe
jobs.

Condor Version 6.1.15+ You must be running this version of the Condor distribution (or greater)
in order to use this contrib module.

2.9.2 Getting the Binaries

There is now an MPI “contrib” module available with Condor. It can be found in the contrib section
of the downloads. When you un-tar the tarfile, there will be three files:

• condor starter.v61

• condor shadow.v61

• rsh

The last item is named rsh, but it is not the rsh utility you’re familiar with — it’s a wrapper that
is required for our implementation to function correctly. These three binaries should go in Condor’s
sbin directory, where many other files like them reside.

2.9.3 Configuring Condor

Now that you’ve got the necessary binaries, you’ll have to configure Condor to use MPI. Insert the
following lines in the main condor config file:

ALTERNATE_STARTER_2 = $(SBIN)/condor_starter.v61
STARTER_2_IS_DC = TRUE
MPI_CONDOR_RSH_PATH = $(SBIN)
SHADOW_MPI = $(SBIN)/condor_shadow.v61

Condor Version 6.1.17 Manual

2.9. Running MPICH jobs in Condor 41

Reconfigure your pool by typing

condor_reconfig ‘condor_status -m‘

The -m argument tells condor status to return just the names of all the running condor master dae-
mons in your pool. Note that you have to do this from a machine with administrator privileges.

2.9.4 Managing Dedicated Machines

There are several ways that you can set up a pool to run MPI jobs without interruption. We will
cover two methods that will work, although more sophisticated solutions are possible. Familiarity
with Startd policy configuration (Section 3.6) is necessary to understand the following examples.

For the first example, let’s assume that you have a cluster of machines which do not have regular
users on them. Let’s also assume that these machines are solely dedicated to the use of Condor. The
simplest way to set up your policy is as follows:

START = TRUE
CONTINUE = TRUE
SUSPEND = FALSE
PREEMPT = FALSE
KILL = FALSE

With the above configuration, the machines will accept any Condor job, and the jobs will never
be suspended, preempted, or killed. You will never have to worry about an MPI job (or any job, for
that matter) being evicted from the machines.

For a more complex example, let us assume you have machines with sophisticated policies al-
ready in place, and you’d like the machines to manage MPI jobs differently. The following macros
(which should be specified near other Startd policy support macros) allow you to accomplish the
task easily.

MPI = 8
IsMPI = (JobUniverse == $(MPI))

Now change your configuration from

START = /* your interesting policy here */

to

FORMER_START = /* your interesting policy here */

Condor Version 6.1.17 Manual

2.9. Running MPICH jobs in Condor 42

Similarly, the CONTINUE , SUSPEND , PREEMPT , and KILL expressions should be changed to
macros named FORMER CONTINUE, etc. The following configuration will ensure that MPI jobs are
never suspended or evicted while implementing your former policy for all other jobs.

START = ($(FORMER_START))
CONTINUE = ($(FORMER_CONTINUE))
SUSPEND = ($(FORMER_SUSPEND) && ((IsMPI) == FALSE))
PREEMPT = ($(FORMER_PREEMPT) && ((IsMPI) == FALSE))
KILL = ($(FORMER_KILL) && ((IsMPI) == FALSE))

Thus, Condor will never attempt to vacate an MPI job from a machine once it starts running on
that machine. Some machine owners may not like this setup, so you may need to customize your
configuration to suit your needs. The most important point to remember when creating your Startd
policy is that MPI jobs are immediately killed if one or more nodes of the job leave the computation.

2.9.5 Submitting to Condor

Here is a minimal submit file to submit an MPI job to Condor. For more information on writing
submit files, see Section 2.5.1.

universe = MPI
executable = your_mpi_program
machine_count = 4
queue

This tells Condor to start the executable named your mpi program on four machines. These
four machines will be of the same architechture and operating system as the submitting machine.
Note the universe = MPI line tells Condor that an MPICH job is being submitted.

Now let’s try a more sophisticated submit file:

###
submitfile
###
universe = MPI
executable = simplempi
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)
machine_count = 4
queue

Condor Version 6.1.17 Manual

2.9. Running MPICH jobs in Condor 43

Notice the $(NODE)macro, which is expanded when the job starts so that it becomes equivalent
to the MPI “id” of the MPICH job. The first process started becomes “0”, the second is “1”, etc. For
example, let’s say I prepared four input files, named infile.0 through infile.3:

infile.0:
Hello number zero.

infile.1:
Hello number one.

etc. I then created a simple MPI job, named simplempi.c

/**
* simplempi.c
**/

#include <stdio.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char *argv[];

{
int myid;
char line[128];

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

fprintf (stdout, "Printing to stdout...%d\n", myid);
fprintf (stderr, "Printing to stderr...%d\n", myid);
fgets (line, 128, stdin);
fprintf (stdout, "From stdin: %s", line);

MPI_Finalize();
return 0;

}

And to complete the demonstration, here’s the Makefile:

###
This is a very basic Makefile
###

Change this part to your mpicc, obviously....
CC = /usr/local/bin/mpicc

Condor Version 6.1.17 Manual

2.10. Extending your Condor pool with Glidein 44

CLINKER = $(CC)

CFLAGS = -g
EXECS = simplempi

all: $(EXECS)

simplempi: simplempi.o
$(CLINKER) -o simplempi simplempi.o -lm

.c.o:
$(CC) $(CFLAGS) -c $*.c

Once simplempi is built, use condor submit to submit your job. This job should finish pretty
quickly once it finds machines to run on, and the results will be what you expect: 8 files will be
created: errfile.[0-3] and outfile.[0-3]. For example, outfile.0 will contain

Printing to stdout...0
From stdin: Hello number zero.

and errfile.0 will contain

Printing to stderr...0

Of course, individual tasks may open other files; this example was constructed to demonstrate
the $(NODE) feature and the setup of the expected stdin, stdout, and stderr files in the MPI
universe.

2.10 Extending your Condor pool with Glidein

Condor works together with Globus software to provide the capability of submitting Condor jobs
to remote computer systems. Globus software provides mechanisms to access and utilize remote
resources.

condor glidein is a program that can be used to add Globus resources to a Condor pool on a
temporary basis. During this period, these resources are visible to users of the pool, but only the
user that added the resources is allowed to use them. The machine in the Condor pool is referred
to herein as the local node, while the resource added to the local Condor pool is referred to as the
remote node.

These requirements are general to using any Globus resource:

1. An X.509 certificate issued by a Globus certificate authority.

Condor Version 6.1.17 Manual

2.10. Extending your Condor pool with Glidein 45

2. Access to a Globus resource. You must be a valid Globus user and be mapped to a valid
login account by the site’s Globus administrator on every Globus resource that will be
added to the local Condor pool using condor glidein. More information can be found at
http://www.globus.org

3. The environment variables HOME and either GLOBUS INSTALL PATH or
GLOBUS DEPLOY PATH must be set.

2.10.1 condor glidein Requirements

In order to use condor glidein to add a Globus resource to the local Condor pool, there are several
requirements beyond the general Globus requirements given above.

1. Use Globus v1.1 or better.

2. Be an authorized user of the local Condor pool.

3. The local Condor pool configuration file(s) must give HOSTALLOW WRITE permission to
every resource that will be added using condor glidein. Wildcards are permitted in this spec-
ification. An example is of adding every machine at cs.wisc.edu by adding *.cs.wisc.edu to
the HOSTALLOW WRITE list. Recall that the changes take effect when all machines in the
local pool are sent a reconfigure command.

4. The local Condor pool’s configuration file(s) must set GLOBUSRUN to be the path of globus-
run and SHADOW GLOBUS to be the path of the condor shadow.globus.

5. Included in the PATH must be the common user programs directory /bin, globus tools, and
the Condor user program directory.

6. Have the environment variable X509 USER PROXY set, pointing to a valid user proxy.

2.10.2 What condor glidein Does

condor glidein first checks that there is a valid proxy and that the necessary files are available to
condor glidein.

condor glidein then contacts the Globus resource and checks for the presence of the necessary
configuration files and Condor executables. If the executables are not present for the machine archi-
tecture, operating system version, and Condor version required, a server running at UW is contacted
to transfer the needed executables.

When the files are correctly in place, Condor daemons are started. condor glidein does this by
creating a submit description file for condor submit, which runs the condor master under the Globus
universe. This implies that execution of the condor master is started on the Globus resource. The
Condor daemons exit gracefully when no jobs run on the daemons for a configurable period of time.
The default length of time is 20 minutes.

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 46

The Condor executables on the Globus resource contact the local pool and attempt to join the
pool. The START expression for the condor startd daemon requires that the username of the person
running condor glidein matches the username of the jobs submitted through Condor.

After a short length of time, the Globus resource can be seen in the local Condor pool, as with
this example.

% condor_status | grep denal
7591386@denal IRIX65 SGI Unclaimed Idle 3.700 24064 0+00:06:35

Once the Globus resource has been added to the local Condor pool with condor glidein, job(s)
may be submitted. To force a job to run on the Globus resource, specify that Globus resource as
a machine requirement in the submit description file. Here is an example from within the submit
description file that forces submission to the Globus resource denali.mcs.anl.gov:

requirements = (machine == "denali.mcs.anl.gov") \
&& FileSystemDomain != "" \
&& Arch != "" && OpSys != ""

This example requires that the job run only on denali.mcs.anl.gov, and it prevents Condor from
inserting the filesystem domain, architecture, and operating system attributes as requirements in the
matchmaking process. Condor must be told not to use the submission machine’s attributes in those
cases where the Globus resource’s attributes do not match the submission machine’s attributes.

2.11 Inter-job Dependencies: DAGMan Meta-Scheduler

A directed acyclic graph (DAG) can be used to represent a set of programs where the input, output,
or execution of one or more programs is dependent on one or more other programs. The programs
are nodes (vertices) in the graph, and the edges (arcs) identify the dependencies. Condor alone
finds machines for the execution of programs, but it does not schedule programs (jobs) based on
dependencies. The Directed Acyclic Graph Manager (DAGMan) is a meta-scheduler for Condor
jobs. DAGMan submits jobs to Condor in an order represented by a DAG and processes the results.
An input file defined prior to submission describes the DAG, and a Condor submit description file
for each program in the DAG is used by Condor.

Each node (program) in the DAG needs its own Condor submit description file. As DAGMan
submits jobs to Condor, it uses a single Condor log file to enforce the ordering required for the
DAG. The DAG itself is defined by the contents of a DAGMan input file. DAGMan is responsible
for scheduling, recovery, and reporting for the set of programs submitted to Condor.

The following sections specify the use of DAGMan.

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 47

2.11.1 Input File describing the DAG

The input file used by DAGMan specifies three items:

1. A list of the programs in the DAG. This serves to name each program and specify each pro-
gram’s Condor submit description file.

2. Processing that takes place before submission of any programs in the DAG to Condor or after
Condor has completed execution of any program in the DAG.

3. Description of the dependencies in the DAG.

These three items are placed in the input file for DAGMan in the order listed.

Comments may be placed in the input file that describes the DAG. The pound character (#) as
the first character on a line identifies the line as a comment. Comments do not span lines.

An example input file for DAGMan is

Filename: diamond.dag
#
Job A A.condor
Job B B.condor
Job C C.condor
Job D D.condor
Script PRE A top_pre.csh
Script PRE B mid_pre.perl $JOB
Script POST B mid_post.perl $JOB $RETURN
Script PRE C mid_pre.perl $JOB
Script POST C mid_post.perl $JOB $RETURN
Script PRE D bot_pre.csh
PARENT A CHILD B C
PARENT B C CHILD D

This input file describes the DAG shown in Figure 2.2.

A

B C

D

Figure 2.2: Diamond DAG

The first section of the input file lists all the programs that appear in the DAG. Each program is
described by a single line called a Job Entry. The syntax used for each Job Entry is

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 48

JOB JobName CondorSubmitDescriptionFile [DONE]

A Job Entry maps a JobName to a Condor submit description file. The JobName uniquely
identifies programs within the DAGMan input file and within output messages.

The keyword JOB and the JobName are not case sensitive. A JobName of joba is equivalent
to JobA. The CondorSubmitDescriptionFile is case sensitive, since the UNIX file system is case
sensitive. The JobName can be any string that contains no white space.

The optional DONE identifies a job as being already completed. This is useful in situations
where the user wishes to verify results, but does not need all programs within the dependency graph
to be executed. The DONE feature is also utilized when an error occurs causing the DAG to not be
completed. DAGMan generates a Rescue DAG, a DAGMan input file that can be used to restart and
complete a DAG without re-executing completed programs.

The second type of item in a DAGMan input file enumerates processing that is done either before
a program within the DAG is submitted to Condor for execution or after a program within the DAG
completes its execution. Processing done before a program is submitted to Condor is called a PRE
script. Processing done after a program successfully completes its execution under Condor is called
a POST script. A node in the DAG is comprised of the program together with PRE and/or POST
scripts. The dependencies in the DAG are enforced based on nodes.

Syntax for PRE and POST script lines within the input file

SCRIPT PRE JobName ExecutableName [arguments]

SCRIPT POST JobNameExecutableName [arguments]

The SCRIPT keyword identifies the type of line within the DAG input file. The PRE or POST
keyword specifies the relative timing of when the script is to be run. The JobName specifies the
job to which the script is attached. The ExecutableName specifies the script to be executed, and it
may be followed by any command line arguments to that script. The ExecutableName and optional
arguments have their case preserved.

Scripts are optional for each job, and any scripts are executed on the machine to which the
DAGMan is submitted.

The PRE and POST scripts are commonly used when files must be placed into a staging area for
the job to use, and files are cleaned up or removed once the job is finished running. An example using
PRE/POST scripts involves staging files that are stored on tape. The PRE script reads compressed
input files from the tape drive, and it uncompresses them, placing the input files in the current
directory. The program within the DAG node is submitted to Condor, and it reads these input files.
The program produces output files. The POST script compresses the output files, writes them out to
the tape, and then deletes the staged input and output files.

DAGMan takes note of the exit value of the program as well as the exit value of its scripts. If
the PRE script fails (exit value != 0), then neither the job nor the POST script runs, and the node is
marked as failed.

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 49

If the PRE script succeeds, the program is submitted to Condor. If the program fails, the DAG
node is marked as failed. An exit value not equal to 0 indicates program failure. It is therefore
important that the program returns the exit value 0 to indicate the program did not fail.

The POST script is run regardless of the job’s return value. If the POST script fails (exit value
!= 0), then the node is marked as failed.

A node not mark as failed at any point is successful.

Two variables are available to ease script writing. The $JOB variable evaluates to JobName.
The $RETURN variable evaluates to the return value of the program. The variables may be placed
anywhere within the arguments.

As an example, suppose the PRE script expands a compressed file named JobName.gz. The
SCRIPT entry for jobs A, B, and C are

SCRIPT PRE A pre.csh $JOB .gz
SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz

The script pre.csh may use these arguments

#!/bin/csh
gunzip $argv[1]$argv[2]

The third type of item in the DAG input file describes the dependencies within the DAG. Nodes
are parents and/or children within the DAG. A parent node must be completed successfully before
any child node may be started. A child node is started once all its parents have successfully com-
pleted.

The syntax of a dependency line within the DAG input file:

PARENT ParentJobName. . . CHILD ChildJobName. . .

The PARENT keyword is followed by one or more ParentJobNames. The CHILD keyword is
followed by one or more ChildJobNames. Each child job depends on every parent job on the line.
A single line in the input file can specify the dependencies from one or more parents to one or more
children. As an example, the line

PARENT p1 p2 CHILD c1 c2

produces four dependencies:

1. p1 to c1

2. p1 to c2

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 50

3. p2 to c1

4. p2 to c2

2.11.2 Condor Submit Description File

Each node in a DAG may be a unique executable, each with a unique Condor submit description
file. Each program may be submitted to a different universe within Condor, for example standard,
vanilla, or DAGMan.

Two limitations exist. First, each Condor submit description file must submit only one job.
There may not be multiple queue lines, or DAGMan will fail. The second limitation is that the
submit description file for all jobs within the DAG must use the same log. DAGMan enforces the
dependencies within a DAG using the events recorded in the log file produced by job submission to
Condor.

Here is an example Condor submit description file to go with the diamond-shaped DAG example.

Filename: diamond_job.condor
#
executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla
notification = NEVER
queue

This example uses the same Condor submit description file for all the jobs in the DAG. This
implies that each node within the DAG runs the same program. The $(cluster) macro is used
to produce unique file names for each program’s output. Each job is submitted separately, into its
own cluster, so this provides unique names for the output files.

The notification is set to NEVER in this example. This tells Condor not to send e-mail about
the completion of a program submitted to Condor. For DAGs with many nodes, this becomes the
method used to reduce or eliminate excessive numbers of e-mails.

2.11.3 Job Submission

A DAG is submitted using the program condor submit dag. See the manual page 305 for complete
details. A simple submission has the syntax

condor submit dag DAGInputFileName

The example may be submitted with

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 51

condor_submit_dag diamond.dag

In order to guarantee recoverability, the DAGMan program itself is run as a Condor job. As such,
it needs a submit description file. DAGMan produces the needed file, naming it by appending the
DAGInputFileName with .condor.sub. This submit description file may be editted if the DAG
is submitted with

condor_submit_dag -no_submit diamond.dag

causing DAGMan to generate the submit description file, but not submit DAGMan to Condor. To
submit the DAG, once the submit description file is editted, use

condor_submit diamond.dag.condor.sub

An optional argument to condor submit dag, maxjobs, is used to specify the maximum number
of jobs that DAGMan may submit to Condor at one time. It is commonly used when there is a
limited amount of input file staging capacity. As a specific example, consider a case where each job
will require 4 Mbytes of input files, and the jobs will run in a directory with a volume of 100 MB of
free space. Using the argument -maxjobs 25 guarantees that a maximum of 25 jobs can be submitted
to Condor at one time.

2.11.4 Job Monitoring

After submission, the progress of the DAG can be monitored by looking at the common log file,
observing the e-mail that program submission to Condor causes, or by using condor q.

2.11.5 Job Failure and Job Removal

A DAG can fail in one of two ways. Either DAGMan itself fails, or a node within the DAG fails.
If DAGMan fails, no Condor jobs will remain. Currently, if a node within the DAG fails, DAGMan
continues running as a Condor job.

condor submit dag attempts to check the DAG input file to verify that all the nodes in the DAG
specify the same log file. If a problem is detected, condor submit dag prints out an error message
and aborts.

To omit the check that all nodes use the same log file, as may be desired in the case where there
are thousands of nodes, submit the job with the -log option. An example of this submission:

condor_submit_dag -log diamond_condor.log

Condor Version 6.1.17 Manual

2.11. Inter-job Dependencies: DAGMan Meta-Scheduler 52

This option tells condor submit dag to omit the verification step and use the given file as the log file.

To remove an entire DAG, consisting of DAGMan plus any jobs submitted to Condor, remove
the DAGMan job running under Condor. condor q will list the job number. Use the job number to
remove the job, for example

% condor_q
-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:36165> : turunmaa.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

9.0 smoler 10/12 11:47 0+00:01:32 R 0 8.7 con-
dor_dagman -f -

11.0 smoler 10/12 11:48 0+00:00:00 I 0 3.6 B.out
12.0 smoler 10/12 11:48 0+00:00:00 I 0 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held

% condor_rm 9.0

Before the DAGMan job stops running, it uses condor rm to remove any Condor jobs within the
DAG that are running.

In the case where a machine is scheduled to go down, DAGMan will clean up memory and exit.
However, in will leave any submitted jobs in Condor’s queue.

2.11.6 Job Recovery: The Rescue DAG

NOTE: The Rescue DAG feature is not implemented.

DAGMan does not support job resubmission on failure. If any node in the DAG fails, the entire
DAG is aborted. As a substitute for resubmission, DAGMan offers an approach called the Rescue
DAG.

The Rescue DAG is a DAG input file, functionally the same as the original DAG file. It addi-
tionally contains indication of successfully completed nodes using the DONE option in the input
description file. If the DAG is resubmitted, the jobs marked as completed will not be resubmitted.

The Rescue DAG is automatically generated by DAGMan when a node within the DAG fails.
The file is named using the DAGInputFileName, and appending the suffix .rescue to it. Statistics
about the failed DAG execution are presented as comments at the beginning of the Rescue DAG
input file.

Condor Version 6.1.17 Manual

2.12. About How Condor Jobs Vacate Machines 53

2.12 About How Condor Jobs Vacate Machines

When Condor needs a job to vacate a machine for whatever reason, it sends the job an asynchronous
signal specified in the KillSig attribute of the job’s ClassAd. The value of this attribute can be
specified by the user at submit time by placing the kill sig option in the Condor submit description
file.

If a program wanted to do some special work when required to vacate a machine, the program
may set up a signal handler to use a trappable signal as an indication to clean up. When submitting
this job, this clean up signal is specified to be used with kill sig. Note that the clean up work needs
to be quick. If the job takes too long to go away, Condor follows up with a SIGKILL signal which
immediately terminates the process.

A job that is linked using condor compile and is subsequently submitted into the standard uni-
verse, will checkpoint and exit upon receipt of a SIGTSTP signal. Thus, SIGTSTP is the default
value for KillSig when submitting to the standard universe. The user’s code may still checkpoint
itself at any time by calling one of the following functions exported by the Condor libraries:

ckpt() Performs a checkpoint and then returns.

ckpt and exit() Checkpoints and exits; Condor will then restart the process again later, poten-
tially on a different machine.

For jobs submitted into the vanilla universe, the default value for KillSig is SIGTERM, the
usual method to nicely terminate a Unix program.

2.13 Special Environment Considerations

2.13.1 AFS

The Condor daemons do not run authenticated to AFS; they do not possess AFS tokens. Therefore,
no child process of Condor will be AFS authenticated. The implication of this is that you must set
file permissions so that your job can access any necessary files residing on an AFS volume without
relying on having your AFS permissions.

If a job you submit to Condor needs to access files residing in AFS, you have the following
choices:

1. Copy the needed files from AFS to either a local hard disk where Condor can access them
using remote system calls (if this is a standard universe job), or copy them to an NFS volume.

2. If you must keep the files on AFS, then set a host ACL (using the AFS fs setacl command) on
the subdirectory to serve as the current working directory for the job. If a standard universe
job, then the host ACL needs to give read/write permission to any process on the submit

Condor Version 6.1.17 Manual

2.13. Special Environment Considerations 54

machine. If vanilla universe job, then you need to set the ACL such that any host in the pool
can access the files without being authenticated. If you do not know how to use an AFS host
ACL, ask the person at your site responsible for the AFS configuration.

The Condor Team hopes to improve upon how Condor deals with AFS authentication in a sub-
sequent release.

Please see section 3.11.1 on page 157 in the Administrators Manual for further discussion of this
problem.

2.13.2 NFS Automounter

If your current working directory when you run condor submit is accessed via an NFS automounter,
Condor may have problems if the automounter later decides to unmount the volume before your
job has completed. This is because condor submit likely has stored the dynamic mount point as the
job’s initial current working directory, and this mount point could become automatically unmounted
by the automounter.

There is a simple work around: When submitting your job, use the initialdir com-
mand in your submit description file to point to the stable access point. For exam-
ple, suppose the NFS automounter is configured to mount a volume at mount point
/a/myserver.company.com/vol1/johndoewhenever the directory/home/johndoe is
accessed. Adding the following line to the submit description file solves the problem.

initialdir = /home/johndoe

2.13.3 Using Globus software with Condor

Use of the Globus project software http://www.globus.org with Condor affects these issues:

GSS Authentication Is an option only in special versions of Condor, available by request only, due to crypto-
graphic software export controls and Condor distribution policy. Sites running the Condor
software distributed with GSS-Authentication can set up their own Certification Authority
(CA) by running the create ca script. Once the CA is set up, the condor ca script is used
to generate certificates for the Condor daemons (e.g., condor schedd) and to sign user and
daemon certificates. Users can generate certificate requests and other needed files with the
condor cert program. An X.509 certificate directory pointed to by the submit description
file variable x509CertDir indicates a client program which can use GSS authentication as a
possible authentication method. Alternately, the environment variables X509 CERT DIR,
X509 USER CERT, X509 USER KEY can be used to override the default filenames and lo-
cations. NOTE: the AUTHENTICATION METHOD configuration value list must contain
the value ’GSS’ for GSS authentication to be attempted.

Condor Version 6.1.17 Manual

2.13. Special Environment Considerations 55

Submitting to the Globus Universe requires Globus version 1.1, as well as a valid Globus X.509 certificate. The default location
for the necessary files is $HOME/.globus, but they can be overridden by setting the X509 *
variables in your environment or the submit description file. NOTE: AFS issues apply here,
so you may have to copy your certificate, trusted certificates directory, private key, and proxy
to a local file system disk.

condor glidein Globus!condor glidein requires a valid Globus X.509 certificate, and the PATH to the globus-
run program must be in your environment. NOTE: to allow a globus resource to join your
Condor pool, your administrator must add the hostname(s) to the HOSTALLOW WRITE and
HOSTALLOW READ configuration values.

2.13.4 Condor Daemons That Do Not Run as root

Condor is normally installed such that the Condor daemons have root permission. This allows
Condor to run the condor shadow process and your job with your UID and file access rights. When
Condor is started as root, your Condor jobs can access whatever files you can.

However, it is possible that whomever installed Condor did not have root access, or decided not
to run the daemons as root. That is unfortunate, since Condor is designed to be run as the Unix user
root. To see if Condor is running as root on a specific machine, enter the command

condor_status -master -l <machine-name>

where machine-name is the name of the specified machine. This command displays a con-
dor master ClassAd; if the attribute RealUid equals zero, then the Condor daemons are indeed
running with root access. If the RealUid attribute is not zero, then the Condor daemons do not
have root access.

NOTE: The UNIX program ps is not an effective method of determining if Condor is running
with root access. When using ps, it may often appear that the daemons are running as the condor
user instead of root. However, note that the ps, command shows the current effective owner of the
process, not the real owner. (See the getuid(2) and geteuid(2) Unix man pages for details.) In Unix,
a process running under the real UID of root may switch its effective UID. (See the seteuid(2) man
page.) For security reasons, the daemons only set the effective uid to root when absolutely necessary
(to perform a privileged operation).

If they are not running with root access, you need to make any/all files and/or directories that
your job will touch readable and/or writable by the UID (user id) specified by the RealUid attribute.
Often this may mean using the Unix command chmod 777 on the directory where you submit
your Condor job.

Condor Version 6.1.17 Manual

2.14. Potential Problems 56

2.14 Potential Problems

2.14.1 Renaming of argv[0]

When Condor starts up your job, it renames argv[0] (which usually contains the name of the pro-
gram) to condor exec. This is convenient when examining a machine’s processes with the UNIX
command ps; the process is easily identified as a Condor job.

Unfortunately, some programs read argv[0] expecting their own program name and get confused
if they find something unexpected like condor exec.

Condor Version 6.1.17 Manual

CHAPTER

THREE

Administrators’ Manual

3.1 Introduction

This is the Condor Administrator’s Manual for UNIX. Its purpose is to aid in the installation and
administration of a Condor pool. For help on using Condor, see the Condor User’s Manual.

A Condor pool is comprised of a single machine which serves as the central manager, and an
arbitrary number of other machines that have joined the pool. Conceptually, the pool is a collection
of resources (machines) and resource requests (jobs). The role of Condor is to match waiting re-
quests with available resources. Every part of Condor sends periodic updates to the central manager,
the centralized repository of information about the state of the pool. Periodically, the central man-
ager assesses the current state of the pool and tries to match pending requests with the appropriate
resources.

Each resource has an owner, the user who works at the machine. This person has absolute power
over their own resource and Condor goes out of its way to minimize the impact on this owner caused
by Condor. It is up to the resource owner to define a policy for when Condor requests will serviced
and when they will be denied.

Each resource request has an owner as well: the user who submitted the job. These people want
Condor to provide as many CPU cycles as possible for their work. Often the interests of the resource
owners are in conflict with the interests of the resource requesters.

The job of the Condor administrator is to configure the Condor pool to find the happy medium
that keeps both resource owners and users of resources satisfied. The purpose of this manual is to
help you understand the mechanisms that Condor provides to enable you to find this happy medium
for your particular set of users and resource owners.

57

3.1. Introduction 58

3.1.1 The Different Roles a Machine Can Play

Every machine in a Condor pool can serve a variety of roles. Most machines serve more than one
role simultaneously. Certain roles can only be performed by single machines in your pool. The
following list describes what these roles are and what resources are required on the machine that is
providing that service:

Central Manager There can be only one central manager for your pool. The machine is the col-
lector of information, and the negotiator between resources and resource requests. These two
halves of the central manager’s responsibility are performed by separate daemons, so it would
be possible to have different machines providing those two services. However, normally they
both live on the same machine. This machine plays a very important part in the Condor pool
and should be reliable. If this machine crashes, no further matchmaking can be performed
within the Condor system (although all current matches remain in effect until they are broken
by either party involved in the match). Therefore, choose for central manager a machine that
is likely to be online all the time, or at least one that will be rebooted quickly if something goes
wrong. The central manager will ideally have a good network connection to all the machines
in your pool, since they all send updates over the network to the central manager. All queries
go to the central manager.

Execute Any machine in your pool (including your Central Manager) can be configured for whether
or not it should execute Condor jobs. Obviously, some of your machines will have to serve
this function or your pool won’t be very useful. Being an execute machine doesn’t require
many resources at all. About the only resource that might matter is disk space, since if the
remote job dumps core, that file is first dumped to the local disk of the execute machine before
being sent back to the submit machine for the owner of the job. However, if there isn’t much
disk space, Condor will simply limit the size of the core file that a remote job will drop. In
general the more resources a machine has (swap space, real memory, CPU speed, etc.) the
larger the resource requests it can serve. However, if there are requests that don’t require many
resources, any machine in your pool could serve them.

Submit Any machine in your pool (including your Central Manager) can be configured for whether
or not it should allow Condor jobs to be submitted. The resource requirements for a submit
machine are actually much greater than the resource requirements for an execute machine.
First of all, every job that you submit that is currently running on a remote machine generates
another process on your submit machine. So, if you have lots of jobs running, you will need a
fair amount of swap space and/or real memory. In addition all the checkpoint files from your
jobs are stored on the local disk of the machine you submit from. Therefore, if your jobs have
a large memory image and you submit a lot of them, you will need a lot of disk space to hold
these files. This disk space requirement can be somewhat alleviated with a checkpoint server
(described below), however the binaries of the jobs you submit are still stored on the submit
machine.

Checkpoint Server One machine in your pool can be configured as a checkpoint server. This is
optional, and is not part of the standard Condor binary distribution. The checkpoint server is
a centralized machine that stores all the checkpoint files for the jobs submitted in your pool.

Condor Version 6.1.17 Manual

3.1. Introduction 59

This machine should have lots of disk space and a good network connection to the rest of your
pool, as the traffic can be quite heavy.

Now that you know the various roles a machine can play in a Condor pool, we will describe the
actual daemons within Condor that implement these functions.

3.1.2 The Condor Daemons

The following list describes all the daemons and programs that could be started under Condor and
what they do:

condor master This daemon is responsible for keeping all the rest of the Condor daemons running
on each machine in your pool. It spawns the other daemons, and periodically checks to see
if there are new binaries installed for any of them. If there are, the master will restart the
affected daemons. In addition, if any daemon crashes, the master will send e-mail to the
Condor Administrator of your pool and restart the daemon. The condor master also supports
various administrative commands that let you start, stop or reconfigure daemons remotely. The
condor master will run on every machine in your Condor pool, regardless of what functions
each machine are performing.

condor startd This daemon represents a given resource (namely, a machine capable of running
jobs) to the Condor pool. It advertises certain attributes about that resource that are used to
match it with pending resource requests. The startd will run on any machine in your pool
that you wish to be able to execute jobs. It is responsible for enforcing the policy that re-
source owners configure which determines under what conditions remote jobs will be started,
suspended, resumed, vacated, or killed. When the startd is ready to execute a Condor job, it
spawns the condor starter, described below.

condor starter This program is the entity that actually spawns the remote Condor job on a given
machine. It sets up the execution environment and monitors the job once it is running. When
a job completes, the starter notices this, sends back any status information to the submitting
machine, and exits.

condor schedd This daemon represents resources requests to the Condor pool. Any machine that
you wish to allow users to submit jobs from needs to have a condor schedd running. When
users submit jobs, they go to the schedd, where they are stored in the job queue, which the
schedd manages. Various tools to view and manipulate the job queue (such as condor submit,
condor q, or condor rm) all must connect to the schedd to do their work. If the schedd is
down on a given machine, none of these commands will work.

The schedd advertises the number of waiting jobs in its job queue and is responsible for
claiming available resources to serve those requests. Once a schedd has been matched with a
given resource, the schedd spawns a condor shadow (described below) to serve that particular
request.

Condor Version 6.1.17 Manual

3.1. Introduction 60

condor shadow This program runs on the machine where a given request was submitted and acts
as the resource manager for the request. Jobs that are linked for Condor’s standard universe,
which perform remote system calls, do so via the condor shadow. Any system call performed
on the remote execute machine is sent over the network, back to the condor shadow which
actually performs the system call (such as file I/O) on the submit machine, and the result is
sent back over the network to the remote job. In addition, the shadow is responsible for making
decisions about the request (such as where checkpoint files should be stored, how certain files
should be accessed, etc).

condor collector This daemon is responsible for collecting all the information about the status of a
Condor pool. All other daemons (except the negotiator) periodically send ClassAd updates to
the collector. These ClassAds contain all the information about the state of the daemons, the
resources they represent or resource requests in the pool (such as jobs that have been submitted
to a given schedd). The condor status command can be used to query the collector for specific
information about various parts of Condor. In addition, the Condor daemons themselves query
the collector for important information, such as what address to use for sending commands to
a remote machine.

condor negotiator This daemon is responsible for all the match-making within the Condor system.
Periodically, the negotiator begins a negotiation cycle, where it queries the collector for the
current state of all the resources in the pool. It contacts each schedd that has waiting resource
requests in priority order, and tries to match available resources with those requests. The
negotiator is responsible for enforcing user priorities in the system, where the more resources
a given user has claimed, the less priority they have to acquire more resources. If a user with
a better priority has jobs that are waiting to run, and resources are claimed by a user with a
worse priority, the negotiator can preempt that resource and match it with the user with better
priority.

NOTE: A higher numerical value of the user priority in Condor translate into worse priority
for that user. The best priority you can have is 0.5, the lowest numerical value, and your
priority gets worse as this number grows.

condor kbdd This daemon is only needed on Digital Unix and IRIX. On these platforms, the con-
dor startd cannot determine console (keyboard or mouse) activity directly from the system.
The condor kbdd connects to the X Server and periodically checks to see if there has been any
activity. If there has, the kbdd sends a command to the startd. That way, the startd knows the
machine owner is using the machine again and can perform whatever actions are necessary,
given the policy it has been configured to enforce.

condor ckpt server This is the checkpoint server. It services requests to store and retrieve check-
point files. If your pool is configured to use a checkpoint server but that machine (or the server
itself is down) Condor will revert to sending the checkpoint files for a given job back to the
submit machine.

See figure 3.1 for a graphical representation of the pool architecture.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 61

Condor_Syscall_Library

User’s Code

User’s Job

Controlling Daemons
Controlling Daemons

Condor_Shadow Process

Central Manager

Submit Machine Execution Machine

Checkpoint File is

All System Calls
Performed As
Remote Procedure
Calls back to the
Submit Machine.

Saved to Disk

Control via Unix Signals to alert
job when to checkpoint.

Condor_Collector

Condor_Negotiator

Figure 3.1: Pool Architecture

3.2 Installation of Condor

This section contains the instructions for installing Condor at your Unix site. Read this entire section
before starting installation. The installation will have a default configuration that can be customized.
Sections of the manual that follow this one explain customization.

Please read the copyright and disclaimer information in section on page xi of the manual, or
in the file LICENSE.TXT, before proceeding. Installation and use of Condor is acknowledgement
that you have read and agree to the terms.

3.2.1 Obtaining Condor

The first step to installing Condor is to download it from the Condor web site,
http://www.cs.wisc.edu/condor. The downloads are available from the downlaods page, at
http://www.cs.wisc.edu/condor/downloads/.

The platform-dependent Condor files are currently available from two sites. The main site is
at the University of Wisconsin–Madison, Madison, Wisconsin, USA. A second site is the Istituto
Nazionale di Fisica Nucleare Sezione di Bologna, Bologna, Italy. Please choose the site nearest
you.

Make note of the location of where you download the binary into.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 62

3.2.2 Condor Distribution Contents

The Condor binary distribution is packaged in the following 5 files and 2 directories:

DOC directions on where to find Condor documentation

INSTALL these installation directions

LICENSE.TXT the licensing agreement. By installing Condor, you agree to the contents of this
file

README general information

condor install the Perl script used to install and configure Condor

examples directory containing C, Fortran and C++ example programs to run with Condor

release.tar tar file of the release directory, which contains the Condor binaries and libraries

Before you install, please consider joining the condor-world mailing list. Traffic on this list is
kept to an absolute minimum. It is only used to announce new releases of Condor. To subscribe,
send a message to majordomo@cs.wisc.edu with the body:

subscribe condor-world

3.2.3 Preparation

Before installation, make a few important decisions about the basic layout of your pool. The deci-
sions answer the questions:

1. What machine will be the central manager?

2. Will Condor run as root or not?

3. Who will be administering Condor on the machines in your pool?

4. Will you have a Unix user named condor and will its home directory be shared?

5. Where should the machine-specific directories for Condor go?

6. Where should the parts of the Condor system be installed?

• Config files

• Release directory

– user binaries

– system binaries

Condor Version 6.1.17 Manual

3.2. Installation of Condor 63

– lib directory

– etc directory

• Documentation

7. Am I using AFS?

8. Do I have enough disk space for Condor?

If you feel you already know the answers to these questions, you can skip to the Installation
Procedure section below, section 3.2.4 on page 68. If you are unsure about any of them, read on.

What machine will be the central manager?

One machine in your pool must be the central manager. Install Condor on this machine first. This
is the centralized information repository for the Condor pool, and it is also the machine that does
match-making between available machines and submitted jobs. If the central manager machine
crashes, any currently active matches in the system will keep running, but no new matches will be
made. Moreover, most Condor tools will stop working. Because of the importance of this machine
for the proper functioning of Condor, install the central manager on a machine that is likely to stay
up all the time, or on one that will be rebooted quickly if it does crash. Also consider network traffic
and your network layout when choosing your central manager. All the daemons send updates (by
default, every 5 minutes) to this machine.

Will Condor run as root or not?

Start up the Condor daemons as the Unix user root. Without this, Condor can do very little to enforce
security and policy decisions. You can install Condor as any user, however there are both serious
security and performance consequences. Please see section 3.12.1 on page 175 in the manual for the
details and ramifications of on running Condor as a Unix user other than root.

Who will administer Condor?

Either root will be administering Condor directly, or someone else would be acting as the Condor
administrator. If root has delegated the responsibility to another person but doesn’t want to grant
that person root access, root can specify a condor config.root file that will override settings
in the other condor configuration files. This way, the global condor config file can be owned
and controlled by whoever is condor-admin, and the condor config.root can be owned and controlled
only by root. Settings that would compromise root security (such as which binaries are started as
root) can be specified in the condor config.root file while other settings that only control
policy or condor-specific settings can still be controlled without root access.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 64

Will you have a Unix user named condor, and will its home directory be shared?

To simplify installation of Condor, create a Unix user named condor on all machines in the pool. The
Condor daemons will create files (such as the log files) owned by this user, and the home directory
can be used to specify the location of files and directories needed by Condor. The home directory of
this user can either be shared among all machines in your pool, or could be a separate home directory
on the local partition of each machine. Both approaches have advantages and disadvantages. Having
the directories centralized can make administration easier, but also concentrates the resource usage
such that you potentially need a lot of space for a single shared home directory. See the section
below on machine-specific directories for more details.

If you choose not to create a user named condor, then you must specify via the CONDOR IDS
environment variable which uid.gid pair should be used for the ownership of various Condor files.
See section 3.12.2 on UIDs in Condor on page 176 in the Administrator’s Manual for details.

Where should the machine-specific directories for Condor go?

Condor needs a few directories that are unique on every machine in your pool. These are spool,
log, and execute. Generally, all three are subdirectories of a single machine specific directory
called the local directory (specified by the LOCAL DIR macro in the configuration file).

If you have a Unix user named condor with a local home directory on each machine, the LO-
CAL DIR could just be user condor’s home directory (LOCAL DIR = $(TILDE) in the config-
uration file). If this user’s home directory is shared among all machines in your pool, you would
want to create a directory for each host (named by hostname) for the local directory (for example,
LOCAL DIR = $(TILDE)/hosts/$(HOSTNAME)). If you do not have a condor account on your
machines, you can put these directories wherever you’d like. However, where to place them will
require some thought, as each one has its own resource needs:

execute This is the directory that acts as the current working directory for any Condor jobs that
run on a given execute machine. The binary for the remote job is copied into this directory,
so there must be enough space for it. (Condor will not send a job to a machine that does not
have enough disk space to hold the initial binary). In addition, if the remote job dumps core
for some reason, it is first dumped to the execute directory before it is sent back to the submit
machine. So, put the execute directory on a partition with enough space to hold a possible
core file from the jobs submitted to your pool.

spool The spool directory holds the job queue and history files, and the checkpoint files for all
jobs submitted from a given machine. As a result, disk space requirements for the spool di-
rectory can be quite large, particularly if users are submitting jobs with very large executables
or image sizes. By using a checkpoint server (see section 3.11.5 on Installing a Checkpoint
Server on page 163 for details), you can ease the disk space requirements, since all checkpoint
files are stored on the server instead of the spool directories for each machine. However, the
initial checkpoint files (the executables for all the clusters you submit) are still stored in the
spool directory, so you will need some space, even with a checkpoint server.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 65

log Each Condor daemon writes its own log file, and each log file is placed in the log directory.
You can specify what size you want these files to grow to before they are rotated, so the
disk space requirements of the directory are configurable. The larger the log files, the more
historical information they will hold if there is a problem, but the more disk space they use
up. If you have a network file system installed at your pool, you might want to place the log
directories in a shared location (such as /usr/local/condor/logs/$(HOSTNAME)),
so that you can view the log files from all your machines in a single location. However, if
you take this approach, you will have to specify a local partition for the lock directory (see
below).

lock Condor uses a small number of lock files to synchronize access to certain files that are shared
between multiple daemons. Because of problems encountered with file locking and network
file systems (particularly NFS), these lock files should be placed on a local partition on each
machine. By default, they are placed in the log directory. If you place your log directory
on a network file system partition, specify a local partition for the lock files with the LOCK
parameter in the configuration file (such as /var/lock/condor).

Generally speaking, it is recommended that you do not put these directories (except lock) on
the same partition as /var, since if the partition fills up, you will fill up /var as well. This will
cause lots of problems for your machines. Ideally, you will have a separate partition for the Condor
directories. Then, the only consequence of filling up the directories will be Condor’s malfunction,
not your whole machine.

Where should the parts of the Condor system be installed?

• Configuration Files

• Release directory

– User Binaries

– System Binaries

– lib Directory

– etc Directory

• Documentation

Configuration Files There are a number of configuration files that allow you different levels of
control over how Condor is configured at each machine in your pool. The global configuration
file is shared by all machines in the pool. For ease of administration, this file should be located
on a shared file system, if possible. In addition, there is a local configuration file for each
machine, where you can override settings in the global file. This allows you to have different
daemons running, different policies for when to start and stop Condor jobs, and so on. You
can also have configuration files specific to each platform in your pool. See section 3.11.2 on
page 158 about Configuring Condor for Multiple Platforms for details.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 66

In addition, because we recommend that you start the Condor daemons as root, we allow
you to create configuration files that are owned and controlled by root that will override any
other Condor settings. This way, if the Condor administrator is not root, the regular Condor
configuration files can be owned and writable by condor-admin, but root does not have to
grant root access to this person. See section 3.12.3 on page 176 in the manual for a detailed
discussion of the root configuration files, if you should use them, and what settings should be
in them.

In general, there are a number of places that Condor will look to find its configuration files.
The first file it looks for is the global configuration file. These locations are searched in order
until a configuration file is found. If none contain a valid configuration file, Condor will print
an error message and exit:

1. File specified in CONDOR CONFIG environment variable

2. /etc/condor/condor config

3. ˜condor/condor config

Next, Condor tries to load the local configuration file(s). The only way to specify the lo-
cal configuration file(s) is in the global configuration file, with the LOCAL CONFIG FILE
macro. If that macro is not set, no local configuration file is used. This macro can be a list of
files or a single file.

The root configuration files come in last. The global file is searched for in the following
places:

1. /etc/condor/condor config.root

2. ˜condor/condor config.root

The local root configuration file(s) are found with the LOCAL ROOT CONFIG FILE macro.
If that is not set, no local root configuration file is used. This macro can be a list of files or a
single file.

Release Directory Every binary distribution contains a release.tar file that contains four sub-
directories: bin, etc, lib and sbin. Wherever you choose to install these 4 directories we
call the release directory (specified by the RELEASE DIR macro in the configuration file).
Each release directory contains platform-dependent binaries and libraries, so you will need to
install a separate one for each kind of machine in your pool. For ease of administration, these
directories should be located on a shared file system, if possible.

• User Binaries:

All of the files in the bin directory are programs the end Condor users should ex-
pect to have in their path. You could either put them in a well known location (such
as /usr/local/condor/bin) which you have Condor users add to their PATH
environment variable, or copy those files directly into a well known place already in
user’s PATHs (such as /usr/local/bin). With the above examples, you could
also leave the binaries in /usr/local/condor/bin and put in soft links from
/usr/local/bin to point to each program.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 67

• System Binaries:
All of the files in the sbin directory are Condor daemons and agents, or programs that
only the Condor administrator would need to run. Therefore, add these programs only
to the PATH of the Condor administrator.

• lib Directory:
The files in the lib directory are the Condor libraries that must be linked in with user
jobs for all of Condor’s checkpointing and migration features to be used. lib also con-
tains scripts used by the condor compile program to help re-link jobs with the Condor
libraries. These files should be placed in a location that is world-readable, but they do not
need to be placed in anyone’s PATH. The condor compile script checks the configuration
file for the location of the lib directory.

• etc Directory:
etc contains an examples subdirectory which holds various example configuration
files and other files used for installing Condor. etc is the recommended location to keep
the master copy of your configuration files. You can put in soft links from one of the
places mentioned above that Condor checks automatically to find its global configuration
file.

Documentation The documentation provided with Condor is currently available in HTML,
Postscript and PDF (Adobe Acrobat). It can be locally installed wherever is cus-
tomary at your site. You can also find the Condor documentation on the web at:
http://www.cs.wisc.edu/condor/manual.

Am I using AFS?

If you are using AFS at your site, be sure to read the section 3.11.1 on page 156 in the manual.
Condor does not currently have a way to authenticate itself to AFS. A solution is not ready for
Version 6.1.17. This implies that you are probably not going to want to have the LOCAL DIR for
Condor on AFS. However, you can (and probably should) have the Condor RELEASE DIR on AFS,
so that you can share one copy of those files and upgrade them in a centralized location. You will
also have to do something special if you submit jobs to Condor from a directory on AFS. Again,
read manual section 3.11.1 for all the details.

Do I have enough disk space for Condor?

The Condor release directory takes up a fair amount of space. This is another reason why it’s a good
idea to have it on a shared file system. The rough size requirements for the release directory on
various platforms are listed in table 3.1.

In addition, you will need a lot of disk space in the local directory of any machines that are
submitting jobs to Condor. See question 5 above for details on this.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 68

Platform Size

Intel/Linux 11 Mbytes (statically linked)
Intel/Linux 6.5 Mbytes (dynamically linked)
Intel/Solaris 8 Mbytes
Sparc/Solaris 10 Mbytes
SGI/IRIX 17.5 Mbytes
Alpha/Digital Unix 15.5 Mbytes

Table 3.1: Release Directory Size Requirements

3.2.4 Installation Procedure

IF YOU HAVE DECIDED TO CREATE A condor USER AND GROUP, DO THAT ON ALL
YOUR MACHINES BEFORE YOU DO ANYTHING ELSE.

The easiest way to install Condor is to use one or both of the scripts provided to help you:
condor install and condor init. Run these scripts as the user that you are going to run the Condor
daemons as. First, run condor install on the machine that will be a file server for shared files used
by Condor, such as the release directory, and possibly the condor user’s home directory. When you
do, choose the “full-install” option in step #1 described below.

Once you have run condor install on a file server to set up your release directory and configure
Condor for your site, you should run condor init on any other machines in your pool to create any
locally used files that are not created by condor install. In the most simple case, where nearly all
of Condor is installed on a shared file system, even though condor install will create nearly all the
files and directories you need, you will still need to use condor init to create the LOCK directory
on the local disk of each machine. If you have a shared release directory, but the LOCAL DIR is
local on each machine, condor init will create all the directories and files needed in LOCAL DIR .
In addition, condor init will create any soft links on each machine that are needed so that Condor
can find its global configuration file.

If you do not have a shared file system, you need to run condor install on each machine in your
pool to set up Condor. In this case, there is no need to run condor init at all.

In addition, you will want to run condor install on your central manager machine if that machine
is different from your file server, using the “central-manager” option in step #1 described below.
Run condor install on your file server first, then on your central manager. If this step fails for some
reason (NFS permissions, etc), you can do it manually quite easily. All this does is copy the con-
dor config.local.central.manager file from <release dir>/etc/examples to
the proper location for the local configuration file of your central manager machine. If your central
manager is an Alpha or an SGI, you might want to add KBDD to the $(DAEMON LIST) macro.
See section 3.3 Configuring Condor on page 75 of the manual for details.

condor install assumes you have perl installed in /usr/bin/perl. If this is not the case, you
can either edit the script to put in the right path, or you will have to invoke perl directly from your
shell (assuming perl is in your PATH):

Condor Version 6.1.17 Manual

3.2. Installation of Condor 69

% perl condor_install

condor install breaks down the installation procedure into various steps. Each step is clearly
numbered. The following section explains what each step is for, and suggests how to answer the
questions condor install will ask you for each one.

condor install, step-by-step

STEP 1: What type of Condor installation do you want? There are three types of Condor instal-
lation you might choose: ’submit-only’, ’full-install’, and ’central-manager’. A submit-only
machine can submit jobs to a Condor pool, but Condor jobs will not run on it. A full-install
machine can both submit and run Condor jobs.

If you are planning to run Condor jobs on your machines, you should either install and run
Condor as root, or as the Unix user condor.

If you are planning to set up a submit-only machine, you can either install Condor machine-
wide as root or user condor, or, you can install Condor as yourself into your home directory.

The other possible installation type is setting up a machine as a central manager. If you do a
full-install and you say that you want the local host to be your central manager, this step will
be done automatically. You should only choose the central-manager option at step 1 if you
have already run condor install on your file server and you now want to run condor install on
a different machine that will be your central manager.

STEP 2: How many machines are you setting up this way? If you are installing Condor for mul-
tiple machines and you have a shared file system, then condor install will prompt you for the
hostnames of each machine you want to add to your Condor pool. If you do not have a shared
file system, you will have to run condor install locally on each machine, so condor install
does not ask for the names. If you provide a list, it will use the names to automatically create
directories and files later. At the end, condor install will dump out this list to a roster file
which can be used by scripts to help maintain your Condor pool.

If you are only installing Condor on 1 machine, you would answer no to the first question, and
move on.

STEP 3: Install the Condor release directory The release directory contains four subdirectories:
bin, etc, lib and sbin. bin contains user-level executable programs. etc is the rec-
ommended location for your Condor configuration files, and it also includes an examples
directory with default configuration files and other default files used for installing Condor.
lib contains libraries to link Condor user programs and scripts used by the Condor system.
sbin contains all administrative executable programs and the Condor daemons.

If you have multiple machines with a shared file system that will be running Condor, put the
release directory on that shared file system so you only have one copy of all the binaries, and
so that when you update them, you can do so in one place. Note that the release directory is
architecture dependent, so download separate binary distributions for every platform in your
pool.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 70

condor install tries to find an already installed release directory. If it cannot find one, it asks
if you have installed one already. If you have not installed one, it tries to do so for you by
untarring the release.tar file from the binary distribution.

NOTE: If you are only setting up a central manager (you chose ’central manager’ in STEP 1),
STEP 3 is the last question you will need to answer.

STEP 4: How and where should Condor send e-mail if things go wrong? Various parts of Con-
dor will send e-mail to a condor administrator if something goes wrong that needs human
attention. You will need to specify the e-mail address of this administrator.

You also specify the full path to a mail program that Condor will use to send the e-mail. This
program needs to understand the -s option, to specify a subject for the outgoing message. The
default on most platforms will probably be correct. On Linux machines, since there is such
variation in Linux distributions and installations, verify that the default works. If the script
complains that it cannot find the mail program that was specified, try

% which mail

to see what mail program is currently in your PATH. If there is none, try

% which mailx

If you still cannot find anything, ask your system administrator. Verify that the program you
use supports -s. The man page for that program will probably tell you.

STEP 5: File system and UID domains. While Condor does not depend on a shared file system or
common UID space for running jobs in the standard universe, vanilla jobs (ones that are not
relinked with the Condor libraries) do need a shared file system and a common UID space.
Therefore, it is very important for you to correctly configure Condor with respect to a shared
file system. For complete details on what these settings do and how you should answer the
questions, read section 3.3.5, Shared File System Configuration File Entries”, on page 85.

You will be asked if you have a shared file system. If so, condor install will configure your
FILESYSTEM DOMAIN setting to be set to the domain name of the machine running con-
dor install. If not, FILESYSTEM DOMAIN will be set to $(FULL HOSTNAME), indicating
that each machine is in its own domain.

For the UID domain, Condor needs to know if all users across all the machines in your pool
have a unique UID. If so, UID DOMAIN will be set to the domainname of the machine running
condor install. If not, UID DOMAIN will be set to $(FULL HOSTNAME), indicating that
each machine is in its own domain.

If you have a common UID DOMAIN , condor install will ask you if have a soft UID domain,
meaning that although you have unique UIDs, not every machine in your pool has all the
users in their individual password files. Please see the description of SOFT UID DOMAIN in
section 3.3.5 on page 86 for details.

STEP 6: Where should public programs be installed? It is recommended that you install the
user-level Condor programs in the release directory, (where they go by default). This way,

Condor Version 6.1.17 Manual

3.2. Installation of Condor 71

when you want to install a new version of the Condor binaries, you can just replace your re-
lease directory and everything will be updated at once. So, one option is to have Condor users
add <release dir>/bin to their PATH, so that they can access the programs. How-
ever, we recommend putting in soft links from some directory already in their PATH (such
as /usr/local/bin) that point back to the Condor user programs. condor install will do
this for you. All you do is tell it what directory to put these links into. This way, users do not
have to change their PATH to use Condor, and you can still have the binaries installed in their
own location.

If you are installing Condor as neither root nor condor, there is a perl script wrapper to all the
Condor tools that is created which sets some appropriate environment variables and automat-
ically passes certain options to the tools. This is all created automatically by condor install.
So, you need to tell condor install where to put this perl script. The script itself is linked to it-
self with many different names, since it is the name that determines the behavior of the script.
This script should go somewhere that is in your PATH already, if possible (such as ˜bin).

At this point, the remaining steps differ based on the whether the installation is a full install or a
submit-only. Skip to the appropriate section below, based on the kind of installation.

Full Install

STEP 7: What machine will be your central manager? Type in the full hostname of the machine
you have chosen for your central manager. If condor install cannot find information about the
host you typed by querying your nameserver, it will print out an error message and ask you to
confirm.

STEP 8: Where will the local directory go? This is the directory discussed in question 5 of the
installation introduction. condor install tries to make some educated guesses as to what di-
rectory you want to use for the purpose. Agree to the correct guess, or (when condor install
has run out of guesses) type in what you want. Since this directory needs to be unique, it is
common to use the hostname of each machine in its name. When typing in your own path,
you can use ’$(HOSTNAME)’ which condor install (and the Condor configuration files) will
expand to the hostname of the machine you are currently on. condor install will try to create
the corresponding directories for all the machines you told it about in STEP 2 above.

Once you have selected the local directory, condor install creates all the needed subdirectories
of each one with the proper permissions. They should have the following permissions and
ownerships:

drwxr-xr-x 2 condor root 1024 Mar 6 01:30 execute/
drwxr-xr-x 2 condor root 1024 Mar 6 01:30 log/
drwxr-xr-x 2 condor root 1024 Mar 6 01:30 spool/

If your local directory is on a shared file system, condor install will prompt you for the loca-
tion of your lock files, as discussed in question #5 above. In this case, when condor install is
finished, you will have to run condor init on each machine in your pool to create the lock
directory before you can start up Condor.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 72

STEP 9: Where will the local (machine-specific) configuration files go? As discussed
in question STEP 6 above, there are a few different levels of Condor config-
uration files. There is the global configuration file that will be installed in
<release dir>/etc/condor config, and there are machine-specific, or local
configuration files, that override the settings in the global file. If you are installing on multiple
machines or are configuring your central manager machine, you must select a location for
your local configuration files.

The two main options are to have a single directory that holds all the local configuration files,
each one named $(HOSTNAME).local, or to have the local configuration files go into the
individual local directories for each machine. Given a shared file system, we recommend the
first option, since it makes it easier to configure your pool from a centralized location.

STEP 10: How shall Condor find its configuration file? Since there are a few known places Con-
dor looks to find your configuration file, we recommend that you put a soft link from one of
them to point to <release dir>/etc/condor config. This way, you can keep your
Condor configuration in a centralized location, but all the Condor daemons and tools will
be able to find their configuration files. Alternatively, you can set the CONDOR CONFIG
environment variable to contain <release dir>/etc/condor config.

condor install will ask you if you want to create a soft link from either of the two fixed
locations that Condor searches.

Once you have completed STEP 10, you are done. condor install prints out a messages describ-
ing what to do next. Please skip to section 3.2.5.

Submit Only

A submit-only installation of Condor implies that the machine will be submitting jobs to one or more
established Condor pools. Configuration for this installation needs to account for the other pools.

For the submit-only installation, STEP 6 continues and completes the installation.

STEP 6: continued. A submit-only machine has the option of submission to more than one Con-
dor pool. The full hostname of the central manager is required for each pool. The first entered
becomes the default for start up and job submission.

There is a separate configuration file for each pool. The location of each file is specified.

Identification of each pool requires a unique name. A final question sets a name for each pool.
The name will be the argument for -pool command line options.

3.2.5 Condor is installed... now what?

Now that Condor has been installed on your machine(s), there are a few things you should check
before you start up Condor.

Condor Version 6.1.17 Manual

3.2. Installation of Condor 73

1. Read through the <release dir>/etc/condor config file. There are a lot of pos-
sible settings and you should at least take a look at the first two main sections to make sure
everything looks okay. In particular, you might want to set up host/ip based security for Con-
dor. See the section 3.8 on page 145 in the manual to learn how to do this.

2. Condor can monitor the activity of your mouse and keyboard, provided that you tell it where
to look. You do this with the CONSOLE DEVICES entry in the condor startd section of the
configuration file. On most platforms, reasonable defaults are provided. For example, the
default device for the mouse on Linux is ’mouse’, since most Linux installations have a soft
link from /dev/mouse that points to the right device (such as tty00 if you have a serial
mouse, psaux if you have a PS/2 bus mouse, etc). If you do not have a /dev/mouse link,
you should either create one (you will be glad you did), or change the CONSOLE DEVICES
entry in Condor’s configuration file. This entry is a comma separated list, so you can have any
devices in /dev count as ’console devices’ and activity will be reported in the condor startd’s
ClassAd as ConsoleIdleTime.

3. (Linux only) Condor needs to be able to find the utmp file. According to the Linux File
System Standard, this file should be /var/run/utmp. If Condor cannot find it there, it
looks in /var/adm/utmp. If it still cannot find it, it gives up. So, if your Linux distribution
places this file somewhere else, be sure to put a soft link from /var/run/utmp to point to
the real location.

3.2.6 Starting up the Condor daemons

To start up the Condor daemons, execute <release dir>/sbin/condor master. This is
the Condor master, whose only job in life is to make sure the other Condor daemons are running.
The master keeps track of the daemons, restarts them if they crash, and periodically checks to see if
you have installed new binaries (and if so, restarts the affected daemons).

If you are setting up your own pool, you should start Condor on your central manager machine
first. If you have done a submit-only installation and are adding machines to an existing pool, the
start order does not matter.

To ensure that Condor is running, you can run either:

ps -ef | egrep condor_

or

ps -aux | egrep condor_

depending on your flavor of Unix. On your central manager machine you should have processes for:

• condor master

Condor Version 6.1.17 Manual

3.2. Installation of Condor 74

• condor collector

• condor negotiator

• condor startd

• condor schedd

On all other machines in your pool you should have processes for:

• condor master

• condor startd

• condor schedd

(NOTE: On Alphas and IRIX machines, there will also be a condor kbdd – see section 3.11.4 on
page 162 of the manual for details.) If you have set up a submit-only machine, you will only see:

• condor master

• condor schedd

Once you are sure the Condor daemons are running, check to make sure that they are commu-
nicating with each other. You can run condor status to get a one line summary of the status of each
machine in your pool.

Once you are sure Condor is working properly, you should add condor master into your
startup/bootup scripts (i.e. /etc/rc) so that your machine runs condor master upon bootup.
condor master will then fire up the necessary Condor daemons whenever your machine is rebooted.

If your system uses System-V style init scripts, you can look in
<release dir>/etc/examples/condor.boot for a script that can be used to
start and stop Condor automatically by init. Normally, you would install this script as
/etc/init.d/condor and put in soft link from various directories (for example,
/etc/rc2.d) that point back to /etc/init.d/condor. The exact location of these
scripts and links will vary on different platforms.

If your system uses BSD style boot scripts, you probably have an /etc/rc.local file. Add
a line to start up <release dir>/sbin/condor master.

3.2.7 The Condor daemons are running... now what?

Now that the Condor daemons are running, there are a few things you can and should do:

Condor Version 6.1.17 Manual

3.3. Configuring Condor 75

1. (Optional) Do a full install for the condor compile script. condor compile assists in linking
jobs with the Condor libraries to take advantage of all of Condor’s features. As it is currently
installed, it will work by placing it in front of any of the following commands that you would
normally use to link your code: gcc, g++, g77, cc, acc, c89, CC, f77, fort77 and ld. If
you complete the full install, you will be able to use condor compile with any command
whatsoever, in particular, make. See section 3.11.3 on page 160 in the manual for directions.

2. Try building and submitting some test jobs. See examples/README for details.

3. If your site uses the AFS network file system, see section 3.11.1 on page 156 in the manual.

4. We strongly recommend that you start up Condor (run the condor master daemon) as user
root. If you must start Condor as some user other than root, see section 3.12.1 on page 175.

3.3 Configuring Condor

This section describes how to configure all parts of the Condor system. General information about
the configuration files and their syntax is follwed by a description of settings that affect all Condor
daemons and tools. At the end is a section describing the settings for each part of Condor. The
settings that control the policy under which Condor will start, suspend, resume, vacate or kill jobs
are described in section 3.6 on Configuring Condor’s Job Execution Policy.

3.3.1 Introduction to Configuration Files

The Condor configuration files are used to customize how Condor operates at a given site. The basic
configuration as shipped with Condor works well for most sites, with few exceptions.

See section 3.2 on page 61 for details on where Condor’s configuration files are found.

Each Condor program will, as part of its initialization process, configure itself by calling a li-
brary routine which parses the various configuration files that might be used including pool-wide,
platform-specific, machine-specific, and root-owned configuration files. The result is a list of con-
stants and expressions which are evaluated as needed at run time.

The order in which attributes are defined is important, since later definitions will override ex-
isting definitions. This is particularly important if configuration files are broken up using the LO-
CAL CONFIG FILE setting described in sections 3.3.2 and 3.11.2 below.

