SYNOPSYS

VMT User’s Manual

Included in the VCS Verification Library
and the DesignWare Library

To search this manual or the =
entire set, press this toolbar ﬁ
button. For help, refer to intro.pdf.

Release 3.10a

March 20, 2008

VMT User’s Manual

Copyright Notice and Proprietary Information

Copyright © 2008 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that
is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only
in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or
translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys,
Inc., or as expressly provided by the license agreement.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to
nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the
applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CSim, Design
Compiler, DesignPower, DesignWare, EPIC, Formality, HSPICE, Hypermodel, iN-Phase, in-Sync, Leda, MAST, Meta, Meta-
Software, ModelAccess, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill, PrimeTime,
RailMill, Raphael, RapidScript, Saber, SiVL, SNUG, SolvNet, Stream Driven Simulator, Superlog, System Compiler, Testify,
TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)

abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAll, Astro, Astro-Rail, Astro-
Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis,
Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci,
DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,
DesignerHDL, DesignTime, DFM-Workbench, DFT Compiler, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI,
Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ,
Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler Il, FPGA Express,
Frame Compiler, Galaxy, Gatran, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical
Optimization Technology, High Performance Option, HotPlace, HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform
Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler,
Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway,
ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint,
Nova-VHDLIint, Optimum Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS,
Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael-
NES, RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon
Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level
Design, Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-
XP, SWIFT, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-Process, Taurus-Topography, Taurus-Visual,
Taurus-Workbench, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System Simulator,
VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (sv)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

2 Synopsys, Inc. March 20, 2008

VMT User’s Manual Contents

Contents

g 5 T Y 7
About This Manual 7
Related DoCUMENLSo e 7
Manual OVerVIEWt e 7
Typographical and Symbol Conventionsuitinteiteitnenennenn.. 8
Getting Help . ..o e 9
Additional Information 9
CommMENES? . .. e 9
Chapter 1
VMT INtroductioncciuiuiniiiiieineneneneeoeneeeeoenensessssssnsassnsnansnns 11
VMT Model OVEIVIEWot e e e e e e e e e 11
Simulator Control 12
VMT Commands e e e e 14
Queued and Blocking Commands 14
Command Channels and Command Streamst 16
SUIMIMATY . .ttt e e e e e e e e e e e e e e 20
Chapter 2
Using VMT Modelsoutiitiniiitiineeneeeteoesscsscescsssssssscsssssssssnssnsons 21
Controlling MeSSages . ..ottt 21
Defaults for Message Types and Features 22
Controlling Message Routing e 23
Controlling Message Format and Configurationt .. 23
Message FIItering 25
MESSaAZE TYPES . ottt et e 25
W atChpOINtS .. 28
Using Messages as WatChpointst 29
Using Notifications as Watchpoints i 31
Managing Result Data 31
Using Stream Blocking Commands e 32
Creating Pipelined Command Streams i, 33
Resetting Models 34
Memory Patterns 35
Chapter 3
VMT Common Command Referencecciiiiiiiiiiiiiiiiiiiiiiiiinenennnns 37
Command SUMMATYttt e e e e e e e e e e 37
Command Reference 41
VHDL Command Structuret e 41
block_Stream e 42
Close_MSg _10g ..o 44
combine_watChpOIntS e 46

March 20, 2008 Synopsys, Inc. 3

Contents VMT User’s Manual

create_WatChpOINt 48
create_watChpoInt_Tangettt e e 51
delete_handle, 53
destroy_watChpoIntt 54
disable_msg_feature 56
disable_mSg_id 58
disable_MSg_l0g . ..o 60
diSable_MSE LY PE . ..ot 62
disable_watChpoint 64
enable_msg_feature 66
enable_msSg 1d 69
enable_MSg 10 71
ENAbIE _MSE LY P . ottt e 73
enable_type_ctrl_msg_id 76
enable_watchpoint e 78
ENA_SIICAM . . o o ettt et e 80
get_config_param 81
Lo 07) o AP 83
oS A (0 1] 1<) o 85
GEL_VEISION . oottt et et e et e et e et e et e e e e e e e e 87
get_watchpoint_data_bit 88
get_watchpoint_data_count 90
get_watchpoint_data_int e 93
get_watchpoint_data_name 95
get_watchpoint_data_sSizettt 97
get_watchpoint_data_Stringt e 99
get_watchpoint_data_typet e 101
get_watchpoint_data_vec_<SIZe>ttt e 103
get_WatChpOINt_IrIZEETottt e e e e e e e e e 106
NEW_STTEAITL . o v v ot et e 108
0PN _MSE_l0g . oo e 110
PIINE NS o« ottt e e e e e e e e 112
reset_MOAELo, 113
SEL_CONTIE_Paramttt 115
Y 01) 117
Y A (5 4 1] (< 119
SEt_WatChPOINt_ @I . . oottt et e e e e e 120
] 72 o 123
SEAIt SIICAMN . . . v v e et e e et e e e e e e e e 124
WaAlCH fOT . oo 126
Command Macro Reference i 128
VMT_CREATE_WP_MSG_TYPE i 128
VMT_CREATE_WP_MSG_ID e e e 129
VIMT MESSAZES . . . o oottt e e e e e e e e e 130

4 Synopsys, Inc. March 20, 2008

VMT User’s Manual Contents

Appendix A
Reporting Problemscciiuiiitiiiiiinneeseoeeeescsoscsssssssssssscsnsssnans 153
Creating MCD Files e e e e et e e 153
Identifying an INStancettt e 153
HDL Testbench USers e e 153
OpenVera Testbench USersttt et et et 154
Checking if MCD has been Enabled 154
Impact of Turning MCD On e 154

Appendix B
8 0T P) PP 155
T 159

March 20, 2008 Synopsys, Inc. 5

Tables VMT User’s Manual

Tables

Table 1: Documentation CONVENIONSottt ettt e e e e 8
Table 2: Message EventData 29
Table 3: VMT Memory Patterns i, 35
Table 4: VMT Common Command Summaryiuitintineanenno... 38
Table 5: VMT Common Command Macro Summary, 40
Table 6: Create Watchpoint Types ittt 48
Table 7: Message Feature COnstantsc.iuiuitininnennenenenennns 66
Table 8: Message Log IDs 71
Table 9: Predefined Message Types 73
Table 10: Predefined Watchpoint Event Data Members 90
Table 11: Predefined Watchpoint Data Typesc ... 101
Table 12: Reset TyPes ..ot e e 113
Table 13: Common Configuration Parameters 115
Table 14: Watchpoint Triggering Profile Configuration Types 120

6 Synopsys, Inc. March 20, 2008

VMT User’s Manual Preface

Preface

About This Manual

This manual contains general introductory, usage, and reference material about Vera Modeling
Technology (VMT) features. Information for specific DesignWare Verification IP can be found in the
documentation for each suite of models.

Related Documents
This manual is part of the VMT document set. The document set also includes:

® VMT Installation Guide — Contains system requirements, installation procedures, and setup
information.

® VMT Release Notes — Contains new features, fixed problems, and known problems and limitations
common to all VMT models.

IMPORTANT: This document set does NOT contain information about:

e Using DesignWare VIP in an RVM (Reference Verification Methodology) environment
o Using DesignWare VIP in SystemVerilog testbenches

For documentation about using DesignWare Verification IP in these situations, refer to the specific VIP
suite documentation that is installed at:

$DESIGNWARE_HOME/vip/<vip_suite_name>/latest/doc

Manual Overview

This manual contains the following chapters and appendixes:

Chapter 1 Includes VMT-specific terminology, an overview of model operation,
“VMT Introduction” and an explanation of how different VMT commands work.

Chapter 2 Explains model messaging, how to work with VMT commands and
“Using VMT Models” command streams, interrupt handling, and memory patterns.
Chapter 3 Contains all common commands, macros, and model messages.

