
ADM-XRC SDK User Guide - family_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The family_t datatype

The family_t datatype is used to symbolically represent a particular Xilinx FPGA family and is defined as follows:

type family_t is (
 family_virtex, -- Virtex/Virtex-E/Virtex-EM
 family_virtex2, -- Virtex-II
 family_virtex2p, -- Virtex-II Pro
 family_virtex4, -- Virtex-4
 family_virtex5); -- Virtex-5

1

ADM-XRC SDK User Guide - Common Memory Ports

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sram_port component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The ddr2sram_port component is part of the memif package and implements an interface to a bank of DDR-II SSRAM
memory. This component follows the generic user interface for memory ports, but also has a few additional parameters
and sideband signals, as shown in the following figure:

2

ADM-XRC SDK User Guide - Common Memory Ports

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/chipscope/src/ilap_pkg.vhd
fpga/vhdl/chipscope/src/ilacombo_sim.vhd
fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/cmd_fifo.vhd
fpga/vhdl/common/memif/ddr2sram/ddr2sram_port.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
d_width natural Width in bits of the port data in and out, d and q

respectively.
3

pinout ddr2sram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map it
to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

Notes:

1. The ra_width parameter is a property of the printed circuit board, indicating how many wires are physically present,
rather than indicating how many of the ra lines are used by a particular DDR-II SSRAM device.

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates the fields that comprise the rc bus:

The order of the fields within rc is always the same, but some models may lack certain fields.

3

ADM-XRC SDK User Guide - Common Memory Ports

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR-II SSRAM bank. This
memory port transfers two words of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being two times
rd_width. However, other values can be passed for d_width:

❍ If d_width > (2 * rd_width), then the memory port simply truncates d internally so that its width is (2 *
rd_width). Data read from the memory devices is zero-extended so that its width is d_width before being
returned on q.

❍ d_width = (2 * rd_width) is the optimal usage case.

❍ If d_width < (2 * rd_width), then the memory port zero-extends d internally so that its width is (2 *
rd_width).

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a DDR-II SSRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider a DDR-II SSRAM device with 20 address bits. Since "logical"
memory locations are two times as wide as the physical memory locations, one must subtract 1, giving a value of 19 for
the minimum value of a_width. When a_width is larger than actually required, the top few unused bits of a are ignored
by the memory port. In practice, one should determine the value of a_width assuming that the largest possible memory
devices are in use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device as a
linear array of words of width d_width, this address is a logical
address, rather than anything resembling what one might see on the
ra bus.

be in Byte enables to memory

User code must place valid byte enables on be whenever a write
command is entered (ce and w both asserted). A logic 1 in a given
bit of be means that the corresponding byte within be will be written
to memory, while a zero means that the corresponding byte will not
be written to memory.

burst_len in Burst length select (sideband signal)

This input selects whether the DDR-II SSRAM devices are burst
length 2 (BL2) or burst length 4 (BL4) devices:

0 => BL2
1 => BL2/BL4

If BL2/BL4 is selected, the memory port will be compatible with BL2
and BL4 devices, although a performance penalty may apply
depending on how the user application uses the memiry port. If BL2
is selected, the memory will not be compatible with BL4 devices. If
the burst length is unknown at build time, one should select BL4.
Refer to the section below for a discussion of performance.

6

4

ADM-XRC SDK User Guide - Common Memory Ports

ce in Command entry

User code asserts this signal to enter a new read or write command
into the memory port. When asserted, a and w must be valid. When
asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how many
clock cycles ce can remain asserted. It can be pulsed for single clk0
cycles, or asserted for many clk0 cycles (ready permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but refer to the
section below for a discussion of performance.

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.

5

clk90 in High speed clock, phase 90

This clock must be the same frequency as clk0 but 90 degrees
behind.

5

clk180 in High speed clock, phase 180

This clock must be the same frequency as clk0 but 180 degrees
behind.

5

clk270 in High speed clock, phase 270

This clock must be the same frequency as clk0 but 270 degrees
behind.

5

d in Data to memory

User code must place valid data on d whenever a write command is
entered (ce and w both asserted).

dll_off in DLL disable (sideband signal)

User code should drive this input with 0 for normal operation, but
driving it with 1 causes the DOFF# field within rc to be asserted.

6

q out Data from memory

When valid is asserted by the memory port (as a result of a read
command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a read
command), qtag reflects the tag value that was assocated with that
read command.

ready out Port ready

When the memory port asserts ready, user code is permitted to
assert ce. Certain types of memory port may unconditionally assert
ready, whereas other types of memory port may sometimes
deassert ready depending on several factors.

For example, a DDR-II SDRAM port is capable of buffering a certain
number of commands internally, but if its command buffer is filled
while it executes a refresh cycle, it will deassert ready.

5

ADM-XRC SDK User Guide - Common Memory Ports

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w deasserted, it must also place a
valid tag on the tag signal. When, as a result of the read command,
the memory port asserts valid, the qtag output reflects the tag value
originally passed. This is intended to facilitate sharing of a memory
port between several data sources or data sinks, where each source
or sink recognizes a particular set of tags.

valid out Read data valid

When the memory port asserts valid, it does so as a result of a read
command (user code asserted ce with w deasserted). When valid
is asserted, both q and qtag are valid.

w in Write select

When user code asserts ce, it must place either a logic 1 on the w
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

5. The phase and frequency relationships between the four clock phases are illustrated by the following figure:

Also shown is the DDR-II SSRAM clock, K. Its frequency is the same as clk0, but its phase is indeterminate.

6. For correction operation, all sideband inputs must be static while the memory port is not idle.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function
ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s).

6

ADM-XRC SDK User Guide - Common Memory Ports

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, two
words are transferred on rd, which determines the relationship
between the rd_width and d_with parameters. Refer to note 3
for details.

Performance

This memory port features an internal command buffer capable of buffering about 10 commands before deasserting the
ready signal. Most of the time, the rate of consumption of commands from the command buffer is at least as fast as
production of new commands by the user application. Certain usage patterns, however, may result in a accumulated backlog
in the command buffer.

A DDR-II SSRAM device has a burst length of two or four (i.e. two or four words on transferred on the rd bus). This
component supports burst length four (BL4) devices, but is compatible with burst length 2 devices without modification (to
see why this is so, one must understand the signalling protocol used by generic DDR-II SSRAM devices).

There are two potential performance penalties in this memory port:

● Every access to a BL4 DDR-II SSRAM device must transfer 4 physical words, whose addresses are "consecutive", on
the rd bus. Because this takes two clk0 cycles, random accesses to unrelated addresses when burst_len is driven with
1 (to select BL4) incur a one cycle performance penalty. However, when burst_len is driven with 0 (to select BL2), this
performance penalty does not apply.

● Turning the rd bus around when a read command and a write command are entered in consecutive clock cycles
requires one clk0 cycle. Thus it incurs a one cycle performance penalty. This penalty occurs only if a write command is
entered in the one-cycle window following entry of a read command.

Latency for read commands is fairly deterministic, since the penalties described above are limited to one cycle (although
these penalties may be accumulated by successive commands). The best-case latency from entry of a read command (ce
asserted with w deasserted) to valid asserted is approximately 9 clk0 cycles. Worst case latencies may be computed by
adding the above penalties to the best-case latency.

The optimal usage pattern for this memory port is blocks of accesses of the same type (read or write) with addresses that
increment by one on each successive access. When used optimally, a 32-bit wide DDR-II SSRAM memory port operating at
a clk0 frequency of 133MHz) can sustain approximately 1GB/s.

7

ADM-XRC SDK User Guide - Common Memory Ports

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddrsdram_port component

Overview

HDL source code

Parameters

Signals

Row / column address selection

Performance

Overview

The ddrsdram_port component is part of the memif package and implements an interface to a bank of DDR SDRAM
memory. This component follows the generic user interface for memory ports, but also has a few additional parameters
and sideband signals, as shown in the following figure:

8

ADM-XRC SDK User Guide - Common Memory Ports

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/chipscope/src/ilap_pkg.vhd
fpga/vhdl/chipscope/src/ilacombo_sim.vhd
fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/cmd_fifo.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_clkfw.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_ctrl.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_data.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_data_dqs.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_dqs.vhd

9

ADM-XRC SDK User Guide - Common Memory Ports

fpga/vhdl/common/memif/ddrsdram/ddrsdram_dm.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_init.vhd
fpga/vhdl/common/memif/ddrsdram/ddrsdram_port.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
auto_train boolean If true, the memory port automatically trains itself after

reset is deasserted. If false, the memory port does not
train itself. This parameter has a default value of true, and
in normal usage an application should rely on the default
value, and not map it to any particular value.

d_width natural Width in bits of the port data in and out, d and q
respectively.

3

pinout ddrsdram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map it
to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

timing ddrsdram_timing_t This value specifies the timing of the memory port. For
convenience, an application may map it to one of the
predefined constants.

Notes:

1. The memory device address bus, ra, is composed of two fields in this memory port, with the widths of each field
specified by the num_addr_bits and num_bank_bits of the pinout parameter. Therefore, ra_width is the sum of these
two values. The following figure illustrates this for the case where num_addr_bits = 13 and num_bank_bits = 2:

Note that ra_width and pinout are properties of the printed circuit board, indicating how many wires are physically
present. On the other hand, the DDR SDRAM devices actually fitted to the printed circuit board may have less pins
connected. The purpose of the row, col, bank and pbank signals is to specify at runtime the properties of the DDR
SDRAM devices actually in use.

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates an example that puts rc_width at 17:

10

ADM-XRC SDK User Guide - Common Memory Ports

The order of the fields within rc is always the same; only the field widths may differ from one model to another.

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR SDRAM bank. This
memory port transfers two words of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being twice rd_width.
However, other values can be passed for d_width:

❍ If d_width > (2 * rd_width), then the memory port simply truncates d internally so that its width is (2 *
rd_width). Data read from the memory devices is zero-extended so that its width is d_width before being
returned on q.

❍ d_width = (2 * rd_width) is the optimal usage case.

❍ If d_width < (2 * rd_width), then the memory port zero-extends d internally so that its width is (2 *
rd_width).

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a DDR SDRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider two physical banks of DDR SDRAM devices that use 13 row bits,
10 column bits and 2 internal bank address bits. The number of address bits is:

13 (row address bits) +
10 (column address bits) +
2 (internal bank address bits) +
1 (2 physical banks / CS# pins) =

26

We must now subtract 1, because "logical" memory locations are twice as wide as the physical memory locations, due
to transferring two words on the DQ pins for every command entered on ce. Hence a_width for this configuration should
be at least 25. When a_width is larger than actually required, the top few unused bits of a are ignored by the memory
port. In practice, one should determine the value of a_width assuming that the largest possible memory devices are in
use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note

11

ADM-XRC SDK User Guide - Common Memory Ports

a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device as a
linear array of words of width d_width, this address is a logical
address, rather than anything resembling what one might see on the
ra bus.

bank in Bank address width select (sideband signal)

This input selects number of internal bank address bits for the DDR
SDRAM devices in use:
00 => no internal bank address bits
01 => 1 internal bank address bits
10 => 2 internal bank address bits
11 => 3 internal bank address bits

6, 8

be in Byte enables to memory

User code must place valid byte enables on be whenever a write
command is entered (ce and w both asserted). A logic 1 in a given
bit of be means that the corresponding byte within be will be written
to memory, while a zero means that the corresponding byte will not
be written to memory.

ce in Command entry

User code asserts this signal to enter a new read or write command
into the memory port. When asserted, a and w must be valid. When
asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how many
clock cycles ce can remain asserted. It can be pulsed for single clk0
cycles, or asserted for many clk0 cycles (ready permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but refer to the
section below for a discussion of how to maximize performance.

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.

7

clk90 in High speed clock, phase 90

This clock must be the same frequency as clk0 but lagging by 90
degrees.

7

clk180 in High speed clock, phase 180

This clock must be the same frequency as clk0 but lagging by 180
degrees.

7

clk270 in High speed clock, phase 270

This clock must be the same frequency as clk0 but lagging by 270
degrees.

7

col in Column address width select (sideband signal)

This input selects the number of column address bits to use. Along
with the row input, it specifies the row/column geometry of the DDR
SDRAM device, as defined here.

6, 8

12

ADM-XRC SDK User Guide - Common Memory Ports

d in Data to memory

User code must place valid data on d whenever a write command is
entered (ce and w both asserted).

pbank in Physical bank select (sideband signal)

This input selects the number of physical banks (chip-selects) in use
for the DDR SDRAM devices:
00 => 1 physical bank / 1 CS#
01 => 2 physical bank / 2 CS#
10 => 4 physical bank / 4 CS#
11 => 8 physical bank / 8 CS#

6, 8

q out Data from memory

When valid is asserted by the memory port (as a result of a read
command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a read
command), qtag reflects the tag value that was assocated with that
read command.

ready out Port ready

When the memory port asserts ready, user code is permitted to
assert ce. Certain types of memory port may unconditionally assert
ready, whereas other types of memory port may sometimes
deassert ready depending on several factors.

For example, a DDR SDRAM port is capable of buffering a certain
number of commands internally, but if its command buffer is filled
while it executes a refresh cycle, it will deassert ready.

regd in Registered / unregistered select (sideband signal)

This input selects whether the memory port expects registered DDR
SDRAM memory or unregistered DDR SDRAM memory:

0 => unregistered
1 => registered

6, 8

row in Row address width select (sideband signal)

This input selects the number of row address bits to use. Along with
the col input, it specifies the row/column geometry of the DDR
SDRAM device, as defined here.

6, 8

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w deasserted, it must also place a
valid tag on the tag signal. When, as a result of the read command,
the memory port asserts valid, the qtag output reflects the tag value
originally passed. This is intended to facilitate sharing of a memory
port between several data sources or data sinks, where each source
or sink recognizes a particular set of tags.

13

ADM-XRC SDK User Guide - Common Memory Ports

trained
(sideband
signal)

out Training success flag

When the memory port asserts trained, it indicates that training of
the memory port was successful. When deasserted, either training
is not yet complete or training was unsuccessful.

valid out Read data valid

When the memory port asserts valid, it does so as a result of a read
command (user code asserted ce with w deasserted). When valid
is asserted, both q and qtag are valid.

w in Write select

When user code asserts ce, it must place either a logic 1 on the w
signal in order to select a write command, or 0 in order to select a
read command.

x4 in X4 device select (sideband signal)

This input selects whether devices with 8- or 16-bit data or devices
with 4-bit data are in use. Generally applicable to DIMM DDR
SDRAM memory. In this version of the memory port, it must be
zero.

9

Notes:

5. The delay from deassertion of reset to completion of training (trained asserted) may be as long as 350ms. This is
because a large post-reset delay is used in order to ensure that the memory port properly initializes the DDR SDRAM
devices that it is controlling after power-on.

For simulation, however, the memory port uses a much smaller post-reset delay, with the result that the delay from
deassertion of reset to completion of training is dominated by the time spent training. This is in the order of 150
microseconds of simulation time at a clk0 frequency of 133MHz.

6. Certain properties of a DDR SDRAM device, such as number of row and column address bits, might not be known at the
time of building an FPGA design. Therefore, this memory port allows certain properties to be specified "at runtime". An
application might interrogate some Vital Product Data in order to determine the proper values to drive on the row, col,
bank, and pbank signals.

Alternatively, if the designer can guarantee that the properties of the DDR SDRAM devices are known when building the
FPGA design, these signals can be driven with constant values. This has the advantage of lower slice utilization.

In any case, for reliable operation, these signals must not change unless the memory port is idle.

The purpose of these signals should not be confused with that of the pinout parameter. The pinout parameter specifies
properties of the circuit board on which the FPGA and DDR SDRAM devices are mounted. In general, the number of
physical wires on the circuit board provided for addressing the DDR SDRAM devices can be greater than the number
actually used by a particular DDR SDRAM device.

7. The phase and frequency relationships between the four clock phases are illustrated by the following figure:

14

ADM-XRC SDK User Guide - Common Memory Ports

Also shown is the DDR SDRAM clock, CK. Its frequency is the same as clk0, but its phase is indeterminate.

8. For correction operation, all sideband inputs must be static while the memory port is not idle.

9. In this version, the x4 sideband input must be driven with a constant.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function
ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s). For devices with a nontrivial
addressing scheme, this address may be composed of various
fields. These fields are bundled together into the ra bus so
that, for the most part, the user application need not care what
they are.

Refer to note 1 for the mapping of the ra bus to device pins.

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, two
words are transferred on rd, which determines the relationship
between the rd_width and d_width parameters. Refer to note
3 for details.

Row / column address selection

The row and col sideband inputs together determine the number address bits used for row and column addresses, as in the
following table:

row[1:0] col[1:0] No. of row bits used No. of column bits used

15

ADM-XRC SDK User Guide - Common Memory Ports

00 00 12 8
00 01 12 9
00 10 12 10
00 11 12 11
01 00 13 9
01 01 13 10
01 10 13 11
01 11 13 12
10 00 14 10
10 01 14 11
10 10 14 12
10 11 14 13
11 00 15 11
11 01 15 12
11 10 15 13
11 11 15 14

Performance

This memory port features an internal command buffer capable of buffering about 10 commands before deasserting the
ready signal. Most of the time, the rate of consumption of commands from the command buffer is at least as fast as
production of new commands by the user application. Periodically, however, the memory port must refresh the DDR SDRAM
devices it is controlling, which may result in an accumulated backlog of buffered commands, and deassertion of the ready
signal. Certain usage patterns, such as alternating between read and write commands, may also have the same effect.

The architecture of DDR SDRAM device consists of a number of internal banks which are in turn divided into a number of
pages. At any moment, a given bank may be "closed", or may have a given page "open". Opening or closing a bank takes a
finite number of clock cycles. In this memory port, the following performance penalties exist for memory accesses falling into
the following patterns:

● Several clk0 cycles for changing from read to write or write to read within the same page and bank.

● In the order of 8 clk0 cycles for consecutive accesses that fall within different pages of the same bank, or within different
banks.

● In the order of 8-20 clk0 cycles for an access that occurs while the memory port is performing a refresh.

Latency for read commands is nondeterministic due to the penalties described above, particularly because of the need to
refresh, but the best-case latency from entry of a read command (ce asserted with w deasserted) to valid asserted is
approximately 11 clk0 cycles. This can be modified somewhat by tightening or relaxing the timing as specified by the timing
parameter. Worst case latencies may be computed by adding the above penalties to the best-case latency.

The optimal usage pattern for this memory port is blocks of accesses of the same type (read or write) to the same bank and
page. A linearly incrementing address is an example of an optimal usage pattern. When used optimally, this memory port
with 32 physical data bits (rd is 32) operating at a clk0 frequency of 133MHz can sustain approximately 1GB/s.

16

ADM-XRC SDK User Guide - PLXSIM Package

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference

Datatypes

Constants

Functions and procedures

Components

This section documents the VHDL implementation of the PLXSIM package. This package consists datatypes, constants,
functions, procedures and components designed to speed up development of a VHDL testbench centered around the local
bus interface of an FPGA design.

Datatypes

Name Purpose

byte_enable_t A vector type used to pass the byte enables for a local bus
transfer

byte_t A type that can hold a single byte of data

byte_vector_t A vector type used to hold the data for a local bus transfer

integer_vector_t A vector type used to hold an array of integers

locbus_ddma_in_t A record type used to make a bundle of the demand-mode
DMA signals for a particular DMA channel that are input by a
stimulus process

locbus_ddma_out_t A record type used to make a bundle of the demand-mode
DMA signals for a particular DMA channel that are driven by a
stimulus process

locbus_in_t A record type used to make a bundle of the local bus signals
that are input by a stimulus process

locbus_out_t A record type used to make a bundle of the local bus signals
that are driven by a stimulus process

Constants

Name Purpose

init_locbus_ddma_out A constant that can be used to initialize variables/signals of
type locbus_ddma_out_t

init_locbus_out A constant that can be used to initialize variables/signals of
type locbus_out_t

Functions and procedures

17

ADM-XRC SDK User Guide - PLXSIM Package

Name Purpose

conv_byte_vector A function for converting values to the byte_vector_t type

conv_integer A function for converting values to the integer type

conv_integer_signed A function for converting signed binary values to the integer
type

conv_integer_unsigned A function for converting unsigned binary values to the integer
type

conv_std_logic_vector A function for converting values to the std_logic_vector type

conv_string A function for converting values to the string type

conv_string_hex A function for converting values to the string type, in
hexadecimal form

plxsim_read A procedure for performing a basic read transfer on the local
bus

plxsim_read_const A procedure for performing a basic read transfer with constant
local address on the local bus

plxsim_read_const_demand A procedure for performing a basic demand-mode DMA read
transfer with constant local address on the local bus

plxsim_read_demand A procedure for performing a basic demand-mode DMA read
transfer on the local bus

plxsim_request_bus A procedure for requesting or relinquishing access to the local
bus

plxsim_wait_cycles A procedure for delaying execution for a particular number of
local bus clock cycles

plxsim_wait_demand A procedure for waiting until the FPGA requests a demand-
mode DMA transfer

plxsim_write A procedure for performing a basic write transfer on the local
bus

plxsim_write_const A procedure for performing a basic write transfer with constant
local address on the local bus

plxsim_write_const_demand A procedure for performing a basic demand-mode DMA write
transfer with constant local address on the local bus

plxsim_write_demand A procedure for performing a basic demand-mode DMA write
transfer on the local bus

Components

Name Purpose

lbpcheck A component that can be instantiated in a testbench in order to
flag local bus protocol violations

locbus_agent_ddma A component that can be instantiated in order to connect a
stimulus process to the demand-mode DMA signals for a
particular DMA channel

locbus_agent_mux32 A component that can be instantiated in order to connect a
stimulus process to a 32-bit multiplexed address/data local bus

locbus_agent_mux64 A component that can be instantiated in order to connect a
stimulus process to a 64-bit multiplexed address/data local bus

locbus_agent_nonmux A component that can be instantiated in order to connect a
stimulus process to a 32-bit nonmultiplexed address/data local
bus

18

ADM-XRC SDK User Guide - PLXSIM Package

locbus_arb A component that can be instantiated in order to arbitrate
between stimulus processes for local bus access

19

ADM-XRC SDK 4.9.3 User Guide (Win32)

ADM-XRC SDK 4.9.3 User
Guide (Win32)
Document version: 4.9.3.1
© Copyright 2001-2009 Alpha Data

20

ADM-XRC SDK 4.9.3 User Guide (Win32) - Introduction

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Introduction

Please choose one of the following topics:

About the ADM-XRC SDK

Hardware supported

List of changes

Upgrades to the SDK

Sales and support

21

ADM-XRC SDK 4.9.3 User Guide (Win32) - About the ADM-XRC SDK

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

About the ADM-XRC SDK

The ADM-XRC SDK is a set of resources including an application-programming interface (API) intended to assist the user
in creating an application using one of Alpha Data's range of reconfigurable computing cards. The API is a thin layer in user
space that makes the necessary open, close and device I/O control calls to a kernel-mode device driver provided by Alpha
Data as a related package.

The ADM-XRC SDK consists of the following components:

● ADM-XRC SDK documentation (this document).

● Documentation for PLX Technology's PCI9080 and PCI9656.

● Sample applications in source and binary form.

● Sample FPGA designs in source and bitstream form.

● A primer on the local bus used by Alpha Data's reconfigurable computing cards.

● FPGA pinouts in the form of constraints (UCF) files.

● API header files.

● API import libraries.

22

http://www.plxtech.com/

ADM-XRC SDK 4.9.3 User Guide (Win32) - Hardware supported

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Hardware supported in this version of the SDK

This version of the SDK supports the following models in Alpha Data's reconfigurable computing range:

● ADM-XRC

● ADM-XRC-P

● ADM-XRC-II-Lite

● ADM-XRC-II

● ADM-XPL

● ADM-XP

● ADP-WRC-II

● ADP-DRC-II

● ADP-XPI

● ADM-XRC-4LX

● ADM-XRC-4SX

● ADM-XRC-4FX (and ADM-XMC-4FX)

● ADPE-XRC-4FX

● ADM-XRC-5LX

● ADM-XRC-5T1

● ADM-XRC-5T2

● ADM-XRC-5T2-ADV

● ADM-XRC-5TZ

● ADM-XRC-5T-DA1

This version of the SDK supports the above cards fitted with any of the following FPGAs:

● Virtex family:

❍ XCV400BG560

❍ XCV600BG560

❍ XCV800BG560

❍ XCV1000BG560

● Virtex-E family:

❍ XCV1000EBG560

❍ XCV1600EBG560

23

ADM-XRC SDK 4.9.3 User Guide (Win32) - Hardware supported

❍ XCV2000EBG560

● Virtex-EM family:

❍ XCV405EBG560

❍ XCV812EBG560

● Virtex-II family:

❍ XC2V1000FG456

❍ XCV2V3000FF1152

❍ XCV2V4000FF1152

❍ XCV2V6000FF1152

❍ XCV2V8000FF1152

❍ XCV2V6000FF1517

❍ XCV2V8000FF1517

● Virtex-II Pro family:

❍ XC2VP7FF896

❍ XC2VP20FF896

❍ XC2VP30FF896

❍ XC2VP70FF1704

❍ XC2VP100FF1704

● Virtex-4 family:

❍ XC4VLX60FF1148

❍ XC4VLX80FF1148

❍ XC4VLX100FF1148

❍ XC4VLX160FF1148

❍ XC4VSX55FF1148

❍ XC4VFX100FF1517

❍ XC4VFX140FF1517

● Virtex-5 family:

❍ XC5VLX110FF1153

❍ XC5VFX70TFF1136

❍ XC5VFX100TFF1136

❍ XC5VFX100TFF1738

❍ XC5VFX130TFF1738

❍ XC5VFX200TFF1738

❍ XC5VLX110TFF1136

❍ XC5VLX110TFF1738

❍ XC5VLX155TFF1136

❍ XC5VLX155TFF1738

24

ADM-XRC SDK 4.9.3 User Guide (Win32) - Hardware supported

❍ XC5VLX220TFF1738

❍ XC5VLX330TFF1738

❍ XC5VSX95TFF1136

❍ XC5VSX240TFF1738

25

ADM-XRC SDK 4.9.3 User Guide (Win32) - Changes

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

List of changes

For a detailed list of changes, please refer to the file changes.txt in the base directory of the SDK.

26

ADM-XRC SDK 4.9.3 User Guide (Win32) - Upgrades to the SDK

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Upgrades to the ADM-XRC SDK

From time to time, newer versions of the SDK will become available on the Alpha Data FTP site at ftp://ftp.alpha-data.com,
in the pub/admxrc/windows directory.

Backwards source and binary compatibility will be maintained in the API whenever possible. Alpha Data reserves the right to
change the sample applications and FPGA designs as part of a policy of continual improvement.

27

ftp://ftp.alpha-data.com/
ftp://ftp.alpha-data.com/pub/admxrc/windows

ADM-XRC SDK 4.9.3 User Guide (Win32) - Sales and support

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

How to get support

Alpha Data's FTP site, containing resources for customers, is ftp.alpha-data.com.

Alpha Data technical personnel may be contacted by phone, fax or e-mail:

 US Rest of World

Phone: (408) 916 5713 +44 131 558 2600
Fax: (408) 436 5524 +44 131 558 2700
E-mail: support@alpha-data.com support@alpha-data.com
Web: www.alpha-data.com www.alpha-data.com

28

ftp://ftp.alpha-data.com/
mailto:support@alpha-data.com
mailto:support@alpha-data.com
http://www.alpha-data.com/
http://www.alpha-data.com/

ADM-XRC SDK 4.9.3 User Guide (Win32) - Installation

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Installation

Please choose one of the following topics:

Before installation

After installation

29

ADM-XRC SDK 4.9.3 User Guide (Win32) - Before installation

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Before installation

Beginning with release 4.5.1, the ADM-XRC SDK for Windows package installs by default to a folder that contains the
release number. The default installation folder for this release is:

%SystemDrive%\ADMXRC_SDK4.9.3

In many cases, %SystemDrive% simply equates to C:. Since the SDK release number forms a part of the name of the
installation folder, it is possible to keep several versions of the SDK on one system. A folder at the root of the system drive is
chosen rather than a folder such as "Program Files" because, as of writing, some of the Xilinx ISE tools do not permit
spaces in filenames.

It is not necessary to install the ADM-XRC driver before installing the SDK, although it will not be possible to run any
applications until you have done so. The recommended ADM-XRC driver version for this version of the SDK is 3.16 or later.

After installation

30

ADM-XRC SDK 4.9.3 User Guide (Win32) - After installation

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

After installation tasks

After installation of the ADM-XRC SDK, in order to start developing applications, you will need to configure your C compiler
to use the API header files and libraries:

Configuring the MSVC IDE

Configuring the Borland C++ command line tools

This release of the SDK does not provide Xilinx Project Navigator files, because as of ISE 7.1i, Xilinx adopted a binary file
format that stores absolute pathnames. However, a script is provided that creates project files for all sample FPGA designs,
and this can be executed after installing the SDK. For further information, see:

Generating ISE Project Navigator files for sample FPGA designs

31

ADM-XRC SDK 4.9.3 User Guide (Win32) - Configuring the MSVC IDE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Configuring the MSVC IDE

In order to build applications using the ADM-XRC SDK, the compiler must be able to locate the API header file, and the
linker must be able to locate the appropriate version of the API library. There are two ways to accomplish this with the
Microsoft Visual C++ Integrated Development Environment (MSVC IDE):

MSVC IDE global options

MSCV IDE per-project options

32

ADM-XRC SDK 4.9.3 User Guide (Win32) - MSVC IDE global options

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Configuring the MSVC IDE, global options

This section assumes that that the ADM-XRC SDK has been installed in the default
location, namely

C:\ADMXRC_SDK4.9.3

The search paths that are applied when building any application in MSVC can be changed. If you decide to use this method
of configuring MSVC, bear in mind that the ADM-XRC header files and import libraries will become visible for inclusion to all
applications that you subsequently build using the IDE.

1. Select Tools->Options from the menu within the MSVC IDE.

2. In the Options dialogue box, select the C/C++ tab, and then select Include files from the Show directories for list.
Add this path:

C:\ADMXRC_SDK4.9.3\include

3. Select Library files from the Show directories for list. Add this path:

C:\ADMXRC_SDK4.9.3\lib\msvc

4. Click OK to apply the changes.

The new include and library search paths will apply to any project subsequently built with the MSVC++ IDE. Note that you
will need to specify the API library to the linker on a per-project basis. To do this, follow these steps:

1. Select Project->Settings from the menu. Ensure that the correct project is highlighted on the left hand side of the
Project Settings dialog box.

2. Select the configuration(s) you want to change - Win32 Debug, Win32 Release or All Configurations - from the
Settings for list.

3. Select the Link tab and add the API library to the list of .lib files in the Object/Library modules field.

4. Add either admxrc.lib (Release version) or admxrcd.lib (Debug version).

5. Click OK to apply the changes.

33

ADM-XRC SDK 4.9.3 User Guide (Win32) - MSVC IDE per-project options

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Configuring the MSVC IDE, per-project options

This section assumes that that the ADM-XRC SDK has been installed in the default
location, namely

C:\ADMXRC_SDK4.9.3

Altering the global MSVC options may not desirable. In this case, the ADM-XRC API header and library files may be added
to the search paths on a per-project basis. To do this, follow these steps:

1. Select Project->Settings from the menu. Ensure that the correct project is highlighted on the left hand side of the
Project Settings dialog box.

2. Select the configuration(s) you want to change - Win32 Debug, Win32 Release or All Configurations - from the
Settings for list.

3. Select the C/C++ tab and then select Preprocessor from the Category list.

4. Add the path

C:\ADMXRC_SDK4.9.3\include

to the Additional include directories field.

5. Select the Link tab and then select Input from the Category list.

6. Add the path

C:\ADMXRC_SDK4.9.3\lib\msvc

to the Additional library path field.

7. Add the API library to the list of .lib files in the Object/Library modules field. This must be admxrc.lib (to use the
Release version) or admxrcd.lib (to use the Debug version).

8. Click OK to apply the changes, which will require the project to be completely rebuilt in order to take effect.

34

ADM-XRC SDK 4.9.3 User Guide (Win32) - Configuring Borland C++ command line tools

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Configuring the Borland C++ command line tools

This section assumes that that the ADM-XRC SDK has been installed in the default location, namely:

C:\ADMXRC_SDK4.9.3

In order to build applications using the ADM-XRC SDK, the compiler must be able to locate the API header file, and the
linker must be able to locate the appropriate version of the API library. The Borland C++ command line tools allow the library
and include file search paths to be customized via the BCC32.CFG and ILINK32.CFG files, which are usually located in the
bin\ directory of the Borland C++ tools installation.

Add this line to BCC32.CFG:

-I"C:\ADMXRC_SDK4.9.3\include"

Add this line to ILINK32.CFG:

-L"C:\ADMXRC_SDK4.9.3\lib\Borland"

Important note: there appears to be a bug in the Borland C++ command line tools, manifested when specifying a quoted
paths with spaces in configuration files such as BCC32.CFG. In order for the tools to correctly pick up these paths, there
must be at least one space at the end of such lines in the configuration file. To illustrate this, let + denote a space character.
A BCC32.CFG file including this workaround would look like:

-IC:\borland\bcc55\include
-I"C:\some+path\include"+
-j10

35

ADM-XRC SDK 4.9.3 User Guide (Win32) - Installable packages

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Installable packages

In order to develop applications for an Alpha Data reconfigurable computing card on a Windows platform, the package
admxrc-sdk-win32-4.9.3 should be installed:

Package Platforms supported

admxrc-sdk-win32-4.9.3 Windows 98
Windows ME
Windows NT 4.0
Windows 2000
Windows XP
Windows Server 2003

In order to run applications on an Alpha Data reconfigurable computing card on a Windows platform, the appropriate driver
package should be installed:

Package Platforms supported

admxrc-driver-win2k-3.16 Windows 2000
Windows XP (x86)
Windows XP (x86_64)
Windows Server 2003 (x86)
Windows Server 2003 (x86_64)

admxrc-driver-winnt4-3.16 Windows NT 4.0 + Service Pack 6

It is recommended that the most up to date driver version currently available be installed. At the time of writing, this is version
3.16.

36

ADM-XRC SDK 4.9.3 User Guide (Win32) - Sample applications

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Sample applications

A number of sample applications, written in C, are included with the SDK. Some of these use the sample FPGA designs
included with the SDK.

Running the sample applications

Rebuilding the sample applications

Sample application list

37

ADM-XRC SDK 4.9.3 User Guide (Win32) - Running the sample applications

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Running the sample applications

ADMXRC_SDK4 environment variable

Some of the sample applications, for example memtest, require bitstreams from the sample FPGA designs in order to run.
In order that these applications can locate any required bitstreams, the environment variable ADMXRC_SDK4 must be
correctly set to point to the base directory of where the SDK has been installed. For example:

set ADMXRC_SDK4=C:\ADMXRC_SDK4.9.3

Normally, this variable is set automatically during installation of the SDK, but users may wish to set it manually (if, for
example, it is desirable to have more than one version of the SDK installed).

Command line invocation

Binaries for the sample applications are provided prebuilt in the bin\ directory of the SDK, and can be invoked from the
command line. For example:

C:
cd C:\ADMXRC_SDK4.9.3\bin
memtest

38

ADM-XRC SDK 4.9.3 User Guide (Win32) - Building the sample applications

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Rebuilding the sample applications

The sample applications are supplied in source code form in the apps\ directory of the SDK. They may be compiled using
the MSVC command line tools, the MSVC IDE or the Borland C++ command line tools.

Building the sample applications using MSVC

Building the sample applications using Borland C++ command line tools

39

ADM-XRC SDK 4.9.3 User Guide (Win32) - MSVC

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Building the sample applications with MSVC

The workspace apps\apps.dsw contains all of the sample applications. In order to build all of the applications, follow these
steps:

1. Open the workspace apps\apps.dsw.

2. Select Build->Batch Build from the menu, and click "Build All". This will build both the Debug and Release versions of
the applications.

The executables for each application are found in the Debug and Release folders. Normally one runs the Release version,
and by way of example, the executables for the DMA application are located as follows:

Executable file Configuration

apps\dma\debug\dma.exe MSVC Debug version
apps\dma\release\dma.exe MSVC Release version

40

ADM-XRC SDK 4.9.3 User Guide (Win32) - Borland C++ command line tools

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Building the sample applications with Borland C++ command line tools

To build all of the sample applications, Borland C++ command line users can change directory to the apps\ directory of the
SDK and then invoke MAKE as follows:

make -fmakefile.bcc

This will build the Borland versions of all the applications, located in the Borland\ subdirectory. For example, the Borland-
compiled executable for the DMA application will be located as follows:

Executable file Configuration

apps\dma\borland\dma.exe Borland C++ command line version

41

ADM-XRC SDK 4.9.3 User Guide (Win32) - Sample application list

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Sample application list

The table below lists the sample applications and the FPGA bitstream required for each, if applicable:

Name FPGA design
(Verilog)

FPGA design
(VHDL)

Bitstream
directory

Purpose

Clock Clock bit\clock Utility to program clock generators and
measure clock frequencies.

DLL DLL DLL bit\dll Demonstrates using Delay-locked loops
(DLLs) in Virtex/Virtex-E/Virtex-EM
devices and Digital Clock Managers
(DCMs) in Virtex-II, Virtex-IIPro, Virtex-4
and Virtex-5 devices.

DMA DDMA
DDMA64

DDMA
DDMA64

bit\ddma
bit\ddma64

Demonstrates using the DMA engines on
the ADM-XRC series of cards.

EPTest A utility to read and write the
configuration EEPROM on the ADM-XRC
series of cards.

Flash A utility for programming the Flash
memory on the ADM-XRC.

FrontIO FrontIO FrontIO bit\frontio Demonstrates use of the front panel I/O
connector.

Info A utility to display information about a
card.

ITest ITest ITest bit\itest Demonstrates generation and handling of
FPGA interrupts on the host.

Master Master Master bit\master Demonstrates direct master access by
FPGA to host memory.

Memory Memory
Memory64

bit\memory
bit\memory64

Demonstrates host access to memories

MemoryF Memory
Memory64

bit\memory
bit\memory64

Demonstrates host access to memories

Memtest ZBT
ZBT64

ZBT
ZBT64

bit\zbt
bit\zbt64

Demonstrates host access to ZBT
SSRAM.

RearIO RearIO RearIO bit\reario Demonstrates use of the rear panel I/O
connector.

Simple Simple
Simple64

Simple
Simple64

bit\simple
bit\simple64

Demonstrates direct slave access by host
to registers in the FPGA.

42

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Clock utility

Model support

Overview

Command-line syntax

Description

FPGA design

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The Clock utility serves two purposes:

● Programming the onboard clock generators on a reconfigurable computing card with an arbitrary clock frequency.

● Measuring the approximate frequencies of the clocks present at the various clock inputs on a reconfigurable computing
card.

Syntax

43

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

clock [options ...] [clock input] [frequency]

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open
-measure Disables measurement of approximate

frequency.
+measure Enables measurement of approximate

frequency (default)

Description

When run with no arguments, the Clock utility displays a list of clock inputs and their 1-based indices. For example, on an
ADM-XRC-5T2 card, running Clock with no arguments produces the following output:

Clock pins available on specified card:

Clock input Programmable Clock generator index

1 LCLK Yes 0
2 MCLKA Yes 1
3 MCLKB Yes 1
4 REFCLK No N/A
5 XRM_CLKIN No N/A
6 XRM_MGTREF No N/A
7 PCIE100A No N/A

This indicates that of the seven clock inputs, only LCLK (1), MCLKA (2) and MCLKB (3) are programmable. LCLK
corresponds to clock generator 0, and MCLKA and MCLKB are copies of the output of clock generator 1.

To measure the frequency of a particular clock input, specify the index of the clock input as the first argument. For example,
to measure the local bus clock frequency, run Clock as follows:

clock 1

This produces output in the following form (actual measured values may vary depending on what LCLK frequency has
previously been programmed, if any):

Measuring frequency of clock input 1 (LCLK)...
Initial counter value = 625869
Final counter value = 40624672, delta = 39998803

In this case, the 'delta' value indicates that the frequency of the local bus clock, LCLK, is approximately 40 MHz. Note that
since the above command-line only measures the local bus clock frequency (without programming the clock generator), the
measured frequency depends upon whatever the current local bus clock frequency happens to be.

The final mode in which Clock can be run both programs a clock generator and measures the resulting frequency. For
example, to program the MCLKA/MCLKB clock generator on an ADM-XRC-5T2 card for a frequency of 250 MHz, the
following command-line would suffice:

44

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

clock 2 250

and this produces output in the following form (actual measured values may vary slightly):

Programming clock generator 1 for 250.00 MHz...
Actual programmed frequency = 250000000.00 Hz
Measuring frequency of clock input 2 (MCLKA)...
Initial counter value = 7709995
Final counter value = 257703771, delta = 249993776

Here, the 'delta' value indicates that the measured frequency of MCLKA is as expected, approximately 250 MHz.

FPGA Design

This application uses the Clock sample FPGA design (VHDL).

45

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DLL sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The DLL sample application demonstrates the clock doubling capability of DLLs and DCMs. The user specifies a frequency
for the local bus clock on the command line. The application programs the local bus clock generator to the specified
frequency, which is doubled and used to clock a 32-bit counter. The application reads the counter once per second,
displaying the difference between the current and last readings.

Syntax

dll [options ...] <frequency>

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

46

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

FPGA Design

The DLL sample application makes use of the DLL sample FPGA design (Verilog, VHDL).

47

ADM-XRC SDK 4.9.3 User Guide (Win32) - DMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DMA sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The DMA sample application demonstrates demand-mode DMA, transferring data to the target FPGA and back into CPU
memory in a "loopback" operation.

Syntax

dma [options ...]

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open
-lclk real number Local bus clock frequency to use, in MHz

(default 33.0)
-size base 10 integer Size of data blocks to transfer, in bytes; must

be a multiple of 4 (default 65536)

48

ADM-XRC SDK 4.9.3 User Guide (Win32) - DMA

-64 Operate local bus in 32-bit mode (default)
+64 Operate local bus in 64-bit mode

Description

On startup, the application performs the following steps:

1. Loads the DDMA bitstream into the FPGA, using a DMA transfer.

2. Creates two user-space buffers, one for the 'send' direction (CPU memory to FPGA) and one for the receive direction
(FPGA to CPU memory). The API call ADMXRC2_SetupDMA is used to lock down the user-space buffers in physical
memory.

3. Creates a 'sender' thread, which performs demand-mode DMA transfers from the host to the FPGA, using the host-to-
FPGA DMA buffer.

4. Creates a 'receiver' thread, which performs demand-mode DMA transfers from the FPGA to the host, using the FPGA-to-
host DMA buffer. This thread also performs some simple checks for correctness on the received data.

Once initialized, the application enters a loop where it expects a string to be entered by the user. Entering anything but "q"
(including an empty string) causes the current data transfer counts to be displayed, and entering "q" causes the application to
clean up and then terminate.

Clean up consists of terminating the threads created on startup, unlocking the user-space buffers using the
ADMXRC2_UnsetupDMA API call, and frees the user-space buffers.

FPGA Design

Normally, this application uses the DDMA sample FPGA design (Verilog, VHDL). However, if the +64 option is specified on
the command line, the DDMA64 sample FPGA design (Verilog, VHDL) is used instead. It is important to note that when the
64-bit version is used, the application does nothing different apart from configuring the FPGA local bus space to operate in
64-bit mode (see ADMXRC2_SetSpaceConfig) and specifying 64-bit operation when calling
ADMXRC2_BuildDMAModeWord.

49

ADM-XRC SDK 4.9.3 User Guide (Win32) - EPTest

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

EPTest utility

WARNING

Care should be exercised when using EPTest. Modifying certain locations may render
the card inoperative. The utility does not by default allow EEPROM locations used to
store the adapter PCI configuration to be changed.

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

EPTest is a utility that allows modification of the nonvolatile configuration memory of a reconfigurable computing card. Care
should be exercised because this memory generally contains Vital Product Data (as reported by the Info utility). Overwriting
the memory with invalid data may render a card inoperable.

Should you wish to modify the Vital Product Data of your card, the format of the configuration memory is available on request
from support@alpha-data.com.

Syntax

eptest [options ...]

50

mailto:support@alpha-data.com

ADM-XRC SDK 4.9.3 User Guide (Win32) - EPTest

eptest [options ...] <location>
eptest [options ...] <location> <value>

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-f n/a DO prompt for confirmation when writing

(default)
+f n/a DON'T prompt for confirmation when writing
-index base 10 integer Index of card to open
-unlock n/a Do not allow PCI configuration to be changed

(default)
+unlock n/a Allow PCI configuration to be changed

Description

The EPTest utility can be run in one of three different ways. The first is when no arguments are given, which causes the
configuration memory to be dumped to the console, resulting in output of the form:

Selected card ID is 109(0x6d)

 [0x00] = 0x00100000 [0x20] = 0xFFFFFFFF
 [0x01] = 0x00000000 [0x21] = 0xFFFFFFFF
 [0x02] = 0x00000000 [0x22] = 0xFFFFFFFF
 [0x03] = 0x00000000 [0x23] = 0xFFFFFFFF
 [0x04] = 0x0BEBC200 [0x24] = 0xFFFFFFFF
 [0x05] = 0x017D7840 [0x25] = 0xFFFFFFFF
 [0x06] = 0x01954FC4 [0x26] = 0xFFFFFFFF
 [0x07] = 0x00000000 [0x27] = 0xFFFFFFFF
 [0x08] = 0x00190019 [0x28] = 0xFFFFFFFF
 [0x09] = 0x00190019 [0x29] = 0xFFFFFFFF
 [0x0A] = 0x00140014 [0x2A] = 0xFFFFFFFF
 [0x0B] = 0xFFFFFFFF [0x2B] = 0xFFFFFFFF
 [0x0C] = 0x0000006D [0x2C] = 0xFFFFFFFF
 [0x0D] = 0x0000006D [0x2D] = 0xFFFFFFFF
 [0x0E] = 0x1010008C [0x2E] = 0xFFFFFFFF
 [0x0F] = 0xFFFFFFFF [0x2F] = 0xFFFFFFFF
 [0x10] = 0xFFFFFFFF [0x30] = 0xFFFFFFFF
 [0x11] = 0xFFFFFFFF [0x31] = 0xFFFFFFFF
 [0x12] = 0xFFFFFFFF [0x32] = 0xFFFFFFFF
 [0x13] = 0xFFFFFFFF [0x33] = 0xFFFFFFFF
 [0x14] = 0xFFFFFFFF [0x34] = 0xFFFFFFFF
 [0x15] = 0xFFFFFFFF [0x35] = 0xFFFFFFFF
 [0x16] = 0xFFFFFFFF [0x36] = 0xFFFFFFFF
 [0x17] = 0xFFFFFFFF [0x37] = 0xFFFFFFFF
 [0x18] = 0xFFFFFFFF [0x38] = 0xFFFFFFFF
 [0x19] = 0xFFFFFFFF [0x39] = 0xFFFFFFFF
 [0x1A] = 0xFFFFFFFF [0x3A] = 0xFFFFFFFF
 [0x1B] = 0xFFFFFFFF [0x3B] = 0xFFFFFFFF
 [0x1C] = 0xFFFFFFFF [0x3C] = 0xFFFFFFFF
 [0x1D] = 0xFFFFFFFF [0x3D] = 0xFFFFFFFF
 [0x1E] = 0xFFFFFFFF [0x3E] = 0xFFFFFFFF
 [0x1F] = 0xFFFFFFFF [0x3F] = 0xFFFFFFFF

51

ADM-XRC SDK 4.9.3 User Guide (Win32) - EPTest

Running EPTest this way is unconditionally safe and does not modify any of the configuration data.

The second way to run EPTest is to read a specific location, by specifying the location to read as the first argument. For
example, the command line

eptest 0x4

will display the following assuming the same card is used as above:

Selected card ID is 109(0x6d)
[0x4] = 0x0bebc200

This is also unconditionally safe because it does not modify any of the configuration data.

The third way to run EPTest is to write a specific location, specifying the location to write as the first argument and the data
as the second argument:

eptest 0xA 0x00150015

The above command modifies the word whose index is 0xA (whose value is 0x00140014 according to the above example) to
have the new value 0x00150015. This form of the command-line is NOT unconditionally safe and should be used only
when the expected result is known and understood, as it is possible to modify the configuration in such a way that
recovery is not possible using EPTest. The output from this form of the command is:

Selected card ID is 109(0x6d)
Warning: this will write the value 1376277/0x150015 to EEPROM location 0xa
Are you sure you want to continue (y/n)? y

The application will ask you to confirm that you really want to modify the configuration memory, and entering "y" will cause
EPTest to proceed and update the configuration memory.

52

ADM-XRC SDK 4.9.3 User Guide (Win32) - Flash

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Flash utility

WARNING

Care should be exercised when using the Flash utility. Storing an invalid bitstream in
the Flash memory may cause a card to be damaged when the FPGA loads from
Flash on power-up.

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

Flash is a utility that allows programming, verification and erasing of the Flash memory on a reconfigurable computing card.
The utility can be used to blank-check the Flash, erase the Flash, program a bitstream into the Flash or verify that a
particular bitstream has been programmed into the Flash.

Syntax

flash [options ...] chkblank
flash [options ...] erase
flash [options ...] program <BIT filename>
flash [options ...] verify <BIT filename>

53

ADM-XRC SDK 4.9.3 User Guide (Win32) - Flash

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-failsafe n/a Command applies to normal image (default,

see below)
+failsafe n/a Command applies to failsafe image (see

below)
-index base 10 integer Index of card to open

Description

The Flash utility has four commands:

● chkblank - Verifies that the image is blank. This command has no additional arguments.

● erase - Erases the image. This command has no additional arguments.

● program - Erases the image and then programs a .BIT file into it. This command requires one additional argument,
which is the name of the .BIT file to be programmed into the image.

● verify - Verifies that image contains a particular .BIT file, and that the image has not been corrupted. This command
requires one additional argument, which is the name of the .BIT file against which the image is to be verified.

An "image" is defined to be a region of Flash memory designated for holding an FPGA bitstream that is used to configure the
target FPGA at power-on. If the image is empty, then the target FPGA is not configured from it at power-on (unless the
failsafe image is non-empty - see below).

Some models feature a failsafe image that is automatically loaded at power-on, should the normal image be blank. The
failsafe image is a "null bitstream" that does nothing but configure the DCMs in a Virtex-4 device, and on Virtex-4 FX
devices, also configures the MGTs. This bitstream is required because of NBTI issues in Virtex-4. On applicable models,
Alpha Data programs a factory default "null bitstream" into the failsafe image, and overwriting it is not recommended. For an
overview of the NBTI issue in Virtex-4, refer to Xilinx answer 21127. On such models, the normal and failsafe images can
be blank-checked, erased, programmed and verified independently of each other. In other words, performing a blank-check,
erase, program or verification on one image has no effect on the other image. Therefore, in day-to-day operation, end users
should not need to use the +failsafe option.

54

http://www.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=21127

ADM-XRC SDK 4.9.3 User Guide (Win32) - FrontIO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

FrontIO sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The FrontIO sample application configures the target FPGA with a bitstream that outputs a walking '1' bit on the front panel
I/O connector. As soon as the target FPGA has been configured with the bitstream, the application terminates.

Syntax

frontio [options ...]

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

FPGA Design

55

ADM-XRC SDK 4.9.3 User Guide (Win32) - FrontIO

The FrontIO sample application uses the FrontIO sample design (Verilog, VHDL).

56

ADM-XRC SDK 4.9.3 User Guide (Win32) - Info

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Info utility

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

Info is a utility that displays information including the Vital Product Data for a reconfigurable computing card.

Syntax

info [options ...]

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

Description

The Info utility produces output in the following form:

57

ADM-XRC SDK 4.9.3 User Guide (Win32) - Info

API ver 4.14
Driver ver 3.14

Board Type ADM-XP
Card ID 115 (0x0073)
Serial Number 115 (0x00000073)
Board/Logic Rev 2.0/1.5
FPGA Virtex-II Pro 2VP100 [FF1704]

Number of clock generators 1
Number of DMA channels 2
Number of spaces 2

Space 0 (FPGA):
Physical base 0xDA400000
Local range 0x00000000 - 0x003FFFFF
Virtual range 0x00900000 - 0x00CFFFFF
Space 1 (control):
Physical base 0xD9400000
Local range 0x00800000 - 0x00BFFFFF
Virtual range 0x00D00000 - 0x010FFFFF

Number of RAM banks 6
Bank presence bitmap 0x0000003F
RAM Bank 00 DDR-II SRAM 256kword x 64bits (2048kB)
RAM Bank 01 DDR-II SRAM 256kword x 64bits (2048kB)
RAM Bank 02 DDR-II SRAM 256kword x 64bits (2048kB)
RAM Bank 03 DDR-II SRAM 256kword x 64bits (2048kB)
RAM Bank 04 DDR SDRAM 8192kword x 64bits (65536kB)
RAM Bank 05 DDR SDRAM 8192kword x 64bits (65536kB)

58

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ITest sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The ITest sample application demonstrates how to handle interrupts from the FPGA in at application-level.

Syntax

itest [options ...]

Options

Option Argument type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

Description

On startup, the ITest sample application performs the following steps:

59

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

1. A Win32 event is created and registered for FPGA interrupts using the ADMXRC2_RegisterInterruptEvent API call.

2. An interrupt thread is started. The interrupt thread waits, in a loop, for the event to be signalled. Each time the event is
signalled, the interrupt thread wakes up and performs the following:

1. Reads the ISTAT FPGA register to discover which of the 32 FPGA interrupts are pending.

2. Clears all pending FPGA interrupts by writing to the ISTAT FPGA register.

3. Rearms FPGA interrupts by writing a dummy value to the IARM FPGA register.

4. Increments a count of FPGA interrupts received.

3. Interrupts are enabled by writing to the IMASK FPGA register.

Once initialized, the application waits for input from the user:

❍ When the user enters something other than "q", the application writes to a register in the FPGA, which
simulates some event occurring within the FPGA that generates an interrupt. The interrupt thread maintains a
count of how many interrupts it has handled.

❍ When the user enters "q", the application cleans up and displays the number of FPGA interrupts that were
handled, which should be equal to the number of interrupts generated. The application then terminates.

Output from a typical run might look like:

Enter 'q' to quit, or anything else to generate an interrupt:
Interrupt thread started

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:
q
Generated 5 interrupts
Interrupt thread saw 5 interrupt(s)

FPGA Design

The ITest example application uses the ITest sample FPGA design (Verilog, VHDL).

60

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Master sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The Master sample application demonstrates access to host memory by the target FPGA using direct master cycles.

Syntax

master [options ...]

Options

Option Type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

Description

On startup, the application allocates a user-space buffer, and calls ADMXRC2_SetupDMA to lock it in memory. It then

61

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

obtains a scatter-gather map of the buffer, by calling ADMXRC2_MapDirectMaster. It initializes the user-space buffer to
contain known data, and then waits for the user to enter commands, which can be the following:

● i meaning "initialize the user-space buffer to known data"

● q meaning "quit"

● r meaning "command the FPGA to read from a specified location in the user buffer"

● s meaning "show the contents of the user-space buffer"

● w meaning "command the FPGA to write specified data to specified a location in the user-space buffer"

FPGA Design

The Master sample application makes use of the Master sample FPGA design (Verilog, VHDL).

62

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

MEMORY sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The Memory sample application is a host-driven memory test that verifies the memories on a reconfigurable computing card.

Syntax

memory [options ...]

Options

Option Type Meaning
-banks hexadecimal integer Bitmask of banks to test (default

0xFFFFFFFF)
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open
-lclk real number Local bus clock frequency to use, in MHz

(default depends upon type of card)

63

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

-mask Hexadecimal integer Specifies optional mask to be applied during
memory tests (default all ones)

-mclk real number Memory clock frequency to use, in MHz
(default depends upon type of card)

-perf Do not measure host memory acess
throughput

+perf Measure host memory acess throughput
(default)

-refclk220 Do not enable Virtex-5 IDELAYCTRL
reference clock workaround (default)

+refclk220 Enable Virtex-5 IDELAYCTRL reference
clock workaround

-repeat base 10 integer Number of times to perform tests (default 1)
-retry Do not retry reads if data verification errors

occur (default)
+retry Retry reads if data verification errors occur;

can be used to gather evidence about
whether errors are occurring when reading or
when writing

-usedma Do not perform tests using DMA transfers
+usedma Perform tests using DMA transfers (default)
-usepio Do not perform tests using programmed I/O

transfers (default)
+usepio Perform tests using programmed I/O

transfers
-64 Operate local bus in 32 bit mode (default)
+64 Operate local bus in 64 bit mode

Description

The Memory sample application tests all banks of on-board memory on a reconfigurable computing card. Unlike the
Memtest application that it supersedes, the Memory sample application tests all banks of memory on a card regardless of
the type of memory and whether or not a mixture of memory types are present.

When run, the Memory sample application performs a memory test consisting of the following phases:

1. 0x55 / 0xAA pattern written to memory, for detecting data bits stuck at 0, 1 or shorted to other signals. The pattern is
designed to result in all of the data lines for a given bank toggling at the maximum possible frequency during a burst of
memory accesses.

2. Own address pattern written to memory, for detecting address bits stuck at 0, 1 or shorted to other signals.

3. Bit-reversed own address pattern written to memory, for detecting address bits stuck at 0, 1 or shorted to other signals.

4. Random data written to memory, for detecting pattern-sensitive failures.

5. DMA throughput between each on-board memory bank and CPU memory is measured the two directions: (i) CPU
memory to on-board memory and (ii) on-board memory to CPU memory.

The +64 option causes the application to operate the local bus in 64-bit mode. This is valid only for models that support a 64-
bit local bus. Using the local bus in 64-bit mode increases the available bandwidth for data transfer, generally resulting in
higher measured throughput in phase 5 (above).

A subset of the memory banks on a card can be tested by passing a bitmask of banks to test via the -banks option. For

64

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

example, -banks 0xD would specify that only banks 0, 2 and 3 should be tested.

The local bus clock frequency used for the memory test can be specified on the command-line using the -lclk option. For
example, -lclk 45 specifies a local bus clock frequency of 45 MHz. If the -lclk option is not specified on the command-line,
the Memory application programs a sensible default frequency (for the model on which the application is run) into the local
bus clock generator. For example, the default LCLK frequency when running Memory on an ADM-XRC-II is 66 MHz.

The -mask option enables a specific set of bits within a logical memory word to be tested. The mask defaults to all ones, but
can be overridden on the command-line. For example, to test bits 0 to 29 inclusive while ignoring bits 30 and 31 of the data
on an ADM-XRC-4SX card, the following would suffice: -mask 3fffffff. The mask is applied to all banks tested on a given run
of Memory, so if different masks must be applied to different banks, use the -banks option and test each bank separately.

By default, the Memory application programs the MCLK clock generator to an appropriate frequency for the memory clock
domain. This may be changed on the command-line using the -mclk option, although it is advisable that the user
understands the relationship between the freqency at the target FPGA's MCLK pin (i.e. what is programmed into the clock
generator) and the frequency of the internal clock within the FPGA. For example, with an ADM-XRC-4FX card, passing the
option -mclk 210 on the command-line would result in the DDR-II SDRAM devices on the card operating at 210 MHz (DDR
420) and the memory clock domain within the target FPGA operating at 105 MHz. With an ADM-XRC-4LX card, passing the
option -mclk 140 on the command-line would result in the ZBT SSRAM devices on the card operating at 140 MHz and the
memory clock domain within the target FPGA also operating at 140 MHz.

FPGA Design

The Memory sample application normally uses the Memory sample FPGA design (VHDL), but when the +64 option is
specified, it uses the Memory64 sample FPGA design (VHDL).

65

ADM-XRC SDK 4.9.3 User Guide (Win32) - MemoryF

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

MEMORYF sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The MemoryF sample application performs a fast, chip-driven memory test that verifies the memories on a reconfigurable
computing card.

Syntax

memoryf [options ...]

Options

Option Type Meaning
-banks hexadecimal integer Bitmask of banks to test (default

0xFFFFFFFF)
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

66

ADM-XRC SDK 4.9.3 User Guide (Win32) - MemoryF

-lclk real number Local bus clock frequency to use, in MHz
(default depends upon type of card)

-mclk real number Memory clock frequency to use, in MHz
(default depends upon type of card)

-refclk220 Do not enable Virtex-5 IDELAYCTRL
reference clock workaround (default)

+refclk220 Enable Virtex-5 IDELAYCTRL reference
clock workaround

-repeat base 10 integer Number of times to perform tests (default 1)
-64 Operate local bus in 32 bit mode (default)
+64 Operate local bus in 64 bit mode

Description

The MemoryF sample application tests all banks of on-board memory on a reconfigurable computing card. Unlike the
Memory application, MemoryF performs a chip-driven memory test. The CPU initiates the test and waits for completion, but
does not actively participate in the memory test. This reduces the runtime for the test by at least one order of magnitude
compared to the Memory application.

When run, the MemoryF sample application commands the target FPGA to perform a consisting of the following phases:

1. Constant 0x55 pattern written to memory, for detecting data bits stuck at 0, 1 or shorted to other signals.

2. Constant 0xAA pattern written to memory, for detecting data bits stuck at 0, 1 or shorted to other signals.

3. Alternating 0x55 / 0xAA pattern written to memory, for detecting data bits stuck at 0, 1 or shorted to other signals. The
pattern is designed to toggle all of the data lines for a given bank at the maximum possible frequency during a burst of
memory accesses.

4. Own address pattern written to memory, for detecting address bits stuck at 0, 1 or shorted to other signals.

5. Bit-reversed own address pattern written to memory, for detecting address bits stuck at 0, 1 or shorted to other signals.

6. Random data written to memory, for detecting pattern-sensitive failures.

The +64 option causes the application to operate the local bus in 64-bit mode. This is valid only for models that support a 64-
bit local bus.

A subset of the memory banks on a card can be tested by passing a bitmask of banks to test via the -banks option. For
example, -banks 0xD would specify that only banks 0, 2 and 3 should be tested.

The local bus clock frequency used for the memory test can be specified on the command-line using the -lclk option. For
example, -lclk 45 specifies a local bus clock frequency of 45 MHz. If the -lclk option is not specified on the command-line,
the MemoryF application programs a sensible default frequency (for the model on which the application is run) into the local
bus clock generator. For example, the default LCLK frequency when running MemoryF on an ADM-XRC-II is 66 MHz.

By default, the MemoryF application programs the MCLK clock generator to an appropriate frequency for the memory clock
domain. This may be changed on the command-line using the -mclk option, although it is advisable that the user
understands the relationship between the freqency at the target FPGA's MCLK pin (i.e. what is programmed into the clock
generator) and the frequency of the internal clock within the FPGA. For example, with an ADM-XRC-4FX card, passing the
option -mclk 210 on the command-line would result in the DDR-II SDRAM devices on the card operating at 210 MHz (DDR
420) and the memory clock domain within the target FPGA operating at 105 MHz. With an ADM-XRC-4LX card, passing the
option -mclk 140 on the command-line would result in the ZBT SSRAM devices on the card operating at 140 MHz and the
memory clock domain within the target FPGA also operating at 140 MHz.

67

ADM-XRC SDK 4.9.3 User Guide (Win32) - MemoryF

FPGA Design

The MemoryF sample application normally uses the Memory sample FPGA design (VHDL), but when the +64 option is
specified, it uses the Memory64 sample FPGA design (VHDL).

68

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memtest

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Memtest sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

Note: this application has been effectively superseded by the Memory sample application, since the latter is more general
and works on a larger number of models.

The Memtest sample application tests the ZBT SSRAM on a reconfigurable computing card.

Syntax

memtest [options ...]

Options

Option Type Meaning
-banks hexadecimal integer Bitmask of banks to test (default

0xFFFFFFFF)
-card base 10 integer ID of card to open

69

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memtest

-index base 10 integer Index of card to open
-lclk real number Local bus clock frequency to use, in MHz

(default 33.0)
-repeat base 10 integer Number of times to perform tests (default 1)
-speed Do not test SSRAM access speed
+speed Test SSRAM access speed (default)
-usedma Use programmed I/O for tests
+usedma Use DMA for tests (default)
-64 Operate local bus in 32 bit mode (default)
+64 Operate local bus in 64 bit mode

Description

The Memtest sample application supports only models that use ZBT SSRAM memory. It tests the ZBT SSRAM memory in
several phases:

1. 0x55 pattern written to entire memory, for detecting data bits stuck at 1 or 0, or shorted to other signals.

2. 0xAA pattern written to entire memory, for detecting data bits stuck at 1 or 0, or shorted to other signals.

3. Own address pattern written to entire memory, for detecting address bits stuck at 1 or 0, or shorted to other signals.

4. Bit-reversed own address pattern written to entire memory, for detecting address bits stuck at 1 or 0, or shorted to other
signals.

5. Writes individual bytes in order to detect incorrect handling of byte enables or faulty byte enable signals.

6. Measures throughput for data transfer in the two possible directions: CPU memory to ZBT SSRAM, and ZBT SSRAM to
CPU memory.

Depending on whether the +usedma option or the +usedma option is specified on the command-line, Memtest uses either
programmed I/O or DMA to transfer data to and from the ZBT SSRAM. DMA is efficient for bulk data transfers and hence the
default is to use DMA transfers. However, because DMA transfers carry a certain set up overhead, programmed I/O is
efficient for very small data transfers or random access to registers within the FPGA.

A subset of the memory banks on a card can be tested by passing a bitmask of banks to test via the -banks option. For
example, -banks 0xD would specify that only banks 0, 2 and 3 should be tested.

The +64 option causes the application to operate the local bus in 64-bit mode. This is valid only for models that support a 64-
bit local bus. Using the local bus in 64-bit mode increases the available bandwidth for data transfer, generally resulting in
higher measured throughput in phase 6 (above).

FPGA Design

The Memtest sample application normally uses the ZBT sample FPGA design (Verilog, VHDL), but when the +64 option is
specified, it uses the ZBT64 sample FPGA design (Verilog, VHDL).

70

ADM-XRC SDK 4.9.3 User Guide (Win32) - RearIO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

RearIO sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The RearIO example application configures the target FPGA with a bitstream that outputs a walking '1' bit on the rear panel
I/O connector. As soon as the bitstream has been loaded, the application terminates.

Syntax

reario [options ...]

Options

Option Type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open

FPGA Design

71

ADM-XRC SDK 4.9.3 User Guide (Win32) - RearIO

The RearIO example application uses the RearIO sample FPGA design (Verilog, VHDL).

72

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Simple sample application

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2
ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Overview

The Simple sample application demonstrates how to implement registers in the FPGA that are accessible from the host
using direct slave cycles.

Syntax

simple [options ...]

Options

Option Type Meaning
-card base 10 integer ID of card to open
-index base 10 integer Index of card to open
-64 Operate local bus in 32 bit mode (default)
+64 Operate local bus in 64 bit mode

73

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

Description

The user enters hexadecimal values, which the application writes to a register in the FPGA. The application reads the values
back from the FPGA and displays them. However, the FPGA nibble-reverses the values before returning them.

FPGA Design

Normally, this application uses the Simple sample FPGA design (Verilog, VHDL). However, if the +64 option is specified on
the command line, the Simple64 sample FPGA design (Verilog, VHDL) is used instead. It is important to note that when the
64-bit version is used, the application does nothing different apart from configuring the FPGA local bus space to operate in
64-bit mode (see ADMXRC2_SetSpaceConfig).

74

ADM-XRC SDK 4.9.3 User Guide (Win32) - Sample FPGA designs

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Sample FPGA designs

The sample FPGA designs are supplied in Verilog versions and VHDL versions.

● The Verilog versions are located in the fpga\verilog\ directory relative to the base of the SDK.

● The VHDL versions are located in the fpga\vhdl\ directory relative to the base of the SDK.

For simulation, the PLXSIM package (currently in VHDL only) provides primitives that allow a testbench to be rapidly
constructed.

● The VHDL version of the PLXSIM source code is located in the fpga\vhdl\plxsim\ directory relative to the base of the
SDK.

75

ADM-XRC SDK 4.9.3 User Guide (Win32) - Generating ISE project files

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Generating ISE Project files

As of Xilinx ISE 7.1i, project files for Project Navigator (.ISE extension) are binary files. Furthermore, filenames are stored as
absolute paths regardless of whether or not the filenames were added to the project as relative or absolute paths. For this
reason, project files are in general not portable between users or workstations as different users tend do their work in
different locations. In this release of the SDK, Project Navigator files are not supplied but can be generated after installation
by running a script (requires ISE tools to be in user's PATH). There are several choices for the user when deciding how to
run this script:

1. Generate Project Navigator files for all sample VHDL and Verilog designs.

2. Generate Project Navigator files for all sample VHDL designs.

3. Generate Project Navigator files for all sample Verilog designs.

4. Generate Project Navigator files for a specific Verilog or VHDL design.

NOTE

The scripts used to generate Project Navigator files are known to be compatible with
ISE 10.1i. They will not work with any ISE version earlier than 10.1i, and are not
guaranteed to work correctly with any ISE version later than 10.1i.

1. Generate Project Navigator files for all sample VHDL and Verilog designs

To generate project files for all sample designs in the SDK, both VHDL and Verilog, start a shell and issue the following
commands:

cd /d %ADXMRC_SDK4%\fpga
projnav mkproj

Because this process creates hundreds of .ISE files, it may take from minutes to hours to run to completion. The user should
also verify that at least 550MB of disk space are available before entering these commands.

2. Generate Project Navigator files for all sample VHDL designs

To generate project files for all sample VHDL designs in the SDK, start a shell and issue the following commands:

cd /d %ADXMRC_SDK4%\fpga\vhdl
projnav mkproj

Because this process creates hundreds of .ISE files, it may take from minutes to hours to run to completion. The user should
also verify that at least 400MB of disk space are available before entering these commands.

3. Generate Project Navigator files for all sample Verilog designs

76

ADM-XRC SDK 4.9.3 User Guide (Win32) - Generating ISE project files

To generate project files for all sample Verilog designs in the SDK, start a shell and issue the following commands:

cd /d %ADXMRC_SDK4%\fpga\verilog
projnav mkproj

Because this process creates hundreds of .ISE files, it may take from minutes to hours to run to completion. The user should
also verify that at least 150MB of disk space are available before entering these commands.

4. Generate Project Navigator files for a specific VHDL or Verilog design

To generate project files for a specific sample VHDL or Verilog design, start a shell and issue the following commands:

cd /d %ADXMRC_SDK4%\fpga\<language>\<design>
projnav mkproj

where <language> is either 'vhdl' or 'verilog', and <design> is one of the sample FPGA designs, for example 'ddma'.
Because this process may create dozens of .ISE files, it may take a few minutes to run to completion and may consume up
to 40 MB of disk space.

77

ADM-XRC SDK 4.9.3 User Guide (Win32) - Building

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Building the sample FPGA designs

Bitstreams for all supported combinations of design, model and device are supplied prebuilt in the bit\ directory of the SDK.
This directory is to the sample FPGA designs what the bin\ directory is to the sample applications. All of the sources from
which the bitstreams were built are supplied in the fpga\ directory, so these bitstreams can be rebuilt from sources if
necessary. Note that after rebuilding a particular bitstream, it will not automatically be picked up by the sample applications;
the bitstream must be manually copied to the appropriate directory, namely bit\<design>\ relative to the root directory of the
SDK. If built using Xilinx Project Navigator, the bitstream must be renamed to the form <design>-<model>-<device>.bit

For serious work, it is recommended that the user set up his own directory structure and naming convention for bitstreams in
order to avoid the need to copy files.

The ADM-XRC SDK provides several ways to build the sample FPGA designs:

1. Using ISE Project Navigator to build a bitstream

2. Using a Makefile to build all VHDL and Verilog bitstreams

3. Using a Makefile to build all VHDL bitstreams

4. Using a Makefile to build all Verilog bitstreams

5. Using a Makefile to build all bitstreams for a specific VHDL or Verilog design

6. Using a Makefile to build a bitstream for a specific VHDL or Verilog design, model and device combination

Using ISE Project Navigator to build a bitstream

ISE Project Navigator files can be generated after installation of the SDK for all supported <design>-<model>-<device>
combinations. Once the project files have been generated, navigate to the appropriate directory and double-click the project
file to open it in Project Navigator. The following examples illustrate where the project files are located:

Language Design For model Device Project file located at...
Verilog DLL ADM-XPL 2VP20 fpga\verilog\dll\projnav\xpl\2vp20\
VHDL Simple ADM-XRC-II 2V3000 fpga\vhdl\simple\projnav\xrc2\2v3000\

Note that Xilinx Project Navigator generally gives the bitstreams it generates the same filename as the top-level entity in the
project, but with a .BIT extension. In order to use the rebuilt bitstream with the example applications, it must be copied to the
bit\<design>\ directory and renamed to the form <design>-<model>-<device>.bit.

Using a Makefile to build all VHDL and Verilog bitstreams

A Makefile in the fpga\ directory is provided for building all of the bitstreams in the SDK, in both Verilog and VHDL versions.
Since this generates hundreds of bitstreams, the runtime may be several hours. The following commands would rebuild all of
the bitstreams in the SDK:

78

ADM-XRC SDK 4.9.3 User Guide (Win32) - Building

cd /d %ADMXRC_SDK4%\fpga
make clean all

Using a Makefile to build all VHDL bitstreams

The Makefile in the fpga\vhdl\ directory is provided for building all of the VHDL bitstreams from sources. Since this
generates hundreds of bitstreams, the runtime may be several hours:

cd /d %ADMXRC_SDK4%\fpga\vhdl
make clean all

Using a Makefile to build all Verilog bitstreams

The Makefile in the fpga\verilog\ directory is provided for building all of the Verilog bitstreams from sources. Since this
generates hundreds of bitstreams, the runtime may be several hours:

cd /d %ADMXRC_SDK4%\fpga\verilog
make clean all

Using a Makefile to build all bitstreams for a specific VHDL or Verilog design

The Makefile in each design directory may be used to build all bitstreams for that design. For example, to build the
bitstreams for all model-device combinations of the VHDL version of the SIMPLE design, issue the following commands:

cd /d %ADMXRC_SDK4%\fpga\vhdl\simple
make clean all

Using a Makefile to build a bitstream for a specific VHDL or Verilog design, model and device
combination

The Makefile in each design directory may also be used to build a bitstream specifically for a certain design-model-device
combination. For example, the following commands would build the Verilog version of the ZBT design for an ADM-XRC-II
fitted with a 2V6000 device:

cd /d %ADMXRC_SDK4%\fpga\verilog\zbt
make bit_xrc2_2v6000

The full path and filename of bitstreams built this way will be (relative to the root directory of the SDK):

● fpga\verilog\<design>\output\<design>-<model>-<device>.bit (for Verilog designs)

● fpga\vhdl\<design>\output\<design>-<model>-<device>.bit (for VHDL designs)

79

ADM-XRC SDK 4.9.3 User Guide (Win32) - VHDL designs

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Sample VHDL FPGA designs

A number of sample VHDL FPGA designs are included with the SDK. The purpose of these designs is to demonstrate
functionality available on the ADM-XRC series of cards and also to serve as customisable starting points for user-developed
applications. The designs are intentionally trivial so that code that implements the functionality being demonstrated can
easily be seen.

The sample FPGA designs are used by the sample applications, which demonstrate how software running on the host
CPU can interact with an FPGA design.

The table below lists the sample FPGA designs and the sample applications that use them:

Design name Used by application(s) Purpose

Clock Clock Measures approximate frequencies at the clock
input pins of a reconfigurable computing card.

DLL DLL Demonstrates clock doubling using Virtex DLLs and
Virtex-II DCMs

DDMA DMA Demonstrates use of the DMA engines in demand-
mode, with bursting on the local bus.

DDMA64 DMA Demonstrates use of the DMA engines in demand-
mode, with bursting and 64-bit mode on the local
bus.

FrontIO FrontIO A trivial design that walks a '1' bit up the front panel
I/O pins.

ITest ITest Sample logic for generating FPGA interrupts.

Master Master Demonstrates how to implement a direct master
capability in an FPGA design.

Memory Memory A reference design featuring an interface to the
onboard memories that permits access by both the
CPU (via a 32-bit local bus) and a processing block
within the FPGA.

Memory64 Memory A reference design featuring an interface to the
onboard memories that permits access by both the
CPU (via a 64-bit local bus) and a processing block
within the FPGA.

RearIO RearIO A trivial design that walks a '1' bit up the rear panel
I/O pins.

Simple Simple Demonstrates how to implement host-readable
registers.

Simple64 Simple Demonstrates how to implement host-readable
registers, with 64-bit local bus interface.

ZBT Memtest Demonstrates host access to the ZBT SSRAM.

ZBT64 Memtest Demonstrates host access to the ZBT SSRAM, with
64-bit local bus interface.

80

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Clock sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\clock

Synopsis

81

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

The Clock FPGA design can be used to approximately measure the frequencies of the signals present at the 'standard'
clock pins of the target FPGA. It consists of a number of cycle counters that can be read via the local bus interface of the
target FPGA.

FPGA Space Usage

The following registers are accessible via the FPGA space:

READ (read count command register, local bus address 0x0)
Bits Mnemonic Type Function
31:0 DO WO/RAX Writing a '1' to a particular bit of this field initiates a

read of the corresponding cycle counter.

STATUS (status register, local bus address 0x4)
Bits Mnemonic Type Function
31:0 DONE RO A '1' in a particular bit of this field indicates that either

no read command has been issued to the
corresponding cycle counter, or that the last read
command issues to the corresponding cycle counter
has been completed.

COUNT (cycle count registers, local bus addresses 0x80 - 0xFC)

Each 32-bit register in the range 0x80 - 0xFC returns the number of elapsed cycles for the corresponding
cycle counter.
Bits Mnemonic Type Function
31:0 N RO Returns the number of cycles that have elapsed for a

particular clock input.

To read a cycle counter, the following procedure should be used:

1. Issue a command to read the cycle counter for the clock input of interest via the READ register. For example, to read
the cycle counter for the LCLK input, which is the first cycle counter on all models, write the value 0x00000001 to the
READ register.

2. Poll the STATUS register until the bit corresponding to the clock input of interest returns '1'. This should be the same bit
as in step 1 above. For example, when bit 0 of the STATUS register returns '1', the read of the cycle counter
corresponding to the LCLK input has been completed.