Config File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

Condor Version 6.1.17 Manual

3.3. Configuring Condor 76

NOTE: You must have white space between the macro name, the “=” sign, and the macro
definition.

Macro invocations are of the form:

$(macro_name)

Macro definitions may contain references to other macros, even ones that aren’t yet defined
(so long as they are eventually defined in your config files somewhere). All macro expansion is
done after all config files have been parsed (with the exception of macros that reference themselves,
described below).

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value of C is xxx. Note that C is actually bound
to $(A), not its value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value of C is yyy.

A macro may be incrementally defined by invoking itself in its definition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value of A is xxxyyyzzz. Note that invocations
of a macro in its own definition are immediately expanded. $(A) is immediately expanded in line
3 of the example. If it were not, then the definition would be impossible to evaluate.

NOTE: Macros should not be incrementally defined in the LOCAL ROOT CONFIG FILE for
security reasons.

NOTE: Condor used to distingish between “macros” and “expressions” in its config files. Be-
gining with Condor version 6.1.13, this distinction has been removed. For backwards compatibility,
you can still use “:” instead of “=” in your config files, and these attributes will just be treated as
macros.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 77

Comments and Line Continuations

Other than macros, a Condor configuration file can contain comments or line continuations. A
comment is any line beginning with a “#” character. A continuation is any entry that continues
across multiples lines. Line continuation is accomplished by placing the “\” character at the end of
any line to be continued onto another. Valid examples of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu, \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu

HOSTALLOW_ADMIN = $(ADMIN_MACHINES)

Pre-Defined Macros

Condor provides pre-defined macros that help configure Condor. Pre-defined macros are listed as
$(macro name).

This first set are entries whose values are determined at run time and cannot be overwritten.
These are inserted automatically by the library routine which parses the configuration files.

$(FULL HOSTNAME) The fully qualified hostname of the local machine (hostname plus domain
name).

$(HOSTNAME) The hostname of the local machine (no domain name).

$(TILDE) The full path to the home directory of the UNIX user condor, if such a user exists on
the local machine.

$(SUBSYSTEM) The subsystem name of the daemon or tool that is evaluating the macro. This
is a unique string which identifies a given daemon within the Condor system. The possible
subsystem names are:

• STARTD

• SCHEDD

• MASTER

• COLLECTOR

• NEGOTIATOR

• KBDD

Condor Version 6.1.17 Manual

3.3. Configuring Condor 78

• SHADOW

• STARTER

• CKPT SERVER

• SUBMIT

This second set of macros are entries whose default values are determined automatically at run-
time but which can be overwritten.

$(ARCH) Defines the string used to identify the architecture of the local machine to Condor. The
condor startd will advertise itself with this attribute so that users can submit binaries compiled
for a given platform and force them to run on the correct machines. condor submit will
append a requirement to the job ClassAd that it must run on the same ARCH and OPSYS of
the machine where it was submitted, unless the user specifies ARCH and/or OPSYS explicitly
in their submit file. See the the condor submit manual page on page 305 for details.

$(OPSYS) Defines the string used to identify the operating system of the local machine to Condor.
If it is not defined in the configuration file, Condor will automatically insert the operating
system of this machine as determined by uname.

$(FILESYSTEM DOMAIN) Defaults to the fully qualified hostname of the machine it is evaluated
on. See section 3.3.5, Shared File System Configuration File Entries for the full description
of its use and under what conditions you would want to change it.

$(UID DOMAIN) Defaults to the fully qualified hostname of the machine it is evaluated on. See
section 3.3.5 on “Shared File System Configuration File Entries” for the full description of its
use and under what conditions you would want to change it.

Since $(ARCH) and $(OPSYS) will automatically be set to the correct values, we recommend
that you do not overwrite them. Only do so if you know what you are doing.

3.3.2 Condor-wide Configuration File Entries

This section describes settings which affect all parts of the Condor system.

CONDOR HOST This macro is used to define the $(NEGOTIATOR HOST) and $(COLLEC-
TOR HOST) macros. Normally the condor collector and condor negotiator would run on
the same machine. If for some reason they were not run on the same machine, $(CON-
DOR HOST) would not be needed. Some of the host-based security macros use $(CON-
DOR HOST) by default. See section 3.8, Setting up IP/host-based security in Condor for
details.

COLLECTOR HOST The hostname of the machine where the condor collector is running for your
pool. Normally it is defined with the $(CONDOR HOST) macro described above.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 79

NEGOTIATOR HOST The hostname of the machine where the condor negotiator is running for
your pool. Normally it is defined with the $(CONDOR HOST) macro described above.

RELEASE DIR The full path to the Condor release directory, which holds the bin, etc, lib,
and sbin directories. Other macros are defined relative to this one.

BIN This directory points to the Condor directory where user-level programs are installed. It is
usually defined relative to the $(RELEASE DIR) macro.

LIB This directory points to the Condor directory where libraries used to link jobs for Condor’s
standard universe are stored. The condor compile program uses this macro to find these li-
braries, so it must be defined. $(LIB) is usually defined relative to the $(RELEASE DIR)
macro.

SBIN This directory points to the Condor directory where Condor’s system binaries (such as the
binaries for the Condor daemons) and administrative tools are installed. Whatever directory
$(SBIN) points to ought to be in the PATH of users acting as Condor administrators.

LOCAL DIR The location of the local Condor directory on each machine in your pool. One
common option is to use the condor user’s home directory which may be specified with
$(TILDE). For example:

LOCAL_DIR = $(tilde)

On machines with a shared file system, where either the $(TILDE) directory or another
directory you want to use is shared among all machines in your pool, you might use the
$(HOSTNAME) macro and have a directory with many subdirectories, one for each machine
in your pool, each named by hostnames. For example:

LOCAL_DIR = $(tilde)/hosts/$(hostname)

or:

LOCAL_DIR = $(release_dir)/hosts/$(hostname)

LOG Used to specify the directory where each Condor daemon writes its log files. The names of the
log files themselves are defined with other macros, which use the $(LOG) macro by default.
The log directory also acts as the current working directory of the Condor daemons as the run,
so if one of them should produce a core file for any reason, it would be placed in the directory
defined by this macro. Normally, $(LOG) is defined in terms of $(LOCAL DIR).

SPOOL The spool directory is where certain files used by the condor schedd are stored, such as
the job queue file and the initial executables of any jobs that have been submitted. In addition,
for systems not using a checkpoint server, all the checkpoint files from jobs that have been
submitted from a given machine will be store in that machine’s spool directory. Therefore,
you will want to ensure that the spool directory is located on a partition with enough disk
space. If a given machine is only set up to execute Condor jobs and not submit them, it would
not need a spool directory (or this macro defined). Normally, $(SPOOL) is defined in terms
of $(LOCAL DIR).

Condor Version 6.1.17 Manual

3.3. Configuring Condor 80

EXECUTE This directory acts as the current working directory of any Condor job that is executing
on the local machine. If a given machine is only set up to only submit jobs and not execute
them, it would not need an execute directory (or this macro defined). Normally, $(EXE-
CUTE) is defined in terms of $(LOCAL DIR).

LOCAL CONFIG FILE The location of the local, machine-specific configuration file for each ma-
chine in your pool. The two most common options would be putting this file in the $(LO-
CAL DIR), or putting all local configuration files for your pool in a shared directory, each
one named by hostname. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).local

or, not using your release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname).local

Beginning with Condor version 6.0.1, the $(LOCAL CONFIG FILE) is treated as a list of
files, not a single file. You can use either a comma or space separated list of files as its value.
This allows you to specify multiple files as the local configuration file and each one will be
processed in the order given (with parameters set in later files overriding values from previous
files). This allows you to use one global configuration file for multiple platforms in your pool,
define a platform-specific configuration file for each platform, and use a local configuration
file for each machine. For more information on this, see section 3.11.2 about Configuring
Condor for Multiple Platforms on page 158.

CONDOR ADMIN The email address that Condor will send mail to if something goes wrong in
your pool. For example, if a daemon crashes, the condor master can send an obituary to this
address with the last few lines of that daemon’s log file and a brief message that describes
what signal or exit status that daemon exited with.

MAIL The full path to a mail sending program that uses -s to specify a subject for the message. On
all platforms, the default shipped with Condor should work. Only if you installed things in a
non-standard location on your system would you need to change this setting.

RESERVED SWAP Determines how much swap space you want to reserve for your own machine.
Condor will not start up more condor shadow processes if the amount of free swap space on
your machine falls below this level.

RESERVED DISK Determines how much disk space you want to reserve for your own machine.
When Condor is reporting the amount of free disk space in a given partition on your machine,
it will always subtract this amount. An example is the condor startd, which advertises the
amount of free space in the $(EXECUTE) directory.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 81

LOCK Condor needs to create lock files to synchronize access to various log files. Because of
problems with network file systems and file locking over the years, we highly recommend
that you put these lock files on a local partition on each machine. If you do not have your
$(LOCAL DIR) on a local partition, be sure to change this entry. Whatever user or group
Condor is running as needs to have write access to this directory. If you are not running as
root, this is whatever user you started up the condor master as. If you are running as root,
and there is a condor account, it is most likely condor. Otherwise, it is whatever you set in the
CONDOR IDS environment variable. See section 3.12.2 on UIDs in Condor for details.

HISTORY Defines the location of the Condor history file, which stores information about all Con-
dor jobs that have completed on a given machine. This macro is used by both the con-
dor schedd which appends the information and condor history, the user-level program used
to view the history file.

DEFAULT DOMAIN NAME If you do not use a fully qualified name in file /etc/hosts (or NIS,
etc.) for either your official hostname or as an alias, Condor would not normally be able to
use fully qualified names in places that it wants to. You can set this macro to the domain to
be appended to your hostname, if changing your host information is not a good option. This
macro must be set in the global configuration file (not the $(LOCAL CONFIG FILE). The
reason for this is that the special $(FULL HOSTNAME) macro is used by the configuration
file code in Condor needs to know the full hostname. So, for $(DEFAULT DOMAIN NAME)
to take effect, Condor must already have read in its value. However, Condor must set the
$(FULL HOSTNAME) special macro since you might use that to define where your local
configuration file is. After reading the global configuration file, Condor figures out the right
values for $(HOSTNAME) and $(FULL HOSTNAME) and inserts them into its configuration
table.

CREATE CORE FILES Defines whether or not Condor daemons are to create a core file if some-
thing really bad happens. It is used to set the resource limit for the size of a core file. If not
defined, it leaves in place whatever limit was in effect when you started the Condor daemons
(normally the condor master). If this parameter is set and TRUE, the limit is increased to
the maximum. If it is set to FALSE, the limit is set at 0 (which means that no core files are
created). Core files greatly help the Condor developers debug any problems you might be
having. By using the parameter, you do not have to worry about tracking down where in your
boot scripts you need to set the core limit before starting Condor. You set the parameter to
whatever behavior you want Condor to enforce. This parameter has no default value, and is
commented out in the default configuration file.

3.3.3 Daemon Logging Config File Entries

These entries control how and where the Condor daemons write their log files. Each of the entries
in this section represents multiple macros. There is one for each subsystem (listed in section 3.3.1).
The macro name for each substitutes SUBSYS with the name of the subsystem corresponding to the
daemon.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 82

SUBSYS LOG The name of the log file for a given subsystem. For example, $(STARTD LOG)
gives the location of the log file for condor startd. The name is defined relative to the
$(LOG) macro described above. The actual names of the files are also used in the
$(VALID LOG FILES) entry used by condor preen. A change to one of the file names with
this setting requires a change to the $(VALID LOG FILES) entry as well, or condor preen
will delete your newly named log files.

MAX SUBSYS LOG Controls the maximum length in bytes to which a log will be allowed to grow.
Each log file will grow to the specified length, then be saved to a file with the suffix .old.
The .old files are overwritten each time the log is saved, thus the maximum space devoted
to logging for any one program will be twice the maximum length of its log file. A value of 0
specifies that the file may grow without bounds. The default is 64 Kbytes.

TRUNC SUBSYS LOG ON OPEN If this macro is defined and set to TRUE, the affected log will
be truncated and started from an empty file with each invocation of the program. Otherwise,
new invocations of the program will append to the previous log file. By default this setting is
FALSE for all daemons.

SUBSYS LOCK This macro specifies the lock file used to synchronize append operations to the log
file for this subsystem. It must be a separate file from the $(SUBSYS LOG) file, since the
$(SUBSYS LOG) file may be rotated and you want to be able to synchronize access across
log file rotations. A lock file is only required for log files which are accessed by more than one
process. Currently, this includes only the SHADOW subsystem. This macro is defined relative
to the $(LOCK)macro. If, for some strange reason, you decide to change this setting, be sure
to change the $(VALID LOG FILES) entry that condor preen uses as well.

SUBSYS DEBUG All of the Condor daemons can produce different levels of output depending on
how much information you want to see. The various levels of verbosity for a given daemon are
determined by this macro. All daemons have the default level D ALWAYS, and log messages
for that level will be printed to the daemon’s log, regardless of this macro’s setting. The other
possible debug levels are:

D FULLDEBUG This level provides very verbose output in the log files. Only exceptionally
frequent log messages for very specific debugging purposes would be excluded. In those
cases, the messages would be viewed by having that another flag and D FULLDEBUG
both listed in the configuration file.

D DAEMONCORE Provides log file entries specific to DaemonCore, such as timers the dae-
mons have set and the commands that are registered. If both D FULLDEBUG and
D DAEMONCORE are set, expect very verbose output.

D PRIV This flag provides log messages about the privilege state switching that the daemons
do. See section 3.12.2 on UIDs in Condor for details.

D COMMAND With this flag set, any daemon that uses DaemonCore will print out a log mes-
sage whenever a command comes in. The name and integer of the command, whether
the command was sent via UDP or TCP, and where the command was sent from are all
logged. Because the messages about the command used by condor kbdd to communi-
cate with the condor startd whenever there is activity on the X server, and the command

Condor Version 6.1.17 Manual

3.3. Configuring Condor 83

used for keep-alives are both only printed with D FULLDEBUG enabled, it is best if this
setting is used for all daemons.

D LOAD The condor startd keeps track of the load average on the machine where it is run-
ning. Both the general system load average, and the load average being generated by
Condor’s activity there are determined. With this flag set, the condor startd will log
a message with the current state of both of these load averages whenever it computes
them. This flag only affects the condor startd.

D KEYBOARD With this flag set, the condor startd will print out a log message with the
current values for remote and local keyboard idle time. This flag affects only the con-
dor startd.

D JOB When this flag is set, the condor startd will send to its log file the contents of any job
ClassAd that the condor schedd sends to claim the condor startd for its use. This flag
affects only the condor startd.

D MACHINE When this flag is set, the condor startd will send to its log file the contents of its
resource ClassAd when the condor schedd tries to claim the condor startd for its use.
This flag affects only the condor startd.

D SYSCALLS This flag is used to make the condor shadow log remote syscall requests and
return values. This can help track down problems a user is having with a particular job
by providing the system calls the job is performing. If any are failing, the reason for
the failure is given. The condor schedd also uses this flag for the server portion of the
queue management code. With D SYSCALLS defined in SCHEDD DEBUG there will be
verbose logging of all queue management operations the condor schedd performs.

D BANDWIDTH When this flag is set, the negotiator logs a message for every match. It in-
cludes the amount of network bandwidth used for job placement and preemption.

D NETWORK When this flag is set, all Condor daemons will log a message on every TCP
accept, connect, and close, and on every UDP send and receive. This flag is not yet fully
supported in the condor shadow.

Log files may optionally be specified per debug level as follows:

SUBSYS LEVEL LOG This is the name of a log file for messages at a specific debug level for
a specific subsystem. If the debug level is included in $(SUBSYS DEBUG), then all mes-
sages of this debug level will be written both to the $(SUBSYS LOG) file and the $(SUB-
SYS LEVEL LOG) file. For example, $(SHADOW SYSCALLS LOG) specifies a log file for
all remote system call debug messages.

MAX SUBSYS LEVEL LOG Similar to MAX SUBSYS LOG .

TRUNC SUBSYS LEVEL LOG ON OPEN Similar to TRUNC SUBSYS LOG ON OPEN .

3.3.4 DaemonCore Config File Entries

Please read section 3.7 for details on DaemonCore. There are certain configuration file settings
that DaemonCore uses which affect all Condor daemons (except the checkpoint server, shadow, and

Condor Version 6.1.17 Manual

3.3. Configuring Condor 84

starter, none of which use DaemonCore yet).

HOSTALLOW. . . All macros that begin with either HOSTALLOW or HOSTDENY are settings for
Condor’s host-based security. See section 3.8 on Setting up IP/host-based security in Condor
for details on these macros and how to configure them.

SHUTDOWN GRACEFUL TIMEOUT Determines how long Condor will allow daemons try their
graceful shutdown methods before they do a hard shutdown. It is defined in terms of seconds.
The default is 1800 (30 minutes).

AUTHENTICATION METHODS There are many instances when the Condor system needs to au-
thenticate the identity of the user. For instance, when a job is submitted with condor submit,
Condor needs to authenticate the user so that the job goes into the queue and runs with the
proper credentials. The AUTHENTICATION METHODS parameter should be a list of per-
mitted authentication methods. The list should be ordered by preference. The actual authen-
tication method used is the first method in this list that both the server and client are able to
perform. Possible values are:

• NTSSPI Use NT’s standard LAN-MANAGER challenge-reponse protocol. NOTE: This
is the default method used on Windows NT.

• FS Use the filesystem to authenticate the user. The server requests the client to create a
specified temporary file, then the server verifies the ownership of that file. NOTE: This
is the default method used on Unix systems.

• FS REMOTE Use a shared filesystem to authenticate the user. This is useful for submit-
ting jobs to a remote schedd. Similar to FS authentication, except the temporary file to
be created by the user must be on a shared filesystem (AFS, NFS, etc.) If the client’s sub-
mit description file does not define the command rendezvousdir, the initialdir value is
used as the default directory in which to create the temporary file. NOTE: Normal AFS
issues apply here: Condor must be able to write to the directory used.

• GSS Use Generic Security Services, which is implemented in Condor with X.509 certifi-
cates. See section 3.9. These X.509 certificates are compatible with the Globus system
from Argonne National Labs.

• CLAIMTOBE The server should simply trust the client. NOTE: You had better trust all
users who have access to your Condor pool if you enable CLAIMTOBE authentication.

SHUTDOWN GRACEFUL TIMEOUT This entry determines how long you are willing to let dae-
mons try their graceful shutdown methods

SUBSYS ADDRESS FILE Every Condor daemon that uses DaemonCore has a command port
where commands are sent. The IP/port of the daemon is put in that daemon’s ClassAd so that
other machines in the pool can query the condor collector (which listens on a well-known
port) to find the address of a given daemon on a given machine. However, tools and daemons
executing on the same machine they wish to communicate with are not required to query the
collector. They look in a file on the local disk to find the IP/port. Setting this macro will
cause daemons to write the IP/port of their command socket to a specified file. In this way,
local tools will continue to operate, even if the machine running the condor collector crashes.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 85

Using this file will also generate slightly less network traffic in your pool (since condor q,
condor rm, and others do not have to send any messages over the network to locate the con-
dor schedd). This macro is not needed for the collector or negotiator, since their command
sockets are at well-known ports.

SUBSYS EXPRS Allows any DaemonCore daemon to advertise arbitrary expressions from the
configuration file in its ClassAd. Give the comma-separated list of entries from the con-
figuration file you want in the given daemon’s ClassAd.

NOTE: The condor negotiator and condor kbdd do not send ClassAds now, so this entry does
not affect them. The condor startd, condor schedd, condor master, and condor collector do
send ClassAds, so those would be valid subsystems to set this entry for.

Setting $(SUBMIT EXPRS) has the slightly different effect of having the named expressions
inserted into all the job ClassAds that condor submit creates. This is equivalent to the “+”
syntax in submit files. See the the condor submit manual page on page 305 for details.

Because of the different syntax of the configuration file and ClassAds, a little extra work is
required to get a given entry into a ClassAd. In particular, ClassAds require quote marks (”)
around strings. Numeric values and boolean expressions can go in directly. For example,
if the startd is to advertise a string macro, a numeric macro, and a boolean expression, do
something similar to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = CurrentTime >= $(NUMBER_MACRO) || $(BOOL1)
MY_STRING = "$(STRING_MACRO)"
STARTD_EXPRS = MY_STRING, NUMBER, BOOL1, BOOL2

3.3.5 Shared File System Configuration File Macros

These macros control how Condor interacts with various shared and network filesystems. If you are
using AFS as your shared filesystem, be sure to read section 3.11.1 on Using Condor with AFS.

UID DOMAIN Often times, especially if all the machines in the pool are administered by the
same organization, all the machines to be added into a Condor pool share the same login ac-
count information. User X has UID Y on all machines within a given Internet/DNS domain.
This is usually the case if a central authority creates user logins and maintains a common
/etc/passwd file on all machines. If this is the case, then set this macro to the name of the
Internet/DNS domain where this is true. For instance, if all the machines in this Condor pool
within the Internet/DNS zone “cs.wisc.edu” have a common password file, $(UID DOMAIN)
is set to “cs.wisc.edu”. If this is not the case, comment out the entry and Condor will auto-
matically use the fully qualified hostname of each machine. An asterisk character (“*”) is a
wildcard to match all domains and therefore to honor all UIDs - a dangerous idea.

Condor uses this information to determine if it should run a given Condor job on the remote
execute machine with the UID of whomever submitted the job or with the UID of the Unix

Condor Version 6.1.17 Manual

3.3. Configuring Condor 86

user nobody. If the macro is set to “none” or not set, then Condor jobs will always execute
with the access permissions of user nobody. For security purposes, it is not a bad idea to
have Condor jobs that migrate around on machines across an entire organization to run as
user nobody, which by convention has very restricted access to the disk files of a machine.
Standard universe Condor jobs are fine running as user nobody since all I/O is redirected back
through the use of remote system calls to a shadow process running on the submit machine
(which is authenticated as the user). If you only plan on running standard universe jobs, then
it is a good idea to simply set this to “none” or omit it. Vanilla universe jobs, however, cannot
take advantage of Condor’s remote system calls. Vanilla universe jobs are dependent upon
NFS, RFS, AFS, or some shared file system set up to read/write files as they bounce around
from machine to machine. If you want to run vanilla jobs and your shared file systems are via
AFS, then you can safely leave this as “none” as well. But, if you wish to use vanilla jobs
with Condor and you have shared file systems with NFS or RFS, then enter in a legitimate
domain name where all your UIDs match (you should be doing this with NFS anyway!) on
all machines in the pool, or else users in your pool who submit vanilla jobs will have to make
their files world read/write (so that user nobody can access them).

Some gritty details for folks who want to know: If the submitting machine and the remote
machine about to execute the job both have the same login name in the password file for a
given UID, and the $(UID DOMAIN) claimed by the submit machine is indeed found to be
a subset of what an inverse lookup to a DNS (domain name server) or NIS reports as the fully
qualified domain name for the submit machine’s IP address (this security measure safeguards
against the submit machine from lying), then the job will run with the same UID as the user
who submitted the job. Otherwise it will run as user nobody.

Note: the $(UID DOMAIN) parameter is also used when Condor sends e-mail back to
the user about a completed job; the address Job-Owner@UID DOMAIN is used, unless
$(UID DOMAIN) is “none”, in which case Job-Owner@submit-machine is used.

SOFT UID DOMAIN Used in conjunction with the $(UID DOMAIN) macro described above. If
the $(UID DOMAIN) settings match on both the execute and submit machines, but the UID
of the user who submitted the job is not in the password file (or password information if NIS
is being used) of the execute machine, the condor starter will exit with an error. If you set
$(SOFT UID DOMAIN) to be TRUE, Condor will start the job with the specified UID, even
if it is not in the password file.

FILESYSTEM DOMAIN Similar in concept to $(UID DOMAIN), but this is the Internet/DNS do-
main name where all the machines within that domain can access the same set of NFS file
servers.

Often times, especially if all the machines in the pool are administered by the same organiza-
tion, all the machines to be added into a Condor pool can mount the same set of NFS fileservers
onto the same place in the directory tree. If all the machines in the pool within a specific Inter-
net/DNS domain mount the same set of NFS file servers onto the same path mount-points, then
set this macro to the name of the Internet/DNS domain where this is true. For instance, if all
the machines in the Condor pool within the Internet/DNS zone “cs.wisc.edu” have a common
password file and mount the same volumes from the same NFS servers, set $(FILESYS-
TEM DOMAIN) to “cs.wisc.edu”. If this is not the case, comment out the entry, and Condor
will automatically set it to the fully qualified hostname of the local machine.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 87

HAS AFS Set this macro to TRUE if all the machines you plan on adding in your pool can all
access a common set of AFS fileservers. Otherwise, set it to FALSE.

RESERVE AFS CACHE If your machine is running AFS and the AFS cache lives on the same
partition as the other Condor directories, and you want Condor to reserve the space that your
AFS cache is configured to use, set this macro to TRUE. It defaults to FALSE.

USE NFS This macro influences how Condor jobs running in the standard universe access their
files. Condor will redirect the file I/O requests of standard universe jobs to be executed on
the machine which submitted the job. Because of this, as a Condor job migrates around the
network, the file system always appears to be identical to the file system where the job was
submitted. However, consider the case where a user’s data files are sitting on an NFS server.
The machine running the user’s program will send all I/O over the network to the machine
which submitted the job, which in turn sends all the I/O over the network a second time back
to the NFS file server. Thus, all of the program’s I/O is being sent over the network twice.

If this macro to TRUE, then Condor will attempt to read/write files without redirecting I/O
back to the submitting machine if both the submitting machine and the machine running the
job are both accessing the same NFS servers (if they are both in the same $(FILESYS-
TEM DOMAIN) and in the same $(UID DOMAIN), as described above). The result is I/O
performed by Condor standard universe jobs is only sent over the network once. While send-
ing all file operations over the network twice might sound really bad, unless you are operating
over networks where bandwidth as at a very high premium, practical experience reveals that
this scheme offers very little real performance gain. There are also some (fairly rare) situations
where this scheme can break down.

Setting $(USE NFS) to FALSE is always safe. It may result in slightly more network traffic,
but Condor jobs are most often heavy on CPU and light on I/O. It also ensures that a remote
standard universe Condor job will always use Condor’s remote system calls mechanism to
reroute I/O and therefore see the exact same file system that the user sees on the machine
where she/he submitted the job.

Some gritty details for folks who want to know: If the you set $(USE NFS) to TRUE, and the
$(FILESYSTEM DOMAIN) of both the submitting machine and the remote machine about to
execute the job match, and the $(FILESYSTEM DOMAIN) claimed by the submit machine is
indeed found to be a subset of what an inverse lookup to a DNS (domain name server) reports
as the fully qualified domain name for the submit machine’s IP address (this security measure
safeguards against the submit machine from lying), then the job will access files using a local
system call, without redirecting them to the submitting machine (with NFS). Otherwise, the
system call will get routed back to the submitting machine using Condor’s remote system call
mechanism. NOTE: When submitting a vanilla job, condor submit will, by default, append
requirements to the Job ClassAd that specify the machine to run the job must be in the same
$(FILESYSTEM DOMAIN) and the same $(UID DOMAIN).

USE AFS If your machines have AFS, this macro determines whether Condor will use remote
system calls for standard universe jobs to send I/O requests to the submit machine, or if it
should use local file access on the execute machine (which will then use AFS to get to the
submitter’s files). Read the setting above on $(USE NFS) for a discussion of why you might
want to use AFS access instead of remote system calls.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 88

One important difference between $(USE NFS) and $(USE AFS) is the AFS cache. With
$(USE AFS) set to TRUE, the remote Condor job executing on some machine will start
modifying the AFS cache, possibly evicting the machine owner’s files from the cache to make
room for its own. Generally speaking, since we try to minimize the impact of having a Condor
job run on a given machine, we do not recommend using this setting.

While sending all file operations over the network twice might sound really bad, unless you
are operating over networks where bandwidth as at a very high premium, practical experience
reveals that this scheme offers very little real performance gain. There are also some (fairly
rare) situations where this scheme can break down.

Setting $(USE AFS) to FALSE is always safe. It may result in slightly more network traffic,
but Condor jobs are usually heavy on CPU and light on I/O. FALSE ensures that a remote
standard universe Condor job will always see the exact same file system that the user on sees
on the machine where he/she submitted the job. Plus, it will ensure that the machine where the
job executes does not have its AFS cache modified as a result of the Condor job being there.

However, things may be different at your site, which is why the setting is there.

3.3.6 Checkpoint Server Configuration File Macros

These macros control whether or not Condor uses a checkpoint server. If you are using a check-
point server, this section describes the settings that the checkpoint server itself needs defined. A
checkpoint server is installed separately. It is not included in the main Condor binary distribution or
installation procedure. See section 3.11.5 on Installing a Checkpoint Server for details on installing
and running a checkpoint server for your pool.

NOTE: If you are setting up a machine to join the UW-Madison CS Department Condor pool,
you should configure the machine to use a checkpoint server, and use “condor-ckpt.cs.wisc.edu” as
the checkpoint server host (see below).

CKPT SERVER HOST The hostname of a checkpoint server.

STARTER CHOOSES CKPT SERVER If this parameter is TRUE or undefined on the submit ma-
chine, the checkpoint server specified by $(CKPT SERVER HOST) on the execute ma-
chine is used. If it is FALSE on the submit machine, the checkpoint server specified by
$(CKPT SERVER HOST) on the submit machine is used.

CKPT SERVER DIR The checkpoint server needs this macro defined to the full path of the direc-
tory the server should use to store checkpoint files. Depending on the size of your pool and the
size of the jobs your users are submitting, this directory (and its subdirectories) might need to
store many Mbytes of data.

USE CKPT SERVER A boolean which determines if you want a given submit machine to
use a checkpoint server if one is available. If a checkpoint server isn’t available or
USE CKPT SERVER is set to False, checkpoints will be written to the local $(SPOOL)
directory on the submission machine.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 89

MAX DISCARDED RUN TIME If the shadow is unable to read a checkpoint file from the check-
point server, it keeps trying only if the job has accumulated more than this many seconds of
CPU usage. Otherwise, the job is started from scratch. Defaults to 3600 (1 hour). This setting
is only used if $(USE CKPT SERVER) is TRUE.

3.3.7 condor master Configuration File Macros

These macros control the condor master.

DAEMON LIST This macro determines what daemons the condor master will start and keep its
watchful eyes on. The list is a comma or space separated list of subsystem names (listed in
section 3.3.1). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

NOTE: On your central manager, your$(DAEMON LIST)will be different from your regular
pool, since it will include entries for the condor collector and condor negotiator.

NOTE: On machines running Digital Unix or IRIX, your $(DAEMON LIST) will also in-
clude KBDD, for the condor kbdd, which is a special daemon that runs to monitor keyboard
and mouse activity on the console. It is only with this special daemon that we can acquire this
information on those platforms.

DC DAEMON LIST This macro lists the daemons in DAEMON LIST which use the Condor Dae-
monCore library. The condor master must differentiate between daemons that use Daemon-
Core and those that don’t so it uses the appropriate inter-process communication mechanisms.
This list currently includes all Condor daemons except the checkpoint server by default.

SUBSYS Once you have defined which subsystems you want the condor master to start, you must
provide it with the full path to each of these binaries. For example:

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

These are most often defined relative to the $(SBIN) macro.

SUBSYS ARGS This macro allows the specification of additional command line arguments for any
process spawned by the condor master. List the desired arguments, as typing the command
line into the configuration file. Set the arguments for a specific daemon with this macro,
and the macro will affect only that daemon. Define one of these for each daemon the con-
dor master is controlling. For example, set $(STARTD ARGS) to specify any extra com-
mand line arguments to the condor startd.

PREEN In addition to the daemons defined in $(DAEMON LIST), the condor master also starts
up a special process, condor preen to clean out junk files that have been left laying around
by Condor. This macro determines where the condor master finds the condor preen binary.
Comment out this macro, and condor preen will not run.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 90

PREEN ARGS Controls how condor preen behaves by allowing the specification of command-line
arguments. This macro works as $(SUBSYS ARGS) does. The difference is that you must
specify this macro for condor preen if you want it to do anything. condor preen takes action
only because of command line arguments. -m means you want e-mail about files condor preen
finds that it thinks it should remove. -r means you want condor preen to actually remove these
files.

PREEN INTERVAL This macro determines how often condor preen should be started. It is defined
in terms of seconds and defaults to 86400 (once a day).

PUBLISH OBITUARIES When a daemon crashes, the condor master can send e-mail to the ad-
dress specified by $(CONDOR ADMIN) with an obituary letting the administrator know that
the daemon died, the cause of death (which signal or exit status it exited with), and (option-
ally) the last few entries from that daemon’s log file. If you want obituaries, set this macro to
TRUE.

OBITUARY LOG LENGTH This macro controls how many lines of the log file are part of obituar-
ies.

START MASTER If this setting is defined and set to FALSE when the condor master starts up, the
first thing it will do is exit. This appears strange, but perhaps you do not want Condor to run
on certain machines in your pool, yet the boot scripts for your entire pool are handled by a
centralized system that starts up the condor master automatically. This is an entry you would
most likely find in a local configuration file, not a global configuration file.

START DAEMONS This macro is similar to the $(START MASTER) macro described above.
However, the condor master does not exit; it does not start any of the daemons listed in the
$(DAEMON LIST). The daemons may be started at a later time with a condor on command.

MASTER UPDATE INTERVAL This macro determines how often the condor master sends a
ClassAd update to the condor collector. It is defined in seconds and defaults to 300 (every 5
minutes).

MASTER CHECK NEW EXEC INTERVAL This macro controls how often the condor master
checks the timestamps of the running daemons. If any daemons have been modified, the
master restarts them. It is defined in seconds and defaults to 300 (every 5 minutes).

MASTER NEW BINARY DELAY Once the condor master has discovered a new binary, this macro
controls how long it waits before attempting to execute the new binary. This delay exists
because the condor master might notice a new binary while it is in the process of being copied,
in which case trying to execute it yields unpredictable results. The entry is defined in seconds
and defaults to 120 (2 minutes).

SHUTDOWN FAST TIMEOUT This macro determines the maximum amount of time daemons are
given to perform their fast shutdown procedure before the condor master kills them outright.
It is defined in seconds and defaults to 300 (5 minutes).

MASTER BACKOFF FACTOR If a daemon keeps crashing, an exponential backoff waits longer
and longer before restarting it. At the end of this section, there is an example that shows how

Condor Version 6.1.17 Manual

3.3. Configuring Condor 91

all these settings work. This setting is the base of the exponent used to determine how long to
wait before starting the daemon again. It defaults to 2 seconds.

MASTER BACKOFF CEILING This entry determines the maximum amount of time you want
the master to wait between attempts to start a given daemon. (With 2.0 as the $(MAS-
TER BACKOFF FACTOR), 1 hour is obtained in 12 restarts). It is defined in terms of seconds
and defaults to 3600 (1 hour).

MASTER RECOVER FACTOR A macro to set How long a daemon needs to run without crashing
before it is considered recovered. Once a daemon has recovered, the number of restarts is
reset, so the exponential backoff stuff returns to its initial state. The macro is defined in terms
of seconds and defaults to 300 (5 minutes).

For clarity, the following is an example of the workings of the exponential backoff settings. The
example is worked out assuming the default settings.

When a daemon crashes, it is restarted in 10 seconds. If it keeps crashing, a longer amount
of time is waited before restarting. The length of time is based on how many times it has been
restarted. Take the $(MASTER BACKOFF FACTOR) (defaults to 2) to the power the number of
times the daemon has restarted, and add 9. An example:

1st crash: restarts == 0, so, 9 + 2ˆ0 = 9 + 1 = 10 seconds
2nd crash: restarts == 1, so, 9 + 2ˆ1 = 9 + 2 = 11 seconds
3rd crash: restarts == 2, so, 9 + 2ˆ2 = 9 + 4 = 13 seconds
...
6th crash: restarts == 5, so, 9 + 2ˆ5 = 9 + 32 = 41 seconds
...
9th crash: restarts == 8, so, 9 + 2ˆ8 = 9 + 256 = 265 seconds

After the 13th crash, it would be:

13th crash: restarts == 12, so, 9 + 2ˆ12 = 9 + 4096 = 4105 seconds

This is bigger than the $(MASTER BACKOFF CEILING), which defaults to 3600, so the dae-
mon would really be restarted after only 3600 seconds, not 4105. The condor master tries again
every hour (since the numbers would get larger and would always be capped by the ceiling). Even-
tually, imagine that daemon finally started and did not crash. This might happen if, for example,
an administrator reinstalled an accidentally deleted binary after receiving e-mail about the daemon
crashing. If it stayed alive for $(MASTER RECOVER FACTOR) seconds (defaults to 5 minutes),
the count of how many restarts this daemon has performed is reset to 10 seconds.

The moral of the example is that the defaults work quite well, and you probably will not want to
change them for any reason.

MASTER EXPRS This macro is described in section 3.3.4 as SUBSYS EXPRS .

Condor Version 6.1.17 Manual

3.3. Configuring Condor 92

MASTER DEBUG This macro is described in section 3.3.3 as SUBSYS DEBUG .

MASTER ADDRESS FILE This macro is described in section 3.3.4 as SUBSYS ADDRESS FILE

3.3.8 condor startd Configuration File Macros

NOTE: If you are running Condor on a multi-CPU machine, be sure to also read section 3.11.7 on
page 169 which describes how to setup and configure Condor on SMP machines.

These settings control general operation of the condor startd. Information on how to configure
the condor startd to start, suspend, resume, vacate and kill remote Condor jobs is found in sec-
tion 3.6 on Configuring The Startd Policy. In that section is information on the startd’s states and
activities. Macros in the configuration file not described here are ones that control state or activity
transitions within the condor startd.

STARTER This macro holds the full path to the condor starter binary that the startd should spawn.
It is normally defined relative to $(SBIN).

ALTERNATE STARTER 1 This macro holds the full path to the condor starter.pvm binary that
the startd spawns to service PVM jobs. It is normally defined relative to $(SBIN), since by
default, condor starter.pvm is installed in the regular Condor release directory.

POLLING INTERVAL When a startd enters the claimed state, this macro determines how often
the state of the machine is polled to check the need to suspend, resume, vacate or kill the job.
It is defined in terms of seconds and defaults to 5.

UPDATE INTERVAL Determines how often the startd should send a ClassAd update to the con-
dor collector. The startd also sends update on any state or activity change, or if the value
of its START expression changes. See section 3.6.5 on condor startd States, section 3.6.6 on
condor startd Activities, and section 3.6.3 on condor startd START expression for details on
states, activities, and the START expression. This macro is defined in terms of seconds and
defaults to 300 (5 minutes).

STARTD HAS BAD UTMP When the startd is computing the idle time of all the users of the ma-
chine (both local and remote), it checks the utmp file to find all the currently active ttys, and
only checks access time of the devices associated with active logins. Unfortunately, on some
systems, utmp is unreliable, and the startd might miss keyboard activity by doing this. So, if
your utmp is unreliable, set this macro to TRUE and the startd will check the access time on
all tty and pty devices.

CONSOLE DEVICES This macro allows the startd to monitor console (keyboard and mouse) ac-
tivity by checking the access times on special files in /dev. Activity on these files shows up
as ConsoleIdle time in the startd’s ClassAd. Give a comma-separated list of the names
of devices considered the console, without the /dev/ portion of the pathname. The defaults
vary from platform to platform, and are usually correct.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 93

One possible exception to this is on Linux, where we use “mouse” as one of the entries. Most
Linux installations put in a soft link from /dev/mouse that points to the appropriate device
(for example, /dev/psaux for a PS/2 bus mouse, or /dev/tty00 for a serial mouse
connected to com1). However, if your installation does not have this soft link, you will either
need to put it in (you will be glad you did), or change this macro to point to the right device.

Unfortunately, there are no such devices on Digital Unix or IRIX (don’t be fooled by
/dev/keyboard0; the kernel does not update the access times on these devices), so this
macro is not useful in these cases, and we must use the condor kbdd to get this information
by connecting to the X server.

STARTD JOB EXPRS When the machine is claimed by a remote user, the startd can also advertise
arbitrary attributes from the job ClassAd in the machine ClassAd. List the attribute names
to be advertised. NOTE: Since these are already ClassAd expressions, do not do anything
unusual with strings.

STARTD EXPRS This macro is described in section 3.3.4 as SUBSYS EXPRS .

STARTD DEBUG This macro (and other settings related to debug logging in the startd) is described
in section 3.3.3 as SUBSYS DEBUG .

STARTD ADDRESS FILE This macro is described in section 3.3.4 as SUBSYS ADDRESS FILE

NUM CPUS This macro can be used to “lie” to the startd about how many CPUs your machine has.
If you set this, it will override Condor’s automatic computation of the number of CPUs in
your machine, and Condor will use whatever integer you specify here. In this way, you can
allow multiple Condor jobs to run on a single-CPU machine by having that machine treated
like an SMP machine with multiple CPUs, which could have different Condor jobs running
on each one. Or, you can have an SMP machine advertise more virtual machines than it has
CPUs. However, using this parameter will hurt the performance of the jobs, since you would
now have multiple jobs running on the same CPU, competing with each other. The option is
only meant for people who specifically want this behavior and know what they are doing. It
is disabled by default.

NOTE: This setting cannot be changed with a simple reconfig (either by sending a SIGHUP or
using condor reconfig. If you change this, you must restart the condor startd for the change
to take effect (by using “condor restart -startd”).

NOTE: If you use this setting on a given machine, you should probably advertise that fact in
the machine’s ClassAd by using the STARTD EXPRS setting (described above). This way,
jobs submitted in your pool could specify that they did or did not want to be matched with
machines that were only really offering “fractional CPUs”.

These macros only apply to the startd when it is running on an SMP machine. See section 3.11.7
on page 169 on Configuring The Startd for SMP Machines for details.

VIRTUAL MACHINES CONNECTED TO CONSOLE An integer which indicates how many of the
virtual machines the startd is representing should be ”connected” to the console (in other

Condor Version 6.1.17 Manual

3.3. Configuring Condor 94

words, notice when there’s console activity). This defaults to all virtual machines (N in a
machine with N CPUs).

VIRTUAL MACHINES CONNECTED TO KEYBOARD An integer which indicates how many of
the virtual machines the startd is representing should be ”connected” to the keyboard (for
remote tty activity, as well as console activity). Defaults to 1.

DISCONNECTED KEYBOARD IDLE BOOST If there are virtual machines not connected to either
the keyboard or the console, the corresponding idle time reported will be the time since the
startd was spawned, plus the value of this macro. It defaults to 1200 seconds (20 minutes).
We do this because if the virtual machine is configured not to care about keyboard activity,
we want it to be available to Condor jobs as soon as the startd starts up, instead of having to
wait for 15 minutes or more (which is the default time a machine must be idle before Condor
will start a job). If you do not want this boost, set the value to 0. If you change your START
expression to require more than 15 minutes before a job starts, but you still want jobs to start
right away on some of your SMP nodes, increase this macro’s value.

The following settings control the number of virtual machines reported for a given SMP host,
and what attributes each one has. They are only needed if you do not want to have an SMP machine
report to Condor with a seperate virtual machine for each CPU, with all shared system resources
evenly divided among them. Please read section 3.11.7 on page 169 for details on how to properly
configure these settings to suit your needs.

NOTE: You can only change the number of each type of virtual machine the condor startd is
reporting with a simple reconfig (such as sending a SIGHUP signal, or using the condor reconfig
command). You cannot change the definition of the different virtual machine types with a reconfig.
If you change them, you must restart the condor startd for the change to take effect (for example,
using “condor restart -startd”).

MAX VIRTUAL MACHINE TYPES The maximum number of different virtual machine types.
Note: this is the maximum number of different types, not of actual virtual machines. De-
faults to 10. (You should only need to change this setting if you define more than 10 seperate
virtual machine types, which would be pretty rare.)

VIRUAL MACHINE TYPE <N> This setting defines a given virtual machine type, by spec-
ifying what part of each shared system resource (like RAM, swap space, etc) this
kind of virtual machine gets. N can be any integer from 1 to the value of
$(MAX VIRTUAL MACHINE TYPES), such as VIRTUAL MACHINE TYPE 1. The format
of this entry can be somewhat complex, so please refer to section 3.11.7 on page 169 for
details on the different possibilities.

NUM VIRUAL MACHINES TYPE <N> This macro controls how many of a given virtual machine
type are actually reported to Condor. There is no default.

NUM VIRUAL MACHINES If your SMP machine is being evenly divided, and the virtual machine
type settings described above are not being used, this macro controls how many virtual ma-
chines will be reported. The default is one virtual machine for each CPU. This setting can be
used to reserve some CPUs on an SMP which would not be reported to the Condor pool.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 95

3.3.9 condor schedd Configuration File Entries

These macros control the condor schedd.

SHADOW This macro determines the full path of the condor shadow binary that the condor schedd
spawns. It is normally defined in terms of $(SBIN).

SHADOW PVM This macro determines the full path of the special condor shadow.pvm binary used
for supporting PVM jobs that the condor schedd spawns. It is normally defined in terms of
$(SBIN).

MAX JOBS RUNNING This macro controls the maximum number of condor shadow processes a
given condor schedd is allowed to spawn. The actual number of condor shadows may be less
if you have reached your $(RESERVED SWAP) limit.

MAX SHADOW EXCEPTIONS This macro controls the maximum number of times that con-
dor shadow processes can have a fatal error (exception) before the condor schedd will re-
linquish the match associated with the dying shadow. Defaults to 5.

SCHEDD INTERVAL This macro determines how often the condor schedd sends a ClassAd up-
date to the condor collector. It is defined in terms of seconds and defaults to 300 (every 5
minutes).

JOB START DELAY When the condor schedd has finished negotiating and has many new ma-
chines that it has claimed, the condor schedd can wait for a delay period before starting up a
condor shadow for each job it is going to run. The delay prevents a sudden, large load on the
submit machine as it spawns many shadows simultaneously. It prevents having to deal with
their startup activity all at once. This macro determines how how long the condor schedd
should wait in between spawning each condor shadow. Similarly, this macro is also used
during the graceful shutdown of the condor schedd. During graceful shutdown, this macro
determines how long to wait in between asking each condor shadow to gracefully shutdown.
Defined in terms of seconds and defaults to 2.

ALIVE INTERVAL This macro determines how often the condor schedd should send a keep alive
message to any startd it has claimed. When the schedd claims a startd, it tells the startd how
often it is going to send these messages. If the startd does not get one of these messages after 3
of these intervals has passed, the startd releases the claim, and the schedd is no longer paying
for the resource (in terms of priority in the system). The macro is defined in terms of seconds
and defaults to 300 (every 5 minutes).

SHADOW SIZE ESTIMATE This macro sets the estimated virtual memory size of each con-
dor shadow process. Specified in kilobytes. The default varies from platform to platform.

SHADOW RENICE INCREMENT When the schedd spawns a new condor shadow, it can do so
with a nice-level. A nice-level is a UNIX mechanism that allows users to assign their own
processes a lower priority so that the processes do not interfere with interactive use of the
machine. This is very handy for keeping a submit machine with lots of shadows running still
useful to the owner of the machine. The value can be any integer between 0 and 19, with a
value of 19 being the lowest priority. It defaults to 10.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 96

QUEUE CLEAN INTERVAL The schedd maintains the job queue on a given machine. It does so
in a persistent way such that if the schedd crashes, it can recover a valid state of the job
queue. The mechanism it uses is a transaction-based log file (the job queue.log file, not
the SchedLog file). This file contains an initial state of the job queue, and a series of trans-
actions that were performed on the queue (such as new jobs submitted, jobs completing, and
checkpointing). Periodically, the schedd will go through this log, truncate all the transactions
and create a new file with containing only the new initial state of the log. This is a somewhat
expensive operation, but it speeds up when the schedd restarts since there are fewer transac-
tions it has to play to figure out what state the job queue is really in. This macro determines
how often the schedd should rework this queue to cleaning it up. It is defined in terms of
seconds and defaults to 86400 (once a day).

WALL CLOCK CKPT INTERVAL The job queue contains a counter for each job’s “wall clock”
run time, i.e., how long each job has executed so far. This counter is displayed by condor q.
The counter is updated when the job is evicted or when the job completes. When the schedd
crashes, the run time for jobs that are currently running will not be added to the counter (and
so, the run time counter may become smaller than the cpu time counter). The schedd saves
run time “checkpoints” periodically for running jobs so if the schedd crashes, only run time
since the last checkpoint is lost. This macro controls how often the schedd saves run time
checkpoints. It is defined in terms of seconds and defaults to 3600 (one hour). A value of 0
will disable wall clock checkpoints.

ALLOW REMOTE SUBMIT Starting with Condor Version 6.0, users can run condor submit on one
machine and actually submit jobs to another machine in the pool. This is called a remote
submit. Jobs submitted in this way are entered into the job queue owned by the Unix user
nobody. This macro determines whether this is allowed. It defaults to FALSE.

QUEUE SUPER USERS This macro determines what user names on a given machine have super-
user access to the job queue, meaning that they can modify or delete the job ClassAds of
other users. (Normally, you can only modify or delete ClassAds from the job queue that
you own). Whatever user name corresponds with the UID that Condor is running as (usually
the Unix user condor) will automatically be included in this list because that is needed for
Condor’s proper functioning. See section 3.12.2 on UIDs in Condor for more details on this.
By default, we give root the ability to remove other user’s jobs, in addition to user condor.

SCHEDD LOCK This macro specifies what lock file should be used for access to the SchedLog
file. It must be a separate file from the SchedLog, since the SchedLog may be rotated
and synchronization across log file rotations is desired. This macro is defined relative to the
$(LOCK) macro. If you decide to change this setting (not recommended), be sure to change
the $(VALID LOG FILES) entry that condor preen uses as well.

SCHEDD EXPRS This macro is described in section 3.3.4 as SUBSYS EXPRS.

SCHEDD DEBUG This macro (and other settings related to debug logging in the schedd) is de-
scribed in section 3.3.3 as SUBSYS DEBUG.

SCHEDD ADDRESS FILE This macro is described in section 3.3.4 as SUBSYS ADDRESS FILE.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 97

FLOCK NEGOTIATOR HOSTS This macro defines a list of negotiator hostnames (not including
the local $(NEGOTIATOR HOST) machine) for pools in which the schedd should attempt to
run jobs. Hosts in the list should be in order of preference. The schedd will only send a request
to a central manager in the list if the local pool and pools earlier in the list are not satisfying
all the job requests. $(HOSTALLOW NEGOTIATOR SCHEDD) (see section 3.3.4) must also
be configured to allow negotiators from all of the $(FLOCK NEGOTIATOR HOSTS) to con-
tact the schedd. Please make sure the $(NEGOTIATOR HOST) is first in the $(HOSTAL-
LOW NEGOTIATOR SCHEDD) list. Similarly, the central managers of the remote pools must
be configured to listen to requests from this schedd.

FLOCK COLLECTOR HOSTS This macro defines a list of collector hostnames for pools in which
the schedd should attempt to run jobs. The collectors must be specified in order, correspond-
ing to the $(FLOCK NEGOTIATOR HOSTS) list. In the typical case, where each pool has
the collector and negotiator running on the same machine, $(FLOCK COLLECTOR HOSTS)
should have the same definition as $(FLOCK NEGOTIATOR HOSTS).

FLOCK VIEW SERVERS This macro defines a list of hostnames where the condor-view
server is running in the pools to which you want your jobs to flock. The order
of this list must correspond to the order of the $(FLOCK COLLECTOR HOSTS) and
$(FLOCK NEGOTIATOR HOSTS) lists. List items may be empty for pools which don’t
use a separate condor-view server. $(FLOCK VIEW SERVER) may be left undefined if
no remote pools use separate condor-view servers. Note: It is required that the same host-
name does not appear twice in the $(FLOCK VIEW SERVERS) list and that the $(CON-
DOR VIEW HOST) does not appear in the $(FLOCK VIEW SERVERS) list.

NEGOTIATE ALL JOBS IN CLUSTER If this macro is set to False (the default), when the schedd
fails to start an idle job, it will not try to start any other idle jobs in the same cluster during
that negotiation cycle. This makes negotiation much more efficient for large job clusters.
However, in some cases other jobs in the cluster can be started even though an earlier job can’t.
For example, the jobs’ requirements may differ, because of different disk space, memory, or
operating system requirements. Or, machines may be willing to run only some jobs in the
cluster, because their requirements reference the jobs’ virtual memory size or other attribute.
Setting this macro to True will force the schedd to try to start all idle jobs in each negotiation
cycle. This will make negotiation cycles last longer, but it will ensure that all jobs that can be
started will be started.

3.3.10 condor shadow Configuration File Entries

These settings affect the condor shadow.

SHADOW LOCK This macro specifies the lock file to be used for access to the ShadowLog file.
It must be a separate file from the ShadowLog, since the ShadowLog may be rotated and
you want to synchronize access across log file rotations. This macro is defined relative to the
$(LOCK) macro. If you decide to change this setting (not recommended), be sure to change
the $(VALID LOG FILES) entry that condor preen uses as well.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 98

SHADOW DEBUG This macro (and other settings related to debug logging in the shadow) is de-
scribed in section 3.3.3 as SUBSYS DEBUG .

COMPRESS PERIODIC CKPT This boolean macro specifies whether the shadow should instruct
applications to compress periodic checkpoints (when possible). The default is FALSE.

COMPRESS VACATE CKPT This boolean macro specifies whether the shadow should instruct ap-
plications to compress vacate checkpoints (when possible). The default is FALSE.

PERIODIC MEMORY SYNC This boolean macro specifies whether the shadow should instruct ap-
plications to commit dirty memory pages to swap space during a periodic checkpoint. The
default is FALSE. This potentially reduces the number of dirty memory pages at vacate time,
thereby reducing swapping activity on the remote machine.

SLOW CKPT SPEED This macro specifies the speed at which vacate checkpoints should be writ-
ten, in kilobytes per second. If zero (the default), vacate checkpoints are written as fast as
possible. Writing vacate checkpoints slowly can avoid overwhelming the remote machine
with swapping activity.

3.3.11 condor shadow.pvm Configuration File Entries

These macros control the condor shadow.pvm, the special shadow that supports PVM jobs inside
Condor. See section 3.4.5 on Installing PVM Support in Condor for details. condor shadow macros
also apply to this special shadow. See section 3.3.10.

PVMD This macro holds the full path to the special condor pvmd, the Condor PVM daemon. This
daemon is installed in the regular Condor release directory by default, so the macro is usually
defined in terms of $(SBIN).

PVMGS This macro holds the full path to the special condor pvmgs, the Condor PVM Group Server
daemon, which is needed to support PVM groups. This daemon is installed in the regular
Condor release directory by default, so the macro is usually defined in terms of $(SBIN).

3.3.12 condor starter Configuration File Entries

These settings affect the condor starter.

EXEC TRANSFER ATTEMPTS Sometimes due to a router misconfiguration, kernel bug, or other
Act of God network problem, the transfer of the initial checkpoint from the submit machine to
the execute machine will fail midway through. This parameter allows a retry of the transfer a
certain number of times that must be equal to or greater than 1. If this parameter is not speci-
fied, or specified incorrectly, then it will default to three. If the transfer of the initial executable
fails every attempt, then the job goes back into the idle state until the next renegotiation cycle.

NOTE: : This parameter does not exist in the NT starter.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 99

JOB RENICE INCREMENT When the starter spawns a Condor job, it can do so with a nice-level.
A nice-level is a UNIX mechanism that allows users to assign their own processes a lower
priority so that the processes do not interfere with interactive use of the machine. If you
have machines with lots of real memory and swap space so the only scarce resource is CPU
time, you may use this macro in conjunction with a policy that always allowed Condor to
start jobs on your machines so that Condor jobs would always run, but interactive response
on your machines would never suffer. You most likely will not notice Condor is running jobs.
See section 3.6 on Configuring The Startd Policy for more details on setting up a policy for
starting and stopping jobs on a given machine. The entry can be any integer between 0 and
20, with a value of 19 being the lowest priority. It is commented out by default.

STARTER LOCAL LOGGING This macro determines whether the starter should do local logging
to its own log file, or send debug information back to the condor shadow where it will end up
in the ShadowLog. It defaults to TRUE.

STARTER DEBUG This setting (and other settings related to debug logging in the starter) is de-
scribed above in section 3.3.3 as $(SUBSYS DEBUG).

USER JOB WRAPPER This macro allows the administrator to specify a “wrapper” script to handle
the execution of all user jobs. If specified, Condor will never directly execute a job but instead
will invoke the program specified by this macro. The command-line arguments passed to this
program will include the full-path to the actual user job which should be executed, followed
by all the command-line parameters to pass to the user job. This wrapper program must
ultimately replace its image with the user job; in other words, it must exec() the user job, not
fork() it. For instance, if the wrapper program is a Bourne/C/Korn shell script, the last line of
execution should be:

exec $*

3.3.13 condor submit Configuration File Entries

If you want condor submit to automatically append an expression to the Requirements expres-
sion or Rank expression of jobs at your site use the following macros:

APPEND REQ VANILLA Expression to be appended to vanilla job requirements.

APPEND REQ STANDARD Expression to be appended to standard job requirements.

APPEND RANK STANDARD Expression to be appended to standard job rank.

APPEND RANK VANILLA Expression to append to vanilla job rank.

NOTE: The APPEND RANK STANDARD and APPEND RANK VANILLA macros were called
APPEND PREF STANDARD and APPEND PREF VANILLA in previous versions of Condor.

In addition, you may provide default Rank expressions if your users do nt specify their own
with:

Condor Version 6.1.17 Manual

3.3. Configuring Condor 100

DEFAULT RANK VANILLA Default Rank for vanilla jobs.

DEFAULT RANK STANDARD Default Rank for standard jobs.

Both of these macros default to the jobs preferring machines where there is more main memory
than the image size of the job, expressed as:

((Memory*1024) > Imagesize)

GLOBUSRUN This macro holds the full path to the globusrun program which is needed for submit-
ting to the GLOBUS universe.

SHADOW GLOBUS This macro holds the full path to the condor shadow.globus program which is
needed for submitting to the GLOBUS universe.

DEFAULT IO BUFFER SIZE Condor keeps a buffer of recently-used data for each file an appli-
cation opens. This macro specifies the default maximum number of bytes to be buffered for
each open file at the executing machine. The condor status buffer size command will
override this default. If this macro is undefined, a default size of 512 KB will be used.

DEFAULT IO BUFFER BLOCK SIZE When buffering is enabled, Condor will attempt to consol-
idate small read and write operations into large blocks. This macro specifies the default block
size Condor will use. The condor status buffer block size command will override this
default. If this macro is undefined, a default size of 32 KB will be used.

3.3.14 condor preen Configutation File Entries

These macros affect condor preen.

PREEN ADMIN This macro sets the e-mail address where condor preen will send e-mail (if it is
configured to send email at all... see the entry for PREEN). Defaults to $(CONDOR ADMIN).

VALID SPOOL FILES This macro contains a (comma or space separated) list of files that con-
dor preen considers valid files to find in the $(SPOOL) directory. Defaults to all the files that
are valid. A change to the $(HISTORY) macro requires a change to this macro as well.

VALID LOG FILES This macro contains a (comma or space separated) list of files that con-
dor preen considers valid files to find in the $(LOG) directory. Defaults to all the files that
are valid. A change to the names of any of the log files above requires a change to this macro
as well. In addition, the defaults for the $(SUBSYS ADDRESS FILE) are listed here, so a
change to those requires a change this entry as well.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 101

3.3.15 condor collector Configuration File Entries

These macros affect the condor collector.

CLASSAD LIFETIME This macro determines how long a ClassAd can remain in the collector
before it is discarded as stale information. The ClassAds sent to the collector might also have
an attribute that says how long the lifetime should be for that specific ad. If that attribute is
present, the collector will either use it or the $(CLASSAD LIFETIME), whichever is greater.
The macro is defined in terms of seconds, and defaults to 900 (15 minutes).

MASTER CHECK INTERVAL This macro defines how often the collector should check for ma-
chines that have ClassAds from some daemons, but not from the condor master (orphaned
daemons) and send e-mail about it. It is defined in seconds and defaults to 10800 (3 hours).

CLIENT TIMEOUT Network timeout when talking to daemons that are sending an update. It is
defined in seconds and defaults to 30.

QUERY TIMEOUT Network timeout when talking to anyone doing a query. It is defined in seconds
and defaults to 60.

CONDOR DEVELOPERS Condor will send e-mail once per week to this address with the output of
the condor status command, which lists how many machines are in the pool and how many
are running jobs. Use the default value of condor-admin@cs.wisc.edu and the weekly status
message will be sent to the Condor Team at University of Wisconsin-Madison, the developers
of Condor. The Condor Team uses these weekly status messages in order to have some idea
as to how many Condor pools exist in the world. We appreciate getting the reports, as this
is one way we can convince funding agencies that Condor is being used in the real world. If
you do not wish this information to be sent to the Condor Team, set the value to NONE which
disables this feature, or put in some other address that you want the weekly status report sent
to.

COLLECTOR NAME This macro is used to specify a short description of your pool. It should be
about 20 characters long. For example, the name of the UW-Madison Computer Science
Condor Pool is “UW-Madison CS”.

CONDOR DEVELOPERS COLLECTOR By default, every pool sends periodic updates to a central
condor collector at UW-Madison with basic information about the status of your pool. This
includes only the number of total machines, the number of jobs submitted, the number of ma-
chines running jobs, the hostname of your central manager, and the $(COLLECTOR NAME)
specified above. These updates help the Condor Team see how Condor is being used around
the world. By default, they will be sent to condor.cs.wisc.edu. If you don’t want these updates
to be sent from your pool, set this macro to NONE.

COLLECTOR SOCKET BUFSIZE This specifies the buffer size, in bytes, reserved for con-
dor collector network sockets. The default is 1024000, or a one megabyte buffer. This is
a healthy size, even for a large pool. The larger this value, the less likely the condor collector
will have stale information about the pool due to dropping update packets. If your pool is
small or your central manager has very little RAM, considering setting this parameter to a
lower value (perhaps 256000 or 128000).

Condor Version 6.1.17 Manual

3.3. Configuring Condor 102

KEEP POOL HISTORY This boolean macro is used to decide if the collector will write out statis-
tical information about the pool to history files. The default is FALSE. The location, size and
frequency of history logging is controlled by the other macros.

POOL HISTORY DIR This macro sets the name of the directory where the history files reside (if
history logging is enabled). The default is the SPOOL directory.

POOL HISTORY MAX STORAGE This macro sets the maximum combined size of the history files.
When the size of the history files is close to this limit, the oldest information will be discarded.
Thus, the larger this parameter’s value is, the larger the time range for which history will be
available. The default value is 10000000 (10 Mbytes).

POOL HISTORY SAMPLING INTERVAL This macro sets the interval, in seconds, between sam-
ples for history logging purposes. When a sample is taken, the collector goes through the
information it holds, and summarizes it. The information is written to the history file once
for each 4 samples. The default (and recommended) value is 60 seconds. Setting this macro’s
value too low will increase the load on the collector, while setting it to high will produce less
precise statistical information.

COLLECTOR DEBUG This macro (and other macros related to debug logging in the collector) is
described in section 3.3.3 as SUBSYS DEBUG .

3.3.16 condor negotiator Configuration File Entries

These macros affect the condor negotiator.

NEGOTIATOR INTERVAL Sets how often the negotiator starts a negotiation cycle. It is defined
in seconds and defaults to 300 (5 minutes).

NEGOTIATOR TIMEOUT Sets the timeout that the negotiator uses on its network connections to
the schedds and startds. It is defined in seconds and defaults to 30.

PRIORITY HALFLIFE This macro defines the half-life of the user priorities. See section 2.7.2
on User Priorities for details. It is defined in seconds and defaults to 86400 (1 day).

NICE USER PRIO FACTOR This macro sets the priority factor for nice users. See section 2.7.2
on User Priorities for details. Defaults to 10000000.

REMOTE PRIO FACTOR This macro defines the priority factor for remote users (users who who
do not belong to the accountant’s local domain - see below). See section 2.7.2 on User Priori-
ties for details. Defaults to 10000.