“VMT Common Command Reference”

March 20, 2008 Synopsys, Inc. 7

Preface VMT User’s Manual

Appendix A Provides procedures for creating model MCD files. These files are
“Reporting Problems” used by the Support Center staff as a troubleshooting aid.
Appendix B “Glossary” Defines terms used throughout this book.

Typographical and Symbol Conventions

The following conventions are used throughout this document:

Table 1: Documentation Conventions

Convention Description and Example

% Represents the UNIX prompt.

Bold User input (text entered by the user).
% cd $DESIGNWARE HOME/iip

Monospace System-generated text (prompts, messages, files, reports).
No Mismatches: 66 Vectors processed: 66 Possible"

Italic or Ttalic Variables for which you supply a specific value. As a command line
example:

% setenv DESIGNWARE HOME prod dir
In body text:

In the previous example, prod_dir is the directory where your product
must be installed.

| (Vertical rule) Choice among alternatives, as in the following syntax example:
-effort level low | medium | high

[] (Square brackets) Enclose optional parameters:

pinl [pin2 ... pinN]
In this example, you must enter at least one pin name (pin/), but others
are optional ([pin2 ... pinN]).

TopMenu > SubMenu Pulldown menu paths, such as:
File > Save As ...

8 Synopsys, Inc. March 20, 2008

VMT User’s Manual Preface

Getting Help

If you have a question about using Synopsys products, please consult product documentation that is
installed on your network or located at the root level of your Synopsys product CD-ROM (if available).
You can also contact the Synopsys Support Center in the following ways:

e Open a call to your local support center using this Web page:
http://www.synopsys.com/support/support.html

e Send an e-mail message to support_center @synopsys.com.

e Telephone your local support center:

o United States:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

o Canada:
Call 1-650-584-4200 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

o All other countries:
Find other local support center telephone numbers at the following URL:

http://www.synopsys.com/support/support_ctr

Additional Information
For additional Synopsys documentation, refer to the following page:
http://www.synopsys.com/products/designware/docs/toc/dwlibdocs.php

For up-to-date information about the latest implementation IP and verification models, visit the
DesignWare home page:

http://www.synopsys.com/designware

Comments?

To report errors or make suggestions, please send e-mail to:
support_center @synopsys.com.

To report an error that occurs on a specific page, select the entire page (including headers and footers),
and copy to the buffer. Then paste the buffer to the body of your e-mail message. This will provide us
with information to identify the source of the problem.

March 20, 2008 Synopsys, Inc. 9

http://www.synopsys.com/support/support.html
mailto:support_center@synopsys.com
http://www.synopsys.com/support/support_ctr/
http://www.synopsys.com/products/designware/docs/toc/dwlibdocs.php
http://www.synopsys.com/designware
mailto:support_center@synopsys.com

Preface VMT User’s Manual

10 Synopsys, Inc. March 20, 2008

VMT User's Manual Chapter 1: VMT Introduction

1

VMT Introduction

Chapter Contents

e VMT Model Overview

o VMT Commands

e Command Channels and Command Streams
e Summary

VMT Model Overview

VMT models include bus functional models and monitor models that are written in OpenVera and can
be instantiated in OpenVera, Verilog, or VHDL testbenches. All VMT models have a common
command interface style that allows you to easily integrate standard bus protocol devices into your
system testbenches.

During simulation, VMT models report interesting events and it is up to the testbench to react to those
events. VMT models do not take any special action (such as stopping the simulation) when they detect
an error condition. To control when the testbench reacts to a simulation event, you can use watchpoints.
When the watchpoint triggers, the testbench can perform whatever action is desired. For example, to
react to detected errors, you can set a watchpoint to trigger on all messages that have a type of VMT_
MSG_ERROR. You can then design your testbench to execute a specific set of instructions each time
the watchpoint triggers.

A model testbench consists of one or more threads of execution. Each thread can execute VMT
commands which get passed to the VMT model using command streams. VMT commands can be
“blocking” or “non-blocking.” A blocking command means the testbench thread will not progress past
the blocking command until that command is executed by the model. With a non-blocking command,
the testbench thread progresses without waiting.

New command streams are created using the new_stream command. When a new command stream is
created, a new active command queue is also created. All command streams can accept commands
from testbench threads. All non-queued commands will be executed regardless of which command
stream they are associated with. Only queued commands placed on the active queue will be executed;
the non-active queues simply queue the commands for later execution.

March 20, 2008 Synopsys, Inc. 11

Chapter 1: VMT Introduction VMT User's Manual

The following figure shows how a VMT model interacts with a testbench and simulator.

Testbench Command Sequence VMT Model
Queued L
Testbench Statements Commands
(OpenVera or HDL)) Command| Stream -
Command
VMT Command Stream Non- Queue
Zero Cycle Commands Queued
Commands |
Testbench Statements ’
VMT Command Stream
Command Execution
Cycle Commands Engine
Testbench Statements
Simulation
Command
Channel Cycles
Simulator

Figure 1: VMT Command Flow

In the figure above, the VMT model accepts commands that are part of a testbench command sequence
consisting of VMT commands in one or more command streams. The model executes the commands
from the active command queue or directly from the command stream, depending on whether the
command is queued or not.

Simulator Control

VMT models are designed to operate with a choice of testbench languages: OpenVera, Verilog, or
VHDL. Your choice of testbench language helps determine the simulation environment. The following
environments are available:

e Vera
o VCS with NTB
o Pioneer NTB

These environments are described next.

12 Synopsys, Inc. March 20, 2008

VMT User's Manual Chapter 1: VMT Introduction

VCS with NTB

The most efficient environment is achieved using VCS with Native TestBench (NTB), in which the
OpenVera testbench, VMT model, and design under test (DUT) are compiled and executed natively by
VCS. As shown below, this environment yields a tightly integrated and efficient simulation.

VCS with NTB but

Connectivity and
Simulation

VMT Models Testbench
(OpenVera) (OpenVera)

Figure 2: Simulation Control for VCS with NTB

Vera

For Vera environments, there are two domains for a given simulation, as shown below.

. DUT
HDL Simulator
Connectivity and Testbench
Simulation (HDL)
VMT Models Testbench
(OpenVera) Vera (OpenVera)

Figure 3: Simulation Control for HDL and Vera

As shown above, the testbench code, which is where the VMT model is instantiated, can be either HDL
or OpenVera. The top of the code hierarchy is an HDL layer (either Verilog or VHDL) that always
provides connectivity to the simulator and commonly includes clock generation. The HDL simulator is
the simulation 'master' and hands control to the Vera simulator to control the VMT model. If the
testbench code is in OpenVera, the HDL layer is still present, serving again as a connectivity and
simulation control layer.

March 20, 2008 Synopsys, Inc. 13

Chapter 1: VMT Introduction VMT User's Manual

VMT Commands

There are two types of VMT commands: model-specific and common. Model-specific commands
exercise protocol functions that are specific to that model and are applicable to model-specific
functionality. Common commands are applicable to most or all models and are useful for testbench
flow control, general-purpose configuration tasks and pin-level error injection.

Not all common commands may be functional for every model. Consult specific model documentation
to see which common commands are available.

Some commands do not generate bus cycles. For example, all non-queued, non-blocking commands do
not generate any bus cycles and are called zero cycle commands. Likewise, commands that check or
modify model characteristics are zero cycle commands. An unlimited number of zero cycle commands
can execute without advancing simulation time. Cycle commands take at least one clock cycle to
complete execution.

@ Attention
If you are controlling VMT models from an HDL testbench or an OpenVera testbench
simulating in VCS NTB, then you must allow at least one clock cycle to elapse in your
testbench before issuing any commands to the VMT model; this allows VMT models to
initialize. After initialization, VMT models can accept commands from the HDL.

This does not apply when controlling VMT models in a Vera environment.

Queued and Blocking Commands

Within all VMT models, there is a queue that the models use to process commands. This queue accepts
commands from the testbench without advancing simulation time. Note that the commands are not
necessarily executed when they are sent to the queue; they are just passed from the testbench into the
model’s queue. The model then processes the commands from the internal model queue as simulation
time advances.