3. Read the cycle counter corresponding to the clock input of interest. For the LCLK input, this is the first cycle counter, at
local bus address 0x80.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

clock-xrc-v.scr clock-xrc-v.prj clock-xrc.ucf

ADM-XRC with
Virtex-E

clock-xrc-ve.scr clock-xrc-ve.prj clock-xrc.ucf

82

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

ADM-XRC-P with
Virtex

clock-xrcp-v.scr clock-xrcp-v.prj clock-xrcp.ucf

ADM-XRC-P with
Virtex-E

clock-xrcp-ve.scr clock-xrcp-ve.prj clock-xrcp.ucf

ADM-XRC-II-Lite clock-xrc2l-v2.scr clock-xrc2l-v2.prj clock-xrc2l.ucf
ADM-XRC-II clock-xrc2-v2.scr clock-xrc2-v2.prj clock-xrc2.ucf
ADM-XPL clock-xpl-v2p.scr clock-xpl-v2p.prj clock-xpl.ucf
ADM-XP clock-xp-v2p.scr clock-xp-v2p.prj clock-xp.ucf
ADP-WRC-II clock-wrc2-v2.scr clock-wrc2-v2.prj clock-wrc2.ucf
ADP-DRC-II clock-drc2-v2.scr clock-drc2-v2.prj clock-drc2.ucf
ADP-XPI clock-xpi-v2p.scr clock-xpi-v2p.prj clock-xpi.ucf
ADM-XRC-4LX clock-xrc4lx-v4lx.scr clock-xrc4lx-v4lx.prj clock-xrc4lx.ucf
ADM-XRC-4SX clock-xrc4sx-v4sx.scr clock-xrc4sx-v4sx.prj clock-xrc4sx.ucf
ADM-XRC-4FX
with 4VFX100

clock-xrc4fx-v4fx.scr clock-xrc4fx-v4fx.prj clock-xrc4fx-4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

clock-xrc4fx-v4fx.scr clock-xrc4fx-v4fx.prj clock-xrc4fx-4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

clock-xrce4fx-v4fx.scr clock-xrce4fx-v4fx.prj clock-xrce4fx-
4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

clock-xrce4fx-v4fx.scr clock-xrce4fx-v4fx.prj clock-xrce4fx-
4vfx140.ucf

ADM-XRC-5LX clock-xrc5lx-v5lx.scr clock-xrc5lx-v5lx.prj clock-xrc5lx.ucf
ADM-XRC-5T1
with FXT

clock-xrc5t1-v5fxt.scr clock-xrc5t1-v5fxt.prj clock-xrc5t1-5vfxt.ucf

ADM-XRC-5T1
with LXT

clock-xrc5t1-v5lxt.scr clock-xrc5t1-v5lxt.prj clock-xrc5t1.ucf

ADM-XRC-5T1
with SXT

clock-xrc5t1-v5sxt.scr clock-xrc5t1-v5sxt.prj clock-xrc5t1.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
5VFX100T

clock-xrc5t2-v5fxt.scr clock-xrc5t2-v5fxt.prj clock-xrc5t2-
5vfx100t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
5VFX130T

clock-xrc5t2-v5fxt.scr clock-xrc5t2-v5fxt.prj clock-xrc5t2-
5vfx130t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
5VFX200T

clock-xrc5t2-v5fxt.scr clock-xrc5t2-v5fxt.prj clock-xrc5t2-
5vfx200t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
5VLX110T,
5VLX155T or
5VLX220T

clock-xrc5t2-v5lxt.scr clock-xrc5t2-v5lxt.prj clock-xrc5t2-5vlx110t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
5VLX330T

clock-xrc5t2-v5lxt.scr clock-xrc5t2-v5lxt.prj clock-xrc5t2-5vlx330t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
5VSX240T

clock-xrc5t2-v5sxt.scr clock-xrc5t2-v5sxt.prj clock-xrc5t2-
5vsx240t.ucf

83

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

ADM-XRC-5TZ
with 5VFX100T

clock-xrc5tz-v5fxt.scr clock-xrc5tz-v5fxt.prj clock-xrc5tz-5vfx100t.ucf

ADM-XRC-5TZ
with 5VFX130T

clock-xrc5tz-v5fxt.scr clock-xrc5tz-v5fxt.prj clock-xrc5tz-5vfx130t.ucf

ADM-XRC-5TZ
with 5VFX200T

clock-xrc5tz-v5fxt.scr clock-xrc5tz-v5fxt.prj clock-xrc5tz-5vfx200t.ucf

ADM-XRC-5TZ
with 5VLX110T,
5VLX155T or
5VLX220T

clock-xrc5tz-v5lxt.scr clock-xrc5tz-v5lxt.prj clock-xrc5tz-5vlx110t.ucf

ADM-XRC-5TZ
with 5VLX330T

clock-xrc5tz-v5lxt.scr clock-xrc5tz-v5lxt.prj clock-xrc5tz-5vlx330t.ucf

ADM-XRC-5TZ
with 5VSX240T

clock-xrc5tz-v5sxt.scr clock-xrc5tz-v5sxt.prj clock-xrc5tz-
5vsx240t.ucf

ADM-XRC-5T-
DA1 with FXT

clock-xrc5tda1-v5fxt.scr clock-xrc5tda1-v5fxt.prj clock-xrc5tda1-5vfxt.ucf

ADM-XRC-5T-
DA1 with LXT

clock-xrc5tda1-v5lxt.scr clock-xrc5tda1-v5lxt.prj clock-xrc5tda1.ucf

ADM-XRC-5T-
DA1 with SXT

clock-xrc5tda1-v5sxt.scr clock-xrc5tda1-v5sxt.prj clock-xrc5tda1.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>
ADP-XPI projnav\xpi\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

ADM-XRC-5TZ projnav\xrc5tz\<device>
ADM-XRC-5T-DA1 projnav\xrc5tda1\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

84

ADM-XRC SDK 4.9.3 User Guide (Win32) - Clock

Model Shell command
ADM-XRC vsim -do "do clock-xrc.do"
ADM-XRC-P vsim -do "do clock-xrc.do"
ADM-XRC-II-Lite vsim -do "do clock-xrc.do"
ADM-XRC-II vsim -do "do clock-xrc.do"
ADM-XPL vsim -do "do clock-xpl.do"
ADM-XP vsim -do "do clock-xpl.do"
ADP-WRC-II vsim -do "do clock-wrc2.do"
ADP-DRC-II vsim -do "do clock-drc2.do"
ADP-XPI vsim -do "do clock-xpi.do"
ADM-XRC-4LX vsim -do "do clock-xrc4lx.do"
ADM-XRC-4SX vsim -do "do clock-xrc4lx.do"
ADM-XRC-4FX vsim -do "do clock-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do clock-xrce4fx.do"
ADM-XRC-5LX vsim -do "do clock-xrc5lx.do"
ADM-XRC-5T1 vsim -do "do clock-xrc5t1.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do clock-xrc5t1.do"

ADM-XRC-5TZ vsim -do "do clock-xrc5t1.do"
ADM-XRC-5T-DA1 vsim -do "do clock-xrc5tda1.do"

85

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DDMA sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\ddma

Synopsis

86

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

The DDMA FPGA design demonstrates demand-mode DMA with bursting. Data is read from an application buffer in host
memory and then simply written back to another application buffer unchanged (a 'loopback' operation). In order to use
demand-mode DMA, the host must specify the appropriate mode when performing DMA transfers. This is demonstrated by
the DMA sample application.

● Data is read from host memory using DMA channel 0 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● Data is written to host memory using DMA channel 1 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● A 512 word by 32 bit FIFO is used to buffer data.

● Bursting is allowed on the local bus.

● Flow control is implemented by holding off the demand-mode DMA request signals LDREQ#[1:0] when the FIFO is
nearly full or nearly empty.

FPGA Space Usage

The design assumes that any DMA transfer on DMA channel 0 is transferring data into the FIFO; hence any direct-slave
write where LDACK#[0] is asserted will write data into the FIFO. Similarly, any DMA transfer on DMA channel 1 is assumed
to be reading data out of the FIFO; hence any read where LDACK#[1] is asserted will remove data from the FIFO. The local
bus address is ignored during these demand-mode DMA transfers. In other words, the FIFO is visible over the entire FPGA
space during demand-mode DMA transfers.

There are registers that reside in the FPGA direct-slave space. These registers must be written by the host with a DMA
transfer count that matches the size of the DMA transfer being performed, prior to the host starting the DMA transfer. Note
that these registers cannot be inadvertantly overwritten by demand-mode DMA transfers, as the design qualifies FPGA
register accesses using LDACK#[1:0].

Inbound count register (ICOUNT, local bus address 0x0)
Bits Mnemonic Type Function
1:0 MBZ
31:2 N WO Inbound DMA transfer count, in 32-bit words

The inbound count register (ICOUNT) specifies how many words will be transferred in the next DMA transfer in channel 0, in
order to transfer data into the FPGA's FIFO. When ICOUNT.N is zero, the FPGA will not assert LDREQ#[0]. The FPGA
decrements ICOUNT.N whenever a word of data is transferred on DMA channel 0.

Outbound count register (OCOUNT, local bus address 0x4)
Bits Mnemonic Type Function
1:0 MBZ
31:2 N WO Outbound DMA transfer count, in 32-bit words

The outbound count register (OCOUNT) specifies how many words will be transferred in the next DMA transfer in channel 1,
in order to transfer data into the FPGA's FIFO. When OCOUNT.N is zero, the FPGA will not assert LDREQ#[1]. The FPGA
decrements OCOUNT.N whenever a word of data is transferred on DMA channel 1.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

87

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

ddma-xrc-v.scr ddma-xrc-v.prj ddma-xrc.ucf

ADM-XRC with
Virtex-E

ddma-xrc-ve.scr ddma-xrc-ve.prj ddma-xrc.ucf

ADM-XRC-P with
Virtex

ddma-xrcp-v.scr ddma-xrcp-v.prj ddma-xrcp.ucf

ADM-XRC-P with
Virtex-E

ddma-xrcp-ve.scr ddma-xrcp-ve.prj ddma-xrcp.ucf

ADM-XRC-II-Lite ddma-xrc2l-v2.scr ddma-xrc2l-v2.prj ddma-xrc2l.ucf
ADM-XRC-II ddma-xrc2-v2.scr ddma-xrc2-v2.prj ddma-xrc2.ucf
ADM-XPL ddma-xpl-v2p.scr ddma-xpl-v2p.prj ddma-xpl.ucf
ADM-XP ddma-xp-v2p.scr ddma-xp-v2p.prj ddma-xp.ucf
ADP-WRC-II ddma-wrc2-v2.scr ddma-wrc2-v2.prj ddma-wrc2.ucf
ADP-DRC-II ddma-drc2-v2.scr ddma-drc2-v2.prj ddma-drc2.ucf
ADP-XPI ddma-xpi-v2p.scr ddma-xpi-v2p.prj ddma-xpi.ucf
ADM-XRC-4LX ddma-xrc4lx-v4lx.scr ddma-xrc4lx-v4lx.prj ddma-xrc4lx.ucf
ADM-XRC-4SX ddma-xrc4sx-v4sx.scr ddma-xrc4sx-v4sx.prj ddma-xrc4sx.ucf
ADM-XRC-4FX
with 4VFX100

ddma-xrc4fx-v4fx.scr ddma-xrc4fx-v4fx.prj ddma-xrc4fx-4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

ddma-xrc4fx-v4fx.scr ddma-xrc4fx-v4fx.prj ddma-xrc4fx-4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

ddma-xrce4fx-v4fx.scr ddma-xrce4fx-v4fx.prj ddma-xrce4fx-
4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

ddma-xrce4fx-v4fx.scr ddma-xrce4fx-v4fx.prj ddma-xrce4fx-
4vfx140.ucf

ADM-XRC-5LX ddma-xrc5lx-v5lx.scr ddma-xrc5lx-v5lx.prj ddma-xrc5lx.ucf
ADM-XRC-5T1
with FXT

ddma-xrc5t1-v5fxt.scr ddma-xrc5t1-v5fxt.prj ddma-xrc5t1-5vfxt.ucf

ADM-XRC-5T1
with LXT

ddma-xrc5t1-v5lxt.scr ddma-xrc5t1-v5lxt.prj ddma-xrc5t1.ucf

ADM-XRC-5T1
with SXT

ddma-xrc5t1-v5sxt.scr ddma-xrc5t1-v5sxt.prj ddma-xrc5t1.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with FXT

ddma-xrc5t2-v5fxt.scr ddma-xrc5t2-v5fxt.prj ddma-xrc5t2-5vfxt.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with LXT

ddma-xrc5t2-v5lxt.scr ddma-xrc5t2-v5lxt.prj ddma-xrc5t2.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with SXT

ddma-xrc5t2-v5sxt.scr ddma-xrc5t2-v5sxt.prj ddma-xrc5t2.ucf

ADM-XRC-5TZ
with FXT

ddma-xrc5tz-v5fxt.scr ddma-xrc5tz-v5fxt.prj ddma-xrc5tz-5vfxt.ucf

ADM-XRC-5TZ
with LXT

ddma-xrc5tz-v5lxt.scr ddma-xrc5tz-v5lxt.prj ddma-xrc5tz.ucf

ADM-XRC-5TZ
with SXT

ddma-xrc5tz-v5sxt.scr ddma-xrc5tz-v5sxt.prj ddma-xrc5tz.ucf

ADM-XRC-5T-
DA1 with FXT

ddma-xrc5tda1-v5fxt.scr ddma-xrc5tda1-v5fxt.prj ddma-xrc5tda1-5vfxt.ucf

ADM-XRC-5T-
DA1 with LXT

ddma-xrc5tda1-v5lxt.scr ddma-xrc5tda1-v5lxt.prj ddma-xrc5tda1.ucf

88

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

ADM-XRC-5T-
DA1 with SXT

ddma-xrc5tda1-v5sxt.scr ddma-xrc5tda1-v5sxt.prj ddma-xrc5tda1.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>
ADP-XPI projnav\xpi\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

ADM-XRC-5TZ projnav\xrc5tz\<device>
ADM-XRC-5T-DA1 projnav\xrc5tda1\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

Model Shell command
ADM-XRC vsim -do "do ddma.do"
ADM-XRC-P vsim -do "do ddma.do"
ADM-XRC-II-Lite vsim -do "do ddma-xrc2l.do"
ADM-XRC-II vsim -do "do ddma-xrc2.do"
ADM-XPL vsim -do "do ddma-xpl.do"
ADM-XP vsim -do "do ddma-xpl.do"
ADP-WRC-II vsim -do "do ddma-wrc2.do"
ADP-DRC-II vsim -do "do ddma-wrc2.do"
ADP-XPI vsim -do "do ddma-xpi.do"
ADM-XRC-4LX vsim -do "do ddma-xrc4lx.do"
ADM-XRC-4SX vsim -do "do ddma-xrc4lx.do"
ADM-XRC-4FX vsim -do "do ddma-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do ddma-xrce4fx.do"
ADM-XRC-5LX vsim -do "do ddma-xrc5.do"

89

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

ADM-XRC-5T1 vsim -do "do ddma-xrc5.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do ddma-xrc5.do"

ADM-XRC-5TZ vsim -do "do ddma-xrc5.do"
ADM-XRC-5T-DA1 vsim -do "do ddma-xrc5.do"

90

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DDMA64 sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL 2VP20, 2VP30 only
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\ddma64

Synopsis

91

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

The DDMA64 FPGA design demonstrates demand-mode DMA with local bus bursting in 64-bit mode. Data is read from an
application buffer in host memory and then simply written back to another application buffer unchanged (a 'loopback'
operation). In order to use demand-mode DMA, the host must specify the appropriate mode when performing DMA transfers.
This is demonstrated by the DMA sample application.

● Data is read from host memory using DMA channel 0 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● Data is written to host memory using DMA channel 1 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● Two 512 word by 32-bit FIFOs are used to obtain a 64-bit wide FIFO for buffering data.

● Bursting is allowed on the local bus.

● Flow control is implemented by holding off the demand-mode DMA request signals LDREQ#[1:0] when the FIFO is
nearly full or nearly empty.

FPGA Space Usage

The design assumes that any DMA transfer on DMA channel 0 is transferring data into the FIFO; hence any direct-slave
write where LDACK#[0] is asserted will write data into the FIFO. Similarly, any DMA transfer on DMA channel 1 is assumed
to be reading data out of the FIFO; hence any read where LDACK#[1] is asserted will remove data from the FIFO. The local
bus address is ignored during these demand-mode DMA transfers. In other words, the FIFO is visible over the entire FPGA
space during demand-mode DMA transfers.

There are registers that reside in the FPGA direct-slave space. These registers must be written by the host with a DMA
transfer count that matches the size of the DMA transfer being performed, prior to the host starting the DMA transfer. Note
that these registers cannot be inadvertantly overwritten by demand-mode DMA transfers, as the design qualifies FPGA
register accesses using LDACK#[1:0].

Inbound count register (ICOUNT, local bus address 0x0)
Bits Mnemonic Type Function
2:0 MBZ
31:3 N WO Inbound DMA transfer count, in 64-bit words

The inbound count register (ICOUNT) specifies how many words will be transferred in the next DMA transfer in channel 0, in
order to transfer data into the FPGA's FIFO. When ICOUNT.N is zero, the FPGA will not assert LDREQ#[0]. The FPGA
decrements ICOUNT.N whenever a word of data is transferred on DMA channel 0.

Outbound count register (OCOUNT, local bus address 0x4)
Bits Mnemonic Type Function
2:0 MBZ
31:3 N WO Outbound DMA transfer count, in 64-bit words

The outbound count register (OCOUNT) specifies how many words will be transferred in the next DMA transfer in channel 1,
in order to transfer data into the FPGA's FIFO. When OCOUNT.N is zero, the FPGA will not assert LDREQ#[1]. The FPGA
decrements OCOUNT.N whenever a word of data is transferred on DMA channel 1.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

92

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

Model XST script file XST project file UCF file
ADM-XPL ddma64-xpl-v2p.scr ddma64-xpl-v2p.prj ddma64-xpl.ucf
ADM-XP ddma64-xp-v2p.scr ddma64-xp-v2p.prj ddma64-xp.ucf
ADP-XPI ddma64-xpi-v2p.scr ddma64-xpi-v2p.prj ddma64-xpi.ucf
ADM-XRC-4FX
with 4vfx100

ddma64-xrc4fx-v4fx.scr ddma64-xrc4fx-v4fx.prj ddma64-xrc4fx-
4vfx100.ucf

ADM-XRC-4FX
with 4vfx140

ddma64-xrc4fx-v4fx.scr ddma64-xrc4fx-v4fx.prj ddma64-xrc4fx-
4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

ddma64-xrce4fx-v4fx.scr ddma64-xrce4fx-v4fx.prj ddma64-xrce4fx-
4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

ddma64-xrce4fx-v4fx.scr ddma64-xrce4fx-v4fx.prj ddma64-xrce4fx-
4vfx140.ucf

ADM-XRC-5LX ddma64-xrc5lx-v5lx.scr ddma64-xrc5lx-v5lx.prj ddma64-xrc5lx.ucf
ADM-XRC-5T1
with FXT

ddma64-xrc5t1-v5fxt.scr ddma64-xrc5t1-v5fxt.prj ddma64-xrc5t1-5vfxt.ucf

ADM-XRC-5T1
with LXT

ddma64-xrc5t1-v5lxt.scr ddma64-xrc5t1-v5lxt.prj ddma64-xrc5t1.ucf

ADM-XRC-5T1
with SXT

ddma64-xrc5t1-v5sxt.scr ddma64-xrc5t1-v5sxt.prj ddma64-xrc5t1.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with FXT

ddma64-xrc5t2-v5fxt.scr ddma64-xrc5t2-v5fxt.prj ddma64-xrc5t2-5vfxt.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with LXT

ddma64-xrc5t2-v5lxt.scr ddma64-xrc5t2-v5lxt.prj ddma64-xrc5t2.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with SXT

ddma64-xrc5t2-v5sxt.scr ddma64-xrc5t2-v5sxt.prj ddma64-xrc5t2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-XPI projnav\xpi\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

Model Shell command

93

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

ADM-XPL vsim -do "do ddma64-xpl.do"
ADM-XP vsim -do "do ddma64-xpl.do"
ADP-XPI vsim -do "do ddma64-xpi.do"
ADM-XRC-4FX vsim -do "do ddma64-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do ddma64-xrce4fx.do"
ADM-XRC-5LX vsim -do "do ddma64-xrc5.do"
ADM-XRC-5T1 vsim -do "do ddma64-xrc5.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do ddma64-xrc5.do"

94

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DLL sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\dll

Synopsis

95

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

The DLL FPGA design demonstrates the clock doubling capability of Virtex DLLs and Virtex-II / Virtex-IIPro / Virtex-4 / Virtex-
5 DCMs. The local bus clock (LCLK) is input through a clock IOB and doubled using a DLL (Virtex/-E/-EM) or DCM (Virtex-II,
Virtex-IIPro, Virtex-4 or Virtex-5). A 32-bit host-readable counter is clocked by a 2X multiple of LCLK.

FPGA Space Usage

Count register (COUNT, local bus address 0x0)
Bits Mnemonic Type Function
31:0 N R/W Number of elapsed cycles of 2X multiple of LCLK

The COUNT register returns the number of elapsed cycles of the 2X multiple of LCLK. It can be preset to a particular value
by writing to it.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

dll-xrc-v.scr dll-xrc-v.prj dll-xrc.ucf

ADM-XRC with
Virtex-E

dll-xrc-ve.scr dll-xrc-ve.prj dll-xrc.ucf

ADM-XRC-P with
Virtex

dll-xrcp-v.scr dll-xrcp-v.prj dll-xrcp.ucf

ADM-XRC-P with
Virtex-E

dll-xrcp-ve.scr dll-xrcp-ve.prj dll-xrcp.ucf

ADM-XRC-II-Lite dll-xrc2l-v2.scr dll-xrc2l-v2.prj dll-xrc2l.ucf
ADM-XRC-II dll-xrc2-v2.scr dll-xrc2-v2.prj dll-xrc2.ucf
ADM-XPL dll-xpl-v2p.scr dll-xpl-v2p.prj dll-xpl.ucf
ADM-XP dll-xp-v2p.scr dll-xp-v2p.prj dll-xp.ucf
ADP-WRC-II dll-wrc2-v2.scr dll-wrc2-v2.prj dll-wrc2.ucf
ADP-DRC-II dll-drc2-v2.scr dll-drc2-v2.prj dll-drc2.ucf
ADP-XPI dll-xpi-v2p.scr dll-xpi-v2p.prj dll-xpi.ucf
ADM-XRC-4LX dll-xrc4lx-v4lx.scr dll-xrc4lx-v4lx.prj dll-xrc4lx.ucf
ADM-XRC-4SX dll-xrc4sx-v4sx.scr dll-xrc4sx-v4sx.prj dll-xrc4sx.ucf
ADM-XRC-4FX
with 4VFX100

dll-xrc4fx-v4fx.scr dll-xrc4fx-v4fx.prj dll-xrc4fx-4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

dll-xrc4fx-v4fx.scr dll-xrc4fx-v4fx.prj dll-xrc4fx-4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

dll-xrce4fx-v4fx.scr dll-xrce4fx-v4fx.prj dll-xrce4fx-4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

dll-xrce4fx-v4fx.scr dll-xrce4fx-v4fx.prj dll-xrce4fx-4vfx140.ucf

ADM-XRC-5LX dll-xrc5lx-v5lx.scr dll-xrc5lx-v5lx.prj dll-xrc5lx.ucf
ADM-XRC-5T1
with FXT

dll-xrc5t1-v5fxt.scr dll-xrc5t1-v5fxt.prj dll-xrc5t1-5vfxt.ucf

ADM-XRC-5T1
with LXT

dll-xrc5t1-v5lxt.scr dll-xrc5t1-v5lxt.prj dll-xrc5t1.ucf

ADM-XRC-5T1
with SXT

dll-xrc5t1-v5sxt.scr dll-xrc5t1-v5sxt.prj dll-xrc5t1.ucf

96

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with FXT

dll-xrc5t2-v5fxt.scr dll-xrc5t2-v5fxt.prj dll-xrc5t2-5vfxt.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with LXT

dll-xrc5t2-v5lxt.scr dll-xrc5t2-v5lxt.prj dll-xrc5t2.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with SXT

dll-xrc5t2-v5sxt.scr dll-xrc5t2-v5sxt.prj dll-xrc5t2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>
ADP-XPI projnav\xpi\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

Model Shell command
ADM-XRC vsim -do "do dll.do"
ADM-XRC-P vsim -do "do dll.do"
ADM-XRC-II-Lite vsim -do "do dll-xrc2.do"
ADM-XRC-II vsim -do "do dll-xrc2.do"
ADM-XPL vsim -do "do dll-xpl.do"
ADM-XP vsim -do "do dll-xpl.do"
ADP-WRC-II vsim -do "do dll-wrc2.do"
ADP-DRC-II vsim -do "do dll-wrc2.do"
ADP-XPI vsim -do "do dll-xpi.do"
ADM-XRC-4LX vsim -do "do dll-xrc4lx.do"

97

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

ADM-XRC-4SX vsim -do "do dll-xrc4lx.do"
ADM-XRC-4FX vsim -do "do dll-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do dll-xrce4fx.do"
ADM-XRC-5LX vsim -do "do dll-xrc5.do"
ADM-XRC-5T1 vsim -do "do dll-xrc5.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do dll-xrc5.do"

98

ADM-XRC SDK 4.9.3 User Guide (Win32) - FrontIO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

FrontIO sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\vhdl\frontio

Synopsis

The FrontIO FPGA design simply outputs a walking '1' bit on the front panel I/O pins.

FPGA Space Usage

99

ADM-XRC SDK 4.9.3 User Guide (Win32) - FrontIO

The FrontIO design does not have a local bus interface; thus there are no registers defined in the FPGA space.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

frontio-xrc-v.scr frontio-xrc-v.prj frontio-xrc.ucf

ADM-XRC with
Virtex-E

frontio-xrc-ve.scr frontio-xrc-ve.prj frontio-xrc.ucf

ADM-XRC-II-Lite frontio-xrc2l-v2.scr frontio-xrc2l-v2.prj frontio-xrc2l.ucf
ADM-XRC-II frontio-xrc2-v2.scr frontio-xrc2-v2.prj frontio-xrc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>

100

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ITest sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\itest

Synopsis

101

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

The ITest FPGA design implements logic for generating FPGA interrupts on the host. The scheme used is explained in
application note AN-XRC06, which can be found in the doc\ directory of this SDK. The ITest sample application shows
how to capture and handle FPGA interrupts on the host.

FPGA Space Usage

The design implements several registers for generating and acknowledging interrupts.

Interrupt Mask register (IMASK, local bus address 0x0)
Bits Mnemonic Type Function
31:0 MASK R/W Bit vector that unmasks or masks one of 32 interrupt

sources in the FPGA. A '1' in a bit position masks
(disables) the corresponding interrupt source.

The IMASK register allows individual interrupt sources to be enabled (unmasked) or disabled (masked). A disabled
(masked) interrupt source cannot generate a local bus interrupt via the FINTI# signal.

Interrupt Status register (ISTAT, local bus address 0x4)
Bits Mnemonic Type Function
31:0 STAT R/W1C When read, returns a bit vector that indicates which of

the 32 interrupt sources within the FPGA are active. A
'1' in a particular bit position indicates that the
corresponding interrupt source is active.
When written, a '1' in a particular bit position sets the
corresponding interrupt source to inactive.

The ISTAT register indicates which of 32 interrupt sources in the FPGA are active. If an interrupt is active, a '1' will be read in
the corresponding bit position of ISTAT, regardless of whether it is enabled or disabled via IMASK. Writing to a '1' to a
particular bit position sets the corresponding interrupt to inactive.

Interrupt Arm register (IARM, local bus address 0x8)
Bits Mnemonic Type Function
31:0 n/a WO Writing to this register forces the FINTI# signal high

for one clock cycle.

The IARM register must be used to 'rearm' the edge-sensitive FINTI# signal. Writing to IARM forces FINTI# high for one
cycle. Consider the following sequence of events:

1. FPGA interrupt source 0 becomes active; FINTI# transitions low.

2. Host interrupt handler executes, and samples ISTAT, determining that interrupt source 0 is active.

3. FPGA interrupt source 1 becomes active.

4. Host interrupt handler takes whatever action is necessary to make interrupt source 0 inactive, and finishes.

5. FINTI# does NOT transition high, because interrupt source 1 is still active.

Unfortunately, the host did not see interrupt source 1 become active. As far as it is concerned, no more interrupts have
arrived; yet interrupt source 1 is now active and will not be handled, as FINTI# is still low. Note that FINTI# is an edge-
triggered signal. The solution is simply for the host's interrupt handler to write to IARM just before exiting:

102

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

1. FPGA interrupt source 0 becomes active; FINTI# transitions low.

2. Host interrupt handler executes, and samples ISTAT, determining that interrupt source 0 is active.

3. FPGA interrupt source 1 becomes active.

4. Host interrupt handler takes whatever action is necessary to make interrupt source 0 inactive.

5. Host interrupt handler writes a dummy value to IARM, and finishes.

6. FINTI# transitions high for one cycle then low again since interrupt source 1 is still active.

At this point, the host will be interrupted again, and notice that interrupt source 1 is active.

Interrupt Test register (TEST, local bus address 0xC)
Bits Mnemonic Type Function
31:0 TEST WO Writing a 1 to a particular bit of this register makes the

corresponding interrupt source active.

The TEST register can be used to test the interrupt handler on the host. By writing a 1 to a particular bit position, the
corresponding interrupt source is set active.

Count register (COUNT, local bus address 0x10)
Bits Mnemonic Type Function
31:0 NCYCLE R/W This register counts local bus clock (LCLK) cycles

when ISTAT[0] is '1'. When ISTAT[0] is '0', it may be
written in order to initialize its value.

The COUNT register can be used to measure interrupt response time. It can be initialized to zero when ISTAT[0] is '0', and
increments when ISTAT[0] is '1'.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

itest-xrc-v.scr itest-xrc-v.prj itest-xrc.ucf

ADM-XRC with
Virtex-E

itest-xrc-ve.scr itest-xrc-ve.prj itest-xrc.ucf

ADM-XRC-P with
Virtex

itest-xrcp-v.scr itest-xrcp-v.prj itest-xrcp.ucf

ADM-XRC-P with
Virtex-E

itest-xrcp-ve.scr itest-xrcp-ve.prj itest-xrcp.ucf

ADM-XRC-II-Lite itest-xrc2l-v2.scr itest-xrc2l-v2.prj itest-xrc2l.ucf
ADM-XRC-II itest-xrc2-v2.scr itest-xrc2-v2.prj itest-xrc2.ucf
ADM-XPL itest-xpl-v2p.scr itest-xpl-v2p.prj itest-xpl.ucf
ADM-XP itest-xp-v2p.scr itest-xp-v2p.prj itest-xp.ucf
ADP-WRC-II itest-wrc2-v2.scr itest-wrc2-v2.prj itest-wrc2.ucf
ADP-DRC-II itest-drc2-v2.scr itest-drc2-v2.prj itest-drc2.ucf
ADP-XPI itest-xpi-v2p.scr itest-xpi-v2p.prj itest-xpi.ucf
ADM-XRC-4LX itest-xrc4lx-v4lx.scr itest-xrc4lx-v4lx.prj itest-xrc4lx.ucf

103

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

ADM-XRC-4SX itest-xrc4sx-v4sx.scr itest-xrc4sx-v4sx.prj itest-xrc4sx.ucf
ADM-XRC-4FX
with 4VFX100

itest-xrc4fx-v4fx.scr itest-xrc4fx-v4fx.prj itest-xrc4fx-4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

itest-xrc4fx-v4fx.scr itest-xrc4fx-v4fx.prj itest-xrc4fx-4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

itest-xrce4fx-v4fx.scr itest-xrce4fx-v4fx.prj itest-xrce4fx-4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

itest-xrce4fx-v4fx.scr itest-xrce4fx-v4fx.prj itest-xrce4fx-4vfx140.ucf

ADM-XRC-5LX itest-xrc5lx-v5lx.scr itest-xrc5lx-v5lx.prj itest-xrc5lx.ucf
ADM-XRC-5T1
with FXT

itest-xrc5t1-v5fxt.scr itest-xrc5t1-v5fxt.prj itest-xrc5t1-5vfxt.ucf

ADM-XRC-5T1
with LXT

itest-xrc5t1-v5lxt.scr itest-xrc5t1-v5lxt.prj itest-xrc5t1.ucf

ADM-XRC-5T1
with SXT

itest-xrc5t1-v5sxt.scr itest-xrc5t1-v5sxt.prj itest-xrc5t1.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with FXT

itest-xrc5t2-v5fxt.scr itest-xrc5t2-v5fxt.prj itest-xrc5t2-5vfxt.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with LXT

itest-xrc5t2-v5lxt.scr itest-xrc5t2-v5lxt.prj itest-xrc5t2.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with SXT

itest-xrc5t2-v5sxt.scr itest-xrc5t2-v5sxt.prj itest-xrc5t2.ucf

ADM-XRC-5TZ
with FXT

itest-xrc5tz-v5fxt.scr itest-xrc5tz-v5fxt.prj itest-xrc5tz-5vfxt.ucf

ADM-XRC-5TZ
with LXT

itest-xrc5tz-v5lxt.scr itest-xrc5tz-v5lxt.prj itest-xrc5tz.ucf

ADM-XRC-5TZ
with SXT

itest-xrc5tz-v5sxt.scr itest-xrc5tz-v5sxt.prj itest-xrc5tz.ucf

ADM-XRC-5T-
DA1 with FXT

itest-xrc5tda1-v5fxt.scr itest-xrc5tda1-v5fxt.prj itest-xrc5tda1-5vfxt.ucf

ADM-XRC-5T-
DA1 with LXT

itest-xrc5tda1-v5lxt.scr itest-xrc5tda1-v5lxt.prj itest-xrc5tda1.ucf

ADM-XRC-5T-
DA1 with SXT

itest-xrc5tda1-v5sxt.scr itest-xrc5tda1-v5sxt.prj itest-xrc5tda1.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>

104

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

ADP-XPI projnav\xpi\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

ADM-XRC-5TZ projnav\xrc5tz\<device>
ADM-XRC-5T-DA1 projnav\xrc5tda1\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

Model Shell command
ADM-XRC vsim -do "do itest.do"
ADM-XRC-P vsim -do "do itest.do"
ADM-XRC-II-Lite vsim -do "do itest.do"
ADM-XRC-II vsim -do "do itest.do"
ADM-XPL vsim -do "do itest-xpl.do"
ADM-XP vsim -do "do itest-xpl.do"
ADP-WRC-II vsim -do "do itest-wrc2.do"
ADP-DRC-II vsim -do "do itest-wrc2.do"
ADP-XPI vsim -do "do itest-xpi.do"
ADM-XRC-4LX vsim -do "do itest-xrc4lx.do"
ADM-XRC-4SX vsim -do "do itest-xrc4lx.do"
ADM-XRC-4FX vsim -do "do itest-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do itest-xrce4fx.do"
ADM-XRC-5LX vsim -do "do itest-xpl.do"
ADM-XRC-5T1 vsim -do "do itest-xpl.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do itest-xpl.do"

ADM-XRC-5TZ vsim -do "do itest-xpl.do"
ADM-XRC-5T-DA1 vsim -do "do itest-xpl.do"

105

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Master sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\vhdl\master

Synopsis

The Master FPGA design demonstrates direct master access by the FPGA to host memory.

FPGA Space Usage

106

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

The design implements several registers for generating Direct Master transfers to and from host memory:

Address register (ADDR, local bus address 0x0)
Bits Mnemonic Type Function
1:0 MBZ
31:2 ADDR WO This field holds the local bus address to be used for

the next Direct Master transfer. Writing to bits [31:24]
initiates a Direct Master transfer, so this register
should be written after the other registers have been
initialized.

Write data register (WDATA, local bus address 0x4)
Bits Mnemonic Type Function
31:0 VAL WO For Direct Master write transfers, this register holds

the 32-bit data value that should be written.

Configuration register (CFG, local bus address 0x8)
Bits Mnemonic Type Function
0 WRITE WO When this field is '1', the next Direct Master transfer is

a write; otherwise it is a read.
31:1 MBZ

Read data register (RDATA, local bus address 0xC)
Bits Mnemonic Type Function
31:0 VAL RO This register contains the 32-bit value read on the last

Direct Master read.

Status register (STAT, local bus address 0x10)
Bits Mnemonic Type Function
0 BUSY RO When this field returns '1', it indicates that a Direct

Master transfer is in progress.
31:1 MBZ

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

master-xrc-v.scr master-xrc-v.prj master-xrc.ucf

ADM-XRC with
Virtex-E

master-xrc-ve.scr master-xrc-ve.prj master-xrc.ucf

ADM-XRC-P with
Virtex

master-xrcp-v.scr master-xrcp-v.prj master-xrcp.ucf

ADM-XRC-P with
Virtex-E

master-xrcp-ve.scr master-xrcp-ve.prj master-xrcp.ucf

ADM-XRC-II-Lite master-xrc2l-v2.scr master-xrc2l-v2.prj master-xrc2l.ucf
ADM-XRC-II master-xrc2-v2.scr master-xrc2-v2.prj master-xrc2.ucf

107

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>

108

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

MEMORY sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Explanation of design

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\memory

109

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Synopsis

The MEMORY FPGA design is a refernce design demonstrating how to implement an interface to the on-board memory on a
reconfigurable computing card so that it is effectively dual-ported. Thus, a program running on the host can access the
memory, and at the same time a "user application" block can also access the memory.

This example demonstrates the following:

● A bursting local bus interface in the FPGA.

● Bursting, if supported, need not be supported over the entire FPGA space. In this design, only the 2MB SSRAM window
supports bursting.

● Implementing a local bus interface that is compatible with both Direct Slave transfers and DMA transfers.

● Use of the *_port common VHDL modules for interfacing various types of memory to the FPGA.

● Use of the arbiter_2 common VHDL module for sharing a memory bank between two clients.

● For models with ZBT memory, generation of deskewed copies of the local bus clock (LCLK) that are driven off-chip to
the ZBT SSRAMs, using DLLs (Virtex/-E/-EM) or DCMs (Virtex-II/-IIPro, Virtex-4 and Virtex-5). This technique is used to
ensure that ZBT SSRAM devices and the logic within the FPGA operate from clocks that are both phase- and frequency-
matched.

This design currently supports 15 models in Alpha Data's range of reconfigurable computing cards, which use a total of five
different types of memory:

● Flowthrough ZBT SSRAM, on the ADM-XRC and ADM-XRC-P.

● Pipelined ZBT SSRAM, on the ADM-XRC-II-Lite, ADM-XRC-II, ADM-XPL, ADM-XRC-4LX, ADM-XRC-4SX and ADM-
XRC-5TZ.

● DDR SDRAM, on the ADM-XPL and ADM-XP.

● DDR-II SSRAM, on the ADM-XP, ADM-XRC-5T1, ADM-XRC-5T2, ADM-XRC-5T2-ADV and ADM-XRC-5T-DA1.

● DDR-II SDRAM, on the ADM-XRC-4FX, ADPE-XRC-4FX, ADM-XRC-5LX, ADM-XRC-5T1, ADM-XRC-5T2, ADM-XRC-
5T2-ADV and ADM-XRC-5T-DA1.

FPGA Space Usage

The FPGA space is divided into two regions:

● A 2MB register region, beginning at local bus address 0x0. The registers within the FPGA are accessible via this region.

● A 2MB memory access window, beginning at local bus address 0x200000. The currently selected page of the currently
selected bank is accessible via this region.

The following registers exist in the 2MB register region, which begins at local bus address 0x0:

Bank register (BANK, local bus address 0x0)
Bits Mnemonic Type Function
3:0 BANK R/W Selects which bank is currently available via the

memory access window at local bus address
0x200000.

31:4 RO/MBZ (Reserved)

110

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Page register (PAGE, local bus address 0x4)
Bits Mnemonic Type Function
12:0 PAGE R/W Value that selects which 2MB page of memory is

currently available via the memory access window at
local bus address 0x200000.

31:13 RO/MBZ (Reserved)

Memory control register (MEMCTL, local bus address 0x8)
Bits Mnemonic Type Function
0 RST R/W While this field is 1, the entire memory subsystem is

held in reset. An application should NOT attempt to
access memory while this field is 1.
When 0, the memory subsystem is not held in reset.

31:1 RO/MBZ (Reserved)

Status register (STATUS, local bus address 0x10)

This register indicates the general health of the FPGA in the form of lock flags from DLL, DCMs and PLLs
as well as training flags from any self-training memory banks.
Bits Mnemonic Type Function
0 LLOCK RO When 1, indicates that the DLL or DCM that distributes

LCLK within the FPGA is locked. If, 500ms or later
after configuration of the FPGA, this field is not 1, the
application should consider this a fatal error.

0 SLLOCK R/W1C Sticky loss of lock flag. When 1, indicates that the DLL
or DCM that distributes LCLK within the FPGA has
lost lock at some point. When written with 1, this field
is cleared to 0.

7:2 RO/MBZ (Reserved)
15:8 MLOCK RO Each bit of this field represents a DCM, DLL or PLL. A

1 indicates that lock has been achieved. Depending
on the model in use, not all 8 bits may be used. For
the precise meaning of the bits in this field, refer to the
table below describing differences between models for
this design.

23:16 SMLOCK R/W1C Sticky loss of lock/training flags. Each bit of this field
returns 1 if the corresponding DCM, DLL or PLL lost
lock. Note that unused bits of this field (because there
is no corresponding DCM, DLL or PLL) will always
return 1.

31:24 RO/MBZ (Reserved)

Status register MLOCK field (STATUS, local bus address 0x10)

This table describes the STATUS.MLOCK field for each supported model.
ADM-XRC
Bits Mnemonic Type Function
8 BANK01 RO When 1, indicates that the DLL that deskews the

SSRAM clocks for memory banks 0 and 1 is locked.
9 BANK23 RO When 1, indicates that the DLL that deskews the

SSRAM clocks for memory banks 2 and 3 is locked.
15:10 RO/MBZ (Reserved)
ADM-XRC-P

111

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Bits Mnemonic Type Function
8 BANK0123 RO When 1, indicates that the DLL that deskews the clock

for all memory banks is locked.
15:9 RO/MBZ (Reserved)
ADM-XRC-II-Lite
Bits Mnemonic Type Function
8 MCLKX2 RO When 1, indicates that the DCM that doubles the

frequency of MCLK is locked
9 BANK01 RO When 1, indicates that the DCM that deskews the

SSRAM clocks for physical banks 0 and 1 is locked.
10 BANK23 RO When 1, indicates that the DCM that deskews the

SSRAM clocks for physical banks 2 and 3 is locked.
15:11 RO/MBZ (Reserved)
ADM-XRC-II
Bits Mnemonic Type Function
8 MCLKX2 RO When 1, indicates that the DCM that doubles the

frequency of MCLK is locked
9 BANK01 RO When 1, indicates that the DCM that deskews the

SSRAM clocks for physical banks 0, 1 and 2 is locked.
10 BANK23 RO When 1, indicates that the DCM that deskews the

SSRAM clocks for physical banks 3, 4 and 5 is locked.
15:11 RO/MBZ (Reserved)
ADM-XPL
Bits Mnemonic Type Function
8 MEMCLK RO When 1, indicates that the DCM that generates the

clock for the memory clock domain is locked.
9 BANK0 RO When 1, indicates that the DCM that deskews the ZBT

SSRAM clock is locked.
15:10 RO/MBZ (Reserved)
ADM-XP
Bits Mnemonic Type Function
8 MEMCLK RO When 1, indicates that the DCM that generates the

clock for the memory clock domain is locked.
15:9 RO/MBZ (Reserved)
ADM-XRC-4LX and ADM-XRC-4SX
Bits Mnemonic Type Function
8 MEMCLK RO When 1, indicates that the DCM that generates the

clock for the memory clock domain is locked.
9 ZBT RO When 1, indicates that the DCM that deskews the

clock for the ZBT SSRAMs is locked.
15:10 RO/MBZ (Reserved)
ADM-XRC-4FX and ADPE-XRC-4FX
Bits Mnemonic Type Function
8 MEMCLK RO When 1, indicates that the DCM that generates the

clock for the memory clock domain is locked.
9 IDELAY RO When 1, indicates that the IDELAYCTRL instances

are locked to the IDELAY reference clock.
15:10 RO/MBZ (Reserved)
ADM-XRC-5LX, ADM-XRC-5T1, ADM-XRC-5T2, ADM-XRC-5T2-ADV and ADM-XRC-5T-DA1
Bits Mnemonic Type Function

112

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

8 MEMCLK RO When 1, indicates that the PLL that generates the
clocks for the memory clock domain is locked.

9 IDELAY RO When 1, indicates that the IDELAYCTRL instances
are locked to the IDELAY reference clock.

15:10 RO/MBZ (Reserved)
ADM-XRC-5TZ
Bits Mnemonic Type Function
8 MEMCLK RO When 1, indicates that the DCM that buffers the clock

for the memory clock domain is locked.
9 RAMCLK RO When 1, indicates that the DCM that deskews the

clocks driven to the ZBT SSRAM devices is locked.
10 IDELAY RO When 1, indicates that the IDELAYCTRL instances

are locked to the IDELAY reference clock.
15:11 RO/MBZ (Reserved)

Memory status register (MEMSTAT, local bus address 0x18)

This register indicates whether or not training of memory banks has been successful. The precise bit-field
definitions depend upon the model in use.
Bits Mnemonic Type Function
ADM-XRC, ADM-XRC-P and ADM-XRC-4SX
3:0 ZBT RO This field always returns 0xf, because the ZBT

SSRAM ports do not require training.
31:4 RO/MBZ (Reserved)
ADM-XRC-II-Lite
1:0 ZBT RO This field always returns 0x3, because the ZBT

SSRAM ports do not require training.
31:2 RO/MBZ (Reserved)
ADM-XRC-II, ADM-XRC-4LX and ADM-XRC-5TZ
5:0 ZBT RO This field always returns 0x3F, because the ZBT

SSRAM ports do not require training.
31:6 RO/MBZ (Reserved)
ADM-XPL
0 ZBT RO This field always returns 1, because the ZBT SSRAM

port does not require training.
1 SDRAM RO This field returns 1 if the DDR SDRAM has completed

training successfully, otherwise 0.
31:2 RO/MBZ (Reserved)
ADM-XP
3:0 SSRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SSRAM port has completed
training successfully, otherwise 0.

5:4 SDRAM RO This field returns a 1 in a bit position if the
corresponding DDR SDRAM port has completed
training successfully, otherwise 0.

31:6 RO/MBZ (Reserved)
ADM-XRC-4FX, ADPE-XRC-4FX and ADM-XRC-5LX
3:0 SDRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

31:4 RO/MBZ (Reserved)
ADM-XRC-5T1

113

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

1:0 SDRAM RO This field returns a 1 in a bit position if the
corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

2 SSRAM RO This field returns 1 if the DDR-II SSRAM port has
completed training successfully, otherwise 0.

31:3 RO/MBZ (Reserved)
ADM-XRC-5T2 and ADM-XRC-5T2-ADV
3:0 SDRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

5:4 SSRAM RO This field returns 1 in a bit position if the
corresponding DDR-II SSRAM port has completed
training successfully, otherwise 0.

31:6 RO/MBZ (Reserved)
ADM-XRC-5T-DA1
1:0 SDRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

3:2 SSRAM RO This field returns 1 if a bit position if the corresponding
DDR-II SSRAM port has completed training
successfully, otherwise 0.

31:4 RO/MBZ (Reserved)

Memory bank mode registers (MODE0...MODE15, local bus address 0x40...0x7C)

There are a total of 16 MODE registers, occupying local bus addresses 0x40 to 0x7C inclusive. The
interpretation of the fields in a mode register depends upon the type of memory that the register
corresponds to.
ZBT SSRAM
Bits Mnemonic Type Function
0 PIPELINE R/W When this field is 0, the memory port expects the ZBT

SSRAM to be operating in flowthrough mode. When
this field is 1, the memory port expects the ZBT
SSRAM to be operating in pipelined mode.

31:1 MBZ (Reserved)
DDR-II SSRAM
Bits Mnemonic Type Function
0 BLEN R/W When this field is 0, the memory port expects the DDR-

II SSRAM device to be a burst length 2 device. When
this field is 1, the memory port expects the DDR-II
SSRAM device to be a burst length 2 or 4 device.

1 MBZ (Reserved)
2 DLLOFF R/W When this field is 0, the memory port enables the DLL

(delay locked loop) within the DDR-II SDRAM device
(this is the normal mode of operation). When this field
is 1, the memory port disables the DLL (not
recommended).

31:3 MBZ (Reserved)
DDR SDRAM
Bits Mnemonic Type Function
0 REG R/W When this field is 0, the memory port expects the DDR

SDRAM to be unregistered. When this field is 1, the
memory port expects the DDR SDRAM to be
registered.

114

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

1 MBZ Reserved for implementing X4 DDR SDRAM device
support (must be zero in this release of the SDK).

3:2 ROWS R/W This field specifies the number of row address bits in
the DDR SDRAM devices:
0x0 => 12 bits
0x1 => 13 bits
0x2 => 14 bits
0x3 => 15 bits

5:4 COLS R/W This field specifies the number of column address bits
in the DDR SDRAM devices. The number of column
address bits depends on this field and also the ROWS
field, as follows:
0x0 => (#rows - 4)
0x1 => (#rows - 3)
0x2 => (#rows - 2)
0x3 => (#rows - 1)
For example, if ROWS = 0x1 and COLS = 0x1, then
the number of column address bits is (13 - 3) = 10.

7:6 BANKS R/W This field selects the number of bank address bits in
the DDR SDRAM devices:
0x0 => no bank bits, 1 internal bank
0x1 => 1 bank bit, 2 internal banks
0x2 => 2 bank bits, 4 internal banks
0x3 => 3 bank bits, 8 internal banks

9:8 PBANKS R/W This field selects the number of chip select pins in the
memory bank:
0x0 => 1 physical bank
0x1 => 2 physical banks
0x2 => 4 physical banks
0x3 => 8 physical banks

31:10 MBZ
DDR-II SDRAM
Bits Mnemonic Type Function
0 R/W This field is reserved for implementing registered DDR-

II SDRAM support (must be zero in this release of the
SDK).

1 MBZ This field is reserved for implementing X4 DDR-II
SDRAM device support (must be zero in this release
of the SDK).

3:2 ROWS R/W This field specifies the number of row address bits in
the DDR-II SDRAM devices:
0x0 => 12 bits
0x1 => 13 bits
0x2 => 14 bits
0x3 => 15 bits

5:4 COLS R/W This field specifies the number of column address bits
in the DDR-II SDRAM devices. The number of column
address bits depends on this field and also the ROWS
field, as follows:
0x0 => (#rows - 4)
0x1 => (#rows - 3)
0x2 => (#rows - 2)
0x3 => (#rows - 1)
For example, if ROWS = 0x1 and COLS = 0x1, then
the number of column address bits is (13 - 3) = 10.

115

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

7:6 BANKS R/W This field selects the number of bank address bits in
the DDR-II SDRAM devices:
0x0 => no bank bits, 1 internal bank
0x1 => 1 bank bit, 2 internal banks
0x2 => 2 bank bits, 4 internal banks
0x3 => 3 bank bits, 8 internal banks

9:8 PBANKS R/W This field selects the number of chip select pins in the
memory bank:
0x0 => 1 physical bank
0x1 => 2 physical banks
0x2 => 4 physical banks
0x3 => 8 physical banks

31:10 MBZ

USER registers (USER0...USER63, local bus address 0x100...0x1FF)

There are a total of 64 USER registers, occupying local bus addresses 0x100 to 0x1FF inclusive. The
interpretation of the USER registers depends upon the logic within the user_app module, and the
description below applies only to the unmodified user_app module that ships with this SDK.
USER0 - USER15

The first 16 user registers specify the starting addresses, counting in logical data words, where the chip-
driven memory test should begin testing each memory bank.
Bits Mnemonic Type Function
31:0 OFFSET R/W Specifies the starting address at which to begin testing

a particular memory bank.
USER16 - USER31

The next 16 user registers specify the number of logical data words that the chip-driven memory test
should test in each bank.
Bits Mnemonic Type Function
31:0 LENGTH R/W Specifies the number of logical data words to test in a

particular memory bank, minus 1. For example, to test
1 megaword, write the value 0xFFFFF.

USER48

The USER48 register indicates on which phase the memory test failed for banks 0 to 3.
Bits Mnemonic Type Function
7:0 EPHASE0 RO If ERROR[0] is 1, indicates on which phase the

memory test for bank 0 failed.
15:8 EPHASE1 RO If ERROR[1] is 1, indicates on which phase the

memory test for bank 1 failed.
23:16 EPHASE2 RO If ERROR[2] is 1, indicates on which phase the

memory test for bank 2 failed.
31:24 EPHASE3 RO If ERROR[3] is 1, indicates on which phase the

memory test for bank 3 failed.
USER49

The USER48 registers indicates on which phase the memory test failed for banks 4 to 7.
Bits Mnemonic Type Function
7:0 EPHASE4 RO If ERROR[4] is 1, indicates on which phase the

memory test for bank 4 failed.
15:8 EPHASE5 RO If ERROR[5] is 1, indicates on which phase the

memory test for bank 5 failed.

116

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

23:16 EPHASE6 RO If ERROR[6] is 1, indicates on which phase the
memory test for bank 6 failed.

31:24 EPHASE7 RO If ERROR[7] is 1, indicates on which phase the
memory test for bank 7 failed.

USER50

The USER50 register indicates on which phase the memory test failed for banks 8 to 11.
Bits Mnemonic Type Function
7:0 EPHASE8 RO If ERROR[8] is 1, indicates on which phase the

memory test for bank 8 failed.
15:8 EPHASE9 RO If ERROR[9] is 1, indicates on which phase the

memory test for bank 9 failed.
23:16 EPHASE10 RO If ERROR[10] is 1, indicates on which phase the

memory test for bank 10 failed.
31:24 EPHASE11 RO If ERROR[11] is 1, indicates on which phase the

memory test for bank 11 failed.
USER51

The USER50 register indicates on which phase the memory test failed for banks 12 to 15.
Bits Mnemonic Type Function
7:0 EPHASE12 RO If ERROR[12] is 1, indicates on which phase the

memory test for bank 12 failed.
15:8 EPHASE13 RO If ERROR[13] is 1, indicates on which phase the

memory test for bank 13 failed.
23:16 EPHASE14 RO If ERROR[14] is 1, indicates on which phase the

memory test for bank 14 failed.
31:24 EPHASE15 RO If ERROR[11] is 1, indicates on which phase the

memory test for bank 15 failed.
USER63

The USER63 register is used to initiate the chip-driven memory test, as well as check the status of the
memory test. When one of the low 16 bits is written with 1, it initiates the memory test for the
corresponding memory bank, using the parameters in the USER0 - USER31 registers. To initiate the
memory test on several banks simultaneously, write a number of 1s to USER63[15:0] at the same time.
Bits Mnemonic Type Function
15:0 DONE (R)

GO (W)
R/W When read, returns 1 for a particular bit if the memory

test for the corresponding bank is not running. Banks
that are nonexistent or unused always return 1.
When written with 1, initiates the memory test for the
corresponding memory bank. For example, writing
0xB would initiate the memory test for banks 0, 1 and
3 only. Writing a 1 to a bit that corresponds to a
nonexistent or unused bank has no effect.

31:16 ERROR RO Returns a 1 for a particular bit if one or more errors
occurred during the memory test for the corresponding
memory bank. Valid only when the corresponding bit
of the DONE field is 1. For each bit of ERROR
indicates that failure, the corresponding EPHASE field
may be inspected in order to discover the phase of the
memory test in which the first failure occurred.

Explanation of design

At the highest level of abstraction, the design consists of 3 logical blocks:

117

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

High-level view of the MEMORY reference design.

The local bus interface enables the CPU to read and write the memory banks. At the same time, the "user application"
module can also read and write the memory banks. The local bus interface and the user application also communicate with
each other via a set of registers. The user application as supplied in this SDK is in fact a chip-driven memory test, which can
test all memory banks simultaneously on command from the host. The user can rewrite the user application, replacing the
memory test logic with whatever processing logic he or she requires.

Because the FPGA space is limited to 4MB on most models, the local bus interface of the design divides the FPGA space
into a lower 2MB region for registers and an upper 2MB window for accessing the memory. A bank register selects which
bank is currently being accessed, and a page register is provided so that all of a large memory bank can be accessed even
though the window through which it is accessed is 2MB in size. The "user application", on the other hand, has no such
restrictions. It can access all banks of memory simultaneously without need for page or bank selection.

Explanation of memory_main module

The following is a block diagram of the memory_main module, which is not specific to any model and has been written in
such a way that it expects to be wrapped up by a model-specific wrapper. It implements the local bus interface and the
FPGA registers. It also contains the one and only instance of the memory_banks module as well as the one and only
instance of the user_app module.

118

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

The memory_main module.

As a brief aside, the wrapper for the module memory_main is model-specific, and is also the top-level of the design. For
example, there is an an ADM-XPL-specific wrapper module in the source file xpl/memory-xpl.vhd that instantiates the one
and only instance of the memory_main module and takes care of some ADM-XPL-specific details, such as inputting global
clocks.

Explanation of memory_banks module

As mentioned above, the memory_main module encloses one instance of the memory_banks module. The
memory_banks module is entirely model-specific and comes in several versions, one per model. Its job is fourfold:

1. To present a uniform interface in the local bus clock domain to the memory_main module no matter what type of
memory devices are present for a given model.

2. To decouple the local bus clock domain from the memory clock domain, as the two clock domains are generally
independent in phase and frequency.

3. To instantiate memory ports that are appropriate to the model. For example, the ADM-XRC-4FX version of the
memory_banks module instantiates four DDR-II SDRAM ports.

4. To handle any difference in the width of the local bus data (32 bits) and the width of the logical data written to and read
from the memory ports:

❍ For inbound data (that is, writes to the memory), the port_repl module is instantiated for some models,
since a logical memory data word may be wider than a 32-bit local bus data word. This is effectively a latch
that enables a complete memory word plus byte enables to be assembled before it is actually committed to
memory.

❍ For outbound data (that is, reads from the memory), a multiplexor called port_mux selects a 32-bit word
from the logical memory data depending on the low couple of local bus address bits.

119

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

5. To share the memory ports between the local bus interface and the user application by instantiating one arbitration
module (arbiter_2) per memory port.

The following figure illustrates the data flow within xrc4fx/memory_banks-xrc4fx.vhd. This is the ADM-XRC-4FX specific
version of the memory_banks module:

Data flow within the memory_banks module.

When data is written to a memory bank, the port_repl module takes 32-bit data words from the local bus interface on
mem_d and and assembles them into words suitable for the memory ports (in this case, DDR-II SDRAM ports whose logical
data with is 128). A set of async_port instances bridge the local bus clock domain and the memory clock domain. In the

120

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

memory clock domain, a set of arbiter_2 instances connect together both the preceding async_port instances and the user
application to the memory ports (ddr2sdram_port instances).

When data is read from a memory bank, logical data words flow from the memory ports, through the arbiter_2 instances,
and through the async_port instances. A multiplexor selects the data from a particular async_port according to the current
value of the BANK register. Finally, the port_mux instance performs width conversion from logical data words (128 bits) to
the local bus data width (32 bits), outputting the data on mem_q.

Explanation of memory_banks module - inbound datapath

Continuing with the ADM-XRC-4FX version as an example, the following figure shows detail for the data path from the local
bus interface to the memory banks:

Detail of inbound datapath in the memory_banks module.

The currently selected bank is available as a one-hot vector sel_bank_1h. This is used to ensure that at most one set of
port_p* signals can be active at a given moment, in turn ensuring that at most one async_port instance can be active at any
time. The port_p* signals are generated in a fairly trivial manner from the mem_* signals, which work as follows:

● mem_ce - pulsed by the local bus interface for one clock cycle at the beginning of a burst, when the local bus interface
wants to access a memory bank, whether for a read or for a write.

● mem_a - qualified by mem_ce and carries the starting address (in terms of 32-bit words) in memory that the local bus
interface wishes to access.

● mem_cw - qualified by mem_ce and is asserted by the local bus interface for a write access.

121

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

● mem_term - pulsed by the local bus interface for one clock cycle to terminate the burst.

● mem_wr - when asserted by the local bus interface, indicates that mem_d and mem_be carry 32-bit data and byte
enables to be written to memory. May be asserted for multiple consecutive clock cycles during a burst.

● mem_d - carries data from the local bus interface to be written to memory.

● mem_be - byte enables that accompany mem_d.

● mem_wpf - asserted by the memory_banks module when the async_port instance selected by sel_bank_1h cannot
accept more data to be written to memory. The local bus interface uses this signal to hold off the local bus LREADY#
signal during a burst so that the FIFOs within the async_port instances cannot overflow.

Explanation of memory_banks module - outbound datapath

122

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Detail of outbound datapath in the memory_banks module.

As in the inbound datapath, the one-hot bank-select vector sel_bank_1h is used to ensure that at most one set of port_p*
signals can be active at a given moment, in turn ensuring that at most one async_port instance can be active at any time.
When the local bus interface reads a memory bank, the mem_* signals work as follows:

● mem_ce - pulsed by the local bus interface for one clock cycle at the beginning of a burst, when the local bus interface
wants to access a memory bank, whether for a read or for a write.

● mem_a - qualified by mem_ce and carries the starting address (in terms of 32-bit words) in memory that the local bus
interface wishes to access.

● mem_cw - qualified by mem_ce and is deasserted by the local bus interface for a read access.

● mem_term - pulsed by the local bus interface for one clock cycle to terminate the burst.

● mem_adv - when asserted by the local bus interface, indicates that the next 32-bit word of data should be presented on
mem_q. This signal enters the port_mux instance. For the case of the ADM-XRC-4FX, port_mux asserts the
port_plast signal once per 4 cycles in which mem_adv is asserted. This ensures that each 128-bit word of logical
memory data corresponds to 4 32-bit words on the local bus.

● mem_q - carries data read from memory to the local bus interface.

● mem_re - asserted by the memory_banks module when the async_port instance selected by sel_bank_1h has no
data remaining in its FIFO. This signal is used by the local bus interface to hold off the local bus LREADY# signal until
data has been fetched from memory.

● mem_rpe - asserted by the memory_banks module when the async_port instance selected by sel_bank_1h is
running out of data in its FIFO. This signal is used by the local bus interface to terminate the current burst on the local
bus in order to avoid undefined data being read by the CPU.

Explanation of memory_banks module - memory arbitration

The final figure in this discussion shows how each memory port is shared between the local bus interface (represented by an
async_port and the user_app module, with reference to the ADM-XRC-4FX:

123

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Detail of logic for sharing a memory bank within the memory_banks module.

In the above figure, only the logic for a single memory bank is shown, but each memory bank has an identical set of logic
consisting of an async_port, an arbiter_2 and a ddr2sdram_port. There are a number of generic signals that work in the
same way regardless of the type of memory to which the memory port interfaces. These signals work as follows:

● The ce signal instructs the memory port to perform an access to the memory devices. In each clock cycle that ce is
asserted, one command is issued to the memory port.

● The w signal is qualified by ce, and specifies whether a memory access should be a read (0) or a write (1).

● The a signal is qualified by ce, and specifies the word of memory that should be accessed. This address is not a byte
address; rather it should be considered to be an index into an array of words whose width is the native memory width
(for example, 128 bits for a DDR-II SDRAM port in the ADM-XRC-4FX).

● The tag signal is qualified by the logical AND of ce and not w, and is a value to be associated with a particular read
command. The tag value and width is at the discretion of the designer, and can be whatever he or she wants. When the
memory port asserts valid for a given read command (i.e. assertion of ce in a particular clock cycle), the qtag signal
reflects the tag value that was present on the tag input when ce was asserted. One application of the tag signal is in the
async_port module - it uses the tag to avoid returning stale data to the local bus clock domain when one read ends and
another one begins.

● The d signal is qualiied by the logical AND of ce and w, and carries the data for a write command.

124

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

● The be signal is qualiied by the logical AND of ce and w, and carries the active high byte enables for a write command.
When bit i of beis 1, byte i will be written. When bit i of beis 0, byte i will not be written.

● The q signal is the data read from the memory devices for a particular read command, and is qualified by valid.

● The qtag signal is the tag value associated with a particular read command, and is qualified by valid.

● The valid signal indicates that data read from the memory devices is present on q, along with the associated tag value
on qtag.

● The ready signal indicates that the memory port is able to accept commands. When ready is zero, the ce signal must
be deasserted.

In addition to the generic memory port signals, a particular type of memory port may have one or more sideband signals that
are specific to that particular type of memory port. In the above figure, the ddr2sdram_port module has four sideband
signals that specify the paramters of the memory devices that it is controlling. They are: row, col, bank and pbank, and their
values are determined by the bit fields in the MODE register that is described above, for the case of a DDR-II SDRAM
memory bank.

Explanation of user_app module

The user_app module is intended to be a starting point for the end-user to add his or her own logic to perform some useful
data processing function. As shipped in this SDK, it contains logic to perform a chip-driven memory test of all banks of on-
board memory. See the MemoryF example application for details on how to run the chip-driven memory test.

125

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Implementation of chip-driven memory test in user_app module.

The end-user can remove, modify and add logic as desired in order to create a customized user_app module. In doing so, a
few points to remember are:

● The ports a, be, ce, d, q, qtag, ready, tag, valid and w are a bundle of vectors, where a particular slice through this

126

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

bundle forms an interface to a memory bank and functions as in the generic memory interface. For example, q(2),
qtag(2) and valid(2) are part of the interface to memory bank 2. Because each slice is independent of the other slices,
some or all of the memory banks may be operated simultaneously if desired.

● Because the memory banks are shared with the local bus interface, user code must drive the req vector. Asserting a
particular bit of this vector indicates that the user_app module wishes to access the corresponding memory bank. For
example, assering req(3) causes the arbiter for memory bank 3 (within the memory_banks module) to (eventually)
assert ready(3). Once the user_app module sees ready(3) asserted, it may assert the ce(3) signal in order to access
memory bank 3.

● The chip-driven memory test logic in the user_app module as shipped in this SDK runs entirely within the memory clock
domain. If, for a custom application, the user_app logic must run in a different clock domain, techniques such as
asynchronous FIFOs and handshaking can be used to decouple the custom user_app logic from the memory clock
domain.

A facility for the local bus interface to communicate with the user_app module and vice-versa is provided by the three
signals reg_in, reg_wr and reg_out. Within the local bus address space, there is provision for 64 32-bit registers, totalling
256 bytes of registers. When the CPU writes to a USER register in the range local bus addresses 0x100 to 0x1FF, the write
is reflected in the values of reg_in and reg_wr. For example, if the CPU writes a 16-bit value to the address 0x13e, the 16-
bit value is reflected in reg_in[31:16], while bits 62 and 63 (only) of reg_wr pulse asserted for exactly one memory / user
clock cycle. When such an event occurs, the user_app module can, at its discretion, elect to store the value on reg_in
somewhere.

The user_app module can drive the reg_out vector, which is 256 bytes in size, with arbitrary status information. This status
information is visible in the USER registers when the CPU reads local bus addresses 0x100 to 0x1FF.

Note that synchronizing logic in the reg_sync module results in a round-trip delay of approximately 12 local bus clock cycles
whenever some information must be communicated between the local bus interface and the user_app module. Hence, if the
CPU writes something to a USER register, reading the same or another USER register is not guaranteed to return a value
that reflects what was just written until approximately 12 local bus clock cycles have elapsed.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

memory-xrc-v.scr memory-xrc-v.prj xrc/memory-xrc-v.ucf

ADM-XRC with
Virtex-E/-EM

memory-xrc-ve.scr memory-xrc-ve.prj xrc/memory-xrc-ve.ucf

ADM-XRC-P with
Virtex

memory-xrcp-v.scr memory-xrcp-v.prj xrcp/memory-xrcp-v.ucf

ADM-XRC-P with
Virtex-E/-EM

memory-xrcp-ve.scr memory-xrcp-ve.prj xrcp/memory-xrcp-ve.ucf

ADM-XRC-II-Lite memory-xrc2l-v2.scr memory-xrc2l-v2.prj xrc2l/memory-xrc2l.ucf
ADM-XRC-II memory-xrc2-v2.scr memory-xrc2-v2.prj xrc2/memory-xrc2.ucf
ADM-XPL with
2VP7

memory-xpl-v2p.scr memory-xpl-v2p.prj xpl/memory-xpl-2vp7.ucf

ADM-XPL with
2VP20 or 2VP30

memory-xpl-v2p.scr memory-xpl-v2p.prj xpl/memory-xpl-
2vp20.ucf

ADM-XP with
2VP70

memory-xp-v2p.scr memory-xp-v2p.prj xp/memory-xp-2vp70.ucf

ADM-XP with
2VP100

memory-xp-v2p.scr memory-xp-v2p.prj xp/memory-xp-
2vp100.ucf

127

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

ADM-XRC-4LX memory-xrc4lx-v4lx.scr memory-xrc4lx-v4lx.prj xrc4lx/memory-xrc4lx.ucf
ADM-XRC-4SX memory-xrc4sx-v4sx.scr memory-xrc4sx-v4sx.prj xrc4sx/memory-

xrc4sx.ucf
ADM-XRC-4FX
with 4VFX100

memory-xrc4fx-v4fx.scr memory-xrc4fx-v4fx.prj xrc4fx/memory-xrc4fx-
4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

memory-xrc4fx-v4fx.scr memory-xrc4fx-v4fx.prj xrc4fx/memory-xrc4fx-
4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

memory-xrce4fx-v4fx.scr memory-xrce4fx-v4fx.prj xrce4fx/memory-xrce4fx-
4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

memory-xrce4fx-v4fx.scr memory-xrce4fx-v4fx.prj xrce4fx/memory-xrce4fx-
4vfx140.ucf

ADM-XRC-5LX memory-xrc5lx-v5lx.scr memory-xrc5lx-v5lx.prj xrc5lx/memory-xrc5lx.ucf
ADM-XRC-5T1
with V5FXT

memory-xrc5t1-v5fxt.scr memory-xrc5t1-v5fxt.prj xrc5t1/memory-xrc5t1-
5vfxt.ucf

ADM-XRC-5T1
with V5LXT

memory-xrc5t1-v5lxt.scr memory-xrc5t1-v5lxt.prj xrc5t1/memory-
xrc5t1.ucf

ADM-XRC-5T1
with V5SXT

memory-xrc5t1-v5sxt.scr memory-xrc5t1-v5sxt.prj xrc5t1/memory-
xrc5t1.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5LX110T,
V5LX155T or
V5LX220T

memory-xrc5t2-
v5lxt_4banks.scr

memory-xrc5t2-
v5lxt_4banks.prj

xrc5t2/memory-xrc5t2-
5vlx110t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5LX330T

memory-xrc5t2-
v5lxt_6banks.scr

memory-xrc5t2-
v5lxt_6banks.prj

xrc5t2/memory-xrc5t2-
5vlx330t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5FX100T

memory-xrc5t2-
v5fxt_4banks.scr

memory-xrc5t2-
v5fxt_4banks.prj

xrc5t2/memory-xrc5t2-
5vfx100t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5FX130T

memory-xrc5t2-
v5fxt_4banks.scr

memory-xrc5t2-
v5fxt_4banks.prj

xrc5t2/memory-xrc5t2-
5vfx130t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5FX200T

memory-xrc5t2-
v5fxt_6banks.scr

memory-xrc5t2-
v5fxt_6banks.prj

xrc5t2/memory-xrc5t2-
5vfx200t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5SX240T

memory-xrc5t2-
v5sxt_6banks.scr

memory-xrc5t2-
v5sxt_6banks.prj

xrc5t2/memory-xrc5t2-
5vsx240t.ucf

ADM-XRC-5TZ
with V5LX110T,
V5LX155T or
V5LX220T

memory-xrc5tz-v5lxt.scr memory-xrc5tz-v5lxt.prj xrc5t2/memory-xrc5tz-
5vlx110t.ucf

ADM-XRC-5TZ
with V5LX330T

memory-xrc5tz-v5lxt.scr memory-xrc5tz-v5lxt.prj xrc5t2/memory-xrc5tz-
5vlx330t.ucf

ADM-XRC-5TZ
with V5FX100T

memory-xrc5tz-v5fxt.scr memory-xrc5tz-v5fxt.prj xrc5t2/memory-xrc5tz-
5vfx100t.ucf

ADM-XRC-5TZ
with V5FX130T

memory-xrc5tz-v5fxt.scr memory-xrc5tz-v5fxt.prj xrc5t2/memory-xrc5tz-
5vfx130t.ucf

128

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

ADM-XRC-5TZ
with V5FX200T

memory-xrc5tz-v5fxt.scr memory-xrc5tz-v5fxt.prj xrc5t2/memory-xrc5tz-
5vfx200t.ucf

ADM-XRC-5TZ
with V5SX240T

memory-xrc5tz-v5sxt.scr memory-xrc5tz-v5sxt.prj xrc5t2/memory-xrc5tz-
5vsx240t.ucf

ADM-XRC-5T-
DA1 with V5FXT

memory-xrc5tda1-v5fxt.scr memory-xrc5tda1-v5fxt.prj xrc5tda1/memory-
xrc5tda1-5vfxt.ucf

ADM-XRC-5T-
DA1 with V5LXT

memory-xrc5tda1-v5lxt.scr memory-xrc5tda1-v5lxt.prj xrc5tda1/memory-
xrc5tda1.ucf

ADM-XRC-5T-
DA1 with V5SXT

memory-xrc5tda1-v5sxt.scr memory-xrc5tda1-v5sxt.prj xrc5tda1/memory-
xrc5tda1.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

ADM-XRC-5TZ projnav\xrc5tz\<device>
ADM-XRC-5T-DA1 projnav\xrc5tda1\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. First change directory to where this
design is located, and then refer to the following table for the appropriate shell commands for a particular model.

These simulations make use of behavioural memory models supplied by Micron and Hynix. These models are available from
the websites of the respective vendors, but for legal reasons, Alpha Data does not supply these models with this SDK. The
models in question are:

● MT55L256L36F (Micron flowthrough ZBT SSRAM)

● MT55L512L18P (Micron pipelined ZBT SSRAM)

● MT55L256L36P (Micron pipelined ZBT SSRAM)

● MT46V16M16 (Micron DDR SDRAM)

● HY5PS121621F (Hynix DDR-II SDRAM)

129

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory

Note that simulations targetting models that use DDR-II SDRAM memory may require as much as 200 microseconds of
simulated time for DLL/DCM/PLL locking and memory bank training to complete. This may result in long periods of inactivity
on the local bus. Such periods of inactivity do not necesary indicate that the simulation is not working as expected. Some
warnings may be emitted by memory models, DCMs, DLLs and PLLs. These relate to startup and can safely be ignored, as
the design is held in reset until clocks have stabilized.

Model Shell command
ADM-XRC cd xrc

vsim -do "do memory-xrc.do"
ADM-XRC-P cd xrcp

vsim -do "do memory-xrcp.do"
ADM-XRC-II-Lite cd xrc2l

vsim -do "do memory-xrc2l.do"
ADM-XRC-II cd xrc2

vsim -do "do memory-xrc2.do"
ADM-XPL cd xpl

vsim -do "do memory-xpl.do"
ADM-XP cd xp

vsim -do "do memory-xp.do"
ADM-XRC-4LX cd xrc4lx

vsim -do "do memory-xrc4lx.do"
ADM-XRC-4SX cd xrc4sx

vsim -do "do memory-xrc4sx.do"
ADM-XRC-4FX cd xrc4fx

vsim -do "do memory-xrc4fx.do"
ADPE-XRC-4FX cd xrce4fx

vsim -do "do memory-xrce4fx.do"
ADM-XRC-5LX cd xrc5lx

vsim -do "do memory-xrc5lx.do"
ADM-XRC-5T1 cd xrc5t1

vsim -do "do memory-xrc5t1.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

cd xrc5t2
vsim -do "do memory-xrc5t2.do"

ADM-XRC-5TZ cd xrc5tz
vsim -do "do memory-xrc5tz.do"

ADM-XRC-5T-DA1 cd xrc5tda1
vsim -do "do memory-xrc5tda1.do"

130

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

MEMORY64 sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Explanation of design

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\memory

131

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

Synopsis

The MEMORY64 FPGA design is a reference design demonstrating how to implement an interface to the on-board memory
on a reconfigurable computing card so that it is effectively dual-ported. Thus, a program running on the host can access the
memory, and at the same time a "user application" block can also access the memory.

This example demonstrates the following:

● A bursting local bus interface in the FPGA.

● Bursting, if supported, need not be supported over the entire FPGA space. In this design, only the 2MB SSRAM window
supports bursting.

● Implementing a local bus interface that is compatible with both Direct Slave transfers and DMA transfers.

● Use of the *_port common VHDL modules for interfacing various types of memory to the FPGA.

● Use of the arbiter_2 common VHDL module for sharing a memory bank between two clients.

● For models with ZBT memory, generation of deskewed copies of the local bus clock (LCLK) that are driven off-chip to
the ZBT SSRAMs, using DLLs (Virtex/-E/-EM) or DCMs (Virtex-II/-IIPro, Virtex-4 and Virtex-5). This technique is used to
ensure that ZBT SSRAM devices and the logic within the FPGA operate from clocks that are both phase- and frequency-
matched.

This design currently supports 6 models in Alpha Data's range of reconfigurable computing cards, which use various types of
memory:

● DDR-II SSRAM on the ADM-XRC-5T1, ADM-XRC-5T2 and ADM-XRC-5T2-ADV.

● DDR-II SDRAM on the ADM-XRC-4FX, ADPE-XRC-4FX, ADM-XRC-5LX, ADM-XRC-5T1, ADM-XRC-5T2 and ADM-
XRC-5T2-ADV.

FPGA Space Usage

The FPGA space is divided into two regions:

● A 2MB register region, beginning at local bus address 0x0. The registers within the FPGA are accessible via this region.

● A 2MB memory access window, beginning at local bus address 0x200000. The currently selected page of the currently
selected bank is accessible via this region.

The following registers exist in the 2MB register region, which begins at local bus address 0x0:

Bank register (BANK, local bus address 0x0)
Bits Mnemonic Type Function
3:0 BANK R/W Selects which bank is currently available via the

memory access window at local bus address
0x200000.

31:4 RO/MBZ (Reserved)

Page register (PAGE, local bus address 0x4)
Bits Mnemonic Type Function

132

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

12:0 PAGE R/W Value that selects which 2MB page of memory is
currently available via the memory access window at
local bus address 0x200000.

31:13 RO/MBZ (Reserved)

Memory control register (MEMCTL, local bus address 0x8)
Bits Mnemonic Type Function
0 RST R/W While this field is 1, the entire memory subsystem is

held in reset. An application should NOT attempt to
access memory while this field is 1.
When 0, the memory subsystem is not held in reset.

31:1 RO/MBZ (Reserved)

Status register (STATUS, local bus address 0x10)

This register indicates the general health of the FPGA in the form of lock flags from DLL, DCMs and PLLs
as well as training flags from any self-training memory banks.
Bits Mnemonic Type Function
0 LLOCK RO When 1, indicates that the DLL or DCM that distributes

LCLK within the FPGA is locked. If, 500ms or later
after configuration of the FPGA, this field is not 1, the
application should consider this a fatal error.

0 SLLOCK R/W1C Sticky loss of lock flag. When 1, indicates that the DLL
or DCM that distributes LCLK within the FPGA has
lost lock at some point. When written with 1, this field
is cleared to 0.

7:2 RO/MBZ (Reserved)
15:8 MLOCK RO Each bit of this field represents a DCM, DLL or PLL. A

1 indicates that lock has been achieved. Depending
on the model in use, not all 8 bits may be used. For
the precise meaning of the bits in this field, refer to the
table below describing differences between models for
this design.

23:16 SMLOCK R/W1C Sticky loss of lock/training flags. Each bit of this field
returns 1 if the corresponding DCM, DLL or PLL lost
lock. Note that unused bits of this field (because there
is no corresponding DCM, DLL or PLL) will always
return 1.