ACCOUNTANT LOCAL DOMAIN This macro is used to decide if a user is local or remote. A user
is considered to be in the local domain if the UID DOMAIN matches the value of this macro.
Usually, this macro is set to the local UID DOMAIN. If it is not defined, all users are consid-
ered local.

Condor Version 6.1.17 Manual

3.3. Configuring Condor 103

NEGOTIATOR SOCKET CACHE SIZE This macro defines the maximum number of sockets that
the negotiator keeps in its open socket cache. Caching open sockets makes the negotiation
protocol more efficient by eliminating the need for socket connection establishment for each
negotiation cycle. The default is currently 16. To be effective, this parameter should be set to
a value greater than the number of schedds submitting jobs to the negotiator at any time.

PREEMPTION REQUIREMENTS The negotiator will not preempt a job running on a given ma-
chine unless the PREEMPTION REQUIREMENTS expression evaluates to TRUE and the
owner of the idle job has a better priority than the owner of the running job. This expression
defaults to TRUE.

PREEMPTION RANK This expression is used to rank machines that the job ranks the same. For
example, if the job has no preference, it is usually preferable to preempt a job with a small
ImageSize instead of a job with a large ImageSize. The default is to rank all preemptable
matches the same. However, the negotiator will always prefer to match the job with an idle
machine over a preemptable machine, if the job has no preference between them.

NEGOTIATOR TRAFFIC LIMIT This macro specifies the maximum amount of network traffic
(in Kbytes) that the negotiator may initiate per NEGOTIATOR TRAFFIC INTERVAL for
job placement and preemption. The negotiator uses the job ImageSize and Executa-
bleSize parameters to track network usage. The negotiator will try to use bandwidth up
to the limit, so if starting a large ImageSize job would put the negotiator over the limit, it
will try to start a small ImageSize job in its place. Thus, using traffic limits penalizes large
ImageSize jobs for the load they place on the network. This parameter defaults to 0, which
disables network usage management in the negotiator.

NEGOTIATOR TRAFFIC INTERVAL This macro specifies the interval (in seconds) to be used
in maintaining the NEGOTIATOR TRAFFIC LIMIT . This macro defaults to 0, which dis-
ables network usage management in the negotiator. It is common to set this macro equal to
NEGOTIATOR INTERVAL .

NEGOTIATOR DEBUG This macro (and other settings related to debug logging in the negotiator)
is described in section 3.3.3 as SUBSYS DEBUG .

3.3.17 condor eventd Configuration File Entries

These macros affect the Condor Event daemon. See section 3.4.7 on page 115 for an introduction.
The eventd is not included in the main Condor binary distribution or installation procedure. It can
be installed as a contrib module.

EVENT LIST List of macros which define events to be managed by the event daemon.

EVENTD INTERVAL The number of seconds between collector queries to determine pool state.
The default is 15 minutes (300 seconds).

EVENTD MAX PREPARATION The number of minutes before a scheduled event when the eventd
should start periodically querying the collector. If 0 (default), the eventd always polls.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 104

EVENTD SHUTDOWN SLOW START INTERVAL The number of seconds between each machine
startup after a shutdown event. The default is 0.

EVENTD SHUTDOWN CLEANUP INTERVAL The number of seconds between each check for old
shutdown configurations in the pool. The default is one hour (3600 seconds).

3.4 Installing Contrib Modules

This section describes how to install various contrib modules in the Condor system. Some of these
modules are separate, optional pieces, not included in the main distribution of Condor. Examples
are the checkpoint server and DAGMan. Others are integral parts of Condor taken from the develop-
ment series that have certain features users might want to install. Examples are the new SMP-aware
condor startd and the CondorView collector. Both of these things come automatically with Condor
version 6.1 and later versions. However, if you do not want to switch over to using only the devel-
opment binaries, you can install these seperate modules while maintaining most of the stable release
at your site.

3.4.1 Installing CondorView Contrib Modules

To install CondorView for your pool, you really need two things:

1. The CondorView server, which collects historical information.

2. The CondorView client, a Java applet that views this data.

These are separate modules, and they are installed separately.

3.4.2 Installing the CondorView Server Module

The CondorView server is an enhanced version of the condor collector that logs information on
disk, providing a persistent, historical database of your pool state. This includes machine state, as
well as the state of jobs submitted by users, and so on. This enhanced condor collector is the version
6.1 development series, but it can be installed in a 6.0 pool. The historical information logging can
be turned on or off, so you can install the CondorView collector without using up disk space for
historical information if you don’t want it.

To install the CondorView server, you download the appropriate binary module for the platform
on which you will run CondorView. This does not have to be the same platform as your existing
central manager (see below). After you uncompress and untar the module, you will have a directory
with a view server.tar file, a README, and so on. The view server.tar acts much like
the release.tar file for a main release of Condor. It contains all the binaries and supporting
files you would install in your release directory:

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 105

sbin/condor_collector
etc/examples/condor_config.local.view_server

You have two options to choose from when deciding how to install this enhanced con-
dor collector in your pool:

1. Replace your existing condor collector and use the new version for both historical information
and the regular role the collector plays in your pool.

2. Install the new condor collector and run it on a separate host from your main condor collector
and configure your machines to send updates to both collectors.

If you replace your existing collector with the enhanced version, there may be bugs or problems
that cause problems for your pool. This is because it is development code. Installing the enhanced
version on a separate host may cause problems, but only CondorView will be affected, not your
entire pool. Unfortunately, installing the CondorView collector on a separate host generates more
network traffic (from all the duplicate updates that are sent from each machine in your pool to
both collectors). In addition, the installation procedure to have both collectors running is a more
complicated process. Decide for yourself which solution you feel more comfortable with.

What follows are details common to both types of installation.

Setting up the CondorView Server Module

Before you install the CondorView collector (as described in the following sections), you
have to add a few settings to the local configuration file of that machine to enable histori-
cal data collection. These settings are described in detail in the Condor Version 6.1 Admin-
istrator’s Manual, in the section “condor collector Config File Entries”. A short explanation
of the entries you must customize is provided below. These entries are also explained in the
etc/examples/condor config.local.view server file, included in the contrib mod-
ule. Insert that file into the local configuration file for your CondorView collector host and customize
as appropriate at your site.

POOL HISTORY DIR This is the directory where historical data will be stored. This directory
must be writable by whatever user the CondorView collector is running as (usually the user
condor). There is a configurable limit to the maximum space required for all the files created
by the CondorView server called (POOL HISTORY MAX STORAGE).

NOTE: This directory should be separate and different from the spool or log directories
already set up for Condor. There are a few problems putting these files into either of those
directories.

KEEP POOL HISTORY This is a boolean value that determines if the CondorView collector should
store the historical information. It is false by default, which is why you must specify it as true
in your local configuration file to enable data collection.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 106

Once these settings are in place in the local configuration file for your CondorView server host,
you must to create the directory you specified in POOL HISTORY DIR and make it writable by the
user your CondorView collector is running as. This is the same user that owns the CollectorLog
file in your log directory. The user is usually condor.

Once these steps are completed, you are ready to install the new binaries and you will begin
collecting historical information. After that, install the CondorView client contrib module which
contains the tools used to query and display this information.

CondorView Collector as Your Only Collector

To install the new CondorView collector as your main collector, you replace your existing bi-
nary with the new one, found in the view server.tar file. Move your existing con-
dor collector binary out of the way with the mv command. For example:

% cd /full/path/to/your/release/directory
% cd sbin
% mv condor_collector condor_collector.old

Then, from that same directory, untar the view server.tar file into your release directory.
This will install a new condor collector binary and an example configuration file. Within
5 minutes, the condor master will notice the new timestamp on your new condor collector
binary, shutdown your existing collector, and spawn the new version. You will see messages about
this in the log file for your condor master (usually MasterLog in your log directory). Once the
new collector is running, it is safe to remove the old binary, although you may want to keep it around
in case you have problems with the new version and want to revert back.

Once this is completed, add configuration file entries to the local configuration file on your
central manager to enable historical data collection as described below in the “Configuring the Con-
dorView Server Module” section.

CondorView Collector in Addition to Your Main Collector

Installing the CondorView collector in addition to your regular collector requires a little extra work.
First, untar the view server.tar file into a temporary location (not your main release directory).
Copy the sbin/condor collector file from the temporary location to your main release di-
rectory’s sbin with a new name (such as condor collector.view server).

Next, configure whatever host is going to run your separate CondorView server to spawn this
new collector in addition to other daemons it is running. You do this by adding COLLECTOR to the
DAEMON LIST on this machine and defining what COLLECTOR means. For example:

DAEMON_LIST = MASTER, STARTD, SCHEDD, COLLECTOR
COLLECTOR = $(SBIN)/condor_collector.view_server

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 107

For this change to take effect, you must re-start the condor master on this host (which you can
do with the condor restart command, if you run the command from a machine with administrator
access to your pool. (See section 3.8 on page 145 for full details of IP/host-based security in Condor).

As a last step, you tell all the machines in your pool to start sending updates to both collectors.
You do this by specifying the following setting in your global configuration file:

CONDOR_VIEW_HOST = full.hostname

where full.hostname is the full hostname of the machine where you are running your Con-
dorView collector.

Once this setting is in place, send a condor reconfig to all machines in your pool so the changes
take effect. This is described in section 3.10.2 on page 156.

3.4.3 Installing the CondorView Client Contrib Module

The CondorView Client contrib module is used to automatically generate World Wide Web (WWW)
pages displaying usage statistics of your Condor Pool. Included in the module is a shell script
which invokes the condor stats command to retrieve pool usage statistics from the CondorView
server and generate HTML pages from the results. Also included is a Java applet which graphically
visualizes Condor usage information. Users can interact with the applet to customize the visual-
ization and to zoom in to a specific time frame. Figure 3.2 on page 108 is a screenshot of a web
page created by CondorView. To get a further feel for what pages generated by CondorView look
like, you can view the statistics for the University of Wisconsin-Madison pool by going to URL
http://www.cs.wisc.edu/condor and clicking on Condor View.

After unpacking and installing the CondorView Client, a script named make stats can be invoked
to create HTML pages displaying Condor usage for the past hour, day, week, or month. By using
the Unix cron facility to periodically execute make stats, Condor pool usage statistics can be kept
up to date automatically. This simple model allows the CondorView Client to be easily installed; no
Web server CGI interface is needed.

Step-by-Step Installation of the CondorView Client

1. First, make certain that you have configured your pool’s condor collector (typically running
on the central manager) to log information to disk in order to provide a persistent, historical
database of pool statistics. The CondorView Client makes queries over the network against
this database. The condor collector included with version 6.0.x of Condor does not have
this database support; you will need to download and install the CondorView Server con-
trib module. If you are running Condor version 6.1 or above, there is no need to install the
CondorView Server contrib module because the condor collector included in Condor v6.1+
already has the necessary database support. To activate the persistent database logging, add
the following entries into the configuration file on your central manager:

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 108

Figure 3.2: Screenshot of CondorView Client

POOL_HISTORY_DIR = /full/path/to/directory/to/store/historical/data
KEEP_POOL_HISTORY = True

For full details on these and other condor collector configuration file entries, see section 3.3.15
on page 101.

2. Create a directory where CondorView places the HTML files. This directory should be one
published by a web server, so HTML files which exist in this directory can be accessed via a
web browser. This is referred to as the VIEWDIR directory.

3. Unpack/untar the CondorView Client contrib module into VIEWDIR. This creates several files
and subdirectories within VIEWDIR.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 109

4. Edit the make statsscript. At the top of this file are six parameters to customize. The parame-
ters are:

ORGNAME Set to a brief name identifying your organization, for example “Univ of Wiscon-
sin”. Do not use any slashes in the name or other special regular-expression characters.
Avoid characters / \ ˆ $.

CONDORADMIN Set to the email address of the Condor administrator at your site. This email
address will appear at the bottom of the web pages.

VIEWDIR Set to the full pathname (not a relative path) to the VIEWDIR directory selected
in installation step 2. It is the directory that contains the make stats script.

STATSDIR Set to the full pathname of the directory which contains the condor stats binary.
The condor stats program is included in the <release dir>/bin directory with
Condor version 6.1 and above; for Condor version 6.0x, the condor stats program can
be found in the CondorView Server contrib module. The value for STATSDIR is added
to the PATH parameter by default; see below.

PATH Set to a list of subdirectories, separated by colons, where the make stats script can
find awk, bc, sed, date, and condor stats programs. If you have perl installed, set the
path to include the directory where perl is installed as well. Using the following default
works on most systems:

PATH=/bin:/usr/bin:$STATSDIR:/usr/local/bin

5. To create all of the initial HTML files, type

./make_stats setup

Open the file index.html to verify things look good.

6. Add the make stats program to cron. Running make stats in step 5 created a cronentries
file. This cronentries file is ready to be processed by the Unix crontab command. The
crontab manual page can familiarize you with the crontab command and the cron daemon.
Take a look at the cronentries file; by default, it will run make stats hour every 15 min-
utes, make stats day once an hour, make stats week twice per day, and make stats month once
per day. These are reasonable defaults. You can add these commands to cron on any system
that can access the $(VIEWDIR) and $(STATSDIR) directories, even on a system that does
not have Condor installed. The commands do not have to run as user root; in fact, they should
probably not run as root. These commands can run as any user that has read/write access to
the VIEWDIR. To add these commands to cron, enter :

crontab cronentries

7. Point your web browser at the VIEWDIR directory, and you are finished with the installation.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 110

3.4.4 Installing a Checkpoint Server

The Checkpoint Server maintains a repository for checkpoint files. Using checkpoint servers reduces
the disk requirements of submitting machines in the pool, since the submitting machines no longer
need to store checkpoint files locally. Checkpoint server machines should have a large amount of
disk space available, and they should have a fast connection to machines in the Condor pool.

If your spool directories are on a network file system, then checkpoint files will make two trips
over the network: one between the submitting machine and the execution machine, and a second
between the submitting machine and the network file server. If you install a checkpoint server and
configure it to use the server’s local disk, the checkpoint will travel only once over the network,
between the execution machine and the checkpoint server. You may also obtain checkpointing
network performance benefits by using multiple checkpoint servers, as discussed below.

NOTE: It is a good idea to pick very stable machines for your checkpoint servers. If individual
checkpoint servers crash, the Condor system will continue to operate, although poorly. While the
Condor system will recover from a checkpoint server crash as best it can, there are two problems
that can (and will) occur:

1. A checkpoint cannot be sent to a checkpoint server that is not functioning. Jobs will keep
trying to contact the checkpoint server, backing off exponentially in the time they wait between
attempts. Normally, jobs only have a limited time to checkpoint before they are kicked off the
machine. So, if the server is down for a long period of time, chances are that a lot of work
will be lost by jobs being killed without writing a checkpoint.

2. If a checkpoint is not available from the checkpoint server, a job cannot be retrieved, and it
will either have to be restarted from the beginning, or the job will wait for the server to come
back online. This behavior is controlled with the MAX DISCARDED RUN TIME parameter
in the config file (see section 3.3.6 on page 88 for details). This parameter represents the
maximum amount of CPU time you are willing to discard by starting a job over from scratch
if the checkpoint server is not responding to requests.

Preparing to Install a Checkpoint Server

The location of checkpoints changes upon the installation of a checkpoint server. A configuration
change would cause currently queued jobs with checkpoints to not be able to find their checkpoints.
This results in the jobs with checkpoints remaining indefinitely queued (never running) due to the
lack of finding their checkpoints. It is therefore best to either remove jobs from the queues or let
them complete before installing a checkpoint server. It is advisable to shut your pool down before
doing any maintenance on your checkpoint server. See section 3.10 on page 153 for details on
shutting down your pool.

A graduated installation of the checkpoint server may be accomplished by configuring submit
machines as their queues empty.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 111

Installing the Checkpoint Server Module

To install a checkpoint server, download the appropriate binary contrib module for the platform(s)
on which your server will run. Uncompress and untar the file to result in a directory that contains
a README, ckpt server.tar, and so on. The file ckpt server.tar acts much like the
release.tar file from a main release. This archive contains the files:

sbin/condor_ckpt_server
sbin/condor_cleanckpts
etc/examples/condor_config.local.ckpt.server

These new files are not found in the main release, so you can safely untar the archive directly into
your existing release directory. condor ckpt server is the checkpoint server binary. con-
dor cleanckpts is a script that can be periodically run to remove stale checkpoint files from
your server. The checkpoint server normally cleans all old files itself. However, in certain error
situations, stale files can be left that are no longer needed. You may set up a cron job that calls
condor cleanckpts every week or so to automate the cleaning up of any stale files. The example
configuration file give with the module is described below.

After unpacking the module, there are three steps to complete. Each is discussed in its own
section:

1. Configure the checkpoint server.

2. Start the checkpoint server.

3. Configure your pool to use the checkpoint server.

Configuring a Checkpoint Server

Place settings in the local configuration file of the checkpoint server. The file
etc/examples/condor config.local.ckpt.server contains the needed settings. In-
sert these into the local configuration file of your checkpoint server machine.

The CKPT SERVER DIR must be customized. The CKPT SERVER DIR attribute defines
where your checkpoint files are to be located. It is better if this is on a very fast local file system
(preferably a RAID). The speed of this file system will have a direct impact on the speed at which
your checkpoint files can be retrieved from the remote machines.

The other optional settings are:

DAEMON LIST (Described in section 3.3.7). To have the checkpoint server managed by the con-
dor master, the DAEMON LIST entry must have MASTER and CKPT SERVER. Add STARTD
if you want to allow jobs to run on your checkpoint server. Similarly, add SCHEDD if you
would like to submit jobs from your checkpoint server.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 112

The rest of these settings are the checkpoint server-specific versions of the Condor logging en-
tries, as described in section 3.3.3 on page 81.

CKPT SERVER LOG The CKPT SERVER LOG is where the checkpoint server log is placed.

MAX CKPT SERVER LOG Sets the maximum size of the checkpoint server log before it is saved
and the log file restarted.

CKPT SERVER DEBUG Regulates the amount of information printed in the log file. Currently, the
only debug level supported is D ALWAYS.

Start the Checkpoint Server

To start the newly configured checkpoint server, restart Condor on that host to enable the con-
dor master to notice the new configuration. Do this by sending a condor restart command from any
machine with administrator access to your pool. See section 3.8 on page 145 for full details about
IP/host-based security in Condor.

Configuring your Pool to Use the Checkpoint Server

After the checkpoint server is running, you change a few settings in your configuration files to let
your pool know about your new server:

USE CKPT SERVER This parameter should be set to TRUE (the default).

CKPT SERVER HOST This parameter should be set to the full hostname of the machine that is
now running your checkpoint server.

It is most convenient to set these parameters in your global configuration file, so they affect
all submission machines. However, you may configure each submission machine separately (using
local configuration files) if you do not want all of your submission machines to start using the
checkpoint server at one time. If USE CKPT SERVER is set to FALSE, the submission machine
will not use a checkpoint server.

Once these settings are in place, send a condor reconfig to all machines in your pool so the
changes take effect. This is described in section 3.10.2 on page 156.

Configuring your Pool to Use Multiple Checkpoint Servers

It is possible to configure a Condor pool to use multiple checkpoint servers. The deployment of
checkpoint servers across the network improves checkpointing performance. In this case, Condor
machines are configured to checkpoint to the nearest checkpoint server. There are two main perfor-
mance benefits to deploying multiple checkpoint servers:

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 113

• Checkpoint-related network traffic is localized by intelligent placement of checkpoint servers.

• Faster checkpointing implies that jobs spend less time checkpointing, more time doing useful
work, jobs have a better chance of checkpointing successfully before returning a machine to
its owner, and workstation owners see Condor jobs leave their machines quicker.

Once you have multiple checkpoint servers running in your pool, the following configuration
changes are required to make them active.

First, USE CKPT SERVER should be set to TRUE (the default) on all submit-
ting machines where Condor jobs should use a checkpoint server. Additionally,
STARTER CHOOSES CKPT SERVER should be set to TRUE (the default) on these submit-
ting machines. When TRUE, this parameter specifies that the checkpoint server specified by the
machine running the job should be used instead of the checkpoint server specified by the submitting
machine. See section 3.3.6 on page 88 for more details. This allows the job to use the checkpoint
server closest to the machine on which it is running, instead of the server closest to the submitting
machine. For convenience, set these parameters in the global configuration file.

Second, set CKPT SERVER HOST on each machine. As described, this is set to the full host-
name of the checkpoint server machine. In the case of multiple checkpoint servers, set this in the
local configuraton file. It is the hostname of the nearest server to the machine.

Third, send a condor reconfig to all machines in the pool so the changes take effect. This is
described in section 3.10.2 on page 156.

After completing these three steps, the jobs in your pool will send checkpoints to the nearest
checkpoint server. On restart, a job will remember where its checkpoint was stored and get it from
the appropriate server. After a job successfully writes a checkpoint to a new server, it will remove
any previous checkpoints left on other servers.

NOTE: If the configured checkpoint server is unavailable, the job will keep trying to contact that
server as described above. It will not use alternate checkpoint servers. This may change in future
versions of Condor.

Checkpoint Server Domains

The configuration described in the previous section ensures that jobs will always write checkpoints
to their nearest checkpoint server. In some circumstances, it is also useful to configure Condor to
localize checkpoint read transfers, which occur when the job restarts from its last checkpoint on a
new machine. To localize these transfers, we want to schedule the job on a machine which is near
the checkpoint server on which the job’s checkpoint is stored.

We can say that all of the machines configured to use checkpoint server “A” are in “checkpoint
server domain A.” To localize checkpoint transfers, we want jobs which run on machines in a given
checkpoint server domain to continue running on machines in that domain, transferring checkpoint
files in a single local area of the network. There are two possible configurations which specify what
a job should do when there are no available machines in its checkpoint server domain:

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 114

• The job can remain idle until a workstation in its checkpoint server domain becomes available.

• The job can try to immediately begin executing on a machine in another checkpoint server
domain. In this case, the job transfers to a new checkpoint server domain.

These two configurations are described below.

The first step in implementing checkpoint server domains is to include the name of the near-
est checkpoint server in the machine ClassAd, so this information can be used in job scheduling
decisions. To do this, add the following configuration to each machine:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_EXPRS = $(STARTD_EXPRS), CkptServer

For convenience, we suggest that you set these parameters in the global config file. Note that this
example assumes that STARTD EXPRS is defined previously in your configuration. If not, then you
should use the following configuration instead:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_EXPRS = CkptServer

Now, all machine ClassAds will include a CkptServer attribute, which is the name of the check-
point server closest to this machine. So, the CkptServer attribute defines the checkpoint server
domain of each machine.

To restrict jobs to one checkpoint server domain, we need to modify the jobs’ Requirements
expression as follows:

Requirements = ((LastCkptServer == TARGET.CkptServer) || (LastCkpt-
Server =?= UNDEFINED))

This Requirements expression uses the LastCkptServer attribute in the job’s ClassAd,
which specifies where the job last wrote a checkpoint, and the CkptServer attribute in the ma-
chine ClassAd, which specifies the checkpoint server domain. If the job has not written a checkpoint
yet, the LastCkptServer attribute will be UNDEFINED, and the job will be able to execute in
any checkpoint server domain. However, once the job performs a checkpoint, LastCkptServer
will be defined and the job will be restricted to the checkpoint server domain where it started run-
ning.

If instead we want to allow jobs to transfer to other checkpoint server domains when there are
no available machines in the current checkpoint server domain, we need to modify the jobs’ Rank
expression as follows:

Rank = ((LastCkptServer == TARGET.CkptServer) || (LastCkpt-
Server =?= UNDEFINED))

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 115

This Rank expression will evaluate to 1 for machines in the job’s checkpoint server domain and 0
for other machines. So, the job will prefer to run on machines in its checkpoint server domain, but
if no such machines are available, the job will run in a new checkpoint server domain.

You can automatically append the checkpoint server domain Requirements or Rank expres-
sions to all STANDARD universe jobs submitted in your pool using APPEND REQ STANDARD or
APPEND RANK STANDARD . See section 3.3.13 on page 99 for more details.

3.4.5 Installing PVM Support in Condor

To install support for PVM in Condor, download the file archive from
http://www.cs.wisc.edu/condor/downloads and follow the directions found the INSTALL file
contained in the archive. NOTE: The PVM contrib module version must agree with your installed
Condor version.

3.4.6 Installing MPI Support in Condor

For complete documentation on using MPI in Condor, see the section entitled “Running
MPICH jobs in Condor” in the version 6.1 manual. This manual can be found at
http://www.cs.wisc.edu/condor/manual/v6.1. You must have Condor version 6.1.15 or better in or-
der to use the MPI contrib module.

To install the MPI contrib module, all you have to do is download to appropriate binary module
for whatever platform(s) you plan to use for MPI jobs in Condor. Once you have downloaded each
module, uncompressed and untarred it, you will be left with a directory that contains a mpi.tar,
README and so on. The mpi.tar acts much like the release.tar file for a main release. It
contains all the binaries and supporting files you would install in your release directory:

sbin/condor_shadow.v61
sbin/condor_starter.v61
sbin/rsh

Since these files do not exist in a main release, you can safely untar the mpi.tar directly into
your release directory, and you’re done installing the MPI contrib module. Again, see the 6.1 manual
for instructions on how to use MPI in Condor.

3.4.7 Condor Event Daemon

The event daemon is an administrative tool for scheduling events in a Condor pool. Every
EVENTD INTERVAL , for each defined event, the event daemon (eventd) computes an estimate
of the time required to complete or prepare for the event. If the time required is less than the time
between the next interval and the start of the event, the event daemon activates the event.

Condor Version 6.1.17 Manual

3.4. Installing Contrib Modules 116

Currently, this daemon supports SHUTDOWN events, which place machines in the owner state
during scheduled times. The eventd causes machines to vacate jobs one at a time in anticipation of
SHUTDOWN events. Scheduling this improves performance, because the machines do not all attempt
to checkpoint their jobs at the same time. To determine the estimate of the time required to complete
a SHUTDOWN event, the ImageSize values for all running standard universe jobs are totalled and
then divided by the maximum bandwidth specified for this event.

When a SHUTDOWN event is activated, the eventd contacts all startd daemons that match con-
straints given in the configuration file, and instructs them to shut down. In response to this instruc-
tion, the startd on any machine not running a job will immediately transition to the owner state. Any
machine currently running a job will continue to run the job, but will not start any new job. The
eventd then sends a vacate command to the each startd that is currently running a job. Once the job
is vacated, the startd transitions to the owner state.

condor eventd must run on a machine with administrator access to your pool. See section 3.8 on
page 145 for full details about IP/host-based security in Condor.

Installing the Event Daemon

condor eventd requires version 6.1.3 or later of condor startd. So, you should first install either the
latest version of the SMP condor startd contrib module or the latest release of Condor version 6.1.

First, download the condor eventd contrib module. Uncompress and untar the file, to have a
directory that contains a eventd.tar. The eventd.tar acts much like the release.tar
file from a main release. This archive contains the files:

sbin/condor_eventd
etc/examples/condor_config.local.eventd

These are all new files, not found in the main release, so you can safely untar the archive directly
into your existing release directory. The file condor eventd is the eventd binary. The example
configuration file is described below.

Configuring the Event Daemon

The file etc/examples/condor config.local.eventd contains an example configura-
tion. To define events, first set the EVENT LIST macro. This macro contains a list of macro names
which define the individual events. The definition of individual events depends on the type of the
event. Currently, there is only one event type: SHUTDOWN . The format for SHUTDOWN events is

SHUTDOWN DAY TIME DURATION BANDWIDTH CONSTRAINT RANK

TIME and DURATION are specified in an hours:minutes format. DAY is a string of days, where M
= Monday, T = Tuesday, W = Wednesday, R = Thursday, F = Friday, S = Saturday, and U = Sunday.

Condor Version 6.1.17 Manual

3.5. User Priorities in the Condor System 117

For example, MTWRFSU would specify that the event occurs daily, MTWRF would specify that the
event occurs only on weekdays, and SU would specificy that the event occurs only on weekends.

The following is an example event daemon configuration:

EVENT_LIST = TestEvent, TestEvent2
TestEvent = SHUTDOWN W 16:00 1:00 2.5 TestEventCon-
straint TestEventRank
TestEvent2 = SHUTDOWN F 14:00 0:30 6.0 TestEventCon-
straint2 TestEventRank
TestEventConstraint = (Arch == "INTEL")
TestEventConstraint2 = (True)
TestEventRank = (0 - ImageSize)

In this example, the TestEvent is a SHUTDOWN type event, which specifies that all machines
whose startd ads match the constraint Arch == "INTEL" should be shutdown for one hour start-
ing at 16:00 every Wednesday, and no more than 2.5 Mbytes/s of bandwidth should be used to
vacate jobs in anticipation of the shutdown event. According to the TestEventRank, jobs will be
vacated in reverse order of their ImageSize (larger jobs first, smaller jobs last). TestEvent2
is a SHUTDOWN type event, which specifies that all machines should be shutdown for 30 minutes
starting at 14:00 every Friday, and no more than 6.0 Mbytes/s of bandwidth should be used to vacate
jobs in anticipation of the shutdown event.

Note that the DAEMON LIST macro (described in section 3.3.7) is defined in the section of
settings you may want to customize. If you want the event daemon managed by the condor master,
the DAEMON LIST entry must contain both MASTER and EVENTD. Verify that this macro is set to
run the correct daemons on this machine. By default, the list also includes SCHEDD and STARTD.

See section 3.3.17 on page 103 for a description of optional event daemon parameters.

Starting the Event Daemon

To start an event daemon once it is configured to run on a given machine, restart Condor on that
given machine to enable the condor master to notice the new configuration. Send a condor restart
command from any machine with administrator access to your pool. See section 3.8 on page 145
for full details about IP/host-based security in Condor.

3.5 User Priorities in the Condor System

Condor uses priorities to determine machine allocation for jobs. This section details the priorities.

For accounting purposes, each user is identified by username@uid domain. Each user is as-
signed a priority value even if submitting jobs from different machines in the same domain, or even
submit from multiple machines in the different domains.

Condor Version 6.1.17 Manual

3.5. User Priorities in the Condor System 118

The numerical priority value assigned to a user is inversely related to the goodness of the priority.
A user with a numerical priority of 5 gets more resources than a user with a numerical priority of
50. There are two priority values assigned to Condor users:

• Real User Priority (RUP), which measures resource usage of the user.

• Effective User Priority (EUP), which determines the number of resources the user can get.

This section describes these two priorities and how they affect resource allocations in Condor. Doc-
umentation on configuring and controlling priorities may be found in section 3.3.16.

3.5.1 Real User Priority (RUP)

A user’s RUP measures the resource usage of the user through time. Every user begins with a RUP
of one half (0.5), and at steady state, the RUP of a user equilibrates to the number of resources used
by that user. Therefore, if a specific user continuously uses exactly ten resources for a long period
of time, the RUP of that user stabilizes at ten.

However, if the user decreases the number of resources used, the RUP gets better. The rate at
which the priority value decays can be set by the macro PRIORITY HALFLIFE , a time period
defined in seconds. Intuitively, if the PRIORITY HALFLIFE in a pool is set to 86400 (one day),
and if a user whose RUP was 10 removes all his jobs, the user’s RUP would be 5 one day later, 2.5
two days later, and so on.

3.5.2 Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many resources that user may
receive. The EUP is linearly related to the RUP by a priority factor which may be defined on a
per-user basis. Unless otherwise configured, the priority factor for all users is 1.0, and so the EUP
is the same as the the RUP. However, if desired, the priority factors of specific users (such as remote
submitters) can be increased so that others are served preferentially.

The number of resources that a user may receive is inversely related to the ratio between the
EUPs of submitting users. Therefore user A with EUP=5 will receive twice as many resources as
user B with EUP=10 and four times as many resources as user C with EUP=20. However, if A

does not use the full number of allocated resources, the available resources are repartitioned and
distributed among remaining users according to the inverse ratio rule.

Condor supplies mechanisms to directly support two policies in which EUP may be useful:

Nice users A job may be submitted with the parameter nice user set to TRUE in the submit
command file. A nice user job gets its RUP boosted by the NICE USER PRIO FACTOR
priority factor specified in the configuration file, leading to a (usually very large) EUP. This
corresponds to a low priority for resources. These jobs are therefore equivalent to Unix back-
ground jobs, which use resources not used by other Condor users.

Condor Version 6.1.17 Manual

3.5. User Priorities in the Condor System 119

Remote Users The flocking feature of Condor (see section 3.11.6) allows the condor schedd to
submit to more than one pool. In addition, the submit-only feature allows a user to run a
condor schedd that is submitting jobs into another pool. In such situations, submitters from
other domains can submit to the local pool. It is often desirable to have Condor treat local users
preferentially over these remote users. If configured, Condor will boost the RUPs of remote
users by REMOTE PRIO FACTOR specified in the configuration file, thereby lowering their
priority for resources.

The priority boost factors for individual users can be set with the setfactor option of con-
dor userprio. Details may be found in the condor submit manual page on page 320.

3.5.3 Priorities and Preemption

Priorities are used to ensure that users get their fair share of resources. The priority values are used
at allocation time. In addition, Condor preempts machines (by performing a checkpoint and vacate)
and reallocates them to maintain priority standing.

To ensure that preemptions do not lead to thrashing, a PREEMPTION REQUIREMENTS ex-
pression is defined to specify the conditions that must be met for a preemption to occur. It is usually
defined to deny preemption if a current running job has been running for a relatively short period of
time. This effectively limits the number of preemptions per resource per time interval.

3.5.4 Priority Calculation

This section may be skipped if the reader so feels, but for the curious, here is Condor’s priority
calculation algorithm.

The RUP of a user u at time t, πr(u, t), is calculated every time interval δt using the formula

πr(u, t) = β × π(u, t − δt) + (1 − β) × ρ(u, t)

where ρ(u, t) is the number of resources used by user u at time t, and β = 0.5δt/h. h is the half life
period set by PRIORITY HALFLIFE .

The EUP of user u at time t, πe(u, t) is calculated by

πe(u, t) = πr(u, t) × f(u, t)

where f(u, t) is the priority boost factor for user u at time t.

As mentioned previously, the RUP calculation is designed so that at steady state, each user’s
RUP stabilizes at the number of resources used by that user. The definition of β ensures that the
calculation of πr(u, t) can be calculated over non-uniform time intervals δt without affecting the
calculation. The time interval δt varies due to events internal to the system, but Condor guarantees
that unless the central manager machine is down, no matches will be unaccounted for due to this
variance.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 120

3.6 Configuring The Startd Policy

This section describes the configuration of the condor startd to implement the desired policy for
when remote jobs should start, be suspended, (possibly) resumed, vacate (with a checkpoint) or be
killed (no checkpoint). This policy is the heart of Condor’s balancing act between the needs and
wishes of resource owners (machine owners) and resource users (people submitting their jobs to
Condor). Please read this section carefully if you plan to change any of the settings described here,
as getting it wrong can have a severe impact on either the owners of machines in your pool (they may
ask to be removed from the pool entirely) or the users of your pool (they may stop using Condor).

Before we get into the details, there are a few things to note:

• Much of this section refers to ClassAd expressions. You probably want to read through sec-
tion 4.1 on ClassAd expressions before continuing with this.

• If you are familiar with the version 6.0 policy expressions and what they do, you read sec-
tion 3.6.10 on page 142 which explains the differences between the version 6.0 policy expres-
sions and later versions.

• If you are defining the policy for an SMP (multi-CPU) machine, also read section 3.11.7 on
Configuring The Startd for SMP Machines. Each virtual machine represented by the con-
dor startd on an SMP machine will have its own state and activity (described below). In the
future, each virtual machine will be able to have its own policy expressions defined. For the
rest of this section, the word “machine” means an individual virtual machine, for an SMP
machine that is showing up as multiple virtual machines in your pool.

To define your policy, you set expressions in the configuration file (see section 3.3 on Config-
uring Condor for an introduction to Condor’s configuration files). The expressions are evaluated in
the context of the machine’s ClassAd and a job ClassAd. The expressions can therefore reference
attributes from either ClassAd. Listed in this section are the attributes that are included in the ma-
chine’s ClassAd and the attributes that are included in a job ClassAd. The START expression,
which describes to Condor what conditions must be met for a machine to start a job are explained.
The RANK expression is described. It allows the specification of the kinds of jobs a machine prefers
to run. A final discussion details how the condor startd works. Included are the machine states and
activities, to give an idea of what is possible in policy decisions. Two example policy settings are
presented.

3.6.1 Startd ClassAd Attributes

The condor startd represents the machine on which it is running to the Condor pool. It publishes
characteristics about the machine in its ClassAd to aid matchmaking with resource requests. The
values of these attributes can be found by using condor status -l hostname. On an SMP machine,
the startd will break the machine up and advertise it as separate virtual machines, each with its own
name and ClassAd. The attributes themselves and what they represent are described below:

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 121

Activity : String which describes Condor job activity on the machine. Can have one of the
following values:

"Idle" : There is no job activity

"Busy" : A job is busy running

"Suspended" : A job is currently suspended

"Vacating" : A job is currently checkpointing

"Killing" : A job is currently being killed

"Benchmarking" : The startd is running benchmarks

Arch : String with the architecture of the machine. Typically one of the following:

"INTEL" : Intel x86 CPU (Pentium, Xeon, etc).

"ALPHA" : Digital Alpha CPU

"SGI" : Silicon Graphics MIPS CPU

"SUN4u" : Sun UltraSparc CPU

"SUN4x" : A Sun Sparc CPU other than an UltraSparc, i.e. sun4m or sun4c CPU found in
older Sparc workstations such as the Sparc 10, Sparc 20, IPC, IPX, etc.

"HPPA1" : Hewlett Packard PA-RISC 1.x CPU (i.e. PA-RISC 7000 series CPU) based
workstation

"HPPA2" : Hewlett Packard PA-RISC 2.x CPU (i.e. PA-RISC 8000 series CPU) based
workstation

ClockDay : The day of the week, where 0 = Sunday, 1 = Monday, . . ., 6 = Saturday.

ClockMin : The number of minutes passed since midnight.

CondorLoadAvg : The portion of the load average generated by Condor (either from remote jobs
or running benchmarks).

ConsoleIdle : The number of seconds since activity on the system console keyboard or console
mouse has last been detected.

Cpus : Number of CPUs in this machine, i.e. 1 = single CPU machine, 2 = dual CPUs, etc.

CurrentRank : A float which represents this machine owner’s affinity for running the Condor
job which it is currently hosting. If not currently hosting a Condor job, CurrentRank is
-1.0.

Disk : The amount of disk space on this machine available for the job in kbytes (e.g. 23000 = 23
megabytes). Specifically, this is the amount of disk space available in the directory specified
in the Condor configuration files by the EXECUTE macro, minus any space reserved with the
RESERVED DISK macro.

EnteredCurrentActivity : Time at which the machine entered the current Activity (see
Activity entry above). On all platforms (including NT), this is measured in the number of
seconds since the UNIX epoch (00:00:00 UTC, Jan 1, 1970).

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 122

FileSystemDomain : A “domain” name configured by the Condor administrator which de-
scribes a cluster of machines which all access the same, uniformly-mounted, networked file
systems usually via NFS or AFS. This is useful for Vanilla universe jobs which require remote
file access.

KeyboardIdle : The number of seconds since activity on any keyboard or mouse associated
with this machine has last been detected. Unlike ConsoleIdle, KeyboardIdle also
takes activity on pseudo-terminals into account (i.e. virtual “keyboard” activity from telnet
and rlogin sessions as well). Note that KeyboardIdle will always be equal to or less than
ConsoleIdle.

KFlops : Relative floating point performance as determined via a Linpack benchmark.

LastHeardFrom : Time when the Condor central manager last received a status update from
this machine. Expressed as seconds since the epoch (integer value). Note: This attribute is
only inserted by the central manager once it receives the ClassAd. It is not present in the
condor startd copy of the ClassAd. Therefore, you could not use this attribute in defining
condor startd expressions (and you would not want to).

LoadAvg : A floating point number with the machine’s current load average.

Machine : A string with the machine’s fully qualified hostname.

Memory : The amount of RAM in megabytes.

Mips : Relative integer performance as determined via a Dhrystone benchmark.

MyType : The ClassAd type; always set to the literal string "Machine".

Name : The name of this resource; typically the same value as the Machine attribute, but could
be customized by the site administrator. On SMP machines, the condor startd will divide the
CPUs up into separate virtual machines, each with with a unique name. These names will be
of the form “vm#@full.hostname”, for example, “vm1@vulture.cs.wisc.edu”, which signifies
virtual machine 1 from vulture.cs.wisc.edu.

OpSys : String describing the operating system running on this machine. For Condor Version
6.1.17 typically one of the following:

"HPUX10" : for HPUX 10.20

"IRIX6" : for IRIX 6.2, 6.3, or 6.4

"LINUX" : for LINUX 2.0.x or LINUX 2.2.x kernel systems

"OSF1" : for Digital Unix 4.x

"SOLARIS251"

"SOLARIS26"

Requirements : A boolean, which when evaluated within the context of the machine ClassAd
and a job ClassAd, must evaluate to TRUE before Condor will allow the job to use this ma-
chine.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 123

StartdIpAddr : String with the IP and port address of the condor startd daemon which is pub-
lishing this machine ClassAd.

State : String which publishes the machine’s Condor state. Can be:

"Owner" : The machine owner is using the machine, and it is unavailable to Condor.

"Unclaimed" : The machine is available to run Condor jobs, but a good match is either
not available or not yet found.

"Matched" : The Condor central manager has found a good match for this resource, but a
Condor scheduler has not yet claimed it.

"Claimed" : The machine is claimed by a remote condor schedd and is probably running
a job.

"Preempting" : A Condor job is being preempted (possibly via checkpointing) in order
to clear the machine for either a higher priority job or because the machine owner wants
the machine back.

TargetType : Describes what type of ClassAd to match with. Always set to the string literal
"Job", because machine ClassAds always want to be matched with jobs, and vice-versa.

UidDomain : a domain name configured by the Condor administrator which describes a cluster of
machines which all have the same passwd file entries, and therefore all have the same logins.

VirtualMemory : The amount of currently available virtual memory (swap space) expressed in
kbytes.

3.6.2 Job ClassAd Attributes

CkptArch : String describing the architecture of the machine where this job last checkpointed. If
the job has never checkpointed, this attribute is UNDEFINED.

CkptOpSys : String describing the operating system of the machine where this job last check-
pointed. If the job has never checkpointed, this attribute is UNDEFINED.

ClusterId : Integer cluster identifier for this job. A “cluster” is a group of jobs that were submit-
ted together. Each job has its own unique job identifier within the cluser, but shares a common
cluster identifier.

ExecutableSize : Size of the executable in kbytes.

ImageSize : Estimate of the memory image size of the job in kbytes. The initial estimate may
be specified in the job submit file. Otherwise, the initial value is equal to the size of the
executable. When the job checkpoints, the ImageSize attribute is set to the size of the
checkpoint file (since the checkpoint file contains the job’s memory image).

JobPrio : Integer priority for this job, set by condor submit or condor prio. The default value is
0. The higher the number, the worse the priority.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 124

JobStatus : Integer which indicates the current status of the job, where 1 = Idle, 2 = Running, 3
= Removed, 4 = Completed, and 5 = Held.

JobUniverse : Integer which indicates the job universe, where 1 = Standard, 4 = PVM, 5 =
Vanilla, and 7 = Scheduler.

LastCkptServer : Hostname of the last checkpoint server used by this job. When a pool is
using multiple checkpoint servers, this tells the job where to find its checkpoint file.

LastCkptTime : Time at which the job last performed a successful checkpoint. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

LastVacateTime : Time at which the job was last evicted from a remote workstation. Measured
in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

NumCkpts : A count of the number of checkpoints written by this job during its lifetime.

NumRestarts : A count of the number of restarts from a checkpoint attempted by this job during
its lifetime.

NiceUser : Boolean value which indicates whether this is a nice-user job.

Owner : String describing the user who submitted this job.

ProcId : Integer process identifier for this job. In a cluster of many jobs, each job will have the
same ClusterId but will have a unique ProcId.

QDate : Time at which the job was submitted to the job queue. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

JobStartDate : Time at which the job first began running. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

3.6.3 The START expression

The most important expression in the startd (and possibly in all of Condor) is the START expression.
This expression describes the conditions to must be met for a machine to service a resource request
(in other words, to start a job). This expression (like other expressions) can reference attributes in the
machine’s ClassAd (such as KeyboardIdle and LoadAvg) or attributes in a job ClassAd (such
as Owner, Imagesize, and even Cmd, the name of the executable the requester wants to run).
What the START expression evaluates to plays a crucial role in determining the state and activity of
a machine.

It is the Requirements expression that is used for matching with other jobs. The startd
defines the Requirements expression as the START expression. However, in situations where a
machine wants to make itself unavailable for further matches, it sets its Requirements expression
to FALSE, not its START expression. When the START expression locally evaluates to TRUE, the
machine advertises the Requirements expression as TRUE and does not publish the START
expression.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 125

Normally, the expressions in the machine ClassAd are evaluated against certain request ClassAds
in the condor negotiator to see if there is a match, or against whatever request ClassAd currently
has claimed the machine. However, by locally evaluating an expression, the machine only evaluates
the expression against its own ClassAd. If an expression cannot be locally evaluated (because it
references other expressions that are only found in a request ad, such as Owner or Imagesize),
the expression is (usually) undefined. See section 4.1 for specifics on how undefined terms are
handled in ClassAd expression evaluation.

NOTE: If you have machines with lots of real memory and swap space so the only scarce
resource is CPU time, you could use JOB RENICE INCREMENT (see section 3.3.12 on con-
dor starter Configuration File Macros for details) so that Condor starts jobs on your machine with
low priority. Then, set up your machines with:

START : True
SUSPEND : False
PREEMPT : False
KILL : False

In this way, Condor jobs always run and never be kicked off. However, because they would run
with “nice priority”, interactive response on your machines will not suffer. You probably would not
notice Condor was running the jobs, assuming you had enough free memory for the Condor jobs
that there was little swapping.

3.6.4 The RANK expression

A machine may be configured to prefer certain jobs over others using the RANK expression. It is
an expression, like any other in a machine ClassAd. It can reference any attribute found in either
the machine ClassAd or a request ad (normally, in fact, it references things in the request ad). The
most common use of this expression is likely to configure a machine to prefer to run jobs from the
owner of that machine, or by extension, a group of machines to prefer jobs from the owners of those
machines.

For example, imagine there is a small research group with 4 machines called tenorsax, piano,
bass, and drums. These machines are owned by the 4 users coltrane, tyner, garrison, and jones,
respectively.

Assume that there is a large Condor pool in your department, but you spent a lot of money on
really fast machines for your group. You want to implement a policy that gives priority on your
machines to anyone in your group. To achieve this, set the RANK expression on your machines to
reference the Owner attribute and prefer requests where that attribute matches one of the people in
your group as in

RANK : Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 126

The RANK expression is evaluated as a floating point number. However, like in C, boolean
expressions evaluate to either 1 or 0 depending on if they are TRUE or FALSE. So, if this expression
evaluated to 1 (because the remote job was owned by one of the preferred users), it would be a larger
value than any other user (for whom the expression would evaluate to 0).

A more complex RANK expression has the same basic set up, where anyone from your group has
priority on your machines. Its difference is that the machine owner has better priority on their own
machine. To set this up for Jimmy Garrison, place the following entry in Jimmy Garrison’s local
configuration file bass.local:

RANK : (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

NOTE: The parentheses in this expression are important, because “+” operator has higher default
precedence than “==”.

The use of “+” instead of “| | ” allows us to distinguish which terms matched and which ones
didn’t. If anyone not in the John Coltrane quartet was running a job on the machine called bass, the
RANKwould evaluate numerically to 0, since none of the boolean terms evaluates to 1, and 0+0+0+0
still equals 0.

Suppose Elvin Jones submits a job. His job would match this machine (assuming the START
was True for him at that time) and the RANK would numerically evaluate to 1. Therefore, Elvin
would preempt the Condor job currently running. Assume that later Jimmy submits a job. The
RANK evaluates to 10, since the boolean that matches Jimmy gets multiplied by 10. Jimmy would
preempt Elvin, and Jimmy’s job would run on Jimmy’s machine.

The RANK expression is not required to reference the Owner of the jobs. Perhaps there is one
machine with an enormous amount of memory, and others with not much at all. You can configure
your large-memory machine to prefer to run jobs with larger memory requirements:

RANK : ImageSize

That’s all there is to it. The bigger the job, the more this machine wants to run it. It is an altruistic
preference, always servicing the largest of jobs, no matter who submitted them. A little less altruistic
is John’s RANK that prefers his jobs over those with the largest Imagesize:

RANK : (Owner == "coltrane" * 1000000000000) + Imagesize

This RANK breaks if a job is submitted with an image size of more 1012 Kbytes. However, with that
size, this RANK expression preferring that job would not be Condors only problem!

3.6.5 Machine States

A machine is assigned a state by Condor. The state depends on whether or not the machine is
available to run Condor jobs, and if so, what point in the negotiations has been reached. The possible

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 127

states are

Owner The machine is being used by the machine owner, and/or is not available to run Condor
jobs. When the machine first starts up, it begins in this state.

Unclaimed The machine is available to run Condor jobs, but it is not currently doing so.

Matched The machine is available to run jobs, and it has been matched by the negotiator with a
specific schedd. That schedd just has not yet claimed this machine. In this state, the machine
is unavailable for further matches.

Claimed The machine has been claimed by a schedd.

Preempting The machine was claimed by a schedd, but is now preempting that claim for one of the
following reasons.

1. the owner of the machine came back

2. another user with higher priority has jobs waiting to run

3. another request that this resource would rather serve was found

Figure 3.3 shows the states and the possible transitions between the states.

3.6.6 Machine Activities

Within some machine states, activities of the machine are defined. The state has meaning regardless
of activity. Differences between activities are significant. Therefore, a “state/activity” pair describes
a machine. The following list describes all the possible state/activity pairs.

• Owner

Idle This is the only activity for Owner state. As far as Condor is concerned the machine is
Idle, since it is not doing anything for Condor.

• Unclaimed

Idle This is the normal activity of Unclaimed machines. The machine is still Idle in that the
machine owner is willing to let Condor jobs run, but Condor is not using the machine
for anything.

Benchmarking The machine is running benchmarks to determine the speed on this machine.
This activity only occurs in the Unclaimed state. How often the activity occurs is deter-
mined by the RunBenchmarks expression.

• Matched

Idle When Matched, the machine is still Idle to Condor.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 128

Start Owner

Unclaimed
Matched

Preempting
Claimed

Machine State Diagram

Figure 3.3: Machine States

• Claimed

Idle In this activity, the machine has been claimed, but the schedd that claimed it has yet to
activate the claim by requesting a condor starter to be spawned to service a job.

Busy Once a condor starter has been started and the claim is active, the machine moves to
the Busy activity to signify that it is doing something as far as Condor is concerned.

Suspended If the job is suspended by Condor, the machine goes into the Suspended activity.
The match between the schedd and machine has not been broken (the claim is still valid),
but the job is not making any progress and Condor is no longer generating a load on the
machine.

• Preempting The preempting state is used for evicting a Condor job from a given machine.
When the machine enters the Preempting state, it checks the WANT VACATE expression to
determine its activity.

Vacating In the Vacating activity, the job that was running is in the process of checkpointing.
As soon as the checkpoint process completes, the machine moves into either the Owner

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 129

state or the Claimed state, depending on the reason for its preemption.

Killing Killing means that the machine has requested the running job to exit the machine
immediately, without checkpointing.

Figure 3.4 on page 129 gives the overall view of all machine states and activities and shows the
possible transitions from one to another within the Condor system. Each transition is labeled with a
number on the diagram, and transition numbers referred to in this manual will be bold.

Start

Vacate?
Want

Suspended

Matched

Idle

7

8

Want
Suspend?

11

14

Owner

Unclaimed

Claimed

Idle

Busy

Idle

Preempting

Yes

No

= Activity

Killing

Vacating

Benchmarking

Idle

= State

1

16

3 4

2

17

18

5

9

20
19

Machine State and Activity Diagram

6

15

12

No

Yes 13

10

Figure 3.4: Machine States and Activities

Various expressions are used to determine when and if many of these state and activity transi-
tions occur. Other transitions are initiated by parts of the Condor protocol (such as when the con-
dor negotiator matches a machine with a schedd). The following section describes the conditions
that lead to the various state and activity transitions.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 130

3.6.7 State and Activity Transitions

This section traces through all possible state and activity transitions within a machine and describes
the conditions under which each one occurs. Whenever a transition occurs, Condor records when the
machine entered its new activity and/or new state. These times are often used to write expressions
that determine when further transitions occurred. For example, enter the Killing activity if a machine
has been in the Vacating activity longer than a specified amount of time.

Owner State

When the startd is first spawned, the machine it represents enters the Owner state. The machine
will remain in this state as long as the START expression locally evaluates to FALSE. If the START
locally evaluates to TRUE or cannot be locally evaluated (it evaluates to UNDEFINED, transition 1
occurs and the machine enters the Unclaimed state.

As long as the START expression evaluates locally to FALSE, there is no possible request in the
Condor system that could match it. The machine is unavailable to Condor and stays in the Owner
state. For example, if the START expression is

START : KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if KeyboardIdle is 34 seconds, then the machine would remain in the Owner state. Owner
is undefined, and anything && FALSE is FALSE.

If, however, the START expression is

START : KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

and KeyboardIdle is 34 seconds, then the machine leaves the Owner state and becomes Un-
claimed. This is because FALSE || UNDEFINED is UNDEFINED. So, while this machine is not
available to just anybody, if user coltrane has jobs submitted, the machine is willing to run them.
Any other user’s jobs have to wait until KeyboardIdle exceeds 15 minutes. However, since
coltrane might claim this resource, but has not yet, the machine goes to the Unclaimed state.

While in the Owner state, the startd polls the status of the machine every UPDATE INTERVAL
to see if anything has changed that would lead it to a different state. This minimizes the impact on

the Owner while the Owner is using the machine. Frequently waking up, computing load averages,
checking the access times on files, computing free swap space take time, and there is nothing time
critical that the startd needs to be sure to notice as soon as it happens. If the START expression
evaluates to TRUE and five minutes pass before the startd notices, that’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state from the Owner state. It only does
so when the START expression no longer locally evaluates to FALSE. In general, if the START
expression locally evaluates to FALSE at any time, the machine will either transition directly to the

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 131

Owner state or to the Preempting state on its way to the Owner state, if there is a job running that
needs preempting.

Unclaimed State

While in the Unclaimed state, if the START expression locally evaluates to FALSE, the machine
returns to the Owner state by transition 2.

When in the Unclaimed state, the RunBenchmarks expression is relevant. If RunBench-
marks evaluates to TRUE while the machine is in the Unclaimed state, then the machine will
transition from the Idle activity to the Benchmarking activity (transition 3) and perform benchmarks
to determine MIPS and KFLOPS. When the benchmarks complete, the machine returns to the Idle
activity (transition 4).

The startd automatically inserts an attribute, LastBenchmark, whenever it runs benchmarks,
so commonly RunBenchmarks is defined in terms of this attribute, for example:

BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks : $(BenchmarkTimer) >= (4 * $(HOUR))

Here, a macro, BenchmarkTimer is defined to help write the expression. This macro holds the
time since the last benchmark, so when this time exceeds 4 hours, we run the benchmarks again.
The startd keeps a weighted average of these benchmarking results to try to get the most accurate
numbers possible. This is why it is desirable for the startd to run them more than once in its lifetime.

NOTE: LastBenchmark is initialized to 0 before benchmarks have ever been run. So, if you
want the startd to run benchmarks as soon as the machine is Unclaimed (if it hasn’t done so already),
include a term for LastBenchmark as in the example above.

NOTE: If RunBenchmarks is defined and set to something other than FALSE, the startd
will automatically run one set of benchmarks when it first starts up. To disable benchmarks, both
at startup and at any time thereafter, set RunBenchmarks to FALSE or comment it out of the
configuration file.

From the Unclaimed state, the machine can go to two other possible states: Matched or
Claimed/Idle. Once the condor negotiator matches an Unclaimed machine with a requester at a
given schedd, the negotiator sends a command to both parties, notifying them of the match. If the
schedd receives that notification and initiates the claiming procedure with the machine before the
negotiator’s message gets to the machine, the Match state is skipped, and the machine goes directly
to the Claimed/Idle state (transition 5). However, normally the machine will enter the Matched state
(transition 6), even if it is only for a brief period of time.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 132

Matched State

The Matched state is not very interesting to Condor. Noteworthy in this state is that the machine lies
about its START expression while in this state and says that Requirements are false to prevent
being matched again before it has been claimed. Also interesting is that the startd starts a timer to
make sure it does not stay in the Matched state too long. The timer is set with the MATCH TIMEOUT
configuration file macro. It is specified in seconds and defaults to 300 (5 minutes). If the schedd

that was matched with this machine does not claim it within this period of time, the machine gives
up, and goes back into the Owner state via transition 7. It will probably leave the Owner state right
away for the Unclaimed state again and wait for another match.

At any time while the machine is in the Matched state, if the START expression locally evaluates
to FALSE, the machine enters the Owner state directly (transition 7).

If the schedd that was matched with the machine claims it before the MATCH TIMEOUT expires,
the machine goes into the Claimed/Idle state (transition 8).

Claimed State

The Claimed state is certainly the most complex state. It has the most possible activities and the most
expressions that determine its next activities. In addition, the condor checkpoint and condor vacate
commands affect the machine when it is in the Claimed state. In general, there are two sets of
expressions that might take effect. They depend on the universe of the request: standard or vanilla.
The standard universe expressions are the normal expressions. For example:

WANT_SUSPEND : True
WANT_VACATE : $(Activation-

Timer) > 10 * $(MINUTE)
SUSPEND : $(KeyboardBusy) || $(CPUBusy)
...

The vanilla expressions have the string“ VANILLA” appended to their names. For example:

WANT_SUSPEND_VANILLA : True
WANT_VACATE_VANILLA : True
SUSPEND_VANILLA : $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions will be used for all jobs, including vanilla
jobs. In this manual, the normal expressions are referenced. The difference exists for the the re-
source owner that might want the machine to behave differently for vanilla jobs, since they cannot
checkpoint. For example, owners may want vanilla jobs to remain suspended for longer than stan-
dard jobs.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 133

While Claimed, the POLLING INTERVAL takes effect, and the startd polls the machine much
more frequently to evaluate its state.

If the machine owner starts typing on the console again, it is best to notice this as soon as possible
to be able to start doing whatever the machine owner wants at that point. For SMP machines, if any
virtual machine is in the Claimed state, the startd polls the machine frequently. If already polling
one virtual machine, it does not cost much to evaluate the state of all the virtual machines at the
same time.

In general, when the startd is going to take a job off a machine (usually because of activity on
the machine that signifies that the owner is using the machine again), the startd will go through
successive levels of getting the job out of the way. The first and least costly to the job is suspending
it. This works for both standard and vanilla jobs. If suspending the job for a short while does not
satisfy the machine owner (the owner is still using the machine after a specific period of time), the
startd moves on to vacating the job. Vacating a job involves performing a checkpoint so that the
work already completed is not lost. If even that does not satisfy the machine owner (usually because
it is taking too long and the owner wants their machine back now), the final, most drastic stage is
reached: killing. Killing is a quick death to the job, without a checkpoint. For vanilla jobs, vacating
and killing are equivalent, although a vanilla job can request to have a specific softkill signal sent to
it at vacate time so that the job itself can perform application-specific checkpointing.

The WANT SUSPEND expression determines if the machine will evaluate the SUSPEND expres-
sion to consider entering the Suspended activity. The WANT VACATE expression determines what
happens when the machine enters the Preempting state. It will go to the Vacating activity or directly
to Killing. If one or both of these expressions evaluates to FALSE, the machine will skip that stage
of getting rid of the job and proceed directly to the more drastic stages.

When the machine first enters the Claimed state, it goes to the Idle activity. From there, it has
two options. It can enter the Preempting state via transition 9 (if a condor vacate arrives, or if the
START expression locally evaluates to FALSE), or it can enter the Busy activity (transition 10) if
the schedd that has claimed the machine decides to activate the claim and start a job.

From Claimed/Busy, the machine can transition to three other state/activity pairs. The startd
evaluates the WANT SUSPEND expression to decide which other expressions to evaluate. If
WANT SUSPEND is TRUE, then the startd evaluates the SUSPEND expression. If SUSPEND is
FALSE, then the startd will evaluate the PREEMPT expression and skip the Suspended activity en-
tirely. By transition, the possible state/activity destinations from Claimed/Busy:

Claimed/Idle If the starter that is serving a given job exits (for example because the jobs completes),
the machine will go to Claimed/Idle (transition 11).

Preempting If WANT SUSPEND is FALSE and the PREEMPT expression is TRUE, the machine
enters the Preempting state (transition 12). The other reason the machine would go from
Claimed/Busy to Preempting is if the condor negotiator matched the machine with a “better”
match. This better match could either be from the machine’s perspective using the RANK
Expression above, or it could be from the negotiator’s perspective due to a job with a higher
user priority. In this case, WANT VACATE is assumed to be TRUE, and the machine transitions
to Preempting/Vacating.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 134

Claimed/Suspended If both the WANT SUSPEND and SUSPEND expressions evaluate to TRUE,
the machine suspends the job (transition 13).

If a condor checkpoint command arrives, or the PeriodicCheckpoint expression evalu-
ates to TRUE, there is no state change. The startd has no way of knowing when this process com-
pletes, so periodic checkpointing can not be another state. Periodic checkpointing remains in the
Claimed/Busy state and appears as a running job.

From the Claimed/Suspended state, the following transitions may occur:

Claimed/Busy If the CONTINUE expression evaluates to TRUE, the machine resumes the job and
enters the Claimed/Busy state (transition 14).

Preempting If the PREEMPT expression is TRUE, the machine will enter the Preempting state
(transition 15).

Preempting State

The Preempting state is less complex than the Claimed state. There are two activities. Depending
on the value of WANT VACATE, a machine will be in the Vacating activity (if TRUE) or the Killing
activity (if FALSE).

While in the Preempting state (regardless of activity) the machine advertises its Require-
ments expression as FALSE to signify that it is not available for further matches, either because it
is about to transition to the Owner state, or because it has already been matched with one preempting
match, and further preempting matches are disallowed until the machine has been claimed by the
new match.

The main function of the Preempting state is to get rid of the starter associated with the resource.
If the condor starter associated with a given claim exits while the machine is still in the Vacating
activity, then the job successfully completed its checkpoint.

If the machine is in the Vacating activity, it keeps evaluating the KILL expression. As soon as
this expression evaluates to TRUE, the machine enters the Killing activity (transition 16).

When the starter exits, or if there was no starter running when the machine enters the Preempting
state (transition 9), the other purpose of the Preempting state is completed: notifying the schedd that
had claimed this machine that the claim is broken.

At this point, the machine enters either the Owner state by transition 17 (if the job was pre-
empted because the machine owner came back) or the Claimed/Idle state by transition 18 (if the job
was preempted because a better match was found). The machine enters the Killing activity, and it
starts a timer, the length of which is defined by the KILLING TIMEOUT macro. This macro is
defined in seconds and defaults to 30. If this timer expires and the machine is still in the Killing
activity, something has gone seriously wrong with the condor starter and the startd tries to vacate
the job immediately by sending SIGKILL to all of the condor starter’s children, and then to the
condor starter itself.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 135

Once the starter is gone and the schedd that had claimed the machine is notified that the claim
is broken, the machine will either enter the Owner state by transition 19 (if the job was preempted
because the machine owner came back) or the Claimed/Idle state by transition 20 (if the job was
preempted because a better match was found).

3.6.8 State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections. It serves as a quick refer-
ence.

START When TRUE, the machine is willing to spawn a remote Condor job.

RunBenchmarks While in the Unclaimed state, the machine will run benchmarks whenever
TRUE.