Commands that are loaded into the model’s queue are guaranteed to execute in the order they were
originally queued. So, if commands “A,” “B,” and “C” were sent from the testbench to the model in that
order, the model would process them in “A-B-C” order.

14 Synopsys, Inc. March 20, 2008

VMT User's Manual Chapter 1: VMT Introduction

The following figure shows a group of cycle commands (in this case, read and write) and zero cycle
commands (set_config_param and enable_msg_type), and the relationship between the time when the
testbench sends the commands to the model and when the commands are executed.

T=0 Testbench Commands T=0
e set_config_param(...) ¢
T=1 ™ enable_msg_type(...) .. ¥ T=1
N read(...) ’q P
N write(...) o
T=2 N , T=2
set_config_param(...) e
T=... T=
Time command Time command
added to executes
model queue

Figure 4: Model Command Queuing

In the figure, you can see that all of the cycle and zero cycle commands are sent to the model at time
zero. Since each of the cycle commands takes one clock to execute, the last set_config_param is read
by the model at time zero, but it does not take effect until time 2 because of the guaranteed execution
order.

Model queuing allows the testbench command stream to be decoupled from model command
execution. This enables pipelined operations as well as split transactions.

Command queuing can be turned on or off with the VMT_FORCE_CMD_BLOCKING model
configuration parameter. Turning this parameter on causes commands not to be queued, which means
pipelined operations are not possible because the model operates on each command individually. When
command queuing is off, the command stream is blocked for every command until current command
execution is complete.

March 20, 2008 Synopsys, Inc. 15

Chapter 1: VMT Introduction VMT User's Manual

Command Channels and Command Streams

As previously noted in the VMT Command Flow illustration, a command channel is a conceptual
structure in a VMT model that manages the following:

e Communication with the testbench through a command stream
e Execution of the model commands in the command execution engine

The number of command channels for a VMT model is hard coded and cannot be changed. Most VMT
models have only one command channel, which meets the needs of most protocols. Models that
support full-duplex protocols can have two command channels, one for receiving and one for
transmitting.

A command stream is a communication path between the testbench and the VMT model. When a VMT
model is instantiated in a design, it has one initial command stream for each command channel. You
can create one or more additional command streams, which is a technique you might use if your
testbench needs to perform tasks similar to interrupt handling.

A command channel can execute commands from only one command stream at a time. To execute two
or more command streams concurrently, multiple command channels must be used (for example,
modeling full duplex send and receive capability in a UART). Each command channel runs
independently from other command channels. If one command channel’s stream is blocked, streams in
other command channels are not affected. Therefore, each command channel can run concurrently with
other command channels.

The new_stream command is used to generate new command streams. The first argument in the new_
stream command refers to the command channel. Every new stream ID generated is unique and
corresponds to a particular command channel.

7
@ Attention
You must never send commands to the same instance/stream ID from different testbench
threads. Command execution order, results, and stability are unpredictable if this rule is
not followed.

Issue a new_stream command whenever your testbench spawns a new thread that will
issue model commands to an instance while another active testbench thread is
concurrently issuing model commands to the same instance.

Each command stream has a unique stream ID identifier. A VMT constant, VMT_DEFAULT _
STREAM_ID, is used to identify the default command stream. Always use the VMT_DEFAULT _
STREAM_ID command stream when sending commands to a model before issuing start or new_
stream commands.

© Attention
If you use models that use multiple command channels, such as the SIO TxRx model, you
must use a different default stream ID to identify the default command stream for each
command channel.

All command streams continue to send commands to the model queue until a blocking command is
executed or a control mechanism, such as #10 in Verilog, is used to cause simulation time to advance.
There are several common VMT commands that are blocking commands (block_stream and any

16 Synopsys, Inc. March 20, 2008

VMT User's Manual Chapter 1: VMT Introduction

command that returns a result, such as get_config_param). These commands allow synchronization
between the actual simulation time a command is executed and the command stream. These blocking
commands halt loading the model queue with more commands.

Using the block_stream command causes commands to be blocked until all of the previously-loaded
commands complete execution. For commands that return results, the queue is blocked until the result
is available and can be returned to the testbench. When these commands are used, pipeline operations
may be starved of new commands in the queue and are essentially filled with idle cycles.

Each model has one default command stream per command channel. VMT models do not allow
multiple command streams to run concurrently on one command channel. However, command streams
can be used as interrupt handlers. One such example is a command stream that executes when a
watchpoint trigger occurs.

A new command stream can be created dynamically from the new_stream command. This must be
paired with an end_stream as the last command in the stream.

When any new command stream is created, a new command queue is created in the model. When a
command stream is created by the new_stream command, commands execute from this stream until the
command stream completes or another stream is created. The model always processes from the newest
command stream and works back to the oldest.

March 20, 2008 Synopsys, Inc. 17

Chapter 1: VMT Introduction

VMT User’s Manual

The following figure shows an example of how a VMT model would handle two newly-created
command streams, occurring at different times. Each stream is written in its own concurrent

process/fork block.
Command Testbench Command Sequence Command
Queues at Executes at
T=0 { Main Command Streamd T=0
. set_config_param(...) .//7'{ (A)
T=1 { re start(...) . . c/// T=1
e read(...) -// %
T=2 { Mo write(...) N { T=2
e read(...) . . ng
T=3 e write(...) § {%T=3
T=4 #1 //Delay 1 clock T=4
Command Stream(?) { %
T=5 T=5
\ new_stream(...) . . Y o
N A
T=6 read(...) T=6
\- read(...) o { (A)
T=7 \ end_stream(...) . . 'q T=7
#1 //Delay 1 clock { A
T=8 T=8
Command Stream(® 0
T=9 \ new_stream(...) . . / T=9
\ write(...) / (A
T=10 write(....) / T=10
end_stream(...) . . / A)
T= T=
A)
Circled letters (), . ®) show the command
streams that exist during each simulation cycle.
Figure 5: Using Multiple Command Streams
18 Synopsys, Inc. March 20, 2008

VMT User's Manual Chapter 1: VMT Introduction

As shown in the preceding figure, all of the reads and writes take just one clock cycle to complete
execution. As shown, at time 1, command stream B sends a new_stream command to the model. This
creates a new queue of commands from which the commands will execute. It should also be noted that
because none of the commands in stream B are blocking, all of them are loaded into stream B’s
command queue at time 1. However, only the first read is executed.

At time 2, command stream C sends a new_stream command to the model, creating three concurrent
command queues. Because stream C is the newest, the model now switches and processes all
commands from command stream C’s queue. At time 4, command stream C executes its end_stream
command and terminates the command stream queue in the model. Now the newest command queue in
the model the one belonging to command stream B, so the model resumes processing commands from
this queue.

Command stream B executes its end_stream at time 5, and then the main command stream resumes
executing the rest of the commands in its queue.

For usage consistency, all models have a command queue. Most commands have a first argument of a
streamID. The stream IDs relate a command to a specific command stream, for example, an interrupt
handler command stream as opposed to the main command stream. Also, the main command stream
must have a start command before any other command streams are spawned.

March 20, 2008 Synopsys, Inc. 19

Chapter 1: VMT Introduction VMT User's Manual

Summary

In conclusion, here are some things to remember about VMT models and commands:

20

All non-queued commands are zero cycle commands.

Every command stream has one and only one queue associated with it. Likewise a command queue
is associated with one and only one command stream.

Only one command queue per command channel will be active at a time. The active queue is either
the most recently created, or it's predecessor once the stream associated with it has been closed.

The command that “opens” a new command stream between the testbench and the model (new_
stream), also creates a new command queue, which becomes the active command queue.

All command streams can and will accept commands at all times, not just the command stream
that is associated with the active command queue. However, command execution is based on the
command stream’s blocked status.

All commands can be blocking commands if a VMT configuration parameter (VMT_FORCE_
CMD_BLOCKING) is ON.

All command channels operate independently of each other, so all command channels can be
executing commands simultaneously.