31:24 RO/MBZ (Reserved)

Status register MLOCK field (STATUS, local bus address 0x10)

This table describes the STATUS.MLOCK field for each supported model.
ADM-XRC-4FX and ADPE-XRC-4FX
Bits Mnemonic Type Function
8 MEMCLK RO When 1, indicates that the DCM that generates the

clock for the memory clock domain is locked.
9 IDELAY RO When 1, indicates that the IDELAYCTRL instances

are locked to the IDELAY reference clock.
15:10 RO/MBZ (Reserved)
ADM-XRC-5LX, ADM-XRC-5T1, ADM-XRC-5T2 and ADM-XRC-5T2-ADV
Bits Mnemonic Type Function

133

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

8 MEMCLK RO When 1, indicates that the PLL that generates the
clocks for the memory clock domain is locked.

9 IDELAY RO When 1, indicates that the IDELAYCTRL instances
are locked to the IDELAY reference clock.

15:10 RO/MBZ (Reserved)

Memory status register (MEMSTAT, local bus address 0x18)

This register indicates whether or not training of memory banks has been successful. The precise bit-field
definitions depend upon the model in use.
Bits Mnemonic Type Function
ADM-XRC-4FX, ADPE-XRC-4FX and ADM-XRC-5LX
3:0 SDRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

31:4 RO/MBZ (Reserved)
ADM-XRC-5T1
1:0 SDRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

2 SSRAM RO This field returns 1 if the DDR-II SSRAM port has
completed training successfully, otherwise 0.

31:3 RO/MBZ (Reserved)
ADM-XRC-5T2 and ADM-XRC-5T2-ADV
3:0 SDRAM RO This field returns a 1 in a bit position if the

corresponding DDR-II SDRAM port has completed
training successfully, otherwise 0.

5:4 SSRAM RO This field returns 1 in a bit position if the
corresponding DDR-II SSRAM port has completed
training successfully, otherwise 0.

31:6 RO/MBZ (Reserved)

Memory bank mode registers (MODE0...MODE15, local bus address 0x40...0x7C)

There are a total of 16 MODE registers, occupying local bus addresses 0x40 to 0x7C inclusive. The
interpretation of the fields in a mode register depends upon the type of memory that the register
corresponds to.
ZBT SSRAM
Bits Mnemonic Type Function
0 PIPELINE R/W When this field is 0, the memory port expects the ZBT

SSRAM to be operating in flowthrough mode. When
this field is 1, the memory port expects the ZBT
SSRAM to be operating in pipelined mode.

31:1 MBZ (Reserved)
DDR-II SSRAM
Bits Mnemonic Type Function
0 BLEN R/W When this field is 0, the memory port expects the DDR-

II SSRAM device to be a burst length 2 device. When
this field is 1, the memory port expects the DDR-II
SSRAM device to be a burst length 2 or 4 device.

1 MBZ (Reserved)

134

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

2 DLLOFF R/W When this field is 0, the memory port enables the DLL
(delay locked loop) within the DDR-II SDRAM device
(this is the normal mode of operation). When this field
is 1, the memory port disables the DLL (not
recommended).

31:3 MBZ (Reserved)
DDR SDRAM
Bits Mnemonic Type Function
0 REG R/W When this field is 0, the memory port expects the DDR

SDRAM to be unregistered. When this field is 1, the
memory port expects the DDR SDRAM to be
registered.

1 MBZ Reserved for implementing X4 DDR SDRAM device
support (must be zero in this release of the SDK).

3:2 ROWS R/W This field specifies the number of row address bits in
the DDR SDRAM devices:
0x0 => 12 bits
0x1 => 13 bits
0x2 => 14 bits
0x3 => 15 bits

5:4 COLS R/W This field specifies the number of column address bits
in the DDR SDRAM devices. The number of column
address bits depends on this field and also the ROWS
field, as follows:
0x0 => (#rows - 4)
0x1 => (#rows - 3)
0x2 => (#rows - 2)
0x3 => (#rows - 1)
For example, if ROWS = 0x1 and COLS = 0x1, then
the number of column address bits is (13 - 3) = 10.

7:6 BANKS R/W This field selects the number of bank address bits in
the DDR SDRAM devices:
0x0 => no bank bits, 1 internal bank
0x1 => 1 bank bit, 2 internal banks
0x2 => 2 bank bits, 4 internal banks
0x3 => 3 bank bits, 8 internal banks

9:8 PBANKS R/W This field selects the number of chip select pins in the
memory bank:
0x0 => 1 physical bank
0x1 => 2 physical banks
0x2 => 4 physical banks
0x3 => 8 physical banks

31:10 MBZ
DDR-II SDRAM
Bits Mnemonic Type Function
0 R/W This field is reserved for implementing registered DDR-

II SDRAM support (must be zero in this release of the
SDK).

1 MBZ This field is reserved for implementing X4 DDR-II
SDRAM device support (must be zero in this release
of the SDK).

135

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

3:2 ROWS R/W This field specifies the number of row address bits in
the DDR-II SDRAM devices:
0x0 => 12 bits
0x1 => 13 bits
0x2 => 14 bits
0x3 => 15 bits

5:4 COLS R/W This field specifies the number of column address bits
in the DDR-II SDRAM devices. The number of column
address bits depends on this field and also the ROWS
field, as follows:
0x0 => (#rows - 4)
0x1 => (#rows - 3)
0x2 => (#rows - 2)
0x3 => (#rows - 1)
For example, if ROWS = 0x1 and COLS = 0x1, then
the number of column address bits is (13 - 3) = 10.

7:6 BANKS R/W This field selects the number of bank address bits in
the DDR-II SDRAM devices:
0x0 => no bank bits, 1 internal bank
0x1 => 1 bank bit, 2 internal banks
0x2 => 2 bank bits, 4 internal banks
0x3 => 3 bank bits, 8 internal banks

9:8 PBANKS R/W This field selects the number of chip select pins in the
memory bank:
0x0 => 1 physical bank
0x1 => 2 physical banks
0x2 => 4 physical banks
0x3 => 8 physical banks

31:10 MBZ

USER registers (USER0...USER63, local bus address 0x100...0x1FF)

There are a total of 64 USER registers, occupying local bus addresses 0x100 to 0x1FF inclusive. The
interpretation of the USER registers depends upon the logic within the user_app module, and the
description below applies only to the unmodified user_app module that ships with this SDK.
USER0 - USER15

The first 16 user registers specify the starting addresses, counting in logical data words, where the chip-
driven memory test should begin testing each memory bank.
Bits Mnemonic Type Function
31:0 OFFSET R/W Specifies the starting address at which to begin testing

a particular memory bank.
USER16 - USER31

The next 16 user registers specify the number of logical data words that the chip-driven memory test
should test in each bank.
Bits Mnemonic Type Function
31:0 LENGTH R/W Specifies the number of logical data words to test in a

particular memory bank, minus 1. For example, to test
1 megaword, write the value 0xFFFFF.

USER48

The USER48 register indicates on which phase the memory test failed for banks 0 to 3.
Bits Mnemonic Type Function
7:0 EPHASE0 RO If ERROR[0] is 1, indicates on which phase the

memory test for bank 0 failed.

136

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

15:8 EPHASE1 RO If ERROR[1] is 1, indicates on which phase the
memory test for bank 1 failed.

23:16 EPHASE2 RO If ERROR[2] is 1, indicates on which phase the
memory test for bank 2 failed.

31:24 EPHASE3 RO If ERROR[3] is 1, indicates on which phase the
memory test for bank 3 failed.

USER49

The USER48 registers indicates on which phase the memory test failed for banks 4 to 7.
Bits Mnemonic Type Function
7:0 EPHASE4 RO If ERROR[4] is 1, indicates on which phase the

memory test for bank 4 failed.
15:8 EPHASE5 RO If ERROR[5] is 1, indicates on which phase the

memory test for bank 5 failed.
23:16 EPHASE6 RO If ERROR[6] is 1, indicates on which phase the

memory test for bank 6 failed.
31:24 EPHASE7 RO If ERROR[7] is 1, indicates on which phase the

memory test for bank 7 failed.
USER50

The USER50 register indicates on which phase the memory test failed for banks 8 to 11.
Bits Mnemonic Type Function
7:0 EPHASE8 RO If ERROR[8] is 1, indicates on which phase the

memory test for bank 8 failed.
15:8 EPHASE9 RO If ERROR[9] is 1, indicates on which phase the

memory test for bank 9 failed.
23:16 EPHASE10 RO If ERROR[10] is 1, indicates on which phase the

memory test for bank 10 failed.
31:24 EPHASE11 RO If ERROR[11] is 1, indicates on which phase the

memory test for bank 11 failed.
USER51

The USER50 register indicates on which phase the memory test failed for banks 12 to 15.
Bits Mnemonic Type Function
7:0 EPHASE12 RO If ERROR[12] is 1, indicates on which phase the

memory test for bank 12 failed.
15:8 EPHASE13 RO If ERROR[13] is 1, indicates on which phase the

memory test for bank 13 failed.
23:16 EPHASE14 RO If ERROR[14] is 1, indicates on which phase the

memory test for bank 14 failed.
31:24 EPHASE15 RO If ERROR[11] is 1, indicates on which phase the

memory test for bank 15 failed.
USER63

The USER63 register is used to initiate the chip-driven memory test, as well as check the status of the
memory test. When one of the low 16 bits is written with 1, it initiates the memory test for the
corresponding memory bank, using the parameters in the USER0 - USER31 registers. To initiate the
memory test on several banks simultaneously, write a number of 1s to USER63[15:0] at the same time.
Bits Mnemonic Type Function

137

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

15:0 DONE (R)
GO (W)

R/W When read, returns 1 for a particular bit if the memory
test for the corresponding bank is not running. Banks
that are nonexistent or unused always return 1.
When written with 1, initiates the memory test for the
corresponding memory bank. For example, writing
0xB would initiate the memory test for banks 0, 1 and
3 only. Writing a 1 to a bit that corresponds to a
nonexistent or unused bank has no effect.

31:16 ERROR RO Returns a 1 for a particular bit if one or more errors
occurred during the memory test for the corresponding
memory bank. Valid only when the corresponding bit
of the DONE field is 1. For each bit of ERROR
indicates that failure, the corresponding EPHASE field
may be inspected in order to discover the phase of the
memory test in which the first failure occurred.

Explanation of design

At the highest level of abstraction, the design consists of 3 logical blocks:

High-level view of the MEMORY reference design.

The local bus interface enables the CPU to read and write the memory banks. At the same time, the "user application"
module can also read and write the memory banks. The local bus interface and the user application also communicate with
each other via a set of registers. The user application as supplied in this SDK is in fact a chip-driven memory test, which can
test all memory banks simultaneously on command from the host. The user can rewrite the user application, replacing the
memory test logic with whatever processing logic he or she requires.

Because the FPGA space is limited to 4MB on most models, the local bus interface of the design divides the FPGA space
into a lower 2MB region for registers and an upper 2MB window for accessing the memory. A bank register selects which
bank is currently being accessed, and a page register is provided so that all of a large memory bank can be accessed even
though the window through which it is accessed is 2MB in size. The "user application", on the other hand, has no such
restrictions. It can access all banks of memory simultaneously without need for page or bank selection.

Explanation of memory_main module

138

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

The following is a block diagram of the memory_main module, which is not specific to any model and has been written in
such a way that it expects to be wrapped up by a model-specific wrapper. It implements the local bus interface and the
FPGA registers. It also contains the one and only instance of the memory_banks module as well as the one and only
instance of the user_app module.

The memory_main module.

As a brief aside, the wrapper for the module memory_main is model-specific, and is also the top-level of the design. For
example, there is an an ADM-XRC-4FX-specific wrapper module in the source file xrc4fx/memory64-xrc4fx.vhd that
instantiates the one and only instance of the memory_main module and takes care of some details specific to the ADM-
XRC-4FX, such as inputting global clocks.

Explanation of memory_banks module

As mentioned above, the memory_main module encloses one instance of the memory_banks module. The
memory_banks module is entirely model-specific and comes in several versions, one per model. Its job is fourfold:

1. To present a uniform interface in the local bus clock domain to the memory_main module no matter what type of
memory devices are present for a given model.

2. To decouple the local bus clock domain from the memory clock domain, as the two clock domains are generally
independent in phase and frequency.

3. To instantiate memory ports that are appropriate to the model. For example, the ADM-XRC-4FX version of the
memory_banks module instantiates four DDR-II SDRAM ports.

4. To handle any difference in the width of the local bus data (64 bits) and the width of the logical data written to and read
from the memory ports:

❍ For inbound data (that is, writes to the memory), the port_repl module is instantiated for some models,

139

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

since a logical memory data word may be wider than a 64-bit local bus data word. This is effectively a latch
that enables a complete memory word plus byte enables to be assembled before it is actually committed to
memory.

❍ For outbound data (that is, reads from the memory), a multiplexor called port_mux selects a 64-bit word
from the logical memory data depending on the low couple of local bus address bits.

5. To share the memory ports between the local bus interface and the user application by instantiating one arbitration
module (arbiter_2) per memory port.

The following figure illustrates the data flow within xrc4fx/memory_banks-xrc4fx.vhd. This is the ADM-XRC-4FX specific
version of the memory_banks module:

140

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

Data flow within the memory_banks module.

When data is written to a memory bank, the port_repl module takes 64-bit data words from the local bus interface on
mem_d and and assembles them into words suitable for the memory ports (in this case, DDR-II SDRAM ports whose logical
data with is 128). A set of async_port instances bridge the local bus clock domain and the memory clock domain. In the
memory clock domain, a set of arbiter_2 instances connect together both the preceding async_port instances and the user
application to the memory ports (ddr2sdram_port instances).

When data is read from a memory bank, logical data words flow from the memory ports, through the arbiter_2 instances,
and through the async_port instances. A multiplexor selects the data from a particular async_port according to the current
value of the BANK register. Finally, the port_mux instance performs width conversion from logical data words (128 bits) to
the local bus data width (64 bits), outputting the data on mem_q.

Explanation of memory_banks module - inbound datapath

Continuing with the ADM-XRC-4FX version as an example, the following figure shows detail for the data path from the local
bus interface to the memory banks:

Detail of inbound datapath in the memory_banks module.

The currently selected bank is available as a one-hot vector sel_bank_1h. This is used to ensure that at most one set of
port_p* signals can be active at a given moment, in turn ensuring that at most one async_port instance can be active at any
time. The port_p* signals are generated in a fairly trivial manner from the mem_* signals, which work as follows:

● mem_ce - pulsed by the local bus interface for one clock cycle at the beginning of a burst, when the local bus interface
wants to access a memory bank, whether for a read or for a write.

141

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

● mem_a - qualified by mem_ce and carries the starting address (in terms of 64-bit words) in memory that the local bus
interface wishes to access.

● mem_cw - qualified by mem_ce and is asserted by the local bus interface for a write access.

● mem_term - pulsed by the local bus interface for one clock cycle to terminate the burst.

● mem_wr - when asserted by the local bus interface, indicates that mem_d and mem_be carry 64-bit data and byte
enables to be written to memory. May be asserted for multiple consecutive clock cycles during a burst.

● mem_d - carries data from the local bus interface to be written to memory.

● mem_be - byte enables that accompany mem_d.

● mem_wpf - asserted by the memory_banks module when the async_port instance selected by sel_bank_1h cannot
accept more data to be written to memory. The local bus interface uses this signal to hold off the local bus LREADY#
signal during a burst so that the FIFOs within the async_port instances cannot overflow.

Explanation of memory_banks module - outbound datapath

142

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

Detail of outbound datapath in the memory_banks module.

As in the inbound datapath, the one-hot bank-select vector sel_bank_1h is used to ensure that at most one set of port_p*
signals can be active at a given moment, in turn ensuring that at most one async_port instance can be active at any time.
When the local bus interface reads a memory bank, the mem_* signals work as follows:

● mem_ce - pulsed by the local bus interface for one clock cycle at the beginning of a burst, when the local bus interface
wants to access a memory bank, whether for a read or for a write.

● mem_a - qualified by mem_ce and carries the starting address (in terms of 64-bit words) in memory that the local bus
interface wishes to access.

● mem_cw - qualified by mem_ce and is deasserted by the local bus interface for a read access.

● mem_term - pulsed by the local bus interface for one clock cycle to terminate the burst.

● mem_adv - when asserted by the local bus interface, indicates that the next 64-bit word of data should be presented on
mem_q. This signal enters the port_mux instance. For the case of the ADM-XRC-4FX, port_mux asserts the
port_plast signal once per 2 cycles in which mem_adv is asserted. This ensures that each 128-bit word of logical
memory data corresponds to 2 64-bit words on the local bus.

● mem_q - carries data read from memory to the local bus interface.

● mem_re - asserted by the memory_banks module when the async_port instance selected by sel_bank_1h has no
data remaining in its FIFO. This signal is used by the local bus interface to hold off the local bus LREADY# signal until
data has been fetched from memory.

● mem_rpe - asserted by the memory_banks module when the async_port instance selected by sel_bank_1h is
running out of data in its FIFO. This signal is used by the local bus interface to terminate the current burst on the local
bus in order to avoid undefined data being read by the CPU.

Explanation of memory_banks module - memory arbitration

The final figure in this discussion shows how each memory port is shared between the local bus interface (represented by an
async_port and the user_app module, with reference to the ADM-XRC-4FX:

143

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

Detail of logic for sharing a memory bank within the memory_banks module.

In the above figure, only the logic for a single memory bank is shown, but each memory bank has an identical set of logic
consisting of an async_port, an arbiter_2 and a ddr2sdram_port. There are a number of generic signals that work in the
same way regardless of the type of memory to which the memory port interfaces. These signals work as follows:

● The ce signal instructs the memory port to perform an access to the memory devices. In each clock cycle that ce is
asserted, one command is issued to the memory port.

● The w signal is qualified by ce, and specifies whether a memory access should be a read (0) or a write (1).

● The a signal is qualified by ce, and specifies the word of memory that should be accessed. This address is not a byte
address; rather it should be considered to be an index into an array of words whose width is the native memory width
(for example, 128 bits for a DDR-II SDRAM port in the ADM-XRC-4FX).

● The tag signal is qualified by the logical AND of ce and not w, and is a value to be associated with a particular read
command. The tag value and width is at the discretion of the designer, and can be whatever he or she wants. When the
memory port asserts valid for a given read command (i.e. assertion of ce in a particular clock cycle), the qtag signal
reflects the tag value that was present on the tag input when ce was asserted. One application of the tag signal is in the
async_port module - it uses the tag to avoid returning stale data to the local bus clock domain when one read ends and
another one begins.

● The d signal is qualiied by the logical AND of ce and w, and carries the data for a write command.

144

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

● The be signal is qualiied by the logical AND of ce and w, and carries the active high byte enables for a write command.
When bit i of beis 1, byte i will be written. When bit i of beis 0, byte i will not be written.

● The q signal is the data read from the memory devices for a particular read command, and is qualified by valid.

● The qtag signal is the tag value associated with a particular read command, and is qualified by valid.

● The valid signal indicates that data read from the memory devices is present on q, along with the associated tag value
on qtag.

● The ready signal indicates that the memory port is able to accept commands. When ready is zero, the ce signal must
be deasserted.

In addition to the generic memory port signals, a particular type of memory port may have one or more sideband signals that
are specific to that particular type of memory port. In the above figure, the ddr2sdram_port module has four sideband
signals that specify the paramters of the memory devices that it is controlling. They are: row, col, bank and pbank, and their
values are determined by the bit fields in the MODE register that is described above, for the case of a DDR-II SDRAM
memory bank.

Explanation of user_app module

The user_app module is intended to be a starting point for the end-user to add his or her own logic to perform some useful
data processing function. As shipped in this SDK, it contains logic to perform a chip-driven memory test of all banks of on-
board memory. See the MemoryF example application for details on how to run the chip-driven memory test.

145

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

Implementation of chip-driven memory test in user_app module.

The end-user can remove, modify and add logic as desired in order to create a customized user_app module. In doing so, a
few points to remember are:

146

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

● The ports a, be, ce, d, q, qtag, ready, tag, valid and w are a bundle of vectors, where a particular slice through this
bundle forms an interface to a memory bank and functions as in the generic memory interface. For example, q(2),
qtag(2) and valid(2) are part of the interface to memory bank 2. Because each slice is independent of the other slices,
some or all of the memory banks may be operated simultaneously if desired.

● Because the memory banks are shared with the local bus interface, user code must drive the req vector. Asserting a
particular bit of this vector indicates that the user_app module wishes to access the corresponding memory bank. For
example, assering req(3) causes the arbiter for memory bank 3 (within the memory_banks module) to (eventually)
assert ready(3). Once the user_app module sees ready(3) asserted, it may assert the ce(3) signal in order to access
memory bank 3.

● The chip-driven memory test logic in the user_app module as shipped in this SDK runs entirely within the memory clock
domain. If, for a custom application, the user_app logic must run in a different clock domain, techniques such as
asynchronous FIFOs and handshaking can be used to decouple the custom user_app logic from the memory clock
domain.

A facility for the local bus interface to communicate with the user_app module and vice-versa is provided by the three
signals reg_in, reg_wr and reg_out. Within the local bus address space, there is provision for 64 32-bit registers, totalling
256 bytes of registers. When the CPU writes to a USER register in the range local bus addresses 0x100 to 0x1FF, the write
is reflected in the values of reg_in and reg_wr. For example, if the CPU writes a 16-bit value to the address 0x13e, the 16-
bit value is reflected in reg_in[63:48], while bits 62 and 63 (only) of reg_wr pulse asserted for exactly one memory / user
clock cycle. When such an event occurs, the user_app module can, at its discretion, elect to store the value on reg_in
somewhere.

The user_app module can drive the reg_out vector, which is 256 bytes in size, with arbitrary status information. This status
information is visible in the USER registers when the CPU reads local bus addresses 0x100 to 0x1FF.

Note that synchronizing logic in the reg_sync module results in a round-trip delay of approximately 12 local bus clock cycles
whenever some information must be communicated between the local bus interface and the user_app module. Hence, if the
CPU writes something to a USER register, reading the same or another USER register is not guaranteed to return a value
that reflects what was just written until approximately 12 local bus clock cycles have elapsed.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC-4FX
with 4VFX100

memory64-xrc4fx-v4fx.scr memory64-xrc4fx-v4fx.prj xrc4fx/memory64-xrc4fx-
4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

memory64-xrc4fx-v4fx.scr memory64-xrc4fx-v4fx.prj xrc4fx/memory64-xrc4fx-
4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

memory64-xrce4fx-v4fx.scr memory64-xrce4fx-v4fx.prj xrce4fx/memory64-
xrce4fx-4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

memory64-xrce4fx-v4fx.scr memory64-xrce4fx-v4fx.prj xrce4fx/memory64-
xrce4fx-4vfx140.ucf

ADM-XRC-5LX memory64-xrc5lx-v5lx.scr memory64-xrc5lx-v5lx.prj xrc5lx/memory64-
xrc5lx.ucf

ADM-XRC-5T1
with V5FXT

memory64-xrc5t1-v5fxt.scr memory64-xrc5t1-v5fxt.prj xrc5t1/memory64-xrc5t1-
5vfxt.ucf

ADM-XRC-5T1
with V5LXT

memory64-xrc5t1-v5lxt.scr memory64-xrc5t1-v5lxt.prj xrc5t1/memory64-
xrc5t1.ucf

ADM-XRC-5T1
with V5SXT

memory64-xrc5t1-v5sxt.scr memory64-xrc5t1-v5sxt.prj xrc5t1/memory64-
xrc5t1.ucf

147

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5LX110T,
V5LX155T or
V5LX220T

memory64-xrc5t2-
v5lxt_4banks.scr

memory64-xrc5t2-
v5lxt_4banks.prj

xrc5t2/memory64-xrc5t2-
5vlx110t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5LX330T

memory64-xrc5t2-
v5lxt_6banks.scr

memory64-xrc5t2-
v5lxt_6banks.prj

xrc5t2/memory64-xrc5t2-
5vlx330t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5FX100T

memory64-xrc5t2-
v5fxt_4banks.scr

memory64-xrc5t2-
v5fxt_4banks.prj

xrc5t2/memory64-xrc5t2-
5vfx100t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5FX130T

memory64-xrc5t2-
v5fxt_4banks.scr

memory64-xrc5t2-
v5fxt_4banks.prj

xrc5t2/memory64-xrc5t2-
5vfx130t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5FX200T

memory64-xrc5t2-
v5fxt_6banks.scr

memory64-xrc5t2-
v5fxt_6banks.prj

xrc5t2/memory64-xrc5t2-
5vfx200t.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with
V5SX240T

memory64-xrc5t2-
v5sxt_6banks.scr

memory64-xrc5t2-
v5sxt_6banks.prj

xrc5t2/memory64-xrc5t2-
5vsx240t.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. First change directory to where this
design is located, and then refer to the following table for the appropriate shell commands for a particular model.

These simulations make use of behavioural memory models supplied by Micron and Hynix. These models are available from
the websites of the respective vendors, but for legal reasons, Alpha Data does not supply these models with this SDK. The
models in question are:

● MT55L256L36F (Micron flowthrough ZBT SSRAM)

● MT55L512L18P (Micron pipelined ZBT SSRAM)

● MT55L256L36P (Micron pipelined ZBT SSRAM)

148

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory64

● MT46V16M16 (Micron DDR SDRAM)

● HY5PS121621F (Hynix DDR-II SDRAM)

Note that simulations targetting models that use DDR-II SDRAM memory may require as much as 200 microseconds of
simulated time for DLL/DCM/PLL locking and memory bank training to complete. This may result in long periods of inactivity
on the local bus. Such periods of inactivity do not necesary indicate that the simulation is not working as expected. Some
warnings may be emitted by memory models, DCMs, DLLs and PLLs. These relate to startup and can safely be ignored, as
the design is held in reset until clocks have stabilized.

Model Shell command
ADM-XRC-4FX cd xrc4fx

vsim -do "do memory64-xrc4fx.do"
ADPE-XRC-4FX cd xrce4fx

vsim -do "do memory64-xrce4fx.do"
ADM-XRC-5LX cd xrc5lx

vsim -do "do memory64-xrc5lx.do"
ADM-XRC-5T1 cd xrc5t1

vsim -do "do memory64-xrc5t1.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

cd xrc5t2
vsim -do "do memory64-xrc5t2.do"

149

ADM-XRC SDK 4.9.3 User Guide (Win32) - RearIO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

RearIO sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\vhdl\reario

Synopsis

FPGA Space Usage

The RearIO design does not have a local bus interface; thus there are no registers defined in the FPGA space.

150

ADM-XRC SDK 4.9.3 User Guide (Win32) - RearIO

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC-P with
Virtex

reario-xrcp-v.scr reario-xrcp-v.prj reario-xrcp.ucf

ADM-XRC-P with
Virtex-E

reario-xrcp-ve.scr reario-xrcp-ve.prj reario-xrcp.ucf

ADM-XRC-II reario-xrc2-v2.scr reario-xrc2-v2.prj reario-xrc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>

151

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Simple sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\simple

Synopsis

152

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

The Simple FPGA design demonstrates how to implement host-accessible registers in an FPGA design. The registers can
be accessed via the ADMXRC2_Read and ADMXRC2_Write API calls, or via a memory-mapped region. The latter method
is demonstrated by the Simple sample application.

FPGA Space Usage

Nibble-reversed data register (REVDATA, local bus address 0x0)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the nibble-reversed

version of the last value written to it.

Nibble-reversed data register (DATA, local bus address 0x4)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the last value written

to it.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

simple-xrc-v.scr simple-xrc-v.prj simple-xrc.ucf

ADM-XRC with
Virtex-E

simple-xrc-ve.scr simple-xrc-ve.prj simple-xrc.ucf

ADM-XRC-P with
Virtex

simple-xrcp-v.scr simple-xrcp-v.prj simple-xrcp.ucf

ADM-XRC-P with
Virtex-E

simple-xrcp-ve.scr simple-xrcp-ve.prj simple-xrcp.ucf

ADM-XRC-II-Lite simple-xrc2l-v2.scr simple-xrc2l-v2.prj simple-xrc2l.ucf
ADM-XRC-II simple-xrc2-v2.scr simple-xrc2-v2.prj simple-xrc2.ucf
ADM-XPL simple-xpl-v2p.scr simple-xpl-v2p.prj simple-xpl.ucf
ADM-XP simple-xp-v2p.scr simple-xp-v2p.prj simple-xp.ucf
ADP-WRC-II simple-wrc2-v2.scr simple-wrc2-v2.prj simple-wrc2.ucf
ADP-DRC-II simple-drc2-v2.scr simple-drc2-v2.prj simple-drc2.ucf
ADP-XPI simple-xpi-v2p.scr simple-xpi-v2p.prj simple-xpi.ucf
ADM-XRC-4LX simple-xrc4lx-v4lx.scr simple-xrc4lx-v4lx.prj simple-xrc4lx.ucf
ADM-XRC-4SX simple-xrc4sx-v4sx.scr simple-xrc4sx-v4sx.prj simple-xrc4sx.ucf
ADM-XRC-4FX
with 4VFX100

simple-xrc4fx-v4fx.scr simple-xrc4fx-v4fx.prj simple-xrc4fx-
4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

simple-xrc4fx-v4fx.scr simple-xrc4fx-v4fx.prj simple-xrc4fx-
4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

simple-xrce4fx-v4fx.scr simple-xrce4fx-v4fx.prj simple-xrce4fx-
4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

simple-xrce4fx-v4fx.scr simple-xrce4fx-v4fx.prj simple-xrce4fx-
4vfx140.ucf

ADM-XRC-5LX simple-xrc5lx-v5lx.scr simple-xrc5lx-v5lx.prj simple-xrc5lx.ucf
ADM-XRC-5T1
with FXT

simple-xrc5t1-v5fxt.scr simple-xrc5t1-v5fxt.prj simple-xrc5t1-5vfxt.ucf

153

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

ADM-XRC-5T1
with LXT

simple-xrc5t1-v5lxt.scr simple-xrc5t1-v5lxt.prj simple-xrc5t1.ucf

ADM-XRC-5T1
with SXT

simple-xrc5t1-v5sxt.scr simple-xrc5t1-v5sxt.prj simple-xrc5t1.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with FXT

simple-xrc5t2-v5fxt.scr simple-xrc5t2-v5fxt.prj simple-xrc5t2-5vfxt.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with LXT

simple-xrc5t2-v5lxt.scr simple-xrc5t2-v5lxt.prj simple-xrc5t2.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with SXT

simple-xrc5t2-v5sxt.scr simple-xrc5t2-v5sxt.prj simple-xrc5t2.ucf

ADM-XRC-5TZ
with FXT

simple-xrc5tz-v5fxt.scr simple-xrc5tz-v5fxt.prj simple-xrc5tz-5vfxt.ucf

ADM-XRC-5TZ
with LXT

simple-xrc5tz-v5lxt.scr simple-xrc5tz-v5lxt.prj simple-xrc5tz.ucf

ADM-XRC-5TZ
with SXT

simple-xrc5tz-v5sxt.scr simple-xrc5tz-v5sxt.prj simple-xrc5tz.ucf

ADM-XRC-5T-
DA1 with FXT

simple-xrc5tda1-v5fxt.scr simple-xrc5tda1-v5fxt.prj simple-xrc5tda1-
5vfxt.ucf

ADM-XRC-5T-
DA1 with LXT

simple-xrc5tda1-v5lxt.scr simple-xrc5tda1-v5lxt.prj simple-xrc5tda1.ucf

ADM-XRC-5T-
DA1 with SXT

simple-xrc5tda1-v5sxt.scr simple-xrc5tda1-v5sxt.prj simple-xrc5tda1.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>
ADM-ADP-XPI projnav\xpi\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t2\<device>

ADM-XRC-5TZ projnav\xrc5tz\<device>
ADM-XRC-5T-DA1 projnav\xrc5tda1\<device>

154

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

Model Shell command
ADM-XRC vsim -do "do simple.do"
ADM-XRC-P vsim -do "do simple.do"
ADM-XRC-II-Lite vsim -do "do simple.do"
ADM-XRC-II vsim -do "do simple.do"
ADM-XPL vsim -do "do simple-xpl.do"
ADM-XP vsim -do "do simple-xpl.do"
ADP-WRC-II vsim -do "do simple-wrc2.do"
ADP-DRC-II vsim -do "do simple-wrc2.do"
ADP-XPI vsim -do "do simple-xpi.do"
ADM-XRC-4LX vsim -do "do simple-xrc4lx.do"
ADM-XRC-4SX vsim -do "do simple-xrc4lx.do"
ADM-XRC-4FX vsim -do "do simple-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do simple-xrce4fx.do"
ADM-XRC-5LX vsim -do "do simple-xpl.do"
ADM-XRC-5T1 vsim -do "do simple-xpl.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do simple-xpl.do"

ADM-XRC-5TZ vsim -do "do simple-xpl.do"
ADM-XRC-5T-DA1 vsim -do "do simple-xpl.do"

155

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Simple64 sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL 2VP20, 2VP30 only
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Note: the ADM-XRC-5T2-ADV version of this design uses the same source files and bitstreams as the ADM-XRC-5T2, so
separate files are not included within this SDK.

Location

%ADMXRC_SDK4%\fpga\vhdl\simple64

Synopsis

156

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple64

The Simple64 FPGA design demonstrates how to implement host-accessible registers in an FPGA design with a 64-bit local
data bus. It is a 64-bit version of the Simple FPGA design.

The registers described below are located at addresses 0x0 and 0x4 respectively on the local bus. This means that they
are visible in the lower and upper 32-bit halves of the local bus data LAD[63:0]. Because the design uses the local bus byte
enables LBE#[7:0] to qualify direct slave writes, these registers can be written independently of each other even though they
are packed into a single 64-bit word.

From the host's point of view, the registers in the FPGA are the same as in the Simple FPGA design. They can be
accessed via the ADMXRC2_Read and ADMXRC2_Write API calls, or via a memory-mapped region. The latter method is
demonstrated by the Simple sample application.

FPGA Space Usage

Nibble-reversed data register (REVDATA, local bus address 0x0)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the nibble-reversed

version of the last value written to it.

Nibble-reversed data register (DATA, local bus address 0x4)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the last value written

to it.

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XPL simple64-xpl-v2p.scr simple64-xpl-v2p.prj simple64-xpl.ucf
ADM-XP simple64-xp-v2p.scr simple64-xp-v2p.prj simple64-xp.ucf
ADP-XPI simple64-xpi-v2p.scr simple64-xpi-v2p.prj simple64-xpi.ucf
ADM-XRC-4FX
with 4VFX100

simple64-xrc4fx-v4fx.scr simple64-xrc4fx-v4fx.prj simple64-xrc4fx-
4vfx100.ucf

ADM-XRC-4FX
with 4VFX140

simple64-xrc4fx-v4fx.scr simple64-xrc4fx-v4fx.prj simple64-xrc4fx-
4vfx140.ucf

ADPE-XRC-4FX
with 4VFX100

simple64-xrce4fx-v4fx.scr simple64-xrce4fx-v4fx.prj simple64-xrce4fx-
4vfx100.ucf

ADPE-XRC-4FX
with 4VFX140

simple64-xrce4fx-v4fx.scr simple64-xrce4fx-v4fx.prj simple64-xrce4fx-
4vfx140.ucf

ADM-XRC-5LX simple64-xrc5lx-v5lx.scr simple64-xrc5lx-v5lx.prj simple64-xrc5lx.ucf
ADM-XRC-5T1
with FXT

simple64-xrc5t1-v5fxt.scr simple64-xrc5t1-v5fxt.prj simple64-xrc5t1-
5vfxt.ucf

ADM-XRC-5T1
with LXT

simple64-xrc5t1-v5lxt.scr simple64-xrc5t1-v5lxt.prj simple64-xrc5t1.ucf

ADM-XRC-5T1
with SXT

simple64-xrc5t1-v5sxt.scr simple64-xrc5t1-v5sxt.prj simple64-xrc5t1.ucf

157

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple64

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with FXT

simple64-xrc5t2-v5fxt.scr simple64-xrc5t2-v5fxt.prj simple64-xrc5t2-
5vfxt.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with LXT

simple64-xrc5t2-v5lxt.scr simple64-xrc5t2-v5lxt.prj simple64-xrc5t2.ucf

ADM-XRC-5T2 or
ADM-XRC-5T2-
ADV with SXT

simple64-xrc5t2-v5sxt.scr simple64-xrc5t2-v5sxt.prj simple64-xrc5t2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-XPI projnav\xpi\<device>
ADM-XRC-4FX projnav\xrc4fx\<device>
ADPE-XRC-4FX projnav\xrce4fx\<device>
ADM-XRC-5LX projnav\xrc5lx\<device>
ADM-XRC-5T1 projnav\xrc5t1\<device>
ADM-XRC-5T2
ADM-XRC-5T2-ADV

projnav\xrc5t1\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model:

Model Shell command
ADM-XPL vsim -do "do simple64-xpl.do"
ADM-XP vsim -do "do simple64-xpl.do"
ADM-XPI vsim -do "do simple64-xpi.do"
ADM-XRC-4FX vsim -do "do simple64-xrc4fx.do"
ADPE-XRC-4FX vsim -do "do simple64-xrce4fx.do"
ADM-XRC-5LX vsim -do "do simple64-xpl.do"
ADM-XRC-5T1 vsim -do "do simple64-xpl.do"
ADM-XRC-5T2
ADM-XRC-5T2-ADV

vsim -do "do simple64-xpl.do"

158

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ZBT sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\vhdl\zbt

Synopsis

Note: this FPGA design has been effectively superseded by the Memory sample FPGA design (VHDL), since the latter is
more general and supports a larger number of models and types of memory.

159

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

The ZBT FPGA design demonstrates how to implement a host interface to the SSRAM in an FPGA design. The design
divides the 4MB FPGA space into a lower 2MB region for register and an upper 2MB window for accessing the SSRAM. A
page register is provided so that all of the SSRAM on a card is available to the host.

This example demonstrates the following:

● A bursting local bus interface in the FPGA.

● Interfacing of ZBT SSRAMs to the FPGA.

● Bursting, if supported, need not be supported over the entire FPGA space. In this design, only the 2MB SSRAM window
supports bursting.

● Since the FPGA does not distinguish between a direct slave burst initiated by the host CPU and a burst initiated by a
DMA engines in the local bus bridge, the host can use programmed I/O or DMA to transfer data.

● Generation of deskewed copies of the local bus clock (LCLK) that are driven off-chip to the SSRAMs, using DLLs
(Virtex/-E/-EM) or DCMs (Virtex-II/-IIPro). This technique is used to ensure that the ZBT SSRAM devices and the FPGA
operate using the same clock.

The design accomodates pipelined or flowthrough JEDEC-compliant ZBT SSRAM devices. Some ZBT devices are capable
of operating in either pipelined or flowthrough mode, depending on the level on a mode-select pin. The FPGA design
therefore contains a register that selects pipelined or flowthrough operation.

The design maps the data pins of each physical SSRAM bank to the 32-bit local data bus. The manner in which this is done
depends upon the number and width of the physical SSRAM banks on a card:

● The ADM-XRC and ADM-XRC-P have four physical 36-bit SSRAM banks. The 4 parity bits are dropped and the 32 data
bits are mapped to one 32-bit logical SSRAM bank. This results in four logical SSRAM banks.

● The ADM-XRC-II has six physical 36-bit SSRAM banks. The 4 parity bits are dropped and the 32 data bits are mapped
to one 32-bit logical SSRAM bank. This results in six logical SSRAM banks.

● The ADM-XRC-II-Lite uses 18-bit SSRAMs. Two physical banks are put together to form a 36-bit bank. The 4 parity bits
are then dropped, and the 32 data bits are mapped to one 32-bit logical SSRAM bank. This results in two logical
SSRAM banks.

● The ADM-XPL has a single 64-bit SSRAM device. The low 32 bits are mapped to one 32-bit logical SSRAM bank. This
results in a single logical SSRAM bank.

● The ADM-XRC-4LX has six physical 32-bit SSRAM banks. This results in six logical SSRAM banks.

● The ADM-XRC-4SX has four physical 32-bit SSRAM banks. This results in four logical SSRAM banks.

The design also contains a register that selects the number of address bits in the logical SSRAM banks. Address lengths of
17, 18, 19 and 20 bits are accomodated.

The page register augments the limited address space (2MB) allotted to accessing the SSRAM. The following figure
illustrates this for an ADM-XRC-II with six 512k x 36 ZBT SSRAM devices fitted:

160

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

FPGA Space Usage

The following registers exist in the 2MB register region:

Page register (PAGE, local bus address 0x0)
Bits Mnemonic Type Function
7:0 PAGE R/W Value that augments bits [20:2] of the local bus

address, when accessing the SSRAM.
31:8 MBZ

Mode register (MODE, local bus address 0x4)
Bits Mnemonic Type Function
0 PIPELINED R/W Value that selects the mode in which to operate the

ZBT SSRAM devices:
0 => flowthrough
1 => pipelined

31:1 MBZ

Size register (SIZE, local bus address 0x8)
Bits Mnemonic Type Function
1:0 SIZE R/W Value that specifies the number of address bits in a

logical SSRAM bank:
0 => 17 (128k words)
1 => 18 (256k words)
2 => 19 (512k words)
3 => 20 (1M words)

31:2 MBZ

161

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

Information register (INFO, local bus address 0x10)
Bits Mnemonic Type Function
23:0 BANKSIZE RO Returns size, in words, of each logical SSRAM bank.
31:24 NUMBANK RO Number of logical SSRAM banks in the design.

Status register (STATUS, local bus address 0x14)
Bits Mnemonic Type Function
0 LCLK_LOCKED RO Returns '1' if the local bus clock (LCLK) DCM/DLL is

currently locked.
n:1 RAMCLK_LOCKED RO If n is the number of SSRAM clock signals in the

design, this register returns '1' in a particular bit if
the DCM/DLL for that clock signal is currently
locked. Bit 1 corresponds to SSRAM clock 0.

31:n+1 RAX

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

zbt-xrc-v.scr zbt-xrc-v.prj zbt-xrc-v.ucf

ADM-XRC with
Virtex-E/-EM

zbt-xrc-ve.scr zbt-xrc-ve.prj zbt-xrc-ve.ucf

ADM-XRC-P with
Virtex

zbt-xrcp-v.scr zbt-xrcp-v.prj zbt-xrcp-v.ucf

ADM-XRC-P with
Virtex-E/-EM

zbt-xrcp-ve.scr zbt-xrcp-ve.prj zbt-xrcp-ve.ucf

ADM-XRC-II-Lite zbt-xrc2l-v2.scr zbt-xrc2l-v2.prj zbt-xrc2l.ucf
ADM-XRC-II zbt-xrc2-v2.scr zbt-xrc2-v2.prj zbt-xrc2.ucf
ADM-XPL zbt-xpl-v2p.scr zbt-xpl-v2p.prj zbt-xpl.ucf
ADM-XRC-4LX zbt-xrc4lx-v4lx.scr zbt-xrc4lx-v4lx.prj zbt-xrc4lx.ucf
ADM-XRC-4SX zbt-xrc4sx-v4sx.scr zbt-xrc4sx-v4sx.prj zbt-xrc4sx.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XRC-4LX projnav\xrc4lx\<device>
ADM-XRC-4SX projnav\xrc4sx\<device>

Modelsim scripts

162

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model. Some warnings may be emitted by memory models, DCMs, DLLs and
PLLs. These relate to startup and can safely be ignored, as the design is held in reset until clocks have stabilized.

Model Shell command
ADM-XRC vsim -do "do zbt-xrc.do"
ADM-XRC-P vsim -do "do zbt-xrcp.do"
ADM-XRC-II-Lite vsim -do "do zbt-xrc2l.do"
ADM-XRC-II vsim -do "do zbt-xrc2.do"
ADM-XPL vsim -do "do zbt-xpl.do"
ADM-XRC-4LX vsim -do "do zbt-xrc4lx.do"
ADM-XRC-4SX vsim -do "do zbt-xrc4sx.do"

163

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ZBT64 sample VHDL FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Modelsim scripts

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL 2VP20, 2VP30 only
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\vhdl\zbt64

Synopsis

Note: this FPGA design has been effectively superseded by the Memory64 sample FPGA design (VHDL), since the latter is
more general and supports a larger number of models and types of memory.

164

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

The ZBT64 FPGA design demonstrates how to implement a 64-bit host interface to the SSRAM in an FPGA design. The
design divides the 4MB FPGA space into a lower 2MB region for register and an upper 2MB window for accessing the
SSRAM. A page register is provided so that all of the SSRAM on a card is available to the host.

This example demonstrates the following:

● A bursting local bus interface in the FPGA.

● Interfacing of ZBT SSRAMs to the FPGA.

● Bursting, if supported, need not be supported over the entire FPGA space. In this design, only the 2MB SSRAM window
supports bursting.

● Since the FPGA does not distinguish between a direct slave burst initiated by the host CPU and a burst initiated by a
DMA engines in the local bus bridge, the host can use programmed I/O or DMA to transfer data.

● Generation of deskewed copies of the local bus clock (LCLK) that are driven off-chip to the SSRAMs, using DLLs
(Virtex/-E/-EM) or DCMs (Virtex-II/-IIPro). This technique is used to ensure that the ZBT SSRAM devices and the FPGA
operate using the same clock.

The design accomodates pipelined or flowthrough JEDEC-compliant ZBT SSRAM devices. Some ZBT devices are capable
of operating in either pipelined or flowthrough mode, depending on the level on a mode-select pin. The FPGA design
therefore contains a register that selects pipelined or flowthrough operation.

The design maps the data pins of each physical SSRAM bank to the 64-bit local data bus. Currently, only the ADM-XPL is
capable of operating with a 64-bit local bus. The ADM-XPL has a single 64-bit SSRAM device, and so this device's data bits
can be mapped one-to-one to the local data bus bits.

The design also contains a register that selects the number of address bits in the logical SSRAM banks. Address lengths of
17, 18, 19 and 20 bits are accomodated.

The page register augments the limited address space (2MB) allotted to accessing the SSRAM. The following figure
illustrates this on an ADM-XPL with a 1M x 64 ZBT SSRAM device fitted:

165

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

FPGA Space Usage

The following registers exist in the 2MB register region:

Page register (PAGE, local bus address 0x0)
Bits Mnemonic Type Function
7:0 PAGE R/W Value that augments bits [20:3] of the local bus

address, when accessing the SSRAM.
31:8 MBZ

Mode register (MODE, local bus address 0x4)
Bits Mnemonic Type Function
0 PIPELINED R/W Value that selects the mode in which to operate the

ZBT SSRAM devices:
0 => flowthrough
1 => pipelined

31:1 MBZ

Size register (SIZE, local bus address 0x8)
Bits Mnemonic Type Function
1:0 SIZE R/W Value that specifies the number of address bits in a

logical SSRAM bank:
0 => 17 (128k words)
1 => 18 (256k words)
2 => 19 (512k words)
3 => 20 (1M words)

31:2 MBZ

166

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

Information register (INFO, local bus address 0x10)
Bits Mnemonic Type Function
23:0 BANKSIZE RO Returns size, in words, of each logical SSRAM bank.
31:24 NUMBANK RO Number of logical SSRAM banks in the design.

Status register (STATUS, local bus address 0x14)
Bits Mnemonic Type Function
0 LCLK_LOCKED RO Returns '1' if the local bus clock (LCLK) DCM/DLL is

currently locked.
n:1 RAMCLK_LOCKED RO If n is the number of SSRAM clock signals in the

design, this register returns '1' in a particular bit if
the DCM/DLL for that clock signal is currently
locked. Bit 1 corresponds to SSRAM clock 0.

31:n+1 RAX

Source files

For a list of the VHDL source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XPL zbt64-xpl-v2p.scr zbt64-xpl-v2p.prj zbt64-xpl.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XPL projnav\xpl\<device>

Modelsim scripts

Example Modelsim-compatible script files for simulating this design are provided. Refer to the following table for the
appropriate command line for a particular model. Some warnings may be emitted by memory models, DCMs, DLLs and
PLLs. These relate to startup and can safely be ignored, as the design is held in reset until clocks have stabilized.

Model Shell command
ADM-XPL vsim -do "do zbt64-xpl.do"

167

ADM-XRC SDK 4.9.3 User Guide (Win32) - Verilog designs

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Sample Verilog FPGA designs

A number of example Verilog FPGA designs are included with the SDK. The purpose of these designs is to demonstrate
functionality available on the ADM-XRC series of cards and also to serve as customisable starting points for user-developed
applications. The designs are intentionally trivial so that code that implements the functionality being demonstrated can
easily be seen.

The sample FPGA designs are used by the sample applications, which demonstrate how software running on the host
CPU can interact with an FPGA design.

The table below lists the sample FPGA designs and the sample applications that use them:

Design name Used by application(s) Purpose

DLL DLL Demonstrates clock doubling using Virtex DLLs and
Virtex-II DCMs

DDMA DMA Demonstrates use of the DMA engines in demand-
mode, with bursting on the local bus.

DDMA64 DMA Demonstrates use of the DMA engines in demand-
mode, with bursting and 64-bit mode on the local bus.

FrontIO FrontIO A trivial design that walks a '1' bit up the front panel I/O
pins.

ITest ITest Sample logic for generating FPGA interrupts.

Master Master Demonstrates how to implement a direct master
capability in an FPGA design.

RearIO RearIO A trivial design that walks a '1' bit up the rear panel I/O
pins.

Simple Simple Demonstrates how to implement host-readable registers.

Simple64 Simple Demonstrates how to implement host-readable registers,
with 64-bit local bus interface.

ZBT Memtest Demonstrates host access to the ZBT SSRAM.

ZBT64 Memtest Demonstrates host access to the ZBT SSRAM, with 64-
bit local bus interface.

168

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DDMA sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\ddma

Synopsis

The DDMA FPGA design demonstrates demand-mode DMA with bursting. Data is read from an application buffer in host
memory and then simply written back to another application buffer unchanged (a 'loopback' operation). In order to use
demand-mode DMA, the host must specify the appropriate mode when performing DMA transfers. This is demonstrated by
the DMA sample application.

169

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

● Data is read from host memory using DMA channel 0 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● Data is written to host memory using DMA channel 1 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● A 512 word by 32 bit FIFO is used to buffer data.

● Bursting is allowed on the local bus.

● Flow control is implemented by holding off the demand-mode DMA request signals LDREQ#[1:0] when the FIFO is
nearly full or nearly empty.

FPGA Space Usage

The design assumes that any DMA transfer on DMA channel 0 is transferring data into the FIFO; hence any direct-slave
write where LDACK#[0] is asserted will fill the FIFO with data. Similarly, any DMA transfer on DMA channel 1 is assumed to
tbe emptying the FIFO; hence any read where LDACK#[1] is asserted will empty the FIFO of data. The local bus address is
ignored during these demand-mode DMA transfers. In other words, the FIFO is visible over the entire FPGA space during
demand-mode DMA transfers.

There are two write-only registers that reside in the FPGA direct-slave space. These registers must be written by the host
with a DMA transfer count that matches the size of the DMA transfer being performed, prior to the host starting the DMA
transfer. Note that these registers cannot be inadvertantly overwritten by demand-mode DMA transfers, as the design
qualifies FPGA register accesses using LDACK#[1:0].

Inbound count register (ICOUNT, local bus address 0x0)
Bits Mnemonic Type Function
1:0 MBZ
31:2 N WO Inbound DMA transfer count, in 32-bit words

The inbound count register (ICOUNT) specifies how many words will be transferred in the next DMA transfer in channel 0, in
order to transfer data into the FPGA's FIFO. When ICOUNT.N is zero, the FPGA will not assert LDREQ#[0]. The FPGA
decrements ICOUNT.N whenever a word of data is transferred on DMA channel 0.

Outbound count register (OCOUNT, local bus address 0x4)
Bits Mnemonic Type Function
1:0 MBZ
31:2 N WO Outbound DMA transfer count, in 32-bit words

The outbound count register (OCOUNT) specifies how many words will be transferred in the next DMA transfer in channel 1,
in order to transfer data into the FPGA's FIFO. When OCOUNT.N is zero, the FPGA will not assert LDREQ#[1]. The FPGA
decrements OCOUNT.N whenever a word of data is transferred on DMA channel 1.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

ddma-xrc-v.scr ddma-xrc-v.prj ddma-xrc.ucf

170

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA

ADM-XRC with
Virtex-E

ddma-xrc-ve.scr ddma-xrc-ve.prj ddma-xrc.ucf

ADM-XRC-P with
Virtex

ddma-xrcp-v.scr ddma-xrcp-v.prj ddma-xrcp.ucf

ADM-XRC-P with
Virtex-E

ddma-xrcp-ve.scr ddma-xrcp-ve.prj ddma-xrcp.ucf

ADM-XRC-II-Lite ddma-xrc2l-v2.scr ddma-xrc2l-v2.prj ddma-xrc2l.ucf
ADM-XRC-II ddma-xrc2-v2.scr ddma-xrc2-v2.prj ddma-xrc2.ucf
ADM-XPL ddma-xpl-v2p.scr ddma-xpl-v2p.prj ddma-xpl.ucf
ADM-XP ddma-xp-v2p.scr ddma-xp-v2p.prj ddma-xp.ucf
ADP-WRC-II ddma-wrc2-v2.scr ddma-wrc2-v2.prj ddma-wrc2.ucf
ADP-DRC-II ddma-drc2-v2.scr ddma-drc2-v2.prj ddma-drc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>

171

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DDMA64 sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL 2VP20, 2VP30 only
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\ddma64

Synopsis

The DDMA64 FPGA design demonstrates demand-mode DMA with local bus bursting in 64-bit mode. Data is read from an
application buffer in host memory and then simply written back to another application buffer unchanged (a 'loopback'
operation). In order to use demand-mode DMA, the host must specify the appropriate mode when performing DMA transfers.
This is demonstrated by the DMA sample application.

172

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

● Data is read from host memory using DMA channel 0 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● Data is written to host memory using DMA channel 1 in demand-mode. An instance of the PLXDDSM module controls
the DMA channel.

● Two 512 word by 32-bit FIFOs are used to obtain a 64-bit wide FIFO for buffering data.

● Bursting is allowed on the local bus.

● Flow control is implemented by holding off the demand-mode DMA request signals LDREQ#[1:0] when the FIFO is
nearly full or nearly empty.

FPGA Space Usage

The design assumes that any DMA transfer on DMA channel 0 is transferring data into the FIFO; hence any direct-slave
write where LDACK#[0] is asserted will fill the FIFO with data. Similarly, any DMA transfer on DMA channel 1 is assumed to
tbe emptying the FIFO; hence any read where LDACK#[1] is asserted will empty the FIFO of data. The local bus address is
ignored during these demand-mode DMA transfers. In other words, the FIFO is visible over the entire FPGA space during
demand-mode DMA transfers.

There are two write-only registers that reside in the FPGA direct-slave space. These registers must be written by the host
with a DMA transfer count that matches the size of the DMA transfer being performed, prior to the host starting the DMA
transfer. Note that these registers cannot be inadvertantly overwritten by demand-mode DMA transfers, as the design
qualifies FPGA register accesses using LDACK#[1:0].

Inbound count register (ICOUNT, local bus address 0x0)
Bits Mnemonic Type Function
1:0 MBZ
31:2 N WO Inbound DMA transfer count, in 32-bit words

The inbound count register (ICOUNT) specifies how many words will be transferred in the next DMA transfer in channel 0, in
order to transfer data into the FPGA's FIFO. When ICOUNT.N is zero, the FPGA will not assert LDREQ#[0]. The FPGA
decrements ICOUNT.N whenever a word of data is transferred on DMA channel 0.

Outbound count register (OCOUNT, local bus address 0x4)
Bits Mnemonic Type Function
1:0 MBZ
31:2 N WO Outbound DMA transfer count, in 32-bit words

The outbound count register (OCOUNT) specifies how many words will be transferred in the next DMA transfer in channel 1,
in order to transfer data into the FPGA's FIFO. When OCOUNT.N is zero, the FPGA will not assert LDREQ#[1]. The FPGA
decrements OCOUNT.N whenever a word of data is transferred on DMA channel 1.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XPL ddma64-xpl-v2p.scr ddma64-xpl-v2p.prj ddma64-xpl.ucf
ADM-XP ddma64-xp-v2p.scr ddma64-xp-v2p.prj ddma64-xp.ucf

173

ADM-XRC SDK 4.9.3 User Guide (Win32) - DDMA64

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>

174

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DLL sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\dll

Synopsis

The DLL FPGA design demonstrates the clock doubling capability of Virtex DLLs and Virtex-II DCMs. The local bus clock
(LCLK) is input through a clock IOB and doubled using a DLL (Virtex/-E/-EM) or DCM (Virtex-II or Virtex-IIPro). A 32-bit host-
readable counter is clocked by a 2X multiple of LCLK.

175

ADM-XRC SDK 4.9.3 User Guide (Win32) - DLL

FPGA Space Usage

Count register (COUNT, local bus address 0x0)
Bits Mnemonic Type Function
31:0 N R/W Number of elapsed cycles of 2X multiple of LCLK

The COUNT register returns the number of elapsed cycles of the 2X multiple of LCLK. It can be preset to a particular value
by writing to it.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

dll-xrc-v.scr dll-xrc-v.prj dll-xrc.ucf

ADM-XRC with
Virtex-E

dll-xrc-ve.scr dll-xrc-ve.prj dll-xrc.ucf

ADM-XRC-P with
Virtex

dll-xrcp-v.scr dll-xrcp-v.prj dll-xrcp.ucf

ADM-XRC-P with
Virtex-E

dll-xrcp-ve.scr dll-xrcp-ve.prj dll-xrcp.ucf

ADM-XRC-II-Lite dll-xrc2l-v2.scr dll-xrc2l-v2.prj dll-xrc2l.ucf
ADM-XRC-II dll-xrc2-v2.scr dll-xrc2-v2.prj dll-xrc2.ucf
ADM-XPL dll-xpl-v2p.scr dll-xpl-v2p.prj dll-xpl.ucf
ADM-XP dll-xp-v2p.scr dll-xp-v2p.prj dll-xp.ucf
ADP-WRC-II dll-wrc2-v2.scr dll-wrc2-v2.prj dll-wrc2.ucf
ADP-DRC-II dll-drc2-v2.scr dll-drc2-v2.prj dll-drc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>

176

ADM-XRC SDK 4.9.3 User Guide (Win32) - FrontIO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

FrontIO sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\frontio

Synopsis

The FrontIO FPGA design simply outputs a walking '1' bit on the front panel I/O pins.

FPGA Space Usage

177

ADM-XRC SDK 4.9.3 User Guide (Win32) - FrontIO

The FrontIO design does not have a local bus interface; thus there are no registers defined in the FPGA space.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

frontio-xrc-v.scr frontio-xrc-v.prj frontio-xrc.ucf

ADM-XRC with
Virtex-E

frontio-xrc-ve.scr frontio-xrc-ve.prj frontio-xrc.ucf

ADM-XRC-II-Lite frontio-xrc2l-v2.scr frontio-xrc2l-v2.prj frontio-xrc2l.ucf
ADM-XRC-II frontio-xrc2-v2.scr frontio-xrc2-v2.prj frontio-xrc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>

178

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ITest sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\itest

Synopsis

The ITest FPGA design implements logic for generating FPGA interrupts on the host. The scheme used is explained in
application note AN-XRC06, which can be found in the doc\ directory of this SDK. The ITest sample application shows
how to capture and handle FPGA interrupts on the host.

179

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

FPGA Space Usage

The design implements several registers for generating and acknowledging interrupts.

Interrupt Mask register (IMASK, local bus address 0x0)
Bits Mnemonic Type Function
31:0 MASK R/W Bit vector that unmasks or masks one of 32 interrupt

sources in the FPGA. A '1' in a bit position masks
(disables) the corresponding interrupt source.

The IMASK register allows individual interrupt sources to be enabled (unmasked) or disabled (masked). A disabled
(masked) interrupt source cannot generate a local bus interrupt via the FINTI# signal.

Interrupt Status register (ISTAT, local bus address 0x4)
Bits Mnemonic Type Function
31:0 STAT R/W1C When read, returns a bit vector that indicates which of

the 32 interrupt sources within the FPGA are active. A
'1' in a particular bit position indicates that the
corresponding interrupt source is active.
When written, a '1' in a particular bit position sets the
corresponding interrupt source to inactive.

The ISTAT register indicates which of 32 interrupt sources in the FPGA are active. If an interrupt is active, a '1' will be read in
the corresponding bit position of ISTAT, regardless of whether it is enabled or disabled via IMASK. Writing to a '1' to a
particular bit position sets the corresponding interrupt to inactive.

Interrupt Arm register (IARM, local bus address 0x8)
Bits Mnemonic Type Function
31:0 n/a WO Writing to this register forces the FINTI# signal high

for one clock cycle.

The IARM register must be used to 'rearm' the edge-sensitive FINTI# signal. Writing to IARM forces FINTI# high for one
cycle. Consider the following sequence of events:

1. FPGA interrupt source 0 becomes active; FINTI# transitions low.

2. Host interrupt handler executes, and samples ISTAT, determining that interrupt source 0 is active.

3. FPGA interrupt source 1 becomes active.

4. Host interrupt handler takes whatever action is necessary to make interrupt source 0 inactive, and finishes.

5. FINTI# does NOT transition high, because interrupt source 1 is still active.

Unfortunately, the host did not see interrupt source 1 become active. As far as it is concerned, no more interrupts have
arrived; yet interrupt source 1 is now active and will not be handled, as FINTI# is still low. Note that FINTI# is an edge-
triggered signal. The solution is simply for the host's interrupt handler to write to IARM just before exiting:

1. FPGA interrupt source 0 becomes active; FINTI# transitions low.

2. Host interrupt handler executes, and samples ISTAT, determining that interrupt source 0 is active.

3. FPGA interrupt source 1 becomes active.

180

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

4. Host interrupt handler takes whatever action is necessary to make interrupt source 0 inactive.

5. Host interrupt handler writes a dummy value to IARM, and finishes.

6. FINTI# transitions high for one cycle then low again since interrupt source 1 is still active.

At this point, the host will be interrupted again, and notice that interrupt source 1 is active.

Interrupt Test register (TEST, local bus address 0xC)
Bits Mnemonic Type Function
31:0 TEST WO Writing a 1 to a particular bit of this register makes the

corresponding interrupt source active.

The TEST register can be used to test the interrupt handler on the host. By writing a 1 to a particular bit position, the
corresponding interrupt source is set active.

Count register (COUNT, local bus address 0x10)
Bits Mnemonic Type Function
31:0 NCYCLE R/W This register counts local bus clock (LCLK) cycles

when ISTAT[0] is '1'. When ISTAT[0] is '0', it may be
written in order to initialize its value.

The COUNT register can be used to measure interrupt response time. It can be initialized to zero when ISTAT[0] is '0', and
increments when ISTAT[0] is '1'.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

itest-xrc-v.scr itest-xrc-v.prj itest-xrc.ucf

ADM-XRC with
Virtex-E

itest-xrc-ve.scr itest-xrc-ve.prj itest-xrc.ucf

ADM-XRC-P with
Virtex

itest-xrcp-v.scr itest-xrcp-v.prj itest-xrcp.ucf

ADM-XRC-P with
Virtex-E

itest-xrcp-ve.scr itest-xrcp-ve.prj itest-xrcp.ucf

ADM-XRC-II-Lite itest-xrc2l-v2.scr itest-xrc2l-v2.prj itest-xrc2l.ucf
ADM-XRC-II itest-xrc2-v2.scr itest-xrc2-v2.prj itest-xrc2.ucf
ADM-XPL itest-xpl-v2p.scr itest-xpl-v2p.prj itest-xpl.ucf
ADM-XP itest-xp-v2p.scr itest-xp-v2p.prj itest-xp.ucf
ADP-WRC-II itest-wrc2-v2.scr itest-wrc2-v2.prj itest-wrc2.ucf
ADP-DRC-II itest-drc2-v2.scr itest-drc2-v2.prj itest-drc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file

181

ADM-XRC SDK 4.9.3 User Guide (Win32) - ITest

ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>

182

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Master sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\master

Synopsis

The Master FPGA design demonstrates direct master access by the FPGA to host memory.

FPGA Space Usage

183

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

The design implements several registers for generating Direct Master transfers to and from host memory:

Address register (ADDR, local bus address 0x0)
Bits Mnemonic Type Function
1:0 MBZ
31:2 ADDR WO This field holds the local bus address to be used for

the next Direct Master transfer. Writing to bits [31:24]
initiates a Direct Master transfer, so this register
should be written after the other registers have been
initialized.

Write data register (WDATA, local bus address 0x4)
Bits Mnemonic Type Function
31:0 VAL WO For Direct Master write transfers, this register holds

the 32-bit data value that should be written.

Configuration register (CFG, local bus address 0x8)
Bits Mnemonic Type Function
0 WRITE WO When this field is '1', the next Direct Master transfer is

a write; otherwise it is a read.
31:1 MBZ

Read data register (RDATA, local bus address 0xC)
Bits Mnemonic Type Function
31:0 VAL RO This register contains the 32-bit value read on the last

Direct Master read.

Status register (STAT, local bus address 0x10)
Bits Mnemonic Type Function
0 BUSY RO When this field returns '1', it indicates that a Direct

Master transfer is in progress.
31:1 MBZ

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

master-xrc-v.scr master-xrc-v.prj master-xrc.ucf

ADM-XRC with
Virtex-E

master-xrc-ve.scr master-xrc-ve.prj master-xrc.ucf

ADM-XRC-P with
Virtex

master-xrcp-v.scr master-xrcp-v.prj master-xrcp.ucf

ADM-XRC-P with
Virtex-E

master-xrcp-ve.scr master-xrcp-ve.prj master-xrcp.ucf

ADM-XRC-II-Lite master-xrc2l-v2.scr master-xrc2l-v2.prj master-xrc2l.ucf
ADM-XRC-II master-xrc2-v2.scr master-xrc2-v2.prj master-xrc2.ucf

184

ADM-XRC SDK 4.9.3 User Guide (Win32) - Master

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>

185

ADM-XRC SDK 4.9.3 User Guide (Win32) - RearIO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

RearIO sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\reario

Synopsis

FPGA Space Usage

The RearIO design does not have a local bus interface; thus there are no registers defined in the FPGA space.

186

ADM-XRC SDK 4.9.3 User Guide (Win32) - RearIO

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC-P with
Virtex

reario-xrcp-v.scr reario-xrcp-v.prj reario-xrcp.ucf

ADM-XRC-P with
Virtex-E

reario-xrcp-ve.scr reario-xrcp-ve.prj reario-xrcp.ucf

ADM-XRC-II reario-xrc2-v2.scr reario-xrc2-v2.prj reario-xrc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>

187

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Simple sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\simple

Synopsis

The Simple FPGA design demonstrates how to implement host-accessible registers in an FPGA design. The registers can
be accessed via the ADMXRC2_Read and ADMXRC2_Write API calls, or via a memory-mapped region. The latter method
is demonstrated by the Simple sample application.

188

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple

FPGA Space Usage

Nibble-reversed data register (REVDATA, local bus address 0x0)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the nibble-reversed

version of the last value written to it.

Nibble-reversed data register (DATA, local bus address 0x4)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the last value written

to it.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

simple-xrc-v.scr simple-xrc-v.prj simple-xrc.ucf

ADM-XRC with
Virtex-E

simple-xrc-ve.scr simple-xrc-ve.prj simple-xrc.ucf

ADM-XRC-P with
Virtex

simple-xrcp-v.scr simple-xrcp-v.prj simple-xrcp.ucf

ADM-XRC-P with
Virtex-E

simple-xrcp-ve.scr simple-xrcp-ve.prj simple-xrcp.ucf

ADM-XRC-II-Lite simple-xrc2l-v2.scr simple-xrc2l-v2.prj simple-xrc2l.ucf
ADM-XRC-II simple-xrc2-v2.scr simple-xrc2-v2.prj simple-xrc2.ucf
ADM-XPL simple-xpl-v2p.scr simple-xpl-v2p.prj simple-xpl.ucf
ADM-XP simple-xp-v2p.scr simple-xp-v2p.prj simple-xp.ucf
ADP-WRC-II simple-wrc2-v2.scr simple-wrc2-v2.prj simple-wrc2.ucf
ADP-DRC-II simple-drc2-v2.scr simple-drc2-v2.prj simple-drc2.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>
ADP-WRC-II projnav\wrc2\<device>
ADP-DRC-II projnav\drc2\<device>

189

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Simple64 sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL 2VP20, 2VP30 only
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\simple64

Synopsis

The Simple64 FPGA design demonstrates how to implement host-accessible registers in an FPGA design with a 64-bit local
data bus. It is a 64-bit version of the Simple FPGA design.

190

ADM-XRC SDK 4.9.3 User Guide (Win32) - Simple64

The registers described below are located at addreses 0x0 and 0x4 respectively on the local bus. This means that they are
visible in the lower and upper 32-bit halves of the local bus data LAD[63:0]. Because the design uses the local bus byte
enables LBE#[7:0] to qualify direct slave writes, these registers can be written independently of each other even though they
are packed into a single 64-bit word.

From the host's point of view, the registers in the FPGA are the same as in the Simple FPGA design. They can be
accessed via the ADMXRC2_Read and ADMXRC2_Write API calls, or via a memory-mapped region. The latter method is
demonstrated by the Simple sample application.

FPGA Space Usage

Nibble-reversed data register (REVDATA, local bus address 0x0)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the nibble-reversed

version of the last value written to it.

Nibble-reversed data register (DATA, local bus address 0x4)
Bits Mnemonic Type Function
31:0 VAL R/W When read, this register returns the last value written

to it.

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XPL simple-xpl-v2p.scr simple-xpl-v2p.prj simple-xpl.ucf
ADM-XP simple-xp-v2p.scr simple-xp-v2p.prj simple-xp.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XPL projnav\xpl\<device>
ADM-XP projnav\xp\<device>

191

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ZBT sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\zbt

Synopsis

Note: this FPGA design has been effectively superseded by the Memory sample FPGA design (VHDL), since the latter is
more general and supports a larger number of models and types of memory.

192

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

The ZBT FPGA design demonstrates how to implement a host interface to the SSRAM in an FPGA design. The design
divides the 4MB FPGA space into a lower 2MB region for register and an upper 2MB window for accessing the SSRAM. A
page register is provided so that all of the SSRAM on a card is available to the host.

This example demonstrates the following:

● A bursting local bus interface in the FPGA.

● Interfacing of ZBT SSRAMs to the FPGA.

● Bursting, if supported, need not be supported over the entire FPGA space. In this design, only the 2MB SSRAM window
supports bursting.

● Since the FPGA does not distinguish between a direct slave burst initiated by the host CPU and a burst initiated by a
DMA engines in the local bus bridge, the host can use programmed I/O or DMA to transfer data.

● Generation of deskewed copies of the local bus clock (LCLK) that are driven off-chip to the SSRAMs, using DLLs
(Virtex/-E/-EM) or DCMs (Virtex-II/-IIPro). This technique is used to ensure that the ZBT SSRAM devices and the FPGA
operate using the same clock.

The design accomodates pipelined or flowthrough JEDEC-compliant ZBT SSRAM devices. Some ZBT devices are capable
of operating in either pipelined or flowthrough mode, depending on the level on a mode-select pin. The FPGA design
therefore contains a register that selects pipelined or flowthrough operation.

The design maps the data pins of each physical SSRAM bank to the 32-bit local data bus. The manner in which this is done
depends upon the number and width of the physical SSRAM banks on a card:

● The ADM-XRC and ADM-XRC-P have four physical 36-bit SSRAM banks. The 4 parity bits are dropped and the 32 data
bits are mapped to one 32-bit logical SSRAM bank. This results in four logical SSRAM banks.

● The ADM-XRC-II has six physical 36-bit SSRAM banks. The 4 parity bits are dropped and the 32 data bits are mapped
to one 32-bit logical SSRAM bank. This results in six logical SSRAM banks.

● The ADM-XRC-II-Lite uses 18-bit SSRAMs. Two physical banks are put together to form a 36-bit bank. The 4 parity bits
are then dropped, and the 32 data bits are mapped to one 32-bit logical SSRAM bank. This results in two logical
SSRAM banks.

● The ADM-XPL has a single 64-bit SSRAM device. The low 32 bits are mapped to one 32-bit logical SSRAM bank. This
results in a single logical SSRAM bank.

The design also contains a register that selects the number of address bits in the logical SSRAM banks. Address lengths of
17, 18, 19 and 20 bits are accomodated.

The page register augments the limited address space (2MB) allotted to accessing the SSRAM. The following figure
illustrates this for an ADM-XRC-II with six 512k x 36 ZBT SSRAM devices fitted:

193

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

FPGA Space Usage

The following registers exist in the 2MB register region:

Page register (PAGE, local bus address 0x0)
Bits Mnemonic Type Function
7:0 PAGE R/W Value that augments bits [20:2] of the local bus

address, when accessing the SSRAM.
31:8 MBZ

Mode register (MODE, local bus address 0x4)
Bits Mnemonic Type Function
0 PIPELINED R/W Value that selects the mode in which to operate the

ZBT SSRAM devices:
0 => flowthrough
1 => pipelined

31:1 MBZ

Size register (SIZE, local bus address 0x8)
Bits Mnemonic Type Function
1:0 SIZE R/W Value that specifies the number of address bits in a

logical SSRAM bank:
0 => 17 (128k words)
1 => 18 (256k words)
2 => 19 (512k words)
3 => 20 (1M words)

31:2 MBZ

194

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT

Information register (INFO, local bus address 0x10)
Bits Mnemonic Type Function
23:0 BANKSIZE RO Returns size, in words, of each logical SSRAM bank.
31:24 NUMBANK RO Number of logical SSRAM banks in the design.

Status register (STATUS, local bus address 0x14)
Bits Mnemonic Type Function
0 LCLK_LOCKED RO Returns '1' if the local bus clock (LCLK) DCM/DLL is

currently locked.
n:1 RAMCLK_LOCKED RO If n is the number of SSRAM clock signals in the

design, this register returns '1' in a particular bit if
the DCM/DLL for that clock signal is currently
locked. Bit 1 corresponds to SSRAM clock 0.

31:n+1 RAX

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file
ADM-XRC with
Virtex

zbt-xrc-v.scr zbt-xrc-v.prj zbt-xrc-v.ucf

ADM-XRC with
Virtex-E/-EM

zbt-xrc-ve.scr zbt-xrc-ve.prj zbt-xrc-ve.ucf

ADM-XRC-P with
Virtex

zbt-xrcp-v.scr zbt-xrcp-v.prj zbt-xrcp-v.ucf

ADM-XRC-P with
Virtex-E/-EM

zbt-xrcp-ve.scr zbt-xrcp-ve.prj zbt-xrcp-ve.ucf

ADM-XRC-II-Lite zbt-xrc2l-v2.scr zbt-xrc2l-v2.prj zbt-xrc2l.ucf
ADM-XRC-II zbt-xrc2-v2.scr zbt-xrc2-v2.prj zbt-xrc2.ucf
ADM-XPL zbt-xpl-v2p.scr zbt-xpl-v2p.prj zbt-xpl.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XRC projnav\xrc\<device>
ADM-XRC-P projnav\xrcp\<device>
ADM-XRC-II-Lite projnav\xrc2l\<device>
ADM-XRC-II projnav\xrc2\<device>
ADM-XPL projnav\xpl\<device>

195

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ZBT64 sample Verilog FPGA design

Model support

Location

Synopsis

FPGA space usage

Source files

Project Navigator files

Model support

Model Supported
ADM-XRC
ADM-XRC-P
ADM-XRC-II-Lite
ADM-XRC-II
ADM-XPL 2VP20, 2VP30 only
ADM-XP
ADP-WRC-II
ADP-DRC-II
ADP-XPI
ADM-XRC-4LX
ADM-XRC-4SX
ADM-XRC-4FX
ADPE-XRC-4FX
ADM-XRC-5LX
ADM-XRC-5T1
ADM-XRC-5T2 / ADM-XRC-5T2-ADV
ADM-XRC-5TZ
ADM-XRC-5T-DA1

Location

%ADMXRC_SDK4%\fpga\verilog\zbt64

Synopsis

Note: this FPGA design has been effectively superseded by the Memory64 sample FPGA design (VHDL), since the latter is
more general and supports a larger number of models and types of memory.

196

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

The ZBT64 FPGA design demonstrates how to implement a 64-bit host interface to the SSRAM in an FPGA design. The
design divides the 4MB FPGA space into a lower 2MB region for register and an upper 2MB window for accessing the
SSRAM. A page register is provided so that all of the SSRAM on a card is available to the host.

This example demonstrates the following:

● A bursting local bus interface in the FPGA.

● Interfacing of ZBT SSRAMs to the FPGA.

● Bursting, if supported, need not be supported over the entire FPGA space. In this design, only the 2MB SSRAM window
supports bursting.

● Since the FPGA does not distinguish between a direct slave burst initiated by the host CPU and a burst initiated by a
DMA engines in the local bus bridge, the host can use programmed I/O or DMA to transfer data.

● Generation of deskewed copies of the local bus clock (LCLK) that are driven off-chip to the SSRAMs, using DLLs
(Virtex/-E/-EM) or DCMs (Virtex-II/-IIPro). This technique is used to ensure that the ZBT SSRAM devices and the FPGA
operate using the same clock.

The design accomodates pipelined or flowthrough JEDEC-compliant ZBT SSRAM devices. Some ZBT devices are capable
of operating in either pipelined or flowthrough mode, depending on the level on a mode-select pin. The FPGA design
therefore contains a register that selects pipelined or flowthrough operation.

The design maps the data pins of each physical SSRAM bank to the 64-bit local data bus. Currently, only the ADM-XPL is
capable of operating with a 64-bit local bus. The ADM-XPL has a single 64-bit SSRAM device, and so this device's data bits
can be mapped one-to-one to the local data bus bits.

The design also contains a register that selects the number of address bits in the logical SSRAM banks. Address lengths of
17, 18, 19 and 20 bits are accomodated.

The page register augments the limited address space (2MB) allotted to accessing the SSRAM. The following figure
illustrates this on an ADM-XPL with a 1M x 64 ZBT SSRAM device fitted:

197

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

FPGA Space Usage

The following registers exist in the 2MB register region:

Page register (PAGE, local bus address 0x0)
Bits Mnemonic Type Function
7:0 PAGE R/W Value that augments bits [20:3] of the local bus

address, when accessing the SSRAM.
31:8 MBZ

Mode register (MODE, local bus address 0x4)
Bits Mnemonic Type Function
0 PIPELINED R/W Value that selects the mode in which to operate the

ZBT SSRAM devices:
0 => flowthrough
1 => pipelined

31:1 MBZ

Size register (SIZE, local bus address 0x8)
Bits Mnemonic Type Function
1:0 SIZE R/W Value that specifies the number of address bits in a

logical SSRAM bank:
0 => 17 (128k words)
1 => 18 (256k words)
2 => 19 (512k words)
3 => 20 (1M words)

31:2 MBZ

Information register (INFO, local bus address 0x10)
Bits Mnemonic Type Function
23:0 BANKSIZE RO Returns size, in words, of each logical SSRAM bank.
31:24 NUMBANK RO Number of logical SSRAM banks in the design.

Status register (STATUS, local bus address 0x14)
Bits Mnemonic Type Function
0 LCLK_LOCKED RO Returns '1' if the local bus clock (LCLK) DCM/DLL is

currently locked.
n:1 RAMCLK_LOCKED RO If n is the number of SSRAM clock signals in the

design, this register returns '1' in a particular bit if
the DCM/DLL for that clock signal is currently
locked. Bit 1 corresponds to SSRAM clock 0.