MATCH TIMEOUT If the machine has been in the Matched state longer than this value, it will
transition to the Owner state.

WANT SUSPEND If TRUE, the machine evaluates the SUSPEND expression to see if it should tran-
sition to the Suspended activity. If FALSE, the machine look at the PREEMPT expression.

SUSPEND If WANT SUSPEND is TRUE, and the machine is in the Claimed/Busy state, it enters the
Suspended activity if SUSPEND is TRUE.

CONTINUE If the machine is in the Claimed/Suspended state, it enter the Busy activity if CON-
TINUE is TRUE.

PREEMPT If the machine is either in the Claimed/Suspended activity, or is in the Claimed/Busy
activity and WANT SUSPEND is FALSE, the machine enters the Preempting state whenever
PREEMPT is TRUE.

WANT VACATE This is checked only when the PREEMPT expression is TRUE and the machine
enters the Preempting state. If WANT VACATE is TRUE, the machine enters the Vacating
activity. If it is FALSE, the machine will proceed directly to the Killing activity.

KILL If the machine is the Preempting/Vacating state, it enters Preempting/Killing whenever KILL
is TRUE.

KILLING TIMEOUT If the machine is in the Preempting/Killing state for longer than
KILLING TIMEOUT seconds, the startd sends a SIGKILL to the condor starter and all
its children to try to kill the job as quickly as possible.

PERIODIC CHECKPOINT If the machine is in the Claimed/Busy state and PERI-
ODIC CHECKPOINT is TRUE, the user’s job begins a periodic checkpoint.

RANK If this expression evaluates to a higher number for a pending resource request than it does for
the current request, the machine preempts the current request (enters the Preempting/Vacating
state). When the preemption is complete, the machine enters the Claimed/Idle state with the
new resource request claiming it.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 136

3.6.9 Example Policy Settings

The following section provides two examples of how you might configure the policy at your pool.
Each one is described in English, then the actual macros and expressions used are listed and ex-
plained with comments. Finally the entire set of macros and expressions are listed in one block so
you can see them in one place for easy reference.

Default Policy Settings

These settings are the default as shipped with Condor. They have been used for many years with no
problems. The vanilla expressions are identical to the regular ones. (They are not listed here. If not
defined, the standard expressions are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

StateTimer Amount of time in the current state.

ActivityTimer Amount of time in the current activity.

ActivationTimer Amount of time the job has been running on this machine.

LastCkpt Amount of time since the last periodic checkpoint.

NonCondorLoadAvg The difference between the system load and the Condor load (the load
generated by everything but Condor).

BackgroundLoad Amount of background load permitted on the machine and still start a Condor
job.

HighLoad If the $(NonCondorLoadAvg) goes over this, the CPU is considered too busy, and
eviction of the Condor job should start.

StartIdleTime Amount of time the keyboard must to be idle before Condor will start a job.

ContinueIdleTime Amount of time the keyboard must to be idle before resumption of a sus-
pended job.

MaxSuspendTime Amount of time a job may be suspended before more drastic measures are
taken.

MaxVacateTime Amount of time a job may be checkpointing before we give up kill it outright.

KeyboardBusy A boolean string that evaluates to TRUE when the keyboard is being used.

CPU Idle A boolean string that evaluates to TRUE when the CPU is idle.

CPU Busy A boolean string that evaluates to TRUE when the CPU is busy.

MachineBusy The CPU or the Keyboard is busy.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 137

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = (CurrentTime - JobStart)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 5 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
CPU_Idle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPU_Busy = $(NonCondorLoadAvg) >= $(HighLoad)
MachineBusy = ($(CPU_Busy) || $(KeyboardBusy))

Macros are defined to always want to suspend jobs. If that is not enough, always try to gracefully
vacate them, unless they have only been running for less than 10 minutes anyway, in which case just
kill them, instead of trying to checkpoint those 10 minutes of work.

WANT_SUSPEND : True
WANT_VACATE : $(ActivationTimer) > 10 * $(MINUTE)

Finally, definitions of the actual expressions. Start any job if the CPU is idle (as defined by the
macro) and the keyboard has been idle long enough.

START : $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)

Suspend a job if the machine is busy.

SUSPEND : $(MachineBusy)

Continue a suspended job if the CPU is idle and the Keyboard has been idle for long enough.

CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

There are two conditions that signal preemption. The first condition is if the job is suspended,
but it has been suspended too long. The second condition is if suspension is not desired and the
machine is busy.

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 138

PREEMPT : (($(ActivityTimer) > $(MaxSuspendTime)) && \
(Activity == "Suspended")) || \
(SUSPEND && (WANT_SUSPEND == False))

Kill a job if it has been vacating for too long.

KILL : $(ActivityTimer) > $(MaxVacateTime)

Finally, specify periodic checkpointing. For jobs smaller than 60 Mbytes, do a periodic check-
point every 6 hours. For larger jobs, only checkpoint every 12 hours.

PERIODIC_CHECKPOINT : ((ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR)))) || \

($(LastCkpt) > (12 * $(HOUR)))

For reference, the entire set of policy settings are included once more without comments:

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = (CurrentTime - JobStart)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 5 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
CPU_Idle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPU_Busy = $(NonCondorLoadAvg) >= $(HighLoad)
MachineBusy = ($(CPU_Busy) || $(KeyboardBusy))

WANT_SUSPEND : True
WANT_VACATE : $(ActivationTimer) > 10 * $(MINUTE)

START : $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)
SUSPEND : $(MachineBusy)
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 139

PREEMPT : (($(ActivityTimer) > $(MaxSuspendTime)) && \
(Activity == "Suspended")) || \
($(MachineBusy) && (WANT_SUSPEND == False))

KILL : $(ActivityTimer) > $(MaxVacateTime)

PERIODIC_CHECKPOINT : ((ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR)))) || \

($(LastCkpt) > (12 * $(HOUR)))

UW-Madison CS Condor Pool Policy Settings

Due to a recent increase in the number of Condor users and the size of their jobs (many users here
are submitting jobs with an Imagesize of more than 100 Mbytes!), we have had to customize our
policy to try to better handle this range of Imagesize.

Whether or not we suspend or vacate jobs is now a function of the Imagesize of the job
currently running. We divide the Imagesize into three possible categories, which are defined
with macros. Imagesize is defined in terms of kilobytes.

BigJob = (ImageSize > (30 * 1024))
MediumJob = (ImageSize <= (30 * 1024) && Image-
Size >= (10 * 1024))
SmallJob = (ImageSize < (10 * 1024))

The policy may be summarized by: If the job is Small, it goes through the normal progression
of suspend to vacate to kill based on the tried and true times. If the job is Medium, then when a
user returns, the job starts vacating the machine right away. The idea is that with an immediate
checkpoint, the job will find all its pages still in memory, and checkpointing will be fast. The
memory pages will be freed up as soon as the checkpoint completes. If the job was suspended
instead, its pages start getting swapped out and when it is time to checkpoint (10 minutes later),
the user’s pages will be swapped out again, and the user will see reduced performance. In addition,
checkpointing will take much longer. If the job is Big, we do not bother checkpointing, since the
checkpointing will not finish before the owner gets too upset. It is a waste to put the load on the
network and checkpoint server.

The logic for our special policy is tuned with the WANT expressions. All other expressions and
macros use defaults. We want to suspend jobs if they are Small, and we only want to vacate jobs
that are Small or Medium. Vanilla jobs are always suspended, regardless of their size.

WANT_SUSPEND : $(SmallJob)
WANT_VACATE : $(MediumJob) || $(SmallJob)
WANT_SUSPEND_VANILLA : True
WANT_VACATE_VANILLA : True

The following are the expressions. It is done with macros and the expressions are defined using

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 140

the macros. As strange as it seems, we do this because it makes for easier customized settings (for
example, for testing purposes) and still references the defaults. There is a brief example of this at
the end of this section.

CS_START = $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)
CS_SUSPEND = $(MachineBusy)
CS_CONTINUE = (KeyboardIdle > $(ContinueIdle-
Time)) && $(CPU_Idle)
CS_PREEMPT = (($(ActivityTimer) > $(MaxSuspendTime)) && \

(Activity == "Suspended")) || \
(CS_SUSPEND && (WANT_SUSPEND == False))

CS_KILL = ($(ActivityTimer) > $(MaxVacateTime))

We define the expressions in terms of our special macros.

START : $(CS_START)
SUSPEND : $(CS_SUSPEND)
CONTINUE : $(CS_CONTINUE)
PREEMPT : $(CS_PREEMPT)
KILL : $(CS_KILL)

There are no separate vanilla versions of any of these, since we already have a different
WANT SUSPEND for vanilla jobs, and all of the policy expressions are written in terms of that.

Periodic checkpoints also take image size into account. We periodically checkpoint Big jobs
more frequently (every 3 hours), since the Big jobs are killed right away at eviction time. Utilization
of checkpoints is the only way Big jobs make forward progress. However, with all the Big jobs’
periodic checkpoints occurring frequently, we do not want to bog down our network or our check-
point servers. Small or Medium jobs receive a periodic checkpoint every 12 hours, since they get
the privilege of checkpointing at eviction time.

PERIODIC_CHECKPOINT : (($(LastCkpt) > (3 * $(HOUR))) \
&& $(BigJob)) || (($(LastCkpt) > (12 * $(HOUR))) && \
($(SmallJob) || $(MediumJob)))

For reference, the entire set of policy settings are given here, without comments:

ActivationTimer = (CurrentTime - JobStart)
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3

Condor Version 6.1.17 Manual

3.6. Configuring The Startd Policy 141

HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 5 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
CPU_Idle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPU_Busy = $(NonCondorLoadAvg) >= $(HighLoad)
MachineBusy = ($(CPU_Busy) || $(KeyboardBusy))

BigJob = (ImageSize > (30 * 1024))
MediumJob = (ImageSize <= (30 * 1024) && Image-
Size >= (10 * 1024))
SmallJob = (ImageSize < (10 * 1024))

WANT_SUSPEND : $(SmallJob)
WANT_VACATE : $(MediumJob) || $(SmallJob)
WANT_SUSPEND_VANILLA : True
WANT_VACATE_VANILLA : True

CS_START = $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)
CS_SUSPEND = $(CPU_Busy) || $(KeyboardBusy)
CS_CONTINUE = (KeyboardIdle > $(ContinueIdleTime)) && $(CPU_Idle)
CS_PREEMPT = (($(ActivityTimer) > $(MaxSuspendTime)) && \

(Activity == "Suspended")) || \
(CS_SUSPEND && (WANT_SUSPEND == False))

CS_KILL = ($(ActivityTimer) > $(MaxVacateTime))

START : $(CS_START)
SUSPEND : $(CS_SUSPEND)
CONTINUE : $(CS_CONTINUE)
PREEMPT : $(CS_PREEMPT)
KILL : $(CS_KILL)

PERIODIC_CHECKPOINT : (($(LastCkpt) > (3 * $(HOUR))) \
&& $(BigJob)) || (($(LastCkpt) > (12 * $(HOUR))) && \
($(SmallJob) || $(MediumJob)))

This last example shows how the default macros can be used to set up a machine for testing.
Suppose we want the machine to behave normally, except if user coltrane submits a job. In that case,
we want that job to start regardless of what is happening on the machine. We do not want the job
suspended, vacated or killed. This is reasonable if we know coltrane is submitting very short running
programs testing purposes. The jobs should be executed right away. The following configuration
works with any machine (or the whole pool, for that matter) with the following 5 expressions:

Condor Version 6.1.17 Manual

3.7. DaemonCore 142

START : ($(CS_START)) || Owner == "coltrane"
SUSPEND : ($(CS_SUSPEND)) && Owner != "coltrane"
CONTINUE : $(CS_CONTINUE)
PREEMPT : ($(CS_PREEMPT)) && Owner != "coltrane"
KILL : $(CS_KILL)

Notice that there is nothing special in either the CONTINUE or KILL expressions. If Coltrane’s jobs
never suspend, they never look at CONTINE. Similarly, if they never preempt, they never look at
KILL.

3.6.10 Differences from the Version 6.0 Policy Settings

This section describes how the current policy expressions differ from the policy expressions in pre-
vious versions of Condor. If you have never used Condor version 6.0 or earlier, or you never looked
closely at the policy settings, skip this section.

In summary, there is no longer a VACATE expression, and the KILL expression is not evaluated
while a machine is claimed. There is a PREEMPT expression which describes the conditions when
a machine will move from the Claimed state to the Preempting state. Once a machine is transition-
ing into the Preempting state, the WANT VACATE expression controls whether the job should be
vacated with a checkpoint or directly killed. The KILL expression determines the transition from
Preempting/Vacating to Preempting/Killing.

In previous versions of Condor, the KILL expression handled three distinct cases (the transitions
from Claimed/Busy, Claimed/Suspended and Preempting/Vacating), and the VACATE expression
handled two cases (the transitions from Claimed/Busy and Claimed/Suspended). In the current
version of Condor, PREEMPT handles the same two cases as the previous VACATE expression,
but the KILL expression handles one case. Very complex policies can now be specified using all
of the default expressions, only tuning the WANT VACATE and WANT SUSPEND expressions. In
previous versions, heavy use of the WANT * expressions caused a complex KILL expression.

3.7 DaemonCore

This section is a brief description of DaemonCore. DaemonCore is a library that is shared among
most of the Condor daemons which provides common functionality. Currently, the following dae-
mons use DaemonCore:

• condor master

• condor startd

• condor schedd

• condor collector

Condor Version 6.1.17 Manual

3.7. DaemonCore 143

• condor negotiator

• condor kbdd

Most of DaemonCore’s details are not interesting for administrators. However, DaemonCore
does provide a uniform interface for the daemons to various UNIX signals, and provides a common
set of command-line options that can be used to start up each daemon.

3.7.1 DaemonCore and UNIX signals

One of the most visible features DaemonCore provides for administrators is that all daemons which
use it behave the same way on certain UNIX signals. The signals and the behavior DaemonCore
provides are listed below:

SIGHUP Causes the daemon to reconfigure itself.

SIGTERM Causes the daemon to gracefully shutdown.

SIGQUIT Causes the daemon to quickly shutdown.

Exactly what “gracefully” and “quickly” means varies from daemon to daemon. For daemons
with little or no state (the kbdd, collector and negotiator) there’s no difference and both signals
result in the daemon shutting itself down basically right away. For the master, graceful shutdown
just means it asks all of its children to perform their own graceful shutdown methods, while fast
shutdown means it asks its children to perform their own fast shutdown methods. In both cases, the
master only exits once all its children have exited. In the startd, if the machine is not claimed and
running a job, both result in an immediate exit. However, if the startd is running a job, graceful
shutdown results in that job being checkpointed, while fast shutdown does not. In the schedd, if
there are no jobs currently running (i.e. no condor shadow processes), both signals result in an
immediate exit. With jobs running, however, graceful shutdown means that the schedd asks each
shadow to gracefully vacate whatever job it is serving, while fast shutdown results in a hard kill of
every shadow with no chance of checkpointing.

For all daemons, “reconfigure” just means that the daemon re-reads its config file(s) and any
settings that have changed take effect. For example, changing the level of debugging output, the
value of timers that determine how often daemons perform certain actions, the paths to the binaries
you want the condor master to spawn, etc. See section 3.3 on page 75, “Configuring Condor” for
full details on what settings are in the config files and what they do.

3.7.2 DaemonCore and Command-line Arguments

The other visible feature that DaemonCore provides to administrators is a common set of command-
line arguments that all daemons understand. The arguments and what they do are described below:

Condor Version 6.1.17 Manual

3.7. DaemonCore 144

-b Causes the daemon to start up in the background. When a DaemonCore process starts up with this
option, disassociates itself from the terminal and forks itself so that it runs in the background.
This is the default behavior for Condor daemons, and what you get if you specify no options
at all.

-f Causes the daemon to start up in the foreground. Instead of forking, the daemon just runs in the
foreground.

NOTE: when the condor master starts up daemons, it does so with the -f option since it has
already forked a process for the new daemon. That is why you will see -f in the argument list
of all Condor daemons that the master spawns.

-c filename Causes the daemon to use the specified filename (you must use a full path) as its
global config file. This overrides the CONDOR CONFIG environment variable, and the reg-
ular locations that Condor checks for its config file: the condor user’s home directory and
/etc/condor/condor config.

-p port Causes the daemon to bind to the specified port for its command socket. The master uses this
option to make sure the condor collector and condor negotiator start up on the well-known
ports that the rest of Condor depends on them using.

-t Causes the daemon to print out its error message to stderr instead of its specified log file. This
option forces the -f option described above.

-v Causes the daemon to print out version information and exit.

-l directory Overrides the value of LOG as specified in your config files. Primarily, this option
would be used with the condor kbdd when it needs to run as the individual user logged into
the machine, instead of running as root. Regular users would not normally have permission to
write files into Condor’s log directory. Using this option, they can override the value of LOG
and have the condor kbdd write its log file into a directory that the user has permission to

write to.

-a string Whatever string you specify is automatically appended (with a “.”) to the filename of the
log for this daemon, as specified in your config file.

-pidfile filename Causes the daemon to write out its PID, or process id number, to the specified file.
This file can be used to help shutdown the daemon without searching through the output of
the “ps” command.

Since daemons run with their current working directory set to the value of LOG , if you don’t
specify a full path (with a “/” to begin), the file will be left in the log directory. If you
leave your pidfile in your log directory, you will want to add whatever filename you use to
the VALID LOG FILES parameter, described in section 3.3.14 on page 100, so that con-
dor preen does not remove it.

-k filename Causes the daemon to read out a pid from the specified filename and send a SIGTERM
to that process. The daemon that you start up with “-k” will wait until the daemon it is trying
to kill has exited.

-r minutes Causes the daemon to set a timer, upon expiration of which, sends itself a SIGTERM
for graceful shutdown.

Condor Version 6.1.17 Manual

3.8. Setting Up IP/Host-Based Security in Condor 145

3.8 Setting Up IP/Host-Based Security in Condor

This section describes the mechanisms for setting up Condor’s host-based security. This allows you
to control what machines can join your Condor pool, what machines can find out information about
your pool, and what machines within your pool can perform administrative commands. By default,
Condor is configured to allow anyone to view or join your pool. You probably want to change that.

First, we discuss how the host-based security works inside Condor. Then, we list the different
levels of access you can grant and what parts of Condor use which levels. Next, we describe how
to configure your pool to grant (or deny) certain levels of access to various machines. Finally, we
provide some examples of how you might configure your pool.

3.8.1 How does it work?

Inside the Condor daemons or tools that use DaemonCore (see section 3.7 on “DaemonCore” for
details), most things are accomplished by sending commands to another Condor daemon. These
commands are just an integer to specify which command, followed by any optional information that
the protocol requires at that point (such as a ClassAd, capability string, etc). When the daemons
start up, they register which commands they are willing to accept, what to do with them when they
arrive, and what access level is required for that command. When a command comes in, Condor sees
what access level is required, and then checks the IP address of the machine that sent the command
and makes sure it passes the various allow/deny settings in your config file for that access level. If
permission is granted, the command continues. If not, the command is aborted.

As you would expect, settings for the access levels in your global config file will affect all the
machines in your pool. Settings in a local config file will only affect that specific machine. The
settings for a given machine determine what other hosts can send commands to that machine. So, if
you want machine “foo” to have administrator access on to machine “bar”, you need to put “foo” in
bar’s config file access list, not the other way around.

3.8.2 Security Access Levels

The following are the various access levels that commands within Condor can be registered with:

READ Machines with READ access can read information from Condor. For example, they can view
the status of the pool, see the job queue(s) or view user permissions. READ access does not
allow for anything to be changed or jobs to be submitted. Basically, a machine listed with
READ permission cannot join a condor pool - it can only view information about the pool.

WRITE Machines with WRITE access can write information to condor. Most notably, it means
that it can join your pool by sending ClassAd updates to your central manager and can talk
to the other machines in your pool to submit or run jobs. In addition, any machine with
WRITE access can request the condor startd to perform a periodic checkpoint on any job it

Condor Version 6.1.17 Manual

3.8. Setting Up IP/Host-Based Security in Condor 146

is currently executing (after a periodic checkpoint, the job will continue to execute and the
machine will still be claimed by whatever schedd had claimed it). This allows users on the
machines where they submitted their jobs to use the condor checkpoint command to get their
jobs to periodically checkpoint, even if they don’t have an account on the remote execute
machine.

IMPORTANT: For a machine to join a condor pool, it must have WRITE permission AND
READ permission! (Just WRITE permission is not enough).

ADMINISTRATOR Machines with ADMINISTRATOR access have special Condor administrator
rights to the pool. This includes things like changing user priorities (with “condor userprio
-set”), turning Condor on and off (“condor off <machine>), asking Condor to reconfigure or
restart itself, etc. Typically you would want only a couple machines in this list - perhaps the
workstations where the Condor administrators or sysadmins typically work, or perhaps just
your Condor central manager.

IMPORTANT: This is host-wide access we’re talking about. So, if you grant ADMINIS-
TRATOR access to a given machine, ANY USER on that machine now has ADMINISTRA-
TOR rights (including users who can run Condor jobs on that machine). Therefore, you should
grant ADMINISTRATOR access carefully.

OWNER This level of access is required for commands that the owner of a machine (any local user)
should be able to use, in addition to the Condor administrators. For example the condor vacate
command that causes the condor startd to vacate any running condor job is registered with
OWNER permission, so that anyone can issue condor vacate to the local machine they are
logged into.

NEGOTIATOR This access level means that the specified command must come from the Central
Manager of your pool. The commands that have this access level are the ones that tell the
condor schedd to begin negotiating and that tell an available condor startd that it has been
matched to a condor schedd with jobs to run.

CONFIG This access level is required to modify a daemon’s configuration using condor config val.
Hosts with this level of access will be able to change any configuration parameters, except
those specified in the condor config.root configuration file. Therefore, this level of
host-wide access should only be granted with extreme caution. By default, CONFIG access is
denied from all hosts.

3.8.3 Configuring your Pool

The permissions are specified in the config files. See the section on Configuring Condor for details
on where these files might be located, general information about how to set parameters, and how to
reconfigure the Condor daemons.

ADMINISTRATOR and NEGOTIATOR access default to your central manager machine. OWNER
access defaults to the local machine, and any machines listed with ADMINISTRATOR access. You
can probably leave that how it is. If you want other machines to have OWNER access, you probably

Condor Version 6.1.17 Manual

3.8. Setting Up IP/Host-Based Security in Condor 147

want them to have ADMINISTRATOR access as well. By granting machines ADMINISTRATOR
access, they would automatically have OWNER access, given how OWNER access is configured.

For these permissions, you can optionally list an ALLOW or a DENY.

• If you have an ALLOW, it means ”only allow these machines”. No ALLOW means allow
anyone.

• If you have a DENY, it means ”deny these machines”. No DENY means to deny nobody.

• If you have both an ALLOW and a DENY, it means allow the machines listed in ALLOW
except for the machines listed in DENY.

Therefore, the settings you might set are:

HOSTALLOW_READ = <machines>
HOSTDENY_READ = ...
HOSTALLOW_WRITE = ...
HOSTDENY_WRITE = ...
HOSTALLOW_ADMINISTRATOR = ...
HOSTDENY_ADMINISTRATOR = ...
HOSTALLOW_OWNER = ...
HOSTDENY_OWNER = ...

Machines can be listed by:

• Individual hostnames - example: condor.cs.wisc.edu

• Individual IP address - example: 128.105.67.29

• IP subnets (use a trailing “*”) - examples: 144.105.*, 128.105.67.*

• Hostnames with a wildcard “*” character (only one “*” is allowed per name) - examples:
.cs.wisc.edu, sol.cs.wisc.edu

Multiple machine entries can be separated by either a space or a comma.

For resolving something that falls into both allow and deny: Individual machines have a higher
order of precedence than wildcard entries, and hostnames with a wildcard have a higher order of
precedence than IP subnets. Otherwise, DENY has a higher order of precedence than ALLOW. (this
is intuitively how most people would expect it to work).

In addition, you can specify any of the above access levels on a per-daemon basis, instead of
machine-wide for all daemons. You do this with the subsystem string (described in section 3.3.1 on
“Subsystem Names”), which is one of: “STARTD”, “SCHEDD”, “MASTER”, “NEGOTIATOR”,
or “COLLECTOR”. For example, if you wanted to grant different read access for the condor schedd:

HOSTALLOW_READ_SCHEDD = <machines>

Condor Version 6.1.17 Manual

3.8. Setting Up IP/Host-Based Security in Condor 148

3.8.4 Access Levels each Daemons Uses

Here are all the commands registered in Condor, what daemon registers them, and what permission
they are registered with. With this information, you should be able to grant exactly the permission
you wish for your pool:

STARTD:

WRITE : All commands that relate to a schedd claiming the startd, starting jobs there, and stopping
those jobs.

The command that condor checkpoint sends to periodically checkpoint all running jobs.

READ : The command that condor preen sends to find the current state of the startd.

OWNER : The command that condor vacate sends to vacate any running jobs.

NEGOTIATOR : The command that the negotiator sends to match this startd with a given schedd.

NEGOTIATOR:

WRITE : The command that initiates a new negotiation cycle (sent by the schedd when new jobs
are submitted, or someone issues a condor reschedule).

READ : The command that can retrieve the current state of user priorities in the pool (what con-
dor userprio sends).

ADMINISTRATOR : The command that can set the current values of user priorities (what con-
dor userprio -set sends).

COLLECTOR:

WRITE : All commands that update the collector with new ClassAds.

READ : All commands that query the collector for ClassAds.

SCHEDD:

NEGOTIATOR : The command that the negotiator sends to begin negotiating with this schedd to
match its jobs with available startds.

WRITE : The command which condor reschedule sends to the schedd to get it to update the collec-
tor with a current ClassAd and begin a negotiation cycle.

The commands that a startd sends to the schedd when it must vacate its jobs and release the
schedd’s claim.

Condor Version 6.1.17 Manual

3.8. Setting Up IP/Host-Based Security in Condor 149

The commands which write information into the job queue (such as condor submit, con-
dor hold, etc). Note that for most commands which try to write to the job queue, Condor will
perform an additional user-level authentication step. This additional user-level authentication
prevents, for example, an ordinary user from removing a different user’s jobs.

OWNER : The command that condor reconfig schedd sends to get the schedd to re-read it’s config
files.

READ : The command which all tools which view the status of the job queue send (such as con-
dor q).

MASTER: All commands are registered with ADMINISTRATOR access:

reconfig : Master and all its children reconfigure themselves

restart : Master restarts itself (and all its children)

off : Master shuts down all its children

on : Master spawns all the daemons it’s configured to spawn

master off : Master shuts down all its children and exits

3.8.5 Access Level Examples

Notice in all these examples that ADMINISTRATOR access is only granted through a HOSTALLOW
setting to explicitly grant access to a small number of machines. We recommend this.

• Let anyone join your pool. Only your central manager has administrative access (this is the
default that ships with Condor)

HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST)
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Only allow machines at NCSA to join or view the pool, Central Manager is the only machine
with ADMINISTRATOR access.

HOSTALLOW_READ = *.ncsa.uiuc.edu
HOSTALLOW_WRITE = *.ncsa.uiuc.edu
HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST)
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and U of I Math department join the pool, EXCEPT do not
allow lab machines to do so. Also do not allow the 177.55 subnet (perhaps this is the dial-in
subnet). Allow anyone to view pool statistics. Only let ”bigcheese” administer the pool (not
the central manager).

Condor Version 6.1.17 Manual

3.9. Using X.509 Certificates for Authentication 150

HOSTALLOW_WRITE = *.ncsa.uiuc.edu, *.math.uiuc.edu
HOSTDENY_WRITE = lab-*.edu, *.lab.uiuc.edu, 177.55.*
HOSTALLOW_ADMINISTRATOR = bigcheese.ncsa.uiuc.edu
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and UW-Madison’s CS department to view the pool. Only
NCSA machines and “raven.cs.wisc.edu” can join the pool: (Note: raven has the read access
it needs through the wildcard setting in HOSTALLOW READ). This example also shows how
you could use “\” to continue a long list of machines onto multiple lines, making it more
readable (this works for all config file entries, not just host access entries, see section 3.3 on
“Configuring Condor” for details).

HOSTALLOW_READ = *.ncsa.uiuc.edu, *.cs.wisc.edu
HOSTALLOW_WRITE = *.ncsa.uiuc.edu, raven.cs.wisc.edu
HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Allow anyone except the military to view the status of your pool, but only let machines at
NCSA view the job queues. Only NCSA machines can join the pool. The central manager,
bigcheese, and biggercheese can perform most administrative functions. However, only “big-
gercheese” can update user priorities.

HOSTDENY_READ = *.mil
HOSTALLOW_READ_SCHEDD = *.ncsa.uiuc.edu
HOSTALLOW_WRITE = *.ncsa.uiuc.edu
HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu
HOSTALLOW_ADMINISTRATOR_NEGOTIATOR = biggercheese.uiuc.edu
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

3.9 Using X.509 Certificates for Authentication

3.9.1 Introduction to X.509 Authentication

Condor can use the same authentication technology as that used for secure connections in web
browsers, i.e., SSL authentication with X.509 certificates.

SSL, an abbreviation for ”secure sockets layer”, was developed in the Netscape web browser
and has since become a de-facto industry standard. Versions of Condor which include this tech-
nology supports the authentication method GSS, an abbreviation of ”Generic Security Services”.
The primary difference between SSL and GSS is that GSS is a security API which uses the un-
derlying mechanisms of SSL to accomplish such tasks as user authentication, key exchange, and
secure communication. The implementation of SSL used is SSLeay, which is written in Australia,

Condor Version 6.1.17 Manual

3.9. Using X.509 Certificates for Authentication 151

and therefore not subject to the U.S. encryption technology export guidelines. The maintenance of
SSLeay was adopted by the OpenSSL group, which oversees its continuing development and doc-
umentation. However, the implementation of GSS used in Condor is part of the Globus software
http://www.globus.org, which uses the older SSLeay technology. The export restrictions in effect at
the time of this writing precludes the Condor team from making this capability available to the gen-
eral public, and can only be distributed on a case-by-case basis. Email condor-admin@cs.wisc.edu
for information.

These technologies use an X.509 certificate hierarchy with public-key cryptography to accom-
plish two tasks- Key Distribution and User Authentication.

Here is a simplified version of how this works: A public/private keypair (usually RSA) is gener-
ated by a CA. All private keys must be safeguarded by their owner against compromise. Public keys
are incorporated into a certificate, which is a binding between an X.500 hierarchical name identity
and a public key. Public keys (and likewise, certificates) do not need to be protected from disclosure
to unauthorized parties (a.k.a. compromise), and can be distributed with software or by insecure
electronic means, such as web sites, information servers, etc.

A user wishing to acquire an X.509 certificate also creates a keypair, safeguarding his private
key. The public key is incorporated into a ”certificate request”, which is usually an email message
to the CA requesting identity verification and the issuance of a certificate.

If approved, the CA returns to the user a certificate, signed by the CA. A signed certificate
is simply the user’s public key and X.509 identity encrypted with the CA’s private key. Anyone
who has access to a copy of the CA’s certificate can verify the authenticity of the user’s certificate by
decrypting the user’s certificate with the public key contained in the CA’s certficate. Again, the actual
implementation is more complicated, but here is a simplified version of how two entities perform
mutual authentication: Both the client and server have valid copies of the issuing CA’s certificate. A
client informs the server that it wishes to mutually authenticate, so the parties exchange certificates
Each party verifies the authenticity of the certificate by decrypting the infomation in the certificate
with the public key of the CA. The server can then send some value to the client, encrypted with the
public key of the client. Only the client can decrypt the ciphertext and read the value. The client
performs a transformation of the value, and encrypts the result with the public key of the server
and returns this information. Once the parties are satisfied as to the identity of the other party, it is
possible to establish a secure connection between the client and server by negotiating a session key
and security. Globus (and therefore, Condor) do not perform this final step of establishing a secure
connection because of cryptographic export controls.

3.9.2 Using X.509 Authentication in Condor

To use GSS authentication in Condor, the pool administrator(s) must also act as a Certification Au-
thority (CA), as well as maintaining an authorization list. Although these are actually two separate
but related activities, for the purposes of simplification, consider both these tasks to be the responsi-
bility of a CA. The CA may perform several tasks, including:

1. Create a local CA with the tool create ca

Condor Version 6.1.17 Manual

3.9. Using X.509 Certificates for Authentication 152

2. Use the tool condor ca to issue host certificates, as well as to sign host and user certificate
requests. The condor ca utility is a script which automates, configures and simplifies several
of the complex tasks in the setup and maintenance of a CA.

Instructions for installing SSLeay and creating a Condor CA

1. Download and install SSLeay. See http://www2.psy.uq.edu.au/ ftp/Crypto/#Where to get
SSLeay - FTP site list for download sites. See http://www2.psy.uq.edu.au/ ftp/Crypto/ for
general information. NOTE: There is an error in the SSLeay Makefile. For compilation on
Solaris, you have to add -lsocket -nsl to the EX LIB line in Makefile.ssl

2. The SSL executables ssleay and c hash must be in the path of the administrator and any users
who want to create certificate requests. If not already normally installed at your site, just
symlink these files to the condor bin directory.

3. Use perl to run the create ca.pl script, providing the fully-qualified pathname of the install
directory (e.g., perl create ca.pl /usr/local/condor/ca). This will create the install directory
and install several needed files there. NOTE: During installation, you will be asked to create
a pass-phrase, verify it, and then enter it when your key is used to generate the CA certificate.
If you mistype your passphrase, the SSL programs die in a messy manner. This script tries to
at least do some graceful cleanup.

4. Create a symbolic link from ¡CA install directory¿/condor cert to a directory in the user’s
path, preferably the condor bin directory

5. Create certificate directories for daemons using authentication by running: ¡CA install di-
rectory¿/condor ca -daemon ¡daemon certificate directory¿ NOTE: Daemon names in the
certificate must be of the form: schedd@<fully qualfied host name>

6. Sign certificate requests ONLY when you are VERY sure of the identity of the requestor. For
example, have the user email you their certificate request, and verify their existance with out
of band means. to sign certificates:

condor_ca <in cert request> <out signed cert file>

7. Add a line to the local condor configuation file defining

CONDOR_CERT_DIR = <full path of this daemon’s certificate di-
rectory>.

8. The local condor configuration file must also have the AUTHENTICATION METHODS value
defined, and it must include the value GSS.

9. Restart the daemon.

Instructions for Acquiring User Certificates for X.509 Authentication

Condor Version 6.1.17 Manual

3.10. Managing your Condor Pool 153

1. The SSL executables ssleay and c hash must be in the path of the administrator and any users
who want to create certificate requests. If not already normally installed at your site, just
symlink these files to the condor bin directory.

2. run: condor_cert <certificate directory to create>
[suggested directory: $HOME/.condorcerts]

3. Upon success, mail the certificate request (¡cert dir¿/usercert request.pem) to your CA account
or condor admin account (at cs.wisc.edu, it’s ”condorca”)

4. If approved, the admin will send you a signed certificate, which you must save as ¡cert
dir¿/usercert.pem

5. Authenticated submissions require a variable ”x509Directory” to be specified in the submit
file, which is set to the full path of their certificate directory. Under the current configura-
tion, the new schedd will allow remote submission if its AUTHENTICATION METHODS
includes GSS. Here is a sample submission file:

x509Directory = /home/yourname/.condorcerts
notify_user = mikeu@cs.wisc.edu
executable = testit
input = in.$(Process)
output = out.$(Process)
queue 2

3.10 Managing your Condor Pool

There are a number of administrative tools Condor provides to help you manage your pool. The
following sections describe various tasks you might wish to perform on your pool and explains how
to most efficiently do them.

All of the commands described in this section must be run from a machine listed in the
HOST ALLOW ADMINISTRATOR setting in your config files, so that the IP/host-based security
allows the administrator commands to be serviced. See section 3.8 on page 145 for full details about
IP/host-based security in Condor.

3.10.1 Shutting Down and Restarting your Condor Pool

There are a couple of situations where you might want to shutdown and restart your entire Condor
pool. In particular, when you want to install new binaries, it is generally best to make sure no jobs
are running, shutdown Condor, and then install the new daemons.

Condor Version 6.1.17 Manual

3.10. Managing your Condor Pool 154

Shutting Down your Condor Pool

The best way to shutdown your pool is to take advantage of the remote administration capabilities
of the condor master. The first step is to save the IP address and port of the condor master daemon
on all of your machines to a file, so that even if you shutdown your condor collector, you can still
send administrator commands to your different machines. You do this with the following command:

% condor_status -master -format "%s\n" MasterI-
pAddr > addresses

The first step to shutting down your pool is to shutdown any currently running jobs and give them
a chance to checkpoint. Depending on the size of your pool, your network infrastructure, and the
image-size of the standard jobs running in your pool, you may want to make this a slow process, only
vacating one host at a time. You can either shutdown hosts that have jobs submitted (in which case
all the jobs from that host will try to checkpoint simultaneously), or you can shutdown individual
hosts that are running jobs. To shutdown a host, simply send:

% condor_off hostname

where “hostname” is the name of the host you want to shutdown. This will only work so long as
your condor collector is still running. Once you have shutdown Condor on your central manager,
you will have to rely on the addresses file you just created.

If all the running jobs are checkpointed and stopped, or if you’re not worried about the network
load put in effect by shutting down everything at once, it is safe to turn off all daemons on all
machines in your pool. You can do this with one command, so long as you run it from a blessed
administrator machine:

% condor_off ‘cat addresses‘

where addresses is the file where you saved your master addresses. condor off will shutdown all
the daemons, but leave the condor master running, so that you can send a condor on in the future.

Once all of the Condor daemons (except the condor master) on each host is turned off, you’re
done. You are now safe to install new binaries, move your checkpoint server to another host, or any
other task that requires the pool to be shutdown to successfully complete.

NOTE: If you are planning to install a new condor master binary, be sure to read the following
section for special considerations with this somewhat delicate task.

Installing a New condor master

If you are going to be installing a new condor master binary, there are a few other steps you should
take. If the condor master restarts, it will have a new port it is listening on, so your addresses

Condor Version 6.1.17 Manual

3.10. Managing your Condor Pool 155

file will be stale information. Moreover, when the master restarts, it doesn’t know that you sent it a
condor off in its past life, and will just start up all the daemons it’s configured to spawn unless you
explicitly tell it otherwise.

If you just want your pool to completely restart itself whenever the master notices its new binary,
neither of these issues are of any concern and you can skip this (and the next) section. Just be sure
installing the new master binary is the last thing you install, and once you put the new binary in
place, the pool will restart itself over the next 5 minutes (whenever all the masters notice the new
binary, which they each check for once every 5 minutes by default).

However, if you want to have absolute control over when the rest of the daemons restart, you
must take a few steps.

1. Put the following setting in your global config file:

START_DAEMONS = False

This will make sure that when the master restarts itself that it doesn’t also start up the rest of
its daemons.

2. Install your new condor master binary.

3. Start up Condor on your central manager machine. You will have to do this manually by log-
ging into the machine and sending commands locally. First, send a condor restart to make
sure you’ve got the new master, then send a condor on to start up the other daemons (includ-
ing, most importantly, the condor collector).

4. Wait 5 minutes, such that all the masters have a chance to notice the new binary, restart
themselves, and send an update with their new address. Make sure that:

% condor_status -master

lists all the machines in your pool.

5. Remove the special setting from your global config file.

6. Recreate your addresses file as described above:

% condor_status -master -format "%s\n" MasterI-
pAddr > addresses

Once the new master is in place, and you’re ready to start up your pool again, you can restart
your whole pool by simply following the steps in the next section.

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 156

Restarting your Condor Pool

Once you are done performing whatever tasks you need to perform and you’re ready to restart your
pool, you simply have to send a condor on to all the condor master daemons on each host. You can
do this with one command, so long as you run it from a blessed administrator machine:

% condor_on ‘cat addresses‘

That’s it. All your daemons should now be restarted, and your pool will be back on its way.

3.10.2 Reconfiguring Your Condor Pool

If you change a global config file setting and want to have all your machines start to use the new
setting, you must send a condor reconfig command to each host. You can do this with one command,
so long as you run it from a blessed administrator machine:

% condor_reconfig ‘condor_status -master‘

NOTE: If your global config file is not shared among all your machines (using a shared filesys-
tem), you will need to make the change to each copy of your global config file before sending the
condor reconfig.

3.11 Setting up Condor for Special Environments

The following sections describe how to setup Condor for use in a number of special environments
or configurations. See section 3.4 on page 104 for installation instructions for the various “contrib
modules” that you can optionally download and install in your pool.

3.11.1 Using Condor with AFS

If you are using AFS at your site, be sure to read section 3.3.5 on “Shared Filesystem Config Files
Entries” for details on configuring your machines to interact with and use shared filesystems, AFS
in particular.

Condor does not currently have a way to authenticate itself to AFS. This is true of the Condor
daemons that would like to authenticate as AFS user Condor, and the condor shadow, which would
like to authenticate as the user who submitted the job it is serving. Since neither of these things can
happen yet, there are a number of special things people who use AFS with Condor must do. Some of
this must be done by the administrator(s) installing Condor. Some of this must be done by Condor
users who submit jobs.

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 157

AFS and Condor for Administrators

The most important thing is that since the Condor daemons can’t authenticate to AFS, the LO-
CAL DIR (and it’s subdirectories like “log” and “spool”) for each machine must be either writable
to unauthenticated users, or must not be on AFS. The first option is a VERY bad security hole so
you should NOT have your local directory on AFS. If you’ve got NFS installed as well and want to
have your LOCAL DIR for each machine on a shared file system, use NFS. Otherwise, you should
put the LOCAL DIR on a local partition on each machine in your pool. This means that you should
run condor install to install your release directory and configure your pool, setting the LOCAL DIR
parameter to some local partition. When that’s complete, log into each machine in your pool and

run condor init to set up the local Condor directory.

The RELEASE DIR , which holds all the Condor binaries, libraries and scripts can and probably
should be on AFS. None of the Condor daemons need to write to these files, they just need to read
them. So, you just have to make your RELEASE DIR world readable and Condor will work just
fine. This makes it easier to upgrade your binaries at a later date, means that your users can find the
Condor tools in a consistent location on all the machines in your pool, and that you can have the
Condor config files in a centralized location. This is what we do at UW-Madison’s CS department
Condor pool and it works quite well.

Finally, you might want to setup some special AFS groups to help your users deal with Condor
and AFS better (you’ll want to read the section below anyway, since you’re probably going to have
to explain this stuff to your users). Basically, if you can, create an AFS group that contains all
unauthenticated users but that is restricted to a given host or subnet. You’re supposed to be able to
make these host-based ACLs with AFS, but we’ve had some trouble getting that working here at
UW-Madison. What we have instead is a special group for all machines in our department. So, the
users here just have to make their output directories on AFS writable to any process running on any
of our machines, instead of any process on any machine with AFS on the Internet.

AFS and Condor for Users

The condor shadow process runs on the machine where you submitted your Condor jobs and per-
forms all file system access for your jobs. Because this process isn’t authenticated to AFS as the
user who submitted the job, it will not normally be able to write any output. So, when you submit
jobs, any directories where your job will be creating output files will need to be world writable (to
non-authenticated AFS users). In addition, if your program writes to stdout or stderr, or you’re
using a user log for your jobs, those files will need to be in a directory that’s world-writable.

Any input for your job, either the file you specify as input in your submit file, or any files your
program opens explicitly, needs to be world-readable.

Some sites may have special AFS groups set up that can make this unauthenticated access to
your files less scary. For example, there’s supposed to be a way with AFS to grant access to any
unauthenticated process on a given host. That way, you only have to grant write access to unauthen-
ticated processes on your submit machine, instead of any unauthenticated process on the Internet.
Similarly, unauthenticated read access could be granted only to processes running your submit ma-

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 158

chine. Ask your AFS administrators about the existence of such AFS groups and details of how to
use them.

The other solution to this problem is to just not use AFS at all. If you have disk space on your
submit machine in a partition that is not on AFS, you can submit your jobs from there. While the
condor shadow is not authenticated to AFS, it does run with the effective UID of the user who sub-
mitted the jobs. So, on a local (or NFS) file system, the condor shadow will be able to access your
files normally, and you won’t have to grant any special permissions to anyone other than yourself.
If the Condor daemons are not started as root however, the shadow will not be able to run with your
effective UID, and you’ll have a similar problem as you would with files on AFS. See the section on
“Running Condor as Non-Root” for details.

3.11.2 Configuring Condor for Multiple Platforms

Beginning with Condor version 6.0.1, you can use a single, global config file for all platforms
in your Condor pool, with only platform-specific settings placed in separate files. This greatly
simplifies administration of a heterogeneous pool by allowing you to change platform-independent,
global settings in one place, instead of separately for each platform. This is made possible by the
LOCAL CONFIG FILE parameter being treated by Condor as a list of files, instead of a single file.
Of course, this will only help you if you are using a shared filesystem for the machines in your pool,
so that multiple machines can actually share a single set of configuration files.

If you have multiple platforms, you should put all platform-independent settings (the vast ma-
jority) into your regular condor config file, which would be shared by all platforms. This global
file would be the one that is found with the CONDOR CONFIG environment variable, user condor’s
home directory, or /etc/condor/condor config.

You would then set the LOCAL CONFIG FILE parameter from that global config file to specify
both a platform-specific config file and optionally, a local, machine-specific config file (this param-
eter is described in section 3.3.2 on “Condor-wide Config File Entries”).

The order in which you specify files in the LOCAL CONFIG FILE parameter is important,
because settings in files at the beginning of the list are overridden if the same settings occur in
files later in the list. So, if you specify the platform-specific file and then the machine-specific
file, settings in the machine-specific file would override those in the platform-specific file (which is
probably what you want).

Specifying a Platform-Specific Config File

To specify the platform-specific file, you could simply use the ARCH and OPSYS parameters which
are defined automatically by Condor. For example, if you had Intel Linux machines, Sparc Solaris
2.6 machines, and SGIs running IRIX 6.x, you might have files named:

condor_config.INTEL.LINUX
condor_config.SUN4x.SOLARIS26

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 159

condor_config.SGI.IRIX6

Then, assuming these three files were in the directory held in the ETC macro, and you were
using machine-specific config files in the same directory, named by each machine’s hostname, your
LOCAL CONFIG FILE parameter would be set to:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OPSYS), \
$(ETC)/$(HOSTNAME).local

Alternatively, if you are using AFS, you can use an “@sys link” to specify the platform-specific
config file and let AFS resolve this link differently on different systems. For example, perhaps you
have a soft linked named “condor config.platform” that points to “condor config.@sys”. In this
case, your files might be named:

condor_config.i386_linux2
condor_config.sun4x_56
condor_config.sgi_64
condor_config.platform -> condor_config.@sys

and your LOCAL CONFIG FILE parameter would be set to:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.platform, \
$(ETC)/$(HOSTNAME).local

Platform-Specific Config File Settings

The only settings that are truly platform-specific are:

RELEASE DIR Full path to where you have installed your Condor binaries. While the config files
may be shared among different platforms, the binaries certainly cannot. Therefore, you must
still maintain separate release directories for each platform in your pool. See section 3.3.2 on
“Condor-wide Config File Entries” for details.

MAIL The full path to your mail program. See section 3.3.2 on “Condor-wide Config File Entries”
for details.

CONSOLE DEVICES Which devices in /dev should be treated as “console devices”. See sec-
tion 3.3.8 on “condor startd Config File Entries” for details.

DAEMON LIST Which daemons the condor master should start up. The only reason this setting
is platform-specific is because on Alphas running Digital Unix and SGIs running IRIX, you
must use the condor kbdd, which is not needed on other platforms. See section 3.3.7 on
“condor master Config File Entries” for details.

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 160

Reasonable defaults for all of these settings will be found in the default config files inside
a given platform’s binary distribution (except the RELEASE DIR , since it is up to you where
you want to install your Condor binaries and libraries). If you have multiple platforms, sim-
ply take one of the condor config files you get from either running condor install or from the
<release dir>/etc/examples/condor config.generic file, take these settings out
and save them into a platform-specific file, and install the resulting platform-independent file as your
global config file. Then, find the same settings from the config files for any other platforms you are
setting up and put them in their own platform specific files. Finally, set your LOCAL CONFIG FILE
parameter to point to the appropriate platform-specific file, as described above.

Not even all of these settings are necessarily going to be different. For example, if you have
installed a mail program that understands the “-s” option in /usr/local/bin/mail on all your
platforms, you could just set MAIL to that in your global file and not define it anywhere else. If
you’ve only got Digital Unix and IRIX machines, the DAEMON LIST will be the same for each,
so there’s no reason not to put that in the global config file (or, if you have no IRIX or Digital Unix
machines, DAEMON LIST won’t have to be platform-specific either).

Other Uses for Platform-Specific Config Files

It is certainly possible that you might want other settings to be platform-specific as well. Perhaps
you want a different startd policy for one of your platforms. Maybe different people should get the
email about problems with different platforms. There’s nothing hard-coded about any of this. What
you decide should be shared and what should not is entirely up to you and how you lay out your
config files.

Since the LOCAL CONFIG FILE parameter can be an arbitrary list of files, you can even break
up your global, platform-independent settings into separate files. In fact, your global config file
might only contain a definition for LOCAL CONFIG FILE , and all other settings would be handled
in separate files.

You might want to give different people permission to change different Condor settings. For
example, if you wanted some user to be able to change certain settings, but nothing else, you could
specify those settings in a file which was early in the LOCAL CONFIG FILE list, give that user
write permission on that file, then include all the other files after that one. That way, if the user was
trying to change settings she/he shouldn’t, they would simply be overridden.

As you can see, this mechanism is quite flexible and powerful. If you have very specific con-
figuration needs, they can probably be met by using file permissions, the LOCAL CONFIG FILE
setting, and your imagination.

3.11.3 Full Installation of condor compile

In order to take advantage of two major Condor features: checkpointing and remote system calls,
users of the Condor system need to relink their binaries. Programs that are not relinked for Condor
can run in Condor’s “vanilla” universe just fine, however, they cannot checkpoint and migrate, or

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 161

run on machines without a shared filesystem.

To relink your programs with Condor, we provide a special tool, condor compile. As installed
by default, condor compile works with the following commands: gcc, g++, g77, cc, acc, c89, CC,
f77, fort77, ld. On Solaris and Digital Unix, f90 is also supported. See the condor compile(1) man
page for details on using condor compile.

However, you can make condor compile work transparently with all commands on your system
whatsoever, including make.

The basic idea here is to replace the system linker (ld) with the Condor linker. Then, when a
program is to be linked, the condor linker figures out whether this binary will be for Condor, or for
a normal binary. If it is to be a normal compile, the old ld is called. If this binary is to be linked
for condor, the script performs the necessary operations in order to prepare a binary that can be
used with condor. In order to differentiate between normal builds and condor builds, the user simply
places condor compile before their build command, which sets the appropriate environment variable
that lets the condor linker script know it needs to do its magic.

In order to perform this full installation of condor compile, the following steps need to be taken:

1. Rename the system linker from ld to ld.real.

2. Copy the condor linker to the location of the previous ld.

3. Set the owner of the linker to root.

4. Set the permissions on the new linker to 755.

The actual commands that you must execute depend upon the system that you are on. The
location of the system linker (ld), is as follows:

Operating System Location of ld (ld-path)
Linux /usr/bin
Solaris 2.X /usr/ccs/bin
OSF/1 (Digital Unix) /usr/lib/cmplrs/cc

On these platforms, issue the following commands (as root), where ld-path is replaced by the
path to your system’s ld.

mv /[ld-path]/ld /[ld-path]/ld.real
cp /usr/local/condor/lib/ld /[ld-path]/ld
chown root /[ld-path]/ld
chmod 755 /[ld-path]/ld

On IRIX, things are more complicated in that there are multiple ld binaries that need to be
moved, and symbolic links need to be made in order to convince the linker to work, since it looks at
the name of it’s own binary in order to figure out what to do.

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 162

mv /usr/lib/ld /usr/lib/ld.real
mv /usr/lib/uld /usr/lib/uld.real
cp /usr/local/condor/lib/ld /usr/lib/ld
ln /usr/lib/ld /usr/lib/uld
chown root /usr/lib/ld /usr/lib/uld
chmod 755 /usr/lib/ld /usr/lib/uld
mkdir /usr/lib/condor
chown root /usr/lib/condor
chmod 755 /usr/lib/condor
ln -s /usr/lib/uld.real /usr/lib/condor/uld
ln -s /usr/lib/uld.real /usr/lib/condor/old_ld

If you remove Condor from your system latter on, linking will continue to work, since the condor
linker will always default to compiling normal binaries and simply call the real ld. In the interest of
simplicity, it is recommended that you reverse the above changes by moving your ld.real linker back
to it’s former position as ld, overwriting the condor linker. On IRIX, you need to do this for both
linkers, and you will probably want to remove the symbolic links as well.

NOTE: If you ever upgrade your operating system after performing a full installation of con-
dor compile, you will probably have to re-do all the steps outlined above. Generally speaking, new
versions or patches of an operating system might replace the system ld binary, which would undo
the full installation of condor compile.

3.11.4 Installing the condor kbdd

The condor keyboard daemon (condor kbdd) monitors X events on machines where the operating
system does not provide a way of monitoring the idle time of the keyboard or mouse. In particular,
this is necessary on Digital Unix machines and IRIX machines.

NOTE: If you are running on Solaris, Linux, or HP/UX, you do not need to use the keyboard
daemon.

Although great measures have been taken to make this daemon as robust as possible, the X
window system was not designed to facilitate such a need, and thus is less then optimal on machines
where many users log in and out on the console frequently.

In order to work with X authority, the system by which X authorizes processes to connect to X
servers, the condor keyboard daemon needs to run with super user privileges. Currently, the daemon
assumes that X uses the HOME environment variable in order to locate a file named .Xauthority,
which contains keys necessary to connect to an X server. The keyboard daemon attempts to set
this environment variable to various users home directories in order to gain a connection to the X
server and monitor events. This may fail to work on your system, if you are using a non-standard
approach. If the keyboard daemon is not allowed to attach to the X server, the state of a machine
may be incorrectly set to idle when a user is, in fact, using the machine.

In some environments, the keyboard daemon will not be able to connect to the X server because

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 163

the user currently logged into the system keeps their authentication token for using the X server
in a place that no local user on the current machine can get to. This may be the case if you are
running AFS and have the user’s X authority file in an AFS home directory. There may also be cases
where you cannot run the daemon with super user privileges because of political reasons, but you
would still like to be able to monitor X activity. In these cases, you will need to change your XDM
configuration in order to start up the keyboard daemon with the permissions of the currently logging
in user. Although your situation may differ, if you are running X11R6.3, you will probably want
to edit the files in /usr/X11R6/lib/X11/xdm. The Xsession file should have the keyboard daemon
startup at the end, and the Xreset file should have the keyboard daemon shutdown. As of patch level 4
of Condor version 6.0, the keyboard daemon has some additional command line options to facilitate
this. The -l option can be used to write the daemons log file to a place where the user running the
daemon has permission to write a file. We recommend something akin to $HOME/.kbdd.log since
this is a place where every user can write and won’t get in the way. The -pidfile and -k options allow
for easy shutdown of the daemon by storing the process id in a file. You will need to add lines to
your XDM config that look something like this:

condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

This will start the keyboard daemon as the user who is currently logging in and write the log
to a file in the directory $HOME/.kbdd.log/. Also, this will save the process id of the daemon to
/.kbdd.pid, so that when the user logs out, XDM can simply do a:

condor_kbdd -k $HOME/.kbdd.pid

This will shutdown the process recorded in /.kbdd.pid and exit.

To see how well the keyboard daemon is working on your system, review the log for the daemon
and look for successful connections to the X server. If you see none, you may have a situation where
the keyboard daemon is unable to connect to your machines X server. If this happens, please send
mail to condor-admin@cs.wisc.edu and let us know about your situation.

3.11.5 Installing a Checkpoint Server

The Checkpoint Server maintains a repository for checkpoint files. Using checkpoint servers reduces
the disk requirements of submitting machines in the pool, since the submitting machines no longer
need to store checkpoint files locally. Checkpoint server machines should have a large amount of
disk space available, and they should have a fast connection to machines in the Condor pool.

If your spool directories are on a network file system, then checkpoint files will make two trips
over the network: one between the submitting machine and the execution machine, and a second
between the submitting machine and the network file server. If you install a checkpoint server and
configure it to use the server’s local disk, the checkpoint will travel only once over the network,
between the execution machine and the checkpoint server. You may also obtain checkpointing
network performance benefits by using multiple checkpoint servers, as discussed below.

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 164

NOTE: It is a good idea to pick very stable machines for your checkpoint servers. If individual
checkpoint servers crash, the Condor system will continue to operate, although poorly. While the
Condor system will recover from a checkpoint server crash as best it can, there are two problems
that can (and will) occur:

1. A checkpoint cannot be sent to a checkpoint server that is not functioning. Jobs will keep
trying to contact the checkpoint server, backing off exponentially in the time they wait between
attempts. Normally, jobs only have a limited time to checkpoint before they are kicked off the
machine. So, if the server is down for a long period of time, chances are that a lot of work
will be lost by jobs being killed without writing a checkpoint.

2. If a checkpoint is not available from the checkpoint server, a job cannot be retrieved, and it
will either have to be restarted from the beginning, or the job will wait for the server to come
back online. This behavior is controlled with the MAX DISCARDED RUN TIME parameter
in the config file (see section 3.3.6 on page 88 for details). This parameter represents the
maximum amount of CPU time you are willing to discard by starting a job over from scratch
if the checkpoint server is not responding to requests.

Preparing to Install a Checkpoint Server

The location of checkpoints changes upon the installation of a checkpoint server. A configuration
change would cause currently queued jobs with checkpoints to not be able to find their checkpoints.
This results in the jobs with checkpoints remaining indefinitely queued (never running) due to the
lack of finding their checkpoints. It is therefore best to either remove jobs from the queues or let
them complete before installing a checkpoint server. It is advisable to shut your pool down before
doing any maintenance on your checkpoint server. See section 3.10 on page 153 for details on
shutting down your pool.

A graduated installation of the checkpoint server may be accomplished by configuring submit
machines as their queues empty.

Installing the Checkpoint Server Module

To install a checkpoint server, download the appropriate binary contrib module for the platform(s)
on which your server will run. Uncompress and untar the file to result in a directory that contains
a README, ckpt server.tar, and so on. The file ckpt server.tar acts much like the
release.tar file from a main release. This archive contains the files:

sbin/condor_ckpt_server
sbin/condor_cleanckpts
etc/examples/condor_config.local.ckpt.server

These new files are not found in the main release, so you can safely untar the archive directly into
your existing release directory. condor ckpt server is the checkpoint server binary. con-
dor cleanckpts is a script that can be periodically run to remove stale checkpoint files from

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 165

your server. The checkpoint server normally cleans all old files itself. However, in certain error
situations, stale files can be left that are no longer needed. You may set up a cron job that calls
condor cleanckpts every week or so to automate the cleaning up of any stale files. The example
configuration file give with the module is described below.

After unpacking the module, there are three steps to complete. Each is discussed in its own
section:

1. Configure the checkpoint server.

2. Start the checkpoint server.

3. Configure your pool to use the checkpoint server.

Configuring a Checkpoint Server

Place settings in the local configuration file of the checkpoint server. The file
etc/examples/condor config.local.ckpt.server contains the needed settings. In-
sert these into the local configuration file of your checkpoint server machine.

The CKPT SERVER DIR must be customized. The CKPT SERVER DIR attribute defines
where your checkpoint files are to be located. It is better if this is on a very fast local file system
(preferably a RAID). The speed of this file system will have a direct impact on the speed at which
your checkpoint files can be retrieved from the remote machines.

The other optional settings are:

DAEMON LIST (Described in section 3.3.7). To have the checkpoint server managed by the con-
dor master, the DAEMON LIST entry must have MASTER and CKPT SERVER. Add STARTD
if you want to allow jobs to run on your checkpoint server. Similarly, add SCHEDD if you
would like to submit jobs from your checkpoint server.

The rest of these settings are the checkpoint server-specific versions of the Condor logging en-
tries, as described in section 3.3.3 on page 81.

CKPT SERVER LOG The CKPT SERVER LOG is where the checkpoint server log is placed.

MAX CKPT SERVER LOG Sets the maximum size of the checkpoint server log before it is saved
and the log file restarted.

CKPT SERVER DEBUG Regulates the amount of information printed in the log file. Currently, the
only debug level supported is D ALWAYS.

Start the Checkpoint Server

To start the newly configured checkpoint server, restart Condor on that host to enable the con-
dor master to notice the new configuration. Do this by sending a condor restart command from any

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 166

machine with administrator access to your pool. See section 3.8 on page 145 for full details about
IP/host-based security in Condor.

Configuring your Pool to Use the Checkpoint Server

After the checkpoint server is running, you change a few settings in your configuration files to let
your pool know about your new server:

USE CKPT SERVER This parameter should be set to TRUE (the default).

CKPT SERVER HOST This parameter should be set to the full hostname of the machine that is
now running your checkpoint server.

It is most convenient to set these parameters in your global configuration file, so they affect
all submission machines. However, you may configure each submission machine separately (using
local configuration files) if you do not want all of your submission machines to start using the
checkpoint server at one time. If USE CKPT SERVER is set to FALSE, the submission machine
will not use a checkpoint server.

Once these settings are in place, send a condor reconfig to all machines in your pool so the
changes take effect. This is described in section 3.10.2 on page 156.

Configuring your Pool to Use Multiple Checkpoint Servers

It is possible to configure a Condor pool to use multiple checkpoint servers. The deployment of
checkpoint servers across the network improves checkpointing performance. In this case, Condor
machines are configured to checkpoint to the nearest checkpoint server. There are two main perfor-
mance benefits to deploying multiple checkpoint servers:

• Checkpoint-related network traffic is localized by intelligent placement of checkpoint servers.

• Faster checkpointing implies that jobs spend less time checkpointing, more time doing useful
work, jobs have a better chance of checkpointing successfully before returning a machine to
its owner, and workstation owners see Condor jobs leave their machines quicker.

Once you have multiple checkpoint servers running in your pool, the following configuration
changes are required to make them active.

First, USE CKPT SERVER should be set to TRUE (the default) on all submit-
ting machines where Condor jobs should use a checkpoint server. Additionally,
STARTER CHOOSES CKPT SERVER should be set to TRUE (the default) on these submit-
ting machines. When TRUE, this parameter specifies that the checkpoint server specified by the
machine running the job should be used instead of the checkpoint server specified by the submitting
machine. See section 3.3.6 on page 88 for more details. This allows the job to use the checkpoint

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 167

server closest to the machine on which it is running, instead of the server closest to the submitting
machine. For convenience, set these parameters in the global configuration file.

Second, set CKPT SERVER HOST on each machine. As described, this is set to the full host-
name of the checkpoint server machine. In the case of multiple checkpoint servers, set this in the
local configuraton file. It is the hostname of the nearest server to the machine.

Third, send a condor reconfig to all machines in the pool so the changes take effect. This is
described in section 3.10.2 on page 156.

After completing these three steps, the jobs in your pool will send checkpoints to the nearest
checkpoint server. On restart, a job will remember where its checkpoint was stored and get it from
the appropriate server. After a job successfully writes a checkpoint to a new server, it will remove
any previous checkpoints left on other servers.

NOTE: If the configured checkpoint server is unavailable, the job will keep trying to contact that
server as described above. It will not use alternate checkpoint servers. This may change in future
versions of Condor.

Checkpoint Server Domains

The configuration described in the previous section ensures that jobs will always write checkpoints
to their nearest checkpoint server. In some circumstances, it is also useful to configure Condor to
localize checkpoint read transfers, which occur when the job restarts from its last checkpoint on a
new machine. To localize these transfers, we want to schedule the job on a machine which is near
the checkpoint server on which the job’s checkpoint is stored.