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

2

Using VMT Models

Chapter Contents

Controlling Messages

Watchpoints

Managing Result Data

Using Stream Blocking Commands
Creating Pipelined Command Streams
Resetting Models

Constrained Random Testing

Memory Patterns

Controlling Messages

All VMT models use common message services to output all messages. These services allow you to:

e Specify message destination — You may route messages to one or more files, a simulator
transcript window, or any combination of these.

e Enable/disable categories of messages or specific messages — Specific message IDs and most
message types can be independently enabled or disabled. The only exceptions are messages that
are Fatal, which are always enabled.

e Format messages — You can customize message formats to define what fields of information each
message contains. Fields of information in messages are called message features.

The commands that allow you to enable, route, and configure messages are as follows:

e cnable_msg_type Control the message types you want reported and whether to
disable_msg_type output messages to a simulator transcript, log file, or both.

e cnable_msg_feature Control the output of message fields. Use these commands to
disable_msg_feature customize the format and data contained in messages reported

to a simulator transcript, log file, or both.

March 20, 2008 Synopsys, Inc. 21

Chapter 2: Using VMT Models VMT User’s Manual

e enable_msg_id Enable or disable one specific message reporting to either a
disable_msg_id log file, simulator transcript, or both. Use these commands to
“fine-tune” message reporting when you want to see only one
or a few messages of a particular type, or when you want to
ignore only one or a few messages of a particular type.

e enable_type_ctrl_msg_id Resets settings of a specific message to the settings for
messages of that type. Use this command to return a particular
message to its default reporting defaults.

e open_msg_log Open or close a message log file. Use these commands to
close_msg_log manage a message log file.

e cnable_msg_log Enable or disable message output to a message log file,
disable_msg_log transcript window, or both. Use these commands to start and

stop message reporting in a transcript or log file.

Defaults for Message Types and Features

Messages can be routed to transcript windows and message log files. Each of these destinations have
two sets of defaults: one for message types and one for message features. These defaults are listed in
the following sections:

e Defaults for Transcript Windows
e Defaults for Log Files

To change which message types are enabled or to restore the default settings, use the enable_msg_type
command. To change which message features are enabled or to restore the default settings, use the
enable_msg_feature command.

Defaults for Transcript Windows
For simulator transcript windows, the default message types are:

e Fatal
e Error
e Warning

Also, the default message features are:

e Descriptive Text
Type

Instance Name
Simulator Time
Text

e Arguments

Transcript example:

Designware Model Error from top.Ul at 1100:
During Reset HWDATA invalid value.

22 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

Defaults for Log Files
For log files, the default message types are:

e Fatal

e Error

e Warning

e Protocol Transaction

Also, the default message features are:

o Message Type
e Simulator Time
o Text

e Arguments

Log file example:

Protocol Transaction Started at 2850 Completed at 2950:
WRITE 32BIT SINGLE

HADDR : 000000FC
HWDATA : 00000067
RESP : OK

Controlling Message Routing

Message routing is controlled through the enable_msg_log and disable_msg_log commands. These
commands allow you to output model messages to any file you choose. Messages can be appended to a
file or the file can be overwritten. If you do not specify a file name, the name will be inst_name.msg.
You should use the msg suffix on all message log files so as not to confuse them with the model replay
logging files.

The enable command returns a msg_logID that is used in conjunction with the message filtering
commands (enable_msg_type and disable_msg_type) to allow you to selectively control which types of
messages are routed to which files. So, for example, all error messages could be routed to an error.msg
file.

Different message formatting can be done for each file as well, using the msg_logID and message
format configuration commands (enable_msg_feature and disable_msg_feature).

Controlling Message Format and Configuration

To control the look and feel of model messages, each part of the messages are broken up into different
features. Individual features can be enabled or disabled using the enable_msg_feature and disable_
msg_feature message format configuration commands. These commands enable you to turn on and off
simulation time, instance name, message ID, and other formatting so you can create message log files
that contain only the information you want, and makes the log files much easier to parse or view.

Like the messaging filtering, the msg_logID is used to identify message log files. Predefined constants
VMT_MSG_ROUTE_SIM or VMT_MSG_ROUTE_ALL are used for the simulator transcript
window or combined simulator transcript and log file filtering, respectively.

March 20, 2008 Synopsys, Inc. 23

Chapter 2: Using VMT Models VMT User’s Manual

Here is an example showing message formatting commands and results:
1. Message output before changes:

Designware Model ERROR [AHB MASTER ERRMVALID] from top.Ul at 1100:
All outputs, except HWDATA, must be valid (not 'X') at the rising
edge of HCLK.

2. Turn off the simulation time for all messages:

Ul.disable msg feature (streamID, VMT MSG SCOPE ALL, VMT MSG SIM TIME,
msg_logID) ;

Message output after change:

Designware Model ERROR [AHB MASTER ERRMVALID] from top.Ul:
All outputs, except HWDATA, must be valid (not 'X') at the rising
edge of HCLK.

3. Turn off the message ID for messages of type error:

Ul.disable msg feature (streamID, VMT MSG SCOPE ERROR, VMT MSG ID,
msg_logID) ;

Message output after change:

Designware Model ERROR from top.Ul:
All outputs, except HWDATA, must be valid (not 'X') at the rising
edge of HCLK.

4. Disable the base format text for the AHB_MASTER_ERRMVALID message:
Ul.disable msg feature (streamID,AHB MASTER ERRMVALID, VMT MSG DESC, msg logID) ;
Message output after change:

ERROR top.Ul All outputs, except HWDATA, must be valid (not 'X') at
the rising edge of HCLK.

5. Make AHB_MASTER_ERRMVALID even shorter - disable the message text:

Ul.disable msg feature(streamID, AHB MASTER ERRMVALID, VMT MSG TEXT,
msg logID) ;

Message output after change:
ERROR top.Ul HWDATA HCLK.

6. Enable message ID and time for the AHB_MASTER_ERRMVALID message. Note the use of
bitwise OR (|) to specify multiple features:

Ul.enable msg feature (streamID, AHB MASTER ERRMVALID,
VMT MSG_ID|VMT MSG SIM TIME) ;

Message output after change:
ERROR AHB MASTER ERRMVALID top.Ul 1100 HWDATA HCLK.
7. Return everything to its default setting:

Ul.enable msg feature (streamID, VMT MSG SCOPE ALL,
VMT MSG_FEATURES DEFAULT|VMT MSG FEATURES LOG DEFAULT, msg_logID) ;

Message output reverts to the original format:

Designware Model ERROR [AHB MASTER ERRMVALID] from top.Ul at 1100:
All outputs, except HWDATA, must be valid (not 'X') at the rising
edge of HCLK.

24 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

Message Filtering

Message types can be turned on or off for a particular routing by using the enable_msg_type and
disable_msg_type message filter commands. For enabling and disabling types for message log files, the
msg_logID is used. For enabling and disabling types for the simulator transcript window, the
predefined constant VMT_MSG_ROUTE_SIM is used. Another predefined constant, VMT_MSG_
ROUTE_ALL_LOGS, controls filtering for log files. A third constant, VMT_MSG_ROUTE_ALL,
controls combined simulator transcript and log file routing.

Specific messages can also be filtered. To filter a specific message, you use the disable_msg_id
command and specify the message ID and a msg_logID. To obtain the ID of a message, enable the
message ID feature with the enable_msg_feature command, or search through the message IDs that are
in the documentation for your specific model and the list of general VMT messages.

Message Types

This section describes the different message types and their conventions. Display of messages by
message type is controlled by the enable_msg_type and disable_msg_type commands.

Consult model-specific documentation for listings and short descriptions of all model messages.

T5>Note

Not all models support all message types.

Fatal, Error and Warning Messages
Fatal messages report problems that halt the simulation. Fatal messages cannot be disabled.

Error messages report problems with the model, its configuration, or its environment, but from which
the model can recover and resume simulation. Error messages can be disabled.

Warning messages report conditions that can indicate incorrect settings or data, but are not errors.
Warning messages can be disabled.