31:n+1 RAX

Source files

For a list of the Verilog source files, refer to the appropriate XST project file, as referenced in the following table:

Model XST script file XST project file UCF file

198

ADM-XRC SDK 4.9.3 User Guide (Win32) - ZBT64

ADM-XPL zbt64-xpl-v2p.scr zbt64-xpl-v2p.prj zbt64-xpl.ucf

Project Navigator files

Project Navigator projects can be found in the projnav directory as follows:

Model Project Navigator project file
ADM-XPL projnav\xpl\<device>

199

ADM-XRC SDK 4.9.3 User Guide (Win32) - Running the Xilinx tools

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Running the Xilinx ISE tools

When building an FPGA bitstream that targets an ADM-XRC series card, certain options must be passed to the Xilinx tools.
The following table describes the options that should be used with the ISE 10.1i SP3 toolset:

Tool Command-line option Project Navigator option When to apply

MAP -pr b This option is available via the
properties for the "Map" process:

Pack I/O Registers/Latches into
IOBs = For Inputs and Outputs

Use this to achieve best IOB setup
time and clock-to-output times by
allowing MAP to pack eligible flip-
flops into IOBs. In rare cases
where this is not desirable, this
behaviour can be overriden by
attributes embedded in a design,
or by IOB = FALSE constraints in
a .UCF file.

MAP Virtex/-E/-EM:
-k 6

Virtex-II/-II Pro:
-k 8

Virtex-4:
-k 8

Virtex-5:
do not use*

This option is available via the
properties for the "Map" process:

Virtex/-E/-EM:
Map To Input Functions = 6

Virtex-II/-II Pro:
Map To Input Functions = 8

Virtex-4:
Map To Input Functions = 8

This option causes MAP to
generate functions of the maximum
number of variables when
possible. Although it increases the
runtime of MAP, it generally
improves quality of results.

* Note that this option is disabled in
versions of the Xilinx ISE tools
later than 10.1i, and thus Alpha
Data no longer recommends
applying it for Virtex-5 devices.

MAP -timing This option is available via the
properties for the "Map" process:

Perform Timing-Driven Packing
and Placement = True

This option causes MAP to use
timing constraints from the .UCF
file (or those embedded in a design
when mapping a design. It
increases the runtime of MAP but
generally improves quality of
results significantly.

Note that this option does not
apply to the Virtex/-E/-EM
architecture.

MAP -ol high This option is available via the
properties for the "Map" process:

Map Effort Level = High

This option causes MAP to spend
extra time mapping a design. It
increases the runtime of MAP but
generally improves quality of
results significantly.

Note that this option does not
apply to the Virtex/-E/-EM
architecture.

200

ADM-XRC SDK 4.9.3 User Guide (Win32) - Running the Xilinx tools

PAR -ol high This option is available via the
properties for the "Place & Route"
process:

Place & Route Effort Level
(Overall) = High

This option causes PAR to spend
extra time both on the placement
phase and the routing phase. It
increases the runtime of PAR but
generally improves quality of
results significantly.

BITGEN -g drivedone:yes This option is available via the
properties for the "Generate
Programming File" process:

Drive Done Pin High = True

This option causes the bitstream to
be generated such that the DONE
pin is driven high (as opposed to
floating), once configuration is
completed. This option should be
used for all bitstreams that target
Alpha Data reconfigurable
computing cards.

BITGEN -g unusedpin:pullnone This option is available via the
properties for the "Generate
Programming File" process:

Unused IOB Pins = Float

This option prevents unused pins
from being pulled up or pulled
down, and should be used for all
bitstreams that target Alpha Data
reconfigurable computing cards.

BITGEN -g compress This option is available via the
properties for the "Generate
Programming File" process:

Enable BitStream Compression
= True

This option enables compression
of the bitstream, which generally
reduces the size of a .BIT file. It
can be applied to Virtex and later
architectures.

Tips for running the Xilinx tools

1. When running PAR in ISE 4.2i or later, check that PAR reports the expected number of LOC'ed IOBs. Early on during
the execution of PAR, you should see a message of the form:

Device utilization summary:

 Number of External GCLKIOBs 1 out of 4 25%
 Number of External IOBs 45 out of 404 11%
 Number of LOCed External IOBs 45 out of 45 100%

 Number of SLICEs 2612 out of 6912 38%

 Number of GCLKs 1 out of 4 25%
 Number of TBUFs 320 out of 7104 5%

Generally, "Number of LOCed External IOBs" should be 100%. If not, it implies that one or more IOBs will be
placed on arbitrary pins, which may cause problems. The .PAD file, which is produced along with the routed
.NCD file, can be used to find out which I/O signals do not have location constraints.

2. The following Xilinx answer explains that Project Navigator in ISE 5.1i does not display the "Active pullup" option in the
properties for "Generate Programming File":

Answer Record #15812: 5.1i Project Navigator - The "DriveDone" startup option for Virtex-II devices
is not present

A workaround for this issue is given by the following Xilinx answer:

Answer Record #11088: 5.1i ISE- How do I specify advanced command line options in the Project
Navigator GUI? (An attribute or option is not available in the GUI)

201

http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=15812
http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=15812
http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=11088
http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=11088

ADM-XRC SDK 4.9.3 User Guide (Win32) - Running the Xilinx tools

This answer can be summarised as follows:

1. In Windows, create or set the environment variable XIL_PROJNAV_BITGEN_OPTION, whose value is 1.

2. Start Project Navigator.

3. Select "Edit->Preferences" from the Project Navigator main menu.

4. In the "Preferences" dialog, click on the "Processes" tab.

5. Set "Property Display Level" to "Advanced".

6. Click "Ok" to dismiss the "Preferences" dialog.

7. Right click on "Generate Programming File" in the "Processes for Current Source" panel.

8. Select "Properties".

9. Click on the "General Options" tab. You should now see a text field entitled "Other Bitgen Command Line
Options".

10. Enter "-g drivedone:yes" in the "Other Bitgen Command Line Options" field.

202

ADM-XRC SDK 4.9.3 User Guide (Win32) - FPGA constraints files

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

FPGA constraints files

Master constraints files for each supported board can be found in the ucf directory of the SDK. These files contain:

● Mandatory constraints, eg. pin location constraints and IOB pullup constraints

● Recommended constraints, eg. IOB slew rate constraints

● Suggested constraints, eg. how to constrain a DLL to a particular location

When working on an FPGA design, a user can copy and paste the relevant sections of the appropriate master constraints file
into his or her own constraints file and then modify as necessary.

203

ADM-XRC SDK 4.9.3 User Guide (Win32) - Building designs for Virtex-II ES

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Building designs for Virtex-II engineering samples

At the time of writing, Alpha Data suggests the following guidelines for users wishing to implement a design for a Virtex-II ES
device:

● The environment variable XIL_BITGEN_VIRTEX2ES must be set to 1 when running bitgen.exe for a Virtex-II ES
device. Note that a bitstream generated for a Virtex-II ES device is compatible with a Virtex-II production device.

● Use of Xilinx Foundation 4.1i+SP3 or later is strongly recommended when building bitstreams for Virtex-II ES devices.
If Xilinx Foundation 4.1i+SP2 or earlier is used to generate a bitstream using DCMs for a Virtex-II ES device, Alpha Data
cannot guarantee that a correctly working bitstream will be generated.

● Xilinx Foundation 3.1i+SP8, 4.1i, 4.1i+SP1 or 4.1i+SP2 may safely be used to implement Virtex-II ES designs that do
not use DCMs.

● A patch, available from the Xilinx website, must be applied to Xilinx Foundation 3.1i+SP8 in order for bitgen.exe to
recognise the XIL_BITGEN_VIRTEX2ES environment variable.

Customers who require help implementing a design for a Virtex-II ES device should contact Alpha Data support.

204

ADM-XRC SDK 4.9.3 User Guide (Win32) - Synplify/Synplify Pro issues

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Synplify/Synplify Pro issues

There are several issues that affect users of Synplify/Synplify Pro when rebuilding the example FPGA designs in the SDK:

1. Bus nomenclature in netlist

XST names busses as signal<n>, whereas Synplify names busses by default as signal[n]. This causes
ngdbuild to fail if the .UCF files supplied with the SDK are used. Users of Synplify/Synplify Pro include the file
synpro_bus.sdc, in the directory %ADMXRC_SDK4%\vhdl\common, in their projects to make
Synplify/Synplify Pro use a signal<n> nomenclature.

2. Hierarchical separator character

XST uses the _ (underscore) character as a hierarchy separator, whereas Synplify/Synplify Pro uses a /
(forward slash) character. It is possible to work around this problem, as far as constraints in .UCF files go, by
using the ? wildcard (match any single character) in the .UCF file.

3. Hierarchical net naming in netlist

XST names nets that are not at the top level differently to Synplify/Synplify Pro. A full description of the XST
naming convention can be found in the XST user guide. Synplify Pro names net strictly according to their name
and the highest hierarchy level in which that net is found. Fortunately, it is often possible to avoid needing to
reference nets that are not in the top level in a .UCF file.

4. Hierarchical primitive instance naming in netlist

XST names certain types of primitive, for example clock buffers, according to their hierarchy level, their label
and their type. Synplify/Synplify Pro names an instance strictly according to its label and hierarchy level.

205

ADM-XRC SDK 4.9.3 User Guide (Win32) - FPGA Express issues

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

FPGA Express issues

There are two several issues that affect users of FPGA Express when building the example designs in the SDK:

1. Hierarchical separator character

XST uses the _ (underscore) character as a hierarchy separator, whereas FPGA Express uses a / (forward
slash) character. It is possible to work around this problem, as far as constraints in .UCF files go, by using the ?
wildcard (match any single character) in the .UCF file.

2. Hierarchical net naming in netlist

XST names nets that are not at the top level differently to FPGA Express. A full description of the XST naming
convention can be found in the XST user guide. FPGA Express names a net strictly according to its name and
the highest hierarchy level in which that net is found. Fortunately, it is often possible to avoid needing to
reference nets that are not in the top level in a .UCF file.

3. Hierarchical primitive instance naming in netlist

XST names certain types of primitive, for example clock buffers, according to their hierarchy level, their label
and their type. FPGA Express names an instance strictly according to its label and hierarchy level.

206

ADM-XRC SDK 4.9.3 User Guide (Win32) - Other documentation

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Other documentation

The ADM-XRC series of cards utilise the PCI9080 and PCI9656 high performance IOPs from PLX Technology, Inc.

● PCI9080 (ADM-XRC, ADM-XRC-P and ADM-XRC-II-Lite)

● PCI9656 (ADM-XRC-II, ADP-WRC-II, ADP-DRC-II, ADM-XRC-4LX and ADM-XRC-4SX)

Data books for these devices are included in PDF form in the doc\ directory of the ADM-XRC SDK. Please visit
www.plxtech.com to obtain the latest and most up-to-date data books on the PCI9080 and PCI9656. We also recommend
reading the errata and design notes for these devices, also available at www.plxtech.com.

At the time of writing, a preliminary version (0.90b) of the PCI9656 data book is
included. PLX Technology, Inc. are committed to a policy of continual improvement of
their documentation.

207

http://www.plxtech.com/
http://www.plxtech.com/
http://www.plxtech.com/

ADM-XRC SDK 4.9.3 User Guide (Win32) - Introduction to the local bus

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Introduction to the local bus

This section provides a brief primer to the protocol used on the local bus common to the Alpha Data Xilinx Reconfigurable
Coprocessor range. The key features of the local bus are:

● Supports multiple masters - an arbitration protocol permits more than one master on the local bus.

● Burstable - the basic unit of data transfer is a burst of variable length.

● Word addressed - byte granularity is achieved via byte enables.

● Asynchronous to host I/O bus - the clock frequency of the local bus can be varied to a suit a particular FPGA design,
independent of host (PCI/PCI-X) bus interface.

The differences between the models in the ADM-XRC range can be summarized by the following table:

Feature ADM-XRC
ADM-XRC-P

ADM-XRC-II-Lite ADM-XRC-II

FPGA technology Virtex
Virtex-E
Virtex-EM

Virtex-II Virtex-II

Memory technology ZBT SSRAM ZBT SSRAM ZBT SSRAM
Max. local bus frequency 40.0MHz 40.0MHz 66.67MHz
Multiplexed address/data on
local bus

No No No

Supported data widths on
local bus

32 bits 32 bits 32 bits

PCI to local bus bridge PCI9080 PCI9080 PCI9656

Feature ADP-DRC-II ADP-WRC-II ADM-XPL
FPGA technology Virtex-II Virtex-II Virtex-II Pro
Memory technology DDR SDRAM DIMM

DDR-II SSRAM
DDR SDRAM DDR SDRAM

ZBT SSRAM
Max. local bus frequency 66.67MHz 66.67MHz 80.0MHz

(see note 1 below)
Multiplexed address/data on
local bus

No No Yes

Supported data widths on
local bus

32 bits 32 bits 32 bits
64 bits

PCI to local bus bridge PCI9656 PCI9656 Virtex-II

Feature ADM-XP ADP-XPI ADM-XRC-4LX
FPGA technology Virtex-II Pro Virtex-II Pro Virtex-4 LX
Memory technology DDR SDRAM

DDR-II SSRAM
DDR SDRAM DIMM
DDR-II SSRAM

ZBT SSRAM

Max. local bus frequency 80.0MHz 80.0MHz 66.67MHz

208

ADM-XRC SDK 4.9.3 User Guide (Win32) - Introduction to the local bus

Multiplexed address/data on
local bus

Yes Yes No

Supported data widths on
local bus

32 bits
64 bits

32 bits
64 bits

32 bits

PCI to local bus bridge Virtex-II Virtex-II PCI9656

Feature ADM-XRC-4SX ADM-XRC-4FX ADPE-XRC-4FX
FPGA technology Virtex-4 SX Virtex-4 FX Virtex-4 FX
Memory technology ZBT SSRAM DDR-II SDRAM DDR-II SDRAM
Max. local bus frequency 66.67MHz 80.0MHz 80.0MHz
Multiplexed address/data on
local bus

No Yes Yes

Supported data widths on
local bus

32 bits 32 bits
64 bits

32 bits
64 bits

PCI to local bus bridge PCI9656 Virtex-4 LX Virtex-4 FX
(PCI Express)

Feature ADM-XRC-5LX ADM-XRC-5T1 ADM-XRC-5T2
FPGA technology Virtex-5 LX Virtex-5 LXT

Virtex-5 SXT
Virtex-5 FXT
Virtex-5 LXT
Virtex-5 SXT

Memory technology DDR-II SDRAM DDR-II SDRAM
DDR-II SSRAM

DDR-II SDRAM
DDR-II SSRAM

Max. local bus frequency 80.0MHz 80.0MHz 80.0MHz
Multiplexed address/data on
local bus

Yes Yes Yes

Supported data widths on
local bus

32 bits
64 bits

32 bits
64 bits

32 bits
64 bits

PCI to local bus bridge Virtex-4 LX Virtex-4 LX Virtex-4 LX

Note 1: If logic revision from INFO utility is 1.2 or greater, max. LCLK frequency is 80MHz; otherwise 66.67MHz.

Click on one of the following topics for more information:

Local bus signals

Direct slave transfers

DMA transfers

Arbitration

Direct master transfers

Tips on local bus interface design

209

ADM-XRC SDK 4.9.3 User Guide (Win32) - Generic local bus signals

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Generic local bus signals

The FPGA and the local bus bridge on an ADM-XRC series card are connected by a local bus. This bus consists of signals
in two categories:

● Bussed signals, which can be driven by either the FPGA or the local bus bridge

● Sideband signals, which provide a means for the FPGA to generate interrupts and make use of demand-mode DMA.

While the underlying protocol is the same for each model in the XRC range, there are some differences in the names and
number of local bus signals, due to the different devices used for the local bus bridge. The following topic provides details
about the differences between models:

Model-specific signals

210

ADM-XRC SDK 4.9.3 User Guide (Win32) - Bussed signals

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Local bus signals

The table below lists the signals that comprise the local bus. There are some variations, between models in the ADM-XRC
range, in the naming and number of signals. Refer to the notes for each signal for details.

Note Signal Driven by Description
 HOLD a local bus

agent
Hold

HOLD is asserted by a local bus agent in order to arbitrate
for ownership of the local bus. It is not a bussed signal; each
local bus agent that is capable of becoming a bus master
has its own HOLD signal, which is an input to the local bus
arbiter. When the arbiter grants ownership of the local bus, it
asserts HOLDA.

An agent should not assert HOLD unless it intends to
perform a burst as a master, and once it asserts HOLD, it
should not deassert it until it has finished with the bus (for
example, by completing a burst).

On an ADM-XRC series card, there are two local bus agents
capable of performing local bus bursts as masters:

● The HOLD signal for the local bus bridge is
named LHOLD.

● The HOLD signal for the FPGA is named
FHOLD.

 HOLDA bus arbiter Hold Acknowledge

HOLDA is asserted by the bus arbiter to indicate that the
bus has been granted to a particular local bus agent. It is not
a bussed signal; each local bus agent that is capable of
becoming a bus master has its own HOLDA signal, which is
driven by the local bus arbiter.

The arbiter will not deassert a master's HOLDA until that
master indicates that it has finished with the bus by
deasserting its HOLD signal. An agent must not attempt to
perform a local bus cycle as a master unless it has sampled
its own HOLDA signal asserted.

On an ADM-XRC series card, there are two local bus agents
capable of performing local bus bursts as masters:

● The HOLDA signal for the local bus bridge is
named LHOLDA.

● The HOLDA signal for the FPGA is named

211

ADM-XRC SDK 4.9.3 User Guide (Win32) - Bussed signals

FHOLDA.

 LADS# master Local Address Strobe

LADS# is asserted for exactly one cycle to mark the
beginning of a burst. When LADS# is asserted, the local bus
address is guaranteed to be valid on LA (for a
nonmultiplexed address bus) or LAD (for a multiplexed
address/data bus).

1 LA master Local Address

LA carries the local bus address of the current word of the
current burst. It is valid for all cycles of a burst. When a word
of data is transferred, the master normally increments LA,
although a master may choose not to increment.

LA is present only on cards that have a nonmultiplexed
address bus.

1 LAD master, slave Local Address/Data

LAD is qualified by the following events:

● Assertion of LADS# by the master; LAD[31:0]
carries the byte address of first word of burst. If
the L64# signal exists on the bus and is
asserted, then LAD[2:0] will be zero.
Otherwise, LAD[1:0] will be zero.

● Assertion of LBTERM# by the slave.

● Assertion of LREADY# by the slave.

If the current transfer is 32 bits wide (L64# does not exist on
the bus or is deasserted), then only LAD[31:0] carry data. If
the current transfer is 64 bits wide (L64# exists on the bus
and is asserted), then LAD[63:0] carry data.

LAD is present only on cards that have a multiplexed
address/data bus.

 LBE# master Local Byte Enables

LBE# accompanies the LD or LAD signal, indicating which
bytes of the data are valid. Together with the local bus
address from LA or LAD, LBE# permits addressing of
individual bytes.

LBE# is qualified by the following events:

● Assertion of LBTERM# by the slave.

● Assertion of LREADY# by the slave.

If the current transfer is 32 bits wide (L64# does not exist on
the bus or is deasserted), then only LBE#[3:0] carry data. If
the current transfer is 64 bits wide (L64# exists on the bus

212

ADM-XRC SDK 4.9.3 User Guide (Win32) - Bussed signals

and is asserted), then LBE#[7:0] carry data.
 LBLAST# master Local Burst Last

LBLAST# is asserted by the master to indicate that the
current word is the final word of the burst. When LREADY#
is asserted along with LBLAST#, the current burst ends.
LBLAST# is valid for every cycle of a burst.

2 LBTERM# slave Local Burst Terminate

LBTERM# is asserted by the slave to terminate the current
burst immediately. The word of data on the LD or LAD bus is
transferred, and the current burst ends, regardless of
LREADY# and LBLAST#.

 LCLK central
resources

Local Bus Clock

LCLK is the local bus clock. All other local bus signals, with
the exception of LRESET#, are synchronous to LCLK.

The frequency of LCLK is normally under the control of an
application running on the host.

1 LD master, slave Local Data

LD is qualified by the following events:

● Assertion of LBTERM# by the slave.

● Assertion of LREADY# by the slave.

LD is present only on cards that have a nonmultiplexed
address bus.

3 LREADY# slave Local Ready

LREADY# is asserted by the slave to indicate that the word
of data currently on the LD or LAD bus has been
transferred. If LBLAST# is also asserted, the current burst
ends.

4 LRESET# local bus bridge Local Bus Reset

LRESET# is asserted asynchronously by the local bus
bridge in order to cause all agents on the local bus to return
to a known state, where they are not driving the local bus.

 LWRITE master Local Write

LWRITE indicates whether the current burst is a read or a
write. If it is asserted, then the cycle is a write (the master
drives data onto LD or LAD). LWRITE is valid for every
cycle of a burst.

213

ADM-XRC SDK 4.9.3 User Guide (Win32) - Bussed signals

5 L64# master Local bus 64 bits

L64# indicates whether the current burst is a 32 bits or 64
bits wide. If it is asserted, then the cycle is a 64-bit burst
where the master drives data onto LD[63:0] or LAD[63:0]).
If it is deasserted, then the cycle is 32-bit burst where the
master drives data onto LD[31:0] or LAD[31:0]. L64# is
valid for every cycle of a burst.

This signal is not present in all models of the ADM-XRC
range.

Note 1 - LA, LD & LAD

The ADM-XPL, ADM-XP, ADP-XPI, ADM-XRC-4FX, ADM-XRC-5LX and ADM-XRC-5T1 do not have the LA or LD busses.
Instead, they have the LAD bus, which carries multiplexed address and data.

Note 2 - LBTERM# & LBTERMO#

Models featuring a PCI9080 as the local bus bridge (ADM-XRC, ADM-XRC-P, ADM-XRC-II-Lite) do not have a bussed
LBTERM# signal. Instead, there is a pair of signals LBTERM# and LBTERMO# whose usage is as follows:

● When the FPGA is a slave (ie. the PCI9080 is the master), the FPGA drives LBTERM# to the PCI9080.

● When the PCI9080 is a slave (ie. the FPGA is the master), the PCI9080 drives LBTERMO# to the FPGA.

This pair of signals therefore performs the same function as a bussed LBTERM# signal, given that one of them is always
unused in any particular cycle. In all other models, this arrangement has been rationalized into a single LBTERM# signal that
can be driven by either the local bus bridge or the FPGA, depending on which is the master.

Note 3 - LREADY#, LREADYI# & LREADYO#

Models featuring a PCI9080 as the local bus bridge (ADM-XRC, ADM-XRC-P, ADM-XRC-II-Lite) do not have a bussed
LREADY# signal. Instead, there is a pair of signals LREADYI# and LREADYO# whose usage is as follows:

● When the FPGA is a slave (ie. the PCI9080 is the master), the FPGA drives LREADYI# to the PCI9080.

● When the PCI9080 is a slave (ie. the FPGA is the master), the PCI9080 drives LREADYO# to the FPGA.

This pair of signals therefore performs the same function as a bussed LREADY# signal, given that one of them is always
unused in any particular cycle. In all other models, this arrangement has been rationalized into a single LREADY# signal that
can be driven by either the local bus bridge or the FPGA, depending on which is the master.

Note 4 - LRESET#

In models featuring a PCI9080 (ADM-XRC, ADM-XRC-P, ADM-XRC-II-Lite), this signal is connected to the LRESETO# pin
of the PCI9080. In all other, this signal is connected to the LRESET# pin of the PCI9656.

Note 5 - L64#

214

ADM-XRC SDK 4.9.3 User Guide (Win32) - Bussed signals

Only the following models are capable of 64-bit local bus operation and have the L64# signal: ADM-XPL, ADM-XP, ADP-
XPI, ADM-XRC-4FX, ADM-XRC-5LX and ADM-XRC-5T1 .

215

ADM-XRC SDK 4.9.3 User Guide (Win32) - Sideband signals

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Local bus sideband signals

The table below lists the sideband signals available to the FPGA on an ADM-XRC series card for special functions such as
Demand-mode DMA and interrupt generation.

Note Signal Driven by Description
 FINTI# FPGA FPGA interrupt line

The FINTI# signal allows the FPGA to generate an interrupt
on the host. It is negative-edge sensitive. If FINTI# remains
asserted after the initial high-to-low transition, further
interrupts will cannot be generated until FINTI# transitions
high again.

 LDACK# PCI-to-local bus
bridge

DMA acknowledge

One bit of LDACK# is asserted in a one-hot manner by the
PCI-to-local bus bridge at the same time as LADS# in order
to indicate that the current burst is a Demand-mode DMA
burst. It remains asserted until the end of the burst.

Each bit of LDACK# corresponds to a DMA channel in the
PCI-to-local bus bridge. At most one DMA channel may be
performing a burst on the local bus at any time; hence at
most one bit of LDACK# may be asserted at any time.

 LDREQ# FPGA DMA request

Any bit or all bits of LDREQ# may be asserted by the FPGA
to request a Demand-mode DMA burst.

Each bit of LDREQ# corresponds to a DMA channel in the
PCI-to-local bus bridge. Provided that the host has started
(via the driver) a demand-mode DMA operation on a
particular channel, asserting LDREQ# for that DMA channel
will eventually result in the DMA engine in the PCI-to-local
bus bridge performing a burst with LDACK# for that channel
asserted.

While a demand-mode DMA burst is in progress (ie. a bit of
LDACK# is asserted), the burst can be terminated by
deasserting the corresponding bit of LDREQ#. This is known
as "pausing the demand-mode DMA", and will cause the PCI-
to-local bus bridge to assert LBLAST# as soon as possible.

When a demand-mode DMA burst has completed and either

● the PCI-to-local bus bridge has transferred all
data in its FIFO, or

● the demand-mode DMA was paused

216

ADM-XRC SDK 4.9.3 User Guide (Win32) - Sideband signals

then the PCI-to-local bus bridge will not initiate another burst
on the local bus for that DMA channel until the
corresponding bit of LDREQ# is reasserted.

 LEOT# FPGA End of transfer

This signal may be asserted during a burst that has been
initiated by one of the PCI-to-local bus bridge's DMA engines
in order to prematurely terminate a DMA transfer (before the
requested number of bytes has been transferred). To use
LEOT#, a DMA engine must be operating in LEOT mode.

217

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Model-specific signals

While the local bus protocol is in general the same in each of the models in Alpha Data's reconfigureable computing range,
in earlier models such as the ADM-XRC, some signals in the generic model of the local bus are actually two different
signals that driven by the FPGA and the local bus bridge respectively. The function of these signals however, is the same.
This section details the differences between the models of the XRC range:

ADM-XRC and ADM-XRC-P

ADM-XRC-II-Lite

ADM-XRC-II

ADM-XPL, ADM-XP and ADP-XPI

ADP-WRC-II and ADP-DRC-II

ADM-XRC-4LX and ADM-XRC-4SX

ADM-XRC-4FX, ADM-XRC-5LX, ADM-XRC-5T1, ADM-XRC-5T2 and ADM-XRC-5T2-ADV

ADM-XRC-5TZ and ADM-XRC-5T-DA1

ADM-XRC and ADM-XRC-P

The following figure shows the connections between the PCI9080 local bus bridge and the FPGA in an ADM-XRC or ADM-
XRC-P card:

218

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XRC-II-Lite

The following figure shows the connections between the PCI9080 local bus bridge and the FPGA in an ADM-XRC-II-Lite
card:

219

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XRC-II

The following figure shows the connections between the PCI9656 local bus bridge and the FPGA in an ADM-XRC-II:

220

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XPL, ADM-XP and ADP-XPI

The following figure shows the connections between the local bus bridge and the FPGA in an ADM-XPL, ADM-XP or ADP-
XPI card; note that the local bus is capable of operating in 32-bit or 64-bit mode:

221

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADP-WRC-II and ADP-DRC-II

The following figure shows the connections between the PCI9656 local bus bridge and the FPGA in an ADP-WRC-II or ADP-
DRC-II card:

222

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XRC-4LX and ADM-XRC-4SX

The following figure shows the connections between the PCI9656 local bus bridge and the FPGA in an ADM-XRC-4LX or
ADM-XRC-4SX card:

223

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XRC-4FX, ADM-XRC-5LX, ADM-XRC-5T1, ADM-XRC-5T2 and ADM-XRC-5T2-ADV

The following figure shows the connections between the local bus bridge and the FPGA in an ADM-XRC-4FX, ADM-XRC-
5LX, ADM-XRC-5T1, ADM-XRC-5T2 or ADM-XRC-5T2-ADV card; note that the local bus is capable of operating in 32-bit or
64-bit mode:

224

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

ADM-XRC-5TZ and ADM-XRC-5T-DA1

The following figure shows the connections between the local bus bridge and the FPGA in an ADM-XRC-5TZ or ADM-XRC-
5T-DA1 card:

225

ADM-XRC SDK 4.9.3 User Guide (Win32) - Model-specific signals

226

ADM-XRC SDK 4.9.3 User Guide (Win32) - Direct slave transfers

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Direct slave transfers

Direct slave transfers are the basic method of transferring data to and from the FPGA on an ADM-XRC series card. The local
bus bridge is the master, and the FPGA is the slave. Direct slave transfers are normally the result of calling functions from
the API such as ADMXRC2_Read and ADMXRC2_DoDMA.

This section contains timing diagrams that illustrate the local bus protocol:

Single word read and write

Burst read, normal termination

Burst write, normal termination

Burst read, terminated by LBTERM#

Burst write, terminated by LBTERM#

Multiplexed address/data bus

Single word read and write

The following timing diagram illustrates a single word read followed by a single word write followed by another single word
read, all terminated normally (LBLAST# and LREADY# are both asserted).

Note:

227

ADM-XRC SDK 4.9.3 User Guide (Win32) - Direct slave transfers

1. The red lines indicate signals that the master may drive.

2. The blue lines indicate signals that the currently addressed slave may drive. A slave must not drive these signals unless
it has been addressed in the cycle when LADS# was asserted.

3. It is recommended that the slave actively drive LREADY# and LBTERM# high for one cycle at the end of a burst,
because resistive pullups on these lines may not cause them to transition high in time for the next burst (which may
address a different slave). Cycles where this should be done are indicated by the symbols.

4. It is recommended that a slave keeps its LREADY# and LBTERM# pins tristated in the cycle following LADS#, to avoid
the possibility of contention with a previous slave that is slow to tristate its LREADY# and LBTERM# pins.

5. Some models may assert LBLAST# in the same cycle as LADS# when a single word transfer is being performed.
Applications should avoid being sensitive to this behavior.

6. With a nonmultiplexed address bus, the same master may a new cycle (marked by the assertion of LADS#) immediately
after the current cycle terminates. Compare with multiplexed address/data bus.

Burst read, normal termination

The following diagram illustrates a burst read, terminated normally (LBLAST# and LREADY# are both asserted).

Burst write, normal termination

The following diagram illustrates a burst write, terminated normally (LBLAST# and LREADY# are both asserted).

228

ADM-XRC SDK 4.9.3 User Guide (Win32) - Direct slave transfers

Burst read, terminated by LBTERM#

The following diagram illustrates a burst read, terminated by LBTERM#.

Note:

1. LBTERM# overrides LREADY# and LBLAST#.

Burst write, terminated by LBTERM#

The following diagram illustrates a burst write, terminated by LBTERM#.

229

ADM-XRC SDK 4.9.3 User Guide (Win32) - Direct slave transfers

Note:

1. LBTERM# overrides LREADY# and LBLAST#.

Multiplexed address/data bus

The following diagram illustrates the difference in the local bus protocol on models with a multiplexed address/data bus.

Note:

1. LAD replaces LA and LD. The slave must internally track the local bus address as each word of data is transferred.

230

ADM-XRC SDK 4.9.3 User Guide (Win32) - Direct slave transfers

2. When a master performs a burst read, the slave must not drive LAD in the cycle following the assertion of LADS# and
must not assert LBTERM# or LREADY# in that cycle.

3. In order to allow LAD to turn around, a master must not attempt to begin a new burst (by asserting LADS# and driving
LAD) in the cycle following the final cycle of a read. For simplicity, a master may elect to also apply this rule to writes.

231

ADM-XRC SDK 4.9.3 User Guide (Win32) - DMA transfers

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

DMA transfers

DMA (Direct Memory Access) is an efficient way to transfer a block of data into the host computer's memory with as little
burden on the CPU as possible. Bus-mastering PCI devices contain dedicated logic for performing DMA transfers. To
perform a DMA transfer, the CPU first programs the PCI device's registers where to transfer the data, how much data to
transfer and which direction the data should travel in. It then kicks off the DMA transfer, and typically, the CPU is interrupted
by the device once the transfer has been completed. The advantage of DMA then, is that the CPU can perform other tasks
while the PCI device performs the data transfer.

Alpha Data recommends using DMA transfers (that is, performed by the PCI device) for large blocks of data, and using
Direct Slave transfers (that is, performed by the CPU) for random access or for access to FPGA registers. On many
platforms, having the CPU perform bulk data transfer is highly inefficient. For example, most x86 chipsets do not perform
bursting at all when the CPU performs reads of a PCI device.

The local bus bridge (PCI9080/PCI9656 etc.) in an ADM-XRC series card contains one or more DMA engines. Software
running on the host can use these DMA engines for the rapid transfer of data to and from the FPGA, using API functions
such as ADMXRC2_DoDMA and ADMXRC2_DoDMAImmediate .

The local bus protocol of a DMA-initiated burst is the same as that of a direct slave burst. Assuming demand-mode DMA is
not used, a DMA-initiated burst is indistinguishable from a direct slave burst. This can be a useful property, as it often
permits an FPGA design to be tested first using direct slave transfers (for convenience), and later on with DMA transfers (for
throughput).

The following figure illustrates the differences between Direct Slave transfers (CPU-initiated) and DMA transfers:

232

ADM-XRC SDK 4.9.3 User Guide (Win32) - DMA transfers

In (a) and (b) above, the flow of data is from the host to the FPGA in both cases, but they differ with respect to which entity
initiates the transfers on the PCI bus.

233

ADM-XRC SDK 4.9.3 User Guide (Win32) - DMA transfers

In (c) and (d) above, the flow of data is from the FPGA to the host in both cases, but they differ with respect to which entity
initiates the transfers on the PCI bus. To sum up the differences between DMA and Direct Slave transfers:

 Direct Slave DMA
Local bus master is... Bridge (PCI9080/PCI9656 etc.) Bridge (PCI9080/PCI9656 etc.)
Local bus slave is... FPGA FPGA
PCI bus master (initiator) is... Host CPU Bridge (PCI9080/PCI9656 etc.)
PCI bus slave (target) is... Bridge (PCI9080/PCI9656 etc.) Host CPU
Constant addressing mode implemented by driver yes
LEOT mode N/A yes
Demand mode N/A yes

The DMA engines are configurable to operate in a variety of modes. For a discussion of these modes, click on the following
topics:

Constant addressing mode

Demand mode

LEOT mode

234

ADM-XRC SDK 4.9.3 User Guide (Win32) - DMA transfers

The following topics provide further details about the practicalities of DMA transfers on an ADM-XRC series card:

What happens during a DMA transfer?

Caveats of DMA transfers

235

ADM-XRC SDK 4.9.3 User Guide (Win32) - What happens during a DMA transfer?

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

What happens during a DMA transfer?

Every DMA transfer must be set up by the CPU, and when it has finished, must also be torn down by the CPU. Most
operating systems attempt to hide the details of this process from the user (and even from drivers), but the setup and tear-
down of a DMA transfer can be fairly involved on some platforms. The steps taken by the CPU for a DMA transfer in an
idealised operating system are as follows:

1. Make sure all virtual memory pages of the user-space buffer are memory-resident and locked down (ie. cannot be
swapped out to disk). This is important to ensure that the user-space buffer doesn't "disappear" in the middle of the
DMA transfer. In operating systems which do not use virtual memory, this step is a no-op.

2. Make sure that the now memory-resident and locked-down pages can actually be "seen" by the PCI device. On many
platforms, this step is a no-op. However, with 64-bit platforms becoming more common and allowing more than 4GB of
physical memory, not all of the memory in a system can be accessed by a PCI device whose addresses are 32 bits
long. In such cases, the operating system maintains a pool of "bounce buffers" in a region of memory that is guaranteed
to be visible to PCI devices. If a page of memory can't be seen by a PCI device, the operating system uses a bounce
buffer for that page of the DMA transfer. If the direction of the DMA transfer is memory-to-PCI, the OS copies the user-
space data into bounce buffers at this point.

3. Some platforms do not automatically maintain cache coherence during a DMA transfers*. Data caches are typically
flushed at this point, either entirely or selectively for the specific pages of physical memory used in the DMA transfer.

4. At last, the CPU can program the PCI device with the DMA transfer parameters and kick off the DMA transfer. The
thread of execution that kicked off the DMA transfer typically moves onto some other task or goes to sleep.

5. When the PCI device interrupts the CPU, the CPU may need to make its data caches coherent with memory again. This
step is not required on all platforms, particularly those that automatically maintain cache coherency during DMA
transfers*.

6. On platforms that use bounce-buffers, the system may need to copy data out of bounce buffers into the user-space
buffer, if the direction of the DMA transfer was PCI-to-memory.

7. The system now unlocks the pages of the user-space buffer, so that its pages become swappable again. In operating
systems which do not use virtual memory, this step is a no-op.

* Cache coherent-DMA can be implemented by having the chipset invalidate the cache lines involved in a DMA transfer, as it
actually happens, via signals that are brought out on the CPU.

Note that steps 1 and 7 are not performed by the Alpha Data ADM-XRC driver when the ADMXRC2_DoDMA API function is
used. This is because applications typically call ADMXRC2_SetupDMA during initialization, which effectively performs step
1. Similarly, applications typically call ADMXRC2_UnsetupDMA as they wind-down, which effectively performs step 7. If you
know you will reuse a buffer for several DMA transfers, use of ADMXRC2_DoDMA can remove the nondeterminism and
latency associated with steps 1 and 7.

Even with these potential overheads, DMA transfers are still a far better choice than Direct Slave transfers for bulk data
transfer in almost all situations. The following figure illustrates a DMA transfer from host memory to a PCI device, on a
fictitious platform with 8GB of memory, requiring the use of bounce buffers:

236

ADM-XRC SDK 4.9.3 User Guide (Win32) - What happens during a DMA transfer?

In this fictitious platform, the first 3GB of memory are accessible to PCI devices. In the figure above, one of the pages of the
user buffer falls within the first 3GB of memory. Thus, that page need not be copied before the DMA transfer is kicked off on
the PCI device. The other 3 pages, however, lie above the 3GB boundary, and thus are copied to bounce buffers. The
bounce buffers lie below the 3GB boundary. It should be noted that on many platforms, a driver is presented with an abstract
kernel-level DMA programming interface and thus has little choice about whether or not bounce buffers are used.

Large DMA transfers, from the point of view of the user application, might not be performed as a single DMA transfer. In fact,
they may be performed in several chunks by the Alpha Data ADM-XRC driver. The operating system's resources for creating
bounce buffers, scatter-gather tables etc. are finite and thus there is a limit on the size of a "chunk" of DMA transfer. On all
supported platforms, the Alpha Data ADM-XRC driver attempts to make this chunk limit at least ~64kB. The driver splits
large DMA transfers into chunks and performs each chunk sequentially, which means that there may be a short gap in the
data transfer between chunks where the driver is setting up the next chunk:

237

ADM-XRC SDK 4.9.3 User Guide (Win32) - What happens during a DMA transfer?

● On the first chunk, the driver performs steps 1* to 6.

● On second and subsequent chunks except the final chunk, the driver performs steps 2 to 6.

● On the final chunk, the driver performs steps 2 to 7*.

* Steps 1 and 7 not performed if ADMXRC2_DoDMA is used.

Because of this, applications must not rely on DMA transfers being continuous from start to finish. In any case, there are
other latencies besides the inter-chunk gap that can affect DMA transfers, and these arise from both the hardware and the
operating system. The inter-chunk gap is merely one of the larger latencies; even if it were not present, the other latencies
would remain and thus an application could still fail should it rely upon DMA transfers being continuous.

238

ADM-XRC SDK 4.9.3 User Guide (Win32) - Caveats of DMA transfers

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Caveats of DMA transfers

This section details a few practices regarding DMA that should be avoided or used with care.

DMA write to host memory may not update application buffer until complete

Unaligned DMA transfer to/from non-memorylike local bus region, assuming 32 bit local data bus

Unaligned DMA transfer to/from non-memorylike local bus region, assuming 64 bit local data bus

DMA write to host memory may not update application buffer until complete

When a DMA transfer writes data to host memory, ie. the direction of the transfer is from the local bus to the PCI bus,
applications must not rely on being able to see the data as it is written by the PCI device byte-by-byte. This is for two
reasons:

1. On platforms that use bounce-buffers, the PCI device may in fact be targetting bounce buffers rather than the
application's buffer.

2. On some platforms, CPU cache coherency is not maintained during DMA transfers. The CPU's caches may be made
coherent at the end of the DMA transfer, but not during the DMA transfer.

In short, an application's buffer is guaranteed to contain valid data only after the DMA transfer has completed (ie. the
call to ADMXRC2_DoDMA or ADMXRC2_DoDMAImmediate has returned).

Unaligned DMA transfer to/from non-memorylike local bus region, assuming 32 bit local data bus

A memorylike region on the local bus is defined to be a range of the local bus address space in which reads and writes have
no side-effects. The only effect of performing a write within such a range is to update zero or more byte locations (depending
on the value of the byte enables, LBE#) with new data.

A non-memorylike region on the local bus is defined to be a range of the local bus address space where reads and writes
have "side-effects". For example, an FPGA design may implement a FIFO whose read and/or write ports are mapped to a
particular local bus addresses. Reading or writing these ports causes the FIFO's internal state to change, which is
considered to be a side-effect.

When performing DMA transfers to non-memorylike regions, unaligned DMA transfers should be used with great care. An
unaligned DMA transfer is one where the host memory buffer for the DMA transfer does not begin at an aligned address. If a
32 bit wide local bus is being used, then an aligned address is one whose lower two bits are zero. If a 64-bit wide local bus is
being used, then an aligned address is one whose lower three bits are zero.

First, consider the following DWORD-aligned DMA transfer, assuming that the local bus has 32 bit wide data:

● There is a 32 bit wide FIFO mapped to local bus address 0x100.

● The application performs a DMA write into this FIFO, from a 28 byte long buffer in host memory whose address is
DWORD (4 byte) aligned, and just happens to cross a physical page boundary.

239

ADM-XRC SDK 4.9.3 User Guide (Win32) - Caveats of DMA transfers

In this case, the data will be transferred correctly; The 7 DWORDs in the user-space buffer resulted in 7 DWORDs written
into the FIFO.

Now consider the following unaligned DMA transfer, again assuming that the local bus has 32 bit wide data:

● There is a 32 bit wide FIFO mapped to local bus address 0x100.

● The application performs a DMA write into this FIFO, from a 28 byte long buffer in host memory whose address is not
DWORD (4 byte) aligned, and just happens to cross a physical page boundary.

The required 28 bytes are written into the FIFO, but 8 rather than 7 DWORDs in total are written into the FIFO. Two of those
DWORDs have partial byte enables, and this may represent a problem. There are a couple of ways in which to address this
issue:

1. Ensure that DMA transfers are performed using buffers that are aligned to a DWORD (4 byte) boundary. This may not
be possible; for instrance, if the application does not control how memory is allocated.

2. A better solution, assuming that the length of block of data in a DMA transfer is always a multiple of 4 bytes, is to use
LBE#[3] (see the LBE# local bus signal) to qualify actually committing the data to the FIFO. When a word is written to
the FPGA with LBE#[3] deasserted, the FPGA latches the data for those byte enables that are asserted, but does not
yet commit the data to the FIFO. Eventually, the DMA transfer will pick up where it left off and assert LBE#[3] along with
the data when it begins the next block in the linked-list DMA transfer. At this point, the FPGA commits the completed
word to the FIFO. This does not result in any restrictions on the alignment of buffers in host memory.

Unaligned DMA transfer to/from non-memorylike local bus region, assuming 64 bit local data bus

240

ADM-XRC SDK 4.9.3 User Guide (Win32) - Caveats of DMA transfers

If the local bus has 64 bit wide data, then an aligned host memory buffer is one that begins at an address whose lower 3 bits
are zero. By a similar process of reasoning to the 32 bit case above, the issues related to unaligned DMA transfers can be
addressed in the following ways:

1. Ensure that DMA transfers are performed using buffers that are aligned to a QWORD (8 byte) boundary. This may not
be possible; for instance if the application does not control how memory is allocated.

2. A better solution, assuming that the length of block of data in a DMA transfer is always a multiple of 8 bytes, is to use
LBE#[7] (see the LBE# local bus signal) to qualify actually committing the data to the FIFO. When a word is written to
the FPGA with LBE#[7] deasserted, the FPGA latches the data for those byte enables that are asserted, but does not
yet commit the data to the FIFO. Eventually, the DMA transfer will pick up where it left off and assert LBE#[7] along with
the data when it begins the next block in the linked-list DMA transfer. At this point, the FPGA commits the completed
word to the FIFO. This does not result in any restrictions on the alignment of buffers in host memory.

241

ADM-XRC SDK 4.9.3 User Guide (Win32) - Constant address mode

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Constant address mode DMA transfers

In a constant address mode DMA transfer, the local bus address that is presented on LA or LAD is held constant for the
entire DMA transfer. This is useful for accessing a register that is actually the head or tail of a FIFO memory that is mapped
at a particular local bus address. Instead of the local bus address incrementing automatically, it remains constant, both
during a burst and from one local bus burst to the next. Note that this is completely unrelated to PCI addressing, as the PCI
specification does not allow for constant PCI addressing.

Constant address mode may be freely mixed with the other DMA modes, such as demand mode and LEOT mode.

To use LEOT mode, the host must specify ADMXRC2_DMAMODE_FIXEDLOCAL in a call to
ADMXRC2_BuildDMAModeWord. The mode word that includes constant address mode can then be supplied in a call to
ADMXRC2_DoDMA and ADMXRC2_DoDMAImmediate.

This following topics illustrate the local bus protocol when constant address mode is used:

Constant address mode in local bus with nonmultiplexed address/data

Constant address mode in local bus with multiplexed address/data

Tracking the local bus address during a burst

Constant address mode, nonmultiplexed address/data

Here, the local bus address is constant throughout each burst and constant from one burst to the next.

Constant address mode, multiplexed address/data

242

ADM-XRC SDK 4.9.3 User Guide (Win32) - Constant address mode

Here, the local bus address is implicitly constant throughout each burst and constant from one burst to the next.

Tracking the local bus address during a burst

At first glance, it would appear that in a local bus with multiplexed address/data, there is no way to know whether or not
constant local address mode is in use, since the address is presented on LAD only in the address phase. However, a
designer can simply define some conventions that are observed by both the FPGA design and the application software on
the host; for example:

● A particular local bus address or address range shall always be accessed in constant address mode by the application
software running on the host. Then, in order to determine whether or not a given local bus burst uses a constant
address, the FPGA need merely decode the address.

● If using demand-mode DMA with a FIFO, demand-mode DMA shall always be used in constant address mode. (ie. the
assertion of LDACK# during a local bus burst) implies a constant local address. Then, in order to determine whether or
not a given local bus burst uses a constant address, the FPGA need merely check whether or not LDACK# is asserted
at the beginning of a burst. This can be implemented selectively on a per-DMA channel basis, since there is one
LDREQ#/LDACK# pair per DMA channel.

Such conventions are equally applicable to a local bus with nonmultiplexed data. Although the local bus address is provided
on the LA signal throughout a burst, using it within the FPGA is discouraged because it may be difficult to meet timing
constraints at higher frequencies of the local bus clock. A far better method is to capture the local bus address internally into
a loadable counter on the assertion of LADS#, and increment it when a word of data is transferred AND the current burst is
known use an incrementing address. The following circuit illustrates this technique:

243

ADM-XRC SDK 4.9.3 User Guide (Win32) - Constant address mode

The output of the circuit is the current local bus address, ie. a mirror of LA, with the advantage of having far better timing
margins associated with it. It does, however, require that the application software running on the host and the FPGA design
agree about how to distinguish between a constant address mode burst and an incrementing address mode burst.

For a 64-bit wide local bus, instead of loading the counter with LA[23:2] or LAD[31:2], simply use LA[23:3] or LAD[31:3].

244

ADM-XRC SDK 4.9.3 User Guide (Win32) - Demand mode

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Demand-mode DMA transfers

The DMA engines on the local bus bridge of an ADM-XRC series card are capable of operating in demand-mode. In demand-
mode, instead of transferring data to or from the FPGA as fast as possible, a DMA engine will transfer data "on-demand" of
the FPGA. For example, in a design which contains a FIFO whose data is read out via the local bus, the FPGA can request
that the DMA engine transfer some data only when the FIFO is not empty.

To use demand-mode DMA, the host must specify demand-mode in the mode word for a DMA transfer. This is done using
the ADMXRC2_BuildDMAModeWord function. The mode word that includes demand-mode can then be supplied in a call
to ADMXRC2_DoDMA, for example. Demand-mode may be freely mixed with the other DMA modes, such as constant
address mode and LEOT mode.

To use demand mode:

● The host must specify ADMXRC2_DMAMODE_DEMAND in a call to ADMXRC2_BuildDMAModeWord. The mode
word that includes demand mode can then be supplied in a call to ADMXRC2_DoDMA and
ADMXRC2_DoDMAImmediate.

● The FPGA must drive the LDREQ# signals, and monitor the LDACK# signals.

The LDREQ# and LDACK# signals actually comprise pairs of request-acknowledge signals, one pair per DMA engine in the
PCI-to-local bus bridge on an ADM-XRC series card. They work as follows:

1. Asserting a particular bit of LDREQ# requests that the corresponding DMA engine transfer some data.

2. When the local bus bridge performs a burst in response to that request, it asserts the corresponding bit of LDACK#.

3. The FPGA can stop the transfer, "pausing" the DMA engine, by deasserting LDREQ#. Once paused, the DMA engine
will not attempt to transfer more data until the FPGA reasserts LDREQ#.

This following topics illustrate the local bus protocol when demand-mode DMA is used:

Demand-mode DMA burst read, LDREQ# kept asserted

Demand-mode DMA burst read, LDREQ# deasserted to pause transfer

Demand-mode DMA single word read, LDREQ# deasserted early

Demand-mode DMA write, LBTERM# breaks up bursts

Demand-mode DMA read, LDREQ# kept asserted

In this example, LDREQ#n is kept asserted.

245

ADM-XRC SDK 4.9.3 User Guide (Win32) - Demand mode

Note:

1. As long as LDREQ#n kept asserted, DMA engine n continues to generate bursts on the local bus.

Demand-mode DMA read, LDREQ# deasserted to pause transfer

In this example, LDREQ#n is deasserted mid-burst in order to "pause" the DMA transfer.

246

ADM-XRC SDK 4.9.3 User Guide (Win32) - Demand mode

Note:

1. This assumes that the assertion of LBLAST# was caused by deassertion of LDREQ#n, not because the DMA engine
temporarily filled its FIFO.

2. DMA engine n is "paused" at the end of the burst. It will not initiate another burst on the local bus until LDREQ#n is
reasserted.

Demand-mode DMA single word read, LDREQ# deasserted early

In this example, LDREQ#n is deasserted early in order to perform a single word demand-mode DMA burst.

247

ADM-XRC SDK 4.9.3 User Guide (Win32) - Demand mode

Note:

1. In order to make a DMA engine perform a single word demand-mode DMA burst and then pause, LDREQ#n must be
deasserted on or before the cycle in which LDACK#n is asserted.

Demand-mode DMA write, LBTERM# breaks up bursts

In this example, LBTERM# breaks up the demand-mode DMA bursts.

248

ADM-XRC SDK 4.9.3 User Guide (Win32) - Demand mode

Note:

1. Asserting LBTERM# does not in itself pause a DMA engine - it merely breaks up the bursts.

249

ADM-XRC SDK 4.9.3 User Guide (Win32) - LEOT mode

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

LEOT mode DMA transfers

LEOT mode offers a way for the FPGA on an ADM-XRC series card to terminate a DMA transfer before the programmed
number of bytes of data has been transferred. Normally, calls ADMXRC2_DoDMA and ADMXRC2_DoDMAImmediate do
not return until the requested number of bytes has been transferred. In some applications, this is undesirable since an
application may not know in advance how many bytes of data to transfer to or from the FPGA.

In LEOT mode, the FPGA can assert the LEOT# signal along with LREADY# and/or LBTERM# during a local bus burst, in
order to prematurely terminate a DMA transfer. The DMA engine that is performing the current local bus burst will complete
the burst as quickly as possible, and then terminate the DMA transfer. The status of the DMA transfer will be that it was
completed without error, and the host will receive a DMA interrupt as normal (this DMA interrupt should not be confused with
the FPGA interrupt). However, less than the programmed number of bytes will have been transferred.

LEOT mode may be freely mixed with the other DMA modes, such as constant address mode and demand mode.

In order for the host to know how many bytes of data were transferred, it is recommended that a host-readable register be
implemented within the FPGA, indicating the number of bytes transferred. After the call to ADMXRC2_DoDMA and
ADMXRC2_DoDMAImmediate returns, the host can inspect this register to determine how much data was transferred.

What happens to any data that might be remaining in a DMA engine's FIFOs when the DMA transfer is terminated using
LEOT#? This depends upon the direction of the DMA transfer:

● If the direction of the DMA transfer is PCI-to-local, there may be data remaining the inbound DMA FIFO for that DMA
channel. This data is discarded.

● If the direction of the DMA transfer is local-to-PCI, then all of the data that has been read on the local bus, up to and
including the final burst in which LEOT# is asserted, is guaranteed to be written on the PCI bus.

When a DMA transfer whose direction is PCI-to-local bus is terminated using LEOT#, there may be data remaining the
inbound DMA FIFO for that DMA channel. This data is discarded.

To use LEOT mode:

● The host must specify ADMXRC2_DMAMODE_USEEOT in a call to ADMXRC2_BuildDMAModeWord. The mode
word that includes LEOT mode can then be supplied in a call to ADMXRC2_DoDMA and
ADMXRC2_DoDMAImmediate.

● The FPGA design must drive the LEOT# signal and assert it at the appropriate moment during a local bus burst. If
LEOT# is asserted during a non-DMA burst, or when LEOT mode has not been specified by the host, it will have no
effect.

This following topics illustrate the local bus protocol when LEOT mode is used:

LEOT#, not bursting

LEOT#, bursting

250

ADM-XRC SDK 4.9.3 User Guide (Win32) - LEOT mode

LEOT# and LBTERM#

LEOT# in nonburst transfer

In this example, LEOT# is asserted during a nonburst local bus cycle.

Note:

1. In this example, since LBLAST# is asserted when LEOT# is asserted, the current local bus cycle ends immediately.
When the cycle in which LEOT# is asserted ends, so does the DMA transfer.

LEOT# in burst transfer

In this example, LEOT# is asserted during a burst local bus cycle.

251

ADM-XRC SDK 4.9.3 User Guide (Win32) - LEOT mode

Note:

1. When LEOT# is sampled asserted by the bridge, the bridge asserts LBLAST# and the current local bus cycle
terminates, also ending the DMA transfer, after one extra word has been transferred.

LEOT# asserted with LBTERM#

In this example, LEOT# is asserted coincident with LBTERM# during a burst local bus cycle.

Note:

1. In this example, LEOT# is sampled asserted by the bridge along with LBTERM#. Hence the current local bus cycle

252

ADM-XRC SDK 4.9.3 User Guide (Win32) - LEOT mode

terminates immediately, also ending the DMA transfer. This is the simplest way to guarantee that no extra data is
transferred after the assertion of LEOT#.

253

ADM-XRC SDK 4.9.3 User Guide (Win32) - Arbitration

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Local bus arbitration

The local bus protocol permits multiple master-capable agents to reside on the local bus. The bus arbiter on an ADM-XRC
series card permits at most one master-capable agent on the local bus to be a master at any time. This section describes the
arbitration protocol.

Each master-capable agent on the local bus has a pair of signals HOLD and HOLDA. These are not bussed to other agents;
each agent has its own pair. These signals work as follows:

● HOLD is driven by a local bus agent to the arbiter, and must be asserted when that agent wishes to initiate one or more
bursts on the local bus.

● HOLDA is driven by the bus arbiter to a local bus agent, and is asserted when ownership of the bus is granted to that
agent.

● The length of its tenure on the local bus is at the discretion of an agent, and a local bus agent must voluntarily give up
the bus by deasserting its HOLD signal when it has finished. On some models, sideband signals connected between
agents can cause a master to relinquish the bus at the request of another agent.

● Once an agent deasserts its HOLD signal, it must wait for the arbiter to deassert its HOLDA signal before reasserting
HOLD.

In an ADM-XRC series card, the respective HOLD/HOLDA pairs are given different names to avoid confusion between the
two:

● The FPGA's pair are named FHOLD and FHOLDA. The FPGA should generally use !FHOLDA to qualify the assertion
of LADS# when deciding whether or not to respond to a burst as a slave.

● The local bus bridge's pair are named LHOLD and LHOLDA.

The HDL source code samples use this convention.

The following timing diagrams illustrate the arbitration protocol:

Single-burst bus tenure

Multi-burst bus tenure

Two bus tenures

Single-burst bus tenure

The following timing diagram illustrates a bus tenure that consists of a single burst.

254

ADM-XRC SDK 4.9.3 User Guide (Win32) - Arbitration

Multi-burst bus tenure

The following timing diagram illustrates a bus tenure that consists of a more than one burst.

Note:

1. A master may perform an arbitrary number of bursts during its bus tenure. A master voluntarily gives up the bus when it
has finished with the bus, by deasserting its HOLD signal.

2. On some models, sideband signals connected between agents can cause an agent to relinquish the bus at the request
of another agent.

3. Strictly speaking, since the master retains ownership of the bus between the bursts that make up its tenure, it could
drive LADS#, LBLAST# etc. between bursts with no possibility of contention.

Two bus tenures

The following timing diagram illustrates two bus tenures by the same master.

255

ADM-XRC SDK 4.9.3 User Guide (Win32) - Arbitration

Note:

1. After an agent transitions HOLD, it must wait for the arbiter to acknowledge the change via HOLDA, before transitioning
HOLD again.

256

ADM-XRC SDK 4.9.3 User Guide (Win32) - Direct master transfers

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Direct master transfers

Direct master transfers will be documented in a future release of the SDK.

257

ADM-XRC SDK 4.9.3 User Guide (Win32) - Tips for local bus interface design

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Tips for local bus interface design

The following tips may help designers new to the local bus protocol:

1. Beware of unintentionally permitting bursting in your FPGA design. Some platforms can generate PCI reads and writes
that result in bursts on the local bus, while others cannot. If your FPGA design cannot handle bursting on the local bus, it
must prevent bursting or risk failing unexpectedly on certain platforms. See tip 2 below.

2. The simplest way to prevent your FPGA design bursting on the local bus is to always assert LBTERM# along with
LREADY#.

3. It is not unnecessary to support bursting over the entire region of local bus space that your design uses. For instance, if
you have implemented (a) a set of registers in one region and (b) a memory region, it may not be worthwhile going to
the effort of supporting bursting in the register region, as typically the host is performing random accesses to the
registers rather than performing bulk data transfer. However, designing the memory region to support bursting is
probably worthwhile, as it is likely to be used for bulk data transfer. See tip 2 above.

4. Latch the local bus address on the rising edge of LCLK when LADS# is asserted, and then increment the address
internally within the FPGA each time you assert LREADY#. Use of an address generated within the FPGA as opposed
to taking the address combinatorially from the LA pins can make it easier to meet timing specifications when operating
LCLK at a high frequency.

5. LBTERM# and LREADY# should not be continuously driven by the FPGA, as on some models in the ADM-XRC range
there may be other slaves on the local bus. These signals should be driven only when the FPGA has positively decoded
the address following the assertion of LADS#.

6. At the end of a cycle, ensure that the FPGA drives LBTERM# and LREADY# high for a cycle or half of a cycle before
being tristated. This will prevent problems due to these signals being resistively pulled up at too slow a rate. The
plxdssm module used by many of the sample FPGA designs in the SDK does this.

7. LBTERM# implies ready. In other words, assertion of LBTERM# serves to transfer the current word of data and
terminate the burst. Put another way, in an application where bursting is not required, LREADY# need never be
asserted while LBTERM# can serve as the "ready" signal.

8. The normal termination condition for a burst is "(LREADY# = 0 and LBLAST# = 0) or LBTERM# = 0".

9. Unlike a PCI bus burst, there is no mechanism for terminating a local bus burst without transferring any data. When a
burst is initiated, at least one word of data must be transferred.

258

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXDSSM - a practical example

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXDSSM - A practical example

PLXDSSM module definition

PLXDSSM state diagram

PLXDSSM timing diagrams

This section describes the PLXDSSM state machine that is used in most of the sample FPGA designs. It is used as a building block in the
implementation of a local bus interface that responds to Direct Slave transfers.

PLXDSSM module definition

PLXDSSM can be visualized as the following module:

The upper section of the module shows general signals such as clock, asynchronous reset and synchronous reset (either or both types of reset
may be used). Below those, on the left hand section of the module, are the local bus signals, possibly qualified in some manner which is discussed
below. The signals on the right hand are signals to and from the application logic. The functions of the signals are as follows:

Signal Direction Description
clk IN This signal is the local bus clock.
rst IN Asynchronous reset; if used, should be derived from the local bus reset

signal LRESET#.

sr IN Synchronous reset; if used, should be derived from the local bus reset signal
LRESET#.

qlads IN This signal must be a suitably qualified active-high version of the local bus
address strobe LADS#. Typically obtained from a combinatorial function such
as

qlads <= !LADS# and !LA[23] and !FHOLDA

lblast IN This signal should simply be an active-high version of the local bus LBLAST#
signal.

lwrite IN This signal should simply be the local bus LWRITE signal.

259

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXDSSM - a practical example

lready_o_l OUT This signal should normally be driven onto the local bus as LREADY# when
lready_oe_l is asserted.

lready_oe_l OUT This signal is the active-low output enable for the local bus LREADY# signal.

lbterm_o_l OUT This signal should normally be driven onto the local bus as LTERM# when
lbterm_oe_l is asserted.

lbterm_oe_l OUT This signal is the active-low output enable for the local bus LBTERM# signal.

ld_oe_l OUT When this active-low signal is asserted, the user application should drive the
local data bus, which is LD on models with a nonmultiplexed local bus and
LAD on models with a multiplexed local bus.

eld_oe OUT This signal is an active high, early version of ld_oe_l. Functionally, ld_oe_l is
obtained by inverting this signal and registering it in a flip-flop. Applications
requiring the best possible clock-to-output time for the LD or LAD bus can
generate their own output enables using this signal.

ready IN This signal informs the PLXDSSM module that the user application is ready
to transfer data. Asserting ready causes lready_o_l to be asserted on the
next cycle, assuming that a Direct Slave transfer is in progress.

stop IN This signal informs the PLXDSSM module that the user application wishes to
terminate the current transfer. Assuming that a Direct Slave transfer is in
progress, asserting stop may or may not cause lbterm_o_l to be asserted
on the next cycle, depending on whether or not ready has already been
asserted.

idle OUT This signal indicates that the state machine is currently idle. idle is never
asserted at the same time as decode or transfer

decode OUT This signal indicates that a new Direct Slave transfer has started, and that the
user application should perform address decoding based upon a registered
version of the local bus address. It is a single cycle pulse that occurs one
cycle after qlads is asserted. decode also indicates that PLXDSSM is now
sensitive to the ready and stop signals.

write OUT This signal indicates whether the current Direct Slave transfer is a read (0) or
a write (1). It changes only on cycles when qlads is asserted.

transfer OUT This signal indicates that data is being transferred in the current cycle, and
mirrors lready_o_l (except that it is active high, whereas lready_o_l is active
low). Clock enables for data registers are typically derived from this signal.

Further explanation of the relationship between the ready, stop, lready_o_l and lbterm_o_l signals is warranted. The following rules govern their
behavior:

1. ready and stop are ignored by PLXDSSM when no Direct Slave transfer is in progress. The earliest that ready and stop are checked is when
decode is asserted.

2. If a Direct Slave transfer is in progress, asserting ready will result in the assertion of lready_o_l on the next clock cycle.

3. Once lready_o_l is asserted by PLXDSSM, it cannot be asserted until the current Direct Slave transfer ends. Thus, ready can be pulsed or
held asserted.

4. If a Direct Slave transfer is in progress, and stop is asserted before ready is asserted, PLXDSSM will remember that stop has been asserted
even if stop is deasserted before ready is subsequently asserted. Once ready is asserted, PLXDSSM will assert both lready_o_l and
lbterm_o_l on the next cycle. stop can be pulsed or held asserted.

5. If a Direct Slave transfer is in progress, and stop is asserted coincident with, or after ready, PLXDSSM will assert lbterm_o_l on the next
cycle.

It follows from these rules that when using PLXDSSM, LREADY# cannot be asserted and then deasserted in the middle of a transfer - the proper
way to make the local bus master wait is to terminate the burst, rather than attempt to hold it off by deasserting LREADY#. In some applications,
this has the advantage of giving other local bus masters a chance to utilise the bus instead of wasting cycles, increasing bus efficiency.

In very simple applications, ready and stop may simply be tied high, so that the application never permits bursting on the local bus and all local bus
transfers last for exactly 3 clock cycles.

PLXDSSM state diagram

The implementation of the PLXDSSM module is a hybrid Mealy/Moore state machine:

260

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXDSSM - a practical example

As indicated in the state diagram,

● lbterm_o_l, lbterm_oe_l, ld_oe_l, lready_o_l, lready_oe_l, stopping and write are generated Mealy-style.

● decode, idle and transfer are generated Moore-style.

A couple of points should be noted about this implementation:

1. In the transition from XFER to IDLE, lready_oe_l remains asserted while lready_o_l and lbterm_o_l are deasserted. This ensures that
LREADY# and LBTERM# are driven high for one cycle at the end of each transfer.

2. For convenience, the stop signal need only be pulsed for a single clock cycle, even when the user application has not yet asserted ready. The
state machine remembers that stop has been asserted via the stopping signal that is internal to the machine.

PLXDSSM timing diagrams

Here, a read and a write are shown. In the case of the write, ready is used to insert two extra wait cycles:

261

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXDSSM - a practical example

Notes:

1. Asserting stop coincident with or earlier than ready always results in the transfer being terminated by LBTERM# with exactly one word of data
transferred.

2. ready and stop are ignored until PLXDSSM asserts decode.

3. In the read transfer, ready and stop are asserted coincident with each other at the earliest possible time, namely when decode is asserted.

4. In the write transfer, stop is asserted early, and PLXDSSM "remembers" until ready is asserted. It is not necessary to keep stop asserted until
ready is asserted.

Here, a burst read is shown. ready is used to insert one extra wait cycle, and stop is asserted sometime after ready in order to terminate the burst.

262

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXDSSM - a practical example

Notes:

1. Once ready has been asserted, it is not necessary to keep it asserted for the remainder of the burst. LREADY# cannot be deasserted except
by ending the burst.

263

ADM-XRC SDK 4.9.3 User Guide (Win32) - Common HDL components

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Common HDL components

This section documents the common HDL components that are used by the sample FPGA designs.

● Local bus interface package (VHDL) for making an FPGA design accessible by an application running on the host, via
the local bus.

● Memory interface package (VHDL) for using the onboard memory on a reconfigurable computing card.

● PLXSIM simulation package (VHDL) for building a testbench for an FPGA design's local bus interface.

264

ADM-XRC SDK 4.9.3 User Guide (Win32) - Local bus interface package (VHDL)

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The localbus package

Overview of this package

Components

Overview

The localbus package consists of a number of components designed to simplify the task of adding a local bus interface to
an FPGA design. A local bus interface enables a software application running on the host to communicate and exchange
data with the FPGA design using API functions such as ADMXRC2_DoDMA and ADMXRC2_Read.

Components

Name Function
plxddsm Demand-mode DMA state machine

plxdssm Direct-slave state machine

265

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm (deprecated)

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The plxddsm component

Overview

HDL source code

Signals

Usage

Overview

NOTE: this component has been superseded by the plxddsm2 component.

The plxddsm component is part of the localbus package and provides the control mechanism for a demand-mode DMA channel in a
local bus interface within an FPGA design. This component cannot be used in isolation; it cooperates with the plxdssm component in
order to provide a complete local bus interface with the capability to perform demand-mode DMA.

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/localbus/localbus_pkg.vhd
fpga/vhdl/common/localbus/plxddsm.vhd

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
clk in Local bus clock

This port must be driven by the clock that drives the local bus interface of
the FPGA design.

266

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm (deprecated)

idle out Interface idle

This status output indicates whether or not the plxddsm instance is
currently handling a demand-mode DMA local bus cycle. It may be
asserted for two reasons:

1. There is no cycle in progress on the local bus.

2. There is a cycle in progress on the local bus, but the qlads
signal was not asserted at the beginning of the cycle,
meaning that the FPGA determined that it was not the target
of a demand-mode DMA local bus cycle.

lblast in LBLAST# in

This input must be driven by an active high version of the LBLAST# signal
from the local bus.

lbterm in LBTERM# in

This input must be driven by an active high version of the LBTERM#
signal from the local bus.

ldreq_o_l out LDREQ# out

This output must drive one of the LDREQ# pins on the local bus.

qlads in Qualified address strobe

This input should be pulsed for one clock cycle, when a local bus cycle
begins. This signal is typically generated by qualifying the LADS# signal
by simple address decoding along with the corresponding LDACK# signal.
In most cases, the FHOLDA signal is also used.

ready in Data ready

The user application should assert this signal when it is ready to transfer
data during a local bus cycle. This signal should be the same as the ready
signal that is input to the associated plxdssm instance.

request in Request demand-mode DMA local bus cycle from PCI-to-local bus Bridge

The user application should assert this signal when it wishes to initiate a
demand-mode DMA cycle. request may be pulsed for as little as one
clock cycle; such a pulse will result in ldreq_o_l remaining asserted until
the PCI-to-local bus Bridge initiates the desired demand-mode DMA local
bus cycle. Alternatively, should the FPGA wish to perform many demand-
mode DMA local bus cycles, request may be held asserted for an arbitary
period.

The purpose of this signal is different to that of the ready signal. The
ready signal permits data transfer to occur in a local bus cycle that has
already started. The request signal, on the other hand, is used to control
whether or not the PCI-to-local bus generates demand-mode DMA local
bus cycles.

Deasserting request prevents the PCI-to-local bus Bridge from generating
further demand-mode DMA cycles for a given DMA channel, while
asserting request allows the PCI-to-local bus Bridge to generate demand-
mode DMA cycles for that DMA channel.

rst in Asynchronous reset

This port may be driven by an asynchronous reset for the local bus
interface, or tied to logic 0 (if not required).

sr in Synchronous reset

This port may be driven by a synchronous reset for the local bus interface,
or tied to logic 0 (if not required).

267

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm (deprecated)

stop in Terminate local bus cycle

The user application should assert this signal when it wishes to terminate
the current local bus cycle. This signal should be the same as the stop
signal that is input to the associated plxdssm instance.

Usage

For each DMA channel that is to be used in demand-mode, there must be one instance of plxddsm. Each instance of plxddsm is
associated with one bit of the LDACK# and LDREQ# busses. Regardless of how many instances of plxddsm are required, exactly one
instance of plxdssm is also required in order to complete the local bus interface.

The following figure illustrates a plxddsm instance connected to the one and only plxdssm instance, along with connections to the local
bus and backend.

There are a couple of things to note about the above example:

1. The generation of qlads causes the plxddsm instance to ignore local bus cycles for which the FPGA is not the target, or for which
are not demand-mode DMA cycles. This generally requires only the simplest of address decoders, and an expression such as

dd_qlads(0) <= not lads_l and not ldack_l(0) and not fholda and not la(23)

268

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm (deprecated)

often suffices. The above example uses bit 0 of LDACK# to qualify LADS#, implying that DMA channel 0 is being used. If DMA
channel 1 were being used, the following expression could be used instead:

dd_qlads(1) <= not lads_l and not ldack_l(1) and not fholda and not la(23)

In other words, each plxddsm instance requires its own qlads signal, which should not be same as the qlads signal for the
plxdssm instance.

2. The control logic for generating the ready and stop inputs should be that of the plxdssm instance. The ready and stop signals
should be same ones that are input to the plxdssm

instance.

3. The logic for generating request depends on whether a given demand-mode DMA channel is being used to (a) read or (b) write the
FPGA:

❍ For reads, the FPGA must typically determine whether or not sufficient data is available, in a FIFO or some other
buffer, in order to allow demand-mode DMA to proceed. If there is, the FPGA asserts request.

❍ For writes, the FPGA must typically determine whether or not there is sufficient space for further data, in some FIFO or
buffer, in order to allow demand-mode DMA to proceed. If there is, the FPGA asserts request.

4. To add an additional demand-mode DMA channel, everything within the shaded area of the above figure should be replicated, and a
different LDACK# and LDREQ# pair chosen.

269

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm2

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The plxddsm2 component

Overview

HDL source code

Signals

Usage

Overview

NOTE: this component supersedes the plxddsm component.

The plxddsm2 component is part of the localbus package and provides the control mechanism for a demand-mode DMA channel in a
local bus interface within an FPGA design. This component cannot be used in isolation; it cooperates with the plxdssm component in
order to provide a complete local bus interface with the capability to perform demand-mode DMA.

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/localbus/localbus_pkg.vhd
fpga/vhdl/common/localbus/plxddsm2.vhd

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
burst in Allow bursting during demand-mode DMA local bus cycle

This signal is ignored unless a local bus cycle is in progress.

If this signal is asserted while a demand-mode DMA local bus cycle is in
progress, ldreq_o_l remains asserted. If this signal is deasserted while a
demand-mode DMA local bus cycle is in progress, ldreq_o_l is
deasserted.

1

270

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm2

clk in Local bus clock

This port must be driven by the clock that drives the local bus interface of
the FPGA design.

idle out Interface idle

This status output indicates whether or not the plxddsm2 instance is
currently handling a demand-mode DMA local bus cycle. It may be
asserted for two reasons:

1. There is no cycle in progress on the local bus.

2. There is a cycle in progress on the local bus, but the qlads
signal was not asserted at the beginning of the cycle,
meaning that the FPGA determined that it was not the target
of a demand-mode DMA local bus cycle.

lblast in LBLAST# in

This input must be driven by an active high version of the LBLAST# signal
from the local bus.

lbterm in LBTERM# in

This input must be driven by an active high version of the LBTERM#
signal from the local bus.

ldreq_o_l out LDREQ# out

This output must drive one of the LDREQ# pins on the local bus.

lready in LREADY# in

This input must be driven by an active high version of the LREADY# signal
from the local bus.

qlads in Qualified address strobe

This input should be pulsed for one clock cycle, when a local bus cycle
begins. This signal is typically generated by qualifying the LADS# signal
by simple address decoding along with the corresponding LDACK# signal.
In most cases, the FHOLDA signal is also used.

ready in Data ready

The user application should assert this signal when it is ready to transfer
data during a local bus cycle. This signal should be the same as the ready
signal that is input to the associated plxdssm instance.

request in Request demand-mode DMA local bus cycle

This signal is ignored when a demand-mode DMA local bus cycle is in
progress.

The user application should assert this signal when it wishes to initiate a
demand-mode DMA cycle. If request is asserted while no demand-mode
DMA local bus cycle is in progress, plxddsm2 will assert ldreq_o_l.

request should be held asserted until the requested demand-mode DMA
cycle occurs, and may be held asserted over multiple demand-mode DMA
cycles if desired.

1, 2

rst in Asynchronous reset

This port may be driven by an asynchronous reset for the local bus
interface, or tied to logic 0 (if not required).

sr in Synchronous reset

This port may be driven by a synchronous reset for the local bus interface,
or tied to logic 0 (if not required).

271

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm2

Notes

1. Both the request and burst signals are used to generate ldreq_o_l, but which one is used at a given moment depends on whether
or not there is a demand-mode DMA local bus cycle in progress. If no cycle is in progress, ldreq_o_l is generated from request. If a
cycle is in progress, ldreq_o_l is generated from burst.

2. The purpose of the request signal is different to that of the ready signal. The ready signal permits data transfer to occur in a local
bus cycle that has already started. The request signal, on the other hand, is used to control whether or not the PCI-to-local bus
Bridge generates demand-mode DMA local bus cycles.

Deasserting request prevents plxddsm2 from asserting ldreq_o_l which in turn prevents the PCI-to-local bus Bridge from
generating further demand-mode DMA cycles for a given DMA channel. Asserting request causes plxddsm2 to assert ldreq_o_l,
which in turns allows the PCI-to-local bus Bridge to generate demand-mode DMA cycles for a given DMA channel.

Usage

This component works by snooping on demand-mode DMA local bus cycles. When no demand-mode DMA local bus cycle is in progress,
plxddsm2 asserts ldreq_o_l if and only if its request input is asserted. During a demand-mode DMA local bus cycle, plxddsm2 asserts
ldreq_o_l if and only if its burst input is asserted. Thus, the possible values of request and burst yield the following behaviour:

request burst Behavior
0 X Not requesting a demand-mode DMA cycle.
1 0 Requesting a demand-mode DMA cycle, but after the demand-mode DMA cycle

begins, pause the DMA transfer as early as possible by deasserting ldreq_o_l.
1 1 Requesting a demand-mode DMA cycle, and keep ldreq_o_l asserted so as not

to pause the DMA transfer.

The purpose of request and burst is to enable a data source or sink within the target FPGA to exercise control over the burst length.
This is necessary when, for example, data is being sourced onto the local bus from a FIFO, and the FIFO is almost empty. FIFO
underflow must be prevented by limiting the burst length of the next demand-mode DMA cycle. For a typical application where a FIFO
sources data that is being read by demand-mode DMA cycles, the request and burst signals might work as follows:

● request is asserted when the FIFO contains data.

● burst is asserted when the FIFO level is above a certain threshold.

Another way that the target FPGA can control burst length is via the stop signal of the plxdssm component. That signal can be used to
terminate a demand-mode DMA local bus cycle (although it doesn't necessarily pause a demand-mode transfer), and together with
request and burst, offers the most flexibility in controlling a demand-mode DMA transfer.

For each DMA channel that is to be used in demand-mode, there must be one instance of plxddsm2. Each instance of plxddsm2 is
associated with one bit of the LDACK# and LDREQ# busses. Regardless of how many instances of plxddsm2 are required, exactly one
instance of plxdssm is also required in order to complete the local bus interface.

The following figure illustrates a plxddsm2 instance connected to the one and only plxdssm instance, along with connections to the
local bus and backend.

272

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm2

There are a couple of things to note about the above example:

3. The generation of qlads causes the plxddsm2 instance to ignore local bus cycles for which the FPGA is not the target, or for which
are not demand-mode DMA cycles. This generally requires only the simplest of address decoders, and an expression such as

dd_qlads(0) <= not lads_l and not ldack_l(0) and not fholda and not la(23)

often suffices. The above example uses bit 0 of LDACK# to qualify LADS#, implying that DMA channel 0 is being used. If DMA
channel 1 were being used, the following expression could be used instead:

dd_qlads(1) <= not lads_l and not ldack_l(1) and not fholda and not la(23)

In other words, each plxddsm2 instance requires its own qlads signal, which should not be same as the qlads signal for the
plxdssm instance.

4. The control logic for generating the ready should be that of the plxdssm instance. The ready signal should be the same one that is
input to the plxdssm instance.

5. The logic for generating request depends on whether a given demand-mode DMA channel is being used to (a) read or (b) write the
FPGA:

❍ For reads, the FPGA must typically determine whether or not sufficient data is available, in a FIFO or some other

273

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxddsm2

buffer, in order to allow demand-mode DMA to proceed. If there is, the FPGA asserts request.