We can say that all of the machines configured to use checkpoint server “A” are in “checkpoint
server domain A.” To localize checkpoint transfers, we want jobs which run on machines in a given
checkpoint server domain to continue running on machines in that domain, transferring checkpoint
files in a single local area of the network. There are two possible configurations which specify what
a job should do when there are no available machines in its checkpoint server domain:

• The job can remain idle until a workstation in its checkpoint server domain becomes available.

• The job can try to immediately begin executing on a machine in another checkpoint server
domain. In this case, the job transfers to a new checkpoint server domain.

These two configurations are described below.

The first step in implementing checkpoint server domains is to include the name of the near-
est checkpoint server in the machine ClassAd, so this information can be used in job scheduling
decisions. To do this, add the following configuration to each machine:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_EXPRS = $(STARTD_EXPRS), CkptServer

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 168

For convenience, we suggest that you set these parameters in the global config file. Note that this
example assumes that STARTD EXPRS is defined previously in your configuration. If not, then you
should use the following configuration instead:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_EXPRS = CkptServer

Now, all machine ClassAds will include a CkptServer attribute, which is the name of the check-
point server closest to this machine. So, the CkptServer attribute defines the checkpoint server
domain of each machine.

To restrict jobs to one checkpoint server domain, we need to modify the jobs’ Requirements
expression as follows:

Requirements = ((LastCkptServer == TARGET.CkptServer) || (LastCkpt-
Server =?= UNDEFINED))

This Requirements expression uses the LastCkptServer attribute in the job’s ClassAd,
which specifies where the job last wrote a checkpoint, and the CkptServer attribute in the ma-
chine ClassAd, which specifies the checkpoint server domain. If the job has not written a checkpoint
yet, the LastCkptServer attribute will be UNDEFINED, and the job will be able to execute in
any checkpoint server domain. However, once the job performs a checkpoint, LastCkptServer
will be defined and the job will be restricted to the checkpoint server domain where it started run-
ning.

If instead we want to allow jobs to transfer to other checkpoint server domains when there are
no available machines in the current checkpoint server domain, we need to modify the jobs’ Rank
expression as follows:

Rank = ((LastCkptServer == TARGET.CkptServer) || (LastCkpt-
Server =?= UNDEFINED))

This Rank expression will evaluate to 1 for machines in the job’s checkpoint server domain and 0
for other machines. So, the job will prefer to run on machines in its checkpoint server domain, but
if no such machines are available, the job will run in a new checkpoint server domain.

You can automatically append the checkpoint server domain Requirements or Rank expres-
sions to all STANDARD universe jobs submitted in your pool using APPEND REQ STANDARD or
APPEND RANK STANDARD . See section 3.3.13 on page 99 for more details.

3.11.6 Flocking: Configuring a Schedd to Submit to Multiple Pools

The condor schedd may be configured to submit jobs to more than one pool. In the default configu-
ration, the condor schedd contacts the Central Manager specified by the CONDOR HOST macro

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 169

(described in section 3.3.2 on page 78) to locate execute machines available to run jobs in its
queue. However, the FLOCK NEGOTIATOR HOSTS and FLOCK COLLECTOR HOSTS macros
(described in section 3.3.9 on page 95) may be used to specify additional Central Managers for the
condor schedd to contact. When the local pool does not satisfy all job requests, the condor schedd
will try the pools specified by these macros in turn until all jobs are satisfied.

$(HOSTALLOW NEGOTIATOR SCHEDD) (see section 3.3.4) must also be configured to allow
negotiators from all of the $(FLOCK NEGOTIATOR HOSTS) to contact the schedd. Please make
sure the $(NEGOTIATOR HOST) is first in the $(HOSTALLOW NEGOTIATOR SCHEDD) list.
Similarly, the central managers of the remote pools must be configured to listen to requests from
this schedd.

3.11.7 Configuring The Startd for SMP Machines

This section describes how to configure the condor startd for SMP (Symmetric Multi-Processor)
machines. Beginning with Condor version 6.1, machines with more than one CPU can be configured
to run more than one job at a time. As always, owners of the resources have great flexibility in
defining the policy under which multiple jobs may run, suspend, vacate, etc.

How Shared Resources are Represented to Condor

The way SMP machines are represented to the Condor system is that the shared resources are
broken up into individual virtual machines (“VM”) that can be matched with and claimed by
users. Each virtual machine is represented by an individual “ClassAd” (see the ClassAd ref-
erence, section 4.1, for details). In this way, a single SMP machine will appear to the Con-
dor system as a collection of separate virtual machines. So for example, if you had an SMP
machine named “vulture.cs.wisc.edu”, it would appear to Condor as multiple machines, named
“vm1@vulture.cs.wisc.edu”, “vm2@vulture.cs.wisc.edu”, and so on.

You can configure how you want the condor startd to break up the shared system resources into
the different virtual machines. All shared system resources (like RAM, disk space, swap space, etc)
can either be divided evenly among all the virtual machines, with each CPU getting its own virtual
machine, or you can define your own virtual machine types, so that resources can be unevenly
partitioned. The following section gives details on how to configure Condor to divide the resources
on an SMP machine into seperate virtual machines.

Dividing System Resources in SMP Machines

This section describes the settings that allow you to define your own virtual machine types and to
control how many virtual machines of each type are reported to Condor.

There are two main ways to go about dividing an SMP machine:

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 170

Define your own virtual machine types. By defining your own types, you can specify what frac-
tion of shared system resources (CPU, RAM, swap space and disk space) go to each virtual
machine. Once you define your own types, you can control how many of each type are being
reported at any given time.

Evenly divide all resources. If you do not define your own types, the condor startd will automat-
ically partition your machine into virtual machines for you. It will do so by giving each VM
a single CPU, and evenly dividing all shared resources among each CPU. With this default
partitioning, you only have to specify how many VMs are reported at a time. By default, all
VMs are reported to Condor.

Begining with Condor version 6.1.6, the number of each type being reported can be changed
at run-time, by issuing a simple reconfig to the condor startd (sending a SIGHUP or using con-
dor reconfig). However, the definitions for the types themselves cannot be changed with a reconfig.
If you change any VM type definitions, you must use “condor restart -startd” for that change to take
effect.

Defining Virtual Machine Types

To define your own virtual machine types, you simply add config file parameters that list how much
of each system resource you want in the given VM type. You do this with settings of the form
VIRTUAL MACHINE TYPE <N> . The <N> is to be replaced with an integer, for example, VIR-
TUAL MACHINE TYPE 1, which specifies the virtual machine type you’re defining. You will use
this number later to configure how many VMs of this type you want to advertise.

A type describes what share of the total system resources a given virtual machine has available
to it.

The type can be defined in a number of ways:

• A simple fraction, such as “1/4”

• A simple percentage, such as “25%”

• A comma-separated list of attributes, and a percentage, fraction, or value for each one.

If you just specify a fraction or percentage, that share of the total system resources, including the
number of cpus, will be used for each virtual machine of this type. However, if you specify the
comma-seperated list, you can fine-tune the amounts for specific attributes.

Some attributes, such as the number of CPUs and total amount of RAM in the machine, do not
change (unless the machine is turned off and more chips are added to it). For these two attributes,
you can specify either absolute values, or percentages of the total available amount. For example,
in a machine with 128 megs of RAM, you could specify any of the following to get the same effect:
“mem=64”, “mem=1/2”, or “mem=50%”. Other resources are dynamic, such as disk space and
swap space. For these, you must specify the percentage or fraction of the total value that is alloted

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 171

to each VM, instead of specifying absolute values. As the total values of these resources change on
your machine, each VM will take its fraction of the total and report that as its available amount.

All attribute names are case insensitive when defining VM types. You can use as much or as
little of each word as you’d like. The attributes you can tune are:

• cpus

• ram

• disk (must specify with a fraction or percentage)

• swap (must specify with a fraction or percentage)

In addition, the following names are equivalent: “ram” = “memory” and “swap” = “virtualmemory”.

Assume the host as 4 CPUs and 256 megs of RAM. Here are some example VM type definitions,
all of which are valid. Types 1-3 are all equivalent with each other, as are types 4-6

VIRTUAL MACHINE TYPE 1 = cpus=2, ram=128, swap=25%, disk=1/2

VIRTUAL MACHINE TYPE 2 = cpus=1/2, memory=128, virt=25%, disk=50%

VIRTUAL MACHINE TYPE 3 = c=1/2, m=50%, v=1/4, disk=1/2

VIRTUAL MACHINE TYPE 4 = c=25%, m=64, v=1/4, d=25%

VIRTUAL MACHINE TYPE 5 = 25%

VIRTUAL MACHINE TYPE 6 = 1/4

Configuring the Number of Virtual Machines Reported

If you are not defining your own VM types, all you have to configure is how many of the evenly
divided VMs you want reported to Condor. You do this by setting the NUM VIRTUAL MACHINES
parameter. You just supply the number of machines you want reported. If you do not define this

yourself, Condor will advertise all the CPUs in your machines by default.

If you define your own types, things are slightly more complicated. Now, you must specify
how many virtual machines of each type should be reported. You do this with settings of the form
NUM VIRTUAL MACHINES TYPE <N> . The <N> is to be replaced with an actual number, for
example, NUM VIRTUAL MACHINES TYPE 1.

Configuring Startd Policy for SMP Machines

NOTE: Be sure you have read and understand section 3.6 on “Configuring The Startd Policy” before
you proceed with this section.

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 172

Each virtual machine from an SMP is treated as an independent machine, with its own view of
its machine state. For now, a single set of policy expressions is in place for all virtual machines
simultaneously. Eventually, you will be able to explicitly specify separate policies for each one.
However, since you do have control over each virtual machine’s view of its own state, you can
effectively have separate policies for each resource.

For example, you can configure how many of the virtual machines “notice” console or tty activity
on the SMP as a whole. Ones that aren’t configured to notice any activity will report ConsoleIdle
and KeyboardIdle times from when the startd was started, (plus a configurable number of seconds).
So, you can setup a 4 CPU machine with all the default startd policy settings and with the keyboard
and console “connected” to only one virtual machine. Assuming there isn’t too much load average
(see section 3.11.7 below on “Load Average for SMP Machines”), only one virtual machine will
suspend or vacate its job when the owner starts typing at their machine again. The rest of the virtual
machines could be matched with jobs and leave them running, even while the user was interactively
using the machine.

Or, if you wish, you can configure all virtual machines to notice all tty and console activity.
In this case, if a machine owner came back to her machine, all the currently running jobs would
suspend or preempt (depending on your policy expressions), all at the same time.

All of this is controlled with the config file parameters listed below. These settings are fully de-
scribed in section 3.3.8 on page 92 which lists all the configuration file settings for the condor startd.

• VIRTUAL MACHINES CONNECTED TO CONSOLE

• VIRTUAL MACHINES CONNECTED TO KEYBOARD

• DISCONNECTED KEYBOARD IDLE BOOST

Load Average for SMP Machines

Most operating systems define the load average for an SMP machine as the total load on all CPUs.
For example, if you have a 4 CPU machine with 3 CPU-bound processes running at the same time,
the load would be 3.0 In Condor, we maintain this view of the total load average and publish it in all
resource ClassAds as TotalLoadAvg.

However, we also define the “per-CPU” load average for SMP machines. In this way, the model
that each node on an SMP is a virtual machine, totally separate from the other nodes, can be main-
tained. All of the default, single-CPU policy expressions can be used directly on SMP machines,
without modification, since the LoadAvg and CondorLoadAvg attributes are the per-virtual ma-
chine versions, not the total, SMP-wide versions.

The per-CPU load average on SMP machines is a number we basically invented. There is no
system call you can use to ask your operating system for this value. Here’s how it works:

We already compute the load average generated by Condor on each virtual machine. We do
this by close monitoring of all processes spawned by any of the Condor daemons, even ones that

Condor Version 6.1.17 Manual

3.11. Setting up Condor for Special Environments 173

are orphaned and then inherited by init. This Condor load average per virtual machine is reported
as CondorLoadAvg in all resource ClassAds, and the total Condor load average for the entire
machine is reported as TotalCondorLoadAvg. We also have the total, system-wide load average
for the entire machine (reported as TotalLoadAvg). Basically, we walk through all the virtual
machines and assign out portions of the total load average to each one. First, we assign out the
known Condor load average to each node that is generating any. If there’s any load average left in
the total system load, that’s considered owner load. Any virtual machines we already think are in the
Owner state (like ones that have keyboard activity, etc), are the first to get assigned this owner load.
We hand out owner load in increments of at most 1.0, so generally speaking, no virtual machine
has a load average above 1.0. If we run out of total load average before we run out of virtual
machines, all the remaining machines think they have no load average at all. If, instead, we run out
of virtual machines and we still have owner load left, we start assigning that load to Condor nodes,
too, creating individual nodes with a load average higher than 1.0.

Debug logging in the SMP Startd

This section describes how the startd handles its debug messages for SMP machines. In general,
a given log message will either be something that is machine-wide (like reporting the total system
load average), or it will be specific to a given virtual machine. Any log entrees specific to a virtual
machine will have an extra header printed out in the entry: vm#:. So, for example, here’s the output
about system resources that are being gathered (with D FULLDEBUG and D LOAD turned on) on a
2 CPU machine with no Condor activity, and the keyboard connected to both virtual machines:

11/25 18:15 Swap space: 131064
11/25 18:15 number of kbytes available for (/home/condor/execute): 1345063
11/25 18:15 Looking up RESERVED_DISK parameter
11/25 18:15 Reserving 5120 kbytes for file system
11/25 18:15 Disk space: 1339943
11/25 18:15 Load avg: 0.340000 0.800000 1.170000
11/25 18:15 Idle Time: user= 0 , console= 4 seconds
11/25 18:15 SystemLoad: 0.340 TotalCondorLoad: 0.000 TotalOwn-
erLoad: 0.340
11/25 18:15 vm1: Idle time: Keyboard: 0 Console: 4
11/25 18:15 vm1: SystemLoad: 0.340 CondorLoad: 0.000 Owner-
Load: 0.340
11/25 18:15 vm2: Idle time: Keyboard: 0 Console: 4
11/25 18:15 vm2: SystemLoad: 0.000 CondorLoad: 0.000 Owner-
Load: 0.000
11/25 18:15 vm1: State: Owner Activity: Idle
11/25 18:15 vm2: State: Owner Activity: Idle

If, on the other hand, this machine only had one virtual machine connected to the keyboard and
console, and the other vm was running a job, it might look something like this:

11/25 18:19 Load avg: 1.250000 0.910000 1.090000

Condor Version 6.1.17 Manual

3.12. Security In Condor 174

11/25 18:19 Idle Time: user= 0 , console= 0 seconds
11/25 18:19 SystemLoad: 1.250 TotalCondorLoad: 0.996 TotalOwn-
erLoad: 0.254
11/25 18:19 vm1: Idle time: Keyboard: 0 Console: 0
11/25 18:19 vm1: SystemLoad: 0.254 CondorLoad: 0.000 Owner-
Load: 0.254
11/25 18:19 vm2: Idle time: Keyboard: 1496 Console: 1496
11/25 18:19 vm2: SystemLoad: 0.996 CondorLoad: 0.996 Owner-
Load: 0.000
11/25 18:19 vm1: State: Owner Activity: Idle
11/25 18:19 vm2: State: Claimed Activity: Busy

As you can see, shared system resources are printed without the header (like total swap space),
which VM-specific messages (like the load average or state of each VM,) get the special header
appended.

3.11.8 Configuring Condor for Machines With Multiple Network Interfaces

Beginning with Condor version 6.1.5, Condor can run on machines with multiple network inter-
faces. Basically, you tell each host with multiple interfaces which IP address you want the host to
use for ingoing and outgoing Condor network communication. You do this by setting the NET-
WORK INTERFACE parameter in the local config file for each host you need to. There are a few
other special cases you might have to deal with, described below.

If your Central Manager is on a machine with multiple interfaces, instead of defining the COL-
LECTOR HOST or NEGOTIATOR HOST parameters (which are usually both defined in terms of
CONDOR HOST), you should set the CM IP ADDR .

WARNING: The default HOSTALLOW ADMINISTRATOR setting in the config file references
$(CONDOR HOST), and the default HOSTALLOW NEGOTIATOR setting references $(NEGO-
TIATOR HOST). So you’ll need to change both of these settings to reference $(CM IP ADDR)
instead.

If your Checkpoint Server is on a machine with multiple interfaces, the only way to get things
to work is if your different interfaces have different hostnames associated with them, and you set
CKPT SERVER HOST to the hostname that corresponds with the IP address you want to use.
You will still need to specify NETWORK INTERFACE in the local config file for your Checkpoint
Server.

3.12 Security In Condor

This section describes various aspects of security within Condor.

Condor Version 6.1.17 Manual

3.12. Security In Condor 175

3.12.1 Running Condor as Non-Root

While we strongly recommend starting up the Condor daemons as root, we understand that that’s
not always possible. The main problems this causes are if you’ve got one Condor installation shared
by many users on a single machine, or if you’re setting up your machines to execute Condor jobs.
If you’re just setting up a submit-only installation for a single user, there’s no need for (or benefit
from) running as root.

What follows are the details of what effect running without root access has on the various parts
of Condor:

condor startd If you’re setting up a machine to run Condor jobs and don’t start the condor startd
as root, you’re basically relying on the goodwill of your Condor users to agree to the policy
you configure the startd to enforce as far as starting, suspending, vacating and killing Condor
jobs under certain conditions. If you run as root, however, you can enforce these policies
regardless of malicious users. By running as root, the Condor daemons run with a different
UID than the Condor job that gets started (since the user’s job is started as either the UID of
the user who submitted it, or as user “nobody”, depending on the UID DOMAIN settings).
Therefore, the Condor job cannot do anything to the Condor daemons. If you don’t start the
daemons as root, all processes started by Condor, including the end user’s job, run with the
same UID (since you can’t switch UIDs unless you’re root). Therefore, a user’s job could just
kill the condor startd and condor starter as soon as it starts up and by doing so, avoid getting
suspended or vacated when a user comes back to the machine. This is nice for the user, since
they get unlimited access to the machine, but awful for the machine owner or administrator.
If you trust the users submitting jobs to Condor, this might not be a concern. However, to
ensure that the policy you choose is effectively enforced by Condor, the condor startd should
be started as root.

In addition, some system information cannot be obtained without root access on some plat-
forms (such as load average on IRIX). As a result, when we’re running without root access,
the startd has to call other programs (for example, “uptime”) to get this information. This is
much less efficient than getting the information directly from the kernel (which is what we do
if we’re running as root). On Linux and Solaris, we can get this information directly without
root access, so this is not a concern on those platforms.

If you can’t have all of Condor running as root, at least consider whether you can install the
Condorstartd as setuid root. That would solve both of these problems. If you can’t do that, you
could also install it as a setgid sys or kmem program (depending on whatever group has read
access to /dev/kmem on your system) and that would at least solve the system information
problem.

condor schedd The biggest problem running the schedd without root access is that the con-
dor shadow processes which it spawns are stuck with the same UID the condor schedd has.
This means that users submitting their jobs have to go out of their way to grant write access
to user or group condor (or whoever the schedd is running as) for any files or directories their
jobs write or create. Similarly, read access must be granted to their input files.

You might consider installing condor submit as a setgid condor program so that at least

Condor Version 6.1.17 Manual

3.12. Security In Condor 176

the stdout, stderr and UserLog files get created with the right permissions. If con-
dor submit is a setgid program, it will automatically set it’s umask to 002, so that creates
group-writable files. This way, the simple case of a job that just writes to stdout and
stderr will work. If users have programs that open their own files, they’ll have to know to
set the right permissions on the directories they submit from.

condor master The condor master is what spawns the condor startd and condor schedd, so if want
them both running as root, you should have the master run as root. This happens automatically
if you start the master from your boot scripts.

condor negotiator

condor collector There is no need to have either of these daemons running as root.

condor kbdd On platforms that need the condor kbdd (Digital Unix and IRIX) the condor kbdd has
to run as root. If it is started as any other user, it will not work. You might consider installing
this program as a setuid root binary if you can’t run the condor master as root. Without the
condor kbdd, the startd has no way to monitor mouse activity at all, and the only keyboard
activity it will notice is activity on ttys (such as xterms, remote logins, etc).

3.12.2 UIDs in Condor

This section has not yet been written

3.12.3 Root Config Files

This section has not yet been written

Condor Version 6.1.17 Manual

CHAPTER

FOUR

Miscellaneous Concepts

4.1 An Introduction to Condor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines
and jobs in the Condor system. ClassAds are used extensively in the Condor system to represent
jobs, resources, submitters and other Condor daemons. An understanding of this mechanism is
required to harness the full flexibility of the Condor system.

A ClassAd is is a set of uniquely named expressions. Each named expression is called an at-
tribute. Figure 4.1 shows an example of a ClassAd with ten attributes.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "SOLARIS251"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardI-
dle>15*60

Figure 4.1: An example ClassAd

ClassAd expressions look very much like expressions in C, and are composed of literals and
attribute references composed with operators. The difference between ClassAd expressions and C

177

4.1. An Introduction to Condor’s ClassAd Mechanism 178

expressions arise from the fact that ClassAd expressions operate in a much more dynamic environ-
ment. For example, an expression from a machine’s ClassAd may refer to an attribute in a job’s
ClassAd, such as TARGET.Owner in the above example. The value and type of the attribute is not
known until the expression is evaluated in an environment which pairs a specific job ClassAd with
the machine ClassAd.

ClassAd expressions handle these uncertainties by defining all operators to be total operators,
which means that they have well defined behavior regardless of supplied operands. This func-
tionality is provided through two distinguished values, UNDEFINED and ERROR, and defining all
operators so that they can operate on all possible values in the ClassAd system. For example, the
multiplication operator which usually only operates on numbers, has a well defined behavior if sup-
plied with values which are not meaningful to multiply. Thus, the expression 10 * "A string"
evaluates to the value ERROR. Most operators are strict with respect to ERROR, which means that
they evaluate to ERROR if any of their operands are ERROR. Similarly, most operators are strict with
respect to UNDEFINED.

4.1.1 Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-
expressions with operators.

Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax
of these literals is as follows:

Integer A sequence of continuous digits (i.e., [0-9]). Additionally, the keywords TRUE and
FALSE (case insensitive) are syntactic representations of the integers 1 and 0 respectively.

Real Two sequences of continuous digits separated by a period (i.e., [0-9]+.[0-9]+).

String A double quote character, followed by an list of characters terminated by a double quote
character. A backslash character inside the string causes the following character to be consid-
ered as part of the string, irrespective of what that character is.

Undefined The keyword UNDEFINED (case insensitive) represents the UNDEFINED value.

Error The keyword ERROR (case insensitive) represents the ERROR value.

Attributes

Every expression in a ClassAd is named by an attribute name. Together, the (name,expression) pair
is called an attribute. An attributes may be referred to in other expressions through its attribute
name.

Condor Version 6.1.17 Manual

4.1. An Introduction to Condor’s ClassAd Mechanism 179

Attribute names are sequences of alphabetic characters, digits and underscores, and may not
begin with a digit. All characters in the name are significant, but case is not significant. Thus,
Memory, memory and MeMoRy all refer to the same attribute.

An attribute reference consists of the name of the attribute being referenced, and an optional
scope resolution prefix. The three prefixes that may be used are MY., TARGET. and ENV.. The
semantics of supplying a prefix are discussed in Section 4.1.2.

Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The
available operators and their relative precedence is shown in figure 4.2. The operator with the highest

- (high precedence)
* /
+ -
< <= >= >
== != =?= =!=
&&
|| (low precedence)

Figure 4.2: Relative precedence of ClassAd expression operators

precedence is the unary minus operator. The only operators which are unfamiliar are the =?= and
=!= operators, which are discussed in Section 4.1.2.

4.1.2 Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities who supply constraints on can-
didate matches. The mechanism is therefore defined to carry out expression evaluations in the con-
text of two ClassAds which are testing each other for a potential match. For example, the con-
dor negotiator evaluates the Requirements expressions of machine and job ClassAds to test if
they can be matched. The semantics of evaluating such constraints is defined below.

Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to them-
selves.

Condor Version 6.1.17 Manual

4.1. An Introduction to Condor’s ClassAd Mechanism 180

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a po-
tential for namespace ambiguities. The following rules define the semantics of attribute references
made by ad A that is being evaluated in a context with another ad B:

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix is MY., the attribute is looked up in ClassAd A. If the named attribute does
not exist in A, the value of the reference is UNDEFINED. Otherwise, the value of the
reference is the value of the expression bound to the attribute name.

• Similarly, if the prefix is TARGET., the attribute is looked up in ClassAd B. If the named
attribute does not exist in B, the value of the reference is UNDEFINED. Otherwise, the
value of the reference is the value of the expression bound to the attribute name.

• Finally, if the prefix is ENV., the attribute is evaluated in the “environment.” Currently,
the only attribute of the environment is CurrentTime, which evaluates to the integer
value returned by the system call time(2).

2. If the reference is not prefixed by a scope resolution prefix,

• If the attribute is defined in A, the value of the reference is the value of the expression
bound to the attribute name in A.

• Otherwise, if the attribute is defined in B, the value of the reference is the value of the
expression bound to the attribute name in B.

• Otherwise, if the attribute is defined in the environment, the value of the reference is the
evaluated value in the environment.

• Otherwise, the value of the reference is UNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated,
there is a circular dependency in the evaluation. The value of the reference is ERROR.

Operators

All operators in the ClassAd language are total, and thus have well defined behavior regardless of the
supplied operands. Furthermore, most operators are strict with respect to ERROR and UNDEFINED,
and thus evaluate to ERROR (or UNDEFINED) if either of their operands have these exceptional
values.

• Arithmetic operators:

1. The operators *, /, + and - operate arithmetically only on integers and reals.

2. Arithmetic is carried out in the same type as both operands, and type promotions from
integers to reals are performed if one operand is an integer and the other real.

3. The operators are strict with respect to both UNDEFINED and ERROR.

Condor Version 6.1.17 Manual

4.1. An Introduction to Condor’s ClassAd Mechanism 181

4. If either operand is not a numerical type, the value of the operation is ERROR.

• Comparison operators:

1. The comparison operators ==, !=, <=, <, >= and > operate on integers, reals and strings.

2. Comparisons are carried out in the same type as both operands, and type promotions
from integers to reals are performed if one operand is a real, and the other an integer.
Strings may not be converted to any other type, so comparing a string and an integer
results in ERROR.

3. The operators ==, !=, <=, < and >= > are strict with respect to both UNDEFINED and
ERROR.

4. In addition, the operators =?= and =!= behave similar to == and !=, but are
not strict. Semantically, the =?= tests if its operands are “identical,” i.e., have
the same type and the same value. For example, 10 == UNDEFINED and
UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but 10 =?= UNDE-
FINED and UNDEFINED =?= UNDEFINED evaluate to FALSE and TRUE respec-
tively. The =!= operator test for the “is not identical to” condition.

• Logical operators:

1. The logical operators && and || operate on integers and reals. The zero value of these
types are considered FALSE and non-zero values TRUE.

2. The operators are not strict, and exploit the “don’t care” properties of the op-
erators to squash UNDEFINED and ERROR values when possible. For example,
UNDEFINED && FALSE evaluates to FALSE, but UNDEFINED || FALSE evalu-
ates to UNDEFINED.

3. Any string operand is equivalent to an ERROR operand.

4.1.3 ClassAds in the Condor System

The simplicity and flexibility of ClassAds is heavily exploited in the Condor system. ClassAds are
not only used to represent machines and jobs in the Condor pool, but also other entities that exist in
the pool such as checkpoint servers, submitters of jobs and master daemons. Since arbitrary expres-
sions may be supplied and evaluated over these ads, users have a uniform and powerful mechanism
to specify constraints over these ads. These constraints may take the form of Requirements
expressions in resource and job ads, or queries over other ads.

Requirements and Ranks

This is the mechanism by which users specify the constraints over machines and jobs respectively.
Requirements for machines are specified through configuration files, while requirements for jobs are
specified through the submit command file.

Condor Version 6.1.17 Manual

4.1. An Introduction to Condor’s ClassAd Mechanism 182

In both cases, the Requirements expression specifies the correctness criterion that the match
must meet, and the Rank expression specifies the desirability of the match (where higher numbers
mean better matches). For example, a job ad may contain the following expressions:

Requirements = Arch=="SUN4u" && OpSys == "SOLARIS251"
Rank = TARGET.Memory + TARGET.Mips

In this case, the customer requires an UltraSparc computer running the Solaris 2.5.1 operating sys-
tem. Among all such computers, the customer prefers those with large physical memories and high
MIPS ratings. Since the Rank is a user specified metric, any expression may be used to specify
the perceived desirability of the match. The condor negotiator runs algorithms to deliver the “best”
resource (as defined by the Rank expression) while satisfying other criteria.

Similarly, owners of resources may place constraints and preferences on their machines. For
example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
Requirements = Trusted && (ResearchGroup || LoadAvg < 0.3 &&

KeyboardIdle > 15*60)
Rank = Friend + ResearchGroup*10

The above policy states that the computer will never run jobs owned by users “rival” and “riffraff,”
while the computer will always run a job submitted by members of the research group. Furthermore,
jobs submitted by friends are preferred to other foreign jobs, and jobs submitted by the research
group are preferred to jobs submitted by friends.

Note: Because of the dynamic nature of ClassAd expressions, there is no a priori notion of
an integer valued expression, a real valued expression, etc. However, it is intuitive to think of the
Requirements and Rank expressions as integer valued and real valued expressions respectively.
If the actual type of the expression is not of the expected type, the value is assumed to be zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through the condor status
and condor q tools which allow users to supply ClassAd constraint expressions from the command
line.

For example, to find all computers which have had their keyboards idle for more than 20 minutes
and have more than 100 MB of memory:

% condor_status -const ’KeyboardIdle > 20*60 && Memory > 100’

Condor Version 6.1.17 Manual

4.2. An Introduction to Condor’s Checkpointing Mechanism 183

Name Arch OpSys State Activity Loa-
dAv Mem ActvtyTime

amul.cs.wi SUN4u SOLARIS251 Claimed Busy 1.000 128 0+03:45:01
aura.cs.wi SUN4u SOLARIS251 Claimed Busy 1.000 128 0+00:15:01
balder.cs. INTEL SOLARIS251 Claimed Busy 1.000 1024 0+01:05:00
beatrice.c INTEL SOLARIS251 Claimed Busy 1.000 128 0+01:30:02
...
...

Machines Owner Claimed Un-
claimed Matched Preempting

SUN4u/SOLARIS251 3 0 3 0 0 0
INTEL/SOLARIS251 21 0 21 0 0 0
SUN4x/SOLARIS251 3 0 3 0 0 0

SGI/IRIX6 1 0 0 1 0 0
INTEL/LINUX 1 0 1 0 0 0

Total 29 0 28 1 0 0

The similar flexibility exists in querying job queues in the Condor system.

4.2 An Introduction to Condor’s Checkpointing Mechanism

Checkpointing is taking a snapshot of the current state of a program in such a way that the program
can be restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom
to reconsider scheduling decisions through preemptive-resume scheduling. If the scheduler decides
to no longer allocate a machine to a job (for example, when the owner of that machine returns), it
can checkpoint the job and preempt it without losing the work the job has already accomplished.
The job can be resumed later when the scheduler allocates it a new machine. Additionally, periodic
checkpointing provides fault tolerance in Condor. Snapshots are taken periodically, and after an
interruption in service the program can continue from the most recent snapshot.

Condor provides checkpointing services to single process jobs on a number of Unix platforms.
To enable checkpointing, the user must link the program with the Condor system call library
(libcondorsyscall.a), using the condor compile command. This means that the user must
have the object files or source code of the program to use Condor checkpointing. However, the
checkpointing services provided by Condor are strictly optional. So, while there are some classes
of jobs for which Condor does not provide checkpointing services, these jobs may still be submitted
to Condor to take advantage of Condor’s resource management functionality. (See section 2.4.1 on
page 13 for a description of the classes of jobs for which Condor does not provide checkpointing
services.)

Process checkpointing is implemented in the Condor system call library as a signal handler.
When Condor sends a checkpoint signal to a process linked with this library, the provided signal

Condor Version 6.1.17 Manual

4.2. An Introduction to Condor’s Checkpointing Mechanism 184

handler writes the state of the process out to a file or a network socket. This state includes the
contents of the process stack and data segments, all shared library code and data mapped into the
process’s address space, the state of all open files, and any signal handlers and pending signals. On
restart, the process reads this state from the file, restoring the stack, shared library and data segments,
file state, signal handlers, and pending signals. The checkpoint signal handler then returns to user
code, which continues from where it left off when the checkpoint signal arrived.

Condor processes for which checkpointing is enabled perform a checkpoint when preempted
from a machine. When a suitable replacement execution machine is found (of the same architec-
ture and operating system), the process is restored on this new machine from the checkpoint, and
computation is resumed from where it left off. Jobs that can not be checkpointed are preempted and
restarted from the beginning.

Condor’s periodic checkpointing provides fault tolerance. Condor pools are each configured
with the PERIODIC CHECKPOINT expression which controls when and how often jobs which
can be checkpointed do periodic checkpoints (examples: never, every three hours, etc.). When the
time for a periodic checkpoint occurs, the job suspends processing, performs the checkpoint, and
immediately continues from where it left off. There is also a condor ckpt command which allows
the user to request that a Condor job immediately perform a periodic checkpoint.

In all cases, Condor jobs continue execution from the most recent complete checkpoint. If
service is interrupted while a checkpoint is being performed, causing that checkpoint to fail, the
process will restart from the previous checkpoint. Condor uses a commit style algorithm for writing
checkpoints: a previous checkpoint is deleted only after a new complete checkpoint has been written
successfully.

In certain cases, checkpointing may be delayed until a more appropriate time. For example, a
Condor job will defer a checkpoint request if it is communicating with another process over the
network. When the network connection is closed, the checkpoint will occur.

The Condor checkpointing facility can also be used for any Unix process outside of the Condor
batch environment. Standalone checkpointing is described in section 4.2.1.

Condor can now read and write compressed checkpoints. This new functionality is provided in
the libcondorzsyscall.a library. If /usr/lib/libz.a exists on your workstation, con-
dor compile will automatically link your job with the compression-enabled version of the check-
pointing library.

By default, a checkpoint is written to a file on the local disk of the machine where the job was
submitted. A checkpoint server is available to serve as a repository for checkpoints. (See sec-
tion 3.11.5 on page 163.) When a host is configured to use a checkpoint server, jobs submitted on
that machine write and read checkpoints to and from the server rather than the local disk of the sub-
mitting machine, taking the burden of storing checkpoint files off of the submitting machines and
placing it instead on server machines (with disk space dedicated to the purpose of storing check-
points).

Condor Version 6.1.17 Manual

4.2. An Introduction to Condor’s Checkpointing Mechanism 185

4.2.1 Standalone Checkpointing

Using the Condor checkpoint library without the remote system call functionality and outside of the
Condor system is known as standalone mode checkpointing.

To prepare a program for standalone checkpointing, simply use the condor compile utility as for
a standard Condor job, but do not use condor submit – just run your program normally from the
command line. The checkpointing library will print a message to let you know that checkpointing is
enabled and to inform you where the checkpoint image is stored:

Condor: Will checkpoint to program_name.ckpt
Condor: Remote system calls disabled.

To force the program to write a checkpoint image and stop, send it the SIGTSP signal or press
control-Z. To force the program to write a checkpoint image and continue executing, send it the
SIGUSR2 signal.

To restart the program from a checkpoint, run it again with the option “- condor restart” and the
name of the checkpoint image file.

To use a different filename for the checkpoint image, use the option ”- condor ckpt” and the
name of the file you want checkpoints written to.

4.2.2 Checkpoint Library Interface

A program need not be rewritten to take advantage of checkpointing. However, the checkpointing
library provides several C entry points that allow for a program to control its own checkpointing
behavior if needed.

• void ckpt()
This function causes a checkpoint image to be written to disk. The program will continue to
execute. This is identical to sending the program a SIGUSR2 signal.

• void ckpt_and_exit()
This function causes a checkpoint image to be writtent to disk. The program will then exit.
This is identical to sending the program a SIGTSTP signal.

• void init_image_with_file_name(char *ckpt_file_name)
This function prepares the library to restart from the given file name. restart() must be
called to perform the actual restart.

• void init_image_with_file_descriptor(int fd)
This function prepares the library to restart from the given file descriptor. restart() must
be called to perform the actual restart.

Condor Version 6.1.17 Manual

4.3. The Condor Perl Module 186

• void restart()
This function causes the program to read the checkpoint image specified by one of the above
functions, and to resume the program where the checkpoint left off. This function does not
return.

• void _condor_ckpt_disable()
This function temporarily disables checkpointing. This can be handy if your program does
something with is not checkpoint-safe. For example, if a program must not be interrupted
while accessing a special file, call _condor_ckpt_disable(), access the file, and then
call _condor_ckpt_enable(). Some program actions, such as opening a socket or a
pipe, implicitly cause checkpointing to be disabled.

• void _condor_ckpt_enable()
This function re-enables checkpointing after a call to _condor_ckpt_disable(). If
a checkpointing signal arrived while checkpointing was disabled, the checkpoint will oc-
cur when this function is called. Disabling and enabling of checkpointing must occur
in matched pairs. _condor_ckpt_enable() must be called once for every time that
_condor_ckpt_disable() is called.

• extern int condor_compress_ckpt
Setting this variable to one causes checkpoint images to be compressed. Setting it to zero
disables compression.

• extern int condor_debug_output
Setting this variable to one causes additional debugging information to be shown during the
checkpoint process. Setting it to zero disables debug messages.

4.3 The Condor Perl Module

The Condor perl module facilitates automatic submitting and monitoring of condor jobs, along with
automated administration of condor. The most common use of the perl module is the monitoring of
condor jobs. The condor perl module uses the user log of a condor job for monitoring.

The Condor perl module is made up of several subroutines. Many subroutines take other sub-
routines as arguments. These subroutines are used as callbacks which are called when interesting
events happen.

4.3.1 Subroutines

1. Submit(command file)
The submit subroutine takes a command file name as an argument and submits it to condor.
The condor submit program should be in the path of the user. If the user wishes to monitor
the job with condor they must specify a log file in the command file. The cluster submitted is
returned. For more information see the condor submit man page.

Condor Version 6.1.17 Manual

4.3. The Condor Perl Module 187

2. Vacate(machine)
Vacate the machine specified. The machine may be specified either by hostname, or by sinful
string. For more information see the condor vacate man page.

3. Reschedule(machine)
Reschedule the machine specified. The machine may be specified either by hostname, or by
sinful string. For more information see the condor reschedule man page.

4. RegisterEvicted(sub)
Register an eviction handler that will be called anytime a job from the specified cluster is
evicted. The eviction handler will be called with two arguments: cluster and job. The cluster
and job are the cluster number and process number of the job that was evicted.

5. RegisterEvictedWithCheckpoint(sub)
Same as RegisterEvicted except that the handler is called when the evicted job was check-
pointed.

6. RegisterEvictedWithoutCheckpoint(sub)
Same as RegisterEvicted except that the handler is called when the evicted job was not check-
pointed.

7. RegisterExit(sub)
Register a termination handler that is called when a job exits. The termination handler will
be called with two arguments: cluster and job. The cluster and job are the cluster and process
numbers of the existing job.

8. RegisterExitSuccess(sub)
Register a termination handler that is called when a job exits without errors. The termination
handler will be called with two arguments: cluster and job The cluster and job are the cluster
and process numbers of the existing job.

9. RegisterExitFailure(sub)
Register a termination handler that is called when a job exits with errors. The termination
handler will be called with three arguments: cluster, job and retval. The cluster and job are
the cluster and process numbers of the existing job and the retval is the exit code of the job.

10. RegisterExitAbnormal(sub)
Register an termination handler that is called when a job abnormally exits (segmentation fault,
bus error, ...). The termination handler will be called with four arguments: cluster, job signal
and core. The cluster and job are the cluster and process numbers of the existing job. The
signal indicates the signal that the job died with and core indicates whether a core file was
created and if so, what the full path to the core file is.

11. RegisterAbort(sub)
Register a handler that is called when a job is aborted by a user.

12. RegisterJobErr(sub)
Register a handler that is called when a job is not executable.

Condor Version 6.1.17 Manual

4.3. The Condor Perl Module 188

13. RegisterExecute(sub)
Register an execution handler that is called whenever a job starts running on a given host. The
handler is called with four arguments: cluster, job host, and sinful. Cluster and job are the
cluster and process numbers for the job, host is the Internet address of the machine running
the job, and sinful is the Internet address and command port of the condor starter supervising
the job.

14. RegisterSubmit(sub)
Register a submit handler that is called whenever a job is submitted with the given cluster.
The handler is called with cluster, job host, and sinful. Cluster and job are the cluster and
process numbers for the job, host is the Internet address of the machine running the job, and
sinful is the Internet address and command port of the condor schedd responsible for the job.

15. Monitor(cluster)
Begin monitoring this cluster. This process starts a sub process in order to monitor the child,
so other actions may proceed in the main loop of the perl script. However, handlers cannot
rely on being able to communicate back to the main script by simply changing variables latter
on.

16. Wait()
Wait until all monitors finish and exit.

17. DebugOn()
Turn debug messages on. This may be useful if you don’t understand what your script is
doing.

18. DebugOff()
Turn debug messages off.

4.3.2 An Example

The following is a simple example of using the condor perl module.

#!/usr/bin/perl
use Condor;

$CMD_FILE = ’mycmdfile.cmd’;
$evicts = 0;
$vacates = 0;

A subroutine that will be used as the normal execution callback
$normal = sub
{

%parameters = @_;
$cluster = $parameters{’cluster’};
$job = $parameters{’job’};

Condor Version 6.1.17 Manual

4.3. The Condor Perl Module 189

print "Job $cluster.$job exited normally without errors.\n";
print "Job was vacated $vacates times and evicted $evicts times\n";
exit(0);

};

$evicted = sub
{

%parameters = @_;
$cluster = $parameters{’cluster’};
$job = $parameters{’job’};

print "Job $cluster, $job was evicted.\n";
$evicts++;
&Condor::Reschedule();

};

$execute = sub
{

%parameters = @_;
$cluster = $parameters{’cluster’};
$job = $parameters{’job’};
$host = $parameters{’host’};
$sinful = $parameters{’sinful’};

print "Job running on $sinful, vacating...\n";
&Condor::Vacate($sinful);
$vacates++;

};

$cluster = Condor::Submit($CMD_FILE);
&Condor::RegisterExitSuccess($normal);
&Condor::RegisterEvicted($evicted);
&Condor::RegisterExecute($execute);
&Condor::Monitor($cluster);
&Condor::Wait();

This example program will submit the command file ’mycmdfile.cmd’ and attempt to vacate
any machine that the job runs on. The termination handler then prints out a summary of what has
happened.

Condor Version 6.1.17 Manual

CHAPTER

FIVE

Condor for Microsoft Windows NT 4.0

5.1 Introduction to Condor NT Preview

Welcome to Condor for Windows NT! We view Windows NT as a strategic platform for Condor,
and therefore we are doing a full-blown “deep port” to Windows NT. Our goal is to make Condor
every bit as capable on Windows NT as it is on Unix – or even more capable.

Porting Condor from Unix to Windows NT is a formidable task because many components of
Condor must interact closely with the underlying operating system. Instead of waiting until all
components of Condor are running and stabilized on Windows NT before making an initial public
release, we have decided to make frequent “preview releases” of Condor for Windows NT. These
preview releases are not feature complete and should be considered beta quality. However, many
sites do not require all the components included in a full-blown release of Condor. Still other sites
may desire to get their feet wet with a preview release of Condor NT in anticipation of setting up a
production environment once a full-blown release on Windows NT is completed.

This chapter contains additional information specific to running Condor on Windows NT. Even-
tually this information will be integrated into the Condor Manual as a whole, and this section will
disappear. In order to effectively use Condor NT, you must first read chapters 1 (“Overview”) and
2 (“Users’ Manual”) in this manual. If you will also be administrating or customizing the pol-
icy/setup of Condor NT, you should also read chapter 3 (“Administrators’ Manual”). After reading
these chapters, then review the information in this chapter for important information and differences
when using and administrating Condor on Windows NT. For information on installing Condor NT,
see section 5.3.

190

5.2. Release Notes for Condor NT Preview 6.1.8 191

5.2 Release Notes for Condor NT Preview 6.1.8

Released mid-October 1999, this is the first public release of Condor NT.

What is missing from Condor NT Preview 6.1.8?

In general, this preview release on NT works the same as the full-blown release of Condor for Unix.

However, following items are still being worked on and are not supported in this preview:

• The STANDARD, PVM, GLOBUS, and SCHEDULER job universes are not yet present. All
jobs must be submitted to the VANILLA universe. This means transparent process check-
point/migration, remote system calls, and DagMan are not available in this release (they will
debut in upcoming releases). All job submit files must contain the statement:

universe = vanilla

• Support for accessing files via a network share (i.e. files stored on a network volume managed
by NT Server, Novell Netware, AFS) is not yet supported. All files required by the job must
exist on a local disk on machine where the job was submitted. Condor NT will then auto-
matically transfer the files to/from the submit machine to the machine selected to execute the
job(s). See section 5.2.1 for important information on Condor NT’s file transfer mechanism.

• The ability to run the job with the same credentials as the submitting user is not yet supported.
Instead, Condor dynamically creates and runs the job in a special user account with minimal
access rights.

What is included in Condor NT Preview 6.1.8?

Except for the functionality listed above, practically everything else works the same way in Condor
NT Preview as it does in the full-blown release. This Preview release is based on the Condor 6.1.8
source tree, and thus the feature set is the same as 6.1.8. For instance, all of the following works in
Condor NT:

• The ability to submit, run, and manage queues of jobs running on a cluster of NT machines.

• All tools (such as condor q, condor status, condor userprio, etc), with the exception of con-
dor compile and condor submit dag, are included.

• The ability to customize job policy using Classified Ads. The machine ClassAds contain all
the information included in the full-blown version, including current load average, RAM and
virtual memory sizes, integer and floating-point performance, keyboard/mouse idle time, etc.
Likewise, job ClassAds contain a full complement of information, including system dependent
entries such as dynamic updates of the job’s image size and CPU usage.

Condor Version 6.1.17 Manual

5.2. Release Notes for Condor NT Preview 6.1.8 192

• Everything necessary to run a Condor Central Manager on Windows NT.

• Several security mechanisms (more details below).

• Support for SMP machines.

• Condor NT can run jobs at a lower operating system priority level. Jobs can be suspended
(prevented from using any CPU at all), soft-killed via a WM CLOSE message, or hard-killed
automatically based upon policy expressions. For example, Condor NT can automatically
suspend a job whenever keyboard/mouse or non-Condor created CPU activity is detected, and
continue the job after the the machine has been idle for a specified amount of time.

• Condor NT correctly manages jobs which create multiple processes. For instance, if the job
spawns multiple processes and Condor needs to kill the job, all processes created by the job
will be terminated.

• In addition to interactive tools, users and administrators can receive information from Condor
via email (standard SMTP) and/or via log files.

• Condor NT includes a friendly GUI installation/setup program which can perform a full install
or deinstall of Condor. Information specified by the user in the setup program is stored in the
system registry. The setup program can update a current installation with a new release with
a minimal amount of effort.

5.2.1 Condor File Transfer Mechanism

Condor remote system calls and the ability to access network shares is not yet supported on NT —
they will be in the near future. For now, Condor NT users must utilize the Condor File Transfer
mechanism.

When Condor finds a machine willing to execute your job, it will create a temporary subdirectory
for your job on the execute machine. The Condor File Transfer mechanism will then send via TCP
the job executable(s) and input files from the submitting machine into this temporary directory on
the execute machine. After the input files have been transferred, the execute machine will start
running the job with the temporary directory as the job’s current working directory. When the job
completes or is kicked off, Condor File Transfer will automatically send back to the submit machine
any output files created by the job. After the files have been sent back successfully, the temporary
working directory on the execute machine is deleted.

Condor’s File Transfer mechanism has several features to ensure data integrity in a non-dedicated
environment. For instance, transfers of multiple files are performed atomically.

File Transfer Submit-Description Parameters

Condor File Transfer behavior is specified at job submit time via the submit-description file and con-
dor submit. Along with all the other job submit-description parameters (see section 8 on page 305),
use the following new commands in the submit-description file:

Condor Version 6.1.17 Manual

5.2. Release Notes for Condor NT Preview 6.1.8 193

transfer input files = < file1, file2, file... > Use this parameter to list all the files which should be
transferred into the working directory for the job before the job is started. Separate multiple
filenames with a comma. By default, the file specified via the Executable parameter and any
file specified via the Input parameter (i.e. stdin) are transferred.

transfer output files = < file1, file2, file... > Use this parameter to explicitly list which output
files to transfer back from the temporary working directory on the execute machine to the
submit machine. Most of the time, however, there is no need to use this parameter. If
transfer output files is not specified, Condor will automatically transfer back all files in the
job’s temporary working directory which have been modified or created by the job. This is
usually the desired behavior. Explicitly listing output files is typically only done when the
job creates many files, and the user really only cares to keep a subset of the files created.
WARNING: Do not specify transfer output file in your submit-description file unless you
really have a good reason — it is almost always best to let Condor figure things out by itself
based upon what the job actually wrote.

transfer files = <ONEXIT | ALWAYS> Setting transfer files equal to ONEXIT will cause Con-
dor to transfer the job’s output files back to the submitting machine only when the job com-
pletes (exits). If not specified, ONEXIT is used as the default. Specifying ALWAYS tells
Condor to transfer back the output files when the job completes or whenever Condor kicks
off the job (preempts) from a machine prior to job completion (if, for example, activity is
detected on the keyboard). The ALWAYS option is specifically intended for fault-tolerant jobs
which periodocially write out their state to disk and can restart where the left off. Any output
files transferred back to the submit machine when Condor kicks off a job will automatically
be sent back out again as input files when the job restarts.

Ensuring File Transfer has enough disk space

It is highly recommended that you specify a Requirements expression in your submit-description
file that checks the size of the Disk attribute when using File Transfer! Doing so can ensure
that Condor picks a machine with enough local disk space for your job. Here is a sample submit-
description file:

Condor submit file for program "foo.exe".
#
foo reads from files "my-input-data" and "my-other-

input-data".
foo then writes out results into several files.
The total disk space foo uses for all input and out-

put files
is never more than 10 megabytes.
#
executable = foo.exe
Now set Requirements saying that the ma-

chine which runs our job

Condor Version 6.1.17 Manual

5.2. Release Notes for Condor NT Preview 6.1.8 194

must have more than 10megs of free disk space. Note that "Disk"
is expressed in kilobytes; 10meg is 10000 kbytes.
requirements = Disk > 10000
#
queue

If you do not specify a requirement on Disk (a bad idea!), condor submit will append to the
job ad Requirements that Disk >= DiskUsage. The DiskUsage attribute is in the job ad
and represents the maximum amount total disk space required by the job in kilobytes. Condor will
automatically update DiskUsage approx every 20 minutes while your job runs with the amount of
space being used by the job on the execute machine.

Current Limitations of File Transfer

Itemized below are some current limitations of the File Transfer mechanism. We anticipate improve-
ment on these areas in upcoming releases.

• Transfer of subdirectories is not performed. When starting your job, Condor will create a tem-
porary working directory on the execute machine and place your executable and all input files
into this directory. Condor will then start your job with this directory as the current working
directory. When your job completes, any files created in this temporary working directory are
transferred back to the submit machine. However, if the job creates any subdirectories, files in
those subdirectories are not transferred back. Similarly, only filenames, not directory names,
can be specified with the transfer input files submit-description file parameter.

• Running out of disk space on the submit machine is not handled as gracefully as it should be.

• By default, any files created or modified by the job are automatically sent back to the submit
machine. However, if the job deleted any files in its temporary working directory, they cur-
rently are not deleted back on the submit machine. This could cause problems if transfer files
is set to ALWAYS and the job uses the presence of a file as a lock file. Note there is no problem
if transfer files is set to the default, which is ONEXIT.

5.2.2 Some details on how Condor NT starts/stops a job

This section provides some details on how Condor NT starts and stops jobs. This discussion is
geared for the Condor administrator or advanced user who is already familiar with the material in
Chapter 2 (the Administrators’ Manual) and wishes to know detailed information on what Condor
NT does when starting/stopping jobs.

When Condor NT is about to start a job, the condor startd on the execute machine spawns a
condor starter process. The condor starter then creates:

Condor Version 6.1.17 Manual

5.2. Release Notes for Condor NT Preview 6.1.8 195

1. a new temporary run account on the machine with a login name of “condor-run-dir XXX”,
where XXX is the process ID of the condor starter. This account is added to group Users and
group Everyone.

2. a new temporary working subdirectory for the job on the execute machine. This subdirectory
is named “dir XXX”, where XXX is the process ID of the condor starter. The subdirectory
is created in the $(EXECUTE) subdirectory as specified in Condor’s configuration file. Then
Condor grants write permission to this subdirectory for user account it just created for the job.

3. a new, non-visible Window Station and Desktop for the job. Permissions are set so that only
the user account just created has access rights to this Desktop. Any windows created by this
job are not seen by anyone; the job is run “in the background”.

Next, the condor starter (henceforth called the starter) contacts the condor shadow (henceforth
called the shadow) process which is running on the submitting machine and pulls over the job’s
executable and input files. These files are placed into the temporary working subdirectory for the
job. After all files have been received, the starter spawns the user’s executable as user “condor-
run-dir XXX” with its current working directory set to the temporary working subdirectory (i.e.
$(EXECUTE)/dir XXX).

While the job is running, the starter is closely monitoring the CPU usage and image size of all
processes started by the job. Every 20 minutes it sends this information, along with the total size
of all files contained in the job’s working subdirectory, to the shadow. The shadow then inserts this
information into the job’s ClassAd so policy/scheduling expressions can make use of this dynamic
information.

If the job exits of its own accord (i.e. the job completes), the starter first terminates any processes
started by the job which could still be laying around if the job did not clean up after itself. examines
the job’s temporary working subdirectory for any files which have been created or modified and
sends these files back to the shadow running on the submit machine. The shadow places these files
into the initialdir specified in the submit-description file; if no initialdir was specified, the files go
into the directory where the user ran condor submit. Once all the output files are safely transferred
back, the job is removed from the queue. If, however, the condor startd forcibly kills the job before
all output files could be transferred, the job is not removed from the queue but instead switches back
to Idle.

If the condor startd decides to vacate a job prematurely (perhaps because the startd policy says
to kick off jobs whenever activity on the keyboard is detected, or whatever), the starter sends a
WM CLOSE message to the job. If the job spawned multiple child processes, the WM CLOSE
message is only sent to the parent process (i.e. the one started by the starter). The WM CLOSE
message is the preferred way to terminate a process on Windows NT, since this method allows
the job to cleanup and free any resources it may have allocated. Then when the job exits, the
starter cleans up any processes left behind. At this point if transfer files was set to ONEXIT (the
default) in this job’s submit file, the job simply switches from state Running to state Idle and no files
are transferred back. But if transfer files is set to ALWAYS, then any files in the job’s temporary
working directory which were changed or modified are first sent back to the shadow. But this time,
the shadow places these so-called intermediate files into a subdirectory created in the $(SPOOL)
directory on the submitting machine ($(SPOOL) is specified in Condor’s configuration file). Then

Condor Version 6.1.17 Manual

5.2. Release Notes for Condor NT Preview 6.1.8 196

the job is switched back to the Idle state until Condor finds a different machine for it to run on. When
the job is started again, Condor will place into the job’s temporary working directory the executable
and input files as before, plus any files stored in the submit machine’s $(SPOOL) directory for that
job.

NOTE: A Windows console process can intercept a WM CLOSE message via the Win32 Set-
ConsoleCtrlHandler() function if it needs to do special cleanup work at vacate time; a WM CLOSE
message generates a CTRL CLOSE EVENT. See SetConsoleCtrlHandler() in the Win32 documen-
tation for more info.

NOTE: The default handler in Windows NT for a WM CLOSE message is for the process to
exit. Of course, the job could be coded to ignore it an not exit, but eventually the condor startd will
get impatient and hard-kill the job (if that is the policy desired by the administrator).

Finally, after the job has left and any files transferred back, the condor starter will delete the
temporary working directory, the temporary run account, the WindowStation and the desktop before
exiting itself. If the starter should terminate abnormally for some reason, the condor startd will take
upon itself to cleanup the directory, the account, etc. If for some reason the condor startd should
disappear as well (i.e. if the entire machine was power-cycled hard), the condor startd will cleanup
the temporary directory(s) and/or account(s) left behind when Condor is restarted at reboot time.

5.2.3 Security considerations in Condor NT Preview

On the execute machine, the user job is run using the access token of an account dynamically created
by Condor which has bare-bones access rights and privileges. For instance, if your machines are
configured so that only Administrators have write access C:\WINNT, then certainly no Condor job
run on that machine would be able to write anything there. The only files the job should be able
to access on the execute machine are files accessible by group Everybody and files in the job’s
temporary working directory.

On the submit machine, Condor permits the File Transfer mechanism to only read files which
the submitting user has access to read, and only write files to which the submitting user has access
to write. For example, say only Administrators can write to C:\WINNT on the submit machine, and
a user gives the following to condor submit :

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Unless that user is in group Administrators, Condor will not permit explorer.exe to be over-
written.

If for some reason the submitting user’s account disappears between the time condor submit was
run and when the job runs, Condor is not able to check and see if the now-defunct submitting user
has read/write access to a given file. In this case, Condor will ensure that group “Everyone” has read

Condor Version 6.1.17 Manual

5.2. Release Notes for Condor NT Preview 6.1.8 197

or write access to any file the job subsequently tries to read or write. This is in consideration for
some network setups, where the user account only exists for as long as the user is logged in.

Condor also provides protection to the job queue. It would be bad if the integrity of the job
queue is compromised, because a malicious user could remove other user’s jobs or even change
what executable a user’s job will run. To guard against this, in Condor’s default configuration all
connections to the condor schedd (the process which manages the job queue on a given machine)
are authenticated using Windows NT’s SSPI security layer. The user is then authenticated using the
same challenge-response protocol that NT uses to authenticate users to Windows NT file servers.
Once authenticated, the only users allowed to edit job entry in the queue are:

1. the user who originally submitted that job (i.e. Condor allows users to remove or edit their
own jobs)

2. users listed in the condor config file parameter QUEUE SUPER USERS. In the default
configuration, only the “SYSTEM” (LocalSystem) account is listed here.

WARNING: Do not remove “SYSTEM” from QUEUE SUPER USERS, or Condor itself will not
be able to access the job queue when needed. If the LocalSystem account on your machine is
compromised, you have all sorts of problems!

To protect the actual job queue files themselves, the Condor NT installation program will au-
tomatically set permissions on the entire Condor release directory so that only Administrators have
write access.

Finally, Condor NT Preview has all the IP/Host-based security mechanisms present in the full-
blown version of Condor. See section 3.8 starting on page 145 for complete information on how to
allow/deny access to Condor based upon machine hostname or IP address.

5.2.4 Interoperability between Condor for Unix and Condor NT

Unix machines and Windows NT machines running Condor can happily co-exist in the same Condor
pool without any problems. For now, the only restriction is jobs submitted on Windows NT must
run on Windows NT, and job submitted on Unix must run on Unix. You will get this behavior
by default, since condor submit will automatically set a Requirements expression in the job
ClassAd stating that the execute machine must have the same architecture and operating system as
the submit machine.

There is absolutely no need to run more than one Condor central manager, even if you have both
Unix and NT machines. The Condor central manager itself can run on either Unix or NT; there is no
advantage to choosing one over the other. Here at University of Wisconsin-Madison, for instance,
we have hundreds of Unix (Solaris, Linux, Irix, etc) and Windows NT machines in our Computer
Science Department Condor pool. Our central manager is running on Windows NT. All is happy.

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 198

5.2.5 Some differences between Condor for Unix -vs- Condor NT

• As of Condor NT Preview 6.1.8, only VANILLA universe is supported on NT. Additionally,
on Unix VANILLA universe requires a shared filesystem. On NT, a shared filesystem is not
required (in fact, use of a shared filesystem is not yet supported), and the Condor File Transfer
mechanism must be used. NOTE: The Condor File Transfer mechanism is currently only on
Condor NT.

• On Unix, we recommend the creation of a “condor” account when installing Condor. On NT,
this is not necesary, as Condor NT is designed to run as a system service as user LocalSystem.

• On Unix, the job ClassAd attributes relating to image size and CPU usage are not updated
while the job is running. On NT, they are updated every 20 minutes while the job is running
and again at job exit. Furthermore, on Unix image size and CPU usage only reflect the parent
process of a job that spawns child processes. So if you submit a shell script on Unix which
ultimately spawns your job, Condor’s image size and CPU usage only report the size and
usage of the shell script. On NT, image size and CPU usage is totaled across all processes
spawned by the job.

• The job ClassAd attribute DiskUsage exists only on NT. Similarly, several job attributes
relating to transparent process checkpointing only exist on Unix.

• On Unix, Condor finds the condor config main configuration file by looking in condor,
in /etc, or via an environment variable. On NT, the location of condor config file is
determined via the registry key HKEY LOCAL MACHINE/Software/Condor. You can
override this value by setting an environment variable named CONDOR CONFIG.

• On Unix, in the VANILLA universe at job vacate time Condor sends the job a softkill sig-
nal defined in the submit-description file (defaults to SIGTERM). On NT, Condor sends a
WM CLOSE message to the job at vacate time.

• On Unix, if one of the Condor daemons has a fault, a core file will be created in the $(Log)
directory. On Condor NT, a “core” file will also be created, but instead of a memory dump
of the process it will be a very short ASCII text file which describes what fault occurred and
where it happened. This information can be used by the Condor developers to fix the problem.

5.3 Installation of Condor on Windows NT

This section contains the instructions for installing the Microsoft Windows NT version of Condor
(Condor NT) at your site. The install program will set you up with a slightly customized configura-
tion file that you can further customize after the installation has completed.

Please read the copyright and disclaimer information in section on page xi of the manual, or
in the file LICENSE.TXT, before proceeding. Installation and use of Condor is acknowledgement
that you have read and agreed to these terms.

The Condor NT executable for distribution is packaged in a single file such as:

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 199

condor-6.1.8_preview-WINNT40-x86.exe

This file is approximately 5 Mbytes in size, and may be removed once Condor is fully installed.

Before installing Condor, please consider joining the condor-world mailing list. Traffic on this
list is kept to an absolute minimum. It is only used to announce new releases of Condor. To sub-
scribe, send an email to majordomo@cs.wisc.edu with the body:

subscribe condor-world

5.3.1 Installation Requirements

• Condor NT requires Microsoft Windows NT 4.0 with Service Pack 3 or above. Service Pack
5 is recommended. NOTE: Condor NT has not yet been tested with Windows 2000.

• 30 megabytes of free disk space is recommended. Significantly more disk space could be
desired to be able to run jobs with large data files.

• Condor NT will operate on either an NTFS or FAT filesystem. However, for security purposes,
NTFS is preferred.

5.3.2 Preparing to Install Condor under Windows NT

Before you install the Windows NT version of Condor at your site, there are two major decisions to
make about the basic layout of your pool.

1. What machine will be the central manager?

2. Do I have enough disk space for Condor?

If you feel that you already know the answers to these questions, skip to the Windows NT
Installation Procedure section below, section 5.3.3 on page 200. If you are unsure, read on.

What machine will be the central manager?

One machine in your pool must be the central manager. This is the centralized information repository
for the Condor pool and is also the machine that matches available machines with waiting jobs. If
the central manager machine crashes, any currently active matches in the system will keep running,
but no new matches will be made. Moreover, most Condor tools will stop working. Because of the
importance of this machine for the proper functioning of Condor, we recommend you install it on a
machine that is likely to stay up all the time, or at the very least, one that will be rebooted quickly
if it does crash. Also, because all the services will send updates (by default every 5 minutes) to

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 200

this machine, it is advisable to consider network traffic and your network layout when choosing the
central manager.