By default, Error and Warning message output is enabled in simulator transcripts and in log files.

Timing and X-Handling Messages

Timing messages report timing problems; such as setup and hold violations. X-handling messages
report unknown values on model input ports, when the model substitutes a default value on the port.

By default, Timing and X-handling message output is disabled in simulator transcripts and in log files.

Note Messages

Note messages are information regarding the model interaction with testbench control. These messages
describe what is happening within the model. The following is an example of a note message:

Note Ul.top 1400:
WatchPoint "Failed Read Expect" Triggered.

By default, Note message output is disabled in simulator transcript windows and in log files.

March 20, 2008 Synopsys, Inc. 25

Chapter 2: Using VMT Models VMT User’s Manual

Report Messages

Report messages contain detailed, model-specific information requested by the testbench. They allow
you determine what has happened in a model. By default, Report message output is enabled in
simulator transcript windows and in log files.

Testbench Notification Messages

A notify message signals a testbench of an event of interest, but does not generate simulator transcript
or log file output. Although these messages never print any output, they do trigger watchpoints. Notify
messages support all watchpoint data retrieval commands.

By default, Notify message output is disabled in simulator transcript windows and in log files.

Protocol Cycle Messages

Protocol messages always have some reference to actual protocol that the model represents. For
Protocol Cycle messages, the messages are reported on a cycle-by-cycle basis and give relevant
protocol information.

Here are four examples of protocol cycle messages:

Protocol Cycle Ul.top 1100:
Start Burst Read to address: (00000B00)

Protocol Cycle Ul.top 1200:
Data Beat 2 to address: (00000B04)

Protocol Cycle Ul.top 1300:
Data Beat 3 to address: (00000B08)

Protocol Cycle Ul.top 1400:
Data Beat 4 to address: (00000BOC)

By default, Protocol Cycle message output is disabled in simulator transcript windows and in log files.

Protocol Transaction Messages

Protocol Transaction messages report relevant protocol information about a transaction and appear at
transaction boundaries. Because Protocol Transaction messages are only output on transaction
boundaries, they are usually associated with monitor models. Protocol Transaction message
information for a transaction is buffered until the transaction is complete or terminates with some
irregularity, then a single, formatted messages is given for that transaction.

Here is an example of a protocol transaction messages:

Protocol Transaction Ul.top 1400:
Burst Read:
Address : (00000B00)
Transfer Size: 4 Word Burst
Transfer Type: INCR

By default, Protocol Transaction message output is disabled in simulator transcript windows and
enabled in log files.

26 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

Protocol Error Messages

Protocol Error messages appear when a protocol error is detected and give relevant protocol
information. Here is a Protocol Error message example:
Protocol Error Ul.top at 1100:

Burst Read to invalid address: (DEADBEEF)
Protocol Error Ul.top at 1200:

Malformed Packet in burst transfer to address : (00000B04)
Protocol Error Ul.top at 1300:

Invalid Packet Type in Data Beat 3 to address: (00000B08)
Protocol Error Ul.top at 1400:

Invalid Response to bus request : FF

By default, Protocol Error message output is disabled in simulator transcript windows and enabled in
log files.

Command Messages

Command messages display information about the commands the model is executing. These messages
are intended to help you debug testbenches and verify command execution. Command messages give
useful information about model commands at the time the command is queued, executing, and
completed.

As the following example shows, command messages can report:
e Instance name
e Simulation time
o Queued, executing, or completed command status
e Command name and a unique identifying tag
e Command argument data passed to and from the command

When you enable Command messages, the model reports queued, executing, and completed messages.
You may choose to report only one or two of these actions. Use the enable_msg_id or disable_msg_id
commands to enable or disable the specific Message IDs for queued, executing, or completed
commands. Use:

e VMT_MSGID_CMD_QUEUED for queued commands

e VMT_MSGID_CMD_EXECUTE for executing commands

e VMT_MSGID_CMD_DONE for completed commands

T 5=Note

The enable_msg_id or disable_msg_id commands fypes argument accepts the VMT_
MSG_ALL constant, that allows you to enable or disable all message types except
Command messages. You must enable or disable Command messages explicitly.

Command messages do not trigger watchpoints. If you attempt to create a watchpoint for a Command
message ID, the model generates a VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED _
EVENT Error message.

March 20, 2008 Synopsys, Inc. 27

Chapter 2: Using VMT Models VMT User’s Manual

Here are two Command message result examples for the same command, with explanations of the
result differences:

DesignWare Model COMMAND [VMT MSGID CMD EXECUTE] from
prog_shell.uhca ahb mon at 51235000:
Command Execute: get watchpoint data string : (Tag = 758)
In Handle dataHandle: 757
In dataPosition: 1010

In dataLine: 0
Out datavalue:
Out status: -1

In the previous example, the get_watchpoint_data_string command had started to execute. In the next
example, the get_watchpoint_data_string command has completed. There are two important
differences between these command messages:

1. The dataValue output argument value is a null string in the “Execute” example above and contains
“OKAY” in the “Done” example below, because, in the previous example, the value had not yet
been computed.

2. The status output argument value is preset to -1 in the “Execute” example and contains 4 in the
“Done” example. If you need to extract data from a command message, parse output argument
from “Done” command messages only.

DesignWare Model COMMAND [VMT MSGID CMD DONE] from
prog_shell.uhca ahb mon at 51235000:
Command Done: get watchpoint data string : (Tag = 758)
In Handle dataHandle: 757
In dataPosition: 1010

In dataLine: 0
out datavValue: OKAY
Out status: 4

TI5>Note

Not all models implement VMT_MSGID_CMD_EXECUTE messages for all commands.
Model-specific Command messages require updates to the model.

By default, Command message output is disabled in simulator transcript windows and in log files.

Watchpoints

Watchpoints give you the ability to control testbench timing based on significant events in simulation.
A watchpoint is a construct that triggers on a user-selected event. In turn, a testbench can watch for a
watchpoint to be triggered. This gives the testbench the ability to sense trigger events and then gate
code until the trigger occurs.

Each VMT model provides an extensive list of possible trigger events for watchpoints, which include:

e Message type (message types are listed in the Predefined Message Types Table that appears in the
description of the enable_msg_type command.)

e Message ID
e Notification ID

When creating a watchpoint, you choose which of these will be the trigger event. Some events are
generic in that they apply to testing in general, and others are related to specific key events in a
protocol.

28 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

For example, all warning-type messages that are generated by a model can be used as a watchpoint
trigger event. This allows the testbench to detect when a warning condition occurs, after which it can
perform some action. Another example is a specific notification message that is issued at the end of a
reset sequence. When used as a trigger event, this notification allows the testbench to know,
dynamically, when reset is complete and that it is time to start sending protocol traffic. Note that
message types and message IDs can be used as trigger events regardless of whether they are enabled
(displayed).

In addition to controlling testbench timing, many watchpoints provide a way to query the trigger event
or the action/transaction that caused the trigger event. For example, you could set a watchpoint on the
end of a particular transaction type. Then, when the watchpoint is triggered, the testbench could extract
the data payload that was transferred. Exactly what information is available is a function of the trigger
event. The data remains available until the end of the cycle in which the event triggered (to help
manage memory resources.)

The next section explains how to set watchpoints and access this information.

Using Messages as Watchpoints

You can create watchpoints for specific messages or message types, and then investigate the associated
trigger event. To create a watchpoint, you need to specify the message type or message ID, which you
can find in the message tables or lists in the reference portion of the model documentation.

The structure of messages includes fields that contain specific information about the associated event.
You can get this information from the model during your simulation and then use it to control your
testbench. As previously stated, the data remains available until the end of the cycle in which the event
triggered.

All model messages, except command messages, generate events that can be captured in a testbench
with the watch_for command. When triggered, watch_for returns a handle to a data object that contains
message-specific data, including the message type, ID, and the message’s data fields (if any).