❍ For writes, the FPGA must typically determine whether or not there is sufficient space for further data, in some FIFO or
buffer, in order to allow demand-mode DMA to proceed. If there is, the FPGA asserts request.

6. To add an additional demand-mode DMA channel, everything within the shaded area of the above figure should be replicated, and a
different LDACK# and LDREQ# pair chosen.

274

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxdssm

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The plxdssm component

Overview

HDL source code

Signals

Usage

Overview

The plxdssm component is part of the localbus package and provides the control mechanism for a local bus interface within an FPGA design.

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/localbus/localbus_pkg.vhd
fpga/vhdl/common/localbus/plxdssm.vhd

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
clk in Local bus clock

This port must be driven by the clock that drives the local bus interface of the FPGA
design.

decode out Address decoding pulse

This output pulses for exactly one clock cycle, in the cycle following the assertion of
qlads. Typically, the address presented on the local bus by the current local bus
master is captured in a register whose contents are valid in the cycle following the
qlads pulse. The FPGA can use the decode pulse to as an indication that the
captured local bus address is valid, so that it may perform further decoding of the
address.

eld_oe out Early LD / LAD output enable

This output shows the same waveform as ld_oe_l, but is active high and one cycle
early compared to ld_oe_l.

275

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxdssm

idle out Interface idle

This status output indicates whether or not the plxdssm module is currently
handling a local bus cycle. It may be asserted for two reasons:

1. There is no cycle in progress on the local bus.

2. There is a cycle in progress on the local bus, but the qlads signal was
not asserted at the beginning of the cycle, meaning that the FPGA
determined that it was not the target of the local bus cycle.

lblast in LBLAST# in

This input must be driven by an active high version of the LBLAST# signal from the
local bus.

lbterm in LBTERM# in

This input must be driven by an active high version of the LBTERM# signal from the
local bus.

lbterm_o_l out LBTERM# out

This output must drive the LBTERM# signal on the local bus whenever
lbterm_oe_l is asserted.

lbterm_oe_l out LBTERM# output enable

Whenever this output is asserted (logic 0), the FPGA must drive the LBTERM# pin
with the current value of the lbterm_o_l output.

ld_oe_l out LD / LAD output enable

This is an active low output enable signal for the LAD / LD pins. When asserted
(logic 0), the LAD / LD pins should be driven by the FPGA.

lready_o_l out LREADY# out

This output must drive the LREADY# signal on the local bus whenever the
lready_oe_l is asserted.

lready_oe_l out LREADY# output enable

Whenever this output is asserted (logic 0), the FPGA must drive the LREADY# pin
with the current value of the lready_o_l output.

lwrite in LWRITE in

This input must be driven by the LWRITE signal from the local bus.

qlads in Qualified address strobe

This input should be pulsed for one clock cycle, when a local bus cycle begins. This
signal is typically generated by qualifying the LADS# signal by simple address
decoding, which may also include FHOLDA.

ready in Data ready

The user application should assert this signal when it is ready to transfer data
during a local bus cycle. As a result of asserting ready, the plxdssm module
asserts the lready_o_l output in the next clock cycle. The ready input may be
pulsed for as little as one cycle cycle; lready_o_l however remains asserted until
the end of the current local bus cycle.

Asserting ready also permits the plxdssm module to assert lbterm_o_l, according
to the following rules given in the description for stop.

rst in Asynchronous reset

This port may be driven by an asynchronous reset for the local bus interface, or tied
to logic 0 (if not required).

sr in Synchronous reset

This port may be driven by a synchronous reset for the local bus interface, or tied to
logic 0 (if not required).

276

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxdssm

stop in Terminate local bus cycle

The user application should assert this signal when it wishes to terminate the
current local bus cycle. If stop is asserted, the plxdssm module may or may not
assert lbterm_o_l in the next clock cycle, according to the following rules:

1. If the user application asserts or pulses stop on or before the cycle in
which ready is asserted, lbterm_o_l will be asserted coincident with
lready_o_l. In this case, it is ready that determines the precise
moment at which lbterm_o_l is asserted.

2. If the user application asserts or pulses stop after the cycle in which
ready is asserted, lbterm_o_l will be asserted in the next clock cycle.
In this case, it is stop that determines the precise moment at which
lbterm_o_l is asserted.

As with ready, stop need only be pulsed for as little as one clock cycle in order to
take effect.

transfer out Transfer indication

This output is asserted on every clock cycle in which data is transferred on the local
bus. For a bursting local bus cycle, this output may be asserted for many
consecutive clock cycles.

write out Write indication

This output is asserted to indicate that the current local bus cycle is a write (that is,
the data is transferred from the local bus master to the local bus slave).

Usage

In a typical FPGA design, there is exactly one instance of plxdssm. It provides the control mechanism that enables the FPGA to respond to local bus
cycles, but does not provide the datapath. A typical usage scenario is presented in the following figure:

277

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxdssm

There are a couple of things to note about the above example:

1. The primary address decoding causes the plxdssm module to ignore local bus cycles for which the FPGA is not the target. This generally requires
only the simplest of address decoders, and an expression such as

qlads <= not lads_l and not fholda and not la(23)

often suffices.

2. The control logic for generating the ready and stop inputs to the plxdssm module may be as simple as tying one or both of these two signals high.
ready can be tied to a static logic 1 if the FPGA never need insert any waitstates, and stop can be tied to a static logic 1 if the FPGA must always
prevent bursting during local bus cycles. However, in a nontrivial FPGA design, the generation of ready and stop might depend upon the latched local
bus address, current FIFO levels, current operating mode etc.

278

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory interface package (VHDL)

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The memif package

Overview of this package

Components

Datatypes

Constants

Generic memory port user interface

Overview

The memif package consists of a number of components providing memory ports for several types of memory device. The
purpose of the memif package is twofold:

1. To hide any complexity present in a given memory type from the user application, so that the user application may treat
it as a array of randomly-accessible memory locations.

2. To provide memory port components whose user interfaces are as similar as possible.

From the point of view of client code, the above components all present a similar interface to the user. This generic user
interface is described below. The components, datatypes and constants exported by the memif package are listed in the
sections below.

Components

Name Function
arbiter_2 Two port multiplexor for a memory port

arbiter_3 Three port multiplexor for a memory port

arbiter_4 Four port multiplexor for a memory port

ddr2sdram_port DDR-II SDRAM memory port, for Virtex-4 and Virtex-5

ddr2sram_port_v2 DDR-II SSRAM memory port, for Virtex-2 and Virtex-2 Pro

ddr2sram_training_v2 DDR-II SSRAM training module, for Virtex-2 and Virtex-2 Pro

ddr2sram_port_v4 DDR-II SSRAM memory port, for Virtex-4 and Virtex-5

ddrsdram_port_v2 DDR SDRAM memory port, for Virtex-2 and Virtex-2 Pro

ddrsdram_training_v2 DDR SDRAM training module, for Virtex-2 and Virtex-2 Pro

zbtsram_port ZBT SSRAM memory port, for all FPGA families

Datatypes

Name Function
ddr2sdram_pinout_t Record type that describes the physical configuration of a DDR-II SDRAM port.

279

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory interface package (VHDL)

ddr2sdram_timing_t Record type that describes the timing of a DDR-II SDRAM port.

ddrsdram_pinout_t Record type that describes the physical configuration of a DDR SDRAM port.

ddrsdram_timing_t Record type that describes the timing of a DDR SDRAM port.

ddr2sram_pinout_t Record type that describes the physical configuration of a DDR-II SSRAM port.

family_t Enumerated type that represents an FPGA family.

zbtsram_pinout_t Record type that describes the physical configuration of a ZBT SSRAM port.

Constants

Name
(Datatype)

Function

ddr2sdram_pinout_admxrc4fx
(ddr2sdram_pinout_t)

Pinout for an ADM-XRC-4FX DDR-II SDRAM bank.

ddr2sdram_pinout_adpexrc4fx
(ddr2sdram_pinout_t)

Pinout for an ADPE-XRC-4FX DDR-II SDRAM bank.

ddr2sdram_pinout_admxrc5lx
(ddr2sdram_pinout_t)

Pinout for an ADM-XRC-5LX DDR-II SDRAM bank.

ddr2sdram_pinout_admxrc5t1
(ddr2sdram_pinout_t)

Pinout for an ADM-XRC-5T1 DDR-II SDRAM bank.

ddr2sdram_pinout_admxrc5t2
(ddr2sdram_pinout_t)

Pinout for an ADM-XRC-5T2 / ADM-XRC-5T2-ADV DDR-
II SDRAM bank.

ddr2sdram_pinout_admxrc5tda1
(ddr2sdram_pinout_t)

Pinout for an ADM-XRC-5T-DA1 DDR-II SDRAM bank.

ddrsdram_pinout_admxpl
(ddrsdram_pinout_t)

Pinout for an ADM-XPL DDR SDRAM bank.

ddrsdram_pinout_admxp
(ddrsdram_pinout_t)

Pinout for an ADM-XP DDR SDRAM bank.

ddr2sram_pinout_admxp
(ddr2sram_pinout_t)

Pinout for an ADM-XP DDR-II SSRAM bank.

ddr2sram_pinout_admxrc5t1
(ddr2sram_pinout_t)

Pinout for an ADM-XRC-5T1 DDR-II SSRAM bank.

ddr2sram_pinout_admxrc5t2
(ddr2sram_pinout_t)

Pinout for an ADM-XRC-5T2 / ADM-XRC-5T2-ADV DDR-
II SSRAM bank.

ddr2sram_pinout_admxrc5tda1
(ddr2sram_pinout_t)

Pinout for an ADM-XRC-5T-DA1 DDR-II SSRAM bank.

zbtsram_pinout_admxrc
(zbtsram_pinout_t)

Pinout for an ADM-XRC ZBT SSRAM bank.

zbtsram_pinout_admxrcp
(zbtsram_pinout_t)

Pinout for an ADM-XRC-P ZBT SSRAM bank.

zbtsram_pinout_admxrc2l
(zbtsram_pinout_t)

Pinout for an ADM-XRC-II-Lite ZBT SSRAM bank.

zbtsram_pinout_admxrc2
(zbtsram_pinout_t)

Pinout for an ADM-XRC-II ZBT SSRAM bank.

zbtsram_pinout_admxpl
(zbtsram_pinout_t)

Pinout for an ADM-XPL ZBT SSRAM bank.

zbtsram_pinout_admxrc4lx
(zbtsram_pinout_t)

Pinout for an ADM-XRC-4LX ZBT SSRAM bank.

280

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory interface package (VHDL)

zbtsram_pinout_admxrc4sx
(zbtsram_pinout_t)

Pinout for an ADM-XRC-4SX ZBT SSRAM bank.

zbtsram_pinout_admxrc5tz
(zbtsram_pinout_t)

Pinout for an ADM-XRC-5TZ ZBT SSRAM bank.

ddr2sdram_timing_266
(ddr2sdram_timing_t)

Timing for a generic 266MHz DDR-II SDRAM device (also
known as DDR533). This corresponds to a clk0
frequency of 133MHz.

ddrsdram_timing_cl25_133
(ddrsdram_timing_t)

Timing for a generic CL2.5 133MHz DDR SDRAM device
(also known as DDR266 or PC2100). This corresponds to
a clk0 frequency of 133MHz.

Generic user interface

In general, the memory ports can be represented as a black box as in the following figure:

The parameters of this interface are as follows:

Name Type Function
ra_width natural Width in bits of the memory device address bus, ra.

Refer to the documentation for a specific type of memory port
for the details of the the relationship between ra_width and
a_width.

281

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory interface package (VHDL)

rc_width natural Width in bits of the memory device control bus, rc.

Refer to the documentation for a specific type of memory port
for details of how to specify a legal value for rc_width.

rd_width natural Width in bits of the memory device data bus, rd.

Refer to the documentation for a specific type of memory port
for the details of the the relationship between rd_width and
d_width.

a_width natural Width in bits of the port logical address, a.

Refer to the documentation for a specific type of memory port
for the details of the the relationship between ra_width and
a_width.

d_width natural Width in bits of the port data in and out, d and q respectively.
Also determines the width of the byte enables, be.

Refer to the documentation for a specific type of memory port
for the details of the the relationship between rd_width and
d_width.

tag_width natural Width in bits of the tag in and out, tag and qtag respectively.

The signals of this interface to and from the user application are as follows:

Signal Type Function
a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device
as an array of words of width d_width, this address is a logical
address, because the address that eventually appears on the
ra bus may not necessarily be the same as whatever user
code placed on the a bus.

be in Byte enables to memory

User code must place valid byte enables on be whenever a
write command is entered (ce and w both asserted). A logic 1
in a given bit of be means that the corresponding byte within
be will be written to memory, while a zero means that the
corresponding byte will not be written to memory.

ce in Command entry

User code asserts this signal to enter a new read or write
command into the memory port. When asserted, a and w must
be valid. When asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how
many clock cycles ce can remain asserted. It can be pulsed for
single clk0 cycles, or asserted for many clk0 cycles (ready
permitting).

The address, byte enables, tag etc. of a command need not
bear any relationship to that of the previous command, but for
some memory types, it may be beneficial for performance to
avoid certain patterns of addressing, or to avoid frequently
changing from a read command to a write command on every

282

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory interface package (VHDL)

cycle. Performance issues are discussed in detail for each type
of memory port.

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.
d in Data to memory

User code must place valid data on d whenever a write
command is entered (ce and w both asserted).

q out Data from memory

When valid is asserted by the memory port (as a result of a
read command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a
read command), qtag reflects the tag value that was
assocated with that read command.

ready out Port ready

When the memory port asserts ready, user code is permitted
to assert ce. Certain types of memory port may unconditionally
assert ready, whereas other types of memory port may
sometimes deassert ready depending on several factors.

For example, a DDR-II SDRAM port is capable of buffering a
certain number of commands internally, but if its command
buffer is filled while it executes a refresh cycle, it will deassert
ready.

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.
sr in Synchronous reset for memory port

May be tied to logic 0 if not required.
tag in Tag in

When user code asserts ce with w deasserted, it must also
place a valid tag on the tag signal. When, as a result of the
read command, the memory port asserts valid, the qtag output
reflects the tag value originally passed. This is intended to
facilitate sharing of a memory port between several data
sources or data sinks, where each source or sink recognizes a
particular set of tags.

valid out Read data valid

When the memory port asserts valid, it does so as a result of a
read command (user code asserted ce with w deasserted).
When valid is asserted, both q and qtag are valid.

w in Write select

When user code asserts ce, it must place either a logic 1 on
the w signal in order to select a write command, or 0 in order to
select a read command.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function

283

ADM-XRC SDK 4.9.3 User Guide (Win32) - Memory interface package (VHDL)

ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s). For devices with a nontrivial
addressing scheme, this address may be composed of various
fields. These fields are bundled together into the ra bus so
that, for the most part, the user application need not care what
they are.

For example, with SDRAM devices, this bus may sometimes
carry a column address, and at other times row and bank
addresses. The correspondence between bits of ra and the
various pins found on a given type of memory device is
discussed in the documentation for that type of memory port.

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are. The correspondence between bits of rc and the various
pins found on a given type of memory device is discussed in
the documentation for that type of memory port.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s).

284

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_pinout_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sdram_pinout_t datatype

The ddr2sdram_pinout_t datatype is exported by the memif package, and is used to specify the physical configuration of
an instance of ddr2sdram_port.

It is a record type, defined as follows:

type ddr2sdram_pinout_t is
record
 family : family_t;
 ck_width : natural;
 cke_width : natural;
 odt_width : natural;
 num_phys_bank : natural;
 num_bank_bits : natural;
 num_addr_bits : natural;
end record;

This datatype can normally treated as an abstract datatype, since the user application need typically only use one of the
predefined constants of type ddr2sdram_pinout_t. However, should it be necessary to create a new value, the members
are defined as follows:

Member Type Function
family family_t Specifies the FPGA family that the memory port targets.

ck_width natural Number of CK / CK# pairs present in the rc bus.
cke_width natural Number of CKE# pins present in the rc bus.
odt_width natural Number of ODT# pins present in the rc bus.
num_phys_bank natural Specifies the number of physical banks being driven by the

memory port, which is also the number CS# pins present in the
rc bus.

num_bank_bits natural Specifies the number of BA bits (internal bank bits) on the
devices being driven by the memory port.

num_addr_bits natural Specifies the number of A bits (row / column address bank
bits) on the devices being driven by the memory port.

The value of ddr2sdram_pinout_t passed in the pinout parameter of a ddr2sdram_port determines the proper values to
pass for the ra_width and rc_width parameters. The relevant formulae are:

ra_width = num_bank_bits + num_addr_bits

rc_width = 3 * (rd_width / 8) + 2 * num_ck + cke_width + odt_width + num_phys_bank + 3

285

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_timing_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sdram_timing_t datatype

The ddr2sdram_timing_t datatype is exported by the memif package, and is used to specify the timing parameters of an instance
of ddr2sdram_port.

It is a record type, defined as follows:

type ddr2sdram_timing_t is
record
 t_refresh : natural; -- Average periodic refresh interval
 t_mrd : natural; -- Minimum time between mode register set commands
 t_dllr : natural; -- Minimum time between DLL leaving reset and first read command
 t_rp : natural; -- Minimum time between row precharge and row activate commands
 t_rfc : natural; -- Minimum time between refresh command and any other command
 t_act : natural; -- Minimum time between row activate command and any read/write command
 t_wtr : natural; -- Minimum time between write command and read command, assuming same row
 t_rtw : natural; -- Minimum time between read command and write command, assuming same row
 t_rtp : natural; -- Minimum time between read command and precharge command
 t_wtp : natural; -- Minimum time between write command and precharge command
 t_ras : natural; -- Minimum number of cycles that a row must be open
end record;

This datatype can normally treated as an abstract datatype, since the user application need typically only use one of the predefined
constants of type ddr2sdram_timing_t. However, should it be necessary to create a new value, the members are defined as
follows:

Member Type Function
t_refresh natural Average periodic refresh interval, in clk0 cycles.
t_mrd natural Mode register set command period, in clk0 cycles.
t_dllr natural Minimum number of clk0 cycles between DLL reset deasserted to

first memory access.
t_rp natural Minimum number of clk0 cycles between PRE (precharge) and

ACT (row activation) or REF (refresh) commands.
t_rfc natural Number of clk0 cycles for completion of a REF (refresh) operation.
t_act natural Minimum number of clk0 cycles between ACT (row activate) and a

read or write command.
t_wtr natural Minimum number of clk0 cycles between a write and a read

command.
t_rtw natural Minimum number of clk0 cycles between a read and a write

command.
t_rtp natural Minimum number of clk0 cycles between a read and a PRE

(precharge) command.
t_wtp natural Minimum number of clk0 cycles between a write and a PRE

(precharge) command.
t_ras natural Minimum number of clk0 cycles between ACT (row activate) and

PRE (precharge) command.

All values in the above table are numbers of clk0 cycles. Thus:

286

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_timing_t

● For parameters that are specified as delays in nanoseconds on a DDR-II SDRAM datasheet, the values should be computed by
dividing the datasheet parameters by the clk0 period (e.g. 7.5 ns) and rounding up to the nearest integer. An example of such a
parameter is t_rp.

● For parameters that are specified in numbers of DDR-II memory clock cycles, the datasheet values should simply be divided by
2 and rounded up. An example of such a parameter is t_dllr.

287

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_pinout_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddrsdram_pinout_t datatype

The memif_ddrsdram_pinout_t datatype is exported by the memif package, and is used to specify the physical
configuration of an instance of ddrsdram_port.

It is a record type, defined as follows:

type ddrsdram_pinout_t is
record
 family : family_t;
 flight_time : natural;
 dqs_dq_delay : boolean;
 dqs_dm_delay : boolean;
 ck_width : natural;
 cke_width : natural;
 num_phys_bank : natural;
 num_bank_bits : natural;
 num_addr_bits : natural;
end record;

This datatype can normally treated as an abstract datatype, since the user application need typically only use one of the
predefined constants of type ddrsdram_pinout_t. However, should it be necessary to create a new value, the members are
defined as follows:

Member Type Function
family family_t Specifies the FPGA family that the memory port targets.

flight_time natural Round trip DQ delay in 1/4 clock cycles.
dqs_dq_delay boolean If true, specifies that DQS PCB traces have additional delay

with respect to DQ PCB traces.
dqs_dm_delay boolean If true, specifies that DQS PCB traces have additional delay

with respect to DM PCB traces.
ck_width natural Number of CK / CK# pairs present in the rc bus.
cke_width natural Number of CKE# pins present in the rc bus.
num_phys_bank natural Specifies the number of physical banks being driven by the

memory port, which is also the number CS# pins present in the
rc bus.

num_bank_bits natural Specifies the number of BA bits (internal bank bits) on the
devices being driven by the memory port.

num_addr_bits natural Specifies the number of A bits (row / column address bank
bits) on the devices being driven by the memory port.

The value of ddrsdram_pinout_t passed in the pinout parameter of a ddrsdram_port determines the proper values to
pass for the ra_width and rc_width parameters. The relevant formulae are:

ra_width = num_bank_bits + num_addr_bits

288

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_pinout_t

rc_width = 2 * (rd_width / 8) + 2 * num_ck + cke_width + num_phys_bank + 3

289

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_pinout_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sram_pinout_t datatype

The ddr2sram_pinout_t datatype is exported by the memif package, and is used to specify the physical configuration of an
instance of ddr2sram_port.

It is a record type, defined as follows:

type ddr2sram_pinout_t is
record
 family : family_t;
 has_c : boolean;
 has_cq : boolean;
 capture_180 : boolean;
end record;

This datatype can normally treated as an abstract datatype, since the user application need typically only use one of the
predefined constants of type ddr2sram_pinout_t. However, should it be necessary to create a new value, the members are
defined as follows:

Member Type Function
family family_t Specifies the FPGA family that the memory port targets.

has_c boolean If true, the rc bus of the memory port includes the C / C# pins.
has_cq boolean If true, the rc bus of the memory port includes the CQ / CQ#

pins.
capture_180 boolean If true, the memory port uses the clk180 clock phase to

capture DQ for reads. If false, the memory port uses the clk90.

The value of ddr2sram_pinout_t passed in the pinout parameter of a ddr2sram_port determines the proper value to pass
for the rc_width parameter. The relevant formula is:

A = (rd_width / 8)
B = 2 if has_c else 0
C = 2 if has_cq else 0

rc_width = A + B + C + 5

290

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_timing_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddrsdram_timing_t datatype

The ddrsdram_timing_t datatype is exported by the memif package, and is used to specify the timing parameters of an
instance of ddrsdram_port.

It is a record type, defined as follows:

type ddrsdram_timing_t is
record
 cas_latency : natural;
 t_refresh : natural;
 t_mrd : natural;
 t_dllr : natural;
 t_rp : natural;
 t_rfc : natural;
 t_act : natural;
 t_wtr : natural;
 t_rtw : natural;
 t_rtp : natural;
 t_wtp : natural;
 t_ras : natural;
end record;

This datatype can normally treated as an abstract datatype, since the user application need typically only use one of the
predefined constants of type ddrsdram_timing_t. However, should it be necessary to create a new value, the members are
defined as follows:

Member Type Function
cas_latency natural CAS latency, in half clock cycles. The only supported value is

5, representing CL2.5.
t_refresh natural Average periodic refresh interval, in clk0 cycles.
t_mrd natural Mode register set command period, in clk0 cycles.
t_dllr natural Minimum number of clk0 cycles between DLL reset

deasserted to first memory access.
t_rp natural Minimum number of clk0 cycles between PRE (precharge) and

ACT (row activation) or REF (refresh) commands.
t_rfc natural Number of clk0 cycles for completion of a REF (refresh)

operation.
t_act natural Minimum number of clk0 cycles between ACT (row activate)

and a read or write command.
t_wtr natural Minimum number of clk0 cycles between a write and a read

command.
t_rtw natural Minimum number of clk0 cycles between a read and a write

command.
t_rtp natural Minimum number of clk0 cycles between a read and a PRE

(precharge) command.

291

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_timing_t

t_wtp natural Minimum number of clk0 cycles between a write and a PRE
(precharge) command.

t_ras natural Minimum number of clk0 cycles between ACT (row activate)
and PRE (precharge) command.

All values in the above table are numbers of clk0 cycles. Thus:

● For parameters that are specified as delays in nanoseconds on a DDR SDRAM datasheet, the values should be
computed by dividing the datasheet parameters by the clk0 period (e.g. 7.5 ns) and rounding up to the nearest integer.
An example of such a parameter is t_rp.

● For parameters that are specified in numbers of DDR memory clock cycles, the datasheet values can be used as-is. An
example of such a parameter is t_dllr.

292

ADM-XRC SDK 4.9.3 User Guide (Win32) - zbtsram_pinout_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The zbtsram_pinout_t datatype

The zbtsram_pinout_t datatype is exported by the memif package, and is used to specify the physical configuration of an
instance of zbtsram_port.

It is a record type, defined as follows:

type zbtsram_pinout_t is
record
 family : family_t;
 has_ce2 : boolean;
 has_ce2_l : boolean;
 has_cke_l : boolean;
end record;

This datatype can normally treated as an abstract datatype, since the user application need typically only use one of the
predefined constants of type zbtsram_pinout_t. However, should it be necessary to create a new value, the members are
defined as follows:

Member Type Function
family family_t Specifies the FPGA family that the memory port targets.

has_ce2 boolean If true, the rc bus of the memory port includes the CE2 pin.
has_ce2_l boolean If true, the rc bus of the memory port includes the CE2# pin.
has_cke_l boolean If true, the rc bus of the memory port includes the CKE# pin.

The value of zbtsram_pinout_t passed in the pinout parameter of a zbtsram_port determines the proper value to pass for
the rc_width parameter. The relevant formula is:

A = (rd_width / 8)
B = 1 if has_ce2 else 0
C = 1 if has_ce2_l else 0
D = 1 if has_cke_l else 0

rc_width = A + B + C + D + 4

293

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_2

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The arbiter_2 component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The arbiter_2 component is part of the memif package and enables a memory port to be shared by two clients. The component follows the
generic user interface for memory ports, so that as far each client is concerned, it appears to be communicating with a memory port.

294

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_2

The arbiter_2 module requires a client to assert its request signal reqi when the client wishes to access the memory port. In response, the
arbiter_2 (eventually) grants access to the memory port by asserting readyi. Once the client sees readyi asserted, it is permitted to issue
commands to the memory port by asserting cei, subject to the timing rules for readyi and cei as described in note 5 below.

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/arbiter_4.vhd
fpga/vhdl/common/memif/arbiter_2.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the logical address busses a, a0 and a1. 1
bias natural If unfair is true, specifies which client (0 or 1) to favor, otherwise

ignored.
2

d_width natural Width in bits of the logical data busses d, d0, d1, q, q0 and q1. 3
latency natural Specifies the number of consecutive clock cycles for which a

client is granted access to the memory port before access can be
granted to a different client.

4

ready_delay natural Specifies both the maximum number of clock cycles of delay
permitted between the deassertion of readyi and the deassertion
of cei, and the minimum number of clock cycles of delay
permitted between the assertion of readyi and the assertion of
cei.

5

registered boolean Specifies whether or not the memory port signals (ce, w etc.) are
registered in order to improve timing.

6

tag_width natural Width in bits of the tag values tag, tag0, tag1, qtag, qtag0 and
qtag1.

unfair boolean If true, specifies that the client identified by bias should be given
absolute priority over the other clients.

7

Notes:

1. The a_width parameter is the width of the logical address busses a, a0 and a1. Generally, it must be sufficiently wide to be able to
address all of the memory in a memory bank. Hence, the required value of a_width depends on what type of memory devices are in use
and their density.

2. Assuming that the unfair parameter is true, the bias parameter specifies the favored client, i.e. which client is given priority access to the
memory port. The favored client can interrupt a burst of memory accesses by one of the unfavored clients regardless of the value of
latency. A value of 0 represents client 0 and a value of 1 represents client 1. If the unfair parameter is false, however, bias is ignored and
there is no favored client.

3. The d_width parameter is the width of the logical data busses d, d0, d1, q, q0 and q1. It is generally determined by the physical data
width of the memory bank and the type of memory devices in use. DDR memory devices in particular generally have a logical data width
that is 2 or 4 times the physical data width.

4. The latency parameter is the minimum number of consecutive clock cycles that a particular client is awarded access to the memory port
without being interrupted by another unfavored client. The purpose of this parameter is to enable a reasonable efficiency to be achieved
for memory types that benefit from bursting and locality of access, for example DDR and DDR-II SDRAM. Note however, that if unfair is
true and the favored client requests access to the memory port, the favored client will be granted access to the memory port regardless of
the value of latency and regardless of any unfavored clients.

5. The ready_delay parameter specifies the timing relationship between a client's readyi signal and its cei signal. ready_delay must be at

295

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_2

least 0 and no greater than 4. The following figures illustrate this relationship:

Relationship between ready0 and ce0 when ready_delay = 0

Relationship between ready0 and ce0 when ready_delay = 1

Relationship between ready0 and ce0 when ready_delay = 2

6. If the registered parameter is false, the memory port output signals ce, w etc. are generated combinatorially from the client port input
signals ce0, w0, ce1, w1 etc. If the registered parameter is true, the memory port output signals ce, w etc. are registered before being
output. This adds one cycle of latency but is recommended for ease of timing closure. This parameter has no effect on the timing
relationship between readyi and cei.

7. If the unfair parameter is true, the client identified by the bias parameter is given priority access to the memory port. This overrides the
latency parameter, meaning that the favored client can interrupt a burst of memory accesses by one of the unfavored clients.

Signals

296

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_2

The arbiter_2 module has the following infrastructure ports:

Signal Type Function Note
clk in Clock

All other signals except rst are synchronous
to clk.

rst in Asynchronous reset.

This port should be mapped to the
asynchronous reset signal, if there is one, or
to a constant logic 0 signal if an
asynchronous reset is not required.

sr in Synchronous reset.

This port should be mapped to the
synchronous reset signal, if there is one, or
to a constant logic 0 signal if a synchronous
reset is not required.

The interface presented to clients by the arbiter_2 module is as follows:

Signal Type Function Note
a0
a1

in Client logical address

A client must place a valid address on ai when it asserts cei.

be0
be1

in Client byte enables to memory

A client must place valid byte enables on bei whenever a write
command is entered (cei and wi both asserted). A logic 1 in a
given bit of be means that the corresponding byte within bei will
be written to memory, while a zero means that the corresponding
byte will not be written to memory.

ce0
ce1

in Client command entry

A client asserts this signal to enter a new read or write command
into the memory port. When asserted, ai and wi must be valid.
When asserted along with wi, tagi must also be valid.

A client must observe the rules for assertion of cei with respect to
readyi, as illustrated by note 5 above.

Other than that, there are no restrictions on how few or how
many clock cycles cei can remain asserted. It can be pulsed for
single clk cycles, or asserted for many clk cycles (readyi
permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but the
performance of certain types of memory (for example, DDR
SDRAM) benefits from locality of access.

d0
d1

in Client data to memory

A client must place valid data on di whenever a write command is
entered (cei and wi both asserted).

q0
q1

out Client data from memory

When validi is asserted is asserted by the memory port (as a
result of a read command), qi reflects the data read from
memory.

qtag0
qtag1

out Client tag out

When validi is asserted by the memory port (as a result of a read
command), qtagi reflects the tag value that was assocated with
that read command.

297

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_2

ready0
ready1

out Client ready

When readyi is asserted, a client is permitted to assert cei.

The readyi signal for a client is asserted when two conditions are
met: the arbiter grants access to the memory port for that client,
and the memory port itself is asserting ready.

req0
req1

in Client request

A client asserts reqi in order to request access to the memory
port. When the arbiter grants access to the client, it will assert
readyi.

tag0
tag1

in Client tag in

When a client asserts cei with wi deasserted, it must also place a
valid tag on the tagi signal. When, as a result of the read
command, the memory port asserts validi, the qtagi output
reflects the tag value originally passed.

note 8

valid0
valid1

out Client read data valid

When validi is asserted by the memory port, it is as a result of a
read command (client asserted cei with wi deasserted). When
validi is asserted, both qi and qtagi are valid.

note 9

w0
w1

in Client write select

When a client asserts cei, it must place either a logic 1 on the wi
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

8. In order for a client to be able to correctly identify data from its own read commands, a client must use a set of tags that is completely
disjoint from the set of tags used by another client. For example, if client 0 uses the set of 4-bit tags { "0000", "0001", "0010" }, then no
other client may use those tags. If client 1 uses the set of tags { "0100", "0101", "0110", "0111" }, then there is no risk that client 0's reads
can be confused for client 1's reads, and vice versa.

9. The valid0 and valid1 outputs are always asserted together by arbiter_2. If one of the validi signals is asserted, then all must be
asserted. This is because it is the responsibility of each client to recognize its own tags. The arbiter_2 module does not attempt to decode
the qtag signal (see below) in order to determine which client issued the corresponding read command. The following figure illustrates a
read command issued by client 1:

All validi signals are always asserted together.

298

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_2

With reference to the above figure, client 1 issues the read and recognizes its own data by decoding qtag1. However, clients 0 must also
decode qtag0 and determine that the data does not belong to it. Depending on how many clients there are, decoding a tag may be as
simple as checking the top bit or top couple of bits of a qtagi value.

The interface presented to the shared memory port by the arbiter_2 module is as follows:

Signal Type Function Note
a out Memory port logical address

The arbiter_2 module drives this signal with a valid address
when asserts ce in order to access the memory port on behalf of
a client.

be out Memory port byte enables

The arbiter_2 module drives this signal with a valid set of byte
enables when it asserts ce and w together in order to perform a
write to the memory port on behalf of a client. A logic 1 in a given
bit of be means that the corresponding byte within be will be
written to memory, while a zero means that the corresponding
byte will not be written to memory.

ce out Memory port command entry

The arbiter_2 module asserts this signal when it must access the
memory port on behalf of a client. When arbiter_2 asserts ce, it
also drives valid values on a and w. Depending on whether or not
w is asserted along with ce, arbiter_2 also drives either tag or
be and d with valid values.

d out Memory port write data

The arbiter_2 module drives this signal with a valid set of byte
enables when it asserts ce and w together in order to perform a
write to the memory port on behalf of a client.

q in Memory port read data

This signal carries the data read from the memory port as a result
of arbiter_2 reading the memory port on behalf of a client. It is
qualified by the valid signal.

qtag in Memory port returned tag

This signal carries the tag that accompanies data read from the
memory port as a result of arbiter_2 reading the memory port on
behalf of a client. It is qualified by the valid signal.

ready in Memory port ready

When ready is asserted, the memory port is ready to accept
commands. The arbiter_2 module uses this signal in generating
the ready0 and ready1 signals for the clients.

tag out Memory port tag

The arbiter_2 module drives this signal with a valid tag when it
asserts ce with w deasserted in order to perform a read of the
memory port on behalf of a client.

valid in Memory port data valid

When valid is asserted, it is as a result of arbiter_2 performing a
read of the memory port on behalf of a client. The signals q and
qtag are both qualified by valid.

w out Memory port write select

The arbiter_2 module asserts this signal along with ce when it
performs a write to the memory port on behalf of a client.

299

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The arbiter_3 component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The arbiter_3 component is part of the memif package and enables a memory port to be shared by up to three clients. The component
follows the generic user interface for memory ports, so that as far each client is concerned, it appears to be communicating with a memory
port.

300

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

The arbiter_3 module requires a client to assert its request signal reqi when the client wishes to access the memory port. In response, the
arbiter_3 (eventually) grants access to the memory port by asserting readyi. Once the client sees readyi asserted, it is permitted to issue
commands to the memory port by asserting cei, subject to the timing rules for readyi and cei as described in note 5 below.

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/arbiter_4.vhd
fpga/vhdl/common/memif/arbiter_3.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the logical address busses a, a0, a1 and a2. 1
bias natural If unfair is true, specifies which client (0 to 2) to favor, otherwise

ignored.
2

d_width natural Width in bits of the logical data busses d, d0, d1, d2, q, q0, q1
and q2.

3

latency natural Specifies the number of consecutive clock cycles for which a
client is granted access to the memory port before access can be
granted to a different client.

4

ready_delay natural Specifies both the maximum number of clock cycles of delay
permitted between the deassertion of readyi and the deassertion
of cei, and the minimum number of clock cycles of delay
permitted between the assertion of readyi and the assertion of
cei.

5

registered boolean Specifies whether or not the memory port signals (ce, w etc.) are
registered in order to improve timing.

6

tag_width natural Width in bits of the tag values tag, tag0, tag1, tag2, qtag, qtag0,
qtag1 and qtag2. respectively.

unfair boolean If true, specifies that the client identified by bias should be given
absolute priority over the other clients.

7

Notes:

1. The a_width parameter is the width of the logical address busses a, a0, a1 and a2. Generally, it must be sufficiently wide to be able to
address all of the memory in a memory bank. Hence, the required value of a_width depends on what type of memory devices are in use
and their density.

301

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

2. Assuming that the unfair parameter is true, the bias parameter specifies the favored client, i.e. which client is given priority access to the
memory port. The favored client can interrupt a burst of memory accesses by one of the unfavored clients regardless of the value of
latency. A value of 0 represents client 0 and a value of 2 represents client 2. If the unfair parameter is false, however, bias is ignored and
there is no favored client.

3. The d_width parameter is the width of the logical data busses d, d0, d1, d2, q, q0, q1 and q2. It is generally determined by the physical
data width of the memory bank and the type of memory devices in use. DDR memory devices in particular generally have a logical data
width that is 2 or 4 times the physical data width.

4. The latency parameter is the minimum number of consecutive clock cycles that a particular client is awarded access to the memory port
without being interrupted by another unfavored client. The purpose of this parameter is to enable a reasonable efficiency to be achieved
for memory types that benefit from bursting and locality of access, for example DDR and DDR-II SDRAM. Note however, that if unfair is
true and the favored client requests access to the memory port, the favored client will be granted access to the memory port regardless of
the value of latency and regardless of any unfavored clients.

5. The ready_delay parameter specifies the timing relationship between a client's readyi signal and its cei signal. ready_delay must be at
least 0 and no greater than 4. The following figures illustrate this relationship:

Relationship between ready0 and ce0 when ready_delay = 0

Relationship between ready0 and ce0 when ready_delay = 1

302

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

Relationship between ready0 and ce0 when ready_delay = 2

6. If the registered parameter is false, the memory port output signals ce, w etc. are generated combinatorially from the client port input
signals ce0, w0, ce1, w1 etc. If the registered parameter is true, the memory port output signals ce, w etc. are registered before being
output. This adds one cycle of latency but is recommended for ease of timing closure. This parameter has no effect on the timing
relationship between readyi and cei.

7. If the unfair parameter is true, the client identified by the bias parameter is given priority access to the memory port. This overrides the
latency parameter, meaning that the favored client can interrupt a burst of memory accesses by one of the unfavored clients.

Signals

The arbiter_3 module has the following infrastructure ports:

Signal Type Function Note
clk in Clock

All other signals except rst are synchronous
to clk.

rst in Asynchronous reset.

This port should be mapped to the
asynchronous reset signal, if there is one, or
to a constant logic 0 signal if an
asynchronous reset is not required.

sr in Synchronous reset.

This port should be mapped to the
synchronous reset signal, if there is one, or
to a constant logic 0 signal if a synchronous
reset is not required.

The interface presented to clients by the arbiter_3 module is as follows:

Signal Type Function Note
a0
a1
a2

in Client logical address

A client must place a valid address on ai when it asserts cei.

be0
be1
be2

in Client byte enables to memory

A client must place valid byte enables on bei whenever a write
command is entered (cei and wi both asserted). A logic 1 in a
given bit of be means that the corresponding byte within bei will
be written to memory, while a zero means that the corresponding
byte will not be written to memory.

303

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

ce0
ce1
ce2

in Client command entry

A client asserts this signal to enter a new read or write command
into the memory port. When asserted, ai and wi must be valid.
When asserted along with wi, tagi must also be valid.

A client must observe the rules for assertion of cei with respect to
readyi, as illustrated by note 5 above.

Other than that, there are no restrictions on how few or how
many clock cycles cei can remain asserted. It can be pulsed for
single clk cycles, or asserted for many clk cycles (readyi
permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but the
performance of certain types of memory (for example, DDR
SDRAM) benefits from locality of access.

d0
d1
d2

in Client data to memory

A client must place valid data on di whenever a write command is
entered (cei and wi both asserted).

q0
q1
q2

out Client data from memory

When validi is asserted is asserted by the memory port (as a
result of a read command), qi reflects the data read from
memory.

qtag0
qtag1
qtag2

out Client tag out

When validi is asserted by the memory port (as a result of a read
command), qtagi reflects the tag value that was assocated with
that read command.

ready0
ready1
ready2

out Client ready

When readyi is asserted, a client is permitted to assert cei.

The readyi signal for a client is asserted when two conditions are
met: the arbiter grants access to the memory port for that client,
and the memory port itself is asserting ready.

req0
req1
req2

in Client request

A client asserts reqi in order to request access to the memory
port. When the arbiter grants access to the client, it will assert
readyi.

tag0
tag1
tag2

in Client tag in

When a client asserts cei with wi deasserted, it must also place a
valid tag on the tagi signal. When, as a result of the read
command, the memory port asserts validi, the qtagi output
reflects the tag value originally passed.

note 8

valid0
valid1
valid2

out Client read data valid

When validi is asserted by the memory port, it is as a result of a
read command (client asserted cei with wi deasserted). When
validi is asserted, both qi and qtagi are valid.

note 9

w0
w1
w2

in Client write select

When a client asserts cei, it must place either a logic 1 on the wi
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

8. In order for a client to be able to correctly identify data from its own read commands, a client must use a set of tags that is completely
disjoint from the set of tags used by another client. For example, if client 0 uses the set of 4-bit tags { "0000", "0001", "0010" }, then no
other client may use those tags. If client 1 uses the set of tags { "0100", "0101", "0110", "0111" }, then there is no risk that client 0's reads
can be confused for client 1's reads, and vice versa.

304

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

9. The valid0, valid1 and valid2 outputs are always asserted together by arbiter_3. If one of the validi signals is asserted, then all must be
asserted. This is because it is the responsibility of each client to recognize its own tags. The arbiter_3 module does not attempt to decode
the qtag signal (see below) in order to determine which client issued the corresponding read command. The following figure illustrates a
read command issued by client 1:

All validi signals are always asserted together.

With reference to the above figure, client 1 issues the read and recognizes its own data by decoding qtag1. However, clients 0 and 2 must
also respectively decode qtag0 and qtag2 and determine that the data does not belong to them. Depending on how many clients there
are, decoding a tag may be as simple as checking the top bit or top couple of bits of a qtagi value.

The interface presented to the shared memory port by the arbiter_3 module is as follows:

Signal Type Function Note
a out Memory port logical address

The arbiter_3 module drives this signal with a valid address
when asserts ce in order to access the memory port on behalf of
a client.

be out Memory port byte enables

The arbiter_3 module drives this signal with a valid set of byte
enables when it asserts ce and w together in order to perform a
write to the memory port on behalf of a client. A logic 1 in a given
bit of be means that the corresponding byte within be will be
written to memory, while a zero means that the corresponding
byte will not be written to memory.

ce out Memory port command entry

The arbiter_3 module asserts this signal when it must access the
memory port on behalf of a client. When arbiter_3 asserts ce, it
also drives valid values on a and w. Depending on whether or not
w is asserted along with ce, arbiter_3 also drives either tag or
be and d with valid values.

305

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_3

d out Memory port write data

The arbiter_3 module drives this signal with a valid set of byte
enables when it asserts ce and w together in order to perform a
write to the memory port on behalf of a client.

q in Memory port read data

This signal carries the data read from the memory port as a result
of arbiter_3 reading the memory port on behalf of a client. It is
qualified by the valid signal.

qtag in Memory port returned tag

This signal carries the tag that accompanies data read from the
memory port as a result of arbiter_3 reading the memory port on
behalf of a client. It is qualified by the valid signal.

ready in Memory port ready

When ready is asserted, the memory port is ready to accept
commands. The arbiter_3 module uses this signal in generating
the ready0, ready1 and ready2 signals for the clients.

tag out Memory port tag

The arbiter_3 module drives this signal with a valid tag when it
asserts ce with w deasserted in order to perform a read of the
memory port on behalf of a client.

valid in Memory port data valid

When valid is asserted, it is as a result of arbiter_3 performing a
read of the memory port on behalf of a client. The signals q and
qtag are both qualified by valid.

w out Memory port write select

The arbiter_3 module asserts this signal along with ce when it
performs a write to the memory port on behalf of a client.

306

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The arbiter_4 component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The arbiter_4 component is part of the memif package and enables a memory port to be shared by up to four clients. The component follows
the generic user interface for memory ports, so that as far each client is concerned, it appears to be communicating with a memory port.

307

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

The arbiter_4 module requires a client to assert its request signal reqi when the client wishes to access the memory port. In response, the
arbiter_4 (eventually) grants access to the memory port by asserting readyi. Once the client sees readyi asserted, it is permitted to issue
commands to the memory port by asserting cei, subject to the timing rules for readyi and cei as described in note 5 below.

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/arbiter_4.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the logical address busses a, a0, a1, a2 and a3. 1
bias natural If unfair is true, specifies which client (0 to 3) to favor, otherwise

ignored.
2

d_width natural Width in bits of the logical data busses d, d0, d1, d2, d3, q, q0,
q1, q2 and q3.

3

latency natural Specifies the number of consecutive clock cycles for which a
client is granted access to the memory port before access can be
granted to a different client.

4

ready_delay natural Specifies both the maximum number of clock cycles of delay
permitted between the deassertion of readyi and the deassertion
of cei, and the minimum number of clock cycles of delay
permitted between the assertion of readyi and the assertion of
cei.

5

308

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

registered boolean Specifies whether or not the memory port signals (ce, w etc.) are
registered in order to improve timing.

6

tag_width natural Width in bits of the tag values tag, tag0, tag1, tag2, tag3, qtag,
qtag0, qtag1, qtag2 and qtag3. respectively.

unfair boolean If true, specifies that the client identified by bias should be given
absolute priority over the other clients.

7

Notes:

1. The a_width parameter is the width of the logical address busses a, a0, a1, a2 and a3. Generally, it must be sufficiently wide to be able to
address all of the memory in a memory bank. Hence, the required value of a_width depends on what type of memory devices are in use
and their density.

2. Assuming that the unfair parameter is true, the bias parameter specifies the favored client, i.e. which client is given priority access to the
memory port. The favored client can interrupt a burst of memory accesses by one of the unfavored clients regardless of the value of
latency. A value of 0 represents client 0 and a value of 3 represents client 3. If the unfair parameter is false, however, bias is ignored and
there is no favored client.

3. The d_width parameter is the width of the logical data busses d, d0, d1, d2, d3, q, q0, q1, q2 and q3. It is generally determined by the
physical data width of the memory bank and the type of memory devices in use. DDR memory devices in particular generally have a
logical data width that is 2 or 4 times the physical data width.

4. The latency parameter is the minimum number of consecutive clock cycles that a particular client is awarded access to the memory port
without being interrupted by another unfavored client. The purpose of this parameter is to enable a reasonable efficiency to be achieved
for memory types that benefit from bursting and locality of access, for example DDR and DDR-II SDRAM. Note however, that if unfair is
true and the favored client requests access to the memory port, the favored client will be granted access to the memory port regardless of
the value of latency and regardless of any unfavored clients.

5. The ready_delay parameter specifies the timing relationship between a client's readyi signal and its cei signal. ready_delay must be at
least 0 and no greater than 4. The following figures illustrate this relationship:

Relationship between ready0 and ce0 when ready_delay = 0

Relationship between ready0 and ce0 when ready_delay = 1

309

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

Relationship between ready0 and ce0 when ready_delay = 2

6. If the registered parameter is false, the memory port output signals ce, w etc. are generated combinatorially from the client port input
signals ce0, w0, ce1, w1 etc. If the registered parameter is true, the memory port output signals ce, w etc. are registered before being
output. This adds one cycle of latency but is recommended for ease of timing closure. This parameter has no effect on the timing
relationship between readyi and cei.

7. If the unfair parameter is true, the client identified by the bias parameter is given priority access to the memory port. This overrides the
latency parameter, meaning that the favored client can interrupt a burst of memory accesses by one of the unfavored clients.

Signals

The arbiter_4 module has the following infrastructure ports:

Signal Type Function Note
clk in Clock

All other signals except rst are synchronous
to clk.

rst in Asynchronous reset.

This port should be mapped to the
asynchronous reset signal, if there is one, or
to a constant logic 0 signal if an
asynchronous reset is not required.

sr in Synchronous reset.

This port should be mapped to the
synchronous reset signal, if there is one, or
to a constant logic 0 signal if a synchronous
reset is not required.

The interface presented to clients by the arbiter_4 module is as follows:

Signal Type Function Note
a0
a1
a2
a3

in Client logical address

A client must place a valid address on ai when it asserts cei.

be0
be1
be2
be3

in Client byte enables to memory

A client must place valid byte enables on bei whenever a write
command is entered (cei and wi both asserted). A logic 1 in a
given bit of be means that the corresponding byte within bei will
be written to memory, while a zero means that the corresponding
byte will not be written to memory.

310

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

ce0
ce1
ce2
ce3

in Client command entry

A client asserts this signal to enter a new read or write command
into the memory port. When asserted, ai and wi must be valid.
When asserted along with wi, tagi must also be valid.

A client must observe the rules for assertion of cei with respect to
readyi, as illustrated by note 5 above.

Other than that, there are no restrictions on how few or how
many clock cycles cei can remain asserted. It can be pulsed for
single clk cycles, or asserted for many clk cycles (readyi
permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but the
performance of certain types of memory (for example, DDR
SDRAM) benefits from locality of access.

d0
d1
d2
d3

in Client data to memory

A client must place valid data on di whenever a write command is
entered (cei and wi both asserted).

q0
q1
q2
q3

out Client data from memory

When validi is asserted is asserted by the memory port (as a
result of a read command), qi reflects the data read from
memory.

qtag0
qtag1
qtag2
qtag3

out Client tag out

When validi is asserted by the memory port (as a result of a read
command), qtagi reflects the tag value that was assocated with
that read command.

ready0
ready1
ready2
ready3

out Client ready

When readyi is asserted, a client is permitted to assert cei.

The readyi signal for a client is asserted when two conditions are
met: the arbiter grants access to the memory port for that client,
and the memory port itself is asserting ready.

req0
req1
req2
req3

in Client request

A client asserts reqi in order to request access to the memory
port. When the arbiter grants access to the client, it will assert
readyi.

tag0
tag1
tag2
tag3

in Client tag in

When a client asserts cei with wi deasserted, it must also place a
valid tag on the tagi signal. When, as a result of the read
command, the memory port asserts validi, the qtagi output
reflects the tag value originally passed.

note 8

valid0
valid1
valid2
valid3

out Client read data valid

When validi is asserted by the memory port, it is as a result of a
read command (client asserted cei with wi deasserted). When
validi is asserted, both qi and qtagi are valid.

note 9

w0
w1
w2
w3

in Client write select

When a client asserts cei, it must place either a logic 1 on the wi
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

8. In order for a client to be able to correctly identify data from its own read commands, a client must use a set of tags that is completely
disjoint from the set of tags used by another client. For example, if client 0 uses the set of 4-bit tags { "0000", "0001", "0010" }, then no
other client may use those tags. If client 1 uses the set of tags { "0100", "0101", "0110", "0111" }, then there is no risk that client 0's reads

311

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

can be confused for client 1's reads, and vice versa.

9. The valid0, valid1, valid2 and valid3 outputs are always asserted together by arbiter_4. If one of the validi signals is asserted, then all
must be asserted. This is because it is the responsibility of each client to recognize its own tags. The arbiter_4 module does not attempt
to decode the qtag signal (see below) in order to determine which client issued the corresponding read command. The following figure
illustrates a read command issued by client 1:

All validi signals are always asserted together.

With reference to the above figure, client 1 issues the read and recognizes its own data by decoding qtag1. However, clients 0, 2 and 3
must also respectively decode qtag0, qtag2 and qtag3 and determine that the data does not belong to them. Depending on how many
clients there are, decoding a tag may be as simple as checking the top bit or top couple of bits of a qtagi value.

The interface presented to the shared memory port by the arbiter_4 module is as follows:

Signal Type Function Note
a out Memory port logical address

The arbiter_4 module drives this signal with a valid address
when asserts ce in order to access the memory port on behalf of
a client.

be out Memory port byte enables

The arbiter_4 module drives this signal with a valid set of byte
enables when it asserts ce and w together in order to perform a
write to the memory port on behalf of a client. A logic 1 in a given
bit of be means that the corresponding byte within be will be
written to memory, while a zero means that the corresponding
byte will not be written to memory.

312

ADM-XRC SDK 4.9.3 User Guide (Win32) - arbiter_4

ce out Memory port command entry

The arbiter_4 module asserts this signal when it must access the
memory port on behalf of a client. When arbiter_4 asserts ce, it
also drives valid values on a and w. Depending on whether or not
w is asserted along with ce, arbiter_4 also drives either tag or
be and d with valid values.

d out Memory port write data

The arbiter_4 module drives this signal with a valid set of byte
enables when it asserts ce and w together in order to perform a
write to the memory port on behalf of a client.

q in Memory port read data

This signal carries the data read from the memory port as a result
of arbiter_4 reading the memory port on behalf of a client. It is
qualified by the valid signal.

qtag in Memory port returned tag

This signal carries the tag that accompanies data read from the
memory port as a result of arbiter_4 reading the memory port on
behalf of a client. It is qualified by the valid signal.

ready in Memory port ready

When ready is asserted, the memory port is ready to accept
commands. The arbiter_4 module uses this signal in generating
the ready0, ready1, ready2 and ready3 signals for the clients.

tag out Memory port tag

The arbiter_4 module drives this signal with a valid tag when it
asserts ce with w deasserted in order to perform a read of the
memory port on behalf of a client.

valid in Memory port data valid

When valid is asserted, it is as a result of arbiter_4 performing a
read of the memory port on behalf of a client. The signals q and
qtag are both qualified by valid.

w out Memory port write select

The arbiter_4 module asserts this signal along with ce when it
performs a write to the memory port on behalf of a client.

313

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sdram_port component (Virtex-4 / Virtex-5 only)

Overview

HDL source code

Parameters

Signals

Row / column address selection

Performance

Overview

The ddr2sdram_port component is part of the memif package and implements an interface to a bank of DDR-II SDRAM
memory. This component follows the generic user interface for memory ports, but also has a few additional parameters
and sideband signals, as shown in the following figure:

314

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/cmd_fifo.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_iserdes_dq.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_oserdes_dq.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_oserdes_dqs.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_clkfw.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_ctrl.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_dm.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_dq_in.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_dq_in_dc.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_dq_out.vhd

315

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_dqs_in.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_dqs_out.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_training_dc.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_init.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_odt.vhd
fpga/vhdl/common/memif/ddr2sdram/ddr2sdram_port.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
auto_train boolean If true, the memory port automatically trains itself after

reset is deasserted. If false, the memory port does not
train itself. This parameter has a default value of true,
and in normal usage an application should rely on the
default value, and not map it to any particular value.

d_width natural Width in bits of the port data in and out, d and q
respectively.

3

pinout ddr2sdram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map
it to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

timing ddr2sdram_timing_t This value specifies the timing of the memory port. For
convenience, an application may map it to one of the
predefined constants.

Notes:

1. The memory device address bus, ra, is composed of two fields in this memory port, with the widths of each field
specified by the num_addr_bits and num_bank_bits of the pinout parameter. Therefore, ra_width is the sum of these
two values. The following figure illustrates this for the case where num_addr_bits = 15 and num_bank_bits = 3:

Note that ra_width and pinout are properties of the printed circuit board, indicating how many wires are physically
present. On the other hand, the DDR-II SDRAM devices actually fitted to the printed circuit board may have less pins
connected. The purpose of the row, col, bank and pbank signals is to specify at runtime the properties of the DDR-II
SDRAM devices actually in use.

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates this for the case where pinout is

316

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

mapped to the predefined constant ddr2sdram_pinout_admxrc5lx and rd_width is 32, which puts rc_width at 22:

The order of the fields within rc is always the same; only the field widths may differ from one model to another.

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR-II SDRAM bank. This
memory port transfers four words of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being four times
rd_width. However, other values can be passed for d_width:

❍ If d_width > (4 * rd_width), then the memory port simply truncates d internally so that its width is (4 *
rd_width). Data read from the memory devices is zero-extended so that its width is d_width before being
returned on q.

❍ d_width = (4 * rd_width) is the optimal usage case.

❍ If d_width < (4 * rd_width), then the memory port zero-extends d internally so that its width is (4 *
rd_width).

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a DDR-II SDRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider two physical banks of DDR-II SDRAM devices that use 13 row bits,
10 column bits and 3 internal bank address bits. The number of address bits is:

13 (row address bits) +
10 (column address bits) +
3 (internal bank address bits) +
1 (2 physical banks / CS# pins) =

27

We must now subtract 2, because "logical" memory locations are 4 times as wide as the physical memory locations, due
to transferring 4 words on the DQ pins for every command entered on ce. Hence a_width for this configuration should
be at least 25. When a_width is larger than actually required, the top few unused bits of a are ignored by the memory
port. In practice, one should determine the value of a_width assuming that the largest possible memory devices are in
use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note

317

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device as a
linear array of words of width d_width, this address is a logical
address, rather than anything resembling what one might see on the
ra bus.

bank in Bank address width select (sideband signal)

This input selects number of internal bank address bits for the DDR-
II SDRAM devices in use:
00 => no internal bank address bits
01 => 1 internal bank address bits
10 => 2 internal bank address bits
11 => 3 internal bank address bits

6, 8

be in Byte enables to memory

User code must place valid byte enables on be whenever a write
command is entered (ce and w both asserted). A logic 1 in a given
bit of be means that the corresponding byte within be will be written
to memory, while a zero means that the corresponding byte will not
be written to memory.

ce in Command entry

User code asserts this signal to enter a new read or write command
into the memory port. When asserted, a and w must be valid. When
asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how many
clock cycles ce can remain asserted. It can be pulsed for single clk0
cycles, or asserted for many clk0 cycles (ready permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but refer to the
section below for a discussion of how to maximize performance.

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.

7

clk2x0 in High speed clock, phase 0

This clock must be in phase with clk0 but double the frequency.

7

clk2x90 in High speed clock, phase 90

This clock must the same frequency as clk2x0 but must its phase
must be 90 degrees ahead of clk2x0.

7

clk45 in Auxilliary clock, phase 45

This clock must the same frequency as clk0 but must its phase
must be 45 degrees ahead of clk0.

7

col in Column address width select (sideband signal)

This input selects the number of column address bits to use. Along
with the row input, it specifies the row/column geometry of the DDR-
II SDRAM device, as defined here.

6, 8

318

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

d in Data to memory

User code must place valid data on d whenever a write command is
entered (ce and w both asserted).

pbank in Physical bank select (sideband signal)

This input selects the number of physical banks (chip-selects) in use
for the DDR-II SDRAM devices:
00 => 1 physical bank / 1 CS#
01 => 2 physical bank / 2 CS#
10 => 4 physical bank / 4 CS#
11 => 8 physical bank / 8 CS#

6, 8

q out Data from memory

When valid is asserted by the memory port (as a result of a read
command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a read
command), qtag reflects the tag value that was assocated with that
read command.

ready out Port ready

When the memory port asserts ready, user code is permitted to
assert ce. Certain types of memory port may unconditionally assert
ready, whereas other types of memory port may sometimes
deassert ready depending on several factors.

For example, a DDR-II SDRAM port is capable of buffering a certain
number of commands internally, but if its command buffer is filled
while it executes a refresh cycle, it will deassert ready.

row in Row address width select (sideband signal)

This input selects the number of row address bits to use. Along with
the col input, it specifies the row/column geometry of the DDR-II
SDRAM device, as defined here.

6, 8

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w deasserted, it must also place a
valid tag on the tag signal. When, as a result of the read command,
the memory port asserts valid, the qtag output reflects the tag value
originally passed. This is intended to facilitate sharing of a memory
port between several data sources or data sinks, where each source
or sink recognizes a particular set of tags.

trained out Training success flag (sideband signal)

When the memory port asserts trained, it indicates that training of
the memory port was successful. When deasserted, either training
is not yet complete or training was unsuccessful.

5

319

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

valid out Read data valid

When the memory port asserts valid, it does so as a result of a read
command (user code asserted ce with w deasserted). When valid
is asserted, both q and qtag are valid.

w in Write select

When user code asserts ce, it must place either a logic 1 on the w
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

5. The delay from deassertion of reset to completion of training trained asserted) may be as long as 350ms. This is
because a large post-reset delay is used in order to ensure that the memory port properly initializes the DDR-II SDRAM
devices that it is controlling after power-on.

For simulation, however, the memory port uses a much smaller post-reset delay, with the result that the delay from
deassertion of reset to completion of training is dominated by the time spent training. This is in the order of 150
microseconds of simulation time at a clk0 frequency of 133MHz.

6. Certain properties of a DDR-II SDRAM device, such as number of row and column address bits, might not be known at
the time of building an FPGA design. Therefore, this memory port allows certain properties to be specified "at runtime".
An application might interrogate some Vital Product Data in order to determine the proper values to drive on the row,
col, bank, and pbank signals.

Alternatively, if the designer can guarantee that the properties of the DDR-II SDRAM devices are known when building
the FPGA design, these signals can be driven with constant values. This has the advantage of lower slice utilization.

In any case, for reliable operation, these signals must not change unless the memory port is idle.

The purpose of these signals should not be confused with that of the pinout parameter. The pinout parameter specifies
properties of the circuit board on which the FPGA and DDR-II SDRAM devices are mounted. In general, the number of
physical wires on the circuit board provided for addressing the DDR-II SDRAM devices can be greater than the number
actually used by a particular DDR-II SDRAM device.

7. The phase and frequency relationships between the four clock phases are illustrated by the following figure:

Also shown is the DDR-II SDRAM clock, CK. Its frequency is the same as clk2x0, but its phase is indeterminate.

8. For correction operation, all sideband inputs must be static while the memory port is not idle.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function

320

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s). For devices with a nontrivial
addressing scheme, this address may be composed of various
fields. These fields are bundled together into the ra bus so
that, for the most part, the user application need not care what
they are.

Refer to note 1 for the mapping of the ra bus to device pins.

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, four
words are transferred on rd, which determines the relationship
between the rd_width and d_width parameters. Refer to note
3 for details.

Row / column address selection

The row and col sideband inputs together determine the number address bits used for row and column addresses, as in the
following table:

row[1:0] col[1:0] No. of row bits used No. of column bits used
00 00 12 8
00 01 12 9
00 10 12 10
00 11 12 11
01 00 13 9
01 01 13 10
01 10 13 11
01 11 13 12
10 00 14 10
10 01 14 11
10 10 14 12
10 11 14 13
11 00 15 11
11 01 15 12
11 10 15 13
11 11 15 14

Performance

321

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sdram_port

This memory port features an internal command buffer capable of buffering about 10 commands before deasserting the
ready signal. Most of the time, the rate of consumption of commands from the command buffer is at least as fast as
production of new commands by the user application. Periodically, however, the memory port must refresh the DDR-II
SDRAM devices it is controlling, which may result in an accumulated backlog of buffered commands, and deassertion of the
ready signal. Certain usage patterns, such as alternating between read and write commands, may also have the same
effect.

The architecture of DDR-II SDRAM device consists of a number of internal banks which are in turn divided into a number of
pages. At any moment, a given bank may be "closed", or may have a given page "open". Opening or closing a bank takes a
finite number of clock cycles. In this memory port, the following performance penalties exist for memory accesses falling into
the following patterns:

● Several clk0 cycles for changing from read to write or write to read within the same page and bank.

● In the order of 8 clk0 cycles for consecutive accesses that fall within different pages of the same bank, or within different
banks.

● In the order of 8-20 clk0 cycles for an access that occurs while the memory port is performing a refresh.

Latency for read commands is nondeterministic due to the penalties described above, particularly because of the need to
refresh, but the best-case latency from entry of a read command (ce asserted with w deasserted) to valid asserted is
approximately 13 clk0 cycles. This can be modified somewhat by tightening or relaxing the timing as specified by the timing
parameter. Worst case latencies may be computed by adding the above penalties to the best-case latency.

The optimal usage pattern for this memory port is blocks of accesses of the same type (read or write) to the same bank and
page. A linearly incrementing address is an example of an optimal usage pattern. When used optimally, this memory port
with 32 physical data bits (rd is 32) operating at a clk0 frequency of 133MHz can sustain approximately 2GB/s.

322

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddrsdram_port_v2 component

Overview

HDL source code

Parameters

Signals

Row / column address selection

Performance

Overview

The ddrsdram_port_v2 component is part of the memif package and implements an interface to a bank of DDR SDRAM
memory. A related component is the ddrsdram_training_v2 component, which provides infrastructure for training one or
more instances of ddrsdram_port_v2. This component follows the generic user interface for memory ports, but also has a
few additional parameters and sideband signals, as shown in the following figure:

323

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd

324

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

fpga/vhdl/common/memif/cmd_fifo.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_clkfw.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_ctrl.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_data.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_dqs.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_dm.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_init.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_port_v2.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
auto_train boolean If true, the memory port automatically trains itself after

reset is deasserted. If false, the memory port does not
train itself. This parameter has a default value of true, and
in normal usage an application should rely on the default
value, and not map it to any particular value.

d_width natural Width in bits of the port data in and out, d and q
respectively.

3

pinout ddrsdram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map it
to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

timing ddrsdram_timing_t This value specifies the timing of the memory port. For
convenience, an application may map it to one of the
predefined constants.

Notes:

1. The memory device address bus, ra, is composed of two fields in this memory port, with the widths of each field
specified by the num_addr_bits and num_bank_bits of the pinout parameter. Therefore, ra_width is the sum of these
two values. The following figure illustrates this for the case where num_addr_bits = 13 and num_bank_bits = 2:

Note that ra_width and pinout are properties of the printed circuit board, indicating how many wires are physically
present. On the other hand, the DDR SDRAM devices actually fitted to the printed circuit board may have less pins
connected. The purpose of the row, col, bank and pbank signals is to specify at runtime the properties of the DDR
SDRAM devices actually in use.

325

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates an example that puts rc_width at 17:

The order of the fields within rc is always the same; only the field widths may differ from one model to another.

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR SDRAM bank. This
memory port transfers two words of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being twice rd_width.
However, other values can be passed for d_width:

❍ If d_width > (2 * rd_width), then the memory port simply truncates d internally so that its width is (2 *
rd_width). Data read from the memory devices is zero-extended so that its width is d_width before being
returned on q.

❍ d_width = (2 * rd_width) is the optimal usage case.

❍ If d_width < (2 * rd_width), then the memory port zero-extends d internally so that its width is (2 *
rd_width).

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a DDR SDRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider two physical banks of DDR SDRAM devices that use 13 row bits,
10 column bits and 2 internal bank address bits. The number of address bits is:

13 (row address bits) +
10 (column address bits) +
2 (internal bank address bits) +
1 (2 physical banks / CS# pins) =

26

We must now subtract 1, because "logical" memory locations are twice as wide as the physical memory locations, due
to transferring two words on the DQ pins for every command entered on ce. Hence a_width for this configuration should
be at least 25. When a_width is larger than actually required, the top few unused bits of a are ignored by the memory
port. In practice, one should determine the value of a_width assuming that the largest possible memory devices are in
use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note

326

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device as a
linear array of words of width d_width, this address is a logical
address, rather than anything resembling what one might see on the
ra bus.

bank in Bank address width select (sideband signal)

This input selects number of internal bank address bits for the DDR
SDRAM devices in use:
00 => no internal bank address bits
01 => 1 internal bank address bits
10 => 2 internal bank address bits
11 => 3 internal bank address bits

6, 8

be in Byte enables to memory

User code must place valid byte enables on be whenever a write
command is entered (ce and w both asserted). A logic 1 in a given
bit of be means that the corresponding byte within be will be written
to memory, while a zero means that the corresponding byte will not
be written to memory.

ce in Command entry

User code asserts this signal to enter a new read or write command
into the memory port. When asserted, a and w must be valid. When
asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how many
clock cycles ce can remain asserted. It can be pulsed for single clk0
cycles, or asserted for many clk0 cycles (ready permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but refer to the
section below for a discussion of how to maximize performance.

cedge (training
signal)

in Capture edge

This signal is normally driven directly by an instance of the
component ddrsdram_training_v2, and contains information
instructing ddrsdram_port_v2 how to retime the data captured from
the SSRAM device using clkc0 and clkc180 into the clk0 domain.

10

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.

7

clk90 in High speed clock, phase 90

This clock must be the same frequency as clk0 but lagging by 90
degrees.

7

clk180 in High speed clock, phase 180

This clock must be the same frequency as clk0 but lagging by 180
degrees.

7

clk270 in High speed clock, phase 270

This clock must be the same frequency as clk0 but lagging by 270
degrees.

7

327

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

clkc0 in Capture clock, phase 0

This clock is normally driven directly by the component
ddrsdram_training_v2 and is used by ddrsdram_port_v2 to
capture data read from the SDRAM device in the FPGA's IOBs.

7, 11

clkc180 in Capture clock, phase 180

This clock is normally driven directly by the component
ddrsdram_training_v2 and is used by ddrsdram_port_v2 to
capture data read from the SDRAM device in the FPGA's IOBs.

7, 11

col in Column address width select (sideband signal)

This input selects the number of column address bits to use. Along
with the row input, it specifies the row/column geometry of the DDR
SDRAM device, as defined here.

6, 8

d in Data to memory

User code must place valid data on d whenever a write command is
entered (ce and w both asserted).

pbank in Physical bank select (sideband signal)

This input selects the number of physical banks (chip-selects) in use
for the DDR SDRAM devices:
00 => 1 physical bank / 1 CS#
01 => 2 physical bank / 2 CS#
10 => 4 physical bank / 4 CS#
11 => 8 physical bank / 8 CS#

6, 8

q out Data from memory

When valid is asserted by the memory port (as a result of a read
command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a read
command), qtag reflects the tag value that was assocated with that
read command.

ready out Port ready

When the memory port asserts ready, user code is permitted to
assert ce. Certain types of memory port may unconditionally assert
ready, whereas other types of memory port may sometimes
deassert ready depending on several factors.

For example, a DDR SDRAM port is capable of buffering a certain
number of commands internally, but if its command buffer is filled
while it executes a refresh cycle, it will deassert ready.

regd in Registered / unregistered select (sideband signal)

This input selects whether the memory port expects registered DDR
SDRAM memory or unregistered DDR SDRAM memory:

0 => unregistered
1 => registered

6, 8

row in Row address width select (sideband signal)

This input selects the number of row address bits to use. Along with
the col input, it specifies the row/column geometry of the DDR
SDRAM device, as defined here.

6, 8

328

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w deasserted, it must also place a
valid tag on the tag signal. When, as a result of the read command,
the memory port asserts valid, the qtag output reflects the tag value
originally passed. This is intended to facilitate sharing of a memory
port between several data sources or data sinks, where each source
or sink recognizes a particular set of tags.

tstcomp
(training
signal)

in Capture edge

This signal is normally driven directly by an instance of the
component ddrsdram_training_v2, and informs the
ddrsdram_port_v2 that training is complete and that normal
operation can begin.

10

tstdo (training
signal)

in Do readback test

This signal is normally driven directly by an instance of the
component ddrsdram_training_v2, and instructs the
ddrsdram_port_v2 to perform a readback experiment during the
training sequence.

10

tstdone
(training
signal)

out Done readback test

This signal is normally connected directly to an instance of the
component ddrsdram_training_v2, and informs the
ddrsdram_training_v2 instance that the ddrsdram_port_v2 has
completed a readback experiment (during the training sequence). It
qualifies the tstok output.

10

tstok (training
signal)

out Readback test OK

This signal is normally connected directly to an instance of the
component ddrsdram_training_v2, and informs the
ddrsdram_training_v2 instance whether or not the most recent
readback experiment was successful. It is qualified by the tstdone
output.

10

valid out Read data valid

When the memory port asserts valid, it does so as a result of a read
command (user code asserted ce with w deasserted). When valid
is asserted, both q and qtag are valid.

w in Write select

When user code asserts ce, it must place either a logic 1 on the w
signal in order to select a write command, or 0 in order to select a
read command.

x4 in X4 device select (sideband signal)

This input selects whether devices with 8- or 16-bit data or devices
with 4-bit data are in use. Generally applicable only to DIMM DDR
SDRAM memory. In this version of the memory port, it must be
zero.

9

Notes:

329

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

5. The delay from deassertion of reset to completion of training (trained asserted) may be as long as 350ms. This is
because a large post-reset delay is used in order to ensure that the memory port properly initializes the DDR SDRAM
devices that it is controlling after power-on.

For simulation, however, the memory port uses a much smaller post-reset delay, with the result that the delay from
deassertion of reset to completion of training is dominated by the time spent training. This is in the order of 150
microseconds of simulation time at a clk0 frequency of 133MHz.

6. Certain properties of a DDR SDRAM device, such as number of row and column address bits, might not be known at the
time of building an FPGA design. Therefore, this memory port allows certain properties to be specified "at runtime". An
application might interrogate some Vital Product Data in order to determine the proper values to drive on the row, col,
bank, and pbank signals.

Alternatively, if the designer can guarantee that the properties of the DDR SDRAM devices are known when building the
FPGA design, these signals can be driven with constant values. This has the advantage of lower slice utilization.

In any case, for reliable operation, these signals must not change unless the memory port is idle.

The purpose of these signals should not be confused with that of the pinout parameter. The pinout parameter specifies
properties of the circuit board on which the FPGA and DDR SDRAM devices are mounted. In general, the number of
physical wires on the circuit board provided for addressing the DDR SDRAM devices can be greater than the number
actually used by a particular DDR SDRAM device.

7. The phase and frequency relationships between the four clock phases are illustrated by the following figure:

Also shown are the related clocks: the DDR-II SDRAM clock pair, CK and CK#, and the capture clock pair clkc0 and
clkc180. Their frequencies are the same as clk0, but their phases are indeterminate with respect to clk0.

8. For correction operation, all sideband inputs must be static while the memory port is not idle.

9. In this version, the x4 sideband input must be driven with a constant.

10. The connections between an instance of the training module ddrsdram_training_v2 and an instance of
ddrsdram_port_v2 form a private communication channel. The information carried by this channel is generally not of
interest to the user, but brief descriptions of each signal in the channel are provided for information only. Training of
ddrsdram_port_v2, from deassertion of reset to completion of training (tstcomp asserted) takes no more than 1
millisecond at a clk0 frequency of 133MHz.

11. The ddrsdram_training_v2 component works by varying the phase of the capture clocks clkc0 and clkc180 in order to
find a window in which data from the SSRAM device's DQ pins can be reliably captured. Hence these clocks are the
same frequency as clk0 etc. but the required phase relationship is discovered during the training sequence.

330

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function
ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s). For devices with a nontrivial
addressing scheme, this address may be composed of various
fields. These fields are bundled together into the ra bus so
that, for the most part, the user application need not care what
they are.

Refer to note 1 for the mapping of the ra bus to device pins.

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, two
words are transferred on rd, which determines the relationship
between the rd_width and d_width parameters. Refer to note
3 for details.

Row / column address selection

The row and col sideband inputs together determine the number address bits used for row and column addresses, as in the
following table:

row[1:0] col[1:0] No. of row bits used No. of column bits used
00 00 12 8
00 01 12 9
00 10 12 10
00 11 12 11
01 00 13 9
01 01 13 10
01 10 13 11
01 11 13 12
10 00 14 10
10 01 14 11
10 10 14 12
10 11 14 13
11 00 15 11
11 01 15 12
11 10 15 13
11 11 15 14

331

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_port_v2

Performance

This memory port features an internal command buffer capable of buffering about 10 commands before deasserting the
ready signal. Most of the time, the rate of consumption of commands from the command buffer is at least as fast as
production of new commands by the user application. Periodically, however, the memory port must refresh the DDR SDRAM
devices it is controlling, which may result in an accumulated backlog of buffered commands, and deassertion of the ready
signal. Certain usage patterns, such as alternating between read and write commands, may also have the same effect.

The architecture of DDR SDRAM device consists of a number of internal banks which are in turn divided into a number of
pages. At any moment, a given bank may be "closed", or may have a given page "open". Opening or closing a bank takes a
finite number of clock cycles. In this memory port, the following performance penalties exist for memory accesses falling into
the following patterns:

● Several clk0 cycles for changing from read to write or write to read within the same page and bank.

● In the order of 8 clk0 cycles for consecutive accesses that fall within different pages of the same bank, or within different
banks.

● In the order of 8-20 clk0 cycles for an access that occurs while the memory port is performing a refresh.

Latency for read commands is nondeterministic due to the penalties described above, particularly because of the need to
refresh, but the best-case latency from entry of a read command (ce asserted with w deasserted) to valid asserted is
approximately 11 clk0 cycles. This can be modified somewhat by tightening or relaxing the timing as specified by the timing
parameter. Worst case latencies may be computed by adding the above penalties to the best-case latency.

The optimal usage pattern for this memory port is blocks of accesses of the same type (read or write) to the same bank and
page. A linearly incrementing address is an example of an optimal usage pattern. When used optimally, this memory port
with 32 physical data bits (rd is 32) operating at a clk0 frequency of 133MHz can sustain approximately 1GB/s.

332

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_training_v2

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddrsdram_training_v2 component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The ddrsdram_training_v2 component is part of the memif package and implements the training algorithm for one or more
instances of the ddrsdram_port_v2 component.

This module works by sweeping the phase of a capture clock clkc0, which clocks data from the memory devices into the
FPGA's IOBs, from -180 degrees to +180 degrees. During the sweep, the associated memory ports that are being trained are
instructed to perform readback experiments in order to find a window where data can be reliably captured from the memory
devices. A number of sweeps are performed because, as well as varying the phase, the amount of coarse-grained delay must
also be varied in order to determine the delay between issuing a command to the memory devices and valid data being
captured. The training algorithm can be expressed in pseudocode as:

trained := 0
tstcomp := 0
best_cedge := invalid
best_window := 0
best_phase := invalid

for cedge in 0 to 7 loop
 window_start := invalid
 window_stop := invalid
 in_window := false

333

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_training_v2

 for phase in -180 to +180 do
 set phase of clkc0 to 'phase'
 instruct memory ports to perform readback experiment via 'tstdo' signal
 if 'tstdone' and 'tstok' indicate experiment was successful for all memory ports then
 if not in_window then
 // Start of window detected
 window_start := phase
 in_window := true
 end if
 else
 if in_window then
 // End of window detected
 window_stop := phase
 window_length := window_stop - window_start
 if window_length > some_minimum_window and window_length > best_window
 // This is the new best window
 best_window := window_length
 best_cedge := cedge
 best_phase := (window_stop + window_start) / 2
 end if
 in_window := false
 end if
 end if
 end if
 if in_window then
 // Handle special case where we're still inside window at end of phase sweep
 window_stop := +180
 window_length := window_stop - window_start
 if window_length > some_minimum_window and window_length > best_window
 // This is the new best window
 best_window := window_length
 best_cedge := cedge
 best_phase := (window_stop + window_start) / 2
 end if
 end if
end loop

// Training completed
tstcomp := 1
if best_window > 0 then
 trained := 1
 // Training completed and successful, so set operating parameters
 set phase of clkc0 to 'best_phase'
 cedge := best_cedge
end if

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/ddrsdram_v2/ddrsdram_training_v2.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

334

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_training_v2

Parameters

Name Type Function Note
num_port natural This is the width in bits of the tstdone and tstok ports. 1

Notes:

1. A single instance of ddrsdram_training_v2 can be used to train more than one instance of ddrsdram_port_v2,
provided that the banks of memory are reasonably well-matched. When instantiating ddrsdram_training_v2, the value of
the num_port parameter is the number of instances of ddrsdram_port_v2 whose training will be controlled by that
instance of ddrsdram_training_v2.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
cedge in Capture edge

This should be connected directly to the cedge ports of one or more
instances of ddrsdram_port_v2, and carries information about how
to retime data captured using the clkc0 and clkc180 clocks into the
memory ports' user interface clock domain.

clk in Clock

All ports except rst, clkc, clkc0 and clkc180 are synchronous to clk.