For Personal Condor, your machine will act as your central manager.

Install Condor on the central manager before installing on the other machines within the pool.

Do I have enough disk space for Condor?

The Condor release directory takes up a fair amount of space. The size requirement for the release
directory is approximately 20 Mbytes.

Condor itself, however, needs space to store all of your jobs, and their input files. If you will be
submitting large amounts of jobs, you should consider installing Condor on a volume with a large
amount of free space.

5.3.3 Installation Procedure using the included Setup Program

Installation of Condor must be done by a user with administrator privileges. After installation, the
Condor services will be run under the local system account. When Condor is running a user job,
however, it will run that User job with normal user permissions. Condor will dynamically create an
account, and then delete that account when the job is finished or is removed from the machine.

Download Condor, and start the installation process by running the file (or by double clicking on
the file). The Condor installation is completed by answering questions and choosing options within
the following steps.

If Condor is already installed. For upgrade purposes, you may be running the installation of Con-
dor after it has been previously installed. In this case, a dialog box will appear before the
installation of Condor proceeds. The question asks if you wish to preserve your current Con-
dor configuration files. Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the
point where the new binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers
given during the previous installation as default answers.

STEP 1: License Agreement. The first step in installing Condor is a welcome screen and license
agreement. You are reminded that it is best to run the installation when no other Windows
programs are running. If you need to close other Windows NT programs, it is safe to cancel
the installation and close them. You are asked to agree to the license. Answer yes or no. If
you should disagree with the License, the installation will not continue.

After agreeing to the license terms, the next Window is where fill in your name and company
information, or use the defaults as given.

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 201

STEP 2: Condor Pool Configuration. The Condor NT installation will require different informa-
tion depending on whether the installer will be creating a new pool, or joining an existing
one.

If you are creating a new pool, the installation program requires that this machine is the central
manager. For the creation of a new Condor pool, you will be asked some basic information
about your new pool:

Name of the pool

hostname of this machine.

Size of pool Condor needs to know if this a Personal Condor installation, or if there will be
more than one machine in the pool. A Personal Condor pool implies that there is only
one machine in the pool. For Personal Condor, several of the following steps are omitted
as noted.

If you are joining an existing pool, all the installation program requires is the hostname of the
central manager for your pool.

STEP 3: This Machine’s Roles. This step is omitted for the installation of Personal Condor.

Each machine within a Condor pool may either submit jobs or execute submitted jobs, or both
submit and execute jobs. This step allows the installation on this machine to choose if the
machine will only submit jobs, only execute submitted jobs, or both. The common case is
both, so the default is both.

STEP 4: Where will Condor be installed? The next step is where the destination of the Condor
files will be decided. It is recommended that Condor be installed in the location shown as the
default in the dialog box: C:\Condor.

Installation on the local disk is chosen for several reasons.

The Condor services run as local system, and within Microsoft Windows NT, local system
has no network privileges. Therefore, for Condor to operate, Condor should be installed on a
local hard drive as opposed to a network drive (file server).

The second reason for installation on the local disk is that the Windows NT usage of drive
letters has implications for where Condor is placed. The drive letter used must be not change,
even when different users are logged in. Local drive letters do not change under normal
operation of Windows NT.

While it is strongly discouraged, it may be possible to place Condor on a hard drive that is not
local, if a dependency is added to the service control manager such that Condor starts after the
required file services are available.

STEP 5: Where should Condor send e-mail if things go wrong? Various parts of Condor will
send e-mail to a Condor administrator if something goes wrong and requires human atten-
tion. You specify the e-mail address and the SMTP relay host of this administrator. Please
pay close attention to this email since it will indicate problems in your Condor pool.

STEP 6: The domain. This step is omitted for the installation of Personal Condor.

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 202

Enter the machine’s accounting (or UID) domain. On this version of Condor for Windows NT,
this setting only used for User priorities (see section 3.5 on page 117) and to form a default
email address for the user.

STEP 7: Access permissions. This step is omitted for the installation of Personal Condor.

Machines within the Condor pool will need various types of access permission. The three
categories of permission are read, write, and administrator. Enter the machines to be given
access permissions.

Read Read access allows a machine to obtain information about Condor such as the status of
machines in the pool and the job queues. All machines in the pool should be given read
access. In addition, giving read access to *.cs.wisc.edu will allow the Condor team to
obtain information about your Condor pool in the event that debugging is needed.

Write All machines in the pool should be given write access. It allows the machines you
specify to send information to your local Condor daemons, for example, to start a Condor
Job. Note that for a machine to join the Condor pool, it must have both read and write
access to all of the machines in the pool.

Administrator A machine with administrator access will be allowed more extended permis-
sion to to things such as change other user’s priorities, modify the job queue, turn Condor
services on and off, and restart Condor. The central manager should be given adminis-
trator access and is the default listed. This setting is granted to the entire machine, so
care should be taken not to make this too open.

For more details on these access permissions, and others that can be manually changed in
your condor config file, please see the section titled Security Access Levels at section
section ?? on page 148.

STEP 8: Job Start Policy. Condor will execute submitted jobs on machines based on a preference
given at installation. Three options are given, and the first is most commonly used by Condor
pools. This specification may be changed or refined in the machine ClassAd requirements
attribute.

The three choices:

After 15 minutes of no console activity and low CPU activity.

Always run Condor jobs.

After 15 minutes of no console activity.

Console activity is the use of the mouse or keyboard. For instance, if you are reading this
document online, and are using either the mouse or the keyboard to change your position, you
are generating Console activity.

Low CPU activity is defined as a load of less than 30%(and is configurable in your con-
dor config file). If you have a multiple processor machine, this is the average percentage
of CPU activity for both processors.

For testing purposes, it is often helpful to use use the Always run Condor jobs option. For
production mode, however, most people chose the After 15 minutes of no console activity and
low CPU activity.

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 203

STEP 9: Job Vacate Policy. This step is omitted if Condor jobs are always run as the option chosen
in STEP 8.

If Condor is executing a job and the user returns, Condor will immediately suspend the job,
and after five minutes Condor will decide what to do with the partially completed job. There
are currently two options for the job.

The job is killed 5 minutes after your return. The job is suspended immediately once there
is console activity. If the console activity continues, then the job is vacated (killed) after
5 minutes. Since this version does not include check-pointing, the job will be restarted
from the beginning at a later time. The job will be placed back into the queue.

Suspend job, leaving it in memory. The job is suspended immediately. At a later time,
when the console activity has stopped for ten minutes, the execution of Condor job will
be resumed (the job will be unsuspended). The drawback to this option is that since the
job will remain in memory, it will occupy swap space. In many instances, however, the
amount of swap space that the job will occupy is small.

So which one do you choose? Killing a job is less intrusive on the workstation owner than
leaving it in memory for a later time. A suspended job left in memory will require swap space,
which could possibly be a scarce resource. Leaving a job in memory, however, has the benefit
that accumulated run time is not lost for a partially completed job.

STEP 10: Review entered information. Check that the entered information is correctly entered.
You have the option to return to previous dialog boxes to fix entries.

5.3.4 Manual Installation Condor on Windows NT

If you are to install Condor on many different machines, you may wish to use some other mechanism
to install Condor NT on additional machines rather than running the Setup program described above
on each machine.

WARNING: This is for advanced users only! All others should use the Setup program described
above.

Here is a brief overview of how to install Condor NT manually without using the provided GUI-
based setup program:

The Service The service that Condor NT will install is called ”Condor”. The Startup Type is Au-
tomatic. The service should log on as System Account, but do not enable ”Allow Service to
Interact with Desktop”. The program that is run is condor master.exe.

For your convenience, we have included a file called install.exe in the bin directory that
will install a service. It is typically called in the following way:

install Condor Condor c:\condor\bin\condor_master.exe

If you wish to remove the service, we have provided a file called remove.exe. To use it,
call it in the following way:

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 204

remove Condor

The Registry Condor NT uses a few registry entries in its operation. The key that Condor uses is
HKEY LOCAL MACHINE/Software/Condor. The values that Condor puts in this registry
key serve two purposes.

1. The values of CONDOR CONFIG and RELEASE DIR are used for Condor to start its
service.

CONDOR CONFIG should point to the condor config file. In this version of Con-
dor NT, it must reside on the local disk.

RELEASE DIR should point to the directory where Condor is installed. This is typically
C:\Condor, and again, this must reside on the local disk.

2. The other purpose is storing the entries from the last installation so that they can be used
for the next one.

The Filesystem The files that are needed for Condor to operate are identical to the Unix version of
Condor, except that executable files end in .exe. For example the on Unix one of the files is
condor master and on Condor NT the corresponding file is condor master.exe.

These files currently must reside on the local disk for a variety of reasons. Advanced Windows
NT users might be able to put the files on remote resources. The main concern is twofold.
First, the files must be there when the service is started. Second, the files must always be in
the same spot (including drive letter), no matter who is logged into the machine. Specifying a
UNC path is not supported at this time.

5.3.5 Condor is installed... now what?

After the installation of Condor is completed, the Condor service must be started. If you used the
GUI-based setup program to install Condor, the Condor service should already be started. If you
installed manually, Condor must be started by hand, or you can simply reboot. NOTE: The Condor
service will start automatically whenever you reboot your machine.

To start condor by hand:

1. From the Start menu, choose Settings.

2. From the Settings menu, choose Control Panel.

3. From the Control Panel, choose Services.

4. From Services, choose Condor, and Start.

Or, alternatively you can enter the following command from a command prompt:

net start condor

Condor Version 6.1.17 Manual

5.3. Installation of Condor on Windows NT 205

Run the Task Manager (Control-Shift-Escape) to check that Condor services are running. The
following tasks should be running:

• condor master.exe

• condor negotiator.exe, if this machine is a central manager.

• condor collector.exe, if this machine is a central manager.

• condor startd.exe, if you indicated that this Condor node should start jobs

• condor schedd.exe, if you indicated that this Condor node should submit jobs to the Condor
pool.

Also, you should now be able to open up a new cmd (DOS prompt) window, and the Condor bin
directory should be in your path, so you can issue the normal Condor commands, such as condor q
and condor status.

5.3.6 Condor is running... now what?

Once Condor services are running, try building and submitting some test jobs. See the
README.TXT file in the examples directory for details.

Condor Version 6.1.17 Manual

CHAPTER

SIX

Frequently Asked Questions (FAQ)

This is where you can find quick answers to some commonly asked questions about Condor.

6.1 Obtaining & Installing Condor

6.1.1 Where can I download Condor?

Condor can be downloaded from http://www.cs.wisc.edu/condor/downloads (Madison, Wisconsin,
USA) or http://www.bo.infn.it/condor-mirror/downloads (a mirror site at the Istituto Nazionale di
Fisica Nucleare in Bologna, Italy).

6.1.2 When I click to download Condor, it sends me back to the downloads
page!

If you are trying to download Condor through a web proxy, try disabling it. Our web site uses the
“referring page” as you navigate through our download menus in order to give you the right version
of Condor, but sometimes proxies block this information from reaching our web site.

6.1.3 What platforms do you support?

See Section 1.6, on page 5.

206

6.2. Setting up Condor 207

6.1.4 Do you distribute source code?

At this time we do not distribute source code publicly, but instead consider requests on a case-by-
case basis. If you need the source code, please email us at condor-admin@cs.wisc.edu explaining
why, and we’ll get back to you.

6.1.5 What is “Personal Condor”?

Personal Condor is a term used to describe a specific style of Condor installation suited for individual
users who do not have their own pool of machines, but want to submit Condor jobs to run elsewhere.

A Personal Condor is essentially a one-machine, self-contained Condor pool which can use
“flocking” to access resources in other Condor pools. See Section 3.11.6, on page 168 for more
information on flocking.

6.2 Setting up Condor

6.2.1 How do I get more than one job to run on my SMP machine?

Condor will automatically recognize a SMP machine and advertise each CPU of the machine sepa-
rately. For more details, see section 3.11.7 on page 169.

6.2.2 How do I set up my machines so that only certain users’s jobs will run
on them?

Restrictions on what jobs will run on a given resource can be easily specified in the resource’s
Requirements statement.

To specify that a given machine should only run certain users’s jobs, for example, you could add
the following Requirements entry to the machine’s Condor configuration file:

Requirements = (RemoteUser == "userfoo@baz.edu" || Remo-
teUser == "userbar@baz.edu")

To configure multiple machines to do so, simply create a common configuration file containing
this requirement for them to share.

Condor Version 6.1.17 Manual

6.3. Running Condor Jobs 208

6.2.3 How do I configure Condor to run my jobs only on machines that have
the right packages installed?

This is a two-step process. First, you need to tell the machines to report that they have special
software instaled, and second, you need to tell the jobs to require machines that have that software.

To tell the machines to report the presence of special software, first add a parameter to their
configuration files like so:

HAS_MY_SOFTWARE = True

And then, if there are already STARTD EXPRS defined in that file, add HAS MY SOFTWARE
to them, or, if not, add the line:

STARTD_EXPRS = HAS_MY_SOFTWARE

NOTE: For these changes to take effect, each condor startd you update needs to be reconfigured
with condor reconfig -startd.

Next, to tell your jobs to only run on machines that have this software, add a requirements
statement to their submit files like so:

Requirements = (HAS_MY_SOFTWARE =?= True)

NOTE: Be sure to use =?= instead of == so that if a machine doesn’t have the
HAS MY SOFTWARE parameter defined, the job’s Requirements expression will not evaluate to
“undefined”, preventing it from running anywhere!

6.3 Running Condor Jobs

6.3.1 I’m at the University of Wisconsin-Madison Computer Science Dept.,
and I am having problems!

Please see the web page http://www.cs.wisc.edu/condor/uwcs. As it explains, your home directory
is in AFS, which by default has access control restrictions which can prevent Condor jobs from
running properly. The above URL will explain how to solve the problem.

6.3.2 I’m getting a lot of email from Condor. Can I just delete it all?

Generally you shouldn’t ignore all of the mail Condor sends, but you can reduce the amount you get
by telling Condor that you don’t want to be notified every time a job successfully completes, only
when a job experiences an error. To do this, include a line in your submit file like the following:

Condor Version 6.1.17 Manual

6.3. Running Condor Jobs 209

Notification = Error

See the Notification parameter in the condor q man page on page 307 of this manual for more
information.

6.3.3 Why will my vanilla jobs only run on the machine where I submitted
them from?

Check the following:

1. Did you submit the job from a local filesystem that other computers can’t access?

See Section 3.3.5, on page 85.

2. Did you set a special requirements expression for vanilla jobs that’s preventing them from
running but not other jobs?

See Section 3.3.5, on page 85.

3. Is Condor running as a non-root user?

See Section 3.12.1, on page 175.

6.3.4 My job starts but exits right away with signal 9.

This can occur when the machine your job is running on is missing a shared library required by
your program. One solution is to install the shared library on all machines the job may execute on.
Another, easier, solution is to try to re-link your program statically so it contains all the routines it
needs.

6.3.5 Why aren’t any or all of my jobs running?

Problems like the following are often reported to us:

> I have submitted 100 jobs to my pool, and only 18 appear to be
> running, but there are plenty of machines available.
What should I
> do to investigate the reason why this happens?

Start by following these steps to understand the problem:

1. Run condor q -analyze and see what it says.

Condor Version 6.1.17 Manual

6.4. Condor on Windows NT / Windows 2000 210

2. Look at the User Log file (whatever you specified as ”log = XXX” in the submit file).

See if the jobs are starting to run but then exiting right away, or if they never even start.

3. Look at the SchedLog on the submit machine after it negotiates for this user. If a user doesn’t
have enough priority to get more machines the SchedLog will contain a message like ”lost
priority, no more jobs”.

4. If jobs are successfully being matched with machines, they still might be dying when they try
to execute due to file permission problems or the like. Check the ShadowLog on the submit
machine for warnings or errors.

5. Look at the NegotiatorLog during the negotiation for the user. Look for messages about
priority, ”no more machines”, or similar.

6.3.6 Can I submit my standard universe SPARC Solaris 2.6 jobs and have
them run on a SPARC Solaris 2.7 machine?

No. You may only use binary compatibility between SPARC Solaris 2.5.1 and SPARC Solaris 2.6
and between SPARC Solaris 2.7 and SPARC Solaris 2.8, but not between SPARC Solaris 2.6 and
SPARC Solaris 2.7. We may implement support for this feature in a future release of Condor.

6.4 Condor on Windows NT / Windows 2000

6.4.1 Will Condor work on a network of mixed Unix and NT machines?

You can have a Condor pool that consists of both Unix and NT machines.

Your central manager can be either Windows NT or Unix. For example, even if you had a pool
consisting strictly of Unix machines, you could use an NT box for your central manager, and vice
versa.

You can submit jobs destined to run on Windows NT from either an NT machine or a Unix
machine. However, at this point in time you cannot submit jobs destined to run on Unix from NT.
We do plan on adding this functionality, however.

So, in summary:

1. A single Condor pool can consist of both Windows NT and Unix machines.

2. It does not matter at all if your Central Manager is Unix or NT.

3. Unix machines can submit jobs to run on other Unix or Windows NT machines.

4. Windows NT machines can only submit jobs which will run on Windows NT machines.

Condor Version 6.1.17 Manual

6.5. Troubleshooting 211

6.4.2 When I run condor status I get a communication error, or the Condor
daemon log files report a failure to bind.

Condor uses the first network interface it sees on your machine. This problem usually means you
have an extra, inactive network interface (such as a RAS dialup interface) defined before to your
regular network interface.

To solve this problem, either change the order of your network interfaces in the Control Panel,
or explicity set which network interface Condor should use by adding the following parameter to
your Condor config file:

NETWORK_INTERFACE = ip-address

Where “ip-address” is the IP address of the interface you wish Condor to use.

6.4.3 My job starts but exits right away with status 128.

This can occur when the machine your job is running on is missing a DLL (Dynamically Linked
Library) required by your program. The solution is to find the DLL file the program needs and put
it in the TRANSFER INPUT FILES list in the job’s submit file.

To find out what DLLs your program depends on, right-click the program in Explorer, choose
Quickview, and look under “Import List”.

6.5 Troubleshooting

6.5.1 What happens if the central manager crashes?

If the central manager crashes, jobs that are already running will continue to run unaffected. Queued
jobs will remain in the queue unharmed, but can not begin running until the central manager is
restarted and begins matchmaking again. Nothing special needs to be done after the central manager
is brought back online.

6.6 Other questions

6.6.1 Is Condor Y2K-compliant?

Yes. Internally, Condor uses the standard UNIX time representation (the number of seconds since
1/1/1970) and is not affected by the Y2K bug. In addition, the Condor tools now correctly display
the four-digit year in their output.

Condor Version 6.1.17 Manual

6.6. Other questions 212

The output of Condor tools from some older versions (pre-6.2) may display years incorrectly,
but their internal representation is still correct and their display bugs do not affect the operation of
Condor.

6.6.2 Is there a Condor mailing-list?

Yes. We run an extremely low traffic mailing list solely to announce new versions of Condor. To
subscribe, email majordomo@cs.wisc.edu with a message body of:

subscribe condor-world

6.6.3 Do you support Globus?

Yes, we support a variety of interactions with Globus software, including running Condor jobs on
Globus-managed resources. At this time, however, we have not released this software publicly. If
you are interested in using Condor with Globus, please send email to condor-admin@cs.wisc.edu
and we can provide you with more information.

6.6.4 My question isn’t in the FAQ!

If you have any questions that are not listed in this FAQ, try looking through the rest of the manual.
If you still can’t find an answer, feel free to contact us at condor-admin@cs.wisc.edu.

Note that Condor’s free email support is provided on a best-effort basis, and at times we may not
be able to provide a timely response. If guaranteed support is important to you, please inquire about
our paid support services.

Condor Version 6.1.17 Manual

CHAPTER

SEVEN

Condor Version History

7.1 Introduction to Condor Versions

This chapter provides descriptions of what features have been added or bugs fixed for each version
of Condor. The first section describes the Condor version numbering scheme, what the numbers
mean, and what the different release series are. The rest of the sections each describe a specific
release series, and all the Condor versions found in that series.

7.1.1 Condor Version Number Scheme

Starting with version 6.0.1, Condor adopted a new, hopefully easy to understand version numbering
scheme. It reflects the fact that Condor is both a production system and a research project. The
numbering scheme was primarily taken from the Linux kernel’s version numbering, so if you are
familiar with that, it should seem quite natural.

There will usually be two Condor versions available at any given time, the stable version, and
the development version. Gone are the days of “patch level 3”, “beta2”, or any other random words
in the version string. All versions of Condor now have exactly three numbers, seperated by “.”

• The first number represents the major version number, and will change very infrequently.

• The thing that determines whether a version of Condor is “stable” or “development” is the
second digit. Even numbers represent stable versions, while odd numbers represent develop-
ment versions.

• The final digit represents the minor version number, which defines a particular version in a
given release series.

213

7.2. Stable Release Series 6.2 214

7.1.2 The Stable Release Series

People expecting the stable, production Condor system should download the stable version, denoted
with an even number in the second digit of the version string. Most people are encouraged to use this
version. We will only offer our paid support for versions of Condor from the stable release series.

On the stable series, new minor version releases will only be made for bug fixes and to support
new platforms. No new features will be added to the stable series. People are encouraged to install
new stable versions of Condor when they appear, since they probably fix bugs you care about.
Hopefully, there won’t be many minor version releases for any given stable series.

7.1.3 The Development Release Series

Only people who are interested in the latest research, new features that haven’t been fully tested, etc,
should download the development version, denoted with an odd number in the second digit of the
version string. We will make a best effort to ensure that the development series will work, but we
make no guarantees.

On the development series, new minor version releases will probably happen frequently. People
should not feel compelled to install new minor versions unless they know they want features or bug
fixes from the newer development version.

Most sites will probably never want to install a development version of Condor for any reason.
Only if you know what you are doing (and like pain), or were explicitly instructed to do so by
someone on the Condor Team, should you install a development version at your site.

NOTE: Different releases within a development series cannot be installed side-by-side within the
same pool. For example, the protocols used by version 6.1.6 are not compatible with the protocols
used in version 6.1.5. When you upgrade to a new development release, make certain you upgrade
all machines in your pool to the same version.

After the feature set of the development series is satisfactory to the Condor Team, we will put a
code freeze in place, and from that point forward, only bug fixes will be made to that development
series. When we have fully tested this version, we will release a new stable series, resetting the
minor version number, and start work on a new development release from there.

7.2 Stable Release Series 6.2

This is the second stable release series of Condor. All of the new features developed in the 6.1 series
are now considered stable, supported features of Condor. New releases of 6.2.0 should happen
infrequently and will only include bug fixes and support for new platforms. New features will be
added and tested in the 6.3 development series. The details of each version are described below.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 215

Version 6.2.0

New Features Over the 6.0 Release Series

• Support for running multiple jobs on SMP (Symmetric Mutli-Processor) machines.

This section has not yet been written

Known Bugs:

• None.

This section has not yet been written

7.3 Development Release Series 6.1

This was the first development release series. It contains numerous enhancements over the 6.0 stable
series. For example:

• Support for running multiple jobs on SMP machines

• Enhanced functionality for pool administrators

• Support for PVM, MPI and Globus jobs

• Support for Flocking jobs across different Condor pools

The 6.1 series has many other improvements over the 6.0 series, and is available on more plat-
forms. The new features, bugs fixed, and known bugs of each version are described below in detail.

7.3.1 Version 6.1.17

This version is the 6.2.0 “release candidate”. It was publically released in Feburary of 2001, and it
will be released as 6.2.0 once it is considered “stable” by heavy testing at the UW-Madison Computer
Science Department Condor pool.

New Features:

• Hostnames in the HOSTALLOW and HOSTDENY entries are now case-insensitive.

• It is now possible to submit NT jobs from a UNIX machine.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 216

• The NT release of Condor now supports a USE VISIBLE DESKTOP parameter. If true,
Condor will allow the job to create windows on the desktop of the execute machine and
interact with the job. This is particularly useful for debugging why an application will not
run under Condor.

• The condor startd contains support for the new MPI dedicated scheduler that will appear in
the 6.3 development series. This will allow you to use your 6.2 Condor pool with the new
scheduler.

• Added a mixedcase option to condor config val to allow for overriding the default of lower-
casing all the config names

• Added a pid snapshot interval option to the config file to control how often the condor startd
should examine the running process family. It defaults to 50 seconds.

Bugs Fixed:

• Fixed a bug with the condor schedd reaching the MAX JOBS RUNNING mark and properly
calculating Scheduler Universe jobs for preemption.

• Fixed a bug in the condor schedd loosing track of condor startds in the initial claiming phase.
This bug affected all platforms, but was most likely to manifest on Solaris 2.6

• CPU Time can be greater than wall clock time in Multi-threaded apps, so do not consider it
an error in the UserLog.

• condor restart -master now works correctly.

• Fixed a rare condition in the condor startd that could corrupt memory and result in a signal
11 (SIGSEGV, or segmentation violation).

• Fixed a bug that would cause the “execute event” to not be logged to the UserLog if the binary
for the job resided on AFS.

• Fixed a race-condition in Condor’s PVM support on SMP machines (introduced in version
6.1.16) that caused PVM tasks to be associated with the wrong daemon.

• Better handling of checkpointing on large-memory Linux machines.

• Fixed random occasions of job completion email not being sent.

• It is no longer possible to use condor user prio to set a priority of less than 1.

• Fixed a bug in the job completion email statistics. Run Time was being underreported when
the job completed after doing a periodic checkpoint.

• Fixed a bug that caused CondorLoadAvg to get stuck at 0.0 on Linux when the system clock
was adjusted.

• Fixed a condor submit bug that caused all machine count commands after the first queue
statement to be ignored for PVM jobs.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 217

• PVM tasks now run as the user when appropriate instead of always running under the UNIX
“nobody” account.

• Fixed support for the PVM group server.

• PVM uses an environment variable to communicate with it’s children instead of a file in /tmp.
This file previously could become overwritten by mulitple PVM jobs.

• condor stats now lives in the “bin” directory instead of “sbin”.

Known Bugs:

• The condor negotiator can crash if the Accountantnew.log file becomes corrupted. This most
often occurs if the Central Manager runs out of diskspace.

7.3.2 Version 6.1.16

New Features:

• Condor now supports multiple pvmds per user on a machine. Users can now submit more than
one PVM job at a time, PVM tasks can now run on the submission machine, and multiple PVM
tasks can run on SMP machines. condor submit no longer inserts default job requirements to
restrict PVM jobs to one pvmd per user on a machine. This new functionality requires the
condor pvmd included in this (and future) Condor releases. If you set “PVM OLD PVMD =
True” in the Condor configuration file, condor submit will insert the default PVM job require-
ments as it did in previous releases. You must set this if you don’t upgrade your condor pvmd
binary or if your jobs flock with pools that user an older condor pvmd.

• The NT release of Condor no longer contains debugging information. This drastically reduces
the size of the binaries you must install.

Bugs Fixed:

• The configuration files shipped with version 6.1.15 contained a number of errors relating to
host-based security, the configuration of the central manager, and a few other things. These
errors have all been corrected.

• Fixed a memory management bug in the condor schedd that could cause it to crash under
certain circumstances when machines were taken away from the schedd’s control.

• Fixed a potential memory leak in a library used by the condor startd and condor master that
could leak memory while Condor jobs were executing.

• Fixed a bug in the NT version of Condor that would result in faulty reporting of the load
average.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 218

• The condor shadow.pvm should now correctly return core files when a task or condor pvmd
crashes.

• This release fixes a memory error introduced in version 6.1.15 that could crash the con-
dor shadow.pvm.

• Some condor pvmd binaries in previous releases included debugging code we added that
could cause the condor pvmd to crash. This release includes new condor pvmd binaries for
all platforms with the problematic debugging code removed.

• Fixed a bug in the -unset options to condor config val that was introduced in version 6.1.15.
Both -unset and -runset work correctly, now.

Known Bugs:

• None.

7.3.3 Version 6.1.15

New Features:

• In the job submit description file passed to condor submit, a new style of macro (with two
dollar-signs) can reference attributes from the machine ClassAd. This new style macro can be
used in the job’s Executable, Arguments, or Environment settings in the submit de-
scription file. For example, if you have both Linux and Solaris machines in your pool, the fol-
lowing submit description file will run either foo.INTEL.LINUX or foo.SUN4u.SOLARIS27
as appropiate, and will pass in the amount of memory available on that machine on the com-
mand line:

executable = foo.$$(Arch).$$(Opsys)
arguments = $$(Memory)
queue

• The CONFIG security access level now controls the modification of daemon configurations
using condor config val. For more information about security access levels, see section 3.8.2
on page 145.

• The DC DAEMON LIST macro now indicates to the condor master which processes in the
DAEMON LIST use Condor’s DaemonCore inter-process communication mechanisms. This
allows the condor master to monitor both processes developed with or without the Condor
DaemonCore library.

• The new NEGOTIATE ALL JOBS IN CLUSTER macro can be use to configure the con-
dor schedd to not assume (for efficiency) that if one job in a cluster can’t be scheduled, then
no other jobs in the cluster can be scheduled. If NEGOTIATE ALL JOBS IN CLUSTER is
set to True, the condor schedd will now always try to schedule each individual job in a cluster.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 219

• The condor schedd now automatically adds any machine it is matched with to its HOSTAL-
LOW WRITE list. This simplifies setting up a machine for flocking, since the submitting user
doesn’t have to know all the machines where the job might execute, they only have to know
what central manager they wish to flock to. Submitting users must trust a central manager
they report to, so this doesn’t impact security in any way.

• Some static limits relating to the number of jobs which can be simultaneously started by the
condor schedd has been removed.

• The default Condor config file(s) which are installed by the installation program have been
re-organized for greater clarity and simplicity.

Bugs Fixed:

• In the STANDARD Universe, jobs submitted to Condor could segfault if they opened multiple
files with the same name. Usually this bug was exposed when users would submit jobs without
specifying a file for either stdout or stderr; in this case, both would default to /dev/null,
and this could trigger the problem.

• The Linux 2.2.14 kernel, which is used by default with RedHat 6.2, has a serious bug can cause
the machine to lock up when the same socket is used for repeated connection attempts. Thus,
previous versions of Condor could cause the 2.2.14 kernel to hang (lots of other applications
could do this as well). The Condor Team recommends that you upgrade your kernel to 2.2.16
or later. However, in v6.1.15 of Condor, a patch was added to the Condor networking layer so
that Condor would not trigger this Linux kernel bug.

• If no email address was specified when the job was submitted with condor submit, comple-
tion email was being sent to user@submit-machine-hostname. This is not the correct behav-
ior. Now email goes by default to user@uid-domain, where uid-domain is defined by the
UID DOMAIN setting in the config file.

• The condor master can now correctly shutdown and restart the condor checkpoint server.

• Email sent when a SCHEDULER Universe job compeltes now has the correct From: header.

• In the STANDARD universe, jobs which call sigsuspend() will now receive the correct return
value.

• Abnormal error conditions, such as the hard disk on the submit machine filling up, are much
less likely to result in a job disappearing from the queue.

• The condor checkpoint server now correctly reconfigures when a condor reconfig command
is received by the condor master.

• Fixed a bug with how the condor schedd associates jobs with machines (claimed resources)
which would, under certain circumstances, cause some jobs to remain idle until other jobs in
the queue complete or are preempted.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 220

• A number of PVM universe bugs are fixed in this release. Bugs in how the condor shadow.pvm
exited, which caused jobs to hang at exit or to run multiple times, have been fixed. The
condor shadow.pvm no longer exits if there is a problem starting up PVM on one remote
host. The condor starter.pvm now ignores the periodic checkpoint command from the startd.
Previously, it would vacate the job when it received the periodic checkpoint command. A
number of bugs with how the condor starter.pvm handled asynchronous events, which caused
it to take a long time to clean up an exited PVM task, have been fixed. The condor schedd
now sets the status correctly on multi-class PVM jobs and removes them from the job queue
correctly on exit. condor submit no longer ignores the machine count command for PVM
jobs. And, a problem which caused pvm exit() to hang was diagnosed: PVM tasks which call
pvm catchout() to catch the output of child tasks should be sure to call it again with a NULL
argument to disable output collection before calling pvm exit().

• The change introduced in 6.1.13 to the condor shadow regarding when it logged the execute
event to the user log produced situations where the shadow could log other events (like the
shadow exception event) before the execute event was logged. Now, the condor shadow will
always log an execute event before it logs any other events. The timing is still improved
over 6.1.12 and older versions, with the execute event getting logged after the bulk of the job
initialization has finished, right before the job will actually start executing. However, you will
no longer see user logs that contain a “shadow exception” or “job evicted” message without a
“job executing” event, first.

• stat() and varient calls now go through the file table to get the correct logical size and
access times of buffered files. Before, stat() used to return zero size on a buffered file that
had not yet been synced to disk.

Known Bugs:

• On IRIX 6.2, C++ programs compiled with GNU C++ (g++) 2.7.2 and linked with the Con-
dor libraries (using condor compile) will not execute the constructors for any global objects.
There is a work-around for this bug, so if this is a problem for you, please send email to
condor-admin@cs.wisc.edu.

• In HP-UX 10.20, condor compile will not work correctly with HP’s C++ compiler. The jobs
might link, but they will produce incorrect output, or die with a signal such as SIGSEGV dur-
ing restart after a checkpoint/vacate cycle. However, the GNU C/C++ and the HP C compilers
work just fine.

• The getrusage() call does not work always as expected in STANDARD Universe jobs.
If your program uses getrusage(), it could decrease incorrectly by a second across a
checkpoint and restart. In addition, the time it takes Condor to restart from a checkpoint is
included in the usage times reported by getrusage(), and it probably should not be.

7.3.4 Version 6.1.14

New Features:

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 221

• Initial supported added for RedHat Linux 6.2 (i.e. glibc 2.1.3).

Bugs Fixed:

• In version 6.1.13, periodic checkpoints would not occur (see the Known Bugs section for
v6.1.13 listed below). This bug, which only impacts v6.1.13, has been fixed.

Known Bugs:

• The getrusage() call does not work properly inside “standard” jobs. If your program
uses getrusage(), it will not report correct values across a checkpoint and restart. If your
program relies on proper reporting from getrusage(), you should either use version 6.0.3
or 6.1.10.

• While Condor now supports many networking calls such as socket() and connect(),
(see the description below of this new feature added in 6.1.11), on Linux, we cannot at this
time support gethostbyname() and a number of other database lookup calls. The reason
is that on Linux, these calls are implemented by bringing in a shared library that defines them,
based on whether the machine is using DNS, NIS, or some other database method. Condor
does not support the way in which the C library tries to explicitly bring in these shared libraries
and use them. There are a number of possible solutions to this problem, but the Condor
developers are not yet agreed on the best one, so this limitation might not be resolved by
6.1.14.

• In HP-UX 10.20, condor compile will not work correctly with HP’s C++ compiler. The jobs
might link, but they will produce incorrect output, or die with a signal such as SIGSEGV dur-
ing restart after a checkpoint/vacate cycle. However, the GNU C/C++ and the HP C compilers
work just fine.

• When a program linked with the Condor libraries (using condor compile) is writing output to
a file, stat()–and variant calls, will return zero for the size of the file if the program has not
yet read from the file or flushed the file descriptors. This is a side effect of the file buffering
code in Condor and will be corrected to the expected semantic.

• On IRIX 6.2, C++ programs compiled with GNU C++ (g++) 2.7.2 and linked with the Con-
dor libraries (using condor compile) will not execute the constructors for any global objects.
There is a work-around for this bug, so if this is a problem for you, please send email to
condor-admin@cs.wisc.edu.

7.3.5 Version 6.1.13

New Features:

• Added DEFAULT IO BUFFER SIZE and DEFAULT IO BUFFER BLOCK SIZE to con-
fig parameters to allow the administrator to set the default file buffer sizes for user jobs in
condor submit.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 222

• There is no longer any difference in the configuration file syntax between “macros” (which
were specified with an “=” sign) and “expressions” (which were specified with a “:” sign).
Now, all config file entries are treated and referenced as macros. You can use either “=” or “:”
and they will work the same way. There is no longer any problem with forward-referencing
macros (referencing macros you haven’t yet defined), so long as they are eventually defined
in your config files (even if the forward reference is to a macro defined in another config file,
like the local config file, for example).

• condor vacate now supports a -fast option that forces Condor to hard-kill the job(s) immedi-
ately, instead of waiting for them to checkpoint and gracefully shutdown.

• condor userlog now displays times in days+hours:minutes format instead of total hours or
total minutes.

• The condor run command provides a simple front-end to condor submit for submitting a shell
command-line as a vanilla universe job.

• Solaris 2.7 SPARC, 2.7 INTEL have been added to the list of ports that now support remote
system calls and checkpointing.

• Any mail being sent from Condor now shows up as having been sent from the designated
Condor Account, instead of root or “Super User”.

• The condor submit “hold” command may be used to submit jobs to the queue in the hold
state. Held jobs will not run until released with condor release.

• It is now possible to use checkpoint servers in remote pools when flocking even if the local
pool doesn’t use a checkpoint server. This is now the default behavior (see the next item).

• USE CKPT SERVER now defaults to True if a checkpoint server is available. It is usually
more efficient to use a checkpoint server near the execution site instead of storing the check-
point back to the submission machine, especially when flocking.

• All Condor tools that used to expect just a hostname or address (condor checkpoint, con-
dor off, condor on, condor restart, condor reconfig, condor reschedule, condor vacate) to
specify what machine to effect, can now take an optional -name or -addr in front of each
target. This provides consistancy with other Condor tools that require the -name or -addr op-
tions. For all of the above mentioned tools, you can still just provide hostnames or addresses,
the new flags are not required.

• Added -pool and -addr options to condor rm, condor hold and condor release.

• When you start up the condor master or condor schedd as any user other than “root” or “con-
dor” on Unix, or “SYSTEM” on NT, the daemon will have a default Name attribute that
includes both the username of the user who the daemon is running as and the full hostname of
the machine where it is running.

• Clarified our Linux platform support. We now officially support the RedHat 5.2 and 6.x dis-
tributions, and although other Linux distributions (especially those with similar libc versions)
may work, they are not tested or supported.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 223

• The schedd now periodically updates the run-time counters in the job queue for running jobs,
so if the schedd crashes, the counters will remain relatively up-to-date. This is controlled by
the WALL CLOCK CKPT INTERVAL parameter.

• The condor shadow now logs the “job executing” event in the user log after the binary has
been successfully transfered, so that the events appear closer to the actual time the job starts
running. This can create some somewhat unexpected log files. If something goes wrong with
the job’s initialization, you might see an “evicted” event before you see an “executing” event.

Bugs Fixed:

• Fixed how we internally handle file names for user jobs. This fixes a nasty bug due to changing
directories between checkpoints.

• Fixed a bug in our handling of the Arguments macro in the command file for a job. If the
arguments were extremely long, or there were an extreme number of them, they would get
corrupted when the job was spawned.

• Fixed DAGMan. It had not worked at all in the previous release.

• Fixed a nasty bug under Linux where file seeks did not work correctly when buffering was
enabled.

• Fixed a bug where condor shadow would crash while sending job completion e-mail forcing
a job to restart multiple times and the user to get multiple completion messages.

• Fixed a long standing bug where Fortran 90 would occasionally truncate its output files to
random sizes and fill them with zeros.

• Fixed a bug where close() did not propogate its return value back to the user job correctly.

• If a SIGTERM was delivered to a condor shadow, it used to remove the job it was running
from the job queue, as if condor rm had been used. This could have caused jobs to leave the
queue unexpectedly. Now, the condor shadow ignores SIGTERM (since the condor schedd
knows how to gracefully shutdown all the shadows when it gets a SIGTERM), so jobs should
no longer leave the queue prematurely. In addition, on a SIGQUIT, the shadow now does a
fast shutdown, just like the rest of the Condor daemons.

• Fixed a number of bugs which caused checkpoint restarts to fail on some releases of Irix
6.5 (for example, when migrating from a mips4 to a mips3 CPU or when migrating between
machines with different pagesizes).

• Fixed a bug in the implementation of the stat() family of remote system calls on Irix 6.5
which caused file opens in Fortran programs to sometimes fail.

• Fixed a number of problems with the statistics reported in the job completion email and by
condor q -goodput, including the number of checkpoints and total network usage. Correct
values will now be computed for all new jobs.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 224

• Changes in USE CKPT SERVER and CKPT SERVER HOST no longer cause problems for
jobs in the queue which have already checkpointed.

• Many of the Condor administration tools had a bug where they would suffer a segmentation
violation if you specified a -pool option and did not specify a hostname. This case now results
in an error message instead.

• Fixed a bug where the condor schedd could die with a segmentation violation if there was an
error mapping an IP address into a hostname.

• Fixed a bug where resetting the time in a large negative direction caused the condor negotiator
to have a floating point error on some platforms.

• Fixed condor q’s output so that certain arguments are not ignored.

• Fixed a bug in condor q where issuing a -global with a fairly restrictive -constraint argument
would cause garbage to be printed to the terminal sometimes.

• Fixed a bug which caused jobs to exit without completing a checkpoint when preempted in
the middle of a periodic checkpoint. Now, the jobs will complete their periodic checkpoint in
this case before exiting.

Known Bugs:

• Periodic checkpoints do not occur. Normally, when the config file attribute PERI-
ODIC CHECKPOINT evaluates to True, Condor performs a periodic checkpoint of the run-
ning job. This bug has been fixed in v6.1.14. NOTE: there is a work-around to permit periodic
checkpoints to occur in v6.1.13: include the attribute name “PERIODIC CHECKPOINT” to
the attributes listed in the STARTD EXPRS entry in the config file.

• The getrusage() call does not work properly inside “standard” jobs. If your program
uses getrusage(), it will not report correct values across a checkpoint and restart. If your
program relies on proper reporting from getrusage(), you should either use version 6.0.3
or 6.1.10.

• While Condor now supports many networking calls such as socket() and connect(),
(see the description below of this new feature added in 6.1.11), on Linux, we cannot at this
time support gethostbyname() and a number of other database lookup calls. The reason
is that on Linux, these calls are implemented by bringing in a shared library that defines them,
based on whether the machine is using DNS, NIS, or some other database method. Condor
does not support the way in which the C library tries to explicitly bring in these shared libraries
and use them. There are a number of possible solutions to this problem, but the Condor
developers are not yet agreed on the best one, so this limitation might not be resolved by
6.1.14.

• In HP-UX 10.20, condor compile will not work correctly with HP’s C++ compiler. The jobs
might link, but they will produce incorrect output, or die with a signal such as SIGSEGV dur-
ing restart after a checkpoint/vacate cycle. However, the GNU C/C++ and the HP C compilers
work just fine.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 225

• When writing output to a file, stat()–and variant calls, will return zero for the size of the
file if the program has not yet read from the file or flushed the file descriptors, This is a side
effect of the file buffering code in Condor and will be corrected to the expected semantic.

• On IRIX 6.2, C++ programs compiled with GNU C++ (g++) 2.7.2 and linked with the Con-
dor libraries (using condor compile) will not execute the constructors for any global objects.
There is a work-around for this bug, so if this is a problem for you, please send email to
condor-admin@cs.wisc.edu.

7.3.6 Version 6.1.12

Version 6.1.12 fixes a number of bugs from version 6.1.11. If you linked your “standard” jobs with
version 6.1.11, you should upgrade to 6.1.12 and re-link your jobs (using condor compile) as soon
as possible.

New Features:

• None.

Bugs Fixed:

• A number of system calls that were not being trapped by the Condor libraries in version 6.1.11
are now being caught and sent back to the submit machine. Not having these functions being
executed as remote system calls prevented a number of programs from working, in particular
Fortran programs, and many programs on IRIX and Solaris platforms.

• Sometimes submitted jobs report back as having no owner and have -????- in the status line
for the job. This has been fixed.

• condor q -io has been fixed in this release.

Known Bugs:

• The getrusage() call does not work properly inside “standard” jobs. If your program
uses getrusage(), it will not report correct values across a checkpoint and restart. If your
program relies on proper reporting from getrusage(), you should either use version 6.0.3
or 6.1.10.

• While Condor now supports many networking calls such as socket() and connect(),
(see the description below of this new feature added in 6.1.11), on Linux, we cannot at this
time support gethostbyname() and a number of other database lookup calls. The reason
is that on Linux, these calls are implemented by bringing in a shared library that defines them,
based on whether the machine is using DNS, NIS, or some other database method. Condor
does not support the way in which the C library tries to explicitly bring in these shared libraries

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 226

and use them. There are a number of possible solutions to this problem, but the Condor
developers are not yet agreed on the best one, so this limitation might not be resolved by
6.1.13.

• In HP-UX 10.20, condor compile will not work correctly with HP’s C++ compiler. The jobs
might link, but they will produce incorrect output, or die with a signal such as SIGSEGV dur-
ing restart after a checkpoint/vacate cycle. However, the GNU C/C++ and the HP C compilers
work just fine.

• When writing output to a file, stat()–and variant calls, will return zero for the size of the
file if the program has not yet read from the file or flushed the file descriptors, This is a side
effect of the file buffering code in Condor and will be corrected to the expected semantic.

• On IRIX 6.2, C++ programs compiled with GNU C++ (g++) 2.7.2 and linked with the Con-
dor libraries (using condor compile) will not execute the constructors for any global objects.
There is a work-around for this bug, so if this is a problem for you, please send email to
condor-admin@cs.wisc.edu.

• The -format option in condor q has no effect when querying remote machines with the -n
option.

• condor dagman does not work at all in this release. The behaviour of its failure is to exit
immediately with a success and to not perform any work. It will be fixed in the next release
of Condor.

7.3.7 Version 6.1.11

New Features:

• condor status outputs information for held jobs instead of MaxRunningJobs when supplied
with -schedd or -submitter.

• condor userprio now prints 4 digit years (for Y2K compiance). If you give a two digit date,
it also will assume that 1/1/00 is 1/1/2000 and not 1/1/1900.

• IRIX 6.5 has been added to the list of ports that now support remote system calls and check-
pointing.

• condor q has been fixed to be faster and much more memory efficient. This is much more
obvious when getting the queue from condor schedd’s that have more than 1000 jobs.

• Added support for support for socket() and pipe() in standard jobs. Both sockets and pipes
are created on the executing machine. Checkpointing is deferred anytime a socket or pipe is
open.

• Added limited support for select() and poll() in standard jobs. Both calls will work only on
files opened locally.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 227

• Added limited support for fcntl() and ioctl() in standard jobs. Both calls will be performed
remotely if the control-number is understood and the third argument is an integer.

• Replaced buffer implementation in standard jobs. The new buffer code reads and writes vari-
able sized chunks. It will never issue a read to satisfy a write. Buffering is enabled by default.

• Added extensive feedback on I/O performance in the user’s email.

• Added -io option to condor q to show I/O statistics.

• Removed libckpt.a and libzckpt.a. To build for standalone checkpointing, just do a regular
condor compile. No -standalone option is necessary.

• The checkpointing library now only re-opens files when they are actually used. If files or other
needed resources cannot be found at restart time, the checkpointer will fail with a verbose
error.

• The RemoteHost and LastRemoteHost attributes in the job classad now contain host-
names instead IP address and port numbers. The -run option of older versions of condor q is
not compatible with this change.

• Condor will now automatically check for compatibility between the version of the Condor li-
braries you have linked into a standard job (using condor compile) and the version of the con-
dor shadow installed on your submit machine. If they are incompatible, the condor shadow
will now put your job on hold. Unless you set “Notification = Never” in your submit file,
Condor will also send you email explaining what went wrong and what you can do about it.

• All Condor daemons and tools now have a CondorPlatform string, which shows which
platform a given set of Condor binaries was built for. In all places that you used to see Con-
dorVersion, you will now see both CondorVersion and CondorPlatform, such as
in each daemon’s ClassAd, in the output to a -version option (if supported), and when running
ident on a given Condor binary. This string can help identify situations where you are running
the wrong version of the Condor binaries for a given platform (for example, running binaries
built for Solaris 2.5.1 on a Solaris 2.6 machine).

• Added commented-out settings in the default condor config file we ship for various SMP-
specific settings in the condor startd. Be sure to read section 3.11.7 on “Configuring the Startd
for SMP Machine” on page 169 for details about using these settings.

• condor rm, condor hold, and condor release all support -help and -version options now.

Bugs Fixed:

• A race condition which could cause the condor shadow to not exit when its job was removed
has been fixed. This bug would cause jobs that had been removed with condor rm to remain
in the queue marked as status “X” for a long time. In addition, Condor would not shutdown
quickly on hosts that had hit this race condition, since the condor schedd wouldn’t exit until
all of its condor shadow children had exited.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 228

• A signal race condition during restart of a Condor job has been fixed.

• In a Condor linked job, getdomainname() is now supported.

• IRIX 6.5 can give negative time reports for how long a process has been running. We account
for that now in our statistics about usage times.

• The condor status memory error introduced in version 6.1.10 has been fixed.

• The DAEMON LIST configuration setting is now case insensitive.

• Fixed a bug where the condor schedd, under rare circumstances, cause another schedd’s jobs
not to be matched.

• The free disk space is now properly computed on Digital Unix. This fixed problems where
the Disk attribute in the condor startd classad reported incorrect values.

• The config file parser now detects incremental macro definitions correctly (see section 3.3.1
on page 75). Previously, when a macro (or expression) being defined was a substring of a
macro (or expression) being referenced in its definition, the reference would be erroneously
marked as an incremental definition and expanded immediately. The parser now verifies that
the entire strings match.

Known Bugs:

• The output for condor q -io is incorrect and will likely show zeroes for all values. A fixed
version will appear in the next release.

7.3.8 Version 6.1.10

New Features:

• condor q now accepts -format parameters like condor status

• condor rm, condor hold and condor release accept -constraint parameters like con-
dor status

• condor status now sorts displayed totals by the first column. (This feature introduced a bug
in condor status. See “Known Bugs” below.)

• Condor version 6.1.10 introduces “clipped” support for Sparc Solaris version 2.7. This version
does not support checkpointing or remote system calls. Full support for Solaris 2.7 will be
released soon.

• Introduced code to enable Linux to use the standard C library’s I/O buffering again, instead of
relying on the Condor I/O buffering code (which is still in beta testing).

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 229

Bugs Fixed:

• The bug in checkpointing introduced in version 6.1.9 has been fixed. Checkpointing will now
work on all platforms, as it always used to. Any jobs linked with the 6.1.9 Condor libraries
will need to be relinked with condor compile once version 6.1.10 has been installed at your
site.

Known Bugs:

• The CondorLoadAvg attribute in the condor startd has some problems in the way it is com-
puted. The CondorLoadAvg is somewhat inaccurate for the first minute a job starts running,
and for the first minute after it completes. Also, the computation of CondorLoadAvg is very
wrong on NT. All of this will be fixed in a future version.

• A memory error may cause condor status to die with SIGSEGV (segmentation violation)
when displaying totals or cause incorrect totals to be displayed. This will be fixed in version
6.1.11.

7.3.9 Version 6.1.9

New Features:

• Added full support for Linux 2.0.x and 2.2.x kernels using libc5, glibc20 and glibc21. This
includes support for RedHat 6.x, Debian 2.x and other popular Linux distributions. Whereas
the Linux machines had once been fragmented across libc5 and GNU libc, they have now been
reunified. This means there is no longer any need for the “LINUX-GLIBC” OpSys setting in
your pool: all machines will now show up as “LINUX”. Part of this reunification process
was the removal of dynamically linked user jobs on Linux. condor compile now forces static
linking of your Standard Universe Condor jobs. Also, please use condor compile on the same
machine on which you compiled your object files.

• Added condor qedit utility to allow users to modify job attributes after submission. See the
new manual page on page 279.

• Added -runforminutes option to daemonCore to have the daemon gracefully shut down after
the given number of minutes.

• Added support for statfs(2) and fstatfs(2) in user jobs. We support only the fields f bsize,
f blocks, f bfree, f bavail, f files, f ffree from the structure statfs. This is still in the experi-
mental stage.

• Added the -direct option to condor status. After you give -direct, you supply a hostname, and
condor status will query the condor startd on the specified host and display information di-
rectly from there, instead of querying the condor collector. See the manual page on page 305
for details.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 230

• Users can now define NUM CPUS to override the automatic computation of the number of
CPUs in your machine. Using this config setting can cause unexpected results, and is not
recommended. This feature is only provided for sites that specifically want this behavior and
know what they are doing.

• The -set and -rset options to condor config val have been changed to allow administrators
to set both macros and expressions. Previously, condor config val assumed you wanted to
set expressions. Now, these two options each take a single argument, the string containing
exactly what you would put into the config file, so you can specify you want to create a macro
by including an “=” sign, or an expression by including a “:”. See section 3.3.1 on page 75 for
details on macros vs. expressions. See the condor config val man page on page ?? for details
on condor config val.

• If the directory you specified for LOCK (which holds lock files used by Condor) doesn’t exist,
Condor will now try to create that directory for you instead of giving up right away.

• If you change the COLLECTOR HOST setting and reconfig the condor startd, the startd will
“invalidate” its ClassAds at the old collector before it starts reporting to the new one.

Bugs Fixed:

• Fixed a major bug dealing with the group access a Condor job is started with. Now, Condor
jobs are started with all the groups the job’s owner is in, not just their default group. This also
fixes a security hole where user jobs could be started up in access groups they didn’t belong
to.

• Fixed a bug where there was a needless limitation on the number of open file descriptors a
user job could have.

• Fixed a standalone checkpointing bug where we weren’t blocking signals in critical sections
and causing file table corruption at checkpoint time.

• Fixed a linker bug on Digital Unix 4.0 concerning fortran where the linker would fail on
uname and sigsuspend.

• Fixed a bug in condor shadow that would send incorrect job completion email under Linux.

• Fixed a bug in the remote system call of fchdir() that caused a garbage file descriptor to
be used in Standard Universe jobs.

• Fixed a bug in the condor shadow which was causing condor q -goodput to display incorrect
values for some jobs.

• Fixed some minor bugs and made some minor enhancements in the condor install script. The
bugs included a typo in one of the questions asked, and incorrect handling for the answers of
a few different questions. Also, if DNS is misconfigured on your system, condor install will
try a few ways to find your fully qualified hostname, and if it still can’t determine the correct
hostname, it will prompt the user for it. In addition, we now avoid one installation step in
cases were it is not needed.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 231

• Fixed a rare race condition that could delay the completion of large clusters of short running
jobs.

• Added more checking to the various arguments that might be passed to condor status, so
that in the case of bad input, condor status will print an error message and exit, instead of
performing a segmentation fault. Also, when you use the -sort option, condor status will
only display ClassAds where the attributes you use to sort are defined.

• Fixed a bug in the handling of the config files created by using the -set or -rset options to
condor config val. Previously, if you manually deleted the files that were created, you could
cause the affected Condor daemon to have a segmentation fault. Now, the daemons simply
exit with a fatal error but still have a chance to clean up.

• Fixed a bug in the -negotiator option for most Condor tools that was causing it to get the
wrong address.

• Fixed a couple of bugs in the condor master that could cause improper shutdowns. There were
cases during shutdown where we would restart a daemon (because we previously noticed a
new executable, for example). Now, once you begin a shutdown, the condor master will not
restart anything. Also, fixed a rare bug that could cause the condor master to stop checking
the timestamps on a daemon.

• Fixed a minor bug in the -owner option to condor config val that was causing condor init not
to work.

• Fixed a bug where the condor startd, while it was already shutting down, was allowing certain
actions to succeed that should have failed. For example, it allowed itself to be matched with a
user looking for available machines, or to begin a new PVM task.

Known Bugs:

• The CondorLoadAvg attribute in the condor startd has some problems in the way it is com-
puted. The CondorLoadAvg is somewhat inaccurate for the first minute a job starts running,
and for the first minute after it completes. Also, the computation of CondorLoadAvg is very
wrong on NT. All of this will be fixed in a future version.

• There is a serious bug in checkpointing when using Condor’s I/O buffering for “standard”
jobs. By default, Linux uses Condor buffering in version 6.1.9 for all standard jobs. The bug
prevents checkpointing from working more than once. This renders the condor vacate and
condor checkpoint commands useless, and jobs will just be killed without a checkpoint when
machine owners come back to their machines.

7.3.10 Version 6.1.8

• Added file remaps as command in the job submit file given to STANDARD universe jobs. A
Job can now specify that it would like to have files be remapped from one file to another. In
addition you can specify that files should be read from the local machine by specifing them.
See the condor submit manual page on page 305 for more details.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 232

• Added buffer size and buffer block size so that STANDARD universe jobs can specify that
they wish to have I/O buffering turned on. Without buffering, all I/O requests in the STAN-
DARD universe are sent back over the network to be executed on the submit machine. With
buffering, read ahead, write behind, and seek batch buffering is performed to minimize net-
work traffic and latency. By default, jobs do not specify buffering, however, for many situ-
ations buffering can drastically increase throughput. See the condor submit manual page on
page 305 for more details.

• The condor schedd is much more memory efficient handling clusters with hundreds/thousands
of jobs. If you submit large clusters, your submit machine will only use a fraction of the
amount of RAM it used to require. NOTE: The memory savings will only be realized for new
clusters submitted after the upgrade to v6.1.8 – clusters which previously existed in the queue
at upgrade time will still use the same amount of RAM in the condor schedd.

• Submitting jobs, especially submitting large clusters containing many jobs, is much faster.

• Added a -goodput option to condor q, which displays statistics about the execution efficiency
of STANDARD universe jobs.

• Added FS REMOTE method of user authentication to possible values of the configuration
option AUTHENTICATION METHODS to fix problems with using the -r remote scheduler
option of condor submit. Additionally, the user authentication protocol has changed, so pre-
vious versions of Condor programs cannot co-exist with this new protocol.

• Added a new utility and documentation for condor glidein which uses Globus resources to
extend your local pool to use remote Globus machines as part of your Condor pool.

• Fixed more bugs in the handling of the stat() system call and its relatives on Linux with glibc.
This was causing problems mainly with Fortran I/O, though other I/O related problems on
glibc Linux will probably be solved now.

• Fixed a bug in various Condor tools (condor status, condor user prio, condor config val, and
condor stats) that would cause them to seg fault on bad input to the -pool option.

• Fixed a bug with the -rset option to condor config val which could crash the Condor daemon
whose configuration was being changed.

• Added allow startup script command to the job submit description file which is given to
condor submit. This allows the submission of a startup script to the STANDARD universe.
See

• Fixed a bug in the condor schedd where it would get into an infinite loop if the persistant log
of the job queue got corrupted. The condor schedd now correctly handles corrupted log files.

• The full release tar file now contains a dagman subdirectory in the examples directory.
This subdirectory includes an example DAGMan job, including a README (in both ASCII
and HTML), a Makefile, and so on.

• Condor will now insert an environment variable, CONDOR VM, into the environment of the
user job. This variable specifies which SMP “virtual machine” the job was started on. It will

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 233

equal either vm1, vm2, vm3, . . ., depending upon which virtual machine was matched. On a
non-SMP machine, CONDOR VM will always be set to vm1.

• Fixed some timing bugs introduced in v6.1.6 which could occur when Condor tries to simul-
taneously start a large number of jobs submitted from a single machine.

• Fixed bugs when Condor is told to gracefully shutdown; Condor no longer starts up new jobs
when shutting down. Also, the condor schedd progressively checkpoints running jobs during
a graceful shutdown instead of trying to vacate all the job simultaneously. The rate at which
the shutdown occurs is controlled by the JOB START DELAY configuration parameter (see
page 95).

• Fixed a bug which could cause the condor master process to exit if the Condor daemons have
been hung for a while by the operating system (if, for instance, the LOG directory was placed
on an NFS volume and the NFS server is down for an extended period).

• Previously, removing a large number of jobs with condor rm would result in the con-
dor schedd being unresponsive for a period of time (perhaps leading to timeouts when running
condor q). The condor schedd has been improved to multitask the removal of jobs while ser-
vicing new requests.

• Added new configuration parameter COLLECTOR SOCKET BUFSIZE which controls the
size of TCP/IP buffers used by the condor collector. For more info, see section ref-
param:CollectorSocketBufsize on page pagerefparam:CollectorSocketBufsize.

• Fixed a bug with the -analyze option to condor q: in some cases, the RANK expression would
not be evaluated correctly. This could cause the output from -analyze to be in error.

• When running on a multi-CPU (SMP) Hewlett-Packard machine, fixed bugs computing the
system load average.

• Fixed bug in condor q which could cause the RUN TIME reported to be temporarily incorrect
when jobs first start running.

• The condor startd no longer rapidly sends multiple ClassAds one right after another to the
Central Manager when its state/activity is in rapid transition. Also, on SMP machines, the
condor startd will only send updates for 4 nodes per second (to avoid overflowing the central
manager when reporting the state of a very large SMP machine with dozens of CPUs).

• Reading a parameter with condor config val is now allowed from any machine with Host-
IP READ permission. Previsouly, you needed ADMINISTRATOR permission. Of course,
setting a parameter still requires ADMINISTRATOR permission.

• Worked around a bug in the StreamTokenizer Java class from Sun that we use in the Con-
dorView client Java applet. The bug would cause errors if usernames or hostnames in your
pool contained “-” or “ ” characters. The CondorView applet now gets around this and prop-
erly displays all data, including entries with the “bad” characters.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 234

7.3.11 Version 6.1.7

NOTE: Version 6.1.7 only adds support for platforms not supported in 6.1.6. There are no bug fixes,
so there are no binaries released for any other platforms. You do not need 6.1.7 unless you are using
one of the two platforms we released binaries for.

• Added “clipped” support for Alpha Linux machines running the 2.0.X kernel and glibc 2.0.X
(such as RedHat 5.X). We do not yet support checkpointing and remote system calls on this
platform, but we can start “vanilla” jobs. See section 2.4.1 on page 12 for details on vanilla
vs. standard jobs.

• Re-added support for Intel Linux machines running the 2.0.X Linux kernel, glibc 2.0.X, us-
ing the GNU C compiler (gcc/g++ 2.7.X) or the EGCS compilers (versions 1.0.X, 1.1.1 and
1.1.2). This includes RedHat 5.X, and Debian 2.0. RedHat 6.0 and Debian 2.1 are not
yet supported, since they use glibc 2.1.X and the 2.2.X Linux kernel. Future versions of
Condor will support all combinations of kernels, compilers and versions of libc.

7.3.12 Version 6.1.6

• Added file remaps as command in the job submit file given to condor submit. This allows
the user to explicitly specify where to find a given file (e.g. either on the submit or execute
machine), as well as remap file access to a different filename altogether.

• Changed the way that condor master spawns daemons and condor preen which allows you
to specify command line arguments for any of them, though a SUBSYS ARGS setting. Pre-
viously, when you specified PREEN , you added the command line arguments directly to that
setting, but that caused some problems, and only worked for condor preen. Once you up-
grade to version 6.1.6, if you continue to use your old condor config files, you must
change the PREEN setting to remove any arguments you have defined and place those
arguments into a separate config setting, PREEN ARGS . See section 3.3.7, “condor master
Config File Entries”, on page 89 for more details.

• Fixed a very serious bug in the Condor library linked in with condor compile to create stan-
dard jobs that was causing checkpointing to fail in many cases. Any jobs that were linked
with the 6.1.5 Condor libraries should probably be removed, re-linked, and re-submitted.

• Fixed a bug in condor userprio that was introduced in version 6.1.5 that was preventing it
from finding the address of the condor negotiator for your pool.

• Fixed a bug in condor stats that was introduced in version 6.1.5 that was preventing it from
finding the address of the condor collector for your pool.

• Fixed a bug in the way the -pool option was handled by many Condor tools that was introduced
in version 6.1.5.

• condor q now displays job allocation time by default, instead of displaying CPU time. Job
allocation time, or RUN TIME, is the amount of wall-clock time the job has spent running.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 235

Unlike CPU time information which is only updated when a job is checkpointed, the alloca-
tion time displayed by condor q is continuously updated, even for vanilla universe jobs. By
default, the allocation time displayed will be the total time across all runs of the job. The
new -currentrun option to condor q can be used to display the allocation time for solely the
current run of the job. Additionally, the -cputime option can be used to view job CPU times
as in earlier versions of Condor.