The following table shows message event data available for messages.
Table 2: Message Event Data

Message Data ID Data Type Description

VMT_MSG_EVENT_ARG_MSG_TYPE | Integer Message type. See the enable_msg_type command
reference for a complete list of all message types. Use
the get_watchpoint_data_int command to obtain the
message type.

VMT_MSG_EVENT_ARG_MSG_ID Integer Message ID. See “VMT Messages” or model-specific
message tables for lists of all message IDs. Use the
get_watchpoint_data_int command to obtain the
message ID.

March 20, 2008 Synopsys, Inc. 29

Chapter 2: Using VMT Models VMT User’s Manual

Table 2: Message Event Data (Continued)

Message Data ID Data Type Description
<msg_id>_ARG_<data_arg> Integer Message-specific data field values. The data type
String varies for different data fields. See “VMT Messages”
Bit or model-specific message tables for data fields and

their respective data types. Use the get_watchpoint_
data_int, get_watchpoint_data_string, or get_
watchpoint_data_bit commands to capture the
message data field value, depending on data type.

Example: VMT_MSGID_CFG_ILLEGAL_
PARAM_ARG_PARAM_NAME allows you to
capture the param_name data field of the VMT_
MSGID_CFG_ILLEGAL_PARAM message event.

The following example shows how to set a watchpoint on the MODEL_MSGID_DATA_MISMATCH
message, which is a fictional message that would be generated when a data mismatch event is detected.
When setting a watchpoint on a message ID, locate the message ID in the message tables. The message
tables contain the information you need to create the watchpoint.

The entry for this message appears next so you can see how to use the information to create a
watchpoint and then get the message information when the watchpoint triggers.
MODEL_MSGID_DATA_MISMATCH
The received data byte does not match the expected data byte.
Msg Type: VMT_MSG_ERROR
Fields:

MODEL_MSGID DATA MISMATCH ARG RCV_ DATA
Type: bit[7:0]

MODEL,_MSGID DATA MISMATCH ARG EXP DATA
Type: bit[7:0]

MODEL_MSGID DATA MISMATCH ARG BYTE COUNT
Type: integer

MODEL_MSGID DATA MISMATCH ARG TRANS NAME
Type: string

MODEL_MSGID DATA MISMATCH ARG CYCLE NUMBER
Type: integer

As shown, MODEL_MSGID_DATA_MISMATCH is a VMT_MSG_ERROR type and is generated
each time a data mismatch event occurs. This message includes five related pieces of information about
the event, which are listed below the Fields label. The information includes the data field name for each
piece of information, followed by the data type.

1. Using the Message ID, create the watchpoint:
create watchpoint (*VMT MESSAGE ID, ‘MODEL MSGID DATA MISMATCH, wp handle);
The watchpoint is created and returns the watchpoint identification handle.

2. Watch for the data mismatch event to occur:
watch for (wp handle, wp data handle) ;

When the data mismatch occurs, this command returns the event identification handle. Note that
the watch_for command is a blocking command, which you can learn more about in Queued and
Blocking Commands.

30 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

3. After the watchpoint event occurs you can get the data, and this is when the data Fields and data
Type information from the listing is needed. In the following examples, notice how the command
names match the data Types, and how the data Fields are specified as the position argument in each
get command.

get watchpoint data int (wp data handle, ‘VMT MSG EVENT ARG MSG ID, msg_ id value,

status) ;
get watchpoint data vec 8(wp data handle, ‘MODEL MSGID DATA MISMATCH ARG RCV DATA,

word0, data valuel, status);
get watchpoint data vec 8 (wp data handle, ‘MODEL_MSGID DATA MISMATCH ARG EXP DATA,

word0, data value2, status);
get watchpoint data int (wp data handle, ‘MODEL MSGID DATA MISMATCH ARG BYTE COUNT,

data value3, status);
get watchpoint data string(wp data handle, ‘MODEL MSGID DATA MISMATCH ARG TRANS NAME,

line0O, data value4, status);
get watchpoint data int (wp_data handle, ‘MODEL MSGID DATA MISMATCH ARG CYCLE NUMBER,

data value5, status);

Using Notifications as Watchpoints

Some VMT models provide a set of notifications for obvious protocol and model events, such as the
start or end of a transaction. A notification is a type of message that is used exclusively for watchpoints
and is not displayed in the simulation transcript. You can use notifications in watchpoints exactly how
you use messages.

The message type for notification messages is VMT_MSG_NOTIFY, and you can use this type to set a
watchpoint on all notification messages. You can also use the message ID of specific notifications as
watchpoints. Just like the structure of messages, notifications include fields that contain specific
information about the associated event. You can get this information from the model during your
simulation and then use it to control your testbench.

You can find notifications in tables or lists in the reference portion of the model documentation. To use
a notification as a watchpoint, you can follow the examples in the “Using Messages as Watchpoints”
section.

Managing Result Data

Users need to manage the storage of results to reduce model memory requirements. Typically, when the
model executes a command that has an associated result, a handle to the result is returned and control is
immediately returned to the testbench. It is up to the user to decide what to do with the results.

To prevent memory leakage, you can use one of the following methods:

e Tell the command to ignore the results. Use this technique when you know that you will not need
the results.

a. Set a variable equal to “VMT_IGNORE”
b. Specify this variable as the return handle when you issue the result-generating command

By passing in a variable set to the value of VMT_IGNORE as the result handle, the model does not
store any results generated by the command. No memory is allocated. The value of the result
handle that is returned is the same as the value that was passed in (that is, VMT_IGNORE).

March 20, 2008 Synopsys, Inc. 31

Chapter 2: Using VMT Models VMT User’s Manual

TI5>Note

In the following examples, <model_inst> represents the full hierarchical path to the
instance of the VMT model.

Example:

// Results of the read will not be stored by the model
integer ignore = VMT IGNORE;
<model inst>.read(streamID, 32'h12344321, ignore);

e Use the corresponding result command to get the result.

By using the model-specific result command to actually get the result data, the model
automatically frees the associated memory. This means that you may use the result handle only
once to get the data, and subsequent calls with the same result handle will be considered an error.

Example:

// Results of the read will be returned to the testbench and
// cleaned up in the model
integer rslt handle;
<model inst>.read(streamID, 32'h12344321, rslt handle) ;
<model inst>.read result(streamID, rslt handle, rslt data);
e Explicitly delete the memory that is associated with a result handle. To do this, you use the delete_
handle command.

This last method explicitly deletes the memory associated with a handle. You can either delete
results for a specific handle by passing that handle as the parameter, or delete all handles by
passing VMT_ALL as the argument.

Example:

// Three result handles are allocated, one for each read
integer rslt handle;

<model inst>.read(streamID, 32'h12344321, rslt handle) ;
<model inst>.read(streamID, 32'hA5A5A5A5, rslt handle) ;
<model inst>.read(streamID, 32'hDEADBEEF, rslt handle) ;

// Clean up done for the result handle to read at DEADBEEF
<model inst>.delete handle(streamID, rslt handle);

// Clean up done for all result handles

<model inst>.delete handle(streamID, VMT ALL);

Using Stream Blocking Commands

Any model command that actually causes simulation time to advance before it returns from the model
is defined as a “blocking” command. Each command description defines whether a command is
blocking or non-blocking. Further, any command can be configured to be blocking by setting the
VMT_FORCE_CMD_BLOCKING configuration parameter to ON.

Command blocking is used when the command stream needs to be synced up with other testbench
control signals, a branching decision needs to be made before more commands are sent to the model, or
a result is needed from the model. In both of the examples below, the model commands are put in a for
loop along with a testbench task that drives a signal on the slave. This testbench driver task takes no
simulation time. For the testbench to operate correctly, the driving of the signal on the slave must
happen after each write is complete.

32 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

In the first example, all of the tasks in the for loop take no simulation time, so the entire for loop is
completed in zero simulation time. When the loop is done, there are 10 write/read pairs in the
command queue for the apb_mstrl model. However, when simulation advances and starts executing
these writes and reads, the testbench signal on the slave will not be driven because the for loop is done
executing.