2, 3

clkc in Capture clock in

This clock is used to generate the two capture clock phases clkc0
and clkc180.

4

clkc0 out Capture clock phase 0

This clock should be connected directly to the clkc0 ports of one or
more instances of ddrsdram_port_v2, and is used to clock data
read from the DDR SDRAM devices into the FPGA's IOBs.

4

clkc180 out Capture clock phase 180

This clock is the same frequency as clkc0 but 180 degrees out of
phase, and should be connected directly to the clkc180 ports of one
or more instances of ddrsdram_port_v2. It is used to clock data
read from the DDR SDRAM devices into the FPGA's IOBs.

4

rst in Asychronous reset

Asserting this signal returns the module to its default state, so that it
will begin the training sequence when rst is deasserted. This port
may be tied to logic 0 if not required.

sr in Sychronous reset

Asserting this signal returns the module to its default state, so that it
will begin the training sequence when sr is deasserted. This port
may be tied to logic 0 if not required.

335

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddrsdram_training_v2

tstcomp out Training complete to memory port

This signal should be connected directly to the tstcomp ports of one
or more instances of ddrsdram_port_v2, and notifies those ports
that training is complete and normal operation should begin.

tstdo out Do readback experiment

This signal should be connected directly to the tstdo ports of one or
more instances of ddrsdram_port_v2, and instructs those ports to
perform a readback experiment (as part of the training sequence).

tstdone in Done readback experiment

This signal is a vector where each bit of the vector should be
connected directly to the tstdone port of an instance of
ddrsdram_port_v2. The ddrsdram_port_v2 instance pulses this
signal when it has completed a readback experiment (as part of the
training sequence).

tstok in Readback experiment successful

This signal is a vector where each bit of the vector should be
connected directly to the tstok port of an instance of
ddrsdram_port_v2. The ddrsdram_port_v2 instance asserts this
signal, qualified by the corresponding bit of the tstdone vector, when
a readback experiment is completed without error.

trained out Training successful

This signal is asserted when training has been completed for all
associated ddrsdram_port_v2 instances and was successful (i.e. a
data capture window was found for all memory ports). If training is
completed but was unsuccessful (i.e. a data capture window could
not be found for one or more of the memory ports), this signal will
remain deasserted even though training has been completed.

Notes:

2. There is no required relationship between clk and the capture clocks clkc0 and clkc180, and no required relationship
between clk and clkc. However, depending on the needs of the application, clk and clkc may or may not be exactly the
same signal.

3. The signal used to clock an instance of ddrsdram_training_v2 via its clk input must be the same, or an exact copy of,
the signal used to clock any associated instances of ddrsdram_port_v2 via their clk0 inputs.

4. The relationship between clkc and the capture clocks clkc0 (and hence clkc180) is as follows:

❍ clkc0 and clkc180 have the same frequency as clkc.

❍ The phase of clkc0 with respect to clk is determined dynamically by the training sequence as detailed
above.

Performance

Using this component to train one or more ddrsdram_port_v2 instances takes no more than 1.5 milliseconds assuming a clk
frequency of 133 MHz. This time is measured from deassertion of rst or sr to assertion of trained. The number of memory
ports does not affect the time required to train them.

336

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sram_port_v2 component (Virtex-II / Virtex-II Pro only)

Overview

HDL source code

Parameters

Signals

Performance

Overview

The ddr2sram_port_v2 component is part of the memif package and implements an interface to a bank of DDR-II SSRAM
memory. A related component is the ddr2sram_training_v2 component, which provides infrastructure for training one or
more instances of ddr2sram_port_v2. This component follows the generic user interface for memory ports, but also has a
few additional parameters and sideband signals, as shown in the following figure:

337

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/cmd_fifo.vhd
fpga/vhdl/common/memif/ddr2sram_v2/ddr2sram_port_v2.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

338

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
d_width natural Width in bits of the port data in and out, d and q

respectively.
3

pinout ddr2sram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map it
to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

Notes:

1. The ra_width parameter is a property of the printed circuit board, indicating how many wires are physically present,
rather than indicating how many of the ra lines are used by a particular DDR-II SSRAM device.

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates the fields that comprise the rc bus:

The order of the fields within rc is always the same, but some models may lack certain fields.

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR-II SSRAM bank. This
memory port transfers two words of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being two times
rd_width. However, other values can be passed for d_width:

❍ If d_width > (2 * rd_width), then the memory port simply truncates d internally so that its width is (2 *
rd_width). Data read from the memory devices is zero-extended so that its width is d_width before being
returned on q.

❍ d_width = (2 * rd_width) is the optimal usage case.

❍ If d_width < (2 * rd_width), then the memory port zero-extends d internally so that its width is (2 *
rd_width).

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a DDR-II SSRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider a DDR-II SSRAM device with 20 address bits. Since "logical"
memory locations are two times as wide as the physical memory locations, one must subtract 1, giving a value of 19 for
the minimum value of a_width. When a_width is larger than actually required, the top few unused bits of a are ignored
by the memory port. In practice, one should determine the value of a_width assuming that the largest possible memory

339

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

devices are in use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device as a
linear array of words of width d_width, this address is a logical
address, rather than anything resembling what one might see on the
ra bus.

be in Byte enables to memory

User code must place valid byte enables on be whenever a write
command is entered (ce and w both asserted). A logic 1 in a given
bit of be means that the corresponding byte within be will be written
to memory, while a zero means that the corresponding byte will not
be written to memory.

burst_len in Burst length (sideband signal)

If this input is 0, then the SSRAM devices being driven must be
burst length 2 devices. If this input is 1, then the SSRAM devices
being driven may be burst length 2 or burst length 4 devices.

8

ce in Command entry

User code asserts this signal to enter a new read or write command
into the memory port. When asserted, a and w must be valid. When
asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how many
clock cycles ce can remain asserted. It can be pulsed for single clk0
cycles, or asserted for many clk0 cycles (ready permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but refer to the
section below for a discussion of how to maximize performance.

cedge (training
signal)

in Capture edge

This signal is normally driven directly by an instance of the
component ddr2sram_training_v2, and contains information
instructing ddr2sram_port_v2 how to retime the data captured from
the SSRAM device using clkc0 and clkc180 into the clk0 domain.

7

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.

5

clk90 in Clock, phase 90

This clock must be the same frequency as clk0 but 90 degrees
behind in phase.

5

340

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

clk180 in Clock, phase 180

This clock must the same frequency as clk0 but 180 degrees
behind in phase.

5

clk270 in Clock, phase 270

This clock must the same frequency as clk0 but 270 degrees
behind in phase.

5

clkc0 in Capture clock, phase 0

This clock is normally driven directly by the component
ddr2sram_training_v2 and is used by ddr2sram_port_v2 to
capture data read from the SSRAM device in the FPGA's IOBs.

5, 9

clkc180 in Capture clock, phase 180

This clock is normally driven directly by the component
ddr2sram_training_v2 and is used by ddr2sram_port_v2 to
capture data read from the SSRAM device in the FPGA's IOBs.

5, 9

d in Data to memory

User code must place valid data on d whenever a write command is
entered (ce and w both asserted).

dll_off in DLL disable (sideband signal)

User code should drive this input with 0 for normal operation, but
driving it with 1 causes the DOFF# field within rc to be asserted.

6

q out Data from memory

When valid is asserted by the memory port (as a result of a read
command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a read
command), qtag reflects the tag value that was assocated with that
read command.

ready out Port ready

When the memory port asserts ready, user code is permitted to
assert ce.

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w deasserted, it must also place a
valid tag on the tag signal. When, as a result of the read command,
the memory port asserts valid, the qtag output reflects the tag value
originally passed. This is intended to facilitate sharing of a memory
port between several data sources or data sinks, where each source
or sink recognizes a particular set of tags.

341

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

tstcomp
(training
signal)

in Capture edge

This signal is normally driven directly by an instance of the
component ddr2sram_training_v2, and informs the
ddr2sram_port_v2 that training is complete and that normal
operation can begin.

7

tstdo (training
signal)

in Do readback test

This signal is normally driven directly by an instance of the
component ddr2sram_training_v2, and instructs the
ddr2sram_port_v2 to perform a readback experiment during the
training sequence.

7

tstdone
(training
signal)

out Done readback test

This signal is normally connected directly to an instance of the
component ddr2sram_training_v2, and informs the
ddr2sram_training_v2 instance that the ddr2sram_port_v2 has
completed a readback experiment (during the training sequence). It
qualifies the tstok output.

7

tstok (training
signal)

out Readback test OK

This signal is normally connected directly to an instance of the
component ddr2sram_training_v2, and informs the
ddr2sram_training_v2 instance whether or not the most recent
readback experiment was successful. It is qualified by the tstdone
output.

7

valid out Read data valid

When the memory port asserts valid, it does so as a result of a read
command (user code asserted ce with w deasserted). When valid
is asserted, both q and qtag are valid.

w in Write select

When user code asserts ce, it must place either a logic 1 on the w
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

5. The phase and frequency relationships between the four clock phases are illustrated by the following figure:

342

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

Also shown are the related clocks: the DDR-II SSRAM clock pair, K and K#, and the capture clock pair clkc0 and
clkc180. Their frequencies are the same as clk0, but their phases are indeterminate with respect to clk0.

6. For correction operation, all sideband inputs must be static while the memory port is not idle.

7. The connections between an instance of the training module ddr2sram_training_v2 and an instance of
ddr2sram_port_v2 form a private communication channel. The information carried by this channel is generally not of
interest to the user, but brief descriptions of each signal in the channel are provided for information only. Training of
ddr2sram_port_v2, from deassertion of reset to completion of training (tstcomp asserted) takes no more than 1
millisecond at a clk0 frequency of 133MHz.

8. When it is known that burst length 2 devices are being used, driving the burst_len input with 0 results in fewer cycles
being wasted when random reads and writes are performed in quick succession. However, driving the burst_len with 1
is "safe" in that it enables SSRAM devices of burst length 2 or 4 to be used interchangeably. Alpha Data recommends
driving burst_len with 1 unless the application demands the maximum possible bandwidth from the SSRAM devices.

9. The ddr2sram_training_v2 component works by varying the phase of the capture clocks clkc0 and clkc180 in order to
find a window in which data from the SSRAM device's DQ pins can be reliably captured. Hence these clocks are the
same frequency as clk0 etc. but the required phase relationship is discovered during the training sequence.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function
ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s).

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

343

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v2

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, two
words are transferred on rd, which determines the relationship
between the rd_width and d_with parameters. Refer to note 3
for details.

Performance

This memory port features an internal command buffer capable of buffering about 10 commands before deasserting the
ready signal. Most of the time, the rate of consumption of commands from the command buffer is at least as fast as
production of new commands by the user application. Certain usage patterns, however, may result in a accumulated backlog
in the command buffer.

There is one performance penalty in this memory port:

● Turning the rd bus around when a read command and a write command are entered in consecutive clock cycles
requires one clk0 cycle. Thus it incurs a one cycle performance penalty. This penalty occurs only if a write command is
entered in the one-cycle window following entry of a read command.

Latency for read commands is fairly deterministic, since the penalties described above are limited to one cycle (although
these penalties may be accumulated by successive commands). The best-case latency from entry of a read command (ce
asserted with w deasserted) to valid asserted is approximately 10 clk0 cycles. Worst case latencies may be computed by
adding the above penalties to the best-case latency.

The optimal usage pattern for this memory port is blocks of accesses of the same type (read or write) with addresses that
increment by one on each successive access. When used optimally, this memory port with 32 physical data bits (rd is 32)
operating at a clk0 frequency of 133MHz can sustain approximately 1GB/s.

344

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_training_v2

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sram_training_v2 component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The ddr2sram_training_v2 component is part of the memif package and implements the training algorithm for one or more
instances of the ddr2sram_port_v2 component.

This module works by sweeping the phase of a capture clock clkc0, which clocks data from the memory devices into the
FPGA's IOBs, from -180 degrees to +180 degrees. During the sweep, the associated memory ports that are being trained are
instructed to perform readback experiments in order to find a window where data can be reliably captured from the memory
devices. A number of sweeps are performed because, as well as varying the phase, the amount of coarse-grained delay must
also be varied in order to determine the delay between issuing a command to the memory devices and valid data being
captured. The training algorithm can be expressed in pseudocode as:

trained := 0
tstcomp := 0
best_cedge := invalid
best_window := 0
best_phase := invalid

for cedge in 0 to 7 loop
 window_start := invalid
 window_stop := invalid
 in_window := false

345

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_training_v2

 for phase in -180 to +180 do
 set phase of clkc0 to 'phase'
 instruct memory ports to perform readback experiment via 'tstdo' signal
 if 'tstdone' and 'tstok' indicate experiment was successful for all memory ports then
 if not in_window then
 // Start of window detected
 window_start := phase
 in_window := true
 end if
 else
 if in_window then
 // End of window detected
 window_stop := phase
 window_length := window_stop - window_start
 if window_length > some_minimum_window and window_length > best_window
 // This is the new best window
 best_window := window_length
 best_cedge := cedge
 best_phase := (window_stop + window_start) / 2
 end if
 in_window := false
 end if
 end if
 end if
 if in_window then
 // Handle special case where we're still inside window at end of phase sweep
 window_stop := +180
 window_length := window_stop - window_start
 if window_length > some_minimum_window and window_length > best_window
 // This is the new best window
 best_window := window_length
 best_cedge := cedge
 best_phase := (window_stop + window_start) / 2
 end if
 end if
end loop

// Training completed
tstcomp := 1
if best_window > 0 then
 trained := 1
 // Training completed and successful, so set operating parameters
 set phase of clkc0 to 'best_phase'
 cedge := best_cedge
end if

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/ddr2sram_v2/ddr2sram_training_v2.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

346

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_training_v2

Parameters

Name Type Function Note
num_port natural This is the width in bits of the tstdone and tstok ports. 1

Notes:

1. A single instance of ddr2sram_training_v2 can be used to train more than one instance of ddr2sram_port_v2, provided
that the banks of memory are reasonably well-matched. When instantiating ddr2sram_training_v2, the value of the
num_port parameter is the number of instances of ddr2sram_port_v2 whose training will be controlled by that instance
of ddr2sram_training_v2.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
cedge in Capture edge

This should be connected directly to the cedge ports of one or more
instances of ddr2sram_port_v2, and carries information about how
to retime data captured using the clkc0 and clkc180 clocks into the
memory ports' user interface clock domain.

clk in Clock

All ports except rst, clkc, clkc0 and clkc180 are synchronous to clk.

2, 3

clkc in Capture clock in

This clock is used to generate the two capture clock phases clkc0
and clkc180.

4

clkc0 out Capture clock phase 0

This clock should be connected directly to the clkc0 ports of one or
more instances of ddr2sram_port_v2, and is used to clock data
read from the DDR-II SSRAM devices into the FPGA's IOBs.

4

clkc180 out Capture clock phase 180

This clock is the same frequency as clkc0 but 180 degrees out of
phase, and should be connected directly to the clkc180 ports of one
or more instances of ddr2sram_port_v2. It is used to clock data
read from the DDR-II SSRAM devices into the FPGA's IOBs.

4

rst in Asychronous reset

Asserting this signal returns the module to its default state, so that it
will begin the training sequence when rst is deasserted. This port
may be tied to logic 0 if not required.

sr in Sychronous reset

Asserting this signal returns the module to its default state, so that it
will begin the training sequence when sr is deasserted. This port
may be tied to logic 0 if not required.

347

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_training_v2

tstcomp out Training complete to memory port

This signal should be connected directly to the tstcomp ports of one
or more instances of ddr2sram_port_v2, and notifies those ports
that training is complete and normal operation should begin.

tstdo out Do readback experiment

This signal should be connected directly to the tstdo ports of one or
more instances of ddr2sram_port_v2, and instructs those ports to
perform a readback experiment (as part of the training sequence).

tstdone in Done readback experiment

This signal is a vector where each bit of the vector should be
connected directly to the tstdone port of an instance of
ddr2sram_port_v2. The ddr2sram_port_v2 instance pulses this
signal when it has completed a readback experiment (as part of the
training sequence).

tstok in Readback experiment successful

This signal is a vector where each bit of the vector should be
connected directly to the tstok port of an instance of
ddr2sram_port_v2. The ddr2sram_port_v2 instance asserts this
signal, qualified by the corresponding bit of the tstdone vector, when
a readback experiment is completed without error.

trained out Training successful

This signal is asserted when training has been completed for all
associated ddr2sram_port_v2 instances and was successful (i.e. a
data capture window was found for all memory ports). If training is
completed but was unsuccessful (i.e. a data capture window could
not be found for one or more of the memory ports), this signal will
remain deasserted even though training has been completed.

Notes:

2. There is no required relationship between clk and the capture clocks clkc0 and clkc180, and no required relationship
between clk and clkc. However, depending on the needs of the application, clk and clkc may or may not be exactly the
same signal.

3. The signal used to clock an instance of ddr2sram_training_v2 via its clk input must be the same, or an exact copy of,
the signal used to clock any associated instances of ddr2sram_port_v2 via their clk0 inputs.

4. The relationship between clkc and the capture clocks clkc0 (and hence clkc180) is as follows:

❍ clkc0 and clkc180 have the same frequency as clkc.

❍ The phase of clkc0 with respect to clk is determined dynamically by the training sequence as detailed
above.

Performance

Using this component to train one or more ddr2sram_port_v2 instances takes no more than 1.5 milliseconds assuming a clk
frequency of 133 MHz. This time is measured from deassertion of rst or sr to assertion of trained. The number of memory
ports does not affect the time required to train them.

348

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v4

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The ddr2sram_port_v4 component (Virtex 4 / Virtex 5 only)

Overview

HDL source code

Parameters

Signals

Performance

Overview

The ddr2sram_port_v4 component is part of the memif package and implements an interface to a bank of DDR-II SSRAM
memory. This component follows the generic user interface for memory ports, but also has a few additional parameters
and sideband signals, as shown in the following figure:

349

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v4

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/cmd_fifo.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_iserdes_dq.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_oserdes_dq.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_bwe.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_dq_in.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_dq_out.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_training.vhd
fpga/vhdl/common/memif/ddr2sram_v4/ddr2sram_port_v4.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
d_width natural Width in bits of the port data in and out, d and q

respectively.
3

pinout ddr2sram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map it
to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

Notes:

1. The ra_width parameter is a property of the printed circuit board, indicating how many wires are physically present,
rather than indicating how many of the ra lines are used by a particular DDR-II SSRAM device.

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates the fields that comprise the rc bus:

350

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v4

The order of the fields within rc is always the same, but some models may lack certain fields.

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR-II SSRAM bank. This
memory port transfers four words of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being four times
rd_width. However, other values can be passed for d_width:

❍ If d_width > (4 * rd_width), then the memory port simply truncates d internally so that its width is (4 *
rd_width). Data read from the memory devices is zero-extended so that its width is d_width before being
returned on q.

❍ d_width = (4 * rd_width) is the optimal usage case.

❍ If d_width < (4 * rd_width), then the memory port zero-extends d internally so that its width is (4 *
rd_width).

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a DDR-II SSRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider a DDR-II SSRAM device with 21 address bits. Since "logical"
memory locations are four times as wide as the physical memory locations, one must subtract 2, giving a value of 19 for
the minimum value of a_width. When a_width is larger than actually required, the top few unused bits of a are ignored
by the memory port. In practice, one should determine the value of a_width assuming that the largest possible memory
devices are in use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
a in Logical address

User code must place a valid address on a when it asserts ce.
Since a memory port effectively represents a memory device as a
linear array of words of width d_width, this address is a logical
address, rather than anything resembling what one might see on the
ra bus.

be in Byte enables to memory

User code must place valid byte enables on be whenever a write
command is entered (ce and w both asserted). A logic 1 in a given
bit of be means that the corresponding byte within be will be written
to memory, while a zero means that the corresponding byte will not
be written to memory.

ce in Command entry

User code asserts this signal to enter a new read or write command
into the memory port. When asserted, a and w must be valid. When
asserted along with w, tag must also be valid.

User code must not assert ce when ready is deasserted.

Other than that, there are no restrictions on how few or how many
clock cycles ce can remain asserted. It can be pulsed for single clk0
cycles, or asserted for many clk0 cycles (ready permitting).

The address, byte enables, tag etc. of a command need not bear
any relationship to that of the previous command, but refer to the
section below for a discussion of how to maximize performance.

351

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v4

clk0 in Clock for user interface

All other signals except rst are synchronous to clk0.

5

clk2x0 in High speed clock, phase 0

This clock must be in phase with clk0 but double the frequency.

5

clk2x90 in High speed clock, phase 90

This clock must the same frequency as clk2x0 but must its phase
must be 90 degrees ahead of clk2x0.

5

clk45 in Auxilliary clock, phase 45

This clock must the same frequency as clk0 but must its phase
must be 45 degrees ahead of clk0.

5

d in Data to memory

User code must place valid data on d whenever a write command is
entered (ce and w both asserted).

dll_off in DLL disable (sideband signal)

User code should drive this input with 0 for normal operation, but
driving it with 1 causes the DOFF# field within rc to be asserted.

6

q out Data from memory

When valid is asserted by the memory port (as a result of a read
command), q reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory port (as a result of a read
command), qtag reflects the tag value that was assocated with that
read command.

ready out Port ready

When the memory port asserts ready, user code is permitted to
assert ce.

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w deasserted, it must also place a
valid tag on the tag signal. When, as a result of the read command,
the memory port asserts valid, the qtag output reflects the tag value
originally passed. This is intended to facilitate sharing of a memory
port between several data sources or data sinks, where each source
or sink recognizes a particular set of tags.

trained out Training success flag (sideband signal)

When the memory port asserts trained, it indicates that training of
the memory port was successful. When deasserted, either training
is not yet complete or training was unsuccessful.

7

valid out Read data valid

When the memory port asserts valid, it does so as a result of a read
command (user code asserted ce with w deasserted). When valid
is asserted, both q and qtag are valid.

352

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v4

w in Write select

When user code asserts ce, it must place either a logic 1 on the w
signal in order to select a write command, or 0 in order to select a
read command.

Notes:

5. The phase and frequency relationships between the four clock phases are illustrated by the following figure:

Also shown is the DDR-II SSRAM clock, K. Its frequency is the same as clk0, but its phase is indeterminate.

6. For correction operation, all sideband inputs must be static while the memory port is not idle.

7. The delay from deassertion of reset to completion of training (trained asserted) is approximately 150 microseconds at a
clk0 frequency of 133MHz.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function
ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s).

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, four
words are transferred on rd, which determines the relationship
between the rd_width and d_with parameters. Refer to note 3
for details.

Performance

353

ADM-XRC SDK 4.9.3 User Guide (Win32) - ddr2sram_port_v4

This memory port features an internal command buffer capable of buffering about 10 commands before deasserting the
ready signal. Most of the time, the rate of consumption of commands from the command buffer is at least as fast as
production of new commands by the user application. Certain usage patterns, however, may result in a accumulated backlog
in the command buffer.

A specific DDR-II SSRAM device from a given vendor is one of two varieties: burst length two (BL2) or burst length four
(BL4). This is the number of words that are be transferred on the device's DQ pins from a single command entered via the
device's LD# pin. This component supports burst length four (BL4) devices, but is also compatible with burst length two
(BL2) devices without modification, which is a consequence of the signalling protocol used by DDR-II SSRAM devices.

There is one performance penalty in this memory port:

● Turning the rd bus around when a read command and a write command are entered in consecutive clock cycles
requires one clk0 cycle. Thus it incurs a one cycle performance penalty. This penalty occurs only if a write command is
entered in the one-cycle window following entry of a read command.

Latency for read commands is fairly deterministic, since the penalties described above are limited to one cycle (although
these penalties may be accumulated by successive commands). The best-case latency from entry of a read command (ce
asserted with w deasserted) to valid asserted is approximately 10 clk0 cycles. Worst case latencies may be computed by
adding the above penalties to the best-case latency.

The optimal usage pattern for this memory port is blocks of accesses of the same type (read or write) with addresses that
increment by one on each successive access. When used optimally, this memory port with 32 physical data bits (rd is 32)
operating at a clk0 frequency of 133MHz can sustain approximately 2GB/s.

354

ADM-XRC SDK 4.9.3 User Guide (Win32) - zbtsram_port

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The zbtsram_port component

Overview

HDL source code

Parameters

Signals

Performance

Overview

The zbtsram_port component is part of the memif package and implements an interface to a bank of DDR-II SSRAM
memory. This component follows the generic user interface for memory ports, but also has a few additional parameters
and sideband signals, as shown in the following figure:

HDL source code

Projects making use of this component must include all of the following source files (relative to root of SDK installation):

355

ADM-XRC SDK 4.9.3 User Guide (Win32) - zbtsram_port

fpga/vhdl/common/memif/memif_pkg.vhd
fpga/vhdl/common/memif/memif_int_pkg.vhd
fpga/vhdl/common/memif/memif_def_synth.vhd OR fpga/vhdl/common/memif/memif_def_sim.vhd
fpga/vhdl/common/memif/zbtsram/zbtsram_port.vhd

If synthesizing, the file fpga/vhdl/common/memif/memif_def_synth.vhd must be included. If simulating, the file
fpga/vhdl/common/memif/memif_def_sim.vhd must be included instead.

Parameters

Name Type Function Note
a_width natural Width in bits of the port logical address, a. 4
d_width natural Width in bits of the port data in and out, d and q

respectively.
3

pinout zbtsram_pinout_t This value specifies the physical configuration of the
memory port. For convenience, an application may map it
to one of the predefined constants.

ra_width natural Width in bits of the memory device address bus, ra. 1
rc_width natural Width in bits of the memory device control bus, rc. 2
rd_width natural Width in bits of the memory device data bus, rd. 3
tag_width natural Width in bits of the tag in and out, tag and qtag

respectively.

Notes:

1. The ra_width parameter is a property of the printed circuit board, indicating how many wires are physically present,
rather than indicating how many of the ra lines are used by a particular ZBT SSRAM device.

2. The memory device control bus, rc, is composed of various fields in this memory port, with the widths of certain fields
specified by the pinout and rd_width parameters. The following figure illustrates the fields that comprise the rc bus:

The order of the fields within rc is always the same, but some models may lack certain fields.

3. The rd_width parameter is the number of physical DQ wires making up the data bus of the DDR-II SSRAM bank. This
memory port transfers one word of data on the DQ wires for each command entered via the ce signal. Accordingly, the
d_width parameter, which is the width of d and q, is typically specified by the user application as being the same as
rd_width. However, other values can be passed for d_width:

❍ If d_width > rd_width, then the memory port simply truncates d internally so that its width is rd_width.
Data read from the memory devices is zero-extended so that its width is d_width before being returned on
q.

356

ADM-XRC SDK 4.9.3 User Guide (Win32) - zbtsram_port

❍ d_width = rd_width is the optimal usage case.

❍ If d_width < rd_width, then the memory port zero-extends d internally so that its width is rd_width.

4. The a_width parameter is the width of the logical address bus, a. Generally, it must be sufficiently wide to be able to
address all of the memory in a ZBT SSRAM bank. Hence, the required value of a_width depends on what memory
devices are actually in use. As an example, consider a ZBT SSRAM device with 20 address bits. Since "logical" memory
locations are the same width as the physical memory locations, 20 is also the minimum value of a_width. When
a_width is larger than actually required, the top few unused bits of a are ignored by the memory port. In practice, one
should determine the value of a_width assuming that the largest possible memory devices are in use.

Signals

The signals of this interface to and from the user application are as follows:

Signal Type Function Note
a in Logical address

User code must place a valid address
on a when it asserts ce. Unlike certain
other types of memory, where the
address driven on ra is some function
of what is entered via a, for ZBT
SSRAM devices the logical address
can be observed on the ra bus
(delayed by a few clk cycles).

be in Byte enables to memory

User code must place valid byte
enables on be whenever a write
command is entered (ce and w both
asserted). A logic 1 in a given bit of be
means that the corresponding byte
within be will be written to memory,
while a zero means that the
corresponding byte will not be written to
memory.

ce in Command entry

User code asserts this signal to enter a
new read or write command into the
memory port. When asserted, a and w
must be valid. When asserted along
with w, tag must also be valid.

User code must not assert ce when
ready is deasserted.

Other than that, there are no
restrictions on how few or how many
clock cycles ce can remain asserted. It
can be pulsed for single clk0 cycles, or
asserted for many clk0 cycles (ready
permitting).

The address, byte enables, tag etc. of a
command need not bear any
relationship to that of the previous

357

ADM-XRC SDK 4.9.3 User Guide (Win32) - zbtsram_port

command, but refer to the section
below for a discussion of
performance.

clk0 in Clock for user interface

All other signals except rst are
synchronous to clk0.

d in Data to memory

User code must place valid data on d
whenever a write command is entered
(ce and w both asserted).

pipeline in Pipelined mode select (sideband
signal)

User code should drive this input in
order to select the expected operating
mode of the ZBT SSRAM device:

0 => flowthrough mode
1 => pipelined mode

5

q out Data from memory

When valid is asserted by the memory
port (as a result of a read command), q
reflects the data read from memory.

qtag out Tag out

When valid is asserted by the memory
port (as a result of a read command),
qtag reflects the tag value that was
assocated with that read command.

ready out Port ready

When the memory port asserts ready,
user code is permitted to assert ce.
This memory port unconditionally
asserts ready.

rst in Asynchronous reset for memory port

May be tied to logic 0 if not required.

sr in Synchronous reset for memory port

May be tied to logic 0 if not required.

tag in Tag in

When user code asserts ce with w
deasserted, it must also place a valid
tag on the tag signal. When, as a result
of the read command, the memory port
asserts valid, the qtag output reflects
the tag value originally passed. This is
intended to facilitate sharing of a
memory port between several data
sources or data sinks, where each
source or sink recognizes a particular
set of tags.

358

ADM-XRC SDK 4.9.3 User Guide (Win32) - zbtsram_port

valid out Read data valid

When the memory port asserts valid, it
does so as a result of a read command
(user code asserted ce with w
deasserted). When valid is asserted,
both q and qtag are valid.

w in Write select

When user code asserts ce, it must
place either a logic 1 on the w signal in
order to select a write command, or 0 in
order to select a read command.

Notes:

5. For correction operation, all sideband inputs must be static while the memory port is not idle.

The signals of this interface to and from the memory device(s) are as follows:

Signal Type Function
ra in Memory device address bus

This bus carries address information to from the memory port
to the memory device(s).

rc inout Memory device control bus

This bus carries control signals between the memory port and
the memory device(s), and is composed of various fields.
These signals are bundled together into the rc bus so that, for
the most part, the user application need not care what they
are.

Refer to note 2 for the mapping of the rc bus to device pins.

rd inout Memory device data bus

This bus carries data between the memory port and the
memory device(s). For each command entered via ce, one
word is transferred on rd, which determines the relationship
between the rd_width and d_with parameters. Refer to note 3
for details.

Performance

There are no performance penalties in this memory port for any particular pattern of usage.

Latency from entry of a read command (ce asserted with w deasserted) to valid asserted depends upon the current mode:

● 4 clk0 cycles in flowthrough mode (pipeline driven with 0).

● 5 clk0 cycles in pipelined mode (pipeline driven with 1).

A 32-bit wide ZBT SSRAM port with a clk0 frequency of 133MHz can sustain approximately 533MB/s.

359

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXSIM package (VHDL)

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

The plxsim package

Overview

A simple testbench

A multithreaded testbench

Overview

plxsim is a package of HDL datatypes, constants, functions, procedures and components designed to speed up
development of a testbench centered around the local bus interface of an FPGA design. It is currently implemented only for
VHDL-93 or later, but a Verilog-2001 version is on the roadmap. PLXSIM provides:

● Datatypes representing bytes and arrays of bytes

● Procedures for performing various types of transfer on the local bus

● Functions for converting between datatypes

● A local bus protocol checker component

● An arbiter component

● A local bus agent component for a nonmultiplexed 32-bit local bus

● A local bus agent component for a multiplexed 32-bit local bus

● A local bus agent component for a multiplexed 64-bit local bus

Some example testbenches are provided with the sample FPGA designs. Example Modelsim scripts that compile and run
these testbenches are also provided. Please refer to the documentation for the individual sample FPGA designs for details.

A simple testbench

A simple testbench using the plxsim package consists of the unit under test (the FPGA design), a stimulus process, a local
bus agent and the arbiter. The following figure illustrates this:

360

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXSIM package (VHDL)

Here, the stimulus process might represent the Host CPU performing Direct Slave reads and writes of the FPGA. This
process is not provided by the plxsim package; rather it must be written by the user of the plxsim package in order to drive
the local bus agent. The stimulus process uses the procedures provided by the plxsim package and this enables it to be
written in a logical, procedural way.

The local bus agent is a component provided by the plxsim package. There are several types of local bus agent. For
example, a simulation targetting the ADM-XRC-II card requires the locbus_agent_nonmux agent, while a simulation
targetting the ADM-XPL requires the locbus_agent_mux32 agent or the locbus_agent_mux64 agent depending on
whether your design expects a 32 bit or 64 bit local bus. The purpose of a local bus agent is threefold:

● To bundle the local bus signals together so that manually and repeatedly typing the names of numerous local bus
signals can be avoided. This is done on grounds of convenience.

● To drive the local bus in a tristatable manner, so that multiple local bus agents can be connected to the local bus.
Although the example above shows only one agent, the next example (see below) shows multiple local bus agents
connected to the local bus.

● To hide the details of the local bus from the stimulus process. In other words, a stimulus process need not know or care
whether it is driving an multiplexed or nonmultiplexed address/data style local bus, for example.

Note the signals connecting the stimulus process to the local bus agent; there are four types: locbus_ddma_in_t,
locbus_ddma_out_t, locbus_in_t and locbus_out_t. These are in fact bundles of signals that enable the stimulus process
to drive the local bus agent.

The arbiter is another component provided by the plxsim package. Its job is to ensure that no more than one local bus agent
drives the local bus at a given moment. Since there is only one local bus agent in the above example, the arbiter's job is
trivial. However, the next example (see below) shows multiple local bus agents connected to the local bus.

The Simple sample FPGA design includes a testbench that works in the manner described above.

A multithreaded testbench

Sometimes, it is necessary to simulate multiple threads of execution that access the FPGA. For example, there may be two
stimulus processes representing the DMA channels built into the PCI interface of an ADM-XRC series card, and one
stimulus process representing the Host CPU, for a total of three threads. This arrangement is illustrated by the following
figure:

361

ADM-XRC SDK 4.9.3 User Guide (Win32) - PLXSIM package (VHDL)

Demand-DMA agents, which are instances of a component provided by the plxsim package, are optional and are used
when a stimulus process must perform demand-mode DMA transfers on the local bus. Generally, there is one demand-DMA
agent per DMA channel that is used in demand-mode by the FPGA design. An FPGA design that does not use demand-
mode DMA need not include any demand-DMA agents.

This multithreaded approach is demonstrated by the testbench for the DDMA sample FPGA design.

362

ADM-XRC SDK 4.9.3 User Guide (Win32) - byte_enable_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - byte_enable_t

Declaration

Synopsis

Description

Declaration

type byte_enable_t is array(natural range <>) of std_logic;

Synopsis

byte_enable_t is a vector type used to hold byte enables for a local bus transfer.

Description

Use this vector type to hold the byte enables for a local bus transfer in a call to one of the following functions:

● plxsim_read

● plxsim_read_const

● plxsim_read_demand

● plxsim_read_const_demand

● plxsim_write

● plxsim_write_const

● plxsim_write_demand

● plxsim_write_const_demand

Each element of the vector corresponds to one byte of data, and normally the length of the vector should be same as the
length of the byte_vector_t it is associated with. A '1' results in the corresponding bit of the local bus signal LBE# being
asserted low.

To avoid confusion and problems related to ascending vs. descending ranges, the range of any objects of type
byte_enable_t should always be ascending; for example:

variable data : byte_enable_t(0 to 15); -- Ok

variable data : byte_enable_t(9 downto 3); -- NOT OK

363

ADM-XRC SDK 4.9.3 User Guide (Win32) - byte_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - byte_t

Declaration

Synopsis

Description

Declaration

subtype byte_t is std_logic_vector(7 downto 0);

Synopsis

A byte_t holds a single byte value.

Description

The type byte_t is used to construct the byte_vector_t type. Since it is a subtype of std_logic_vector, many standard
VHDL functions can be used to manipulate values of this type.

364

ADM-XRC SDK 4.9.3 User Guide (Win32) - byte_vector_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - byte_vector_t

Declaration

Synopsis

Description

Declaration

type byte_vector_t is array(natural range <>) of byte_t;

Synopsis

byte_vector_t is a vector type used to hold data for a local bus transfer.

Description

Use this vector type to hold the data for a local bus transfer in a call to one of the following functions:

● plxsim_read

● plxsim_read_const

● plxsim_read_demand

● plxsim_read_const_demand

● plxsim_write

● plxsim_write_const

● plxsim_write_demand

● plxsim_write_const_demand

Each element of the vector is a byte of data, and normally the length of a byte_vector_t value should be same as the length
of the byte_enable_t value it is associated with. For writes, each element of the vector will be driven onto one of the byte
lanes of the local bus LD or LAD signals during a transfer. For reads, each element of the vector is obtained from one of the
byte lanes of the local bus LD or LAD signals during a transfer.

To avoid confusion and problems related to ascending vs. descending ranges, the range of any objects of type
byte_vector_t should always be ascending; for example:

variable data : byte_vector_t(0 to 15); -- Ok

variable data : byte_vector_t(9 downto 3); -- NOT OK

365

ADM-XRC SDK 4.9.3 User Guide (Win32) - integer_vector_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - integer_vector_t

Declaration

Synopsis

Description

Declaration

type integer_vector_t is array(natural range <>) of integer;

Synopsis

integer_vector_t is a vector of integers.

Description

Use this type to specify the priorities for the arbiter component.

366

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_ddma_in_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_ddma_in_t

Declaration

Synopsis

Description

Declaration

type locbus_ddma_in_t is record

end record;

Synopsis

locbus_ddma_in_t is an opaque record type used to bundle together the signals required for demand-mode DMA local bus
transfers.

Description

A locbus_agent_ddma component is connected to the demand-mode DMA pins of the FPGA (unit under test), and outputs
a signal of type locbus_ddma_in_t. The stimulus process then uses this signal in calls to the procedures provided by the
PLXSIM package in order to perform demand-mode DMA local bus transfers. The arrangement is shown here in simplified
form:

The following procedures input a signal of type locbus_ddma_in_t:

367

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_ddma_in_t

● plxsim_read_const_demand

● plxsim_read_demand

● plxsim_wait_demand

● plxsim_write_const_demand

● plxsim_write_demand

Since it is an opaque datatype, the members of locbus_ddma_in_t should not be accessed, as they are subject to change
in future versions of the PLXSIM package.

368

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_ddma_out_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_ddma_out_t

Declaration

Synopsis

Description

Declaration

type locbus_ddma_out_t is record

end record;

Synopsis

locbus_ddma_out_t is an opaque record type used to bundle together the signals required for demand-mode DMA local
bus transfers.

Description

The stimulus process uses the functions provided by the PLXSIM package to drive a signal of type locbus_ddma_out_t.
This signal is then input by a locbus_agent_ddma component, which is in turn connected to the demand-mode DMA pins of
the FPGA (unit under test). The arrangement is shown here in simplified form:

The following procedures output a signal of type locbus_ddma_out_t:

● plxsim_read_const_demand

369

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_ddma_out_t

● plxsim_read_demand

● plxsim_write_const_demand

● plxsim_write_demand

Since it is an opaque datatype, the members of locbus_ddma_out_t should not be accessed, as they are subject to change
in future versions of the PLXSIM package.

370

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_in_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_in_t

Declaration

Synopsis

Description

Declaration

type locbus_in_t is record

end record;

Synopsis

locbus_in_t is an opaque record type used to bundle together the signals required for local bus transfers.

Description

A locbus_agent_nonmux, locbus_agent_mux32 or locbus_agent_mux64 component, connected to the local bus,
outputs a signal of type locbus_in_t. The stimulus process then uses this signal in calls to the procedures provided by the
PLXSIM package in order to perform local bus transfers. The arrangement is shown here in simplified form:

The following procedures input a signal of type locbus_in_t:

● plxsim_read

● plxsim_read_const

● plxsim_read_const_demand

371

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_in_t

● plxsim_read_demand

● plxsim_wait_demand

● plxsim_write

● plxsim_write_const

● plxsim_write_const_demand

● plxsim_write_demand

Since it is an opaque datatype, the members of locbus_in_t should not be accessed, as they are subject to change in future
versions of the PLXSIM package.

372

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_out_t

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_out_t

Declaration

Synopsis

Description

Declaration

type locbus_out_t is record

end record;

Synopsis

locbus_out_t is an opaque record type used to bundle together the signals required for local bus transfers.

Description

The stimulus process uses the functions provided by the PLXSIM package to drive a signal of type locbus_out_t. This
signal is then input by a locbus_agent_nonmux, locbus_agent_mux32 or locbus_agent_mux64 component, which is in
turn connected to the local bus itself. The arrangement is shown here in simplified form:

The following procedures output a signal of type locbus_out_t:

● plxsim_read

● plxsim_read_const

● plxsim_read_const_demand

373

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_out_t

● plxsim_read_demand

● plxsim_write

● plxsim_write_const

● plxsim_write_const_demand

● plxsim_write_demand

Since it is an opaque datatype, the members of locbus_ddma_out_t should not be accessed, as they are subject to change
in future versions of the PLXSIM package.

374

ADM-XRC SDK 4.9.3 User Guide (Win32) - init_locbus_ddma_out

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - init_locbus_ddma_out

Declaration

Synopsis

Description

Declaration

constant init_locbus_ddma_out : locbus_ddma_out_t := (....);

Synopsis

init_locbus_ddma_out_t is a constant that can be used to initialize a value of type locbus_ddma_out_t to its initial inactive
state.

Description

This constant may assigned to a value of type init_locbus_ddma_out_t in order to set it to an initial inactive state. This
initialization is required somewhere in the testbench in order to prevent undefined values being driven onto the FPGA's
demand-mode DMA pins. Typically, init_locbus_ddma_out_t is applied at the declaration of a signal; for example:

signal ddma_out0, ddma_out1 : locbus_ddma_out_t := init_locbus_ddma_out;

Since locbus_ddma_out_t is an opaque datatype, the members of init_locbus_ddma_out_t should not be accessed, as
they are subject to change in future versions of the PLXSIM package.

375

ADM-XRC SDK 4.9.3 User Guide (Win32) - init_locbus_out

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - init_locbus_out

Declaration

Synopsis

Description

Declaration

constant init_locbus_out : locbus_out_t := (....);

Synopsis

init_locbus_out_t is a constant that can be used to initialize a value of type locbus_out_t to its initial inactive state.

Description

This constant may assigned to a value of type init_locbus_out_t in order to set it to an initial inactive state. This initialization
is required somewhere in the testbench in order to prevent undefined values being driven onto the local bus. Typically,
init_locbus_out_t is applied at the declaration of a signal; for example:

signal bus_out : locbus_out_t := init_locbus_out;

Since locbus_out_t is an opaque datatype, the members of init_locbus_out_t should not be accessed, as they are subject
to change in future versions of the PLXSIM package.

376

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_byte_vector

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_byte_vector

Declaration

Synopsis

Description

Declaration

function conv_byte_vector(
 constant slv : in std_logic_vector)
return byte_vector_t;

Synopsis

Converts a std_logic_vector to a byte_vector_t (vector of bytes).

Description

The slv parameter is left-padded to a multiple of 8 elements, and then chopped up at 8-element intervals. Each 8-element
segment becomes one element of the returned byte_vector_t.

377

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_integer

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_integer

Declaration

Synopsis

Description

Declaration

function conv_integer(
 constant bv : in byte_vector_t)
return natural;

Synopsis

Converts a byte_vector_t (vector of bytes) to an integer.

Description

The bv parameter is converted to a natural, treating the vector as an unsigned multibyte value where bv(0) is the least
significant byte. It is the caller's responsibility to ensure that the result does not overflow a natural value.

378

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_integer_signed

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_integer_signed

Declaration

Synopsis

Description

Declaration

function conv_integer_signed(
 constant slv : in std_logic_vector)
return integer;

Synopsis

Converts a std_logic_vector to an integer.

Description

The slv parameter is converted to an integer, treating it as a two's complement signed value. It is the caller's responsibility
to ensure that the result does not overflow an integer.

379

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_integer_unsigned

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_integer_unsigned

Declaration

Synopsis

Description

Declaration

function conv_integer_unsigned(
 constant slv : in std_logic_vector)
return natural;

Synopsis

Converts a std_logic_vector to an natural.

Description

The slv parameter is converted to a natural, treating it as a unsigned value. It is the caller's responsibility to ensure that the
result does not overflow a natural.

380

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_std_logic_vector

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_std_logic_vector

Declaration

Synopsis

Description

Declaration

function conv_std_logic_vector(
 constant bv : in byte_vector_t)
return std_logic_vector;

Synopsis

Converts a byte_vector_t (vector of bytes) to a std_logic_vector.

Description

The bv parameter whose length is n is converted to a std_logic_vector with a range (n*8-1 downto 0), where each 8-
element slice of the result is obtained from the corresponding element of bv. The slice (7 downto 0) of the result is obtained
from bv(0).

381

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_string

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_string

Declaration

Synopsis

Description

Declaration

function conv_string(
 constant val : in time)
return string;

function conv_string(
 constant val : in integer)
return string;

function conv_string(
 constant val : in real)
return string;

function conv_string(
 constant val : in boolean)
return string;

Synopsis

Overloaded function for converting values of various types to string values.

Description

These functions return string values in a format appropriate to the type of val:

● A time value is returned as a string such as "44.0 ns"

● An integer value is returned as a string such as "-27"

● A real value is returned as a string such as "3.14159265"

● A boolean value is returned as the string "true" or "false"

382

ADM-XRC SDK 4.9.3 User Guide (Win32) - conv_string_hex

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - conv_string_hex

Declaration

Synopsis

Description

Declaration

function conv_string_hex(
 constant val : in byte_vector_t)
return string;

function conv_string_hex(
 constant val : in integer)
return string;

function conv_string_hex(
 constant val : in std_logic_vector)
return string;

Synopsis

Overloaded function for converting values of various types to string values.

Description

These functions return string values in a hexadecimal format. A prefix such as "0x" is not prepended.

In the case of a byte_vector_t, val(0) appears as the leftmost two digits of the returned string, assuming that val(0) has an
ascending range.

In the case of a std_logic_vector, val is left-padded to a multiple of 4 elements before being converted to a hexadecimal
string. Element 1 of the result string corresponds to the rightmost 4 bits of val. For example, "100101" becomes "25".

383

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_read

Declaration

Synopsis

Description

Declaration

procedure plxsim_read(
 order : in natural;
 multiburst : in boolean;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : out byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t);

Synopsis

Performs a basic local bus read transfer with incrementing local bus address.

Description

This procedure uses the bus_in and bus_out signals to drive a local bus agent as shown in this figure, where the stimulus
process makes calls to plxsim_read:

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

384

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read

● 3 for a 64-bit local data bus

The multiburst parameter specifies the action taken if the target of the transfer terminates the burst before the desired
number of bytes has been transferred:

● When false, the procedure will return if the burst is terminated, and nxfered will reflect the actual number of bytes
transferred.

● When true, the procedure will perform transfers on the local bus until the desired number of bytes has been transferred.
In this case, nxfered will be set to the length of data.

The address parameter specifies the starting local bus byte address of the transfer, which will be incremented during the
transfer. It need not be aligned to the word size of the local data bus. The manner in which the address is output on the local
bus depends upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

The be parameter specifies the byte enables to be used for the transfer. They are active high, and so a '1' in a particular
element of be results in a '0' in the corresponding bit of LBE#. The length of be must be the same as the length of data.

The data parameter returns the data read from the local bus. For a nonmultiplexed address/data bus, the data comes from
the LD signal, whereas for a multiplexed address/data bus, the data comes from the LAD signal. The length of data must be
the same as the length of be.

The nxfered parameter returns the actual number of bytes read from the local bus.

385

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read_const

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_read_const

Declaration

Synopsis

Description

Declaration

procedure plxsim_read_const(
 order : in natural;
 multiburst : in boolean;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : out byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t);

Synopsis

Performs a basic local bus read transfer with constant local bus address.

Description

This procedure uses the bus_in and bus_out signals to drive a local bus agent as shown in this figure, where the stimulus
process makes calls to plxsim_read_const:

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

386

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read_const

● 3 for a 64-bit local data bus

The multiburst parameter specifies the action taken if the target of the transfer terminates the burst before the desired
number of bytes has been transferred:

● When false, the procedure will return if the burst is terminated, and nxfered will reflect the actual number of bytes
transferred.

● When true, the procedure will perform transfers on the local bus until the desired number of bytes has been transferred.
In this case, nxfered will be set to the length of data.

The address parameter specifies the local bus byte address of the transfer, which will not be incremented during the
transfer. The address need not be aligned to the word size of the local data bus, although an unaligned address generally
makes little sense when using constant addressing. The manner in which the address is output on the local bus depends
upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

After the first word of data has been transferred, LBE# will revert to being determined by the be parameter, and on the last
word of the transfer, also determined by any residual bytes that do not comprise a full word of data.

The be parameter specifies the byte enables to be used for the transfer. They are active high, and so a '1' in a particular
element of be results in a '0' in the corresponding bit of LBE#. The length of be must be the same as the length of data.

The data parameter returns the data read from the local bus. For a nonmultiplexed address/data bus, the data comes from
the LD signal, whereas for a multiplexed address/data bus, the data comes from the LAD signal. The length of data must be
the same as the length of be.

The nxfered parameter returns the actual number of bytes read from the local bus.

387

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read_const_demand

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_read_const_demand

Declaration

Synopsis

Description

Declaration

procedure plxsim_read_const_demand(
 order : in natural;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : out byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t;
 signal dd_in : in locbus_ddma_in_t;
 signal dd_out : out locbus_ddma_out_t);

Synopsis

Performs a demand-mode DMA local bus read transfer with constant local bus address.

Description

This procedure uses the bus_in, bus_out, dd_in, and dd_out signals to drive a local bus agent as shown in this figure,
where the stimulus process makes calls to plxsim_read_const_demand:

388

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read_const_demand

Before calling this procedure, a stimulus process should ensure that the FPGA (ie. the unit under test) has asserted
LDREQ#. This can be accomplished by calling plxsim_wait_demand before calling plxsim_read_const_demand. When
called, the procedure will continue to perform transfers until one of two conditions is met:

1. The FPGA (unit under test) deasserts LDREQ# in order to pause the DMA transfer, or

2. All of the data has been transferred; the length of the data vector specifies how many bytes must be transferred.

During the transfer(s), LDACK# will be asserted with the proper timing with respect to LADS# etc.

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

● 3 for a 64-bit local data bus

The address parameter specifies the local bus byte address of the transfer, which will not be incremented during the
transfer. The address need not be aligned to the word size of the local data bus, although an unaligned address generally
makes little sense when using constant addressing. The manner in which the address is output on the local bus depends
upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

After the first word of data has been transferred, LBE# will revert to being determined by the be parameter, and on the last
word of the transfer, also determined by any residual bytes that do not comprise a full word of data.

The data parameter returns the data read from the local bus. For a nonmultiplexed address/data bus, the data comes from
the LD signal, whereas for a multiplexed address/data bus, the data comes from the LAD signal. The length of data must be
the same as the length of be.

The nxfered parameter returns the actual number of bytes read from the local bus.

389

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read_demand

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_read_demand

Declaration

Synopsis

Description

Declaration

procedure plxsim_read_demand(
 order : in natural;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : out byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t;
 signal dd_in : in locbus_ddma_in_t;
 signal dd_out : out locbus_ddma_out_t);

Synopsis

Performs a demand-mode DMA local bus read transfer with incrementing local bus address.

Description

This procedure uses the bus_in, bus_out, dd_in, and dd_out signals to drive a local bus agent as shown in this figure,
where the stimulus process makes calls to plxsim_read_demand:

390

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_read_demand

Before calling this procedure, a stimulus process should ensure that the FPGA (ie. the unit under test) has asserted
LDREQ#. This can be accomplished by calling plxsim_wait_demand before calling plxsim_read_demand.

When called, plxsim_read_demand will continue to perform transfers until one of two conditions is met:

1. The FPGA (unit under test) deasserts LDREQ# in order to pause the DMA transfer, or

2. All of the data has been transferred; the length of the data vector specifies how many bytes must be transferred.

During the transfer(s), LDACK# will be asserted with the proper timing with respect to LADS# etc.

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

● 3 for a 64-bit local data bus

The address parameter specifies the starting local bus byte address of the transfer, which will be incremented during the
transfer. It need not be aligned to the word size of the local data bus. The manner in which the address is output on the local
bus depends upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

The be parameter specifies the byte enables to be used for the transfer. They are active high, and so a '1' in a particular
element of be results in a '0' in the corresponding bit of LBE#. The length of be must be the same as the length of data.

The data parameter returns the data read from the local bus. For a nonmultiplexed address/data bus, the data comes from
the LD signal, whereas for a multiplexed address/data bus, the data comes from the LAD signal. The length of data must be
the same as the length of be.

The nxfered parameter returns the actual number of bytes read from the local bus.

391

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_request_bus

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_request_bus

Declaration

Synopsis

Description

Declaration

procedure plxsim_request_bus(
 request : in boolean;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t);

Synopsis

Performs the local bus arbitration protocol, either requesting or relinquishing the bus.

Description

This procedure manipulates the bus_in and bus_out signals to perform the local bus arbitration protocol via HOLD and
HOLDA, relinquishing or requesting the local bus according to the request parameter.

The request parameter should be:

● true to request access to the local bus

● false to relinquish access to the local bus

Once the bus has been requested/relinquished, the procedure returns.

392

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_wait_cycles

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_wait_cycles

Declaration

Synopsis

Description

Declaration

procedure plxsim_wait_cycles(
 n : in natural;
 signal bus_in : in locbus_in_t);

Synopsis

Waits for the specified number of local bus clock cycles.

Description

Call this procedure to wait for a number of local bus clock cycles. The parameter n specifies the number of cycles.

393

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_wait_demand

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_wait_demand

Declaration

Synopsis

Description

Declaration

procedure plxsim_wait_demand(
 signal bus_in : in locbus_in_t;
 signal dd_in : in locbus_ddma_in_t);

Synopsis

Waits for the FPGA (unit under test) to request a demand-mode DMA local bus transfer.

Description

Call this procedure in order to wait for the FPGA (unit under test) to assert LDREQ#, before calling one of the following
procedures:

● plxsim_read_const_demand

● plxsim_read_demand

● plxsim_write_const_demand

● plxsim_write_demand

394

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_write

Declaration

Synopsis

Description

Declaration

procedure plxsim_write(
 order : in natural;
 multiburst : in boolean;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : in byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t);

Synopsis

Performs a basic local bus write transfer with incrementing local bus address.

Description

This procedure uses the bus_in and bus_out signals to drive a local bus agent as shown in this figure, where the stimulus
process makes calls to plxsim_write:

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

395

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write

● 3 for a 64-bit local data bus

The multiburst parameter specifies the action taken if the target of the transfer terminates the burst before the desired
number of bytes has been transferred:

● When false, the procedure will return if the burst is terminated, and nxfered will reflect the actual number of bytes
transferred.

● When true, the procedure will perform transfers on the local bus until the desired number of bytes has been transferred.
In this case, nxfered will be set to the length of data.

The address parameter specifies the starting local bus byte address of the transfer, which will be incremented during the
transfer. It need not be aligned to the word size of the local data bus. The manner in which the address is output on the local
bus depends upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

The be parameter specifies the byte enables to be used for the transfer. They are active high, and so a '1' in a particular
element of be results in a '0' in the corresponding bit of LBE#. The length of be must be the same as the length of data.

The data parameter specifies the data to be written on local bus. For a nonmultiplexed address/data bus, the data is output
on the LD signal, whereas for a multiplexed address/data bus, the data is output on the LAD signal. The length of data must
be the same as the length of be.

The nxfered parameter returns the actual number of bytes written on the local bus.

396

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write_const

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_write_const

Declaration

Synopsis

Description

Declaration

procedure plxsim_write_const(
 order : in natural;
 multiburst : in boolean;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : in byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t);

Synopsis

Performs a basic local bus write transfer with constant local bus address.

Description

This procedure uses the bus_in and bus_out signals to drive a local bus agent as shown in this figure, where the stimulus
process makes calls to plxsim_write_const:

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

397

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write_const

● 3 for a 64-bit local data bus

The multiburst parameter specifies the action taken if the target of the transfer terminates the burst before the desired
number of bytes has been transferred:

● When false, the procedure will return if the burst is terminated, and nxfered will reflect the actual number of bytes
transferred.

● When true, the procedure will perform transfers on the local bus until the desired number of bytes has been transferred.
In this case, nxfered will be set to the length of data.

The address parameter specifies the local bus byte address of the transfer, which will not be incremented during the
transfer. The address need not be aligned to the word size of the local data bus, although an unaligned address generally
makes little sense when using constant addressing. The manner in which the address is output on the local bus depends
upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

After the first word of data has been transferred, LBE# will revert to being determined by the be parameter, and on the last
word of the transfer, also determined by any residual bytes that do not comprise a full word of data.

The be parameter specifies the byte enables to be used for the transfer. They are active high, and so a '1' in a particular
element of be results in a '0' in the corresponding bit of LBE#. The length of be must be the same as the length of data.

The data parameter specifies the data to be written on the local bus. For a nonmultiplexed address/data bus, the data is
output on the LD signal, whereas for a multiplexed address/data bus, the data is output on the LAD signal. The length of
data must be the same as the length of be.

The nxfered parameter returns the actual number of bytes written on the local bus.

398

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write_const_demand

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_write_const_demand

Declaration

Synopsis

Description

Declaration

procedure plxsim_write_const_demand(
 order : in natural;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : in byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t;
 signal dd_in : in locbus_ddma_in_t;
 signal dd_out : out locbus_ddma_out_t);

Synopsis

Performs a demand-mode DMA local bus write transfer with constant local bus address.

Description

This procedure uses the bus_in, bus_out, dd_in, and dd_out signals to drive a local bus agent as shown in this figure,
where the stimulus process makes calls to plxsim_write_const_demand:

399

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write_const_demand

Before calling this procedure, a stimulus process should ensure that the FPGA (ie. the unit under test) has asserted
LDREQ#. This can be accomplished by calling plxsim_wait_demand before calling plxsim_write_const_demand. When
called, the procedure will continue to perform transfers until one of two conditions is met:

1. The FPGA (unit under test) deasserts LDREQ# in order to pause the DMA transfer, or

2. All of the data has been transferred; the length of the data vector specifies how many bytes must be transferred.

During the transfer(s), LDACK# will be asserted with the proper timing with respect to LADS# etc.

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

● 3 for a 64-bit local data bus

The address parameter specifies the local bus byte address of the transfer, which will not be incremented during the
transfer. The address need not be aligned to the word size of the local data bus, although an unaligned address generally
makes little sense when using constant addressing. The manner in which the address is output on the local bus depends
upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

After the first word of data has been transferred, LBE# will revert to being determined by the be parameter, and on the last
word of the transfer, also determined by any residual bytes that do not comprise a full word of data.

The data parameter holds the data to be written on the local bus. For a nonmultiplexed address/data bus, the data is output
on the LD signal, whereas for a multiplexed address/data bus, the data is output on the LAD signal. The length of data must
be the same as the length of be.

The nxfered parameter returns the actual number of bytes written on the local bus.

400

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write_demand

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - plxsim_write_demand

Declaration

Synopsis

Description

Declaration

procedure plxsim_write_demand(
 order : in natural;
 address : in std_logic_vector;
 be : in byte_enable_t;
 data : in byte_vector_t;
 nxfered : out natural;
 signal bus_in : in locbus_in_t;
 signal bus_out : out locbus_out_t;
 signal dd_in : in locbus_ddma_in_t;
 signal dd_out : out locbus_ddma_out_t);

Synopsis

Performs a demand-mode DMA local bus write transfer with incrementing local bus address.

Description

This procedure uses the bus_in, bus_out, dd_in, and dd_out signals to drive a local bus agent as shown in this figure,
where the stimulus process makes calls to plxsim_write_demand:

401

ADM-XRC SDK 4.9.3 User Guide (Win32) - plxsim_write_demand

Before calling this procedure, a stimulus process should ensure that the FPGA (ie. the unit under test) has asserted
LDREQ#. This can be accomplished by calling plxsim_wait_demand before calling plxsim_write_demand.

When called, plxsim_read_demand will continue to perform transfers until one of two conditions is met:

1. The FPGA (unit under test) deasserts LDREQ# in order to pause the DMA transfer, or

2. All of the data has been transferred; the length of the data vector specifies how many bytes must be transferred.

During the transfer(s), LDACK# will be asserted with the proper timing with respect to LADS# etc.

The order parameter specifies the width of the local data bus. Valid values are:

● 2 for a 32-bit local data bus

● 3 for a 64-bit local data bus

The address parameter specifies the starting local bus byte address of the transfer, which will be incremented during the
transfer. It need not be aligned to the word size of the local data bus. The manner in which the address is output on the local
bus depends upon the type of local bus agent being used:

● For a nonmultiplexed 32-bit local bus, LA[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively
encodes the low 2 bits of the address.

● For a multiplexed 32-bit local bus, LAD[31:2] carries the high 30 bits of the address, and LBE#[3:0] effectively encodes
the low 2 bits of the address.

● For a multiplexed 64-bit local bus, LAD[31:3] carries the high 29 bits of the address, and LBE#[7:0] effectively encodes
the low 3 bits of the address.

The be parameter specifies the byte enables to be used for the transfer. They are active high, and so a '1' in a particular
element of be results in a '0' in the corresponding bit of LBE#. The length of be must be the same as the length of data.

The data parameter holds the data to be written on local bus. For a nonmultiplexed address/data bus, the data is output on
the LD signal, whereas for a multiplexed address/data bus, the data is output on the LAD signal. The length of data must be
the same as the length of be.

The nxfered parameter returns the actual number of bytes written on the local bus.

402

ADM-XRC SDK 4.9.3 User Guide (Win32) - lbpcheck

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - lbpcheck

Declaration

Synopsis

Description

Declaration

component lbpcheck
 generic(
 multiplexed : in boolean;
 wide : in boolean);
 port(
 lclk : in std_logic;
 lreset_l : in std_logic;
 lads_l : in std_logic;
 l64_l : in std_logic;
 la : in std_logic_vector(31 downto 2);
 lad_lo : in std_logic_vector(31 downto 0);
 lad_hi : in std_logic_vector(63 downto 32);
 lbe_lo_l : in std_logic_vector(3 downto 0);
 lbe_hi_l : in std_logic_vector(7 downto 4);
 lwrite : in std_logic;
 lblast_l : in std_logic;
 lready_l : in std_logic;
 lbterm_l : in std_logic);
end component;

Synopsis

Non-synthesizable testbench component that flags local bus protocol errors.

403

ADM-XRC SDK 4.9.3 User Guide (Win32) - lbpcheck

Description

This component can be instantiated in a testbench to verify the local bus protocol. It is fully passive and cannot interfere with
the operation of the local bus. The generics should be mapped as follows:

Generic Map to...

multiplexed
● true if the local bus has multiplexed address/data

● false if the local bus has nonmultiplexed address/data.

wide
● true if the local data bus is (up to) 64 bits wide

● false if the local data bus is 32 bits wide.

The ports should be mapped to local bus signals as follows:

Port Map to...

lclk The signal corresponding to LCLK in the testbench.

lreset_l The signal corresponding to LRESET# in the testbench.

lads_l The signal corresponding to LADS# in the testbench.

l64_l
● The signal corresponding to L64#, if the wide generic is true.

● Anything, if the wide generic is false. The port will be ignored.

404

ADM-XRC SDK 4.9.3 User Guide (Win32) - lbpcheck

la
● The signal corresponding to LA[31:2] in the testbench if the multiplexed

generic is false.

● The signal corresponding to LAD[31:2] in the testbench if the
multiplexed generic is true.

lad_lo
● The signal corresponding to LD[31:0] in the testbench if the multiplexed

generic is false.

● The signal corresponding to LAD[31:0] in the testbench if the
multiplexed generic is true.

lad_hi
● Anything, typically a vector of constant zeroes, if the wide generic is

false. The port will be ignored.

● The signal corresponding to LD[63:32] in the testbench if the wide
generic is true and the multiplexed generic is false (note: currently no
model in the ADM-XRC range supports such a configuration).

● The signal corresponding to LAD[63:32] in the testbench if the wide
generic is true and the multiplexed generic is true.

lbe_lo_l The signal corresponding to LBE#[3:0] in the testbench.

lbe_hi_l
● Anything, typically a vector of constant zeroes, if the wide generic is

false. The port will be ignored.

● The signal corresponding to LBE#[7:4] in the testbench if the wide
generic is true.

lwrite The signal corresponding to LWRITE in the testbench.

lblast_l The signal corresponding to LBLAST# in the testbench.

lready_l The signal corresponding to LREADY# in the testbench.

lbterm_l The signal corresponding to LBTERM# in the testbench.

405

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_ddma

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_agent_ddma

Declaration

Synopsis

Description

Declaration

component locbus_agent_ddma
 generic(
 tco_p2p : in time := 5 ns);
 port(
 ldreq_l : in std_logic;
 ldack_l : out std_logic;
 dd_in : out locbus_ddma_in_t;
 dd_out : in locbus_ddma_out_t);
end component;

Synopsis

Non-synthesizable testbench component that connects a stimulus process to a set of demand mode DMA pins on the FPGA
(unit under test).

Description

This demand-mode DMA agent component can be instantiated in a testbench to provide demand-mode DMA stimulus to
the FPGA. One instance of locbus_ddma_agent is normally required per demand-mode DMA channel used by the FPGA,
and each instance is normally associated with a stimulus process. In the figure above, the signals on the right should be
connected to the FPGA, while the signals on the left are driven by the stimulus process.

The generics should be mapped as follows:

Generic Map to...

tco_p2p A value of type time that represents the desired local bus clock-to-output delay for
signals such as LDACK#). This parameter has a suitable default value so it need not
be specified.

406

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_ddma

The first group of ports must be mapped to signals driven or used by the stimulus process associated with the local bus
agent:

Port Map to...

dd_in A signal of type locbus_ddma_in_t, used by the stimulus process

dd_out A signal of type locbus_ddma_out_t, driven by the stimulus process

The second group of ports must be mapped to signals driven or input by the local bus arbiter:

Port Map to...

ldack_l A signal in the testbench that is input by the FPGA, corresponding to LDACK#
ldreq_l A signal in the testbench that is driven by the FPGA, corresponding to LDREQ#

407

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_mux32

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_agent_mux32

Declaration

Synopsis

Description

Declaration

component locbus_agent_mux32
 generic(
 tco_bussed : in time := 5 ns;
 tco_p2p : in time := 5 ns);
 port(
 lreset_l : in std_logic;
 lclk : in std_logic;
 lad : inout std_logic_vector(31 downto 0);
 lads_l : inout std_logic;
 lbe_l : inout std_logic_vector(3 downto 0);
 lblast_l : inout std_logic;
 lbterm_l : inout std_logic;
 lready_l : inout std_logic;
 lwrite : inout std_logic;
 lhold : out std_logic;
 lholda : in std_logic;
 bus_in : out locbus_in_t;
 bus_out : in locbus_out_t);
end component;

Synopsis

Non-synthesizable testbench component that drives the local bus.

408

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_mux32

Description

This local bus agent component can be instantiated in a testbench to drive a local bus that has a 32-bit multiplexed
address/data bus. Each local bus agent is normally associated with a stimulus process. In the figure above, the signals on
the right comprise the local bus, while the signals on the left are driven by the stimulus process.

The generics should be mapped as follows:

Generic Map to...

tco_bussed A value of type time that represents the desired local bus clock-to-output delay for the
bussed signals (such as LADS#). This parameter has a suitable default value so it
need not be specified.

tco_p2p A value of type time that represents the desired local bus clock-to-output delay for
point to point signals (such as LHOLD). This parameter has a suitable default value
so it need not be specified.

The first group of ports must be mapped to signals driven or used by the stimulus process associated with the local bus
agent:

Port Map to...

bus_in A signal of type locbus_in_t, used by the stimulus process.

bus_out A signal of type locbus_out_t, driven by the stimulus process.

The second group of ports must be mapped to signals driven or input by the local bus arbiter:

Port Map to...

409

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_mux32

lhold A signal corresponding to LHOLD that is input by the bus arbiter. There should be
one such signal per local bus agent.

lholda A signal corresponding to LHOLDA that is driven by the bus arbiter. There should be
one such signal per local bus agent.

The remaining ports should be mapped to local bus signals as follows:

Port Map to...

lads_l The signal corresponding to LADS# in the testbench

lad The signal corresponding to LAD[31:0] in the testbench

lbe_l The signal corresponding to LBE#[3:0] in the testbench.

lclk The signal corresponding to LCLK in the testbench

lblast_l The signal corresponding to LBLAST# in the testbench.

lbterm_l The signal corresponding to LBTERM# in the testbench.

lready_l The signal corresponding to LREADY# in the testbench.

lreset_l The signal corresponding to LRESET# in the testbench

lwrite The signal corresponding to LWRITE in the testbench.

410

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_mux64

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_agent_mux64

Declaration

Synopsis

Description

Declaration

component locbus_agent_mux64
 generic(
 tco_bussed : in time := 5 ns;
 tco_p2p : in time := 5 ns);
 port(
 lreset_l : in std_logic;
 lclk : in std_logic;
 lad : inout std_logic_vector(63 downto 0);
 lads_l : inout std_logic;
 lbe_l : inout std_logic_vector(7 downto 0);
 l64_l : inout std_logic;
 lblast_l : inout std_logic;
 lbterm_l : inout std_logic;
 lready_l : inout std_logic;
 lwrite : inout std_logic;
 lhold : out std_logic;
 lholda : in std_logic;
 bus_in : out locbus_in_t;
 bus_out : in locbus_out_t);
end component;

Synopsis

Non-synthesizable testbench component that drives the local bus.

411

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_mux64

Description

This local bus agent component can be instantiated in a testbench to drive a local bus that has a 64-bit multiplexed
address/data bus. Each local bus agent is normally associated with a stimulus process. In the figure above, the signals on
the right comprise the local bus, while the signals on the left are driven by the stimulus process.

The generics should be mapped as follows:

Generic Map to...

tco_bussed A value of type time that represents the desired local bus clock-to-output delay for the
bussed signals (such as LADS#). This parameter has a suitable default value so it
need not be specified.

tco_p2p A value of type time that represents the desired local bus clock-to-output delay for
point to point signals (such as LHOLD). This parameter has a suitable default value
so it need not be specified.

The first group of ports must be mapped to signals driven or used by the stimulus process associated with the local bus
agent:

Port Map to...

bus_in A signal of type locbus_in_t, used by the stimulus process.

bus_out A signal of type locbus_out_t, driven by the stimulus process.

The second group of ports must be mapped to signals driven or input by the local bus arbiter:

Port Map to...

412

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_mux64

lhold A signal corresponding to LHOLD that is input by the bus arbiter. There should be
one such signal per local bus agent.

lholda A signal corresponding to LHOLDA that is driven by the bus arbiter. There should be
one such signal per local bus agent.

The remaining ports should be mapped to local bus signals as follows:

Port Map to...

l64_l The signal corresponding to L64# in the testbench

lads_l The signal corresponding to LADS# in the testbench

lad The signal corresponding to LAD[63:0] in the testbench

lbe_l The signal corresponding to LBE#[3:0] in the testbench.

lclk The signal corresponding to LCLK in the testbench

lblast_l The signal corresponding to LBLAST# in the testbench.

lbterm_l The signal corresponding to LBTERM# in the testbench.

lready_l The signal corresponding to LREADY# in the testbench.

lreset_l The signal corresponding to LRESET# in the testbench

lwrite The signal corresponding to LWRITE in the testbench.

413

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_nonmux

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_agent_nonmux

Declaration

Synopsis

Description

Declaration

component locbus_agent_nonmux
 generic(
 tco_bussed : in time := 5 ns;
 tco_p2p : in time := 5 ns);
 port(
 lreset_l : in std_logic;
 lclk : in std_logic;
 la : inout std_logic_vector(31 downto 2);
 lads_l : inout std_logic;
 lbe_l : inout std_logic_vector(3 downto 0);
 lblast_l : inout std_logic;
 lbterm_l : inout std_logic;
 ld : inout std_logic_vector(31 downto 0);
 lready_l : inout std_logic;
 lwrite : inout std_logic;
 lhold : out std_logic;
 lholda : in std_logic;
 bus_in : out locbus_in_t;
 bus_out : in locbus_out_t);
end component;

Synopsis

Non-synthesizable testbench component that drives the local bus.

414

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_nonmux

Description

This local bus agent component can be instantiated in a testbench to drive a local bus that has 32-bit nonmultiplexed
address and data busses. Each local bus agent is normally associated with a stimulus process. In the figure above, the
signals on the right comprise the local bus, while the signals on the left are driven by the stimulus process.

The generics should be mapped as follows:

Generic Map to...

tco_bussed A value of type time that represents the desired local bus clock-to-output delay for the
bussed signals (such as LADS#). This parameter has a suitable default value so it
need not be specified.

tco_p2p A value of type time that represents the desired local bus clock-to-output delay for
point to point signals (such as LHOLD). This parameter has a suitable default value
so it need not be specified.

The first group of ports must be mapped to signals driven or used by the stimulus process associated with the local bus
agent:

Port Map to...

bus_in A signal of type locbus_in_t, used by the stimulus process.

bus_out A signal of type locbus_out_t, driven by the stimulus process.

The second group of ports must be mapped to signals driven or input by the local bus arbiter:

Port Map to...

415

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_agent_nonmux

lhold A signal corresponding to LHOLD that is input by the bus arbiter. There should be
one such signal per local bus agent.

lholda A signal corresponding to LHOLDA that is driven by the bus arbiter. There should be
one such signal per local bus agent.

The remaining ports should be mapped to local bus signals as follows:

Port Map to...

lads_l The signal corresponding to LADS# in the testbench

la The signal corresponding to LA[31:2] in the testbench

lbe_l The signal corresponding to LBE#[3:0] in the testbench.

lclk The signal corresponding to LCLK in the testbench

lblast_l The signal corresponding to LBLAST# in the testbench.

lbterm_l The signal corresponding to LBTERM# in the testbench.

ld The signal corresponding to LD[31:0] in the testbench

lready_l The signal corresponding to LREADY# in the testbench.

lreset_l The signal corresponding to LRESET# in the testbench

lwrite The signal corresponding to LWRITE in the testbench.

416

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_arb

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

PLXSIM VHDL reference - locbus_arb

Declaration

Synopsis

Description

Declaration

component locbus_arb
 generic(
 tco_p2p : in time := 5 ns;
 n_arb : in natural;
 priority : in integer_vector_t);
 port(
 lreset_l : in std_logic;
 lclk : in std_logic;
 lhold : in std_logic_vector(n_arb - 1 downto 0);
 lholda : out std_logic_vector(n_arb - 1 downto 0));
end component;

Synopsis

Non-synthesizable testbench component that performs access arbitration on the local bus.

Description

This component can be instantiated in a testbench to arbitrate between several local bus agents for access to the local bus.
The arbitration scheme works as follows:

● An agent of a given priority can always preempt an agent of lower priority, no matter how long ago the lower priority
agent was granted access to the bus.

● Given two agents of the same priority, the one that was least recently granted access to the bus can preempt the other.

The generics should be mapped as follows:

417

ADM-XRC SDK 4.9.3 User Guide (Win32) - locbus_arb

Generic Map to...

tco_p2p A value of type time that represents the desired local bus clock-to-output delay for
signals such as LDACK#). This parameter has a suitable default value so it need not
be specified.

n_arb An integer whose value is the number of local bus agents in the testbench. This value
is also the length of the vectors lhold and lholda, since there must be one pair of
signals per local bus agent.

priority An integer vector (type integer_vector_t) that specifies the priorities for each local
bus agent, where a numerically higher value represents higher priority. The length of
this vector must be equal to n_arb.

The ports must be mapped to signals as follows:

Port Map to...

lclk A signal equivalent to the local bus clock LCLK
lhold A vector that carries the bus request signals for all of the local bus agents in the

design. Each element of the vector corresponds to the HOLD signal for a particular
local bus agent.

lholda A vector that carries the bus grant signals for all of the local bus agents in the design.
Each element of the vector corresponds to the HOLDA signal for a particular local
bus agent.

lreset_l A signal equivalent to the local bus signal LRESET#

418

ADM-XRC SDK 4.9.3 User Guide (Win32) - API reference

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADM-XRC API reference

The ADM-XRC API exposes a number of functions to software running on the host. To use the API, an application must
include the API header file and be linked with the appropriate API import library. Two revisions of the API exist:

● The current ADMXRC2 interface

● The legacy ADMXRC interface

Alpha Data recommends use of the ADMXRC2 interface in all new applications. The ADMXRC interface is supported for
backwards compatibility with older applications.

419

ADM-XRC SDK 4.9.3 User Guide (Win32) - API header files

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADM-XRC API header files

The API header files are located in the include\ directory of the SDK and are compatible with Microsoft Visual C++ 5/6 and
the free Borland C++ command line tools.

In any source file requiring visibility of the ADM-XRC API, include a line such as

#include <admxrc2.h>

or, to use the legacy ADMXRC interface,

#include <admxrc.h>

In order for the compiler to be able to locate the API header files, the compiler must be configured to search the include\
directory of the SDK:

Configuring the MSVC IDE

Configuring the Borland C++ command line tools

420

ADM-XRC SDK 4.9.3 User Guide (Win32) - API import libraries

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADM-XRC API import libraries

The API import library files are located in the lib\ directory of the SDK and are supplied in several versions:

File Purpose

lib\msvc\admxrcd.lib Microsoft Visual C++ 5/6 Debug
lib\msvc\admxrc.lib Microsoft Visual C++ 5/6 Release
lib\borland\admxrc.lib Borland C++ command line tools.

In order for the compiler to be able to locate the API import libraries, the compiler must be configured to search the lib\
directory of the SDK:

Configuring the MSVC IDE

Configuring the Borland C++ command line tools

421

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2 interface

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2 interface

The ADMXRC2 interface is recommended for new applications. This interface offers a higher level of abstraction of
hardware features compared to the depreciated ADMXRC interface. Note that the ADMXRC2 interface supports all models
in the ADM-XRC range:

● ADM-XRC

● ADM-XRC-P

● ADM-XRC-II-Lite

● ADM-XRC-II

● ADM-XPL

● ADM-XP

● ADP-DRC-II

● ADP-WRC-II

● ADP-XPI

● ADM-XRC-4LX

● ADM-XRC-4SX

● ADM-XRC-4FX

● ADPE-XRC-4FX

● ADM-XRC-5LX

● ADM-XRC-5T1

● ADM-XRC-5T2

Calls to the ADMXRC2 interface must not be mixed with calls to the ADMXRC interface using the same card handle. A
card handle obtained using the ADMXRC2_OpenCard function should not be used in any calls to the legacy ADMXRC
interface. Applications should assume that the API will enforce this rule.