• condor q will display an error message if there is a timeout fetching the job queue listing
from a condor schedd. Previously, condor q would simply list the queue as empty upon a
communication error.

• The condor schedd daemon has been updated to verify all queue access requests via Condor’s
IP/Host-Based Security mechanism (see section 3.8).

• Fixed a bug on platforms which require the condor kbdd (currently Digital Unix and IRIX).
This bug could have allowed Condor to start a job within the first five minutes after the Condor
daemons had been started, even if there is a user typing on the keyboard.

• condor release now gives an error message if the user tries to release a job which either does
not exist or is not in the hold state.

• Added a new config file parameter, USER JOB WRAPPER , which allows administrators to
specify a file to act as a “wrapper” script around all jobs started by Condor. See inside sec-
tion 3.3.12, on page 98, for more details.

• condor dagman now permits the backslash character (“\”) to be used as a line-continuation
character for DAG Input Files, just like the condor config files.

• The Condor version string is now included in all Condor libraries. You can now run ident on
any program linked with condor compile to view which version of the Condor libraries you
linked with. In addition, the format of the version string changed in 6.1.6. Now, the identifier
used is “CondorVersion” instead of “Version” to prevent any potential ambiguity. Also, the
format of the date changed slightly.

• The SMP startd can now handle dynamic reconfiguration of the number of each type of virtual
machine being reported. This allows you, during the normal running of the startd, to increase
or decrease the number of CPUs that Condor is using. If you reconfigure the startd to use less
CPUs than it currently has under its control, it will first remove CPUs that have no Condor
jobs running on them. If more CPUs need to be evicted, the startd will checkpoint jobs and
evict them in reverse rank order (using the startd’s Rank expression). So, the lower the value
of the rank, the more likely a job will be kicked off.

• The SMP startd contrib module’s condor starter no longer makes a call that was causing
warning messages about “ERROR: Unknown System Call (-58) - system call not supported
by Condor” when used with the 6.0.X condor shadow. This was a harmless call, but removing
the call prevents the error message.

• The SMP contrib module now includes the condor checkpoint and condor vacate programs,
which allow you to vacate or checkpoint jobs on individual CPUs on the SMP, instead of
checkpointing or vacating everything. You can now use “condor vacate vm1@hostname” to

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 236

just vacate the first virtual machine, or “condor vacate hostname” to vacate all virtual ma-
chines.

• Added support for SMP Digital Unix (Alpha) machines.

• Fixed a bug that was causing an overflow in the computation of free disk and swap space on
Digital Unix (Alpha) machines.

• The condor startd and condor schedd now can “invalidate” their classads from the collector.
So, when a daemon is shut down, or a machine is reconfigured to advertise fewer virtual
machines, those changes will be instantly visible with condor status, instead of having to
wait 15 minutes for the stale classads to time-out.

• The condor schedd no longer forks a child process (a “schedd agent”) to claim available
condor startds. You should no longer see multiple condor schedd processes running on your
machine after a negotiation cycle. This is now accomplished in a non-blocking manner within
the condor schedd itself.

• The startd now adds an VirtualMachineID attribute to each virtual machine classad it
advertises. This is just an integer, starting at 1, and increasing for every different virtual
machine the startd is representing. On regular hosts, this is the only ID you will ever see. On
SMP hosts, you will see the ID climb up to the number of different virtual machines reported.
This ID can be used to help write more complex policy expressions on SMP hosts, and to
easily identify which hosts in your pool are in fact SMP machines.

• Modified the output for condor q -run for scheduler and PVM universe jobs. The host where
the scheduler universe job is running is now displayed correctly. For PVM jobs, a count of the
current number of hosts where the job is running is displayed.

• Fixed the condor startd so that it no longer prints lots of ProcAPI errors to the log file when
it is being run as non-root.

• FS PATHNAME and VOS PATHNAME are no longer used. AFS support now works similar
to NFS support, via the FILESYSTEM DOMAIN macro.

• Fixed a minor bug in the Condor.pm perl module that was causing it to be case-sensitive
when parsing the Condor submit file. Now, the perl module is properly case-insensitive, as
indicated in the documentation.

7.3.13 Version 6.1.5

• Fixed a nasty bug in condor preen that would cause it to remove files it shouldn’t remove if
the condor schedd and/or condor startd were down at the time condor preen ran. This was
causing jobs to mysteriously disappear from the job queue.

• Added preliminary support to Condor for running on machines with multiple network inter-
faces. On such machines, users can specify the IP address Condor should use in the NET-
WORK INTERFACE config file parameter on each host. In addition, if the pool’s central
manager is on such a machine, users should set the CM IP ADDR parameter to the ip address
you wish to use on that machine. See section 3.11.8 on page 174 for more details.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 237

• The support for multiple network interfaces introduced bugs in condor userprio, condor stats,
CondorPVM, and the -pool option to many Condor tools. All of these will be fixed in version
6.1.6.

• Fixed a bug in the remote system call library that was preventing certain Fortran operations
from working correctly on Linux.

• The Linux binaries for GLIBC we now distribute are compiled on a RedHat 5.2 machine. If
you’re using this version of RedHat, you might have better luck with the dynamically linked
version of Condor than previous releases of Condor. Sites using other GLIBC Linux distribu-
tions should continue to use the statically linked version of Condor.

• Fixed a bug in the condor shadow that could cause it to die with signal 11 (segmentation
violation) under certain rare circumstances.

• Fixed a bug in the condor schedd that could cause it to die with signal 11 (segmentation
violation) under certain rare circumstances.

• Fixed a bug in the condor negotiator that could cause it to die with signal 8 (floating point
exception) on Digital Unix machines.

• The following shadow parameters have been added to control checkpointing: COM-
PRESS PERIODIC CKPT , COMPRESS VACATE CKPT , PERIODIC MEMORY SYNC ,
SLOW CKPT SPEED . See section 3.3.10 on page 97 for more details. In addition, the shadow
now honors the CkptWanted flag in a job classad, and if it is set to “False”, the job will never
checkpoint.

• Fixed a bug in the condor startd that could cause it to report negative values for the Condor-
LoadAvg on rare occasions.

• Fixed a bug in the condor startd that could cause it to die with a fatal exception in situations
where the act of getting claimed by a remote schedd failed for some reason. This resulted
in the condor startd exiting on rare occasions with a message in its log file to the effect of
ERROR ‘‘Match timed out but not in matched state’’.

• Fixed a bug in the condor schedd that under rare circumstances could cause a job to be left in
the “Running” state even after the condor shadow for that job had exited.

• Fixed a bug in the condor schedd and various tools that prevented remote read-only access
to the job queue from working. So, for example, condor q -name foo, if run on any
machine other than foo, wouldn’t display any jobs from foo’s queue. This fix re-enables the
following options to condor q to work: submitter, name, global, etc.

• Changed the condor schedd so that when starting jobs, it always sorts on the cluster number,
in addition to the date the jobs were enqueued and the process number within clusters, so that
if many clusters were submitted at the same time, the jobs are started in order.

• Fixed a bug in condor compile that was modifying the PATH environment variable by adding
things to the front of it. This would potentially cause jobs to be compiled and linked with a
different version of a compiler than they thought they were getting.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 238

• Minor change in the way the condor startd handles the D LOAD and D KEYBOARD debug
flags. Now, each one, when set, will only display every UPDATE INTERVAL , regardless
of the startd state. If you wish to see the values for keyboard activity or load average every
POLLING INTERVAL , you must enable D FULLDEBUG.

7.3.14 Version 6.1.4

• Fixed a bug in the socket communication library used by Condor that was causing daemons
and tools to die on some platforms (notably, Digital Unix) with signal 8, SIGFPE (floating
point exception).

• Fixed a bug in the usage message of many Condor tools that mentioned a -all option that isn’t
yet supported. This option will be supported in future versions of Condor.

• Fixed a bug in the filesystem authentication code used to authenticate operations on the job
queue that left empty temporary files in /tmp. These files are now properly removed after they
are used.

• Fixed a minor bug in the totals condor status displays when you use the ckptsrvr option.

• Fixed a minor syntax error in the condor install script that would cause warnings.

• the Condor.pm Perl module is now included in the lib directory of the main release direc-
tory.

7.3.15 Version 6.1.3

NOTE: There are a lot of new, unstable features in 6.1.3. PLEASE do not install all of 6.1.3 on
a production pool. Almost all of the bug fixes in 6.1.3 are in the condor startd or condor starter,
so, unless you really know what you’re doing, we recommend you just upgrade SMP-Startd contrib
module, not the entire 6.1.3 release.

• Owners can now specify how the SMP-Startd partitions the system resources into the different
types and numbers of virtual machines, specifying the number of CPUs, megs of RAM, megs
of swap space, etc., in each. Previously, each virtual machine reported to Condor from an
SMP machine always had one CPU, and all shared system resources were evenly divided
among the virtual machines.

• Fixed a bug in the reporting of virtual memory and disk space on SMP machines where each
virtual machine represented was advertising the total in the system for itself, instead of its
own share. Now, both the totals, and the virtual machine-specific values are advertised.

• Fixed a bug in the condor starter when it was trying to suspend jobs. While we always killed
all of the processes when we were trying to vacate, if a vanilla job forked, the starter would
sometimes not suspend some of the children processes. In addition, we could sometimes miss
a standard universe job for suspending as well. This is all fixed.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 239

• Fixed a bug in the SMP-Startd’s load average computation that could cause processes spawned
by Condor to not be associated w/ the Condor load average. This would cause the startd to
over-estimate the owner’s load average, and under-estimate the Condor load, which would
cause a cycle of suspending and resuming a Condor job, instead of just letting it run.

• Fixed a bug in the SMP-Startd’s load average computation that could cause certain rare ex-
ceptions to be treated as fatal, when in fact, the Startd could recover from them.

• Fixed a bug in the computation of the total physical memory on some platforms that was
resulting in an overflow on machines with lots of ram (over 1 gigabyte).

• Fixed some bugs that could cause condor starter processes to be left as zombies underneath
the condor startd under very rare conditions.

• For sites using AFS, if there are problems in the condor startd computing the AFS cell of the
machine it’s running on, the startd will exit with an error message at start-up time.

• Fixed a minor bug in condor install that would lead to a syntax error in your config file given
a certain set of installation options.

• Added the -maxjobs option to the condor submit dag script that can be used to specify
the maximum number of jobs Condor will run from a DAG at any given time. Also, con-
dor submit dag automatically creates a “rescue DAG”. See section 2.11 on page 46 for details
on DAGMan.

• Fixed bug in ClassAd printing when you tried to display an integer or float attribute that didn’t
exist in the given ClassAd. This could show up in condor status, condor q, condor history,
etc.

• Various commands sent to the Condor daemons now have separate debug levels associated
with them. For example, commands such as “keep-alives”, and the command sent from the
condor kbdd to the condor startd are only seen in the various log files if D FULLDEBUG is
turned on, instead of D COMMAND, which the default and now enabled for all daemons on all
platforms by default. Administrators retaining their old configuration when upgrading to this
version are encouraged to enable D COMMAND in the SCHEDD DEBUG setting. In addition,
for IRIX and Digital Unix machines, it should be enabled in the STARTD DEBUG setting as
well. See section 3.3.3 on page 81 for details on debug levels in Condor.

• New debug levels added to Condor:

– D NETWORK, used by various daemons in Condor to report various network statistics
about the Condor daemons.

– D PROCFAMILY, used to report information about various families of processes that are
monitored by Condor. For example, this is used in the condor startd when monitoring
the family of processes spawned by a given user job for the purposes of computing the
Condor load average.

– D KEYBOARD, used by the condor startd to print out statistics about remote tty and
console idle times in the condor startd. This information used to be logged at
D FULLDEBUG, along with everything else, so now, you can see just the idle times,
and/or have the information stored to a separate file.

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 240

• Added a -run option to condor q, which displays information for running jobs, including the
remote host where each job is running.

• Macros can now be incrementally defined. See section 3.3.1 on page 75 for more details.

• condor config val can now be used to set configuration variables. See the man page on
page 254 for more details.

• The job log file now contains a record of network activity. The evict, terminate, and shadow
exception events indicate the number of bytes sent and received by the job for the specific run.
The terminate event additionally indicates totals for the life of the job.

• STARTER CHOOSES CKPT SERVER now defaults to true. See section 3.3.6 on page 88 for
more details.

• The infrastructure for authentication within Condor has been overhauled, allowing for much
greater flexibility in supporting new forms of authentication in the future. This means that the
6.1.3 schedd and queue management tools (like condor q, condor submit, condor rm and so
on) are incompatible with previous versions of Condor.

• Many of the Condor administration tools have been improved to allow you to specify the
“subsystem” you want them to effect. For example, you can now use “condor reconfig -startd”
to just have the startd reconfigure itself. Similarly, condor off, condor on and condor restart
can now all work on a single daemon, instead of machine-wide. See the man pages (section 8
on page 248) or run any command with -help for details. NOTE: The usage message in 6.1.3
incorrectly reports -all as a valid option.

• Fixed a bug in the Condor tools that could cause a segmentation violation in certain rare error
conditions.

7.3.16 Version 6.1.2

• Fixed some bugs in the condor install script. Also, enhanced condor install to customize the
path to perl in various perl scripts used by Condor.

• Fixed a problem with our build environment that left some files out of the release.tar
files in the binary releases on some platforms.

• condor dagman, “DAGMan” (see section 2.11 on page 46 for details) is now included in the
development release by default.

• Fixed a bug in the computation of the total physical memory in HPUX machines that was
resulting in an overflow on machines with lots of ram (over 1 gigabyte). Also, if you define
“MEMORY” in your config file, that value will override whatever value Condor computes for
your machine.

• Fixed a bug in condor starter.pvm, the PVM version of the Condor starter (available as an
optional “Contrib module”), when you disabled STARTER LOCAL LOGGING . Now, hav-
ing this set to “False” will properly place debug messages from condor starter.pvm into the

Condor Version 6.1.17 Manual

7.3. Development Release Series 6.1 241

ShadowLog file of the machine that submitted the job (as opposed to the StarterLog file
on the machine executing the job).

7.3.17 Version 6.1.1

• Fixed a bug in the condor startd where we compute the load average caused by Condor that
was causing us to get the wrong values. This could cause a cycle of continuous job suspends
and job resumes.

• Beginning with this version, any jobs linked with the Condor checkpoint libraries will use the
zlib compression code (used by gzip and others) to compress periodic checkpoints before they
are written to the network. These compressed checkpoints are uncompressed at startup time.
This saves network bandwidth, disk space, as well as time (if the network is the bottleneck to
checkpointing, which it usually is). In future versions of Condor, all checkpoints will probably
be compressed, but at this time, it is only used for periodic checkpoints. Note, you have to
relink your jobs with the condor compile command to have this feature enabled. Old jobs (not
relinked) will continue to run just fine, they just won’t be compressed.

• condor status now has better support for displaying checkpoint server ClassAds.

• More contrib modules from the development series are now available, such as the checkpoint
server, PVM support, and the CondorView server.

• Fixed some minor bugs in the UserLog code that were causing problems for DAGMan in
exceptional error cases.

• Fixed an obscure bug in the logging code when D PRIV was enabled that could result in
incorrect file permissions on log files.

7.3.18 Version 6.1.0

• Support has been added to the condor startd to run multiple jobs on SMP machines. See
section 3.11.7 on page 169 for details about setting up and configuring SMP support.

• The expressions that control the condor startd policy for vacating, jobs has been simplified.
See section 3.6 on page 120 for complete details on the new policy expressions, and sec-
tion 3.6.10 on page 142 for an explanation of what’s different from the version 6.0 expres-
sions.

• We now perform better tracking of processes spawned by Condor. If children die and are
inherited by init, we still know they belong to Condor. This allows us to better ensure we don’t
leave processes lying around when we need to get off a machine, and enables us to have a much
more accurate computation of the load average generated by Condor (the CondorLoadAvg
as reported by the condor startd).

• The condor collector now can store historical information about your pool state. This infor-
mation can be queried with the condor stats program (see the man page on page 296), which
is used by the condor view Java GUI, which is available as a separate contrib module.

Condor Version 6.1.17 Manual

7.4. Stable Release Series 6.0 242

• Condor jobs can now be put in a “hold” state with the condor hold command. Such jobs re-
main in the job queue (and can be viewed with condor q), but there will not be any negotiation
to find machines for them. If a job is having a temporary problem (like the permissions are
wrong on files it needs to access), the job can be put on hold until the problem can be solved.
Jobs put on hold can be released with the condor release command.

• condor userprio now has the notion of user factors as a way to create different groups of users
in different priority levels. See section 3.5 on page 117 for details. This includes the ability to
specify a local priority domain, and all users from other domains get a much worse priority.

• Usage statistics by user is now available from condor userprio. See the man page on page 320
for details.

• The condor schedd has been enhanced to enable “flocking”, where it seeks matches with ma-
chines in multiple pools if its requests cannot be serviced in the local pool. See section 3.11.6
on page 168 for more details.

• The condor schedd has been enhanced to enable condor q and other interactive tools better
response time.

• The condor schedd has also been enhanced to allow it to check the permissions of the files you
specify for input, output, error and so on. If the schedd doesn’t have the required access rights
to the files, the jobs will not be submitted, and condor submit will print an error message.

• When you perform a condor rm command, and the job you removed was using a “user log”,
the remove event is now recorded into the log.

• Two new attributes have been added to the job classad when it begins executing: Remote-
Host and LastRemoteHost. These attributes list the IP address and port of the startd that
is either currently running the job, or the last startd to run the job (if it’s run on more than one
machine). This information helps users track their job’s execution more closely, and allows
administrators to troubleshoot problems more effectively.

• The performance of checkpointing was increased by using larger buffers for the network I/O
used to get the checkpoint file on and off the remote executing host (this helps for all pools,
with or without checkpoint servers).

7.4 Stable Release Series 6.0

6.0 is the first version of Condor with ClassAds. It contains many other fundamental enhancements
over version 5. It is also the first official stable release series, with a development series (6.1)
simultaneously available.

7.4.1 Version 6.0.3

• Fixed a bug that was causing the hostname of the submit machine that claimed a given execute
machine to be incorrectly reported by the condor startd at sites using NIS.

Condor Version 6.1.17 Manual

7.4. Stable Release Series 6.0 243

• Fixed a bug in the condor startd’s benchmarking code that could cause a floating point ex-
ception (SIGFPE, signal 8) on very, very fast machines, such as newer Alphas.

• Fixed an obscure bug in condor submit that could happen when you set a requirements expres-
sion that references the “Memory” attribute. The bug only showed up with certain formations
of the requirement expression.

7.4.2 Version 6.0.2

• Fixed a bug in the fcntl() call for Solaris 2.6 that was causing problems with file I/O inside
Fortran jobs.

• Fixed a bug in the way the DEFAULT DOMAIN NAME parameter was handled so that this
feature now works properly.

• Fixed a bug in how the SOFT UID DOMAIN config file parameter was used in the con-
dor starter. This feature is also documented in the manual now (see section 3.3.5 on page 86).

• You can now set the RunBenchmarks expression to “False” and the condor startd will never
run benchmarks, not even at startup time.

• Fixed a bug in getwd() and getcwd() for sites that use the NFS automounter. his bug
was only present if user programs tried to call chdir() themselves. Now, this is supported.

• Fixed a bug in the way we were computing the available virtual memory on HPUX 10.20
machines.

• Fixed a bug in condor q -analyze so it will correctly identify more situations where a job
won’t run.

• Fixed a bug in condor status -format so that if the requested attribute isn’t available for a given
machine, the format string (including spaces, tabs, newlines, etc) is still printed, just the value
for the requested attribute will be an empty string.

• Fixed a bug in the condor schedd that was causing condor history to not print out the first
ClassAd attribute of all jobs that have completed

• Fixed a bug in condor q that would cause a segmentation fault if the argument list was too
long.

7.4.3 Version 6.0.1

• Fixed bugs in the getuid()), getgid(), geteuid(), and getegid() system calls.

• Multiple config files are now supported as a list specified via the LOCAL CONFIG FILE
variable.

• ARCH and OPSYS are now automatically determined on all machines (including HPUX 10
and Solaris).

Condor Version 6.1.17 Manual

7.4. Stable Release Series 6.0 244

• Machines running IRIX now correctly suspend vanilla jobs.

• condor submit doesn’t allow root to submit jobs.

• The condor startd now notices if you have changed COLLECTOR HOST on reconfig.

• Physical memory is now correctly reported on Digital Unix when daemons are not running as
root.

• New $(SUBSYSTEM) macro in configuration files that changes based on which daemon is
reading the file (i.e. STARTD, SCHEDD, etc.) See section 3.3.1, “Condor Subsystem Names”
on page 77 for a complete list of the subsystem names used in Condor.

• Port to HP-UX 10.20.

• getrusage() is now a supported system call. This system call will allow you to get re-
source usage about the entire history of your condor job.

• Condor is now fully supported on Solaris 2.6 machines (both Sparc and Intel).

• Condor now works on Linux machines with the GNU C library. This includes machines
running RedHat 5.x and Debian 2.0. In addition, there seems to be a bug in RedHat that
was causing the output from condor config val to not appear when used in scripts (like con-
dor compile). We put in explicit calls to flush the I/O buffers before condor config val exits,
which seems to solve the problem.

• Hooks have been added to the checkpointing library to help support the checkpointing of PVM
jobs.

• Condor jobs can now send signals to themselves when running in the standard universe. You
do this just as you normally would:

kill(getpid(), signal_number)

Trying to send a signal to any other process will result in kill() returning -1.

• Support for NIS has been improved on Digital Unix and IRIX.

• Fixed a bug that would cause the negotiator on IRIX machines to never match jobs with
available machines.

7.4.4 Version 6.0 pl4

NOTE: Back in the bad old days, we used this evil “patch level” version number scheme, with
versions like “6.0pl4”. This has all gone away in the current versions of Condor.

• Fixed a bug that could cause a segmentation violation in the condor schedd under rare condi-
tions when a condor shadow exited.

Condor Version 6.1.17 Manual

7.4. Stable Release Series 6.0 245

• Fixed a bug that was preventing any core files that user jobs submitted to Condor might create
from being transferred back to the submit machine for inspection by the user who submitted
them.

• Fixed a bug that would cause some Condor daemons to go into an infinite loop if the ”ps”
command output duplicate entries. This only happens on certain platforms, and even then,
only under rare conditions. However, the bug has been fixed and Condor now handles this
case properly.

• Fixed a bug in the condor shadow that would cause a segmentation violation if there was a
problem writing to the user log file specified by ”log = filename” in the submit file used with
condor submit.

• Added new command line arguments for the Condor daemons to support saving the PID
(process id) of the given daemon to a file, sending a signal to the PID specified in a given file,
and overriding what directory is used for logging for a given daemon. These are primarily
for use with the condor kbdd when it needs to be started by XDM for the user logged onto
the console, instead of running as root. See section 3.11.4 on “Installing the condor kbdd” on
page 162 for details.

• Added support for the CREATE CORE FILES config file parameter. If this setting is defined,
Condor will override whatever limits you have set and in the case of a fatal error, will either
create core files or not depending on the value you specify (”true” or ”false”).

• Most Condor tools (condor on, condor off, condor master off, condor restart,
condor vacate, condor checkpoint, condor reconfig, condor reconfig schedd, con-
dor reschedule) can now take the IP address and port you want to send the command
to directly on the command line, instead of only accepting hostnames. This IP/port must be
passed in a special format used in Condor (which you will see in the daemon’s log files, etc).
It is of the form: <ip.address:port>. For example: <123.456.789.123:4567>.

7.4.5 Version 6.0 pl3

• Fixed a bug that would cause a segmentation violation if a machine was not configured with a
full hostname as either the official hostname or as any of the hostname aliases.

• If your host information does not include a fully qualified hostname anywhere, you can specify
a domain in the DEFAULT DOMAIN NAME parameter in your global config file which will
be appended to your hostname whenever Condor needs to use a fully qualified name.

• All Condor daemons and most tools now support a ”-version” option that displays the version
information and exits.

• The condor install script now prompts for a short description of your pool, which it stores in
your central manager’s local config file as COLLECTOR NAME . This description is used to
display the name of your pool when sending information to the Condor developers.

Condor Version 6.1.17 Manual

7.4. Stable Release Series 6.0 246

• When the condor shadow process starts up, if it is configured to use a checkpoint server and
it cannot connect to the server, the shadow will check the MAX DISCARDED RUN TIME
parameter. If the job in question has accumulated more CPU minutes than this parameter,
the condor shadow will keep trying to connect to the checkpoint server until it is successful.
Otherwise, the condor shadow will just start the job over from scratch immediately.

• If Condor is configured to use a checkpoint server, it will only use the checkpoint server.
Previously, if there was a problem connecting to the checkpoint server, Condor would fall
back to using the submit machine to store checkpoints. However, this caused problems with
local disks filling up on machines without much disk space.

• Fixed a rare race condition that could cause a segmentation violation if a Condor daemon or
tool opened a socket to a daemon and then closed it right away.

• All TCP sockets in Condor now have the ”keep alive” socket option enabled. This allows
Condor daemons to notice if their peer goes away in a hard crash.

• Fixed a bug that could cause the condor schedd to kill jobs without a checkpoint during its
graceful shutdown method under certain conditions.

• The condor schedd now supports the MAX SHADOW EXCEPTIONS parameter. If the con-
dor shadow processes for a given match die due to a fatal error (an exception) more than this
number of times, the condor schedd will now relinquish that match and stop trying to spawn
condor shadow processes for it.

• The ”-master” option to condor status now displays the Name attribute of all condor master
daemons in your pool, as opposed to the Machine attribute. This helps for pools that have
submit-only machines joining them, for example.

7.4.6 Version 6.0 pl2

• In patch level 1, code was added to more accurately find the full hostname of the local ma-
chine. Part of this code relied on the resolver, which on many platforms is a dynamic library.
On Solaris, this library has needed many security patches and the installation of Solaris on our
development machines produced binaries that are incompatible with sites that haven’t applied
all the security patches. So, the code in Condor that relies on this library was simply removed
for Solaris.

• Version information is now built into Condor. You can see the CondorVersion attribute in
every daemon’s ClassAd. You can also run the UNIX command ”ident” on any Condor binary
to see the version.

• Fixed a bug in the ”remote submit” mode of condor submit. The remote submit wasn’t con-
necting to the specified schedd, but was instead trying to connect to the local schedd.

• Fixed a bug in the condor schedd that could cause it to exit with an error due to its log file
being locked improperly under certain rare circumstances.

Condor Version 6.1.17 Manual

7.4. Stable Release Series 6.0 247

7.4.7 Version 6.0 pl1

• condor kbdd bug patched: On Silicon Graphics and DEC Alpha ports, if your X11 server
is using Xauthority user authentication, and the condor kbdd was unable to read the user’s
.Xauthority file for some reason, the condor kbdd would fall into an infinite loop.

• When using a Condor Checkpoint Server, the protocol between the Checkpoint Server and the
condor schedd has been made more robust for a faulty network connection. Specifically, this
improves reliability when submitting jobs across the Internet and using a remote Checkpoint
Server.

• Fixed a bug concerning MAX JOBS RUNNING : The parameter MAX JOBS RUNNING in the
config file controls the maximum number of simultaneous condor shadow processes allowed
on your submission machine. The bug was the number of shadow processes could, under
certain conditions, exceed the number specified by MAX JOBS RUNNING .

• Added new parameter JOB RENICE INCREMENT that can be specified in the config file.
This parameter specifies the UNIX nice level that the condor starter will start the user job.
It works just like the renice(1) command in UNIX. Can be any integer between 1 and 19; a
value of 19 is the lowest possible priority.

• Improved response time for condor userprio.

• Fixed a bug that caused periodic checkpoints to happen more often than specified.

• Fixed some bugs in the installation procedure for certain environments that weren’t handled
properly, and made the documentation for the installation procedure more clear.

• Fixed a bug on IRIX that could allow vanilla jobs to be started as root under certain conditions.
This was caused by the non-standard uid that user ”nobody” has on IRIX. Thanks to Chris
Lindsey at NCSA for help discovering this bug.

• On machines where the /etc/hosts file is misconfigured to list just the hostname first,
then the full hostname as an alias, Condor now correctly finds the full hostname anyway.

• The local config file and local root config file are now only found by the files listed in the
LOCAL CONFIG FILE and LOCAL ROOT CONFIG FILE parameters in the global config
files. Previously, /etc/condor and user condor’s home directory (c̃ondor) were searched
as well. This could cause problems with submit-only installations of Condor at a site that
already had Condor installed.

7.4.8 Version 6.0 pl0

• Initial Version 6.0 release.

Condor Version 6.1.17 Manual

CHAPTER

EIGHT

Command Reference Manual (man pages)

248

condor checkpoint (1) 249

condor checkpoint

checkpoint jobs running on the specified hosts

Synopsis

condor checkpoint [-help] [-version] [hostname ...]

Description

condor checkpoint causes the startd’s on the specified hosts to perform a checkpoint on any running
jobs. The jobs continue to run once they are done checkpointing. If no host is specified, only the
current host is sent the checkpoint command.

A periodic checkpoint means that the job will checkpoint itself, but then it will immediately continue
running after the checkpoint has completed. condor vacate, on the other hand, will result in the job
exiting (vacating) after it checkpoints.

If the job being checkpointed is running in the Standard Universe, the job is checkpointed and then
just continues running on the same machine. If the job is running in the Vanilla Universe, or there is
currently no Condor job running on that host, then condor checkpoint has no effect.

Normally there is no need for the user or administrator to explicitly run condor checkpoint. Check-
pointing a running condor job is normally handled automatically by Condor by following the policies
stated in Condor’s configuration files.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

Author

Condor Team, University of Wisconsin–Madison

Condor Version 6.1.17, Command Reference

condor checkpoint (1) 250

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor compile (1) 251

condor compile

create a relinked executable for submission to the Standard Universe

Synopsis

condor compile cc | CC | gcc | f77 | g++ | ld | make | . . .

Description

Use condor compile to relink a program with the Condor libraries for submission into Condor’s
Standard Universe. The Condor libraries provide the program with additional support, such as
the capability to checkpoint, which is required in Condor’s Standard Universe mode of operation.
condor compile requires access to the source or object code of the program to be submitted; if
source or object code for the program is not available (i.e. only an executable binary, or if it is a
shell script), then the program must submitted into Condor’s Vanilla Universe. See the reference
page for condor submit and/or consult the ”Condor Users and Administrators Manual” for further
information.

To use condor compile, simply enter ”condor compile” followed by whatever you would normally
enter to compile or link your application. Any resulting executables will have the Condor libraries
linked in. For example:

condor_compile cc -O -o myprogram.condor file1.c file2.c ...

will produce a binary ”myprogram.condor” which is relinked for Condor, capable of
checkpoint/migration/remote-system-calls, and ready to submit to the Standard Universe.

If the Condor administrator has opted to fully install condor compile, then condor compile can be
followed by practically any command or program, including make or shell-script programs. For
example, the following would all work:

condor_compile make

condor_compile make install

condor_compile f77 -O mysolver.f

condor_compile /bin/csh compile-me-shellscript

If the Condor administrator has opted to only do a partial install of condor compile, the you are
restricted to following condor compile with one of these programs:

Condor Version 6.1.17, Command Reference

condor compile (1) 252

cc (the system C compiler)

acc (ANSI C compiler, on Sun systems)

c89 (POSIX compliant C compiler, on some systems)

CC (the system C++ compiler)

f77 (the system FORTRAN compiler)

gcc (the GNU C compiler)

g++ (the GNU C++ compiler)

g77 (the GNU FORTRAN compiler)

ld (the system linker)

f90 (the system FORTRAN 90 compiler)

NOTE: If you use explicitly call “ld” when you normally create your binary, simply use:

condor_compile ld <ld arguments and options>

instead.

NOTE: f90 (FORTRAN 90) is only supported on Solaris and Digital Unix.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial

Condor Version 6.1.17, Command Reference

condor compile (1) 253

Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor config val (1) 254

condor config val

Query or set a given condor configuration variable

Synopsis

condor config val [options] variable [variable . . .]

condor config val [options] -set string [string . . .]

condor config val [options] -rset string [string . . .]

condor config val [options] -unset variable [variable . . .]

condor config val [options] -runset variable [variable . . .]

condor config val [options] -tilde

condor config val [options] -owner

Description

condor config val can be used to quickly see what the current condor configuration is on any given
machine. Given a list of variables, condor config val will report what each of these variables is
currently set to. If a given variable is not defined, condor config val will halt on that variable, and
report that it is not defined. By default, condor config val looks in the local machine’s configuration
files in order to evaluate the variables.

condor config val can also be used to quickly set configuration variables for a specific daemon on
a given machine. Each daemon remembers settings made by condor config val. The configura-
tion file is not modified by this command. Persistent settings remain when the daemon is restarted.
Runtime settings are lost when the daemon is restarted. Modifying a hosts configuration with con-
dor config val requires the CONFIG access level, which is disabled on all hosts by default. See
section 3.8.2 on page 145 for more details.

NOTE: The changes will not take effect until you perform a condor reconfig.

NOTE: It is generally wise to test a new configuration on a single machine to ensure you have
no syntax or other errors in the configuration before you reconfigure many machines. Having bad
syntax or invalid configuration settings is a fatal error for Condor daemons, and they will exit. Far
better to discover such a problem on a single machine than to cause all the Condor daemons in your
pool to exit.

Condor Version 6.1.17, Command Reference

condor config val (1) 255

Options

Supported options are as follows:

-name daemon name Query the specified daemon for its configuration.

-pool hostname Use the given central manager to find daemons.

-address <ip:port> Connect to the given ip/port.

-master | -schedd | -startd | -collector | -negotiator The daemon to query (if not specified, master
is default).

-set string Set a persistent config file entry. The string must be a single argument, so you should
enclose it in double quotes. The string must be of the form “variable = value”.

-rset string Set a runtime config file entry. See the description for -set for details about the string
to use.

-unset variable Unset a persistent config file variable.

-runset variable Unset a runtime config file variable.

-tilde Return the path to the Condor home directory.

-owner Return the owner of the condor config val process.

variable . . . The variables to query.

Examples

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500
% condor_config_val -name perdita -schedd -set ‘‘MAX_JOBS_RUNNING = 10’’
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

Condor Version 6.1.17, Command Reference

condor config val (1) 256

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu
% condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
10
% condor_config_val -name perdita -schedd -unset MAX_JOBS_RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.
% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu
% condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor findhost (1) 257

condor findhost

find machine(s) in the pool that can be used with minimal impact on currently running Condor jobs
and best meet any specified constraints

Synopsis

condor findhost [-help] [-m] [-n num] [-c c expr] [-r r expr] [-p pool]

Description

condor findhost searches a Condor pool of machines for the best machine or machines that will
have the minimum impact on running Condor jobs if the machine or machines are taken out of the
pool. The search may be limited to the machine or machines that match a set of constraints and rank
expression.

condor findhost returns a fully-qualified domain name for each machine. The search is limited
(constrained) to a specific set of machines using the -c option. The search can use the -r option for
rank, the criterion used for selecting a machine or machines from the constrained list.

Options

Supported options are as follows:

-help Display usage information and exit

-m Only search for entire machines. Virtual machines within an entire machine are not considered.

-n num Find and list up to num machines that fulfill the specification. num is an integer greater
than zero.

-c c expr Constrain the search to only consider machines that result from the evaluation of c expr.
c expr is a ClassAd expression.

-r r expr r expr is the rank expression evaluated to use as a basis for machine selection. r expr is a
ClassAd expression.

Condor Version 6.1.17, Command Reference

condor findhost (1) 258

-p poolname Specify the name of the pool to be searched. Without this option, the current pool is
searched.

General Remarks

condor findhost is used to locate a machine within a pool that can be taken out of the pool with the
least disturbance of the pool.

And administrator should set preemption requirements for the Condor pool. The expression

(Interactive =?= TRUE)

will let condor findhost know that it can claim a machine even if Condor would not normally pre-
empt a job running on that machine.

The exit status of condor findhost is zero on success. If not able to identify as many machines as
requested, it returns one more than the number of machines identified. For example, if 8 machines
are requested, and condor findhost only locates 6, the exit status will be 7. If not able to locate any
machines, condor findhost will return the value 1.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor history (1) 259

condor history

View log of condor jobs completed to date

Synopsis

condor history [-help] [-l] [-f filename] [-constraint expr | cluster | cluster.process | owner]

Description

condor history displays a summary of all condor jobs listed in the specified history files. If no history
files are specified (with the -f option), the local history file as specified in Condor’s configuration
file (condor/spool/history by default) is read. The default listing summarizes each job on a single
line, and contains the following items:

ID The cluster/process id of the condor job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

CPU USAGE Remote CPU time accumulated by the job to date in days, hours, minutes, and sec-
onds.

ST Completion status of the job (C = completed and X = removed).

COMPLETED The time the job was completed.

PRI User specified priority of the job, ranges from -20 to +20, with higher numbers corresponding
to greater priority.

SIZE The virtual image size of the executable in megabytes.

CMD The name of the executable.

If a job ID (in the form of cluster id or cluster id.proc id) or an owner is provided, output will be
restricted to jobs with the specified IDs and/or submitted by the specified owner. The -constraint
option can be used to display jobs that satisfy a specified boolean expression.

Options

Supported options are as follows:

Condor Version 6.1.17, Command Reference

condor history (1) 260

-help Get a brief description of the supported options

-f filename Use the specified file instead of the default history file

-constraint expr Display jobs that satisfy the expression

-l Display job ads in long format

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor hold (1) 261

condor hold

put jobs in the queue in hold state

Synopsis

condor hold [-n schedd name] [-help] [-version] [job identifiers]

Description

condor hold places one or more jobs from the Condor job queue in hold state. If the -n option is
specified, the named condor schedd is targeted for processing. Otherwise, the local condor schedd
is targeted. The jobs to be held are identified by one or more job identifiers, as described be-
low. For any given job, only the owner of the job or one of the queue super users (defined by the
QUEUE SUPER USERS macro) can place the job on hold.

Options

Supported options are as follows:

-help Display usage information and exit

-version Display version information and exit

-n schedd name Target jobs in the queue of the named schedd

cluster (Job identifier.) Hold all jobs in the specified cluster

cluster.process (Job identifier.) Hold the specific job in the cluster

name (Job identifier.) Hold jobs belonging to specified user

-a (Job identifier.) Hold all the jobs in the queue

-constraint constraint (Job identifier.) Hold jobs matching specified constraint

Condor Version 6.1.17, Command Reference

condor hold (1) 262

See Also

condor release (on page 285)

General Remarks

To put a PVM universe job on hold, you must put each “process” in the PVM job cluster on hold.
(In the PVM universe, each PVM job is assigned its own cluster number, and each machine class is
assigned a “process” number in the job’s cluster.) Putting a subset of the machine classes for a PVM
job on hold is not supported.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor master (1) 263

condor master

The master Condor Daemon

Synopsis

condor master

Description

condor master This daemon is responsible for keeping all the rest of the Condor daemons running
on each machine in your pool. It spawns the other daemons, and periodically checks to see if there
are new binaries installed for any of them. If there are, the master will restart the affected daemons.
In addition, if any daemon crashes, the master will send email to the Condor Administrator of your
pool and restart the daemon. The condor master also supports various administrative commands that
let you start, stop or reconfigure daemons remotely. The condor master will run on every machine
in your Condor pool, regardless of what functions each machine are performing.

See section 3.1.2 in Admin Manual for more information about condor master and other Condor
daemons.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor master off (1) 264

condor master off

Shutdown Condor and the condor master

Synopsis

condor master off [-help] [-version] [hostname ...]

Description

condor master off shuts down all of the condor daemons running on a given machine. It does this
cleanly without a loss of work done by any jobs currently running on this machine, or jobs that are
running on other machines that have been submitted from this machine. At the end of the shutdown
process, unlike condor off, condor master off also shuts down the condor master daemon. If you
want to turn condor back on on this machine in the future, you will need to restart the condor master.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... Turn shutdown condor on this list of machines

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,

Condor Version 6.1.17, Command Reference

condor master off (1) 265

Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor off (1) 266

condor off

Shutdown condor daemons

Synopsis

condor off [-help] [-version] [hostname ...]

Description

condor off shuts down all of the condor daemons running on a given machine. It does this cleanly
without a loss of work done by any jobs currently running on this machine, or jobs that are running
on other machines that have been submitted from this machine. The only daemon that remains
running is the condor master, which can handle both local and remote requests to restart the other
condor daeomns if need be. To restart condor running on a machine, see the condor on command.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... Turn condor off on this list of machines

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,

Condor Version 6.1.17, Command Reference

condor off (1) 267

Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor on (1) 268

condor on

Startup condor daemons

Synopsis

condor on [-help] [-version] [hostname ...]

Description

condor on starts up all of the condor daemons running on a given machine. This command assumes
that the condor master is already running on the machine. If this is not the case, condor on will fail
complaining that it can’t find the address of the master. condor on will tell the condor master to
start up the condor daemons specified in the configuration variable DAEMON LIST.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... Turn condor on on this list of machines

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

Condor Version 6.1.17, Command Reference

condor on (1) 269

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor preen (1) 270

condor preen

remove extraneous files from Condor directories

Synopsis

condor preen [-mail] [-remove] [-verbose]

Description

condor preen examines the directories belonging to Condor, and removes extraneous files and di-
rectories which may be left over from Condor processes which terminated abnormally either due to
internal errors or a system crash. The directories checked are the LOG, EXECUTE, and SPOOL
directories as defined in the Condor configuration files. condor preen is intended to be run as user
root (or user condor) periodically as a backup method to ensure reasonable file system cleanliness
in the face of errors. This is done automatically by default by the condor master. It may also be
explicitly invoked on an as needed basis.

When condor preen cleans the SPOOL directory, it always leaves behind the files specified in the
VALID SPOOL FILES list in your config file. For the log directory, the only files removed or
reported are those listed in the INVALID LOG FILES list. The reason for this difference is that, in
general, you want to leave all files in the LOG directory alone, with a few exceptions (namely, core
files). condor preen still works if you supply a VALID LOG FILES list instead, but this usage is
depricated. There are new log files for different things introduced all the time, and you wouldn’t
want to have to keep updating the list of files to leave alone in the LOG directory. For example,
the SMP startd can spawn an arbitrary number of condor starter processes, each with its own log
file. On the other hand, there are only a small, fixed number of files in the SPOOL directory that the
condor schedd needs to keep around, so it is easier to specify the files you want to keep instead of
the ones you want to get rid of.

Options

Supported options are as follows:

-mail Send mail to the PREEN ADMIN as defined in the Condor configuration files instead of
writing to the standard output

-remove Remove the offending files and directories rather than just reporting on them

Condor Version 6.1.17, Command Reference

condor preen (1) 271

-verbose List all files found in the Condor directories, even those which are not considered
extraneous

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor prio (1) 272

condor prio

change priority of jobs in the condor queue

Synopsis

condor prio [-p priority] [+ | - value] [-n schedd name] cluster | cluster.process | username | -a

Description

condor prio changes the priority of one or more jobs in the condor queue. If a cluster id and a pro-
cess id are both specified, condor prio attempts to change the priority of the specified process. If a
cluster id is specified without a process id, condor prio attempts to change priority for all processes
belonging to the specified cluster. If a username is specified, condor prio attempts to change priority
of all jobs belonging to that user. If the -a flag is set, condor prio attempts to change priority of all
jobs in the condor queue. The user must specify a priority adjustment or new priority. If the -p
option is specified, the priority of the job(s) are set to the next argument. The user can also adjust
the priority by supplying a + or - immediately followed by a digit. The priority of a job ranges from
-20 to +20, with higher numbers corresponding to greater priority. Only the owner of a job or the
super user can change the priority for it.

The priority changed by condor prio is only compared to the priority of other jobs owned by the
same user and submitted from the same machine. See the ”Condor Users and Administrators Man-
ual” for further details on Condor’s priority scheme.

Options

Supported options are as follows:

-p priority Set priority to the specified value

+ | - value Change priority by the specified value

-n schedd name Change priority of jobs queued at the specified schedd

-a Change priority of all the jobs in the queue

Condor Version 6.1.17, Command Reference

condor prio (1) 273

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor q (1) 274

condor q

Display information about jobs in queue

Synopsis

condor q [-help] [-global] [-submitter submitter] [-name name] [-pool hostname] [-analyze]
[-run] [-goodput] [-io] [-long] [-format formatter attribute] [-cputime] [-currentrun]
[{cluster | cluster.process | owner | -constraint expression . . .}]

Description

condor q displays information about jobs in the Condor job queue. By default, condor q queries the
local job queue but this behavior may be modified by specifying:

• the -global option, which queries all job queues in the pool

• a schedd name with the -name option, which causes the queue of the named schedd to be
queried

• a submitter with the -submitter option, which causes all queues of the named submitter to be
queried

To restrict the display to jobs of interest, a list of zero or more restrictions may be supplied. Each
restriction may be one of:

• a cluster and a process matches jobs which belong to the specified cluster and have the speci-
fied process number

• a cluster without a process matches all jobs belonging to the specified cluster

• a owner matches all jobs owned by the specified owner

• a -constraint expression which matches all jobs that satisfy the specified ClassAd expression.
(See section 4.1 for a discussion of ClassAd expressions.)

If no owner restrictions are present in the list, the job matches the restriction list if it matches at least
one restriction in the list. If owner restrictions are present, the job matches the list if it matches one
of the owner restrictions and at least one non-owner restriction.

If the -long option is specified, condor q displays a long description of the queried jobs by printing
the entire job classad. The attributes of the job classad may be displayed by means of the -format
option, which displays attributes with a printf(3) format. (Multiple -format options may be
specified in the option list to display several attributes of the job.) If neither -long or -format are
specified, condor q displays a a one line summary of information as follows:

Condor Version 6.1.17, Command Reference

condor q (1) 275

ID The cluster/process id of the condor job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN TIME Wall-clock time accumulated by the job to date in days, hours, minutes, and seconds.

ST Current status of the job. U = unexpanded (never been run), H = on hold, R = running, I = idle
(waiting for a machine to execute on), C = completed, and X = removed.

PRI User specified priority of the job, ranges from -20 to +20, with higher numbers corresponding
to greater priority.

SIZE The virtual image size of the executable in megabytes.

CMD The name of the executable.

If the -run option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

HOST(S) The host where the job is running. For PVM jobs, a host count is displayed instead.

If the -goodput option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

GOODPUT The percentage of RUN TIME for this job which has been saved in a checkpoint. A
low GOODPUT value indicates that the job is failing to checkpoint. If a job has not yet
attempted a checkpoint, this column contains [?????].

CPU UTIL The ratio of CPU TIME to RUN TIME for checkpointed work. A low CPU UTIL
indicates that the job is not running efficiently, perhaps because it is I/O bound or because the
job requires more memory than available on the remote workstations. If the job has not (yet)
checkpointed, this column contains [??????].

Mb/s The network usage of this job, in Megabits per second of run-time.

If the -io option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

READ The total number of bytes the application has read from files and sockets.

WRITE The total number of bytes the application has written to files and sockets.

SEEK The total number of seek operations the application has performed on files.

XPUT The effective throughput (average bytes read and written per second) from the application’s
point of view.

BUFSIZE The maximum number of bytes to be buffered per file.

Condor Version 6.1.17, Command Reference

condor q (1) 276

BLOCKSIZE The desired block size for large data transfers.

These fields are updated when a job checkpoints or completes. If a job has not yet checkpointed,
this information is not available.

If the -cputime option is specified, the RUN TIME column is replaced with:

CPU TIME The remote CPU time accumulated by the job to date (which has been stored in a
checkpoint) in days, hours, minutes, and seconds. (If the job is currently running, time ac-
cumulated during the current run is not shown. If the job has not checkpointed, this column
contains 0+00:00:00.)

The -analyze option may be used to determine why certain jobs are not running by performing
an analysis on a per machine basis for each machine in the pool. The reasons may vary among
failed constraints, insufficient priority, resource owner preferences and prevention of preemption by
the PREEMPTION REQUIREMENTS expression. If the -long option is specified along with the
-analyze option, the reason for failure is displayed on a per machine basis.

Options

Supported options are as follows:

-help Get a brief description of the supported options

-global Get queues of all the submitters in the system

-submitter submitter List jobs of specific submitter from all the queues in the pool

-pool hostname Use hostname as the central manager to locate schedds. (The default is the
COLLECTOR HOST specified in the configuration file.

-analyze Perform an approximate analysis to determine how many resources are available to run
the requested jobs

-run Get information about running jobs.

-goodput Display job goodput statistics.

Condor Version 6.1.17, Command Reference

condor q (1) 277

-io Display job input/output summaries.

-name name Show only the job queue of the named schedd

-long Display job ads in long format

-format fmt attr Display attribute attr in format fmt

-cputime I
nstead of wall-clock allocation time (RUN TIME), display remote CPU time accumulated by
the job to date in days, hours, minutes, and seconds. (If the job is currently running, time
accumulated during the current run is not shown.)

-currentrun N
ormally, RUN TIME contains all the time accumulated during the current run plus all previous
runs. If this option is specified, RUN TIME only displays the time accumulated so far on this
current run.

Restriction list The restriction list may have zero or more items, each of which may be:

cluster match all jobs belonging to cluster

cluster.proc match all jobs belonging to cluster with a process number of proc

-constraint expression match all jobs which match the ClassAd expression constraint

A job matches the restriction list if it matches any restriction in the list Additionally, if owner
restrictions are supplied, the job matches the list only if it also matches an owner restriction.

General Remarks

Although -analyze provides a very good first approximation, the analyzer cannot diagnose all possi-
ble situations because the analysis is based on instantaneous and local information. Therefore, there
are some situations (such as when several submitters are contending for resources, or if the pool is
rapidly changing state) which cannot be accurately diagnosed.

-goodput, -cputime, and -io are most useful for STANDARD universe jobs, since they rely on values
computed when a job checkpoints.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 6.1.17, Command Reference

condor q (1) 278

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor qedit (1) 279

condor qedit

modify job attributes

Synopsis

condor qedit [-n schedd-name] {cluster | cluster.proc | owner | -constraint constraint}
attribute-name attribute-value . . .

Description

condor qedit modifies job attributes in the Condor job queue. The jobs are specified either by cluster
number, cluster.proc job ID, owner, or by a ClassAd constraint expression. The attribute-value may
be any ClassAd expression (integer, floating point number, string, expression).

Options

Supported options are as follows:

-n schedd-name Modify job attributes in the queue of the specified schedd

Examples

% condor_qedit -name perdita 1849.0 In ’"myinput"’
Set attribute "In".
% condor_qedit jbasney NiceUser TRUE
Set attribute "NiceUser".
% condor_qedit -constraint ’JobUniverse == 1’ Require-
ments ’(Arch == "INTEL") && (OpSys == "SOLARIS26") && (Disk >= Ex-
ecutableSize) && (VirtualMemory >= ImageSize)’
Set attribute "Requirements".

General Remarks

You can view the list of attributes with their current values for a job with condor q -long.

Strings must be specified with quotes (for example, ’”String”’).

Condor Version 6.1.17, Command Reference

condor qedit (1) 280

If a job is currently running, modified attributes for that job will not take effect until the job restarts.

condor qedit will not allow modification of the following attributes to ensure security and correct-
ness: Owner, ClusterId, ProcId, MyType, TargetType, and JobStatus.

Please use condor hold to place a job “on hold” and condor release to release a held job, instead of
attempting to modify JobStatus directly.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor reconfig (1) 281

condor reconfig

Reconfigure condor daemons

Synopsis

condor reconfig [-help] [-version] [hostname ...]

Description

condor reconfig reconfigures all of the condor daemons in accordance with the current status of the
condor configuration file(s). Once reconfiguration is complete, the daemons will behave according to
the policies stated in the configuration file(s). The only exception is with the DAEMON LIST vari-
able, which will only be updated if the condor restart command is used. In general, condor reconfig
should be used when making changes to the configuration files, since it is faster and more efficient
then restarting the daemons.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... Reconfigure condor on this list of machines

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,

Condor Version 6.1.17, Command Reference

condor reconfig (1) 282

Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor reconfig schedd (1) 283

condor reconfig schedd

Reconfigure condor schedd

Synopsis

condor reconfig schedd [-help] [-version] [hostname ...]

Description

condor reconfig schedd reconfigures the condor schedd in accordance with the current status of the
condor configuration file(s). Once reconfiguration is complete, the daemon will behave according
to the policies stated in the configuration file(s). This command is similar to the condor reconfig
command except that it only updates the schedd. The schedd is the condor daemon responsible for
managing user’s jobs submitted from this machine.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... Reconfigure condor on this list of machines

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,

Condor Version 6.1.17, Command Reference

condor reconfig schedd (1) 284

Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor release (1) 285

condor release

release held jobs in the condor queue

Synopsis

condor release [-n schedd name] [-help] [-version] [job identifiers]

Description

condor release releases one or more jobs from the Condor job queue that were previously placed
in hold state. If the -n option is specified, the named condor schedd is targeted for processing.
Otherwise, the local condor schedd is targeted. The jobs to be released are identified by one or
more job identifiers, as described below. For any given job, only the owner of the job or one of the
queue super users (defined by the QUEUE SUPER USERS macro) can release the job.

Options

Supported options are as follows:

-help Display usage information and exit

-version Display version information and exit

-n schedd name Remove jobs in the queue of the specified schedd

cluster (Job identifier.) Remove all jobs in the specified cluster

cluster.process (Job identifier.) Remove the specific job in the cluster

name (Job identifier.) Remove jobs belonging to specified user

-a (Job identifier.) Remove all the jobs in the queue

-constraint constraint (Job identifier.) Remove jobs matching specified constraint

Condor Version 6.1.17, Command Reference

condor release (1) 286

See Also

condor hold (on page 261)

General Remarks

When releasing a held PVM universe job, you must release the entire job cluster. (In the PVM
universe, each PVM job is assigned its own cluster number, and each machine class is assigned a
“process” number in the job’s cluster.) Releasing a subset of the machine classes for a PVM job is
not supported.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor reschedule (1) 287

condor reschedule

Update scheduling information to the central manager

Synopsis

condor reschedule [-help] [-version] [hostname ...]

Description

condor reschedule updates the information about a given machines resources and jobs to the central
manager. This can be used if one wants to see the current status of a machine. In order to do
this, one would first run condor reschedule, and then use the condor status command to get specific
information about that machine. condor reschedule also starts a new negotiation cycle between
resource owners and resource providers on the central managers, so that jobs can be matched with
machines right away. This can be useful in situations where the time between negotiation cycles is
somewhat long, and an administrator wants to see if a job they have in the queue will get matched
without waiting for the next negotiation cycle.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... Reconfigure condor on this list of machines

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized

Condor Version 6.1.17, Command Reference

condor reschedule (1) 288

without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor restart (1) 289

condor restart

Restart the condor master

Synopsis

condor restart [-help] [-version] [hostname ...]

Description

condor restart restarts the condor master on the local machine, or all the machines specified in the
hostname list. If, for some reason, the condor master needs to be restarted again with a fresh state,
this is the command that should be used to do so. Also, if the DAEMON LIST variable in the
condor configuration file has been changed, one must restart the condor master in order to see these
changes. A simple condor reconfigure is not enough in this situation. condor restart will safely
shut down all running jobs and all submitted jobs from the machine being restarted, shutdown all
the child daemons of the condor master, and restart the condor master.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

hostname ... A list of machines to restart the condor master on.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized

Condor Version 6.1.17, Command Reference

condor restart (1) 290

without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor rm (1) 291

condor rm

remove jobs from the condor queue

Synopsis

condor rm [-n schedd name] [-help] [-version] [job identifiers]

Description

condor rm removes one or more jobs from the Condor job queue. If the -n option is specified,
the named condor schedd is targeted for processing. Otherwise, the local condor schedd is tar-
geted. The jobs to be removed are identified by one or more job identifiers, as described below.
For any given job, only the owner of the job or one of the queue super users (defined by the
QUEUE SUPER USERS macro) can remove the job.

Options

Supported options are as follows:

-help Display usage information and exit

-version Display version information and exit

-n schedd name Remove jobs in the queue of the specified schedd

cluster (Job identifier.) Remove all jobs in the specified cluster

cluster.process (Job identifier.) Remove the specific job in the cluster

name (Job identifier.) Remove jobs belonging to specified user

-a (Job identifier.) Remove all the jobs in the queue

-constraint constraint (Job identifier.) Remove jobs matching specified constraint

Condor Version 6.1.17, Command Reference

condor rm (1) 292

General Remarks

When removing a PVM universe job, you should always remove the entire job cluster. (In the PVM
universe, each PVM job is assigned its own cluster number, and each machine class is assigned a
“process” number in the job’s cluster.) Removing a subset of the machine classes for a PVM job is
not supported.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor run (1) 293

condor run

Submit a shell command-line as a Condor job.

Synopsis

condor run “shell-cmd”

Description

condor run is a simple front-end to the condor submit command for submitting a shell command-
line as a vanilla universe Condor job. The condor run command waits for the Condor job to com-
plete, writes the job’s output to the terminal, and exits with the exit status of the Condor job. No
output will appear until the job completes. The shell command-line should be enclosed in quotes so
it is passed directly to condor run without modification by the invoking shell.

condor run will not read any input from the terminal while the job executes. If the shell command-
line requires input, you must explicitly redirect the input from a file to the command, as illustrated
in the example.

You can specify where condor run should execute the shell command-line with three environment
variables:

CONDOR ARCH Specifies the architecture of the execution machine (from the “Arch” field in the
output of condor status).

CONDOR OPSYS Specifies the operating system of the execution machine (from the “OpSys”
field in the output of condor status).

CONDOR REQUIREMENTS Specifies any additional requirements for the Condor job (as de-
scribed in manual page for condor submit on page 305). It is recommended that CON-
DOR REQUIREMENTS always be enclosed in parenthesis.

If one or more of these environment variables is specified, the job is submitted with:

requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && \
OpSys == $CONDOR_OPSYS

Otherwise, the job receives the default requirements expression, which requests a machine of the
same architecture and operating system of the machine on which condor run is executed.

All environment variables set when condor run is executed will be included in the environment of
the Condor job.

Condor Version 6.1.17, Command Reference

condor run (1) 294

condor run will remove the Condor job from the Condor queue and delete its temporary files if it is
killed before the Condor job finishes.

Examples

condor run can be used to compile jobs on architectures and operating systems to which the user
doesn’t have login access. For example:

$ setenv CONDOR_ARCH "SGI"
$ setenv CONDOR_OPSYS "IRIX65"
$ condor_run "f77 -O -o myprog myprog.f"
$ condor_run "make"
$ condor_run "condor_compile cc -o myprog.condor myprog.c"

Since condor run does not read input from the terminal, you must explicitly redirect input from a
file to the shell command. For example:

$ condor_run "cat input.dat | myprog > output.dat"

Files

condor run creates the following temporary files in the user’s working directory (replacing “pid”
with condor run’s process id):

.condor run.pid This is the shell script containing the shell command-line which is submitted to
Condor.

.condor submit.pid This is the submit file passed to condor submit.

.condor log.pid This is the Condor log file monitored by condor run to determine when the job
exits.

.condor out.pid This file contains the output of the Condor job (before it is copied to the terminal).

.condor error.pid This file contains any error messages for the Condor job (before they are copied
to the terminal).

The script removes these files when the job completes. However, if the script fails, it is possible that
these files will remain in the user’s working directory and the Condor job will remain in the queue.

Condor Version 6.1.17, Command Reference

condor run (1) 295

General Remarks

condor run is intended for submitting simple shell command-lines to Condor. It does not provide the
full functionality of condor submit. We have attempted to make condor run as robust as possible,
but it is possible that it will not correctly handle some possible condor submit errors or system
failures.

condor run jobs have the same restrictions as other vanilla universe jobs. Specifically, the current
working directory of the job must be accessible on the machine where the job runs. This typi-
cally means that the job must be submitted from a network file system such as NFS or AFS. Also,
since Condor does not manage AFS credentials, permissions must be set to allow unauthenticated
processes to access any AFS directories used by the Condor job.

All processes on the command-line will be executed on the machine where Condor runs the job.
Condor will not distribute multiple processes of a command-line pipe across multiple machines.

condor run will use the shell specified in the SHELL environment variable, if one exists. Otherwise,
it will use /bin/sh(t)o execute the shell command-line.

By default, condor run expects perl to be installed in /usr/bin/perl. If perl is installed in
another path, you can ask your Condor administrator to edit the path in the condor run script or
explicitly call perl from the command line:

$ perl [path-to-condor]/bin/condor_run "shell-cmd"

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor stats (1) 296

condor stats

Display historical information about the Condor pool

Synopsis

condor stats [-f filename] [-orgformat] [-pool hostname] [query-type] [time-range]

Description

condor stats is a tool that is used to display historic information about a Condor pool. Based on the
type of information requested (by specifying it using the command line arguments), a query is sent
to the collector, and the information received is displayed using the standard ouptut. If the -f option
is used the information will ne written to a file instead of the standard output. The -pool option can
be used to get information from other pools, instead of the local (default) pool. Condor pool. The
condor status tool can be used to query resource information (single or by platform), submitter and
user information, and checkpoint server information. When a time range is not specified, the query
retrieves information for the last day. Otherwise, information can be retrieved for other time ranges
such as the last specified number of hours, last week, last month, or a specified date range.

The information is diplayed in columns separated by tabs. The first column always reresents the
time, as a percentage of the range of the query (for example, a value of 50 in the first column
indicates that the information on that line corresponds to a time in the middle of the query time
range). If the -orgformat option is used, the time is displayed as number of seconds since the
beginning of 1970. The information in the rest of the columns depends on the query type.

The possible query types and the information they provide:

• Single resource query requested using the -resourcequery option and provides information
about a single machine. The information displayed includes the keyboard idle time (in sec-
onds), the load average, and the machine state.

• Single resource list requested using the -resourcelist option and provides a list of all the
machines for which the collector has historic information in the query’s time range.

• Resource group query requested using the -resgroupquery option and provides information
about a group of machines (based on operating system and architecture). The information
displayed includes number of machines in unclaimed state, matched state, claimed state, pre-
empting state, owner state, and total number of machines.

• Resource group list requested using the -resgrouplist option and provides a list of all the
group names for which the collector has historic information in the query’s time range.

Condor Version 6.1.17, Command Reference

condor stats (1) 297

• Submitter query requested using the -userquery option and provides information about a
submitter (a user submitting from a specific machine). The information displayed includes
the number of running jobs and the number of idle jobs.

• Submitter list requested using the -userlist option and provides a list of all the submitters for
which the collector has historic information in the query’s time range.

• User query requested using the -usergroupquery option and provides information about a user
(for all jobs submitted by that user, regardless of the machine they were submitted from). The
information displayed includes the number of running jobs and the number of idle jobs.

• User list requested using the -usergrouplist option and provides a list of all the users for which
the collector has historic information in the query’s time range.

• Checkpoint server query requested using the -ckptquery option and provides information
about a checkpoint server. The information displayed includes the number of bytes received
(in Mb), bytes sent (Mb), average receive bandwidth (in Kb/s), and average send bandwidth
(Kb/s).

• Checkpoint server list requested using the -ckptlist option and provides a list of all the check-
point servers for which the collector has historic information in the query’s time range.

One of the above query types must be specified on the command line. Note that logging of pool
history must be enabled in the collector, otherwise no information will be available and the query
will not be responded to.

Options

Supported options are as follows:

-f filename Write the information to a file instead of the standard output.

-pool hostname Contact the specified central manager instead of the local one.

-orgformat Display the information in the same format it is actually stored.

-lastday Get information for the last day.

-lastweek Get information for the last week.

-lastmonth Get information for the last month.

Condor Version 6.1.17, Command Reference

condor stats (1) 298

-lasthours n Get information for the n last hours.

-from m d y Get information for the time since the specified date.

-to m d y Get information for the time up to the specified date, instead of up to now.