// Loop is executed in 0 simulation time

for (i=0; i < 10; i=1i+1) begin
apb mstrl.write (streamID, 'GPIO ADDR, 'BASE DATA + i);
apb slave tb driver = i; // This drives a test bench signal on slave
apb mstrl.read (streamID, 'GPIO ADDR, rslt handle) ;

end

In the second example, the block_stream command after the write causes simulation time to advance
while the model waits for the write to complete, thus syncing up the driving of the slave testbench
signal after the write is complete. This same effect could be achieved by putting any blocking
command in the for loop, such as a read_result command after the read.

// Loop is executed over many cycles because block stream
for (i=0; i < 10; i=i+1) begin
apb_mstrl.write (streamID, 'GPIO ADDR, 'BASE DATA + i);
apb mstrl.block stream (streamID, 0, status);
apb slave tb driver = i; // This drives a test bench signal on slave
apb mstrl.read (streamID, 'GPIO ADDR, rslt handle) ;
end

Creating Pipelined Command Streams

VIP-specific commands that return results (such as get_result) are blocking, and need to block the
command stream until the result is returned to the testbench. This allows for branching decisions to be
made on the results that are returned. For models that have pipelined protocols, these commands will
break the pipeline if the result is not immediately available. The following two examples show how a
model with a pipeline depth of two can read results, either breaking the pipeline or not. In the first
example a read followed immediately by a result command breaks the pipeline. In the second example,
the result is delayed until the result is available, thus the pipe is not broken.

First Example:

// Breaks pipeline so that each read's data and address phases will not overlap
ahb mstrl.read (streamID, addr A, rslt handle A);

ahb mstrl.get result (streamID, rslt handle A, rslt data A);

ahb mstrl.read (streamID, addr B, rslt handle B);

ahb mstrl.get result (streamID, rslt handle B, rslt data B);

ahb mstrl.read (streamID, addr C, rslt handle C);

ahb mstrl.get result (streamID, rslt handle C, rslt data C);

Second Example:

// Pipeline is not broken because read result is delayed

ahb mstrl.read (streamID, addr A, rslt handle A);

ahb mstrl.read (streamID, addr B, rslt handle B);

ahb mstrl.get result (streamID, rslt handle A, rslt data A);
ahb mstrl.read (streamID, addr C, rslt handle C);

ahb mstrl.get result (streamID, rslt handle B, rslt data B);
ahb mstrl.read (streamID, addr D, rslt handle D);

ahb mstrl.get result (streamID, rslt handle C, rslt data C);

March 20, 2008 Synopsys, Inc. 33

Chapter 2: Using VMT Models

VMT User’s Manual

Resetting Models

T5>Note

Not all VMT-based models have reset capabilities. Consult the model documentation for
availability and details.

You may wish to reset a model during simulation. “Reset” can mean either resetting the model itself
through a model-specific reset, or resetting the model’s environment in the testbench. VMT models that
have implemented reset capabilities can perform both environment resets and model-specific resets.
Specifically, these models can perform three types of environment resets and a device reset:

Soft Reset

Firm Reset

Hard Reset

A soft reset clears a model’s command queue and brings the model to a
known state. The soft reset does not change configuration settings or
remove watchpoints. You are not allowed to issue a start command after a
soft reset.

A firm reset clears command queues and deletes all watchpoints. You use a
firm reset when you want to retain the current model configuration, but
clear all watchpoints and the command queue. Since all watch_for
commands in the testbench are triggered by a firm reset, you must trap the
VMT_WP_TERMINATED BY_ RESET handle returned when the watch_
for is cleared in all “watch_for” routines to run post-reset routines or to
clean up unwanted testbench threads.

A hard reset clears command queues, deletes watchpoints, clears all
configuration settings to their defaults, and removes all message log file
handles. You use a firm reset when you want to get the model to the same
state it was in just after instantiation. New configurations can be set, then a
model start command must be re-issued.

T°5=Note

Soft, firm, and hard resets do not perform any device reset functions.

Model-specific Reset

34

A model-specific reset or protocol reset typically performs the actions
associated with device reset pin assertion. Such model-specific actions
could include: clearing or deallocating device memory, clearing buffers or
FIFOs, or resetting internal counters and status registers. Model-specific
resets are defined by modeled device specifications and uniquely
implemented by each model. A model-specific reset may also perform
some or all of the actions of a soft, firm, or hard reset.

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 2: Using VMT Models

Memory Patterns

In addition to constant fill commands available to some VMT models, VMT provides the nine pattern
fills described in the following table. These patterns are used to specify default fill patterns for memory
spaces or buffers.

Table 3: VMT Memory Patterns

Pattern Name

Default Initial Value Description

VMT_MEM_PATTERN_ZERO

— Sets all bits in the region to 0.

VMT_MEM_PATTERN_ONE

— Sets all bits in the region to 1.

VMT_MEM_PATTERN_AS5

— Sets all bytes in the region to 0xA5 (1010 0101).

VMT_MEM_PATTERN_5A

— Sets all bytes in the region to 0x5A (0101 1010).

VMT_MEM_PATTERN_X

— Sets all bits in the region to X.

VMT_MEM_PATTERN_WALKO

width’ b10 Sets all words in the region to a walking O pattern. If the initial value is not valid

(all ones except one bit zero), the command issues a message.

Example:

For a 16-bit pattern with initial value FFFE:

e The starting pattern is all bits of the first word set to 1 except the LSB.

e The next pattern word has the 0 moved 1 bit toward the MSB (FFFD).

e The third pattern word has the 0 moved another bit toward the MSB
(FFFB).

VMT_MEM_PATTERN_WALK1

width’ 1 Sets all words in the region to a walking 1 pattern. If the initial value is not valid

(all zeros except one bit one), the command issues a message.

Example:

For a 16-bit pattern with initial value 0001:

e The starting pattern is all bits of the first word set to 0 except the LSB.

e The next pattern word has the 1 moved 1 bit toward the MSB (0002).

e The third pattern word has the 1 moved another bit toward the MSB
(0004).

March 20, 2008 Synopsys, Inc. 35

Chapter 2: Using VMT Models

Table 3: VMT Memory Patterns (Continued)

VMT User’s Manual

Pattern Name

Default Initial Value

Description

VMT_MEM_PATTERN_INCR

0

Sets all words in the region to an incrementing pattern.

VMT_MEM_PATTERN_DECR

2width—l

Set all words of region to a decrementing pattern.

36

Synopsys, Inc.

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

3

VMT Common Command Reference

Chapter Contents

e Command Summary

e Command Reference

e Command Macro Reference
e VMT Messages

Command Summary

Table 4 on page 38 contains three columns, labeled “Queued,” “Blocking,” and “Zero Cycle.” VMT
commands have different behaviors depending on whether or not they are queued, blocking, and zero
cycle:

o Queued commands are placed on a command queue and may not be executed immediately when
received. However, commands always execute in the order they were sent to the model from a
particular command stream. Configuration and “set...” commands are examples of queued
commands.

e Blocking commands prevent other commands from being passed from the testbench to the
command queue until they have finished executing. All commands that return results are blocking
commands, except those commands that return results handles.

e Zero cycle commands do not advance simulation time. All common commands and all
commands that change or read settings are zero cycle commands

For more information on queued and blocking commands, see the “Queued and Blocking Commands”
discussion.

March 20, 2008 Synopsys, Inc. 37

Chapter 3: VMT Common Command Reference VMT User’s Manual

@ Attention

Not all common commands are available for every model. Consult specific model
documentation to see which common commands are available.

Except where noted, the commands in Table 4 can be used in OpenVera, Verilog, and

VHDL testbenches.