Cards of any model in the ADM-XRC range may be opened by the ADMXRC2_OpenCard function. In general, applications
designed for the ADMXRC2 interface should include appropriate code to check what type of card they have opened and
take appropriate action, such as loading the correct bitstream.

ADMXRC2 functions by group

ADMXRC2 structures

ADMXRC2 datatypes

422

ADM-XRC SDK 4.9.3 User Guide (Win32) - Multithreading issues

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Multithreading issues (ADMXRC2 interface)

The ADM-XRC API is thread-safe (except for any error handler function installed). The ADMXRC2 interface functions can
be divided into two groups:

● Functions that cannot block the calling thread, and

● Functions that are capable of blocking the calling thread

The latter group of functions, those which are capable of blocking the calling thread, require a valid Win32 event (of type
HANDLE) to be passed. Unless great care is taken to ensure that no two threads use the same event at the same time, this
event must be private to each thread using the API.

Note that this is different to the ADMXRC interface, which requires a PHANDLE parameter in the blocking functions rather
than a HANDLE parameter.

The requirement for a per-thread event stems from the need to specify an event in overlapped DeviceIoControl calls (see
Win32 API). The Microsoft Platform SDK documentation states that events used in an overlapped DeviceIoControl call
must be manual-reset events. A code fragment for creating a suitable event for use with the blocking ADM-XRC API calls is:

/* Create a manual reset Win32 event */
event = CreateEvent(NULL, TRUE, FALSE, NULL);
if (event == NULL) {
 /* Error handling */

}

423

ADM-XRC SDK 4.9.3 User Guide (Win32) - Differences between ADMXRC2 and ADMXRC interfaces

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Differences between ADMXRC2 and ADMXRC interfaces

The major differences between the ADMXRC2 and ADMXRC interfaces are as follows:

● In the ADMXRC interface, functions capable of blocking the calling thread require a pointer to a Win32 event handle (of
type PHANDLE) which could be NULL. If this pointer is NULL, a Win32 event is created on the calling thread's behalf.
This is not the case in the ADMXRC2 interface. The ADMXRC2 functions that can block the calling thread always
require a valid manual reset Win32 event handle (of type HANDLE) to be passed.

● The ADMXRC2_InstallErrorHandler function has been simplified in the interests of API reliability. The API no longer
treats an installed error handler routine as a critical section. It is now the application programmer's responsibility to
ensure that problems do not occur if the installed error handler function is called from multiple threads.

● The ADMXRC2_LoadBitstream and ADMXRC2_UnloadBitstream functions replace the ADMXRC_FindImageOffset,
ADMXRC_LoadFpgaFile, ADMXRC_ReverseBytes and ADMXRC_UnloadFpgaFile functions. The
ADMXRC2_LoadBitstream function loads only the SelectMap data into memory, reversing its bit order if necessary,
instead of requiring the application to make several API calls to prepare the SelectMap data. The data loaded by
ADMXRC2_LoadBitstream can be sent without modification to the FPGA's SelectMap port.

● The ADMXRC2_OpenCard function can open an instance of any of the following models: ADM-XRC, ADM-XRC-P,
ADM-XRC-II-Lite, ADM-XRC-II, ADM-XPL, ADM-XP, ADP-DRC-II, ADP-WRC-II, ADP-XPI, ADM-XRC-4LX, ADM-XRC-
4SX, ADM-XRC-4FX, ADM-XRC-5LX and ADM-XRC-5T1. ADMXRC_OpenCard can open only instances of the ADM-
XRC or ADM-XRC-P models.

● The ADMXRC2_OpenCardByIndex function, not present in the ADMXRC interface, can open a card based on its index
within the system as opposed to its Card ID.

● Functions in the ADMXRC2 interface that require a parameter that specifies the DMA channel to use, accept an
unsigned int value for the DMA channel, whereas the ADMXRC interface functions used an enumerated type. The
following functions from the ADMXRC2 interface are affected:

❍ ADMXRC2_ConfigureFromBufferDMA

❍ ADMXRC2_ConfigureFromFileDMA

❍ ADMXRC2_DoDMA

❍ ADMXRC2_DoDMAImmediate

● There is no function equivalent to ADMXRC_GetClockType in the ADMXRC2 interface. This is because applications
should not rely on a particular reference oscillator being fitted to a card (there may not be one at all), and the API takes
care of programming the clock generators on a card.

● The ADMXRC_ReadReg and ADMXRC_WriteReg functions are not present in the ADMXRC2 interface as
ADMXRC2_Read and ADMXRC2_Write with the appropriate parameters achieve the same effect.

● The ADMXRC2_ReadConfig and ADMXRC2_WriteConfig functions are new to the ADMXRC2 interface, and allow the
configuration EEPROM on a card to be read and written.

● The ADMXRC2_GetSpaceInfo function is equivalent to ADMXRC_GetBaseAddress from the ADMXRC interface.

● The ADMXRC_CARD_INFO structure of the ADMXRC interface has been replaced by the ADMXRC2_CARD_INFO ,
ADMXRC2_SPACE_INFO and ADMXRC2_BANK_INFO structures of the ADMXRC2 interface. The latter two

424

ADM-XRC SDK 4.9.3 User Guide (Win32) - Differences between ADMXRC2 and ADMXRC interfaces

structures offer an increased level of abstraction of hardware features. The virtual address of the FPGA space must now
be obtained using ADMXRC2_GetSpaceInfo.

● The ADMXRC2_SetClockRate function differs from ADMXRC_SetClockRate in two ways:

1. The Clock parameter is now an integer as opposed to a member of an enumerated type. The value 0
always represents the local bus clock.

2. A parameter Actual has been added, which can return the actual clock frequency programmed.

425

ADM-XRC SDK 4.9.3 User Guide (Win32) - Functions

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2 interface functions

The ADMXRC2 interface can be divided into the following function groups:

Group Consists of...
Initialization ADMXRC2_CloseCard

ADMXRC2_OpenCard
ADMXRC2_OpenCardByIndex
ADMXRC2_SetSpaceConfig

Information ADMXRC2_GetBankInfo
ADMXRC2_GetCardInfo
ADMXRC2_GetSpaceConfig
ADMXRC2_GetSpaceInfo
ADMXRC2_GetVersionInfo

FPGA configuration ADMXRC2_ConfigureFromBuffer
ADMXRC2_ConfigureFromBufferDMA
ADMXRC2_ConfigureFromFile
ADMXRC2_ConfigureFromFileDMA
ADMXRC2_LoadBitstream
ADMXRC2_UnloadBitstream

Clock generation ADMXRC2_SetClockRate
Data transfer ADMXRC2_BuildDMAModeWord

ADMXRC2_DoDMA
ADMXRC2_DoDMAImmediate
ADMXRC2_MapDirectMaster
ADMXRC2_Read
ADMXRC2_ReadConfig
ADMXRC2_SetupDMA
ADMXRC2_SyncDirectMaster
ADMXRC2_UnsetupDMA
ADMXRC2_Write
ADMXRC2_WriteConfig

Interrupt handling ADMXRC2_RegisterInterruptEvent
ADMXRC2_UnregisterInterruptEvent

Error handling ADMXRC2_GetStatusString
ADMXRC2_InstallErrorHandler
ADMXRC2_StatusToString

426

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BuildDMAModeWord

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_BuildDMAModeWord

Prototype

DWORD
ADMXRC2_BuildDMAModeWord(
 ADMXRC2_BOARD_TYPE BoardType,
 ADMXRC2_IOWIDTH Width,
 unsigned int WaitStates,
 DWORD MiscFlags);

Arguments

Argument Type Purpose
BoardType In Type of card being used
Width In Width of operation on local bus
WaitStates In Number of wait states to be introduced by PCI9080/PCI9656
MiscFlags In Miscellaneous mode flags

Return value

If the parameters are valid, a DMA mode word is returned. If the parameters supplied are not valid, the invalid mode word
0xFFFFFFFF is returned.

Description

This function differs from most API functions in that no card handle parameter is required, and the return value is not of type
ADMXRC2_STATUS.

ADMXRC2_BuildDMAModeWord constructs a value that may later be passed to the DMA functions such as
ADMXRC2_DoDMA and ADMXRC2_DoDMAImmediate. Provided that the DMA mode does not need to be changed, the
DMA mode word can be pre-computed and used for many DMA transfers.

The BoardType parameter should correspond to the type of the board on which DMA is to be performed, a value of the
enumerated type ADMXRC2_BOARD_TYPE.

The Width parameter should be one value of the enumerated type ADMXRC2_IOWIDTH.

The WaitStates parameter should be in the inclusive range 0 to 15 for the ADM-XRC, ADM-XRC-P, ADM-XRC-II-Lite, ADM-
XRC-II, ADP-WRC-II, ADP-DRC-II, ADM-XRC-4LX and ADM-XRC-4SX cards. For other cards it must be 0. For portability
reasons, Alpha Data recommends always specifying 0 for WaitStates, and designing local bus interface logic into the FPGA
that uses the LREADY# and/or LBTERM# signals to implement a waitstate mechanism.

The MiscFlags parameter can be any combination of:

427

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BuildDMAModeWord

Flag Meaning
ADMXRC2_DMAMODE_USEREADY Use local bus READYI# signal
ADMXRC2_DMAMODE_USEBTERM Use local bus BTERM# signal
ADMXRC2_DMAMODE_BURSTENABLE Allow bursting on local bus
ADMXRC2_DMAMODE_FIXEDLOCAL Operate in constant address mode
ADMXRC2_DMAMODE_DEMAND Operate in demand mode
ADMXRC2_DMAMODE_USEEOT Operate in LEOT mode

428

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_CloseCard

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_CloseCard

Prototype

ADMXRC2_STATUS
ADMXRC2_CloseCard(
 ADMXRC2_HANDLE Card);

Arguments

Argument Type Purpose
Card In Handle to card to be closed

Return value

Value Meaning
ADMXRC2_SUCCESS The card was successfully closed
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card

Description

This function closes a handle to a card, freeing the card for use by other applications. Card must be a valid handle returned
by ADMXRC2_OpenCard.

429

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ConfigureFromBuffer

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_ConfigureFromBuffer

Prototype

ADMXRC2_STATUS
ADMXRC2_ConfigureFromBuffer(
 ADMXRC2_HANDLE Card,
 const void* Buffer,
 unsigned long Length);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Buffer In FPGA configuration data
Length In Length of FPGA configuration data

Return value

Value Meaning
ADMXRC2_SUCCESS The FPGA was successfully configured
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed

Description

This function is used to configure the FPGA on a card from a buffer of SelectMap data, using programmed I/O. Since there is
no file I/O to be performed, this is a deterministic method of configuring the FPGA. This routine does not allow the FPGA to
be partially configured on each call; all of the data necessary to configure the FPGA must be supplied in a single call.

Warning

Ensure that Buffer contains valid configuration data for the target FPGA, as data
transferred this way to the FPGA's SelectMap port cannot be validated by the API.

The card to be configured is specified by the Card parameter.

The Buffer parameter should point to a buffer containing the configuration data for the FPGA. The data must be supplied in
a form directly writable to the FPGA's SelectMap port, and care should be taken to ensure that the bit-ordering of the data is
correct. The ADMXRC2_LoadBitstream function can be used to obtain SelectMap data in the correct form.

The Length parameter specifies the number of bytes of configuration data to be written to the FPGA's SelectMap port.

430

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ConfigureFromBufferDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_ConfigureFromBufferDMA

Prototype

ADMXRC2_STATUS
ADMXRC2_ConfigureFromBufferDMA(
 ADMXRC2_HANDLE Card,
 const void* Buffer,
 unsigned long Length,
 unsigned int Channel,

 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Buffer In FPGA configuration data
Length In Length of FPGA configuration data
Channel In DMA channel to use for the operation
Event In Event to use to wait for completion

Return value

Value Meaning
ADMXRC2_SUCCESS The FPGA was successfully configured
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed
ADMXRC2_NO_DMADESC A DMA descriptor could not be allocated

Description

This function is used to configure the FPGA on a card from a buffer of SelectMap data, using DMA. Since there is no file I/O
to be performed, this is a deterministic method of configuring the FPGA. As DMA is used to configure the FPGA, this method
is also the fastest. This routine does not allow the FPGA to be partially configured on each call; all of the data necessary to
configure the FPGA must be supplied in a single call.

Warning

Ensure that Buffer contains valid configuration data for the target FPGA, as data
transferred this way to the FPGA's SelectMap port cannot be validated by the API.

The card to be configured is specified by the Card parameter.

431

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ConfigureFromBufferDMA

The Buffer parameter should point to a buffer containing the configuration data for the FPGA. The data must be supplied in
a form directly writable to the FPGA's SelectMap port, and care should be taken to ensure that the bit-ordering of the data is
correct. The ADMXRC2_LoadBitstream function can be used to obtain SelectMap data in the correct form.

The Length parameter specifies the number of bytes of configuration data to be written to the FPGA's SelectMap port.

The Channel parameter specifies which DMA channel should be used for the operation. If ADMXRC2_DMACHAN_ANY is
specified, the DMA transfer will be performed on the first available DMA channel. However, pending DMA transfers on a
specific a DMA channel will always be given priority. It is possible for a DMA transfer that specifies
ADMXRC2_DMACHAN_ANY to be delayed indefinitely if all DMA channels are kept busy by other threads.

The Event parameter should be a valid manual-reset Win32 event handle. See multithreading issues for further
information.

432

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ConfigureFromFile

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_ConfigureFromFile

Prototype

ADMXRC2_STATUS
ADMXRC2_ConfigureFromFile(
 ADMXRC2_HANDLE Card,
 const char* Filename);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Filename In Name of .BIT file

Return value

Value Meaning
ADMXRC2_SUCCESS The FPGA was successfully configured
ADMXRC2_FILE_NOT_FOUND The file Filename could not be opened
ADMXRC2_INVALID_FILE The file Filename appears not to be a valid bitstream
ADMXRC2_NO_MEMORY There is not enough free memory to temporarily load the bitstream into memory
ADMXRC2_FPGA_MISMATCH The device targetted by the bitstream file did not match the device fitted to the

card
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card

Description

This function is used to configure the FPGA on a card from a Xilinx bitstream file (.BIT), using programmed I/O. If
deterministic runtime is required, the ADMXRC2_ConfigureFromBuffer or ADMXRC2_ConfigureFromBufferDMA
functions should be used instead since ADMXRC2_ConfigureFromFile performs file I/O in order to load the bitstream into
memory.

The card to be configured is specified by the Card parameter.

The bitstream file to load into the FPGA is specified by the Filename parameter.

433

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ConfigureFromFileDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_ConfigureFromFileDMA

Prototype

ADMXRC2_STATUS
ADMXRC2_ConfigureFromFileDMA(
 ADMXRC2_HANDLE Card,
 const char* Filename,
 unsigned int Channel,

 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Filename In Name of .BIT file
Channel In DMA channel to use for the operation
Event In Event to use to wait for completion

Return value

Value Meaning
ADMXRC2_SUCCESS The FPGA was successfully configured
ADMXRC2_FILE_NOT_FOUND The file could not be opened
ADMXRC2_INVALID_FILE The file appeared not to be a valid bitstream
ADMXRC2_NO_MEMORY There is not enough free memory to temporarily load the bitstream into

memory
ADMXRC2_FPGA_MISMATCH The device targetted by the bitstream file did not match the device fitted to

the card
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed
ADMXRC2_NO_DMADESC A DMA descriptor could not be allocated

Description

This function is used to configure the FPGA on a card from a Xilinx bitstream file (.BIT), using DMA. If deterministic runtime
is required, the ADMXRC2_ConfigureFromBuffer or ADMXRC2_ConfigureFromBufferDMA functions should be used
instead since ADMXRC2_ConfigureFromFileDMA performs file I/O in order to load the bitstream into memory.

The card to be configured is specified by the Card parameter.

The bitstream file to load into the FPGA is specified by the Filename parameter.

434

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ConfigureFromFileDMA

The Channel parameter specifies which DMA channel should be used for the operation. If ADMXRC2_DMACHAN_ANY is
specified, the DMA transfer will be performed on the first available DMA channel. However, pending DMA transfers on a
specific a DMA channel will always be given priority. It is possible for a DMA transfer that specifies
ADMXRC2_DMACHAN_ANY to be delayed indefinitely if all DMA channels are kept busy by other threads.

The Event parameter should be a valid manual-reset Win32 event handle. See multithreading issues for further
information.

435

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_DoDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_DoDMA

Prototype

ADMXRC2_STATUS
ADMXRC2_DoDMA(
 ADMXRC2_HANDLE Card,
 ADMXRC2_DMADESC DmaDesc,
 unsigned long Offset,
 unsigned long Length,
 DWORD Local,
 ADMXRC2_DMADIR Direction,
 unsigned int Channel,
 DWORD DMAModeWord,
 DWORD Flags,
 unsigned long* Timeout,
 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
DmaDesc In Handle to DMA descriptor representing application buffer
Offset In Offset within application buffer
Length In Number of bytes to transfer
Local In Address of beginning of transfer on local bus
Direction In Direction of DMA transfer
Channel In DMA channel to use for the transfer
DMAModeWord In Mode word to use for the DMA transfer
Flags In Miscellaneous flags
Timeout In/out Timeout for DMA transfer
Event In Event to use to wait for completion

Return value

Value Meaning
ADMXRC2_SUCCESS The DMA transfer was performed successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_DMADESC DMADesc is not a valid DMA descriptor
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed
ADMXRC2_DEVICE_BUSY Could not begin DMA immediately as requested

Description

436

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_DoDMA

This function is used to perform a DMA transfer from an application buffer to the FPGA or from the FPGA to an application
buffer. DMA transfers are queued in a first come, first served manner unless the Flags parameter (see below) specifies
otherwise. When a thread calls ADMXRC2_DoDMA, it is blocked until the DMA transfer has been completed.

The DmaDesc parameter must be a valid DMA descriptor obtained via a call to ADMXRC2_SetupDMA. This, along with
Offset, implicitly specifies the application buffer that is the source or destination of data for the DMA transfer.

The Offset parameter is the offset into the user buffer at where the DMA transfer is to begin transferring data. This permits
one DMA descriptor to map a large buffer; DMA transfers can then be performed on subregions of the large buffer by
specifying appropriate Offset and Length values.

The Length parameter specifies the number of bytes of data to transfer.

The Local parameter specifies the starting local bus address of the transfer. The DMAModeWord parameter may specify
that the local bus address is invariant for the duration of the DMA transfer - see ADMXRC2_BuildDMAModeWord.

The Direction parameter specifies whether the transfer is from application buffer to FPGA or FPGA to application buffer, and
should be a value from the enumerated type ADMXRC2_DMADIR.

The Channel parameter is a zero-based index that specifies which DMA channel should be used for the operation. The
number of DMA channels provided by a card is given by the NumDMAChan member of the ADMXRC2_CARD_INFO
structure. Unless ADMXRC2_DMACHAN_ANY is specified, the maximum legal value of Channel is (NumDMAChan - 1).

If ADMXRC2_DMACHAN_ANY is specified for Channel, the DMA transfer will be performed on the first available DMA
channel. However, pending DMA transfers on a specific a DMA channel will always be given priority. It is possible for a DMA
transfer that specifies ADMXRC2_DMACHAN_ANY to be delayed indefinitely if all DMA channels are kept busy by other
threads.

The DMAModeWord parameter is a word that is programmed into the DMA hardware to specify the mode of operation for
the DMA channel specified by the Channel parameter. The ADMXRC2_BuildDMAModeWord function should be used to
obtain a suitable value for this parameter.

The Flags parameter may be any combination of the following:

Flag Meaning
ADMXRC2_DMAFLAG_DONOTQUEUE If the DMA operation cannot be started immediately, the error

ADMXRC_DEVICE_BUSY is returned rather than queuing the DMA
operation.

The Timeout parameter must currently be NULL, as timeouts on DMA operations are not yet supported.

The Event parameter should be a valid manual-reset Win32 event handle. See multithreading issues for further
information.

437

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_DoDMAImmediate

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_DoDMAImmediate

Prototype

ADMXRC2_STATUS
ADMXRC2_DoDMAImmediate(
 ADMXRC2_HANDLE Card,
 void* Buffer,
 unsigned long Length,
 DWORD Local,
 ADMXRC2_DMADIR Direction,
 unsigned int Channel,
 DWORD DMAModeWord,
 DWORD Flags,
 unsigned long* Timeout,
 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Buffer In Pointer to application buffer
Length In Number of bytes to transfer
Local In Address of beginning of transfer on local bus
Direction In Direction of DMA transfer
Channel In DMA channel to use for the transfer
DMAModeWord In Mode word to use for the DMA transfer
Flags In Miscellaneous flags
Timeout In/out Timeout for DMA transfer
Event In Event to use to wait for completion

Return value

Value Meaning
ADMXRC2_SUCCESS The DMA transfer was performed successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed
ADMXRC2_DEVICE_BUSY Could not begin DMA immediately as requested
ADMXRC2_NO_DMADESC A DMA descriptor could not be allocated

Description

This function behaves as a call to ADMXRC2_SetupDMA followed by a call to ADMXRC2_DoDMA followed by a call to
ADMXRC2_UnsetupDMA.

438

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_DoDMAImmediate

The Buffer and Length parameters effectively replace the DmaDesc, Offset and Length parameters from
ADMXRC2_DoDMA in specifying the region of application memory over which the DMA transfer takes place. The other
parameters Local, Direction, Channel, DMAModeWord, Flags, Timeout and Event all function in the same way as in
ADMXRC2_DoDMA.

This function cannot guarantee deterministic runtime as the process of locking down a user buffer using
ADMXRC2_SetupDMA may require disk I/O for the operating system to make all pages of a user buffer resident in physical
memory.

439

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetBankInfo

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_GetBankInfo

Prototype

ADMXRC2_STATUS
ADMXRC2_GetBankInfo(
 ADMXRC2_HANDLE Card,
 unsigned int Index,
 ADMXRC2_BANK_INFO* Info);

Arguments

Argument Type Purpose
Card In Handle of card about which to return bank information
Index In Specifies the bank about which to return information
Info Out Structure to be filled in with information about the specified bank

Return value

Value Meaning
ADMXRC2_SUCCESS The information was obtained successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER Index was not valid

Description

This function returns information about a bank of memory in an ADMXRC2_BANK_INFO stucture.

The Index parameter specifies the bank about which to return information, and the Info parameter must point to the
ADMXRC2_BANK_INFO stucture which is to receive the information.

440

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetCardInfo

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_GetCardInfo

Prototype

ADMXRC2_STATUS
ADMXRC2_GetCardInfo(
 ADMXRC2_HANDLE Card,
 ADMXRC2_CARD_INFO* Info);

Arguments

Argument Type Purpose
Card In Handle of card about which to return information
Info Out Structure to be filled in with information about card

Return value

Value Meaning
ADMXRC2_SUCCESS The information was obtained successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card

Description

The ADMXRC2_GetCardInfo function returns information about a card.

The Info parameter must point to the ADMXRC2_CARD_INFO stucture which is to receive the information.

441

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetSpaceInfo

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_GetSpaceInfo

Prototype

ADMXRC2_STATUS
ADMXRC2_GetSpaceInfo(
 ADMXRC2_HANDLE Card,
 unsigned int Index,
 ADMXRC2_SPACE_INFO* Info);

Arguments

Argument Type Purpose
Card In Handle of card about which to return space information
Index In Specifies the local bus space about which to return information
Info Out Structure to be filled in with information about the specified local bus

space

Return value

Value Meaning
ADMXRC2_SUCCESS The information was obtained successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER Index was not valid

Description

This function returns information about a region of local bus space in an ADMXRC2_SPACE_INFO stucture.

The Index parameter specifies the region of local bus space about which to return information. An Index of 0 always refers
to the FPGA space (the region of local bus space for the FPGA).

The Info parameter must point to the ADMXRC2_SPACE_INFO stucture which is to receive the information.

442

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetSpaceConfig

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_GetSpaceConfig

Prototype

ADMXRC2_STATUS
ADMXRC2_GetSpaceConfig(
 ADMXRC2_HANDLE Card,
 unsigned int SpaceIndex,
 DWORD* Flags);

Arguments

Argument Type Purpose
Card In Handle of card
SpaceIndex In The index of the space whose configuration is to be returned
Flags Out Flags indicating configuration

Return value

Value Meaning
ADMXRC2_SUCCESS The space configuration was successfully retrieved
ADMXRC2_INVALID_HANDLE The Card handle was not valid
ADMXRC2_NOT_SUPPORTED An invalid space was specified via SpaceIndex

Description

This function returns the current configuration of a local bus space.

The SpaceIndex parameter is a zero-based index that specifies the local bus space whose configuration is to be returned.

The Flags parameter returns the current configuration for the local bus space, and is constructed from the flags in the
following table:

Flag Meaning
ADMXRC2_SPACE_WIDTH_8 8 bit local bus width
ADMXRC2_SPACE_WIDTH_16 16 bit local bus width
ADMXRC2_SPACE_WIDTH_32 32 bit local bus width
ADMXRC2_SPACE_WIDTH_64 64 bit local bus width
ADMXRC2_SPACE_PREFETCH_MINIMUM The minimum amount of prefetching on the local bus; on some

models, this equates to no prefetching
ADMXRC2_SPACE_PREFETCH_NORMAL A nominal amount of prefetching on the local bus
ADMXRC2_SPACE_PREFETCH_MAXIMUM The maximum amount of prefetching on the local bus; on some

models, this may equate to unlimited prefetching

443

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetSpaceConfig

ADMXRC2_SPACE_BURST_DISABLED Non-bursting local bus behaviour
ADMXRC2_SPACE_BURST_ENABLED Bursting local bus behaviour

444

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetStatusString

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_GetStatusString

Prototype

const char*
ADMXRC2_GetStatusString(
 ADMXRC2_STATUS Code);

Arguments

Argument Type Purpose
Code In The error code to convert to a string

Return value

Unlike most API functions, ADMXRC2_GetStatusString returns a pointer to a NULL terminated string that describes the
error code.

Description

This function returns a textual description of the error code passed in the Code parameter. The returned string should be
treated as read-only since it is statically allocated. If the Code parameter contains a code that is not one of the members of
the enumerated type ADMXRC2_STATUS, the string returned will be

"unknown ADMXRC2_STATUS code"

445

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_GetVersionInfo

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_GetVersionInfo

Prototype

ADMXRC2_STATUS
ADMXRC2_GetVersionInfo(
 ADMXRC2_HANDLE Card,
 ADMXRC2_VERSION_INFO* Info);

Arguments

Argument Type Purpose
Card In Handle of card about which to return information
Info Out Structure to be filled in with version information

Return value

Value Meaning
ADMXRC2_SUCCESS The information was obtained successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card

Description

This function returns version information about the API library and driver. A pointer to an ADMXRC2_VERSION_INFO
structure should be passed in the Info parameter.

446

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_InstallErrorHandler

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_InstallErrorHandler

Prototype

ADMXRC2_STATUS
ADMXRC2_InstallErrorHandler(
 ADMXRC2_ERROR_HANDLER Routine)

Arguments

Argument Type Purpose
Routine In The error handler routine to install

Return value

Value Meaning
ADMXRC2_SUCCESS The error handler routine was successfully installed

Description

This function is used to install a user-defined error handler function that will be called whenever the ADM-XRC function must
return an error condition. The error handler function should be of type ADMXRC2_ERROR_HANDLER:

void
MyErrorHandler(
 const char* FunctionName,
 ADMXRC2_STATUS Code);

If Routine is non-NULL, it must point to a function of the same type as MyErrorHandler above. If Routine is NULL, any
error handler function currently installed will be uninstalled.

A failed call to the ADMXRC2_InstallErrorHandler function does not result in in any currently installed error handler
function being called.

The error handler function is always called just before the API function generating the error returns. When the error handler
is called, FunctionName will point to a NULL terminated string containing the name of the API function which failed and
Code will contain the error code.

An installed error handler may itself make calls to the ADM-XRC API. However, it is the application programmer's
responsibility to ensure that:

● Installation/uninstallation of the error handler routine is correctly synchronized to other ADM-XRC API calls that may fail.

● If the error handler is called reentrantly, as a result of the error handler routine itself making calls to the ADM-XRC API,

447

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_InstallErrorHandler

infinite recursion/stack overflow does not occur.

448

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_LoadBitstream

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_LoadBitstream

Prototype

ADMXRC2_STATUS
ADMXRC2_LoadBitstream(
 ADMXRC2_HANDLE Card,
 const char* Filename,
 ADMXRC2_IMAGE* Image,
 unsigned long* ImageSize);

Arguments

Argument Type Purpose
Card In Handle of card that the bitstream targets
Filename In Name of bitstream file to load
Image Out Loaded bitstream data
ImageSize Out Size in bytes of loaded bitstream data

Return value

Value Meaning
ADMXRC2_SUCCESS The bitstream file was successfully loaded
ADMXRC2_FILE_NOT_FOUND The file could not be opened
ADMXRC2_INVALID_FILE The file appeared not to be a valid bitstream
ADMXRC2_NO_MEMORY There was insufficient free memory to load the bitstream
ADMXRC2_FPGA_MISMATCH The device targetted by the bitstream file did not match the device fitted to the

card
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card

Description

This function loads the SelectMap data from a Xilinx bitstream (.BIT) file into memory and returns a pointer to it. The data
returned is in correct bit order for sending to an FPGA's SelectMap port.

The Card parameter specifies the card that the bitstream targets. This information is used to check that the bitstream
matches the FPGA fitted to the card.

The bitstream file to load into memory is specified by the Filename parameter.

The Image parameter must point to a variable of type ADMXRC2_IMAGE. A pointer to the buffer that contains the loaded
SelectMap data, allocated by ADMXRC2_LoadBitstream, is returned. The ADMXRC2_UnloadBitstream function should
be used to free the memory used by the SelectMap data when no longer required.

449

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_LoadBitstream

The ImageSize parameter must point to an unsigned long variable which receives the length of the SelectMap data.

450

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_MapDirectMaster

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_MapDirectMaster

Prototype

ADMXRC2_STATUS
ADMXRC2_MapDirectMaster(
 ADMXRC2_HANDLE Card,
 ADMXRC2_DMADESC Buffer,
 unsigned long Offset,
 unsigned long Length,
 ADMXRC2_BUFFERMAP* Map);

Arguments

Argument Type Purpose
Card In Handle of card that the bitstream targets
Buffer In Specifies application buffer to map
Offset In Where to begin mapping within the application buffer
Length In Size of region of application buffer to map
Map In/Out Structure to receive map information

Return value

Value Meaning
ADMXRC2_SUCCESS The bitstream file was successfully loaded
ADMXRC2_INVALID_HANDLE The Card parameter did not refer to an open card
ADMXRC2_INVALID_DMADESC The DMA descriptor representing the application buffer was not valid
ADMXRC2_INVALID_PARAMETER The Offset or Length parameters were outside the bounds of the application

buffer

Description

This function builds an array of PCI addresses of the pages of memory that comprise a buffer in the application's address
space.

The Card parameter should be the handle of the card that was used to create the DMA descriptor DmaDesc. DMA
descriptors are obtained via the ADMXRC2_SetupDMA API call.

The Offset and Length parameters identify a region within the buffer that DmaDesc refers to.

The Map parameter must point to an ADMXRC2_BUFFERMAP structure.

If the call to ADMXRC2_MapDirectMaster is successful, the array of page addresses may used by the FPGA in order to

451

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_MapDirectMaster

allow the FPGA to perform direct master access to the user buffer represented by DmaDesc. It is up to the application
programmer to provide a mechanism by which the returned PCI page addresses are transferred to the FPGA. A simple
mechanism is a bank of registers within the FPGA; the host simply writes the PCI page addresses to these registers using
direct slave transfers.

Prior to calling ADMXRC2_MapDirectMaster, the MaxPages and PagesPci members must be initialized by the application.
PagesPci should point to an application-allocated buffer that will receive the PCI addresses of the pages comprising the
specified region of the application buffer. This region is specified by the Offset and Length parameters. MaxPages should
be initialized to the number of unsigned long elements in the array that PagesPci points to.

If ADMXRC2_MapDirectMaster succeeds, the PageLength, PagesSpanned, BytesSpanned and InitOffset members of
the ADMXRC2_BUFFERMAP that Map points to will be filled in with valid values.

It is possible that the number of pages in the array Map->PagesPci will not be sufficient to map the entire region specified by
Length and Offset. There are two cases:

● MaxPages is equal to or greater than the actual number of pages spanned by the region in the user buffer specified by
Length and Offset. The function will map all of the specified region. In this case, the entire region is mapped and
BytesSpanned will be equal to Length.

● MaxPages is less than the actual number of pages spanned by the region in the user buffer specified by Length and
Offset. The function will only map the first MaxPages. In this case, PagesSpanned will be equal to MaxPages and
BytesSpanned will be less than the Length parameter.

452

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_MapDirectMaster

453

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_OpenCard

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_OpenCard

Prototype

ADMXRC2_STATUS
ADMXRC2_OpenCard(
 ADMXRC2_CARDID CardID,
 ADMXRC2_HANDLE* Card);

Arguments

Argument Type Purpose
CardID In ID of card to open
Card Out Handle to opened card

Return value

Value Meaning
ADMXRC2_SUCCESS The card was successfully opened
ADMXRC2_CARD_NOT_FOUND The card was in use or not physically present

Description

This function is used to open and obtain a handle to an ADM-XRC card.

The particular card to open is identified by its card ID, passed via the CardID parameter. If there is more than one card in the
system with the same ID, the function will open the first free card found with the specified ID. If the special value 0 is used for
CardID, the first card found that is not in use will be opened, regardless of its ID.

The handle returned in the Card parameter should be used in all further API calls that need to access this card. When
access to the card is no longer required, call ADMXRC2_CloseCard to close the handle and free the card.

454

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_OpenCardByIndex

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_OpenCardByIndex

Prototype

ADMXRC2_STATUS
ADMXRC2_OpenCardByIndex(
 unsigned int Index,
 ADMXRC2_HANDLE* Card);

Arguments

Argument Type Purpose
Index In Index of card to open
Card Out Handle to opened card

Return value

Value Meaning
ADMXRC2_SUCCESS The card was successfully opened
ADMXRC2_CARD_NOT_FOUND The card was in use or not physically present

Description

This function is used to open and obtain a handle to an ADM-XRC card.

The particular card to open is identified by the Index parameter. The cards in a system are enumerated in a system-
dependent order, and the order of enumeratation may vary depending upon the system's bus topology. Applications should
not rely upon a particular order of enumeration.

The handle returned in the Card parameter should be used in all further API calls that need to access this card. When
access to the card is no longer required, call ADMXRC2_CloseCard to close the handle and free the card.

455

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_Read

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_Read

Prototype

ADMXRC2_STATUS
ADMXRC2_Read(
 ADMXRC2_HANDLE Card,
 ADMXRC2_IOWIDTH Width,
 DWORD Flags,
 DWORD Local,
 void* Buffer,
 unsigned long Length);

Arguments

Argument Type Purpose
Card In Handle of card from which the read is to take place
Width In Width of operation
Flags In Miscellaneous flags
Local In Local bus address at which to begin reading
Buffer Out Buffer to receive data read
Length In Number of bytes to read

Return value

Value Meaning
ADMXRC2_SUCCESS The data was read successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed

Description

The ADMXRC2_Read function reads a number of bytes from the local bus using direct slave cycles or from the PLX
registers. The local bus space encompasses FPGA space, the FPGA flash memory, and the control registers.

The Width parameter specifies the width of the operation, and must be one of the values from the enumerated type
ADMXRC2_IOWIDTH.

The Flags parameter modifies the semantics of the operation. Normally, the read is performed in local bus space with an
incrementing address, but this behavior can be modified by any combination of the following:

Flag Meaning
ADMXRC2_IOFIXED The local bus address is not incremented during the transfer

456

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_Read

ADMXRC2_IOADAPTER The read is performed from the card's PCI interface registers rather than the local bus

If the ADMXRC2_IOADAPTER flag is not specified, the Local parameter specifies the starting local bus address from which
the data will be read. Otherwise, the Local parameter specifies the starting adapter register (PCI9080/PCI9656) offset from
which the data will be read. If the ADMXRC2_IOFIXED flag was specified, this address will not increment as the data is
read. Otherwise, the address is incremented as the data is read.

The Buffer parameter specifies the buffer to receive the data read.

The Length parameter specifies how many bytes are to be read, and should be a multiple of the width specified by the
Width parameter. For example, if Width is ADMXRC2_IOWIDTH_16, the Length parameter should be a multiple of 2.

457

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ReadConfig

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_ReadConfig

Prototype

ADMXRC2_STATUS
ADMXRC2_ReadConfig(
 ADMXRC2_HANDLE Card,
 unsigned long Index,
 DWORD* Value);

Arguments

Argument Type Purpose
Card In Handle of card on which the read is to take place
Index In Index of EEPROM location to read
Value Out Value read from EEPROM location

Return value

Value Meaning
ADMXRC2_SUCCESS The data was read successfully
ADMXRC2_INVALID_HANDLE Card is not a valid card handle
ADMXRC2_INVALID_PARAMETER Index was out of range.

Description

The ADMXRC2_ReadConfig function reads the EEPROM on an ADM-XRC series card. This function is intended for
advanced users who need to change the configuration of their card from the factory defaults.

The Index parameter specifies the index of the EEPROM location to read.

The Value parameter must point to the variable that is to receive the value read from the specified location.

The number of EEPROM locations and the width in bits of each location is dependent on the board type. The value returned
is the data read from the specified EEPROM location, zero-extended by adding MSBs to 32 bits. The table below shows
EEPROM size and width for each supported card:

Card Number of locations Bit-width of locations
ADM-XRC 64 16
ADM-XRC-P 64 16
ADM-XRC-II-Lite 64 16
ADM-XRC-II 256 16
ADM-XPL 256 32

458

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ReadConfig

ADM-XP 256 32
ADP-WRC-II 256 16
ADP-DRC-II 256 16
ADP-XPI 256 32
ADM-XRC-4LX 256 16
ADM-XRC-4SX 256 16
ADM-XRC-4FX 256 32
ADPE-XRC-4FX 256 32
ADM-XRC-5LX 256 32
ADM-XRC-5T1 256 32
ADM-XRC-5T2 256 32
ADM-XRC-5T2-ADV 256 32
ADM-XRC-5TZ 256 32
ADM-XRC-5T-DA1 256 32

459

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_RegisterInterruptEvent

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_RegisterInterruptEvent

Prototype

ADMXRC2_STATUS
ADMXRC2_RegisterInterruptEvent(
 ADMXRC2_HANDLE Card,
 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card for which to register the event
Event In Specifies the event to register for interrupts

Return value

Value Meaning
ADMXRC2_SUCCESS The event was successfully registered
ADMXRC2_INVALID_HANDLE The Card handle or Event handle was not valid

Description

This function registers a Win32 event for capturing interrupts from the FPGA.

Event must be a valid Win32 event handle. The type of the event can be manual or auto reset, depending on the needs of
the application.

After an event is registered using ADMXRC2_RegisterInterruptEvent, it is signalled by the driver whenever an FPGA
interrupt occurs. Applications can thus be notified of interrupts from the FPGA by waiting on a registered event. Any number
of events can be registered this way, but typically only one is ever required by an application.

To unregister an event, specify the same event in a call to ADMXRC2_UnregisterInterruptEvent.

460

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SetClockRate

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_SetClockRate

Prototype

ADMXRC2_STATUS
ADMXRC2_SetClockRate(
 ADMXRC2_HANDLE Card,
 unsigned int Index,
 double Rate,
 double* Actual);

Arguments

Argument Type Purpose
Card In Handle of card for which to program the clock
Index In The index of the clock generator to program
Rate In The desired frequency
Actual Out The actual frequency programmed

Return value

Value Meaning
ADMXRC2_SUCCESS The clock generator was successfully programmed
ADMXRC2_INVALID_HANDLE The Card handle was not valid
ADMXRC2_INVALID_PARAMETER The Index or Rate parameters were out of range

Description

This function programs a clock generator on a card to output the specified frequency.

The Index parameter is a zero-based index that specifies which clock generator to program. A value of 0 or
ADMXRC2_CLOCK_LCLK refers to the local bus clock. The number of programmable clock generators on a card can be
obtained from the NumClock member in the ADMXRC2_CARD_INFO structure. The maximum legal value of Index is
(NumClock - 1)

The Rate parameter specifies the desired clock frequency, in Hz. This frequency should be within the limits specified in the
table below, and also within the limits imposed by any bitstream that has been loaded into the FPGA.

The Actual parameter may either be NULL, or point to a variable of type double that is to receive the actual clock frequency
programmed (in Hz). Since a digitally programmable clock generator device is used, the actual frequency programmed may
not be exactly the same as the desired frequency.

The clock generators on the various models in the ADM-XRC range are as follows:

461

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SetClockRate

Card Clock index Name Range Function
ADM-XRC 0 LCLK 400kHz-40MHz Local bus clock

1 MCLK 400kHz-100MHz General purpose
ADM-XRC-P 0 LCLK 400kHz-40MHz Local bus clock

1 MCLK 400kHz-100MHz General purpose
ADM-XRC-II-Lite 0 LCLK 400kHz-40MHz Local bus clock

1 MCLK 400kHz-100MHz General purpose
ADM-XRC-II 0 LCLK 400kHz-66MHz Local bus clock

1 MCLK 400kHz-100MHz General purpose
ADM-XPL 0 LCLK 6MHz-80MHz

See note 1 below.
Local bus clock
Note that MCLK = 2 * LCLK

ADM-XP 0 LCLK 6MHz-80MHz Local bus clock
Note that MCLK = 2 * LCLK

ADP-WRC-II 0 LCLK 400kHz-66MHz Local bus clock
1 MCLK 400kHz-100MHz General purpose

ADP-DRC-II 0 LCLK 400kHz-66MHz Local bus clock
1 MCLK 400kHz-100MHz General purpose

ADP-XPI 0 LCLK 6MHz-80MHz Local bus clock
Note that MCLK = 2 * LCLK

ADM-XRC-4LX 0 LCLK 400kHz-66MHz Local bus clock
1 MCLK 33MHz-500MHz General purpose

ADM-XRC-4SX 0 LCLK 400kHz-66MHz Local bus clock
1 MCLK 33MHz-500MHz General purpose

ADM-XRC-4FX 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 31MHz-640MHz General purpose

ADPE-XRC-4FX 0 LCLK 6MHz-80MHz Local bus clock
1 MCLK 33MHz-500MHz General purpose

ADM-XRC-5LX 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 33MHz-500MHz General purpose

ADM-XRC-5T1 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 31MHz-640MHz General purpose

ADM-XRC-5T2 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 31MHz-640MHz General purpose

ADM-XRC-5T2-ADV 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 31MHz-640MHz General purpose

ADM-XRC-5TZ 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 31MHz-640MHz General purpose

ADM-XRC-5T-DA1 0 LCLK 32MHz-80MHz Local bus clock
1 MCLK 31MHz-640MHz General purpose

Note 1: If logic revision from INFO utility is 1.2 or greater, maximum LCLK frequency is 80MHz; otherwise 66.67MHz.

462

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SetSpaceConfig

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_SetSpaceConfig

Prototype

ADMXRC2_STATUS
ADMXRC2_SetSpaceConfig(
 ADMXRC2_HANDLE Card,
 unsigned int SpaceIndex,
 DWORD Flags);

Arguments

Argument Type Purpose
Card In Handle of card
SpaceIndex In The index of the space to be configured
Flags In Flags specifying configuration

Return value

Value Meaning
ADMXRC2_SUCCESS The space was successfully configured.
ADMXRC2_INVALID_HANDLE The Card handle was not valid
ADMXRC2_INVALID_PARAMETER Flags did not consist entirely of valid flags
ADMXRC2_NOT_SUPPORTED An invalid space was specified via SpaceIndex or the requested

configuration, specified via Flags, is not supported on the card

Description

This function configures a local bus space.

The SpaceIndex parameter is a zero-based index that specifies the local bus space to configure.

The Flags parameter specifies the desired configuration for the local bus space, and should be constructed by bitwise ORing
together flags from the following table:

Flag Meaning
ADMXRC2_SPACE_SET_WIDTH The bus width for the local bus space is specified; must be

accompanied by one of the ADMXRC2_SPACE_WIDTH_XXX flags
ADMXRC2_SPACE_WIDTH_DEFAULT The model-specific default bus width is requested; equates to one of

the other ADMXRC2_SPACE_WIDTH_XXX flags, depending on the
model

ADMXRC2_SPACE_WIDTH_8 8 bit local bus width is requested
ADMXRC2_SPACE_WIDTH_16 16 bit local bus width is requested

463

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SetSpaceConfig

ADMXRC2_SPACE_WIDTH_32 32 bit local bus width is requested
ADMXRC2_SPACE_WIDTH_64 64 bit local bus width is requested
ADMXRC2_SPACE_SET_PREFETCH The prefetch behaviour for the local bus space is specified; must be

accompanied by one of the ADMXRC2_SPACE_PREFETCH_XXX
flags

ADMXRC2_SPACE_PREFETCH_DEFAULT The model-specific default prefetch behaviour is requested;
corresponds to one of the other
ADMXRC2_SPACE_PREFETCH_XXX flags, depending on the
model

ADMXRC2_SPACE_PREFETCH_MINIMUM The minimum amount of prefetching is requested; on some models,
this equates to no prefetching

ADMXRC2_SPACE_PREFETCH_NORMAL A nominal amount of prefetching is requested
ADMXRC2_SPACE_PREFETCH_MAXIMUM The maximum amount of prefetching is requested; on some models,

this may equate to unlimited prefetching
ADMXRC2_SPACE_SET_BURST The bursting behaviour for the local bus space is specified; must be

accompanied by one of the ADMXRC2_SPACE_BURST_XXX flags
ADMXRC2_SPACE_BURST_DEFAULT The model-specific default burst behaviour is requested;

corresponds to one of the other ADMXRC2_SPACE_BURST_XXX
flags, depending on the model

ADMXRC2_SPACE_BURST_DISABLED Non-bursting (single word transfer) behaviour is requested
ADMXRC2_SPACE_BURST_ENABLED Bursting (multiword transfer) behaviour is requested

464

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SetupDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_SetupDMA

Prototype

ADMXRC2_STATUS
ADMXRC2_SetupDMA(
 ADMXRC2_HANDLE Card,
 const void* Buffer,
 unsigned long Size,
 DWORD Flags,
 ADMXRC2_DMADESC* DMADesc);

Arguments

Argument Type Purpose
Card In Handle of card
Buffer In The application buffer to lock down
Size In The size of the application buffer
Flags In Miscellaneous flags
DMADesc Out The DMA descriptor returned

Return value

Value Meaning
ADMXRC2_SUCCESS The application buffer was successfully locked down and a DMA descriptor

returned
ADMXRC2_INVALID_HANDLE The Card handle was not valid
ADMXRC2_INVALID_PARAMETER Flags was not valid
ADMXRC2_NO_DMADESC All DMA descriptors were in use

Description

This function locks down and maps an application buffer, returning a descriptor which can subsequently be used to identify
the buffer to the DMA API functions such as ADMXRC2_DoDMA and ADMXRC2_DoDMAImmediate.

The Buffer parameter must point to the application buffer to be mapped.

The Size parameter specifies the size, in bytes, of the application buffer to be mapped.

The Flags parameter must currently be 0.

The DMADesc parameter must point to a variable of type ADMXRC2_DMADESC. If ADMXRC2_SetupDMA succeeds, this
variable will contain a DMA descriptor on return.

465

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SetupDMA

The application buffer is locked down (made non-swappable) so that the system cannot swap any page of physical memory
spanned by the buffer out to disk. Locking down a very large region of memory under low memory conditions should be
avoided.

There are a limited number of DMA descriptors, and each successful call to ADMXRC2_SetupDMA commits a descriptor,
until freed by a matching call to ADMXRC2_UnsetupDMA.

466

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_StatusToString

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_StatusToString

Prototype

ADMXRC2_STATUS
ADMXRC2_StatusToString(
 ADMXRC_STATUS Status,
 char* Buffer,
 unsigned long Max);

Arguments

Argument Type Purpose
Status In Error code
Buffer In Buffer to receive textual description
Max In The size of Buffer in bytes

Return value

Value Meaning
ADMXRC2_SUCCESS A description of the error was successfully returned
ADMXRC2_NULL_POINTER Buffer was NULL
ADMXRC2_INVALID_PARAMETER Status was not a valid error code

Description

This function returns in a textual description of an error in Buffer. At most Max characters, including the NULL terminator,
are written to Buffer.

467

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SyncDirectMaster

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_SyncDirectMaster

Prototype

ADMXRC2_STATUS
ADMXRC2_SyncDirectMaster(
 ADMXRC2_HANDLE Card,
 ADMXRC2_DMADESC DMADesc,
 unsigned long Offset,
 unsigned long Length,
 ADMXRC2_SYNCMODE Mode);

Arguments

Argument Type Purpose
Card In Handle of card
DMADesc In A DMA descriptor identifying a buffer
Offset In Offset of region within buffer to sync
Length In Region within buffer to sync
Mode In The kind of synchronisation to perform

Return value

Value Meaning
ADMXRC2_SUCCESS The buffer region was successfully synchronized
ADMXRC2_INVALID_HANDLE Card was not valid
ADMXRC2_INVALID_DMADESC DMADesc was not a valid DMA descriptor
ADMXRC2_INVALID_PARAMETER Mode was not valid, or Offset and Length were out of bounds

Description

The ADMXRC2_SyncDirectMaster function serves the purpose of ensuring that coherency is maintained in hardware-level
buffers and caches, when the FPGA accesses host memory in direct master mode. Proper use of this function ensures that:

● data written to memory by the CPU has propagated through all caches, write buffers and bridges, so that the changes
are visible to the FPGA, and

● data written to memory by the FPGA using Direct Master access has propagated through all caches, write buffers and
bridges, so that the changes are visible to the CPU.

In practice, this means observing the following rules:

● Call ADMXRC2_SyncDirectMaster specifying ADMXRC2_SYNC_CPUTOFPGA for Mode after the CPU has set up an
application buffer and before signalling the FPGA to operate on the buffer.

468

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SyncDirectMaster

● Call ADMXRC2_SyncDirectMaster specifying ADMXRC2_SYNC_FPGATOCPU for Mode after the FPGA has
operated on an application buffer and before the CPU examines the data in the buffer.

By the time ADMXRC2_SyncDirectMaster returns, modifications made to an application buffer will be visible to the FPGA,
and vice-versa.

The Offset and Length parameters identify a region within the application buffer which DmaDesc refers to. This region
should cover the parts of the user buffer which have been operated upon by the CPU or FPGA.

The Mode parameter should be one of members of the ADMXRC2_SYNCMODE enumerated type.

NOTE

This function is not required by an application which uses only direct slave transfers
(programmed I/O and DMA transfers via ADMXRC2_DoDMA and
ADMXRC2_DoDMAImmediate).

469

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_UnloadBitstream

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_UnloadBitstream

Prototype

ADMXRC2_STATUS
ADMXRC2_UnloadBitstream(
 ADMXRC2_IMAGE Image);

Arguments

Argument Type Purpose
Image In Bitstream image to unload

Return value

Value Meaning
ADMXRC2_SUCCESS The bitstream file was successfully unloaded

Description

This function frees the memory used to hold the SelectMap data of an FPGA bitstream.

Image should be a value of type ADMXRC2_IMAGE, obtained from an earlier call to ADMXRC2_LoadBitstream.

470

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_UnregisterInterruptEvent

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_UnregisterInterruptEvent

Prototype

ADMXRC2_STATUS
ADMXRC2_UnregisterInterruptEvent(
 ADMXRC2_HANDLE Card,
 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to which Event is registered
Event In Specifies the event to unregister

Return value

Value Meaning
ADMXRC2_SUCCESS The event was successfully unregistered
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card or Event is not a valid Win32 event handle

Description

This function unregisters a Win32 event previously registered with ADMXRC2_RegisterInterruptEvent, so that the event
will no longer be signaled when an FPGA interrupt occurs.

The Event parameter should be the handle of the Win32 event to unregister.

471

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_UnsetupDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_UnsetupDMA

Prototype

ADMXRC2_STATUS
ADMXRC2_UnsetupDMA(
 ADMXRC2_HANDLE Card,
 ADMXRC2_DMADESC DMADesc);

Arguments

Argument Type Purpose
Card In Handle of card
DMADesc In The DMA descriptor to free

Return value

Value Meaning
ADMXRC2_SUCCESS The DMA descriptor was successfully freed
ADMXRC2_INVALID_HANDLE Card was not a valid handle to card
ADMXRC2_INVALID_DMADESC DMADesc was not a valid DMA descriptor

Description

This function undoes a call to ADMXRC2_SetupDMA. When a DMA descriptor is no longer required, it should be freed
using ADMXRC2_UnsetupDMA. Provided that no other DMA descriptors exist for the buffer, the application buffer
associated with the DMA descriptor is returned to an unlocked (swappable) state.

The DMADesc parameter specifies the DMA descriptor to free.

472

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_Write

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_Write

Prototype

ADMXRC2_STATUS
ADMXRC2_Write(
 ADMXRC2_HANDLE Card,
 ADMXRC2_IOWIDTH Width,
 DWORD Flags,
 DWORD Local,
 const void* Buffer,
 unsigned long Length);

Arguments

Argument Type Purpose
Card In Handle of card on which the write is to take place
Width In Width of operation
Flags In Miscellaneous flags
Local In Local bus address at which to begin writing
Buffer In Buffer containing data to write
Length In Number of bytes to write

Return value

Value Meaning
ADMXRC2_SUCCESS The data was written successfully
ADMXRC2_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC2_INVALID_PARAMETER An invalid parameter was passed

Description

The ADMXRC2_Write function writes a number of bytes from an application buffer to the local bus using direct slave cycles
or to the PLX registers. The local bus space encompasses FPGA space, the FPGA flash memory, and the control registers.

The Width parameter specifies the width of the operation, and must be one of the values from the enumerated type
ADMXRC2_IOWIDTH.

The Flags parameter modifies the semantics of the operation. Normally, the write is performed to local bus space with an
incrementing address, but this behavior can be modified by any combination of the following:

Flag Meaning
ADMXRC2_IOFIXED The local bus address is not incremented during the transfer

473

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_Write

ADMXRC2_IOADAPTER The read is performed from the card's PCI interface registers rather than the local bus

If the ADMXRC2_IOADAPTER flag is not specified, the Local parameter specifies the starting local bus address to which
the data will be written. Otherwise, the Local parameter specifies the starting adapter register (PCI9080/PCI9656) offset to
which the data will be written. If the ADMXRC2_IOFIXED flag was specified, this address will not increment as the data is
written. Otherwise, the address is incremented as the data is written.

The Buffer parameter specifies the buffer containing the data to be written.

The Length parameter specifies how many bytes are to be written, and should be a multiple of the width specified by the
Width parameter. For example, if Width is ADMXRC2_IOWIDTH_16, the Length parameter should be a multiple of 2.

474

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_WriteConfig

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_WriteConfig

Prototype

ADMXRC2_STATUS
ADMXRC2_WriteConfig(
 ADMXRC2_HANDLE Card,
 unsigned long Index,
 DWORD Value);

Arguments

Argument Type Purpose
Card In Handle of card on which the write is to take place
Index In Index of EEPROM location to write
Value In Value to write to EEPROM location

Return value

Value Meaning
ADMXRC2_SUCCESS The data was written successfully
ADMXRC2_INVALID_HANDLE Card is not a valid card handle
ADMXRC2_INVALID_PARAMETER Index was out of range.

Description

The ADMXRC2_WriteConfig function writes to the configuration EEPROM on an ADM-XRC series card. This function is
intended for advanced users who need to change the configuration of their card from the factory defaults.

The Index parameter specifies the index of the EEPROM location to write.

The Value parameter is the value to write to the specified EEPROM location.

The number of EEPROM locations and the width in bits of each location is dependent on the board type. The actual value
written to the specified EEPROM location is Value, truncated by removing MSBs to the width of the EEPROM. The table
below shows EEPROM size and width for each supported card:

Card Number of locations Bit-width of locations
ADM-XRC 64 16
ADM-XRC-P 64 16
ADM-XRC-II-Lite 64 16
ADM-XRC-II 256 16
ADM-XPL 256 32

475

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_WriteConfig

ADM-XP 256 32
ADP-WRC-II 256 16
ADP-DRC-II 256 16
ADP-XPI 256 32
ADM-XRC-4LX 256 16
ADM-XRC-4SX 256 16
ADM-XRC-4FX 256 32
ADPE-XRC-4FX 256 32
ADM-XRC-5LX 256 32
ADM-XRC-5T1 256 32
ADM-XRC-5T2 256 32
ADM-XRC-5T2-ADV 256 32
ADM-XRC-5TZ 256 32
ADM-XRC-5T-DA1 256 32

476

ADM-XRC SDK 4.9.3 User Guide (Win32) - Structures

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2 interface structures

This section describes the composite datatypes of the ADMXRC2 interface.

Name Purpose
ADMXRC2_BANK_INFO Information about a bank of memory

ADMXRC2_BUFFERMAP Contains a physical page map of an application buffer

ADMXRC2_CARD_INFO Information about a card

ADMXRC2_SPACE_INFO Information about local bus region

ADMXRC2_VERSION_INFO Information about the API and driver version

477

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BANK_INFO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_BANK_INFO

Declaration

typedef struct _ADMXRC2_BANK_INFO
{
 unsigned long Type;
 unsigned long Width;
 unsigned long Size;
 BOOLEAN Fitted;
} ADMXRC2_BANK_INFO;

Description

The ADMXRC2_BANK_INFO structure is returned by ADMXRC2_GetBankInfo and contains information about a bank of
memory fitted to a card.

Some applications may require this information in order, for example, to make the correct decisions when programming
FPGA registers that deal with memory access. Simpler applications may do nothing more than check that the memory
configuration on a card is as expected.

The Fitted member indicates whether devices are physically present on the card. If TRUE, the other three members of the
structure are valid. If FALSE, the other three members of the structure are not valid and should be ignored.

The Type member identifies the type of memory comprising the bank. It is a bitmask of flags, and a memory bank may be
capable of operating in more than one mode, depending on the devices fitted:

Flag Meaning
ADMXRC2_RAM_ZBTFT The bank is ZBT SSRAM, capable of operating in flowthrough mode.
ADMXRC2_RAM_ZBTP The bank is ZBT SSRAM, capable of operating in pipelined mode.
ADMXRC2_RAM_SDRAM_SDR The bank is SDR SDRAM.
ADMXRC2_RAM_SDRAM_DDR The bank is DDR SDRAM.
ADMXRC2_RAM_SRAM_DDR2 The bank is DDR-II SSRAM.
ADMXRC2_RAM_SDRAM_DDR2 The bank is DDR-II SRAM.

The Width member gives the width of the bank, in bits. The bank width can also be inferred from the BoardType member in
the ADMXRC2_CARD_INFO structure, as it is constant for a given type of board. For DDR memory types, the width is given
in logical bits, where one physical wire carries two logical data bits on each clock cycle. For example, a DDR memory that is
64 physical bits wide is treated logically as a 128-bit wide memory.

The Size member gives the number of logical memory locations in the bank, counted in words (not bytes). This value is 2n
where n is the number of address lines used by the bank.

478

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BUFFERMAP

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_BUFFERMAP

Declaration

typedef struct _ADMXRC2_BUFFERMAP
{
 unsigned long MaxPages;
 DWORD* PagesPci;
 unsigned long PageLength;
 unsigned long PageBits;
 unsigned long PagesSpanned;
 unsigned long BytesSpanned;
 unsigned long InitOffset;
} ADMXRC2_BUFFERMAP;

Description

The ADMXRC2_BUFFERMAP structure is filled in by ADMXRC2_MapDirectMaster with a scatter-gather map of an
application buffer.

The first two members are always initialized by the application:

● The PagesPci member must point to an application-supplied array of unsigned long. This array is filled in with the PCI
addresses of pages making up the application buffer.

● The MaxPages member must be initialized to the maximum number of pages that the PagesPci member points to.

The other five members are filled in by ADMXRC2_MapDirectMaster:

● The PageLength member is the length in bytes of a page of physical memory. For example, in the x86 architecture, this
member is 4096.

● The PageBits member is the number of address bits in a page offset. For example, in the x86 architecture, this member
is 12.

● The PagesSpanned member is the number of pages of physical memory spanned by the PagesPci array.

● The BytesSpanned member is the number of bytes of physical memory spanned by the PagesPci array and takes
InitOffset into account.

● The InitOffset member is the offset within the first mapped page of the beginning of the region of the user buffer.

The following figures illustrate the relationship between the members of the ADMXRC2_BUFFERMAP structure, in two
possible cases:

● Here, when ADMXRC2_MapDirectMaster is called, the MaxPages member of the ADMXRC2_BUFFERMAP structure
passed is greater than or equal to the number of pages spanned by the application buffer.

479

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BUFFERMAP

● Here, when ADMXRC2_MapDirectMaster is called, the MaxPages of the ADMXRC2_BUFFERMAP structure passed
is 2, less than the number of pages spanned by the application buffer.

480

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BUFFERMAP

481

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_CARD_INFO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_CARD_INFO

Declaration

typedef struct _ADMXRC2_CARD_INFO
{
 ADMXRC2_CARDID CardID;
 DWORD SerialNum;
 ADMXRC2_BOARD_TYPE BoardType;
 ADMXRC2_FPGA_TYPE FPGAType;
 unsigned long NumClock;
 unsigned long NumDMAChan;
 unsigned long NumRAMBank;
 unsigned long NumSpace;
 DWORD RAMBanksFitted;
 BYTE BoardRevision;
 BYTE LogicRevision;
} ADMXRC2_CARD_INFO;

Description

The ADMXRC2_CARD_INFO structure is returned by ADMXRC2_GetCardInfo and contains information about a card.
Some applications may require this information in order, for example, to load the correct bitstream for the FPGA fitted to the
card.

The CardID member, of type ADMXRC2_CARDID, is the ID of the card. This value returned is read from an EEPROM on
the card.

The SerialNum member is the serial number of the card.

The BoardType member identifies the model (ADM-XRC, ADM-XRC-P, ADM-XRC-II-Lite etc.) and is of the enumerated
type ADMXRC2_BOARD_TYPE. BoardType also implicitly defines the package of the FPGA fitted to the card:

Model FPGA package
ADM-XRC BG560
ADM-XRC-P BG560
ADM-XRC-II-Lite FG456
ADM-XRC-II FF1152
ADM-XPL FF896
ADP-WRC-II FF1517
ADP-DRC-II FF1152
ADP-XPI FF1704
ADM-XRC-4LX FF1148
ADM-XRC-4SX FF1148
ADM-XRC-4FX FF1517

482

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_CARD_INFO

ADPE-XRC-4FX FF1517
ADM-XRC-5LX FF1153
ADM-XRC-5T1 FF1136
ADM-XRC-5T2 FF1738
ADM-XRC-5T2-ADV FF1738
ADM-XRC-5T-DA1 FF1136

The FPGAType member, of the enumerated type ADMXRC2_FPGA_TYPE identifies the type of FPGA fitted to the card. To
be precise, it identifies the FPGA family and size, but not the package.

The NumClock member is the number of programmable clock generators available on the card.

The NumDMAChan member is the number of DMA channels provided by the card.

The NumRAMBank member is the number of RAM banks on the card, whether fitted or not. This value is obtained by
reading the EEPROM on the card. This value can be also be implied from the model:

The NumSpace member is the regions of local bus space that the card provides.

The RAMBanksFitted is a bitmap indicating which RAM banks are fitted on the card. A 1 bit indicates "fitted" and a 0 bit
indicates "not fitted". RAMBanksFitted[n] corresponds to bank n. This value is obtained by reading the EEPROM on the
card.

The BoardRevision member is the revision of the board, as a two digit number 0xAB where A is the major revision and B is
the minor revision.

The LogicRevision member is the revision of the control logic on the board, as a two digit number 0xAB where A is the
major revision and B is the minor revision.

Although the number of clock generators, the number of RAM banks, and the number of spaces provided by a card can be
obtained from the NumClock and NumRAMBank, they can also be implied from the model:

Model NumClock NumRAMBank NumSpace
ADM-XRC 2 4 2
ADM-XRC-P 2 4 2
ADM-XRC-II-Lite 2 4 2
ADM-XRC-II 2 6 2
ADM-XPL 1 2 2
ADP-WRC-II 2 2 2
ADP-DRC-II 2 5 2
ADP-XPI 1 5 2
ADM-XRC-4LX 2 6 2
ADM-XRC-4SX 2 4 2
ADM-XRC-4FX 2 4 2
ADPE-XRC-4FX 2 4 2
ADM-XRC-5LX 2 4 2
ADM-XRC-5T1 2 3 2
ADM-XRC-5T2 2 6 2

483

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_CARD_INFO

ADM-XRC-5T2-ADV 2 6 2
ADM-XRC-5T-DA1 2 4 2

484

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SPACE_INFO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_SPACE_INFO

Declaration

typedef struct _ADMXRC2_SPACE_INFO
{
 void* VirtualBase;
 unsigned long VirtualSize;
 DWORD PhysicalBase;
 DWORD LocalBase;
 unsigned long LocalSize;
} ADMXRC2_SPACE_INFO;

Description

The ADMXRC2_SPACE_INFO structure is returned by ADMXRC2_GetSpaceInfo and contains information about a region
of local bus space on a card.

The PhysicalBase member is the address of the region in the address space of the bus on which the card resides. For
example, an ADM-XRC card is a PCI Mezzanine Card so this value would represent the PCI address of the beginning of the
region.

The LocalBase member is the address of the region in the local bus address space of the card.

The LocalSize member is the size, in bytes, of the FPGA space in the local bus address space of the card.

The VirtualBase member is the address, in the application's address space, by which the region may be accessed using
pointers. This member may be NULL, meaning that the region is not mapped into the application's address space.

The VirtualSize member is the size in bytes of the region, in the application's address space. When LocalSize is very large,
eg. 256MB, LocalSize may differ from VirtualSize, indicating that the driver was unable to map all of the region into the
application's address space. If VirtualBase is NULL, then VirtualSize is 0

Only the local bus space is mapped into the application's address space. In other words, any call to
ADMXRC2_GetSpaceInfo with an index other than 0 will return an ADMXRC2_SPACE_INFO structure whose VirtualBase
member is NULL and VirtualSize member is 0.

485

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_VERSION_INFO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_VERSION_INFO

Declaration

typedef struct _ADMXRC2_VERSION_INFO
{
 BYTE DriverMinor;
 BYTE DriverMajor;
 BYTE APIMinor;
 BYTE APIMajor;
} ADMXRC2_VERSION_INFO;

Description

The ADMXRC2_VERSION_INFO structure is returned by ADMXRC2_GetVersionInfo and indicates the API library revision
level and the driver revision level.

DriverMajor and DriverMinor respectively indicate the ADM-XRC device driver major and minor revision levels.

APIMajor and APIMinor respectively indicate the API library major and minor revision levels. The API library is implemented
a set of dynamic-link libraries (DLLs) that are part of the installable driver package.

486

ADM-XRC SDK 4.9.3 User Guide (Win32) - Types

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2 interface types

This section describes the atomic datatypes of the ADMXRC2 interface.

Name Purpose
ADMXRC2_CARDID A value that identifies a particular card in a system

ADMXRC2_DMADESC A DMA descriptor, identifying a locked application buffer

ADMXRC2_DMADIR A value that indicates in which direction a DMA transfer should
transfer data

ADMXRC2_ERROR_HANDLER A pointer to an application-defined error handler function

ADMXRC2_FPGA_TYPE A value representing the type of an FPGA fitted to a card

ADMXRC2_HANDLE A handle to an ADM-XRC series card

ADMXRC2_IMAGE A FPGA bitstream image, containing SelectMap data

ADMXRC2_IOWIDTH A value that specifies the byte width of IO and DMA transfers

ADMXRC2_STATUS A value that indicates the success or failure of a call to an API
function

ADMXRC2_SYNCMODE A value specifying what kind of memory coherency synchronisation
to perform

487

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_BOARD_TYPE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_BOARD_TYPE

Declaration

typedef enum _ADMXRC2_BOARD_TYPE
{
 ADMXRC2_BOARD_ADMXRC = 0, /* ADM-XRC */
 ADMXRC2_BOARD_ADMXRC_P = 1, /* ADM-XRC-P */
 ADMXRC2_BOARD_ADMXRC2_LITE = 2, /* ADM-XRC-II-Lite */
 ADMXRC2_BOARD_ADMXRC2 = 3, /* ADM-XRC-II */
 ADMXRC2_BOARD_ADMXP = 4, /* ADM-XP */
 ADMXRC2_BOARD_ADMXPL = 5, /* ADM-XPL */
 ADMXRC2_BOARD_ADPWRC2 = 6, /* ADP-WRC-II */
 ADMXRC2_BOARD_ADPDRC2 = 7, /* ADP-DRC-II */
 ADMXRC2_BOARD_ADPXPI = 8, /* ADP-XPI */
 ADMXRC2_BOARD_ADMXRC4LS = 9, /* ADM-XRC4LS */
 ADMXRC2_BOARD_ADMXRC4LX = 10, /* ADM-XRC4LX */
 ADMXRC2_BOARD_ADMXRC4SX = 11, /* ADM-XRC4SX */
 ADMXRC2_BOARD_ADPEXRC4FX = 12, /* ADPE-XRC-4FX */
 ADMXRC2_BOARD_ADMXRC4FX = 13, /* ADM-XRC-4FX */
 ADMXRC2_BOARD_ADMXRC5LX = 14, /* ADM-XRC-5LX */
 ADMXRC2_BOARD_ADMXRC5T1 = 15, /* ADM-XRC-5T1 */
 ADMXRC2_BOARD_ADMXRC5T2 = 16, /* ADM-XRC-5T2 */
 ADMXRC2_BOARD_ADCPXRC4LX = 17, /* ADCP-XRC-4LX */
 ADMXRC2_BOARD_ADMAMC5A2 = 18, /* ADM-AMC-5A2 */
 ADMXRC2_BOARD_ADMXRC5TZ = 19, /* ADM-XRC-5TZ */
 ADMXRC2_BOARD_ADCBBP = 20, /* ADC-BBP */
 ADMXRC2_BOARD_ADMXRC5T2ADV = 21, /* ADM-XRC-5T2-ADV */
 ADMXRC2_BOARD_ADMXRC5TDA1 = 22, /* ADM-XRC-5T-DA1 */
 ADMXRC2_BOARD_UNKNOWN = 23
} ADMXRC2_BOARD_TYPE;

Description

This type enumerates the models (types of boards) supported by the API, and certain API functions require knowledge of
which model is being used in order to operate. The type of a board can be obtained from the ADMXRC2_CARD_INFO
structure returned by ADMXRC2_GetCardInfo.

488

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_CARDID

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_CARDID

Declaration

typedef unsigned long ADMXRC2_CARDID;

Description

A value of type ADMXRC2_CARDID identifies a particular card in a system and is used primarily with the
ADMXRC2_OpenCard function.

489

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_DMADESC

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_DMADESC

Declaration

typedef unsigned long ADMXRC2_DMADESC;

Description

A value of type ADMXRC2_DMADESC is a DMA descriptor, representing a locked down (non-swappable) application buffer.

DMA descriptors are allocated and freed by ADMXRC2_SetupDMA and ADMXRC2_UnsetupDMA. They are used with the
ADMXRC2_DoDMA, ADMXRC2_DoDMAImmediate, ADMXRC2_MapDirectMaster, and ADMXRC2_SyncDirectMaster
functions.

490

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_DMADIR

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_DMADIR

Declaration

typedef enum _ADMXRC2_DMADIR
{
 ADMXRC2_PCITOLOCAL = 0,
 ADMXRC2_LOCALTOPCI = 1
} ADMXRC2_DMADIR;

Description

The ADMXRC2_DMADIR enumerated type specifies the direction of data transfer in a DMA transfer, for the
ADMXRC2_DoDMA and ADMXRC2_DoDMAImmediate functions. It is one of the following values:

Value Meaning
ADMXRC2_PCITOLOCAL Data is transferred from host to FPGA
ADMXRC2_LOCALTOPCI Data is transferred from FPGA to host

491

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_FPGA_TYPE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_FPGA_TYPE

Declaration

typedef enum _ADMXRC2_FPGA_TYPE
{
 ADMXRC2_FPGA_RESVD0 = 0,
 ADMXRC2_FPGA_RESVD1 = 1,
 ADMXRC2_FPGA_RESVD2 = 2,
 ADMXRC2_FPGA_RESVD3 = 3,
 ADMXRC2_FPGA_V1000 = 4,
 ADMXRC2_FPGA_V400 = 5,
 ADMXRC2_FPGA_V600 = 6,
 ADMXRC2_FPGA_V800 = 7,
 ADMXRC2_FPGA_V2000E = 8,
 ADMXRC2_FPGA_V1000E = 9,
 ADMXRC2_FPGA_V1600E = 10,
 ADMXRC2_FPGA_V3200E = 11,
 ADMXRC2_FPGA_V812E = 12,
 ADMXRC2_FPGA_V405E = 13,
 ADMXRC2_FPGA_RESVD14 = 14,
 ADMXRC2_FPGA_RESVD15 = 15,
 ADMXRC2_FPGA_RESVD16 = 16,
 ADMXRC2_FPGA_RESVD17 = 17,
 ADMXRC2_FPGA_RESVD18 = 18,
 ADMXRC2_FPGA_RESVD19 = 19,
 ADMXRC2_FPGA_RESVD20 = 20,
 ADMXRC2_FPGA_RESVD21 = 21,
 ADMXRC2_FPGA_RESVD22 = 22,
 ADMXRC2_FPGA_RESVD23 = 23,
 ADMXRC2_FPGA_RESVD24 = 24,
 ADMXRC2_FPGA_RESVD25 = 25,
 ADMXRC2_FPGA_RESVD26 = 26,
 ADMXRC2_FPGA_RESVD27 = 27,
 ADMXRC2_FPGA_RESVD28 = 28,
 ADMXRC2_FPGA_RESVD29 = 29,
 ADMXRC2_FPGA_RESVD30 = 30,
 ADMXRC2_FPGA_RESVD31 = 31,
 ADMXRC2_FPGA_2V1000 = 32,
 ADMXRC2_FPGA_2V1500 = 33,
 ADMXRC2_FPGA_2V2000 = 34,
 ADMXRC2_FPGA_2V3000 = 35,
 ADMXRC2_FPGA_2V4000 = 36,
 ADMXRC2_FPGA_2V6000 = 37,
 ADMXRC2_FPGA_2V8000 = 38,
 ADMXRC2_FPGA_2V10000 = 39,
 ADMXRC2_FPGA_RESVD40 = 40,
 ADMXRC2_FPGA_RESVD41 = 41,
 ADMXRC2_FPGA_RESVD42 = 42,
 ADMXRC2_FPGA_RESVD43 = 43,
 ADMXRC2_FPGA_RESVD44 = 44,
 ADMXRC2_FPGA_RESVD45 = 45,

492

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_FPGA_TYPE

 ADMXRC2_FPGA_RESVD46 = 46,
 ADMXRC2_FPGA_RESVD47 = 47,
 ADMXRC2_FPGA_RESVD48 = 48,
 ADMXRC2_FPGA_RESVD49 = 49,
 ADMXRC2_FPGA_RESVD50 = 50,
 ADMXRC2_FPGA_RESVD51 = 51,
 ADMXRC2_FPGA_RESVD52 = 52,
 ADMXRC2_FPGA_RESVD53 = 53,
 ADMXRC2_FPGA_RESVD54 = 54,
 ADMXRC2_FPGA_RESVD55 = 55,
 ADMXRC2_FPGA_RESVD56 = 56,
 ADMXRC2_FPGA_RESVD57 = 57,
 ADMXRC2_FPGA_RESVD58 = 58,
 ADMXRC2_FPGA_RESVD59 = 59,
 ADMXRC2_FPGA_RESVD60 = 60,
 ADMXRC2_FPGA_RESVD61 = 61,
 ADMXRC2_FPGA_RESVD62 = 62,
 ADMXRC2_FPGA_RESVD63 = 63,
 ADMXRC2_FPGA_2VP2 = 64,
 ADMXRC2_FPGA_2VP4 = 65,
 ADMXRC2_FPGA_2VP7 = 66,
 ADMXRC2_FPGA_2VP20 = 67,
 ADMXRC2_FPGA_2VP30 = 68,
 ADMXRC2_FPGA_2VP40 = 69,
 ADMXRC2_FPGA_2VP50 = 70,
 ADMXRC2_FPGA_2VP100 = 71,
 ADMXRC2_FPGA_2VP125 = 72,
 ADMXRC2_FPGA_2VP70 = 73,
 ADMXRC2_FPGA_RESVD74 = 74,
 ADMXRC2_FPGA_RESVD75 = 75,
 ADMXRC2_FPGA_RESVD76 = 76,
 ADMXRC2_FPGA_RESVD77 = 77,
 ADMXRC2_FPGA_RESVD78 = 78,
 ADMXRC2_FPGA_RESVD79 = 79,
 ADMXRC2_FPGA_RESVD80 = 80,
 ADMXRC2_FPGA_RESVD81 = 81,
 ADMXRC2_FPGA_RESVD82 = 82,
 ADMXRC2_FPGA_RESVD83 = 83,
 ADMXRC2_FPGA_RESVD84 = 84,
 ADMXRC2_FPGA_RESVD85 = 85,
 ADMXRC2_FPGA_RESVD86 = 86,
 ADMXRC2_FPGA_RESVD87 = 87,
 ADMXRC2_FPGA_RESVD88 = 88,
 ADMXRC2_FPGA_RESVD89 = 89,
 ADMXRC2_FPGA_RESVD90 = 90,
 ADMXRC2_FPGA_RESVD91 = 91,
 ADMXRC2_FPGA_RESVD92 = 92,
 ADMXRC2_FPGA_RESVD93 = 93,
 ADMXRC2_FPGA_RESVD94 = 94,
 ADMXRC2_FPGA_RESVD95 = 95,
 ADMXRC2_FPGA_4VLX15 = 96,
 ADMXRC2_FPGA_4VLX25 = 97,
 ADMXRC2_FPGA_4VLX40 = 98,
 ADMXRC2_FPGA_4VLX60 = 99,
 ADMXRC2_FPGA_4VLX100 = 100,
 ADMXRC2_FPGA_4VLX160 = 101,
 ADMXRC2_FPGA_4VLX200 = 102,
 ADMXRC2_FPGA_4VLX80 = 103,
 ADMXRC2_FPGA_4VSX25 = 104,
 ADMXRC2_FPGA_4VSX35 = 105,
 ADMXRC2_FPGA_4VSX55 = 106,

493

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_FPGA_TYPE

 ADMXRC2_FPGA_RESVD107 = 107,
 ADMXRC2_FPGA_RESVD108 = 108,
 ADMXRC2_FPGA_RESVD109 = 109,
 ADMXRC2_FPGA_RESVD110 = 110,
 ADMXRC2_FPGA_RESVD111 = 111,
 ADMXRC2_FPGA_4VFX12 = 112,
 ADMXRC2_FPGA_4VFX20 = 113,
 ADMXRC2_FPGA_4VFX40 = 114,
 ADMXRC2_FPGA_4VFX60 = 115,
 ADMXRC2_FPGA_4VFX100 = 116,
 ADMXRC2_FPGA_4VFX140 = 117,
 ADMXRC2_FPGA_RESVD118 = 118,
 ADMXRC2_FPGA_RESVD119 = 119,
 ADMXRC2_FPGA_RESVD120 = 120,
 ADMXRC2_FPGA_RESVD121 = 121,
 ADMXRC2_FPGA_RESVD122 = 122,
 ADMXRC2_FPGA_RESVD123 = 123,
 ADMXRC2_FPGA_RESVD124 = 124,
 ADMXRC2_FPGA_RESVD125 = 125,
 ADMXRC2_FPGA_RESVD126 = 126,
 ADMXRC2_FPGA_RESVD127 = 127,
 ADMXRC2_FPGA_5VLX30 = 128,
 ADMXRC2_FPGA_5VLX50 = 129,
 ADMXRC2_FPGA_5VLX85 = 130,
 ADMXRC2_FPGA_5VLX110 = 131,
 ADMXRC2_FPGA_5VLX220 = 132,
 ADMXRC2_FPGA_5VLX330 = 133,
 ADMXRC2_FPGA_RESVD134 = 134,
 ADMXRC2_FPGA_RESVD135 = 135,
 ADMXRC2_FPGA_5VLX30T = 136,
 ADMXRC2_FPGA_5VLX50T = 137,
 ADMXRC2_FPGA_5VLX85T = 138,
 ADMXRC2_FPGA_5VLX110T = 139,
 ADMXRC2_FPGA_5VLX330T = 140,
 ADMXRC2_FPGA_5VLX220T = 141,
 ADMXRC2_FPGA_5VLX155T = 142,
 ADMXRC2_FPGA_RESVD143 = 143,
 ADMXRC2_FPGA_5VSX35T = 144,
 ADMXRC2_FPGA_5VSX50T = 145,
 ADMXRC2_FPGA_5VSX95T = 146,
 ADMXRC2_FPGA_5VSX240T = 147,
 ADMXRC2_FPGA_RESVD148 = 148,
 ADMXRC2_FPGA_RESVD149 = 149,
 ADMXRC2_FPGA_RESVD150 = 150,
 ADMXRC2_FPGA_RESVD151 = 151,
 ADMXRC2_FPGA_5VFX100T = 152,
 ADMXRC2_FPGA_5VFX130T = 153,
 ADMXRC2_FPGA_5VFX200T = 154,
 ADMXRC2_FPGA_5VFX30T = 155,
 ADMXRC2_FPGA_5VFX70T = 156,
 ADMXRC2_FPGA_UNKNOWN = 157,
 ADMXRC2_FPGA_FORCE32BITS = 0x7FFFFFFFU
} ADMXRC2_FPGA_TYPE;

Description

This type represents the FPGA device fitted to a card. Certain API functions require knowledge of what FPGA device is fitted
in order to operate. The type of FPGA fitted to a card can be obtained from the ADMXRC2_CARD_INFO structure returned
by ADMXRC2_GetCardInfo.