-resourcequery name Perform a single resource query for the specified resource.

-resourcelist Get the list of resources.

-resgroupquery name Perform a resource group query for the specified group.

-resgrouplist Get the list of groups.

-userquery name Perform a submitter query for the specified submitter.

-userlist Get the list of submitters.

-usergroupquery name Perform a user query for the specified user.

-usergrouplist Get the list of users.

-ckptquery name Perform a checkpoint server query for the specified checkpoint server.

-ckptlist Get the list of checkpoint servers.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,

Condor Version 6.1.17, Command Reference

condor stats (1) 299

Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor status (1) 300

condor status

Display status of the Condor pool

Synopsis

condor status [help options] [query options] [display options] [custom options] [hostname . . .]

Description

condor status is a versatile tool that may be used to monitor and query the Condor pool. The con-
dor status tool can be used to query resource information, submitter information, checkpoint server
information, and daemon master information. The specific query sent and the resulting informa-
tion display is controlled by the query options supplied. Queries and display formats can also be
customized.

The options that may be supplied to condor status belong to five groups:

• Help options provide information about the condor status tool.

• Query options control the content and presentation of status information.

• Display options control the display of the queried information.

• Custom options allow the user to customize query and display information.

• Host options specify specific machines to be queried

At any time, only one help option, one query option and one custom option may be specified. Any
number of custom and host options may be specified.

Options

Supported options are as follows:

-help (Help option) Display usage information

-diagnose (Help option) Print out query ad without performing query

-avail (Query option) Query condor startd ads and identify resources which are available

Condor Version 6.1.17, Command Reference

condor status (1) 301

-claimed (Query option) Query condor startd ads and print information about claimed resources

-ckptsrvr (Query option) Query condor ckpt server ads and display checkpoint server attributes

-direct hostname (Query option) Go directly to the given hostname to get the ads to display

-master (Query option) Query condor master ads and display daemon master attributes

-pool hostname Query the specified central manager. (condor status queries COLLECTOR HOST
by default)

-schedd (Query option) Query condor schedd ads and display attributes

-server (Query option) Query condor startd ads and display resource attributes

-startd (Query option) Query condor startd ads

-state (Query option) Query condor startd ads and display resource state information

-submitters (Query option) Query ads sent by submitters and display important submitter attributes

-verbose (Display option) Display entire classads. Implies that totals will not be displayed.

-long (Display option) Display entire classads (same as -verbose)

-total (Display option) Display totals only

-constraint const (Custom option) Add constraint expression

-format fmt attr (Custom option) Register display format and attribute name. The fmt string has
the same format as printf(3), and attr is the name of the attribute that should be displayed
in the specified format.

Condor Version 6.1.17, Command Reference

condor status (1) 302

General Remarks

• The information obtained from condor startds and condor schedds may sometimes appear
to be inconsistent. This is normal since startds and schedds update the Condor manager at
different rates, and since there is a delay as information propagates through the network and
the system.

• Note that the ActivityTime in the Idle state is not the amount of time that the machine
has been idle. See the section on condor startd states in the Administrator’s Manual for more
information.

• When using condor status on a pool with SMP machines, you can either provide the host-
name, in which case you will get back information about all virtual machines that are repre-
sented on that host, or you can list specific virtual machines by name. See the examples below
for details.

• If you specify hostnames, without domains, Condor will automatically try to resolve those
hostnames into fully qualified hostnames for you. This also works when specifying specific
nodes of an SMP machine. In this case, everything after the “@” sign is treated as a hostname
and that is what is resolved.

• You can use the -direct option in conjunction with almost any other set of options. However,
at this time, the only daemon that will allow direct queries for its ad(s) is the condor startd.
So, the only options currently not supported with -direct are -schedd and -master. Most other
options use startd ads for their information, so they work seamlessly with -direct. The only
other restriction on -direct is that you may only use 1 -direct option at a time. If you want to
query information directly from multiple hosts, you must run condor status multiple times.

• Unless you use the local hostname with -direct, condor status will still have to contact a
collector to find the address where the specified daemon is listening. So, using a -pool option
in conjunction with -direct just tells condor status which collector to query to find the address
of the daemon you want. The information actually displayed will still be retrieved directly
from the daemon you specified as the argument to -direct.

Examples

Example 1 To view information from all nodes of an SMP machine, just use the hostname. For
example, if you had a 4-CPU machine, named “vulture.cs.wisc.edu”, here’s what you might see:

% condor_status vulture

Name OpSys Arch State Activity Loa-
dAv Mem ActvtyTime

vm1@vulture.c SOLARIS26 INTEL Owner Idle 0.020 128 0+00:57:13
vm2@vulture.c SOLARIS26 INTEL Claimed Busy 1.006 128 0+01:16:03

Condor Version 6.1.17, Command Reference

condor status (1) 303

vm3@vulture.c SOLARIS26 INTEL Claimed Busy 0.978 128 0+03:32:53
vm4@vulture.c SOLARIS26 INTEL Claimed Busy 1.001 128 0+02:21:07

Machines Owner Claimed Un-
claimed Matched Preempting

INTEL/SOLARIS26 4 0 4 0 0 0

Total 4 0 4 0 0 0

Example 2 To view information from a specific nodes of an SMP machine, specify the node directly.
You do this by providing the name of the virtual machine. This has the form vm#@hostname. For
example:

% condor_status vm2@vulture

Name OpSys Arch State Activity Loa-
dAv Mem ActvtyTime

vm2@vulture.c SOLARIS26 INTEL Claimed Busy 1.006 128 0+01:16:03

Machines Owner Claimed Un-
claimed Matched Preempting

INTEL/SOLARIS26 1 0 1 0 0 0

Total 1 0 1 0 0 0

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial

Condor Version 6.1.17, Command Reference

condor status (1) 304

Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor submit (1) 305

condor submit

Queue jobs for execution on remote machines

Synopsis

condor submit [–] [-v] [-n schedd name] [-r schedd name] submit-description file

Description

condor submit is the program for submitting jobs to Condor. condor submit requires a submit-
description file which contains commands to direct the queuing of jobs. One description file may
contain specifications for the queuing of many condor jobs at once. All jobs queued by a single
invocation of condor submit must share the same executable, and are referred to as a “job cluster”.
It is advantageous to submit multiple jobs as a single cluster because:

• Only one copy of the checkpoint file is needed to represent all jobs in a cluster until they begin
execution.

• There is much less overhead involved for Condor to start the next job in a cluster than for
Condor to start a new cluster. This can make a big difference if you are submitting lots of
short running jobs.

SUBMIT DESCRIPTION FILE COMMANDS

Each condor job description file describes one cluster of jobs to be placed in the condor execution
pool. All jobs in a cluster must share the same executable, but they may have different input and
output files, and different program arguments, etc. The submit-description file is then used as the
only command-line argument to condor submit.

The submit-description file must contain one executable command and at least one queue command.
All of the other commands have default actions.

The commands which can appear in the submit-description file are:

executable = <name> The name of the executable file for this job cluster. Only one executable
command may be present in a description file. If submitting into the Standard Universe,
which is the default, then the named executable must have been re-linked with the Condor
libraries (such as via the condor compile command). If submitting into the Vanilla Universe,
then the named executable need not be re-linked and can be any process which can run in the
background (shell scripts work fine as well).

input = <pathname> Condor assumes that its jobs are long-running, and that the user will not
wait at the terminal for their completion. Because of this, the standard files which normally

Condor Version 6.1.17, Command Reference

condor submit (1) 306

access the terminal, (stdin, stdout, and stderr), must refer to files. Thus, the filename specified
with input should contain any keyboard input the program requires (i.e. this file becomes
stdin). If not specified, the default value of /dev/null is used.

output = <pathname> The output filename will capture any information the program would nor-
mally write to the screen (i.e. this file becomes stdout). If not specified, the default value of
/dev/null is used. More than one job should not use the same output file, since this will cause
one job to overwrite the output of another.

error = <pathname> The error filename will capture any error messages the program would nor-
mally write to the screen (i.e. this file becomes stderr). If not specified, the default value of
/dev/null is used. More than one job should not use the same error file, since this will cause
one job to overwrite the errors of another.

arguments = <argument list> List of arguments to be supplied to the program on the command
line.

initialdir = <directory-path> Used to specify the current working directory for the Condor job.
Should be a path to a preexisting directory. If not specified, condor submit will automatically
insert the user’s current working directory at the time condor submit was run as the value for
initialdir.

requirements = <ClassAd Boolean Expression> The requirements command is a boolean
ClassAd expression which uses C-like operators. In order for any job in this cluster to run
on a given machine, this requirements expression must evaluate to true on the given machine.
For example, to require that whatever machine executes your program has a least 64 Meg of
RAM and has a MIPS performance rating greater than 45, use:

requirements = Memory >= 64 && Mips > 45

Only one requirements command may be present in a description file. By default, con-
dor submit appends the following clauses to the requirements expression:

1. Arch and OpSys are set equal to the Arch and OpSys of the submit machine. In other
words: unless you request otherwise, Condor will give your job machines with the same
architecture and operating system version as the machine running condor submit.

2. Disk > ExecutableSize. To ensure there is enough disk space on the target machine for
Condor to copy over your executable.

3. VirtualMemory >= ImageSize. To ensure the target machine has enough virtual mem-
ory to run your job.

4. If Universe is set to Vanilla, FileSystemDomain is set equal to the submit machine’s
FileSystemDomain.

You can view the requirements of a job which has already been submitted (along with every-
thing else about the job ClassAd) with the command condor q -l; see the command reference
for condor q on page 274. Also, see the Condor Users Manual for complete information on
the syntax and available attributes that can be used in the ClassAd expression.

Condor Version 6.1.17, Command Reference

condor submit (1) 307

rank = <ClassAd Float Expression> A ClassAd Floating-Point expression that states how to
rank machines which have already met the requirements expression. Essentially, rank ex-
presses preference. A higher numeric value equals better rank. Condor will give the job the
machine with the highest rank. For example,

requirements = Memory > 60
rank = Memory

asks Condor to find all available machines with more than 60 megabytes of memory and give
the job the one with the most amount of memory. See the Condor Users Manual for complete
information on the syntax and available attributes that can be used in the ClassAd expression.

priority = <priority> Condor job priorities range from -20 to +20, with 0 being the default. Jobs
with higher numerical priority will run before jobs with lower numerical priority. Note that
this priority is on a per user basis; setting the priority will determine the order in which your
own jobs are executed, but will have no effect on whether or not your jobs will run ahead of
another user’s jobs.

notification = <when> Owners of condor jobs are notified by email when certain events occur. If
when is set to Always, the owner will be notified whenever the job is checkpointed, and when
it completes. If when is set to Complete (the default), the owner will be notified when the
job terminates. If when is set to Error, the owner will only be notified if the job terminates
abnormally. If when is set to Never, the owner will not be mailed, regardless what happens to
the job. The statistics included in the email are documented in section 2.6.5 on page 31.

notify user = <email-address> Used to specify the email address to use when Condor sends email
about a job. If not specified, Condor will default to using :

job-owner@UID_DOMAIN

where UID DOMAIN is specified by the Condor site administrator. If UID DOMAIN has not
been specified, Condor will send the email to :

job-owner@submit-machine-name

copy to spool = <True | False> If copy to spool is set to True, then condor submit will copy the
executable to the local spool directory before running it on a remote host. Oftentimes this can
be quite time consuming and unnecessary. By setting it to False, condor submit will skip this
step. Defaults to True.

getenv = <True | False> If getenv is set to True, then condor submit will copy all of the user’s
current shell environment variables at the time of job submission into the job ClassAd. The
job will therefore execute with the same set of environment variables that the user had at
submit time. Defaults to False.

hold = <True | False> If hold is set to True, then the job will be submitted in the hold state. Jobs
in the hold state will not run until released by condor release.

environment = <parameter list> List of environment variables of the form :

Condor Version 6.1.17, Command Reference

condor submit (1) 308

<parameter> = <value>

Multiple environment variables can be specified by separating them with a semicolon (“ ; ”).
These environment variables will be placed into the job’s environment before execution. The
length of all characters specified in the environment is currently limited to 4096 characters.

log = <pathname> Use log to specify a filename where Condor will write a log file of what is
happening with this job cluster. For example, Condor will log into this file when and where
the job begins running, when the job is checkpointed and/or migrated, when the job completes,
etc. Most users find specifying a log file to be very handy; its use is recommended. If no log
entry is specified, Condor does not create a log for this cluster.

universe = <vanilla | standard | pvm | scheduler | globus | mpi> Specifies which Condor
Universe to use when running this job. The Condor Universe specifies a Condor execution
environment. The standard Universe is the default, and tells Condor that this job has been
re-linked via condor compile with the Condor libraries and therefore supports checkpointing
and remote system calls. The vanilla Universe is an execution environment for jobs which
have not been linked with the Condor libraries. Note: use the vanilla Universe to submit shell
scripts to Condor. The pvm Universe is for a parallel job written with PVM 3.4. The scheduler
is for a job that should act as a metascheduler. The globus universe translates the submit de-
scription file to a Globus RSL string and passes it to the globusrun program for execution.
The mpi universe is for running mpi jobs made with the MPICH package. See the Condor
User’s Manual for more information about using Universe.

image size = <size> This command tells Condor the maximum virtual image size to which you
believe your program will grow during its execution. Condor will then execute your job only
on machines which have enough resources, (such as virtual memory), to support executing
your job. If you do not specify the image size of your job in the description file, Condor will
automatically make a (reasonably accurate) estimate about its size and adjust this estimate
as your program runs. If the image size of your job is underestimated, it may crash due to
inability to acquire more address space, e.g. malloc() fails. If the image size is overestimated,
Condor may have difficulty finding machines which have the required resources. size must be
in kbytes, e.g. for an image size of 8 megabytes, use a size of 8000.

machine count = <min..max> | <max> If machine count is specified, Condor will not start
the job until it can simultaneously supply the job with min machines. Condor will continue
to try to provide up to max machines, but will not delay starting of the job to do so. If the
job is started with fewer than max machines, the job will be notified via a usual PvmHostAdd
notification as additional hosts come on line. Important: only use machine count if an only
if submitting into the PVM or MPI Universes. Use min..max for the PVM universe, and just
max for the MPI universe.

coresize = <size> Should the user’s program abort and produce a core file, coresize specifies the
maximum size in bytes of the core file which the user wishes to keep. If coresize is not
specified in the command file, the system’s user resource limit “coredumpsize” is used (except
on HP-UX).

nice user = <True | False> Normally, when a machine becomes available to Condor, Condor de-
cides which job to run based upon user and job priorities. Setting nice user equal to True

Condor Version 6.1.17, Command Reference

condor submit (1) 309

tells Condor not to use your regular user priority, but that this job should have last priority
amongst all users and all jobs. So jobs submitted in this fashion run only on machines which
no other non-nice user job wants — a true “bottom-feeder” job! This is very handy if a user
has some jobs they wish to run, but do not wish to use resources that could instead be used to
run other people’s Condor jobs. Jobs submitted in this fashion have “nice-user.” pre-appended
in front of the owner name when viewed from condor q or condor userprio. The default value
is False.

kill sig = <signal-number> When Condor needs to kick a job off of a machine, it will send the job
the signal specified by signal-number. signal-number needs to be an integer which represents
a valid signal on the execution machine. For jobs submitted to the Standard Universe, the
default value is the number for SIGTSTP which tells the Condor libraries to initiate a check-
point of the process. For jobs submitted to the Vanilla Universe, the default is SIGTERM
which is the standard way to terminate a program in UNIX.

buffer size = <bytes-in-buffer> Condor keeps a buffer of recently-used data for each file an ap-
plication opens. This option specifies the maximum number of bytes to be buffered for each
open file at the executing machine.

The buffer size and its effect on throughput may be viewed with the -io option to con-
dor status. In this version of Condor, the default buffer size is 512 KB, unless the configu-
ration file macro DEFAULT IO BUFFER SIZE has been set to a different default by your
administrator on your submission machine.

This option only applies to standard-universe jobs.

buffer block size = <bytes-in-block> When buffering is enabled, Condor will attempt to consol-
idate small read and write operations into large blocks. This option specifies the block size
Condor will use. A very small block size may actually decrease I/O performance. The block
size should definitely be larger than any of the I/O operations your program performs.

The buffer block size and its effect on throughput may be viewed with the -io option to
condor status. In this version of Condor, the default buffer block size is 32 KB, unless the
configuration file DEFAULT IO BUFFER BLOCK SIZE has been set to a different default
by your administrator on your submission machine.

This option only applies to standard-universe jobs.

file remaps = < “ name = newname ; name2 = newname2 ... ”> Directs Condor to use a new
filename in place of an old one. name describes a filename that your job may attempt to
open, and newname describes the filename it should be replaced with. newname may include
an optional leading access specifier, local: or remote:. If left unspecified, the default
access specifier is remote:. Multiple remaps can be specified by separating each with a
semicolon.

If you wish to remap file names that contain equals signs or semicolons, these special chra-
caters may be escaped with a backslash.

This option only applies to standard-universe jobs.

Example One: Suppose that your job reads a file named dataset.1. To instruct Condor
to force your job to read other.dataset instead, add this to the submit file:

Condor Version 6.1.17, Command Reference

condor submit (1) 310

file_remaps = "dataset.1=other.dataset"

Example Two: Suppose that your run many jobs which all read in the same large file, called
very.big. If this file can be found in the same place on a local disk in every ma-
chine in the pool, (say /bigdisk/bigfile,) you can instruct Condor of this fact by
remapping very.big to /bigdisk/bigfile and specifying that the file is to be
read locally, which will be much faster than reading over the network.

file_remaps = "very.big = local:/bigdisk/bigfile"

Example Three: Several remaps can be applied at once by separating each with a semicolon.

file_remaps = "very.big = local:/bigdisk/bigfile ; dataset.1 = other.dataset"

rendezvousdir = <directory-path> Used to specify the shared-filesystem directory to be used for
filesystem authentication when submitting to a remote scheduler. Should be a path to a preex-
isting directory.

x509directory = <directory-path> Used to specify the directory which contains the certificate,
private key, and trusted certificate directory for GSS authentication. If this attribute is set,
the environment variables X509 USER KEY, X509 USER CERT, and X509 CERT DIR are
exported with default values. See section 3.9 for more info.

x509userproxy = <full-pathname> Used to override the default pathname for X509 user certifi-
cates. The default location for X509 proxies is the /tmp directory, which is generally a local
filesystem. Setting this value would allow Condor to access the proxy in a shared filesystem
(e.g., AFS). See section 3.9 for more info.

globusscheduler = <scheduler-name> Used to specify the Globus resource to which the job
should be submitted. More than one scheduler can be submitted to, simply place a queue
command after each instance of globusscheduler. Each instance should be a valid Globus
scheduler, using either the full Globus contact string or the host/scheduler format shown be-
low: NOTE: Submit attributes which start with ”globus” are not macro expanded

Example: To submit to the LSF scheduler of the Globus gatekeeper on lego at Boston Uni-
versity:

...
GlobusScheduler = lego.bu.edu/jobmanager-lsf
queue

globusarguments = <argument-list> This space-separated list of arguments is copied into the
globusrun arguments attribute To have Condor expand the macros before passing the argu-
ments on to globusrun, use the arguments attribute rather than globusarguments. NOTE:
Submit attributes which start with ”globus” are not macro expanded

globusexecutable = <executable-path> Similar to the executable attribute, but without macro ex-
pansion. The [globus]executable argument is passed to globusrun to be executed on the remote
Globus node.

Condor Version 6.1.17, Command Reference

condor submit (1) 311

globusrsl = <RSL-string> Used to provide any additional Globus RSL string attributes which are
not covered by globusexecutable, globusarguments, and globusscheduler. NOTE: Submit
attributes which start with ”globus” are not macro expanded

+<attribute> = <value> A line which begins with a ’+’ (plus) character instructs condor submit
to simply insert the following attribute into the job ClasssAd with the given value.

queue [number-of-procs] Places one or more copies of the job into the Condor queue. If desired,
new input, output, error, initialdir, arguments, nice user, priority, kill sig, coresize, or
image size commands may be issued between queue commands. This is very handy when
submitting multiple runs into one cluster with one submit file; for example, by issuing an
initialdir between each queue command, each run can work in its own subdirectory. The
optional argument number-of-procs specifies how many times to submit the job to the queue,
and defaults to 1.

In addition to commands, the submit-description file can contain macros and comments:

Macros Parameterless macros in the form of $(macro name) may be inserted anywhere in con-
dor description files. Macros can be defined by lines in the form of

<macro_name> = <string>

Two pre-defined macros are supplied by the description file parser. The $(Cluster) macro
supplies the number of the job cluster, and the $(Process) macro supplies the number of
the job. These macros are intended to aid in the specification of input/output files, arguments,
etc., for clusters with lots of jobs, and/or could be used to supply a Condor process with its
own cluster and process numbers on the command line. The $(Process) macro should not
be used for PVM jobs.

Comments Blank lines and lines beginning with a ’#’ (pound-sign) character are ignored by the
submit-description file parser.

Options

Supported options are as follows:

– Accept the command file from stdin.

-v Verbose output - display the created job class-ad

-n schedd name Submit to the specified schedd. This option is used when there is more than one
schedd running on the submitting machine

Condor Version 6.1.17, Command Reference

condor submit (1) 312

-r schedd name Submit to a remote schedd. The jobs will be submitted to the schedd on the speci-
fied remote host. On Unix systems, the Condor administrator for you site must override the
default AUTHENTICATION METHODS configuration setting to enable remote filesystem
(FS REMOTE) authentication.

Exit Status

condor submit will exit with a status value of 0 (zero) upon success, and a non-zero value upon
failure.

Examples

Example 1: The below example queues three jobs for execution by Condor. The first will be given
command line arguments of ’15’ and ’2000’, and will write its standard output to ’foo.out1’. The
second will be given command line arguments of ’30’ and ’2000’, and will write its standard output
to ’foo.out2’. Similarly the third will have arguments of ’45’ and ’6000’, and will use ’foo.out3’ for
its standard output. Standard error output, (if any), from all three programs will appear in ’foo.error’.

####################
#
Example 1: queueing multiple jobs with differing
command line arguments and output files.
#
####################

Executable = foo

Arguments = 15 2000
Output = foo.out1
Error = foo.err1
Queue

Arguments = 30 2000
Output = foo.out2
Error = foo.err2
Queue

Arguments = 45 6000
Output = foo.out3
Error = foo.err3
Queue

Condor Version 6.1.17, Command Reference

condor submit (1) 313

Example 2: This submit-description file example queues 150 runs of program ’foo’ which must
have been compiled and linked for Silicon Graphics workstations running IRIX 6.x. Condor will not
attempt to run the processes on machines which have less than 32 megabytes of physical memory,
and will run them on machines which have at least 64 megabytes if such machines are available.
Stdin, stdout, and stderr will refer to “in.0”, “out.0”, and “err.0” for the first run of this program
(process 0). Stdin, stdout, and stderr will refer to “in.1”, “out.1”, and “err.1” for process 1, and
so forth. A log file containing entries about where/when Condor runs, checkpoints, and migrates
processes in this cluster will be written into file “foo.log”.

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Requirements = Memory >= 32 && OpSys == "IRIX6" && Arch =="SGI"
Rank = Memory >= 64
Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log

Queue 150

General Remarks

• For security reasons, Condor will refuse to run any jobs submitted by user root (UID = 0) or
by a user whose default group is group wheel (GID = 0). Jobs submitted by user root or a user
with a default group of wheel will appear to sit forever in the queue in an idle state.

• All pathnames specified in the submit-description file must be less than 256 characters in
length, and command line arguments must be less than 4096 characters in length; otherwise,
condor submit gives a warning message but the jobs will not execute properly.

• Somewhat understandably, behavior gets bizzare if the user makes the mistake of requesting
multiple Condor jobs to write to the same file, and/or if the user alters any files that need to be
accessed by a Condor job which is still in the queue (i.e. compressing of data or output files
before a Condor job has completed is a common mistake).

• To disable checkpointing for Standard Universe jobs, include the line:

+WantCheckpoint = False

Condor Version 6.1.17, Command Reference

condor submit (1) 314

in the submit-description file before the queue command(s).

See Also

Condor User Manual

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor submit dag (1) 315

condor submit dag

Manage and queue jobs within a specified DAG for execution on remote machines

Synopsis

condor submit dag [-no submit] [-verbose] [-force] [-maxjobs NumberOfJobs]
[-log LogFileName] [-notification value] DAGInputFile

Description

condor submit dag is the program for submitting a DAG (directed acyclic graph) of jobs for execu-
tion under Condor. The program enforces the job dependencies defined in the DAGInputFile. The
DAGInputFile contains commands to direct the submission of jobs implied by the nodes of a DAG
to Condor. See the Condor User Manual, section 2.11 for a complete description.

Options

Supported options are as follows:

-no submit Produce the Condor submit description file for DAGMan, but do not submit DAGMan
as a Condor job.

-verbose Give verbose error messages.

-force Require condor submit dag to overwrite the files that it produces, if the files already exist.

-maxjobs NumberOfJobs Sets the maximum number of jobs within the DAG that may be submit-
ted to Condor at one time. NumberOfJobs is a positive integer.

-log LogFileName Forces condor submit dag to omit the check of Condor submit description
files for nodes within the DAG to verify that they all use the same log file. The argument
LogFileName is used as the single, common log file.

-notification value Sets the e-mail notification for DAGMan itself. This information will be
used within the Condor submit description file for DAGMan. This file is produced by
condor submit dag. See notification within the section of submit description file commands
in the condor submit manual page on page 305 for specification of value.

Condor Version 6.1.17, Command Reference

condor submit dag (1) 316

See Also

Condor User Manual

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor userlog (1) 317

condor userlog

Display and summarize job statistics from job log files.

Synopsis

condor userlog [-help] [-total | -raw] [-debug] [-evict] [-j cluster | cluster.proc] [-all]
[-hostname] logfile . . .

Description

condor userlog parses the information in job log files and displays summaries for each workstation
allocation and for each job. See the manual page for condor submit on page 305 for instructions for
specifying that Condor write a log file for your jobs.

If -total is not specified, condor userlog will first display a record for each workstation allocation,
which includes the following information:

Job The cluster/process id of the Condor job.

Host The host where the job ran. By default, the host’s IP address is displayed. If -hostname is
specified, the hostname will be displayed instead.

Start Time The time (month/day hour:minute) when the job began running on the host.

Evict Time The time (month/day hour:minute) when the job was evicted from the host.

Wall Time The time (days+hours:minutes) for which this workstation was allocated to the job.

Good Time The allocated time (days+hours:min) which contributed to the completion of this job.
If the job exited during the allocation, then this value will equal “Wall Time.” If the job
performed a checkpoint, then the value equals the work saved in the checkpoint during this
allocation. If the job did not exit or perform a checkpoint during this allocation, the value
will be 0+00:00. This value can be greater than 0 and less than “Wall Time” if the application
completed a periodic checkpoint during the allocation but failed to checkpoint when evicted.

CPU Usage The CPU time (days+hours:min) which contributed to the completion of this job.

condor userlog will then display summary statistics per host:

Host/Job The IP address or hostname for the host.

Wall Time The workstation time (days+hours:minutes) allocated by this host to the jobs specified
in the query. By default, all jobs in the log are included in the query.

Condor Version 6.1.17, Command Reference

condor userlog (1) 318

Good Time The time (days+hours:minutes) allocated on this host which contributed to the comple-
tion of the jobs specified in the query.

CPU Usage The CPU time (days+hours:minutes) obtained from this host which contributed to the
completion of the jobs specified in the query.

Avg Alloc The average length of an allocation on this host (days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when a job was evicted from this
host without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

condor userlog will then display summary statistics per job:

Host/Job The cluster/process id of the Condor job.

Wall Time The total workstation time (days+hours:minutes) allocated to this job.

Good Time The total time (days+hours:minutes) allocated to this job which contributed to the job’s
completion.

CPU Usage The total CPU time (days+hours:minutes) which contributed to this job’s completion.

Avg Alloc The average length of a workstation allocation obtained by this job in minutes
(days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when this job was evicted from a
host without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

Finally, condor userlog will display a summary for all hosts and jobs.

Options

Supported options are as follows:

-help Get a brief description of the supported options

-total Only display job totals

Condor Version 6.1.17, Command Reference

condor userlog (1) 319

-raw Display raw data only

-debug Debug mode

-j Select a specific cluster or cluster.proc

-evict Select only allocations which ended due to eviction

-all Select all clusters and all allocations

-hostname Display hostname instead of IP address

General Remarks

Since the Condor job log file format does not contain a year field in the timestamp, all entries are
assumed to occur in the current year. Allocations which begin in one year and end in the next will
be silently ignored.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor userprio (1) 320

condor userprio

Manage user priorities

Synopsis

condor userprio [-pool hostname] [-all] [-usage] [-setprio username value]
[-setfactor username value] [-resetusage username] [-resetall] [-getreslist username] [-allusers]
[-activefrom month day year] [-l]

Description

condor userprio with no arguments, lists the active users (see below) along with their priorities, in
increasing priority order. The -all option can be used to display more detailed information about
each user, which includes the following columns:

Effective Priority The effective priority value of the user, which is used to calculate the user’s
share when allocating resources. A lower value means a higher priority, and the minimum
value (highest priority) is 0.5. The effective priority is calculated by multiplying the real
priority by the priority factor.

Real Priority The value of the real priority of the user. This value follows the user’s resource usage.

Priority Factor The system administrator can set this value for each user, thus controlling a user’s
effective priority relative to other users. This can be used to create different classes of users.

Res Used The number of resources currently used (e.g. the number of running jobs for that user).

Accumulated Usage The accumulated number of resource-hours used by the user since the usage
start time.

Usage Start Time The time since when usage has been recorded for the user. This time is set when
a user job runs for the first time. It is reset to the present time when the usage for the user is
reset (with the -resetusage or -resetall options).

Last Usage Time The most recent time a resource usage has been recorded for the user.

The -usage option displays the username, accumulated usage, usage start time and last usage time
for each user, sorted on accumulated usage.

The -setprio, -setfactor options are used to change a user’s real priority and priority factor. The
-resetusage and -resetall options are used to reset the accumulated usage for users. The usage start
time is set to the current time when the accumulated usage is reset. These options require adminis-
trator privilages.

Condor Version 6.1.17, Command Reference

condor userprio (1) 321

By default only users for whom usage was recorded in the last 24 hours or whose priority is greater
than the minimum are listed. The -activefrom and -allusers options can be used to display users who
had some usage since a specified date, or ever. The summary line for last usage time will show this
date.

The -getreslist option is used to display the resources currently used by a user. The output includes
the start time (the time the resource was allocated to the user), and the match time (how long has the
resource been allocated to the user).

Note that when specifying usernames on the command line, the name must include the uid domain
(e.g. user@uid-domain - exactly the same way usernames are listed by the userprio command).

The -pool option can be used to contact a different central-manager instead of the local one (the
default).

Options

Supported options are as follows:

-pool hostname Contact the specified hostname instead of the local central manager. This can be
used to check other pools.

-all Display detailed information about each user.

-usage Display usage information for each user.

-setprio username value Set the real priority of the specified user to the specified value.

-setfactor username value Set the priority factor of the specified user to the specified value.

-resetusage username Reset the accumulated usage of the specified user to zero.

-resetall Reset the accumulated usage of all the users to zero.

-getreslist username Display all the resources currently allocated to the specified user.

-allusers Display information for all the users who have some recorded accumulated usage.

Condor Version 6.1.17, Command Reference

condor userprio (1) 322

-activefrom month day year Display information for users who have some recorded accumulated
usage since the specified date.

-l Show the class-ad which was received from the central-manager in long format.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17, Command Reference

condor vacate (1) 323

condor vacate

Vacate jobs that are running on the specified hosts

Synopsis

condor vacate [-help] [-version] [-fast] [hostname ...]

Description

condor vacate causes the condor startd to checkpoint any running jobs and make them vacate the
machine. The job remains in the submitting machine’s job queue, however.

If the job on the specified host is running in the Standard Universe, then the job is first checkpointed
and then killed (and will then restart somewhere else where it left off). If the job on the specified host
is running in the Vanilla Universe, then the job is not checkpointed but is simply killed (and will then
restart somewhere else from the beginning). If there is currently no Condor job running on that host,
then condor vacate has no effect. Normally there is no need for the user or administrator to explicitly
run condor vacate. Vacating a running condor job off of a machine is handled automatically by
Condor by following the policies stated in Condor’s configuration files.

Options

Supported options are as follows:

-help Display usage information

-version Display version information

-fast Hard-kill jobs instead of checkpointing them

Author

Condor Team, University of Wisconsin–Madison

Condor Version 6.1.17, Command Reference

324

Copyright

Copyright c© 1990-2001 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. No use of the Condor Software Program is authorized
without the express consent of the Condor Team. For more information contact: Condor Team,
Attention: Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI
53706-1685, (608) 262-0856 or miron@cs.wisc.edu.

U.S. Government Rights Restrictions: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial
Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable, Condor Team, Attention:
Professor Miron Livny, 7367 Computer Sciences, 1210 W. Dayton St., Madison, WI 53706-1685,
(608) 262-0856 or miron@cs.wisc.edu.

See the Condor Version 6.1.17 Manual for additional notices.

Condor Version 6.1.17 Reference Manual

INDEX

condor glidein, 44
crontab program, 109
condor startd, 120

, 55

ACCOUNTANT LOCAL DOMAIN macro, 102
ActivationTimer macro, 136
activities and state figure, 129
activity

of a machine, 127
transitions, 130–136
transitions summary, 135

ActivityTimer macro, 136
administrator

e-mail to, 70
administrator’s manual

on UNIX, 57–176
AFS

interaction with, 53
agents

condor shadow, 13
ALIVE INTERVAL macro, 95
ALLOW REMOTE SUBMIT macro, 96
ALTERNATE STARTER 1 macro, 92
APPEND PREF STANDARD macro, 99
APPEND PREF VANILLA macro, 99
APPEND RANK STANDARD macro, 99, 115,

168
APPEND RANK VANILLA macro, 99
APPEND REQ STANDARD macro, 99, 115,

168
APPEND REQ VANILLA macro, 99
ARCH macro, 78, 158, 243
Arguments macro, 223

argv[0]
Condor use of, 56

AUTHENTICATION METHODS macro, 84,
152, 232

BackgroundLoad macro, 136
batch system, 8
BIN macro, 79
buffer block size macro, 100
buffer size macro, 100

central manager, 57, 58
installation issues, 63

checkpoint, 2, 3, 13
periodic, 3

checkpoint image, 13
checkpoint server, 58

configuration of, 111, 165
installation, 110–115, 163–168
multiple servers, 112, 166

CKPT SERVER DEBUG macro, 112, 165
CKPT SERVER DIR macro, 88, 111, 165
CKPT SERVER HOST macro, 88, 112, 113,

166, 167, 174, 224
CKPT SERVER LOG macro, 112, 165
ClassAd, 3, 4, 9

attributes, 9
example, 10
job, 9
job attributes, 21, 123
machine, 9
machine attributes, 19, 120

ClassAd attribute
rank, 18
requirements, 18, 31

325

INDEX 326

CLASSAD LIFETIME macro, 101
CLIENT TIMEOUT macro, 101
Cluster macro, 311
cluster macro, 50
CM IP ADDR macro, 174, 236
COLLECTOR DEBUG macro, 102
COLLECTOR HOST macro, 78, 174, 244,

276, 301
COLLECTOR NAME macro, 101, 245
COLLECTOR SOCKET BUFSIZE macro,

101, 233
COMPRESS PERIODIC CKPT macro, 98,

237
COMPRESS VACATE CKPT macro, 98, 237
Condor

availability, 5
binaries, 206
configuration, 75
contact information, 6
default policy, 136
distribution, 206–207
downloading, 206–207
FAQ, 206–212
Frequently Asked Questions, 206–212
getting, 206–207
limitations, under UNIX, 4
mailing list, 212
mailing-list, 212
new versions, notification of, 212
overview, 1–4
Personal, 207
pool, 57
PVM applications, 34
resource allocation, 9
resource management, 3
source code, 207
universe, 12
Unix administrator, 63
user manual, 8–56
Y2K, 211–212

Condor commands
condor checkpoint, 249
condor compile, 53, 251
condor config val, 254
condor findhost, 257
condor history, 259

condor hold, 261
condor master, 263
condor master off, 264
condor off, 266
condor on, 268
condor preen, 270
condor prio, 29, 33, 272
condor q, 12, 27, 30, 274
condor qedit, 279
condor reconfig, 281
condor reconfig schedd, 283
condor release, 285
condor reschedule, 287
condor restart, 289
condor rm, 12, 29, 291
condor run, 293
condor stats, 296
condor status, 10, 12, 18, 26, 28, 300
condor submit, 12, 15, 54, 305
condor submit dag, 315
condor userprio, 33, 320
condor vacate, 323

Condor daemon
condor shadow, 13, 55

Condor-PVM, 34
CONDOR ADMIN macro, 80, 90, 100
condor checkpoint command, 249
condor ckpt server, 60
condor collector, 60
condor compile command, 251
condor config val command, 254
CONDOR DEVELOPERS macro, 101
CONDOR DEVELOPERS COLLECTOR

macro, 101
condor findhost command, 257
condor history command, 259
condor hold command, 261
CONDOR HOST macro, 78, 168, 174
condor init script, 68
condor install script, 68
condor kbdd, 60
condor master, 59
condor master command, 263
condor master off command, 264
condor negotiator, 60
condor off command, 266

Condor Version 6.1.17 Reference Manual

INDEX 327

condor on command, 268
condor preen command, 270
condor prio command, 272
condor q command, 274
condor qedit command, 279
condor reconfig command, 281
condor reconfig schedd command, 283
condor release command, 285
CONDOR REQUIREMENTS macro, 293
condor reschedule command, 287
condor restart command, 289
condor rm command, 291
condor run command, 293
condor schedd, 59
condor shadow, 13, 28, 60
condor startd, 59
condor starter, 59
condor stats command, 296
condor status command, 300
condor submit command, 305
condor submit dag command, 315
condor userprio command, 320
condor vacate command, 323
Condor View

use ofcrontab program, 109
CONDOR VIEW HOST macro, 97
CONDORADMIN macro, 109
CondorView, 104

installation, 105–109
CondorView Client

installation, 107
configuration, 75

example, 125
RANK, 125
START expression, 120
startd policy, 120

configuration file
Condor-wide entries, 78
daemon logging entries, 81
macro definitions, 75
macros, 78
pre-defined macros, 77
subsystem names, 77

configuration files
location, 66, 72

configuration macro

ACCOUNTANT LOCAL DOMAIN, 102
ALIVE INTERVAL, 95
ALLOW REMOTE SUBMIT, 96
ALTERNATE STARTER 1, 92
APPEND PREF STANDARD, 99
APPEND PREF VANILLA, 99
APPEND RANK STANDARD, 99, 115,

168
APPEND RANK VANILLA, 99
APPEND REQ STANDARD, 99, 115,

168
APPEND REQ VANILLA, 99
ARCH, 78, 158, 243
AUTHENTICATION METHODS, 84,

152, 232
ActivationTimer, 136
ActivityTimer, 136
Arguments, 223
BIN, 79
BackgroundLoad, 136
CKPT SERVER DEBUG, 112, 165
CKPT SERVER DIR, 88, 111, 165
CKPT SERVER HOST, 88, 112, 113,

166, 167, 174, 224
CKPT SERVER LOG, 112, 165
CLASSAD LIFETIME, 101
CLIENT TIMEOUT, 101
CM IP ADDR, 174, 236
COLLECTOR DEBUG, 102
COLLECTOR HOST, 78, 174, 244, 276,

301
COLLECTOR NAME, 101, 245
COLLECTOR SOCKET BUFSIZE, 101,

233
COMPRESS PERIODIC CKPT, 98, 237
COMPRESS VACATE CKPT, 98, 237
CONDORADMIN, 109
CONDOR ADMIN, 80, 90, 100
CONDOR DEVELOPERS COLLECTOR,

101
CONDOR DEVELOPERS, 101
CONDOR HOST, 78, 168, 174
CONDOR REQUIREMENTS, 293
CONDOR VIEW HOST, 97
CONSOLE DEVICES, 73, 92, 159
CONTINUE, 42

Condor Version 6.1.17 Reference Manual

INDEX 328

CPU Busy, 136
CPU Idle, 136
CREATE CORE FILES, 81, 245
Cluster, 311
ContinueIdleTime, 136
DAEMON LIST, 68, 89, 90, 106, 111,

117, 159, 160, 165, 218, 228
DC DAEMON LIST, 89, 218
DEFAULT DOMAIN NAME, 81, 243,

245
DEFAULT IO BUFFER BLOCK SIZE,

100, 221, 309
DEFAULT IO BUFFER SIZE, 100,

221, 309
DEFAULT RANK STANDARD, 100
DEFAULT RANK VANILLA, 100
DISCON-

NECTED KEYBOARD IDLE BOOST,
94, 172

ETC, 159
EVENTD INTERVAL, 103, 115
EVENTD MAX PREPARATION, 103
EVENTD SHUTDOWN CLEANUP INTERVAL,

104
EVENTD SHUTDOWN SLOW START INTERVAL,

104
EVENT LIST, 103, 116
EXECUTE, 20, 80, 121
EXEC TRANSFER ATTEMPTS, 98
FILESYSTEM DOMAIN, 70, 78, 86, 87,

236
FLOCK COLLECTOR HOSTS, 97, 169
FLOCK NEGOTIATOR HOSTS, 97, 169
FLOCK VIEW SERVERS, 97
FLOCK VIEW SERVER, 97
FS PATHNAME, 236
FULL HOSTNAME, 70, 77, 81
GLOBUSRUN, 45, 100
HAS AFS, 87
HISTORY, 81, 100
HOSTALLOW. . ., 84
HOSTALLOW ADMINISTRATOR, 174
HOSTALLOW NEGOTIATOR, 174
HOSTALLOW READ, 150
HOSTALLOW WRITE, 45
HOSTALLOW, 84

HOSTDENY, 84
HOSTNAME, 64, 71, 72, 77, 81
HOST ALLOW ADMINISTRATOR, 153
HighLoad, 136
INVALID LOG FILES, 270
JOB RENICE INCREMENT, 99, 125,

247
JOB START DELAY, 95, 233
KBDD, 68
KEEP POOL HISTORY, 102, 105
KILLING TIMEOUT, 134, 135
KILL, 42, 142
KeyboardBusy, 136
LIB, 79
LOCAL CONFIG FILE, 66, 75, 80, 81,

158–160, 243, 247
LOCAL DIR, 64, 67, 68, 79–81, 157
LOCAL ROOT CONFIG FILE, 66, 76,

247
LOCK, 65, 68, 81, 82, 96, 97
LOG, 79, 82, 100, 144
LastCkpt, 136
MAIL, 80, 159, 160
MASTER ADDRESS FILE, 92
MASTER BACKOFF CEILING, 91
MASTER BACKOFF FACTOR, 90, 91
MASTER CHECK INTERVAL, 101
MASTER CHECK NEW EXEC INTERVAL,

90
MASTER DEBUG, 92
MASTER EXPRS, 91
MASTER NEW BINARY DELAY, 90
MASTER RECOVER FACTOR, 91
MASTER UPDATE INTERVAL, 90
MATCH TIMEOUT, 132, 135
MAX CKPT SERVER LOG, 112, 165
MAX DISCARDED RUN TIME, 89, 110,

164, 246
MAX JOBS RUNNING, 28, 95, 247
MAX SHADOW EXCEPTIONS, 95, 246
MAX SUBSYS LEVEL LOG, 83
MAX SUBSYS LOG, 82, 83
MAX VIRTUAL MACHINE TYPES, 94
MachineBusy, 136
MaxSuspendTime, 136
MaxVacateTime, 136

Condor Version 6.1.17 Reference Manual

INDEX 329

NEGOTI-
ATE ALL JOBS IN CLUSTER,
97, 218

NEGOTIATOR DEBUG, 103
NEGOTIATOR HOST, 78, 79, 97, 174
NEGOTIATOR INTERVAL, 102, 103
NEGOTIA-

TOR SOCKET CACHE SIZE,
103

NEGOTIATOR TIMEOUT, 102
NEGOTIATOR TRAFFIC INTERVAL,

103
NEGOTIATOR TRAFFIC LIMIT, 103
NETWORK INTERFACE, 174, 236
NICE USER PRIO FACTOR, 102, 118
NODE, 43
NUM CPUS, 93, 230
NUM VIRTUAL MACHINES TYPE <N>,

171
NUM VIRTUAL MACHINES, 171
NUM VIRUAL MACHINES TYPE <N>,

94
NUM VIRUAL MACHINES, 94
NonCondorLoadAvg, 136
OBITUARY LOG LENGTH, 90
OPSYS, 78, 158, 243
ORGNAME, 109
PATH, 109
PERIODIC CHECKPOINT, 224
PERIODIC MEMORY SYNC, 98, 237
POLLING INTERVAL, 92, 133, 238
POOL HISTORY DIR, 102, 105, 106
POOL HISTORY MAX STORAGE, 102,

105
POOL HISTORY SAMPLING INTERVAL,

102
PREEMPTION RANK, 103
PREEMPTION REQUIREMENTS, 33,

103, 119, 276
PREEMPT, 42, 142
PREEN ADMIN, 100, 270
PREEN ARGS, 90, 234
PREEN INTERVAL, 90
PREEN, 89, 100, 234
PRIORITY HALFLIFE, 33, 102, 118,

119

PUBLISH OBITUARIES, 90
PVMD, 98
PVMGS, 98
Process, 311
QUERY TIMEOUT, 101
QUEUE CLEAN INTERVAL, 96
QUEUE SUPER USERS, 96
RELEASE DIR, 66, 67, 79, 157, 159,

160
REMOTE PRIO FACTOR, 102, 119
RESERVED DISK, 20, 80, 121
RESERVED SWAP, 80, 95
RESERVE AFS CACHE, 87
Rank, 235
SBIN, 79, 89, 92, 95, 98
SCHEDD ADDRESS FILE, 96
SCHEDD DEBUG, 83, 96, 239
SCHEDD EXPRS, 96
SCHEDD INTERVAL, 95
SCHEDD LOCK, 96
SHADOW DEBUG, 98
SHADOW GLOBUS, 45, 100
SHADOW LOCK, 97
SHADOW LOG, 31
SHADOW PVM, 95
SHADOW RENICE INCREMENT, 95
SHADOW SIZE ESTIMATE, 95
SHADOW, 82, 95
SHELL, 295
SHUTDOWN FAST TIMEOUT, 90
SHUTDOWN GRACEFUL TIMEOUT, 84
SHUTDOWN, 116, 117
SLOW CKPT SPEED, 98, 237
SOFT UID DOMAIN, 70, 86, 243
SPOOL, 79, 88, 100
STARTD ADDRESS FILE, 93
STARTD ARGS, 89
STARTD DEBUG, 93, 239
STARTD EXPRS, 93, 114, 168, 224
STARTD HAS BAD UTMP, 92
STARTD JOB EXPRS, 93
STARTD LOG, 82
STARTER CHOOSES CKPT SERVER,

88, 113, 166, 240
STARTER DEBUG, 99
STARTER LOCAL LOGGING, 99, 240

Condor Version 6.1.17 Reference Manual

INDEX 330

STARTER, 92
START DAEMONS, 90
START MASTER, 90
STATSDIR, 109
SUBMIT EXPRS, 85
SUBSYSTEM, 77, 244
SUBSYS ADDRESS FILE, 84, 92, 93,

100
SUBSYS ARGS, 89, 90, 234
SUBSYS DEBUG, 82, 92, 93, 98, 102,

103
SUBSYS EXPRS, 85, 91, 93
SUBSYS LEVEL LOG, 83
SUBSYS LOCK, 82
SUBSYS LOG, 82
SUBSYS, 81, 89
SUSPEND, 42
StartIdleTime, 136
StateTimer, 136
TILDE, 64, 77, 79
TRUNC SUBSYS LEVEL LOG ON OPEN,

83
TRUNC SUBSYS LOG ON OPEN, 82,

83
UID DOMAIN, 70, 78, 85–87, 175, 307
UPDATE INTERVAL, 92, 130, 238
USER JOB WRAPPER, 99, 235
USE AFS, 87, 88
USE CKPT SERVER, 88, 89, 112, 113,

166, 222, 224
USE NFS, 87, 88
VACATE, 142
VALID LOG FILES, 82, 96, 97, 100,

144, 270
VALID SPOOL FILES, 100, 270
VIEWDIR, 109
VIRTUAL MACHINES CONNECTED TO CONSOLE,

93, 172
VIRTUAL MACHINES CONNECTED TO KEYBOARD,

94, 172
VIRTUAL MACHINE TYPE <N>, 170
VIRUAL MACHINE TYPE <N>, 94
VOS PATHNAME, 236
WALL CLOCK CKPT INTERVAL, 96,

223
WANT *, 142

WANT SUSPEND, 142
WANT VACATE, 142
buffer block size, 100
buffer size, 100
cluster, 50
macro name, 311

Console activity, 202
CONSOLE DEVICES macro, 73, 92, 159
CONTINUE macro, 42
ContinueIdleTime macro, 136
contrib module

checkpoint server, 110, 163
event daemon, 115
MPI, 115
PVM, 115

CPU activity, 202
CPU Busy macro, 136
CPU Idle macro, 136
crashes, 211
CREATE CORE FILES macro, 81, 245

daemon
condor startd, 120
condor ckpt server, 60
condor collector, 60
condor kbdd, 60
condor master, 59
condor negotiator, 60
condor schedd, 59
condor shadow, 60
condor startd, 59
condor starter, 59
eventd, 115
running as root, 55

DAEMON LIST macro, 68, 89, 90, 106, 111,
117, 159, 160, 165, 218, 228

DAGMan, 46–52
DC DAEMON LIST macro, 89, 218
DEFAULT DOMAIN NAME macro, 81, 243,

245
DEFAULT IO BUFFER BLOCK SIZE

macro, 100, 221, 309
DEFAULT IO BUFFER SIZE macro, 100,

221, 309
DEFAULT RANK STANDARD macro, 100
DEFAULT RANK VANILLA macro, 100

Condor Version 6.1.17 Reference Manual

INDEX 331

directed acyclic graph, 46
Directed Acyclic Graph Manager (DAG-

Man), 46
DISCONNECTED KEYBOARD IDLE BOOST

macro, 94, 172
disk space requirement

execute directory, 64
log directory, 64
spool directory, 64
all versions, 67
Condor files, 65

distributed ownership
of machines, 2

download, 61

effective user priority (EUP), 118
ETC macro, 159
event daemon, 115

example configuration, 117
EVENT LIST macro, 103, 116
EVENTD INTERVAL macro, 103, 115
EVENTD MAX PREPARATION macro, 103
EVENTD SHUTDOWN CLEANUP INTERVAL

macro, 104
EVENTD SHUTDOWN SLOW START INTERVAL

macro, 104
EXEC TRANSFER ATTEMPTS macro, 98
execute machine, 58
EXECUTE macro, 20, 80, 121
expression

RANK, 125
START, 124

FAQ, 206–212
file

locking, 5, 14
memory-mapped, 5, 14
read only, 5, 14
submit description, 15
write only, 5, 14

file system
AFS, 53
NFS, 54

FILESYSTEM DOMAIN macro, 70, 78, 86,
87, 236

FLOCK COLLECTOR HOSTS macro, 97,
169

FLOCK NEGOTIATOR HOSTS macro, 97,
169

FLOCK VIEW SERVER macro, 97
FLOCK VIEW SERVERS macro, 97
Frequently Asked Questions, 206–212
FS PATHNAME macro, 236
FULL HOSTNAME macro, 70, 77, 81

Globus, 44, 212
Globus universe, 55
Interaction considerations, 54

GLOBUSRUN macro, 45, 100

HAS AFS macro, 87
heterogeneous pool

submitting a job to, 23
High-Performance Computing (HPC), 1
High-Throughput Computing (HTC), 1
HighLoad macro, 136
HISTORY macro, 81, 100
HOST ALLOW ADMINISTRATOR macro,

153
HOSTALLOW macro, 84
HOSTALLOW. . . macro, 84
HOSTALLOW ADMINISTRATOR macro,

174
HOSTALLOW NEGOTIATOR macro, 174
HOSTALLOW READ macro, 150
HOSTALLOW WRITE macro, 45
HOSTDENY macro, 84
HOSTNAME macro, 64, 71, 72, 77, 81
HPC (High-Performance Computing), 1
HTC (High-Throughput Computing), 1

installation
checkpoint server, 110, 163
CondorView Client, 107
CondorView contrib module, 104
download, 61
MPI contrib module, 115
PVM contrib module, 115
running as root, 63
scripts, 68
Windows NT, 198–205

INVALID LOG FILES macro, 270

job

Condor Version 6.1.17 Reference Manual

INDEX 332

analysis, 30
batch ready, 11
completion, 31
exiting

signal 9 Unix, 209
status 128 NT , 211

heterogeneous submit, 23
multiple data sets, 2
not running, 30
preparation, 11
priority, 29, 33
submitting, 15

JOB RENICE INCREMENT macro, 99, 125,
247

JOB START DELAY macro, 95, 233

KBDD macro, 68
KEEP POOL HISTORY macro, 102, 105
KeyboardBusy macro, 136
KILL macro, 42, 142
KILLING TIMEOUT macro, 134, 135

LastCkpt macro, 136
LIB macro, 79
linking

dynamic, 5, 14
static, 5, 14

LOCAL CONFIG FILE macro, 66, 75, 80,
81, 158–160, 243, 247

LOCAL DIR macro, 64, 67, 68, 79–81, 157
LOCAL ROOT CONFIG FILE macro, 66,

76, 247
LOCK macro, 65, 68, 81, 82, 96, 97
LOG macro, 79, 82, 100, 144

machine
central manager, 58
checkpoint server, 58
execute, 58
owner, 57
submit, 58

machine activity, 127
Benchmarking, 127
Busy, 128
Idle, 127
Killing, 129
Suspended, 128

transitions, 130–136
transitions summary, 135
Unclaimed, 127
Vacating, 128

machine ClassAd, 10
machine state, 126

Claimed, 127
Matched, 127
Owner, 127
Preempting, 127
transitions, 130–136
transitions summary, 135
Unclaimed, 127

machine state and activities figure, 129
MachineBusy macro, 136
macro definitions, 75
macro name macro, 311
MAIL macro, 80, 159, 160
manual installation

Windows NT, 204
master-worker paradigm, 34
MASTER ADDRESS FILE macro, 92
MASTER BACKOFF CEILING macro, 91
MASTER BACKOFF FACTOR macro, 90, 91
MASTER CHECK INTERVAL macro, 101
MASTER CHECK NEW EXEC INTERVAL

macro, 90
MASTER DEBUG macro, 92
MASTER EXPRS macro, 91
MASTER NEW BINARY DELAY macro, 90
MASTER RECOVER FACTOR macro, 91
MASTER UPDATE INTERVAL macro, 90
MATCH TIMEOUT macro, 132, 135
matchmaking, 3
MAX CKPT SERVER LOG macro, 112, 165
MAX DISCARDED RUN TIME macro, 89,

110, 164, 246
MAX JOBS RUNNING macro, 28, 95, 247
MAX SHADOW EXCEPTIONS macro, 95,

246
MAX SUBSYS LEVEL LOG macro, 83
MAX SUBSYS LOG macro, 82, 83
MAX VIRTUAL MACHINE TYPES macro,

94
MaxSuspendTime macro, 136
MaxVacateTime macro, 136

Condor Version 6.1.17 Reference Manual

INDEX 333

migration, 2, 3
MPI contrib module, 115

NEGOTIATE ALL JOBS IN CLUSTER
macro, 97, 218

NEGOTIATOR DEBUG macro, 103
NEGOTIATOR HOST macro, 78, 79, 97, 174
NEGOTIATOR INTERVAL macro, 102, 103
NEGOTIATOR SOCKET CACHE SIZE

macro, 103
NEGOTIATOR TIMEOUT macro, 102
NEGOTIATOR TRAFFIC INTERVAL

macro, 103
NEGOTIATOR TRAFFIC LIMIT macro,

103
network, 4, 14
NETWORK INTERFACE macro, 174, 236
NFS

interaction with, 54
nice job, 33
NICE USER PRIO FACTOR macro, 102,

118
NODE macro, 43
NonCondorLoadAvg macro, 136
NUM CPUS macro, 93, 230
NUM VIRTUAL MACHINES macro, 171
NUM VIRTUAL MACHINES TYPE <N>

macro, 171
NUM VIRUAL MACHINES macro, 94
NUM VIRUAL MACHINES TYPE <N>

macro, 94

OBITUARY LOG LENGTH macro, 90
OPSYS macro, 78, 158, 243
ORGNAME macro, 109
overview, 1–4

Parallel Virtual Machine (PVM), 34
PATH macro, 109
PERIODIC CHECKPOINT macro, 224
PERIODIC MEMORY SYNC macro, 98, 237
Personal Condor, 201, 207
policy

at UW-Madison, 139
default with Condor, 136
version differences, 142

POLLING INTERVAL macro, 92, 133, 238

pool of machines, 57
POOL HISTORY DIR macro, 102, 105, 106
POOL HISTORY MAX STORAGE macro,

102, 105
POOL HISTORY SAMPLING INTERVAL

macro, 102
PREEMPT macro, 42, 142
preemption

of resources, 119
PREEMPTION RANK macro, 103
PREEMPTION REQUIREMENTS macro, 33,

103, 119, 276
PREEN macro, 89, 100, 234
PREEN ADMIN macro, 100, 270
PREEN ARGS macro, 90, 234
PREEN INTERVAL macro, 90
priority

in machine allocation, 117
nice job, 33
of a job, 29, 33
of a user, 33

PRIORITY HALFLIFE macro, 33, 102,
118, 119

Process macro, 311
PUBLISH OBITUARIES macro, 90
PVM

machine class, 36
master-worker paradigm, 34
PvmHostSuspend and PvmHostResume

notifications, 36
submit description file, 37

PVM (Parallel Virtual Machine), 34–39
PVM contrib module, 115
PVMD macro, 98
PVMGS macro, 98

QUERY TIMEOUT macro, 101
QUEUE CLEAN INTERVAL macro, 96
QUEUE SUPER USERS macro, 96

rank attribute, 18
Rank macro, 235
real user priority (RUP), 118
recovery from crashes, 211
RELEASE DIR macro, 66, 67, 79, 157, 159,

160

Condor Version 6.1.17 Reference Manual

INDEX 334

remote system call, 3, 13
condor shadow, 13, 28, 55

REMOTE PRIO FACTOR macro, 102, 119
requirements attribute, 18
RESERVE AFS CACHE macro, 87
RESERVED DISK macro, 20, 80, 121
RESERVED SWAP macro, 80, 95
resource

management, 3
offer, 3
owner, 57
request, 3

running a job
on a different architecture, 23
on only certain machines, 208

running multiple programs, 17

SBIN macro, 79, 89, 92, 95, 98
SCHEDD ADDRESS FILE macro, 96
SCHEDD DEBUG macro, 83, 96, 239
SCHEDD EXPRS macro, 96
SCHEDD INTERVAL macro, 95
SCHEDD LOCK macro, 96
shadow, 13
SHADOW macro, 82, 95
SHADOW DEBUG macro, 98
SHADOW GLOBUS macro, 45, 100
SHADOW LOCK macro, 97
SHADOW LOG macro, 31
SHADOW PVM macro, 95
SHADOW RENICE INCREMENT macro, 95
SHADOW SIZE ESTIMATE macro, 95
SHELL macro, 295
SHUTDOWN macro, 116, 117
SHUTDOWN FAST TIMEOUT macro, 90
SHUTDOWN GRACEFUL TIMEOUT macro,

84
signal, 4, 14

SIGTSTP, 4, 14
SIGUSR2, 4, 14

SLOW CKPT SPEED macro, 98, 237
SOFT UID DOMAIN macro, 70, 86, 243
Solaris26, 210
Solaris27, 210
SPOOL macro, 79, 88, 100
START expression, 120

START DAEMONS macro, 90
START MASTER macro, 90
startd

configuration, 120
STARTD ADDRESS FILE macro, 93
STARTD ARGS macro, 89
STARTD DEBUG macro, 93, 239
STARTD EXPRS macro, 93, 114, 168, 224
STARTD HAS BAD UTMP macro, 92
STARTD JOB EXPRS macro, 93
STARTD LOG macro, 82
STARTER macro, 92
STARTER CHOOSES CKPT SERVER

macro, 88, 113, 166, 240
STARTER DEBUG macro, 99
STARTER LOCAL LOGGING macro, 99,

240
StartIdleTime macro, 136
state

of a machine, 126
transitions, 130–136
transitions summary, 135

state and activities figure, 129
StateTimer macro, 136
STATSDIR macro, 109
status

of queued jobs, 27
submit description file, 15

contents of, 16
examples, 16–18
for PVM application, 37

submit machine, 58
submit-only installation, 72
SUBMIT EXPRS macro, 85
SUBSYS macro, 81, 89
SUBSYS ADDRESS FILE macro, 84, 92,

93, 100
SUBSYS ARGS macro, 89, 90, 234
SUBSYS DEBUG macro, 82, 92, 93, 98, 102,

103
SUBSYS EXPRS macro, 85, 91, 93
SUBSYS LEVEL LOG macro, 83
SUBSYS LOCK macro, 82
SUBSYS LOG macro, 82
SUBSYSTEM macro, 77, 244
SUSPEND macro, 42

Condor Version 6.1.17 Reference Manual

INDEX 335

thread
kernel-level, 5, 14
user-level, 5, 14

TILDE macro, 64, 77, 79
TRUNC SUBSYS LEVEL LOG ON OPEN

macro, 83
TRUNC SUBSYS LOG ON OPEN macro, 82,

83

UID DOMAIN macro, 70, 78, 85–87, 175,
307

universe, 12
Globus, 13, 15, 44, 54, 55
MPI, 13, 15
PVM, 13, 15
standard, 13
vanilla, 13, 14

UNIX
alarm, 4, 14
exec, 4, 14
flock, 5, 14
fork, 4, 14
lockf, 5, 14
mmap, 5, 14
pipe, 4, 14
semaphore, 4, 14
shared memory, 4, 14
sleep, 4, 14
socket, 4, 14
system, 4, 14
timer, 4, 14

Unix administrator, 63
UNIX administrator’s manual, 57–176
UNIX daemon

running as root, 55
Unix directory

execute, 64
lock, 65
log, 64
spool, 64

Unix installation
download, 61
scripts, 68
submit-only, 72

Unix user
condor, 64

root, 63
UPDATE INTERVAL macro, 92, 130, 238
USE AFS macro, 87, 88
USE CKPT SERVER macro, 88, 89, 112,

113, 166, 222, 224
USE NFS macro, 87, 88
user

priority, 33
user manual, 8–56
user priority, 117

effective (EUP), 118
real (RUP), 118

USER JOB WRAPPER macro, 99, 235

vacate, 53
VACATE macro, 142
VALID LOG FILES macro, 82, 96, 97, 100,

144, 270
VALID SPOOL FILES macro, 100, 270
VIEWDIR macro, 109
VIRTUAL MACHINE TYPE <N> macro,

170
VIRTUAL MACHINES CONNECTED TO CONSOLE

macro, 93, 172
VIRTUAL MACHINES CONNECTED TO KEYBOARD

macro, 94, 172
VIRUAL MACHINE TYPE <N> macro, 94
VOS PATHNAME macro, 236

WALL CLOCK CKPT INTERVALmacro, 96,
223

WANT * macro, 142
WANT SUSPEND macro, 142
WANT VACATE macro, 142
Windows NT

Condor daemon names, 205
installation, 198–205

initial file size, 199
location of files, 201
Personal Condor, 201
preparation, 199
required disk space, 200

introduction, 190
manual install, 203
release notes, 191–198
starting the Condor service, 204–205

Condor Version 6.1.17 Reference Manual

INDEX 336

Y2K, 211–212

Condor Version 6.1.17 Reference Manual