494

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_FPGA_TYPE

This type contains no information about the FPGA package. The FPGA package is inferred from the BoardType member of
the ADMXRC2_CARD_INFO structure.

495

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_HANDLE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_HANDLE

Declaration

typedef HANDLE ADMXRC2_HANDLE;

Description

An ADMXRC2_HANDLE is a handle to a card in a system. Most API functions require a parameter of type
ADMXRC2_HANDLE in order to identify the card on which the operation is to be performed. The ADMXRC2_OpenCard
and ADMXRC2_CloseCard functions open and close card handles.

496

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_ERROR_HANDLER

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_ERROR_HANDLER

Declaration

typedef void (*ADMXRC2_ERROR_HANDLER)(
 const char* FnName,
 ADMXRC2_STATUS Status);

Description

An ADMXRC2_ERROR_HANDLER function is an application-defined error handler routine called when an API function fails
for some reason. The routine must be installed or uninstalled using ADMXRC2_InstallErrorHandler.

497

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_IMAGE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_IMAGE

Declaration

typedef void* ADMXRC2_IMAGE;

Description

An ADMXRC2_IMAGE holds data that can be written to an FPGA's SelectMap port.

ADMXRC2_LoadBitstream and ADMXRC2_UnloadBitstream can be used to load SelectMap data from a file into an
ADMXRC2_IMAGE variable. As ADMXRC2_LoadBitstream allocates memory to hold the data, it is the application's
responsibility to free the memory when no longer required using ADMXRC2_UnloadBitstream.

A variable of type ADMXRC2_IMAGE can be used directly with ADMXRC2_ConfigureFromBuffer and
ADMXRC2_ConfigureFromBufferDMA.

498

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_IOWIDTH

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_IOWIDTH

Declaration

typedef enum _ADMXRC2_IOWIDTH
{
 ADMXRC2_IOWIDTH_8 = 0,
 ADMXRC2_IOWIDTH_16 = 1,
 ADMXRC2_IOWIDTH_32 = 2,
 ADMXRC2_IOWIDTH_64 = 3
} ADMXRC2_IOWIDTH;

Description

The ADMXRC2_IOWIDTH enumerated type determines the width of a programmed I/O or DMA transfer in the following API
functions:

● ADMXRC2_BuildDMAModeWord

● ADMXRC2_Read

● ADMXRC2_Write

When used with ADMXRC2_Read or ADMXRC2_Write, the ADMXRC2_IOWIDTH type specifies the size of each item of
data read or written on the local bus, and may be 8, 16, or 32. For performance reasons, use ADMXRC2_IOWIDTH_32
wherever possible.

When used with ADMXRC2_BuildDMAModeWord, the ADMXRC2_IOWIDTH type specifies the width of the DMA transfer
on the local bus. The following table shows what values are permissible for DMA transfers:

Model 8 16 32 64
ADM-XRC yes yes yes no
ADM-XRC-P yes yes yes no
ADM-XRC-II-Lite yes yes yes no
ADM-XRC-II yes yes yes no
ADM-XPL no no yes yes
ADM-XP no no yes yes
ADP-WRC-II yes yes yes no
ADP-DRC-II yes yes yes no
ADP-XPI no no yes yes
ADM-XRC-4LX yes yes yes no
ADM-XRC-4SX yes yes yes no
ADM-XRC-4FX no no yes yes
ADPE-XRC-4FX no no yes yes
ADM-XRC-5LX no no yes yes

499

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_IOWIDTH

ADM-XRC-5T1 no no yes yes
ADM-XRC-5T2 no no yes yes
ADM-XRC-5T2-ADV no no yes yes
ADM-XRC-5TZ no no yes no
ADM-XRC-5T-DA1 no no yes no

For performance reasons, use ADMXRC2_IOWIDTH_32 or ADMXRC2_IOWIDTH_64 wherever possible when using DMA
transfers.

500

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_STATUS

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_STATUS

Declaration

typedef enum _ADMXRC2_STATUS
{
 ADMXRC2_SUCCESS = 0, /* No error */

 ADMXRC2_INTERNAL_ERROR = 0x1000, /* An error in the API logic occurred */

 ADMXRC2_NO_MEMORY, /* Couldn't allocate memory required to
 complete operation */

 ADMXRC2_CARD_NOT_FOUND, /* Failed to open the card with specified
 CardID */

 ADMXRC2_FILE_NOT_FOUND, /* Failed to open bitstream file */

 ADMXRC2_INVALID_FILE, /* The bitstream file appears to be corrupt */

 ADMXRC2_FPGA_MISMATCH, /* The bitstream file does not match the FPGA
 on the card */

 ADMXRC2_INVALID_HANDLE, /* The handle to the card passed was
 invalid */

 ADMXRC2_TIMEOUT, /* The operation was not completed within the
 timeout period */

 ADMXRC2_CARD_BUSY, /* Card could not be opened because it was
 already open */

 ADMXRC2_INVALID_PARAMETER, /* An invalid parameter was supplied to the
 call */

 ADMXRC2_CLOSED, /* The card was closed before the operation
 was completed */

 ADMXRC2_CARD_ERROR, /* A hardware error occurred on the card */

 ADMXRC2_NOT_SUPPORTED, /* An operation was requested which is not
 supported or implemented */

 ADMXRC2_DEVICE_BUSY, /* The requested device or resource was in
 use */

 ADMXRC2_INVALID_DMADESC, /* The DMA descriptor passed was invalid */

 ADMXRC2_NO_DMADESC, /* No free DMA descriptors left */

 ADMXRC2_FAILED, /* The operation failed */

 ADMXRC2_PENDING, /* The operation is still in progress */

 ADMXRC2_UNKNOWN_ERROR, /* The operation failed for reasons unknown */

501

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_STATUS

 ADMXRC2_NULL_POINTER, /* A null pointer was supplied in the call */

 ADMXRC2_CANCELLED, /* The operation was cancelled because
 requesting thread terminated */

 ADMXRC2_BAD_DRIVER /* The driver revision level is too low */
} ADMXRC2_STATUS;

Description

A variable of the enumerated type ADMXRC2_STATUS holds a code indicating the success or failure of a call to an ADM-
XRC API function.

502

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC2_SYNCMODE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC2_SYNCMODE

Declaration

typedef enum _ADMXRC2_SYNCMODE
{
 ADMXRC2_SYNC_CPUTOFPGA = 0x1,
 ADMXRC2_SYNC_FPGATOCPU = 0x2
} ADMXRC2_SYNCMODE;

Description

The ADMXRC2_SYNCMODE type is used with the ADMXRC2_SyncDirectMaster function to specify the direction in which
changes made to a buffer must be propagated across any hardware-level caches or write buffers:

Value Meaning
ADMXRC2_SYNC_CPUTOFPGA Indicates that the CPU has modified a buffer that the FPGA is expected to

access.
ADMXRC2_SYNC_FPGATOCPU Indicates that the FPGA has modified a buffer that the CPU is expected to

access.

503

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC (legacy) interface

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC legacy interface

The ADMXRC interface is included in the SDK for backwards compatibility with older applications. It is not recommended for
new applications. This interface has been depreciated because it contains implicit assumptions specific to the ADM-XRC
and ADM-XRC-P models, which do not hold for other models.

Calls to the ADMXRC interface must not be mixed with calls to the ADMXRC2 interface interface using the same card
handle. A card handle obtained using the legacy ADMXRC_OpenCard function should not be used in any calls to the
ADMXRC2 interface. Applications should assume that the API will enforce this rule.

Only ADM-XRC or ADM-XRC-P cards may be opened by ADMXRC_OpenCard. This is a safeguard to allow applications
designed for the ADM-XRC or ADM-XRC-P cards to fail gracefully in the event, for example, that an inadvertant attempt is
made to run them on an ADM-XRC-II-Lite card.

ADMXRC functions by group

ADMXRC structures

ADMXRC datatypes

504

ADM-XRC SDK 4.9.3 User Guide (Win32) - Multithreading issues

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

Multithreading issues (ADMXRC interface)

The ADM-XRC SDK is designed to be thread-safe. The ADMXRC interface functions can be divided into two groups:

● Functions that cannot block the calling thread, and

● Functions that are capable of blocking the calling thread

The latter group of functions, those which are capable of blocking the calling thread, require a pointer to a Win32 event
(PHANDLE) to be passed. Unless great care is taken to ensure that no two threads use the same event at the same time,
this event must be private to each thread using the API.

The requirement for a per-thread event stems from the need to specify an event in overlapped DeviceIoControl calls (see
Win32 API). The Microsoft Platform SDK documentation states that events used in an overlapped DeviceIoControl call
must be manual-reset events. A code fragment for creating a suitable event for use with the blocking ADM-XRC API calls is:

/* Create a manual reset Win32 event */
event = CreateEvent(NULL, TRUE, FALSE, NULL);
if (event == NULL) {
 /* Error handling */

}

A pointer to the event, event, can then be passed to the blocking API functions.

The API also allows the user to specify a NULL value for the PHANDLE. In that case, the API creates and returns a manual-
reset event, on the calling thread's behalf. This is intended simply as a shortcut to remove the need for the above code
fragment. It is good practice for a thread to close its event using the Win32 CloseHandle function before terminating,
although any open handles that remain are closed automatically when the parent process of the thread terminates.

505

ADM-XRC SDK 4.9.3 User Guide (Win32) - Functions

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC interface functions

The ADMXRC interface can be divided into the following function groups:

Group Consists of...
Initialization ADMXRC_CloseCard

ADMXRC_OpenCard
Information ADMXRC_GetBaseAddress

ADMXRC_GetClockType
ADMXRC_GetVersionInfo

FPGA configuration ADMXRC_ConfigureFromBuffer
ADMXRC_ConfigureFromBufferDMA
ADMXRC_ConfigureFromFile
ADMXRC_ConfigureFromFileDMA
ADMXRC_FindImageOffset
ADMXRC_LoadFpgaFile
ADMXRC_ReverseBytes
ADMXRC_UnloadFpgaFile

Clock generation ADMXRC_SetClockRate
Data transfer ADMXRC_BuildDMAModeWord

ADMXRC_DoDMA
ADMXRC_DoDMAImmediate
ADMXRC_MapDirectMaster
ADMXRC_Read
ADMXRC_ReadReg
ADMXRC_SetupDMA
ADMXRC_SyncDirectMaster
ADMXRC_UnsetupDMA
ADMXRC_Write
ADMXRC_WriteReg

Interrupt handling ADMXRC_RegisterInterruptEvent
ADMXRC_UnregisterInterruptEvent

Error handling ADMXRC_GetStatusString
ADMXRC_InstallErrorHandler
ADMXRC_StatusToString

506

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_BuildDMAModeWord

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_BuildDMAModeWord

Prototype

DWORD
ADMXRC_BuildDMAModeWord(
 DWORD Width,
 DWORD WaitStates,
 DWORD MiscFlags);

Arguments

Argument Type Purpose
Width In Width of operation on local bus
WaitStates In Number of wait states to be introduced by PCI9080
MiscFlags In Miscellaneous mode flags

Return value

If the parameters are valid, a DMA mode word is returned. If the parameters supplied are not valid, the invalid mode word
0xFFFFFFFF is returned.

Description

This function differs from most API functions in that no card handle parameter is required, and the return value is not of type
ADMXRC_STATUS.

ADMXRC_BuildDMAModeWord constructs a DWORD value that may later be passed to the DMA functions such as
ADMXRC_DoDMA and ADMXRC_DoDMAImmediate. Provided that the DMA mode does not need to be changed, the
DMA mode word can be pre-computed and used for many DMA transfers.

The Width parameter should be one value of the enumerated type ADMXRC_DMA_WIDTH.

The WaitStates parameter should be in the inclusive range 0 to 15.

The MiscFlags parameter can be any combination of:

Flag Meaning
ADMXRC_DMAMODE_USEREADY Use local bus READYI# signal
ADMXRC_DMAMODE_USEBTERM Use local bus BTERM# signal
ADMXRC_DMAMODE_BURSTENABLE Allow bursting on local bus
ADMXRC_DMAMODE_FIXEDLOCAL Local bus address does not increment
ADMXRC_DMAMODE_DEMAND Operate in demand mode

507

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_CloseCard

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_CloseCard

Prototype

ADMXRC_STATUS
ADMXRC_CloseCard(
 ADMXRC_HANDLE Card);

Arguments

Argument Type Purpose
Card In Handle to card to be closed

Return value

Value Meaning
ADMXRC_SUCCESS The card was successfully closed
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card

Description

This function closes a handle to a card, freeing the card for use by other applications. Card must be a valid handle returned
by ADMXRC_OpenCard.

508

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ConfigureFromBuffer

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_ConfigureFromBuffer

Prototype

ADMXRC_STATUS
ADMXRC_ConfigureFromBuffer(
 ADMXRC_HANDLE Card,
 void* Buffer,
 DWORD Length);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Buffer In FPGA configuration data
Length In Length of FPGA configuration data

Return value

Value Meaning
ADMXRC_SUCCESS The FPGA was successfully configured
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_PARAMETER An invalid parameter was passed

Description

This function is used to configure the FPGA on a card from a buffer of SelectMap data, using programmed I/O. Since there is
no file I/O to be performed, this is a deterministic method of configuring the FPGA. This routine does not allow the FPGA to
be partially configured on each call; all of the data necessary to configure the FPGA must be supplied in a single call.

Warning

Ensure that Buffer contains valid configuration data for the target FPGA, as data
transferred this way to the FPGA's SelectMap port cannot be validated by the API.

The card to be configured is specified by the Card parameter.

The Buffer parameter should point to a buffer containing the configuration data for the FPGA. The data must be supplied in
a form directly writable to the FPGA's SelectMap port, and care should be taken to ensure that the bit-ordering of the data is
correct. The functions ADMXRC_LoadFpgaFile, ADMXRC_FindImageOffset and ADMXRC_ReverseBytes can be used
to obtain SelectMap data in the correct form.

The Length parameter specifies the number of bytes of configuration data to be written to the FPGA's SelectMap port.

509

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ConfigureFromBufferDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_ConfigureFromBufferDMA

Prototype

ADMXRC_STATUS
ADMXRC_ConfigureFromBufferDMA(
 ADMXRC_HANDLE Card,
 void* Buffer,
 DWORD Length,
 DWORD DmaChan,
 PHANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Buffer In FPGA configuration data
Length In Length of FPGA configuration data
Channel In DMA channel to use for the operation
Event In/out Event to use to wait for completion

Return value

Value Meaning
ADMXRC_SUCCESS The FPGA was successfully configured
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_PARAMETER An invalid parameter was passed
ADMXRC_NO_DMADESC A DMA descriptor could not be allocated

Description

This function is used to configure the FPGA on a card from a buffer of SelectMap data, using DMA. Since there is no file I/O
to be performed, this is a deterministic method of configuring the FPGA. As DMA is used to configure the FPGA, this method
is also the fastest. This routine does not allow the FPGA to be partially configured on each call; all of the data necessary to
configure the FPGA must be supplied in a single call.

Warning

Ensure that Buffer contains valid configuration data for the target FPGA, as data
transferred this way to the FPGA's SelectMap port cannot be validated by the API.

The card to be configured is specified by the Card parameter.

The Buffer parameter should point to a buffer containing the configuration data for the FPGA. The data must be supplied in

510

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ConfigureFromBufferDMA

a form directly writable to the FPGA's SelectMap port, and care should be taken to ensure that the bit-ordering of the data is
correct. The functions ADMXRC_LoadFpgaFile, ADMXRC_FindImageOffset and ADMXRC_ReverseBytes can be used
to obtain SelectMap data in the correct form.

The Length parameter specifies the number of bytes of configuration data to be written to the FPGA's SelectMap port.

The Channel parameter specifies which DMA channel should be used for the operation. If ADMXRC_DMACHAN_ANY is
specified, the DMA transfer will be performed on the first available DMA channel. However, pending DMA transfers on a
specific a DMA channel will always be given priority. It is possible for a DMA transfer that specifies
ADMXRC_DMACHAN_ANY to be delayed indefinitely if all DMA channels are kept busy by other threads.

The Event parameter should be a pointer to a Win32 event handle. See multithreading issues for further information.

511

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ConfigureFromFile

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_ConfigureFromFile

Prototype

ADMXRC_STATUS
ADMXRC_ConfigureFromFile(
 ADMXRC_HANDLE Card,
 char* Filename);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Filename In Name of .BIT file

Return value

Value Meaning
ADMXRC_SUCCESS The FPGA was successfully configured
ADMXRC_FILE_NOT_FOUND The file Filename could not be opened
ADMXRC_INVALID_FILE The file Filename appears not to be a valid bitstream
ADMXRC_NO_MEMORY There is not enough free memory to temporarily load the bitstream into memory
ADMXRC_FPGA_MISMATCH The device targetted by the bitstream file did not match the device fitted to the card
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card

Description

This function is used to configure the FPGA on a card from a Xilinx bitstream file (.BIT), using programmed I/O. If
deterministic runtime is required, the ADMXRC_ConfigureFromBuffer or ADMXRC_ConfigureFromBufferDMA functions
should be used instead since ADMXRC_ConfigureFromFile performs file I/O in order to load the bitstream into memory.

The card to be configured is specified by the Card parameter.

The bitstream file to load into the FPGA is specified by the Filename parameter.

512

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ConfigureFromFileDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_ConfigureFromFileDMA

Prototype

ADMXRC_STATUS
ADMXRC_ConfigureFromFileDMA(
 ADMXRC_HANDLE Card,
 char* Filename,
 DWORD Channel,
 PHANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Filename In Name of .BIT file
Channel In DMA channel to use for the operation
Event In/out Event to use to wait for completion

Return value

Value Meaning
ADMXRC_SUCCESS The FPGA was successfully configured
ADMXRC_FILE_NOT_FOUND The file could not be opened
ADMXRC_INVALID_FILE The file appeared not to be a valid bitstream
ADMXRC_NO_MEMORY There was not enough free memory to temporarily load the bitstream into

memory
ADMXRC_FPGA_MISMATCH The device targetted by the bitstream file did not match the device fitted to the

card
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_PARAMETER An invalid parameter was passed
ADMXRC_NO_DMADESC A DMA descriptor could not be allocated

Description

This function is used to configure the FPGA on a card from a Xilinx bitstream file (.BIT), using DMA. If deterministic runtime
is required, the ADMXRC_ConfigureFromBuffer or ADMXRC_ConfigureFromBufferDMA functions should be used
instead since ADMXRC_ConfigureFromFileDMA performs file I/O in order to load the bitstream into memory.

The card to be configured is specified by the Card parameter.

The bitstream file to load into the FPGA is specified by the Filename parameter.

513

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ConfigureFromFileDMA

The Channel parameter specifies which DMA channel should be used for the operation. If ADMXRC_DMACHAN_ANY is
specified, the DMA transfer will be performed on the first available DMA channel. However, pending DMA transfers on a
specific a DMA channel will always be given priority. It is possible for a DMA transfer that specifies
ADMXRC_DMACHAN_ANY to be delayed indefinitely if all DMA channels are kept busy by other threads.

The Event parameter should be a pointer to a Win32 event handle. See multithreading issues for further information.

514

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DoDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DoDMA

Prototype

ADMXRC_STATUS
ADMXRC_DoDMA(
 ADMXRC_HANDLE Card,
 ADMXRC_DMADESC DmaDesc,
 unsigned long Offset,
 unsigned long Length,
 DWORD Local,
 DWORD Direction,
 DWORD Channel,
 DWORD DMAModeWord,
 DWORD Flags,
 DWORD* Timeout,
 PHANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
DmaDesc In Handle to DMA descriptor representing application buffer
Offset In Offset within application buffer
Length In Number of bytes to transfer
Local In Address of beginning of transfer on local bus
Direction In Direction of DMA transfer
Channel In DMA channel to use for the transfer
DMAModeWord In Mode word to use for the DMA transfer
Flags In Miscellaneous flags
Timeout In/out Timeout for DMA transfer
Event In/out Event to use to wait for completion

Return value

Value Meaning
ADMXRC_SUCCESS The DMA transfer was performed successfully
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_DMADESC DMADesc is not a valid DMA descriptor
ADMXRC_INVALID_PARAMETER An invalid parameter was passed
ADMXRC_DEVICE_BUSY Could not begin DMA immediately as requested

Description

515

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DoDMA

This function is used to perform a DMA transfer from an application buffer to the FPGA or from the FPGA to an application
buffer. DMA transfers are queued in a first come, first served manner unless the Flags parameter (see below) specifies
otherwise. When a thread calls ADMXRC_DoDMA, it is blocked until the DMA transfer has been completed.

The DmaDesc parameter must be a valid DMA descriptor obtained via a call to ADMXRC_SetupDMA. This, along with
Offset, implicitly specifies the application buffer that is the source or destination of data for the DMA transfer.

The Offset parameter is the offset into the user buffer at where the DMA transfer is to begin transferring data. This permits
one DMA descriptor to map a large buffer; DMA transfers can then be performed on subregions of the large buffer by
specifying appropriate Offset and Length values.

The Length parameter specifies the number of bytes of data to transfer.

The Local parameter specifies the starting local bus address of the transfer. The DMAModeWord parameter may specify
that the local bus address is invariant for the duration of the DMA transfer - see ADMXRC_BuildDMAModeWord.

The Direction parameter specifies whether the transfer is from application buffer to FPGA or FPGA to application buffer, and
should be a value from the enumerated type ADMXRC_DMA_DIRECTION.

The Channel parameter is a zero-based index that specifies which DMA channel should be used for the operation. The
number of DMA channels provided by a card is given by the NumDMAChan member of the ADMXRC_CARD_INFO
structure. Unless ADMXRC_DMACHAN_ANY is specified, the maximum legal value of Channel is (NumDMAChan - 1).

If ADMXRC_DMACHAN_ANY is specified for Channel, the DMA transfer will be performed on the first available DMA
channel. However, pending DMA transfers on a specific a DMA channel will always be given priority. It is possible for a DMA
transfer that specifies ADMXRC_DMACHAN_ANY to be delayed indefinitely if all DMA channels are kept busy by other
threads.

The DMAModeWord parameter is a word that is programmed into the DMA hardware to specify the mode of operation for
the DMA channel specified by the Channel parameter. The ADMXRC_BuildDMAModeWord function should be used to
obtain a suitable value for this parameter.

The Flags parameter may be any combination of the following:

Flag Meaning
ADMXRC_DMAFLAG_DONOTQUEUE If the DMA operation cannot be started immediately, the error

ADMXRC_DEVICE_BUSY is returned rather than queuing the DMA
operation.

The Timeout parameter must currently be NULL, as timeouts on DMA operations are not yet supported.

The Event parameter should be a pointer to a Win32 event handle. See multithreading issues for further information.

516

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DoDMAImmediate

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DoDMAImmediate

Prototype

ADMXRC_STATUS
ADMXRC_DoDMAImmediate(
 ADMXRC_HANDLE Card,
 void* Buffer,
 unsigned long Length,
 DWORD Local,
 DWORD Direction,
 DWORD Channel,
 DWORD Mode,
 DWORD Flags,
 DWORD* Timeout,
 PHANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to configure
Buffer In Pointer to application buffer
Length In Number of bytes to transfer
Local In Address of beginning of transfer on local bus
Direction In Direction of DMA transfer
Channel In DMA channel to use for the transfer
DMAModeWord In Mode word to use for the DMA transfer
Flags In Miscellaneous flags
Timeout In/out Timeout for DMA transfer
Event In/out Event to use to wait for completion

Return value

Value Meaning
ADMXRC_SUCCESS The DMA transfer was performed successfully
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_PARAMETER An invalid parameter was passed
ADMXRC_DEVICE_BUSY Could not begin DMA immediately as requested
ADMXRC_NO_DMADESC A DMA descriptor could not be allocated

Description

This function behaves as a call to ADMXRC_SetupDMA followed by a call to ADMXRC_DoDMA followed by a call to
ADMXRC_UnsetupDMA.

517

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DoDMAImmediate

The Buffer and Length parameters effectively replace the DmaDesc, Offset and Length parameters from
ADMXRC_DoDMA in specifying the region of application memory over which the DMA transfer takes place. The other
parameters Local, Direction, Channel, DMAModeWord, Flags, Timeout and Event all function in the same way as in
ADMXRC_DoDMA.

This function cannot guarantee deterministic runtime as the process of locking down a user buffer using
ADMXRC_SetupDMA may require disk I/O for the operating system to make all pages of a user buffer resident in physical
memory.

518

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_FindImageOffset

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_FindImageOffset

Prototype

ADMXRC_STATUS
ADMXRC_FindImageOffset(
 ADMXRC_FPGA_TYPE FpgaType,
 ADMXRC_IMAGE Image,
 ULONG Size,
 ULONG* Offset);

Arguments

Argument Type Purpose
FPGAType In The FPGA device expected in the bitstream
Image In A buffer containing the bitstream file, loaded into memory
Size In The length of the bitstream file, in bytes
Offset In/out Filled in with the offset of the SelectMap data

Return value

Value Meaning
ADMXRC_SUCCESS The offset of the SelectMap data was returned successfully
ADMXRC_INVALID_FILE The bitstream appears not to be valid
ADMXRC_FPGA_MISMATCH The bitstream does not target the expected device

Description

This function scans a bitstream file that has been loaded into memory and determines the offset, from the beginning of the
buffer, of the SelectMap data.

The FPGAType parameter, of the enumerated type ADMXRC_FPGA_TYPE, should be the FPGA that the bitstream targets.
Typically, the value used is obtained from the FPGAType member of the ADMXRC_CARD_INFO structure.

The Image parameter should point to a variable of type ADMXRC_IMAGE which was obtained from an earlier call to
ADMXRC_LoadFpgaFile.

The Length parameter should be the length of the bitstream file, returned by an earlier call to ADMXRC_LoadFpgaFile.

The Offset parameter must point to a ULONG variable, which receives the byte offset within Image at which the SelectMap
data begins.

519

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_GetBaseAddress

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_GetBaseAddress

Prototype

ADMXRC_STATUS
ADMXRC_GetBaseAddress(
 ADMXRC_HANDLE Card,
 void** BaseAddress);

Arguments

Argument Type Purpose
Card In The handle of the card whose base address is required
Image Out Variable to receive a pointer to the FPGA space

Return value

Value Meaning
ADMXRC_SUCCESS The address of the FPGA space was returned successfully.
ADMXRC_INVALID_HANDLE Card was not a valid card handle

Description

This function returns a pointer by which the application may access the FPGA using direct slave local bus cycles.

The BaseAddress parameter must point to a variable of type void* that is filled in with the base address (in the application's
address space) of the FPGA space.

Closing a card using ADMXRC_CloseCard will cause the FPGA space to be unmapped from the application's address
space. Any threads attempting to access FPGA space after the call to ADMXRC_CloseCard will subsequently access
invalid virtual addresses, resulting in an access violation. This cannot crash the system but is generally fatal to an
application.

520

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_GetCardInfo

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_GetCardInfo

Prototype

ADMXRC_STATUS
ADMXRC_GetCardInfo(
 ADMXRC_HANDLE Card,
 ADMXRC_CARD_INFO* Info);

Arguments

Argument Type Purpose
Card In Handle of card about which to return information
Info Out Structure to be filled in with information about card

Return value

Value Meaning
ADMXRC_SUCCESS The information was obtained successfully
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card

Description

The ADMXRC_GetCardInfo function returns information about a card.

The Info parameter must point to the ADMXRC_CARD_INFO stucture which is to receive the information.

521

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_GetClockType

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_GetClockType

Prototype

ADMXRC_STATUS
ADMXRC_GetClockType(
 ADMXRC_HANDLE Card,
 ADMXRC_CLOCK_TYPE* ClockType);

Arguments

Argument Type Purpose
Card In The handle of the card whose reference clock type is required
ClockType Out Variable to receive the reference clock type

Return value

Value Meaning
ADMXRC_SUCCESS The reference clock type was returned successfully.
ADMXRC_INVALID_HANDLE Card was not a valid card handle

Description

This function returns the type of reference clock oscillator fitted to the card. An application does not required knowledge of
the reference clock oscillator in order to program the clocks.

The ClockType parameter points to a variable of type ADMXRC_CLOCK_TYPE that is filled in with the type of clock
oscillator fitted.

522

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_GetStatusString

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_GetStatusString

Prototype

const char*
ADMXRC_GetStatusString(
 ADMXRC_STATUS Code);

Arguments

Argument Type Purpose
Code In The error code to convert to a string

Return value

Unlike most API functions, ADMXRC_GetStatusString returns a pointer to a NULL terminated string that describes the error
code.

Description

This function returns a textual description of the error code passed in the Code parameter. The returned string should be
treated as read-only since it is statically allocated. If the Code parameter contains a code that is not one of the members of
the enumerated type ADMXRC_STATUS, the string returned will be

"unknown ADMXRC2_STATUS code"

523

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_GetVersionInfo

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_GetVersionInfo

Prototype

ADMXRC_STATUS
ADMXRC_GetVersionInfo(
 ADMXRC_HANDLE Card,
 ADMXRC_VERSION_INFO* Info);

Arguments

Argument Type Purpose
Card In Handle of card about which to obtain information
Info Out Structure to be filled in with version information

Return value

Value Meaning
ADMXRC_SUCCESS The information was obtained successfully
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card

Description

This function returns version information about the API library and driver. A pointer to an ADMXRC_VERSION_INFO
structure should be passed in the Info parameter.

524

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_InstallErrorHandler

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_InstallErrorHandler

Prototype

ADMXRC_STATUS
ADMXRC_InstallErrorHandler(
 ADMXRC_HANDLER_FUNCTION Routine)

Arguments

Argument Type Purpose
Routine In The error handler routine to install

Return value

Value Meaning
ADMXRC_SUCCESS The error handler routine was successfully installed or uninstalled
ADMXRC_FAILED The error handler routine could not be installed because another thread held the error

Mutex for an excessive period of time

Description

This function is used to install a user-defined error handler function that will be called whenever the ADM-XRC function must
return an error condition. The error handler function should be of type ADMXRC_HANDLER_FUNCTION:

void
MyErrorHandler(
 const char* FunctionName,
 ADMXRC_STATUS Code);

If Routine is non-NULL, it must point to a function of the same type as MyErrorHandler above. If Routine is NULL, any
error handler function currently installed will be uninstalled.

A failed call to the ADMXRC_InstallErrorHandler function does not result in any currently installed handler function being
called.

The error handler function is always called just before the API function generating the error returns. When the error handler
is called, FunctionName will point to a NULL terminated string containing the name of the API function which failed and
Code will contain the error code.

Due to the multithreaded nature of the API, mutual exclusion is enforced when the error handler is installed or called. When
the error handler is installed, the API attempts to take a Win32 Mutex object, waiting for at most 1000 milliseconds for the
wait to succeed. If the mutex wait fails due to timeout, ADMXRC_InstallErrorHandler returns ADMXRC_FAILED.

525

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_InstallErrorHandler

When the API calls the user specified error handler, the API attempts to take the same mutex in order to prevent the error
handler being entered in a reentrant fashion. Therefore, the error handler routine should:

● Avoid taking an excessive period of time to execute, as this will delay the calling of the error handler for other threads.

● Avoid calling API functions that may result in the error handler routine being called reentrantly, as this may cause the
thread to hang.

526

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_LoadFpgaFile

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_LoadFpgaFile

Prototype

ADMXRC_STATUS
ADMXRC_LoadFpgaFile(
 UCHAR* Filename,
 ADMXRC_IMAGE* Image,
 ULONG* ImageSize);

Arguments

Argument Type Purpose
Filename In Name of bitstream file to load
Image Out Loaded bitstream data
ImageSize Out Size in bytes of loaded bitstream file

Return value

Value Meaning
ADMXRC_SUCCESS The bitstream file was successfully loaded
ADMXRC_FILE_NOT_FOUND The file could not be opened
ADMXRC_INVALID_FILE The file appeared not to be a valid bitstream
ADMXRC_NO_MEMORY There was insufficient free memory to hold the bitstream

Description

This function loads the SelectMap data from a Xilinx bitstream (.BIT) file into memory and returns a pointer to it. The data
returned is in correct bit order for sending to an FPGA's SelectMap port.

The Card parameter specifies the card that the bitstream targets. This information is used to check that the bitstream
matches the FPGA fitted to the card.

The bitstream file to load into memory is specified by the Filename parameter.

The Image parameter must point to a variable of type ADMXRC_IMAGE. A pointer to the buffer that contains the loaded
bitstream file, allocated by ADMXRC_LoadFpgaFile, is returned. The ADMXRC_UnloadFpgaFile function should be used
to free the memory used by the bitstream when no longer required.

The ImageSize parameter must point to a ULONG variable which receives the length of the file.

527

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_MapDirectMaster

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_MapDirectMaster

Prototype

ADMXRC_STATUS
ADMXRC_MapDirectMaster(
 ADMXRC_HANDLE Card,
 ADMXRC_DMADESC DMADesc,
 unsigned long Offset,
 unsigned long Length,
 ADMXRC_BUFFERMAP* Map);

Arguments

Argument Type Purpose
Card In Handle of card that the bitstream targets
Buffer In Specifies application buffer to map
Offset In Where to begin mapping within the application buffer
Length In Size of region of application buffer to map
Map In/Out Structure to receive map information

Return value

Value Meaning
ADMXRC_SUCCESS The bitstream file was successfully loaded
ADMXRC_INVALID_HANDLE The Card parameter did not refer to an open card
ADMXRC_INVALID_DMADESC The DMA descriptor representing the application buffer was not valid
ADMXRC_INVALID_PARAMETER The Offset or Length parameters were outside the bounds of the application

buffer

Description

This function builds an array of PCI addresses of the pages of memory that comprise a buffer in the application's address
space.

The Card parameter should be the handle of the card that was used to create the DMA descriptor DmaDesc. DMA
descriptors are obtained via the ADMXRC_SetupDMA API call.

The Offset and Length parameters identify a region within the buffer that DmaDesc refers to.

The Map parameter must point to an ADMXRC_BUFFERMAP structure.

If the call to ADMXRC_MapDirectMaster is successful, the array of page addresses may used by the FPGA in order to

528

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_MapDirectMaster

allow the FPGA to perform direct master access to the user buffer represented by DmaDesc. It is up to the application
programmer to provide a mechanism by which the returned PCI page addresses are transferred to the FPGA. A simple
mechanism is a bank of registers within the FPGA; the host simply writes the PCI page addresses to these registers using
direct slave transfers.

Prior to calling ADMXRC_MapDirectMaster, the MaxPages and PagesPci members must be initialized by the application.
PagesPci should point to an application-allocated buffer that will receive the PCI addresses of the pages comprising the
specified region of the application buffer. This region is specified by the Offset and Length parameters. MaxPages should
be initialized to the number of unsigned long elements in the array that PagesPci points to.

If ADMXRC_MapDirectMaster succeeds, the PageLength, PagesSpanned, BytesSpanned and InitOffset members of
the ADMXRC_BUFFERMAP that Map points to will be filled in with valid values.

It is possible that the number of pages in the array Map->PagesPci will not be sufficient to map the entire region specified by
Length and Offset. There are two cases:

● MaxPages is equal to or greater than the actual number of pages spanned by the region in the user buffer specified by
Length and Offset. The function will map all of the specified region. In this case, the entire region is mapped and
BytesSpanned will be equal to Length.

● MaxPages is less than the actual number of pages spanned by the region in the user buffer specified by Length and
Offset. The function will only map the first MaxPages. In this case, PagesSpanned will be equal to MaxPages and
BytesSpanned will be less than the Length parameter.

529

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_MapDirectMaster

530

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_OpenCard

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_OpenCard

Prototype

ADMXRC_STATUS
ADMXRC_OpenCard(
 ADMXRC_DEVICE_NUM CardID,
 ADMXRC_HANDLE* Card);

Arguments

Argument Type Purpose
CardID In ID of card to open
Card Out Handle to opened card

Return value

Value Meaning
ADMXRC_SUCCESS The card was successfully opened
ADMXRC_CARD_NOT_FOUND The card was in use or not physically present

Description

This function is used to open and obtain a handle to an ADM-XRC card.

The particular card to open is identified by its card ID, passed via the CardID parameter. If there is more than one card in the
system with the same ID, the function will open the first free card found with the specified ID. If the special value 0 is used for
CardID, the first card found that is not in use will be opened, regardless of its ID.

The handle returned in the Card parameter should be used in all further API calls that need to access this card. When
access to the card is no longer required, call ADMXRC_CloseCard to close the handle and free the card.

531

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_Read

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_Read

Prototype

ADMXRC_STATUS
ADMXRC_Read(
 ADMXRC_HANDLE Card,
 unsigned long Width,
 unsigned long Flags,
 DWORD Local,
 void* Buffer,
 unsigned long Length);

Arguments

Argument Type Purpose
Card In Handle of card from which the read is to take place
Width In Width of operation
Flags In Miscellaneous flags
Local In Local bus address at which to begin reading
Buffer Out Buffer to receive data read
Length In Number of bytes to read

Return value

Value Meaning
ADMXRC_SUCCESS The data was read successfully
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_PARAMETER An invalid parameter was passed

Description

The ADMXRC_Read function reads a number of bytes from the local bus using direct slave cycles or from the PLX registers.
The local bus space encompasses FPGA space, the FPGA flash memory, and the control registers.

The Width parameter specifies the width of the operation, and must be one of the following values:

Value Meaning
ADMXRC_IOBYTE BYTE (8 bit) width
ADMXRC_IOWORD WORD (16 bit) width
ADMXRC_IOLONG DWORD (32 bit) width

The Flags parameter modifies the semantics of the operation. Normally, the read is performed in local bus space with an

532

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_Read

incrementing address, but this behavior can be modified by any combination of the following:

Flag Meaning
ADMXRC_IOFIXED The local bus address is not incremented during the transfer
ADMXRC_IOPLX The read is performed from the card's PCI interface registers rather than the local bus

If the ADMXRC_IOPLX flag is not specified, the Local parameter specifies the starting local bus address from which the
data will be read. Otherwise, the Local parameter specifies the starting PLX register offset from which the data will be read.
If the ADMXRC_IOFIXED flag was specified, this address will not increment as the data is read. Otherwise, the address is
incremented as the data is read.

The Buffer parameter specifies the buffer to receive the data read.

The Length parameter specifies how many bytes are to be read, and should be a multiple of the width specified by the
Width parameter. For example, if Width is ADMXRC_IOWORD, the Length parameter should be a multiple of 2.

533

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ReadReg

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_ReadReg

Prototype

ADMXRC_STATUS
ADMXRC_ReadReg(
 ADMXRC_HANDLE Card,
 unsigned char Index,
 unsigned char* Value);

Arguments

Argument Type Purpose
Card In Handle of card on which the read is to take place
Index In Index of control register to read
Value Out Byte read from control register

Return value

Value Meaning
ADMXRC_SUCCESS The data was read successfully
ADMXRC_INVALID_HANDLE Card is not a valid card handle
ADMXRC_INVALID_PARAMETER Index was out of range.

Description

The ADMXRC_ReadReg function reads the byte-wide control registers on an ADM-XRC or ADM-XRC-P card.

The Index parameter specifies the index of the register to read. Please refer to the user manual for your card for a map of
the control registers.

The Value parameter must point to the variable that is to receive the value read from the specified register.

534

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_RegisterInterruptEvent

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_RegisterInterruptEvent

Prototype

ADMXRC_STATUS
ADMXRC_RegisterInterruptEvent(
 ADMXRC_HANDLE Card,
 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card for which to register the event
Event In Specifies the event to register for interrupts

Return value

Value Meaning
ADMXRC_SUCCESS The event was successfully registered
ADMXRC_INVALID_HANDLE The Card handle or Event handle was not valid

Description

This function registers a Win32 event for capturing interrupts from the FPGA.

Event must be a valid Win32 event handle. The type of the event can be manual or auto reset, depending on the needs of
the application.

After an event is registered using ADMXRC_RegisterInterruptEvent, it is signalled by the driver whenever an FPGA
interrupt occurs. Applications can thus be notified of interrupts from the FPGA by waiting on a registered event. Any number
of events can be registered this way, but typically only one is ever required by an application.

To unregister an event, specify the same event in a call to ADMXRC_UnregisterInterruptEvent.

535

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_ReverseBytes

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_ReverseBytes

Prototype

void
ADMXRC_ReverseBytes(
 ADMXRC_IMAGE Image,
 ULONG Offset,
 ULONG Length);

Arguments

Argument Type Purpose
Image In/out The bitstream image containing the SelectMap data to reverse
Offset In The position within Image at which the SelectMap data is located
Length In The length of the SelectMap data within Image

Return value

This function has no return value.

Description

This function reverses the bit order of the bytes that comprise a bitstream. The Xilinx bitgen program outputs a file whose
bytes are logically flipped with respect to what is required by a Virtex FPGA's SelectMap port.

The Image parameter should be a variable of type ADMXRC_IMAGE, obtained from an earlier call to
ADMXRC_LoadFpgaFile.

The Offset parameter should be the offset value returned by an earlier call to ADMXRC_FindImageOffset.

The Length parameter should be the length of the SelectMap data, returned by the call to ADMXRC_FindImageOffset.

536

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_SetClockRate

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_SetClockRate

Prototype

ADMXRC_STATUS
ADMXRC_SetClockRate(
 ADMXRC_HANDLE Card,
 ADMXRC_CLOCK Index,
 double Rate);

Arguments

Argument Type Purpose
Card In Handle of card for which to program the clock
Index In Specifies which clock generator to program
Rate In The desired frequency

Return value

Value Meaning
ADMXRC_SUCCESS The clock generator was successfully programmed
ADMXRC_INVALID_HANDLE The Card handle was not valid
ADMXRC_INVALID_PARAMETER The Index or Rate parameters were out of range

Description

This function programs a clock generator on a card to output the specified frequency.

The Index parameter, of type ADMXRC_CLOCK, specifies which clock generator to program:

Value Clock name Range Function
ADMXRC_VCLK1 LCLK 400kHz-40MHz Local bus clock
ADMXRC_MCLK MCLK 400kHz-100MHz General purpose

The Rate parameter specifies the desired clock frequency, in Hz.

537

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_SetupDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_SetupDMA

Prototype

ADMXRC_STATUS
ADMXRC_SetupDMA(
 ADMXRC_HANDLE Card,
 void* Buffer,
 unsigned long Size,
 DWORD Flags,
 ADMXRC_DMADESC* DMADesc);

Arguments

Argument Type Purpose
Card In Handle of card
Buffer In The application buffer to lock down
Size In The size of the application buffer
Flags In Miscellaneous flags
DMADesc Out The DMA descriptor returned

Return value

Value Meaning
ADMXRC_SUCCESS The application buffer was successfully locked down and a DMA descriptor

returned
ADMXRC_INVALID_HANDLE The Card handle was not valid
ADMXRC_INVALID_PARAMETER Flags was not valid
ADMXRC_NO_DMADESC All DMA descriptors were in use

Description

This function locks down and maps an application buffer, returning a descriptor which can subsequently be used to identify
the buffer to the DMA API functions such as ADMXRC_DoDMA and ADMXRC_DoDMAImmediate.

The Buffer parameter must point to the application buffer to be mapped.

The Size parameter specifies the size, in bytes, of the application buffer to be mapped.

The Flags parameter must currently be 0.

The DMADesc parameter must point to a variable of type ADMXRC_DMADESC. If ADMXRC_SetupDMA succeeds, this
variable will contain a DMA descriptor on return.

538

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_SetupDMA

The application buffer is locked down (made non-swappable) so that the system cannot swap any page of physical memory
spanned by the buffer out to disk. Locking down a very large region of memory under low memory conditions should be
avoided.

There are a limited number of DMA descriptors, and each successful call to ADMXRC_SetupDMA commits a descriptor,
until freed by a matching call to ADMXRC_UnsetupDMA.

539

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_StatusToString

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_StatusToString

Prototype

ADMXRC_STATUS
ADMXRC_StatusToString(
 ADMXRC_STATUS Status,
 char* Buffer,
 unsigned long Max);

Arguments

Argument Type Purpose
Status In Error code
Buffer In Buffer to receive textual description
Max In The size of Buffer in bytes

Return value

Value Meaning
ADMXRC_SUCCESS A description of the error was successfully returned
ADMXRC_NULL_POINTER Buffer was NULL
ADMXRC_INVALID_PARAMETER Status was not a valid error code

Description

This function returns in a textual description of an error in Buffer. At most Max characters, including the NULL terminator,
are written to Buffer.

540

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_SyncDirectMaster

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_SyncDirectMaster

Prototype

ADMXRC_STATUS
ADMXRC_SyncDirectMaster(
 ADMXRC_HANDLE Card,
 ADMXRC_DMADESC DMADesc,
 unsigned long Offset,
 unsigned long Length,
 DWORD Syncmode);

Arguments

Argument Type Purpose
Card In Handle of card
DMADesc In A DMA descriptor identifying a buffer
Offset In Offset of region within buffer to sync
Length In Region within buffer to sync
Mode In The kind of synchronisation to perform

Return value

Value Meaning
ADMXRC_SUCCESS The buffer region was successfully synchronized
ADMXRC_INVALID_HANDLE Card was not valid
ADMXRC_INVALID_DMADESC DMADesc was not a valid DMA descriptor
ADMXRC_INVALID_PARAMETER Mode was not valid, or Offset and Length were out of bounds

Description

The ADMXRC_SyncDirectMaster function serves the purpose of ensuring that coherency is maintained in hardware-level
buffers and caches, when the FPGA accesses host memory in direct master mode. Proper use of this function ensures that:

● data written to memory by the CPU has propagated through all caches, write buffers and bridges, so that the changes
are visible to the FPGA, and

● data written to memory by the FPGA using Direct Master access has propagated through all caches, write buffers and
bridges, so that the changes are visible to the CPU.

In practice, this means observing the following rules:

● Call ADMXRC_SyncDirectMaster specifying ADMXRC_SYNC_CPUTOFPGA for Mode after the CPU has set up an
application buffer and before signalling the FPGA to operate on the buffer.

541

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_SyncDirectMaster

● Call ADMXRC_SyncDirectMaster specifying ADMXRC_SYNC_FPGATOCPU for Mode after the FPGA has operated
on an application buffer and before the CPU examines the data in the buffer.

By the time ADMXRC_SyncDirectMaster returns, modifications made to an application buffer will be visible to the FPGA,
and vice-versa.

The Offset and Length parameters identify a region within the application buffer which DmaDesc refers to. This region
should cover the parts of the user buffer which have been operated upon by the CPU or FPGA.

The Mode parameter should be one of members of the ADMXRC_SYNCMODE enumerated type.

NOTE

This function is not required by an application which uses only direct slave transfers
(programmed I/O and DMA transfers via ADMXRC_DoDMA and
ADMXRC_DoDMAImmediate).

542

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_UnloadFpgaFile

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_UnloadFpgaFile

Prototype

ADMXRC_STATUS
ADMXRC_UnloadFpgaFile(
 ADMXRC_IMAGE Image);

Arguments

Argument Type Purpose
Image In Bitstream file to remove from memory

Return value

Value Meaning
ADMXRC_SUCCESS The bitstream file was successfully unloaded

Description

This function frees the memory used to hold the SelectMap data of an FPGA bitstream.

Image should be a value of type ADMXRC_IMAGE, obtained from an earlier call to ADMXRC_LoadFpgaFile.

543

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_UnregisterInterruptEvent

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_UnregisterInterruptEvent

Prototype

ADMXRC_STATUS
ADMXRC_UnregisterInterruptEvent(
 ADMXRC_HANDLE Card,
 HANDLE Event);

Arguments

Argument Type Purpose
Card In Handle of card to which Event is registered
Event In Specifies the event to unregister

Return value

Value Meaning
ADMXRC_SUCCESS The event was successfully unregistered
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card or Event is not a valid Win32 event handle

Description

This function unregisters a Win32 event previously registered with ADMXRC_RegisterInterruptEvent, so that the event will
no longer be signaled when an FPGA interrupt occurs.

The Event parameter should be the handle of the Win32 event to unregister.

544

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_UnsetupDMA

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_UnsetupDMA

Prototype

ADMXRC_STATUS
ADMXRC_UnsetupDMA(
 ADMXRC_HANDLE Card,
 ADMXRC_DMADESC DMADesc);

Arguments

Argument Type Purpose
Card In Handle of card
DMADesc In The DMA descriptor to free

Return value

Value Meaning
ADMXRC_SUCCESS The DMA descriptor was successfully freed
ADMXRC_INVALID_HANDLE Card was not a valid handle to card
ADMXRC_INVALID_DMADESC DMADesc was not a valid DMA descriptor

Description

This function undoes a call to ADMXRC_SetupDMA. When a DMA descriptor is no longer required, it should be freed using
ADMXRC_UnsetupDMA. Provided that no other DMA descriptors exist for the buffer, the application buffer associated with
the DMA descriptor is returned to an unlocked (swappable) state.

The DMADesc parameter specifies the DMA descriptor to free.

545

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_Write

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_Write

Prototype

ADMXRC_STATUS
ADMXRC_Write(
 ADMXRC_HANDLE Card,
 unsigned long Width,
 unsigned long Flags,
 DWORD Local,
 void* Data,
 unsigned long Length);

Arguments

Argument Type Purpose
Card In Handle of card on which the write is to take place
Width In Width of operation
Flags In Miscellaneous flags
Local In Local bus address at which to begin writing
Buffer In Buffer containing data to write
Length In Number of bytes to write

Return value

Value Meaning
ADMXRC_SUCCESS The data was written successfully
ADMXRC_INVALID_HANDLE Card is not a valid handle to a card
ADMXRC_INVALID_PARAMETER An invalid parameter was passed

Description

The ADMXRC_Write function writes a number of bytes from an application buffer to the local bus using direct slave cycles or
to the PLX registers. The local bus space encompasses FPGA space, the FPGA flash memory, and the control registers.

The Width parameter specifies the width of the operation, and must be one of the following values:

Value Meaning
ADMXRC_IOBYTE BYTE (8 bit) width
ADMXRC_IOWORD WORD (16 bit) width
ADMXRC_IOLONG DWORD (32 bit) width

The Flags parameter modifies the semantics of the operation. Normally, the write is performed to local bus space with an

546

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_Write

incrementing address, but this behavior can be modified by any combination of the following:

Flag Meaning
ADMXRC_IOFIXED The local bus address is not incremented during the transfer
ADMXRC_IOPLX The read is performed from the card's PCI interface registers rather than the local bus

If the ADMXRC_IOPLX flag is not specified, the Local parameter specifies the starting local bus address to which the data
will be written. Otherwise, the Local parameter specifies the starting PLX register offset to which the data will be written. If
the ADMXRC_IOFIXED flag was specified, this address will not increment as the data is written. Otherwise, the address is
incremented as the data is written.

The Buffer parameter specifies the buffer containing the data to be written.

The Length parameter specifies how many bytes are to be written, and should be a multiple of the width specified by the
Width parameter. For example, if Width is ADMXRC_IOWORD, the Length parameter should be a multiple of 2.

547

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_WriteReg

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_WriteReg

Prototype

ADMXRC_STATUS
ADMXRC_WriteReg(
 ADMXRC_HANDLE Card,
 unsigned char Index,
 unsigned char Value);

Arguments

Argument Type Purpose
Card In Handle of card on which the write is to take place
Index In Index of control register to write
Value In Byte to write to control register

Return value

Value Meaning
ADMXRC_SUCCESS The data was written successfully
ADMXRC_INVALID_HANDLE Card is not a valid card handle
ADMXRC_INVALID_PARAMETER Index was out of range.

Description

The ADMXRC_WriteReg function writes to the byte-wide control registers on an ADM-XRC or ADM-XRC-P card.

The Index parameter specifies the index of the register to write to. Please refer to the user manual for your card for a map of
the control registers.

The Value parameter is the value to write to the specified register.

548

ADM-XRC SDK 4.9.3 User Guide (Win32) - Structures

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC interface structures

This section describes the composite datatypes of the ADMXRC interface.

Name Purpose
ADMXRC_BUFFERMAP Contains a physical page map of an application buffer

ADMXRC_CARD_INFO Information about a card

ADMXRC_VERSION_INFO Information about the API and driver version

549

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_BUFFERMAP

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_BUFFERMAP

Declaration

typedef struct _ADMXRC_BUFFERMAP
{
 unsigned long MaxPages;
 unsigned long* PagesPci;
 unsigned long PageLength;
 unsigned long PageBits;
 unsigned long PagesSpanned;
 unsigned long BytesSpanned;
 unsigned long InitOffset;
} ADMXRC_BUFFERMAP;

Description

The ADMXRC_BUFFERMAP structure is filled in by ADMXRC_MapDirectMaster with a scatter-gather map of an
application buffer.

The first two members are always initialized by the application:

● The PagesPci member must point to an application-supplied array of unsigned long. This array is filled in with the PCI
addresses of pages making up the application buffer.

● The MaxPages member must be initialized to the maximum number of pages that the PagesPci member points to.

The other five members are filled in by ADMXRC_MapDirectMaster:

● The PageLength member is the length of a page of physical memory, for information purposes. For the x86
architecture, this value is 4096.

● The PageBits member is the number of address bits in a page offset. For the x86 architecture, this value is 12.

● The PagesSpanned member is the number of pages of physical memory spanned by the PagesPci array.

● The BytesSpanned member is the number of bytes of physical memory spanned by the PagesPci array and takes
InitOffset into account.

● The InitOffset member is the offset within the first mapped page of the beginning of the region of the user buffer.

The following figures illustrate the relationship between the members of the ADMXRC_BUFFERMAP structure, in two
possible cases:

● Here, when ADMXRC_MapDirectMaster is called, the MaxPages member of the ADMXRC_BUFFERMAP structure
passed is greater than or equal to the number of pages spanned by the application buffer.

550

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_BUFFERMAP

● Here, when ADMXRC_MapDirectMaster is called, the MaxPages of the ADMXRC_BUFFERMAP structure passed is
2, less than the number of pages spanned by the application buffer.

551

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_BUFFERMAP

552

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_CARD_INFO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_CARD_INFO

Declaration

typedef struct _ADMXRC_CARD_INFO
{
 ADMXRC_DEVICE_NUM CardID;
 unsigned long RAMBankFitted[4];
 ADMXRC_FPGA_TYPE FPGAType;
 unsigned long PhysicalMemoryBase;
 unsigned long* MemoryBase;
 unsigned long BoardRevision;
 unsigned long LogicRevision;
 unsigned long SerialNum;
 unsigned long Timeout;
} ADMXRC_CARD_INFO;

Description

The ADMXRC_CARD_INFO structure is returned by ADMXRC_GetCardInfo and contains information about a card. Some
applications may require this information in order, for example, to load the correct bitstream for the FPGA fitted to the card.

The CardID member, of type ADMXRC_DEVICE_NUM, is the ID of the card. This value returned is read from an EEPROM
on the card.

Each element of the RAMBankFitted array bitmap indicates the size of particular RAM bank on the card, in words. A size of
zero indicates that the bank is not fitted. The memory on an ADM-XRC or ADM-XRC-P card is 36 bit wide flow-through ZBT
synchronous SRAM.

The FPGAType member, of the enumerated type ADMXRC_FPGATYPE, identifies the type of FPGA fitted to the card. The
FPGA package is BG560 on ADM-XRC and ADM-XRC-P cards.

The PhysicalMemoryBase member is the address of the FPGA space in the physical address space of the bus on which
the card resides. For example, an ADM-XRC card is a PCI Mezzanine Card so this value would represent the PCI address of
the beginning of FPGA space.

The MemoryBase member is the address, in the application's address space, by which the FPGA may be accessed using
pointers as a memory-mapped device.

The BoardRevision member is the revision of the board, as a two digit number 0xAB where A is the major revision and B is
the minor revision.

The LogicRevision member is the revision of the control logic on the board, as a two digit number 0xAB where A is the
major revision and B is the minor revision.

The SerialNum member is the serial number of the card.

553

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_CARD_INFO

The Timeout member should be ignored.

554

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_VERSION_INFO

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_VERSION_INFO

Declaration

typedef struct _ADMXRC_VERSION_INFO
{
 UCHAR DriverMinor;
 UCHAR DriverMajor;
 UCHAR APIMinor;
 UCHAR APIMajor;
} ADMXRC_VERSION_INFO;

Description

The ADMXRC_VERSION_INFO structure is returned by ADMXRC_GetVersionInfo and indicates the API library revision
level and the driver revision level.

DriverMajor and DriverMinor respectively indicate the ADM-XRC device driver major and minor revision levels.

APIMajor and APIMinor respectively indicate the API library major and minor revision levels. The API library is implemented
a set of dynamic-link libraries (DLLs) that are part of the installable driver package.

555

ADM-XRC SDK 4.9.3 User Guide (Win32) - Types

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC interface types

This section describes the atomic datatypes of the ADMXRC interface.

Name Purpose
ADMXRC_CLOCK A value that identifies a particular programmable clock

ADMXRC_CLOCK_TYPE A value that specifies the frequency of the reference oscillator

ADMXRC_DEVICE_NUM A value that identifies a particular card in a system

ADMXRC_DMADESC A DMA descriptor, identifying a locked application buffer

ADMXRC_DMA_CHANNEL A value that indicates upon which DMA channel a DMA transfer
should take place

ADMXRC_DMA_DIRECTION A value that indicates in which direction a DMA transfer should
transfer data

ADMXRC_DMA_WIDTH A value that indicates the width, in bytes, of a DMA transfer

ADMXRC_FPGA_TYPE A value representing the type of an FPGA fitted to a card

ADMXRC_HANDLE A handle to an ADM-XRC or ADM-XRC-P card

ADMXRC_HANDLER_FUNCTION A pointer to an application-defined error handler function

ADMXRC_IMAGE A FPGA bitstream image, containing SelectMap data

ADMXRC_STATUS A value that indicates the success or failure of a call to an API
function

ADMXRC_SYNCMODE A value specifying what kind of memory coherency synchronisation
to perform

556

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_CLOCK

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_CLOCK

Declaration

typedef enum _ADMXRC_CLOCK
{
 ADMXRC_MCLK,
 ADMXRC_VCLK,
 ADMXRC_PCICLK,
 ADMXRC_VCLK1,
 ADMXRC_VCLK2,
 ADMXRC_VCLK3
} ADMXRC_CLOCK;

Description

This type specifies which clock generator should be programmed in a call to ADMXRC_SetClockRate. It should be one of:

Value Meaning
ADMXRC_VCLK1 Local bus clock
ADMXRC_MCLK General purpose clock

Other values should not be used.

557

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_CLOCK_TYPE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_CLOCK_TYPE

Declaration

typedef enum _ADMXRC_CLOCK_TYPE
{
 ADMXRC_CLOCKTYPE_16 = 0,
 ADMXRC_CLOCKTYPE_14 = 1
} ADMXRC_CLOCK_TYPE;

Description

This type indicates the frequency of the reference oscillator fitted to a card, as returned by ADMXRC_GetClockType, and is
one of the following values:

Value Meaning
ADMXRC_CLOCKTYPE_16 16.667MHz
ADMXRC_CLOCKTYPE_14 14.318MHz

558

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DEVICE_NUM

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DEVICE_NUM

Declaration

typedef unsigned long ADMXRC_DEVICE_NUM;

Description

A value of type ADMXRC_DEVICE_NUM identifies a particular card in a system and is used primarily with the
ADMXRC_OpenCard function.

559

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DMADESC

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DMADESC

Declaration

typedef unsigned long ADMXRC_DMADESC;

Description

A value of type ADMXRC_DMADESC is a DMA descriptor, representing a locked down (non-swappable) application buffer.

DMA descriptors are allocated and freed by ADMXRC_SetupDMA and ADMXRC_UnsetupDMA. They are used with the
ADMXRC_DoDMA, ADMXRC_DoDMAImmediate, ADMXRC_MapDirectMaster, and ADMXRC_SyncDirectMaster
functions.

560

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DMA_CHANNEL

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DMA_CHANNEL

Declaration

typedef enum _ADMXRC_DMA_CHANNEL
{
 ADMXRC_DMACHAN_0 = 0,
 ADMXRC_DMACHAN_1 = 1,
 ADMXRC_DMACHAN_ANY = 0xFFU
} ADMXRC_DMA_CHANNEL;

Description

This type specifies which DMA channel should be used to perform a DMA transfer, used primarily with the
ADMXRC_DoDMA and ADMXRC_DoDMAImmediate functions. It must be one of the following values:

Value Meaning
ADMXRC_DMACHAN_0 Use PCI9080 DMA channel 0
ADMXRC_DMACHAN_1 Use PCI9080 DMA channel 1
ADMXRC_DMACHAN_ANY Use any available PCI9080 DMA channel

561

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DMA_DIRECTION

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DMA_DIRECTION

Declaration

typedef enum
{
 ADMXRC_PCI2LOCAL = 0,
 ADMXRC_LOCAL2PCI = 1
} ADMXRC_DMA_DIRECTION;

Description

The ADMXRC_DMA_DIRECTION enumerated type specifies the direction of data transfer in a DMA transfer, for the
ADMXRC_DoDMA and ADMXRC_DoDMAImmediate functions. It is one of the following values:

Value Meaning
ADMXRC_PCI2LOCAL Data is transferred from host to FPGA
ADMXRC_PCI2LOCAL Data is transferred from FPGA to host

562

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_DMA_WIDTH

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_DMA_WIDTH

Declaration

typedef enum _ADMXRC_DMA_WIDTH
{
 ADMXRC_DMAWIDTH_8 = 0,
 ADMXRC_DMAWIDTH_16 = 1,
 ADMXRC_DMAWIDTH_32 = 2
} ADMXRC_DMA_WIDTH;

Description

The ADMXRC_DMA_WIDTH enumerated type determines the width of a DMA transfer in the
ADMXRC_BuildDMAModeWord function. The ADM-XRC and ADM-XRC-P cards support BYTE, WORD and DWORD wide
transfers:

Value Meaning
ADMXRC_DMAWIDTH_8 BYTE wide (8 bit) transfers
ADMXRC_DMAWIDTH_16 WORD wide (16 bit) transfers
ADMXRC_DMAWIDTH_32 DWORD wide (32 bit) transfers

563

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_FPGA_TYPE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_FPGA_TYPE

Declaration

typedef enum _ADMXRC_FPGA_TYPE
{
 ADMXRC_FPGA_4085XL,
 ADMXRC_FPGA_40150XV,
 ADMXRC_FPGA_40200XV,
 ADMXRC_FPGA_40250XV,
 ADMXRC_FPGA_V1000,
 ADMXRC_FPGA_V400,
 ADMXRC_FPGA_V600,
 ADMXRC_FPGA_V800,
 ADMXRC_FPGA_V2000E,
 ADMXRC_FPGA_V1000E,
 ADMXRC_FPGA_V1600E,
 ADMXRC_FPGA_V3200E,
 ADMXRC_FPGA_V812E,
 ADMXRC_FPGA_V405E,
 ADMXRC_FPGA_UNKNOWN
} ADMXRC_FPGA_TYPE;

Description

This type represents the FPGA device fitted to a card. Certain API functions require knowledge of what FPGA device is fitted
in order to operate. The type of FPGA fitted to a card can be obtained from the ADMXRC_CARD_INFO structure returned
by ADMXRC_GetCardInfo.

564

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_HANDLE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_HANDLE

Declaration

typedef HANDLE ADMXRC_HANDLE;

Description

An ADMXRC_HANDLE is a handle to a card in a system. Most API functions require a parameter of type
ADMXRC_HANDLE in order to identify the card on which the operation is to be performed. The ADMXRC_OpenCard and
ADMXRC_CloseCard functions open and close card handles.

565

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_HANDLER_FUNCTION

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_HANDLER_FUNCTION

Declaration

typedef void (*ADMXRC_HANDLER_FUNCTION)(
 const char* FnName,
 ADMXRC_STATUS Status);

Description

An ADMXRC_HANDLER_FUNCTION function is an application-defined error handler routine called when an API function
fails for some reason. The routine must be installed or uninstalled using ADMXRC_InstallErrorHandler.

566

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_IMAGE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_IMAGE

Declaration

typedef void* ADMXRC_IMAGE;

Description

An ADMXRC_IMAGE variable holds a Xilinx bitstream file (.BIT) loaded from disk.

ADMXRC_LoadFpgaFile and ADMXRC_UnloadFpgaFile can be used to load a Xilinx bitstream into an ADMXRC_IMAGE
variable. As ADMXRC2_LoadFpgaFile allocates memory to hold the data, it is the application's responsibility to free the
memory when no longer required using ADMXRC_UnloadFpgaFile.

The ADMXRC_FindImageOffset function should be used to find the beginning of SelectMap data within a loaded bitstream,
and its bit-order must be reversed with ADMXRC_ReverseBytes before using it to configure the FPGA using
ADMXRC_ConfigureFromBuffer or ADMXRC_ConfigureFromBufferDMA.

567

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_STATUS

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_STATUS

Declaration

typedef enum
{
 ADMXRC_SUCCESS = 0, /* No error */
 ADMXRC_INTERNAL_ERROR = 0x1000, /* An error in the API logic occurred */
 ADMXRC_NO_MEMORY, /* Couldn't allocate memory required to
 complete operation */
 ADMXRC_CARD_NOT_FOUND, /* Failed to open the card with specified
 CardID */
 ADMXRC_FILE_NOT_FOUND, /* Failed to open bitstream file */
 ADMXRC_INVALID_FILE, /* The bitstream file appears to be corrupt */
 ADMXRC_FPGA_MISMATCH, /* The bitstream file does not match the FPGA
 on the card */
 ADMXRC_INVALID_HANDLE, /* The handle to the card passed was invalid */
 ADMXRC_TIMEOUT, /* The operation was not completed within the
 timeout period */
 ADMXRC_CARD_BUSY, /* Card could not be opened because it was
 already open */
 ADMXRC_INVALID_PARAMETER, /* An invalid parameter was supplied to the
 call */
 ADMXRC_CLOSED, /* The card was closed before the operation was
 completed */
 ADMXRC_CARD_ERROR, /* A hardware error occurred on the card */
 ADMXRC_NOT_SUPPORTED, /* An operation was requested which is not
 supported or implemented */
 ADMXRC_DEVICE_BUSY, /* The requested device or resource was in
 use */
 ADMXRC_INVALID_DMADESC, /* The DMA descriptor passed was invalid */
 ADMXRC_NO_DMADESC, /* No free DMA descriptors left */
 ADMXRC_FAILED, /* The operation failed */
 ADMXRC_PENDING, /* The operation is still in progress */
 ADMXRC_UNKNOWN_ERROR, /* The operation failed for reasons unknown */
 ADMXRC_NULL_POINTER, /* A null pointer was supplied in the call */
 ADMXRC_CANCELLED, /* The operation was cancelled because
 requesting thread terminated */
 ADMXRC_BAD_DRIVER, /* The driver revision level is too low */
} ADMXRC_STATUS;

Description

A variable of the enumerated type ADMXRC_STATUS holds a code indicating the success or failure of a call to an ADM-
XRC API function.

568

ADM-XRC SDK 4.9.3 User Guide (Win32) - ADMXRC_SYNCMODE

ADM-XRC SDK 4.9.3 User Guide (Win32)
© Copyright 2001-2009 Alpha Data

ADMXRC_SYNCMODE

Declaration

typedef enum _ADMXRC_SYNCMODE
{
 ADMXRC_SYNC_CPUTOFPGA = 0x1,
 ADMXRC_SYNC_FPGATOCPU = 0x2
} ADMXRC2_SYNCMODE;

Description

The ADMXRC_SYNCMODE type is used with the ADMXRC_SyncDirectMaster function to specify the direction in which
changes made to a buffer must be propagated across any hardware-level caches or write buffers:

Value Meaning
ADMXRC_SYNC_CPUTOFPGA Indicates that the CPU has modified a buffer that the FPGA is expected to

access.
ADMXRC_SYNC_FPGATOCPU Indicates that the FPGA has modified a buffer that the CPU is expected to

access.

569

	ADM-XRC SDK 4.9.3 User Guide (Win32)
	Introduction
	About the ADM-XRC SDK
	Hardware supported
	Changes
	Upgrades to the SDK
	Sales and support

	Installation
	Before installation
	After installation
	Configuring the MSVC IDE
	MSVC IDE global options
	MSVC IDE per-project options

	Configuring Borland C++ command line tools
	Installable packages

	Sample applications
	Running the sample applications
	Building the sample applications
	MSVC
	Borland C++ command line tools

	Sample application list
	Clock
	DLL
	DMA
	EPTest
	Flash
	FrontIO
	Info
	ITest
	Master
	Memory
	MemoryF
	Memtest
	RearIO
	Simple

	Sample FPGA designs
	Generating ISE project files
	Building
	VHDL designs
	Clock
	DDMA
	DDMA64
	DLL
	FrontIO
	ITest
	Master
	Memory
	Memory64
	RearIO
	Simple
	Simple64
	ZBT
	ZBT64

	Verilog designs
	DDMA
	DDMA64
	DLL
	FrontIO
	ITest
	Master
	RearIO
	Simple
	Simple64
	ZBT
	ZBT64

	Running the Xilinx tools
	FPGA constraints files
	Building designs for Virtex-II ES
	Synplify/Synplify Pro issues
	FPGA Express issues
	Other documentation

	Introduction to the local bus
	Generic local bus signals
	Bussed signals
	Sideband signals

	Model-specific signals
	ADM-XRC / ADM-XRC-P
	ADM-XRC-II-Lite
	ADM-XRC-II
	ADM-XPL / ADM-XP / ADP-XPI
	ADP-WRC-II / ADP-DRC-II
	ADM-XRC-4LX / -4SX
	ADM-XRC-4FX / -5LX / -5T1 / -5T2 / -5T2-ADV
	ADM-XRC-5TZ / -5T-DA1

	Direct slave transfers
	Single word read and write
	Burst read, terminated normally
	Burst write, terminated normally
	Burst read, terminated by LBTERM#
	Burst write, terminated by LBTERM#
	Multiplexed address/data bus

	DMA transfers
	What happens during a DMA transfer?
	Caveats of DMA transfers
	Constant address mode
	Constant address mode, nonmultiplexed address/data
	Constant address mode, multiplexed address/data
	Tracking the local bus address during a burst

	Demand mode
	Burst read, LDREQ# kept asserted
	Burst read, LBREQ# deasserted to pause transfer
	Single word read, LDREQ# deasserted early
	Write, LBTERM# breaks up bursts

	LEOT mode
	LEOT# in nonburst transfer
	LEOT# in burst transfer
	LEOT# asserted with LBTERM#

	Arbitration
	Direct master transfers
	Tips for local bus interface design
	PLXDSSM - a practical example

	Common HDL components
	Local bus interface package (VHDL)
	Components
	plxddsm (deprecated)
	plxddsm2
	plxdssm

	Memory interface package (VHDL)
	Datatypes
	ddr2sdram_pinout_t
	ddr2sdram_timing_t
	ddrsdram_pinout_t
	ddr2sram_pinout_t
	ddrsdram_timing_t
	zbtsram_pinout_t

	Constants
	Components
	arbiter_2
	arbiter_3
	arbiter_4
	ddr2sdram_port
	ddrsdram_port_v2
	ddrsdram_training_v2
	ddr2sram_port_v2
	ddr2sram_training_v2
	ddr2sram_port_v4
	zbtsram_port

	Generic user interface

	PLXSIM package (VHDL)
	Datatypes
	byte_enable_t
	byte_t
	byte_vector_t
	integer_vector_t
	locbus_ddma_in_t
	locbus_ddma_out_t
	locbus_in_t
	locbus_out_t

	Constants
	init_locbus_ddma_out
	init_locbus_out

	Functions and procedures
	conv_byte_vector
	conv_integer
	conv_integer_signed
	conv_integer_unsigned
	conv_std_logic_vector
	conv_string
	conv_string_hex
	plxsim_read
	plxsim_read_const
	plxsim_read_const_demand
	plxsim_read_demand
	plxsim_request_bus
	plxsim_wait_cycles
	plxsim_wait_demand
	plxsim_write
	plxsim_write_const
	plxsim_write_const_demand
	plxsim_write_demand

	Components
	lbpcheck
	locbus_agent_ddma
	locbus_agent_mux32
	locbus_agent_mux64
	locbus_agent_nonmux
	locbus_arb

	API reference
	API header files
	API import libraries
	ADMXRC2 interface
	Multithreading issues
	Differences between ADMXRC2 and ADMXRC interfaces
	Functions
	ADMXRC2_BuildDMAModeWord
	ADMXRC2_CloseCard
	ADMXRC2_ConfigureFromBuffer
	ADMXRC2_ConfigureFromBufferDMA
	ADMXRC2_ConfigureFromFile
	ADMXRC2_ConfigureFromFileDMA
	ADMXRC2_DoDMA
	ADMXRC2_DoDMAImmediate
	ADMXRC2_GetBankInfo
	ADMXRC2_GetCardInfo
	ADMXRC2_GetSpaceInfo
	ADMXRC2_GetSpaceConfig
	ADMXRC2_GetStatusString
	ADMXRC2_GetVersionInfo
	ADMXRC2_InstallErrorHandler
	ADMXRC2_LoadBitstream
	ADMXRC2_MapDirectMaster
	ADMXRC2_OpenCard
	ADMXRC2_OpenCardByIndex
	ADMXRC2_Read
	ADMXRC2_ReadConfig
	ADMXRC2_RegisterInterruptEvent
	ADMXRC2_SetClockRate
	ADMXRC2_SetSpaceConfig
	ADMXRC2_SetupDMA
	ADMXRC2_StatusToString
	ADMXRC2_SyncDirectMaster
	ADMXRC2_UnloadBitstream
	ADMXRC2_UnregisterInterruptEvent
	ADMXRC2_UnsetupDMA
	ADMXRC2_Write
	ADMXRC2_WriteConfig

	Structures
	ADMXRC2_BANK_INFO
	ADMXRC2_BUFFERMAP
	ADMXRC2_CARD_INFO
	ADMXRC2_SPACE_INFO
	ADMXRC2_VERSION_INFO

	Types
	ADMXRC2_BOARD_TYPE
	ADMXRC2_CARDID
	ADMXRC2_DMADESC
	ADMXRC2_DMADIR
	ADMXRC2_FPGA_TYPE
	ADMXRC2_HANDLE
	ADMXRC2_ERROR_HANDLER
	ADMXRC2_IMAGE
	ADMXRC2_IOWIDTH
	ADMXRC2_STATUS
	ADMXRC2_SYNCMODE

	ADMXRC (legacy) interface
	Multithreading issues
	Functions
	ADMXRC_BuildDMAModeWord
	ADMXRC_CloseCard
	ADMXRC_ConfigureFromBuffer
	ADMXRC_ConfigureFromBufferDMA
	ADMXRC_ConfigureFromFile
	ADMXRC_ConfigureFromFileDMA
	ADMXRC_DoDMA
	ADMXRC_DoDMAImmediate
	ADMXRC_FindImageOffset
	ADMXRC_GetBaseAddress
	ADMXRC_GetCardInfo
	ADMXRC_GetClockType
	ADMXRC_GetStatusString
	ADMXRC_GetVersionInfo
	ADMXRC_InstallErrorHandler
	ADMXRC_LoadFpgaFile
	ADMXRC_MapDirectMaster
	ADMXRC_OpenCard
	ADMXRC_Read
	ADMXRC_ReadReg
	ADMXRC_RegisterInterruptEvent
	ADMXRC_ReverseBytes
	ADMXRC_SetClockRate
	ADMXRC_SetupDMA
	ADMXRC_StatusToString
	ADMXRC_SyncDirectMaster
	ADMXRC_UnloadFpgaFile
	ADMXRC_UnregisterInterruptEvent
	ADMXRC_UnsetupDMA
	ADMXRC_Write
	ADMXRC_WriteReg

	Structures
	ADMXRC_BUFFERMAP
	ADMXRC_CARD_INFO
	ADMXRC_VERSION_INFO

	Types
	ADMXRC_CLOCK
	ADMXRC_CLOCK_TYPE
	ADMXRC_DEVICE_NUM
	ADMXRC_DMADESC
	ADMXRC_DMA_CHANNEL
	ADMXRC_DMA_DIRECTION
	ADMXRC_DMA_WIDTH
	ADMXRC_FPGA_TYPE
	ADMXRC_HANDLE
	ADMXRC_HANDLER_FUNCTION
	ADMXRC_IMAGE
	ADMXRC_STATUS
	ADMXRC_SYNCMODE