Table 4: VMT Common Command Summary

3 2%
38| ©
3 ol 9
Command Name Clm N Description
Command Streams
start Y | Starts model execution.
block_stream Blocks the current command stream.
new_stream Y | Starts a new command stream associated with a specified command
channel. Returns the Stream ID of the new command stream.
end_stream Y | N | Y | Ends execution of the command stream started by the new_stream
command.
reset_model N | N | Y | Resets the model.
Model Configuration Parameters
set_config_param Y | N| Y | Changes a specified configuration parameter value.
get_config_param Y Reads a specified configuration parameter value.
Ports
set_port Y | Drives a value onto a specified port.
get_port Y | Reads a value from a specified port.
Registers
set_register Y | Changes the value of a specified model register.
get_register Y | Y| Y | Reads the value of a specified model register.
Memory
delete_handle Y | N| Y | Deletes result handle, freeing result data memory.
Model Version
get_version N | Y | Y | Returns the current version of the model.

38

Synopsys, Inc. March 20, 2008

VMT User’s Manual

Chapter 3: VMT Common Command Reference

Table 4: VMT Common Command Summary (Continued)

o
HER
2| 8|9
S| 8| ¢@
Command Name Clm N Description
Message Handling
enable_msg_type Y | Enables one or more message types from a specified model instance.
disable_msg_type Y | Disables one or more message types from a specified model
message routing log file.
open_msg_log Y | Y| Y | Enables message output to a message log file.
close_msg_log Y | Disables message output to a message log file and closes the file.
enable_msg_log Y | N | Y | Enables message output to a message log file or simulator transcript
window.
disable_msg_log Y | N| Y | Disables message output to a message log file or simulator transcript
window.
enable_msg_id Y | N | Y | Enables a specific message to a message log file or simulator
transcript window.
disable_msg_id Y | N| Y | Disables a specific message to a message log file or simulator
transcript window.
enable_type_ctrl_msg_id Y | N | Y | Resets settings of a specific message to the settings for messages of
that type.
enable_msg_feature Y | Enables a user-defined message format in model messages.
disable_msg_feature Disables a user-defined message format in model messages.
Message Display
print_msg Y | N| Y | Prints a text message in a simulation transcript.
Watchpoints
watch_for N | Y | Y | Blocks the current command stream until a specific model event
occurs.
create_watchpoint Y | Defines a new watchpoint for a specific message type or identifier.
create_watchpoint_range Defines a new watchpoint for a range of message types or
identifiers.
combine_watchpoints N | N | Y | Defines a new watchpoint that is a Boolean AND or OR of two
previously-defined watchpoints.
destroy_watchpoint Y | N| Y | Removes a previously-created watchpoint.

enable_watchpoint

Enables watch_for triggering of a watchpoint.

March 20, 2008

Synopsys, Inc. 39

Chapter 3: VMT Common Command Reference

VMT User’s Manual

Table 4: VMT Common Command Summary (Continued)

<size>

o
HER
29| ©
S| 8| ¢@
Command Name Clm N Description
disable_watchpoint Y | N | Y | Disables watch_for triggering of a watchpoint.
set_watchpoint_trigger Y | N| Y | Defines a watchpoint triggering profile.
get_watchpoint_trigger Y | Y| Y | Returns a watchpoint triggering profile.
get_watchpoint_data_count N | N | Y | Returns the number of members in the specified watchpoint data.
get_watchpoint_data_name N | N | Y | Returns the name of the watchpoint event data at a given position.
get_watchpoint_data_type N | N | Y | Returns the data type at a specified position in the specified
watchpoint data.
get_watchpoint_data_size N | N | Y | Returns the length of data at a specified position in the specified
watchpoint data.
get_watchpoint_data_int N | N | Y | Returns an integer value at a specified position in the specified
watchpoint data.
get_watchpoint_data_string N | N | Y | Returns a string of text at a specified position in the specified
watchpoint data.
get_watchpoint_data_bit N | N | Y | Returns the bit data at a specified position in the specified
watchpoint data.
get_watchpoint_data_vec_ N | N | Y | Returns a specified word of vector data at a specified position in the

specified watchpoint data.

Table 5: VMT Common Command Macro Summary

Macro Name

Description

Watchpoints

VMT_CREATE_WP_MSG_TYPE

Deprecated command; not recommend for new design. Use
create_watchpoint instead.

This macro creates watchpoints for different message types.

VMT_CREATE_WP_MSG_ID

Deprecated command; not recommend for new design. Use
create_watchpoint instead.

This macro creates watchpoints for different message IDs.

40

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

Command Reference

This section contains an alphabetical listing of all common VMT commands. Each command reference
page or pages contains all or most of the following information, arranged in the order listed:

o Command name, followed by a the same short description that appears in the command summary
tables.

Command Syntax in a non-language specific form.
Command Arguments described individually.
A detailed command Description.

Usage Prototypes for OpenVera, Verilog, and VHDL.

A list of Related Commands with a short description of each.

VHDL Command Structure

VMT commands used in VHDL testbenches have a different form than commands in OpenVera or
Verilog testbenches. VHDL requires that the instance name be an argument, not an extension to the
command name. The shelllnstName is shown in the VHDL prototypes, but is not shown in the generic
Syntax description or the list of Arguments.

For example, the enable_msg_type command would look like the following in Verilog. The instance
name monitor is an extension to the command name:

monitor.enable msg type ("MAIN STREAM, “VMT MSG ALL, “VMT MSG ROUTE ALL) ;

The same command in a VHDL testbench looks like the following, in which the instance name monitor
appears as an argument to the command:

ahb monitor vmt pkg.enable msg type ("monitor", MAIN STREAM, VMT MSG ALL,
VMT MSG ROUTE ALL) ;

March 20, 2008 Synopsys, Inc. 41

Chapter 3: VMT Common Command Reference VMT User’s Manual

block stream

Blocks the current command stream.
Queued: No Blocking: Yes Zero Cycle: Yes

Syntax

block_stream (streamld, timeout, cmd_status);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

timeout An integer that defines the maximum number of clock cycles to block
while waiting for queued commands to complete.

cmd_status A returned integer. Returns O when the command completes successfully.
Returns 1 when the command times out.

Description

The block_stream command blocks the current command stream until all commands in the queue
associated with the specified streamld have completed. The timeout argument sets the maximum
number of clock cycles to block while waiting for queued commands to complete. If timeout is set to 0,
the command stream will be blocked until all queued commands complete, regardless of the number of
clock cycles the commands may take.

Messages

e VMT_MSGID_INVALID_SID
e VMT_MSGID_INVALID_TIMEOUT_ARG

Prototypes

OpenVera

task block stream (
integer streamld,
integer timeout,
var integer cmd status);

Verilog
task block stream;
input [31:0] p streamId;
input [31:0] p timeout;
inout [31:0] p cmd status;

42 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VHDL

procedure block stream (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT timeout : IN integer;
VARIABLE cmd status : INOUT integer) ;

Related Commands

® new_stream Starts a new command stream associated with a specified
command channel. Returns the Stream ID of the new command
stream.

e end_stream Ends execution of the command stream started by the new_

stream command.

March 20, 2008 Synopsys, Inc. 43

Chapter 3: VMT Common Command Reference VMT User’s Manual

close_msg_log

Disables message output to a message log file and closes the file.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

close_msg_log (streamld, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

msg_logID An integer containing a message log ID that identifies a specific message
log file (the msg_loglID value returned by the open_msg_log command or a
predefined set of message log IDs.

Description

The close_msg_log command disables the routing of messages to the specified message log file, closes
the file, and invalidates the msg_logID.

ZI°5>Note

Simulation message transcripts cannot be disabled.

Prototypes

OpenVera

task close msg log (
integer streamId,
integer msg_logID) ;

Verilog
task close msg log;
input [31:0] p streamId;
input [31:0] p msg logID;

VHDL

procedure close msg log (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT msg_logID : IN integer);

44 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

enable_msg_type
e disable_msg_type

Chapter 3: VMT Common Command Reference

Enables or disables one or more message types from a specified
model instance.

e open_msg_log

Enables message output to a message log file.

e cnable_msg_log
e disable_msg_log

Enables or disables message output to a message log file or
simulator transcript window.

e cnable_msg_feature
e disable_msg_feature

March 20, 2008

Enables or disables a user-defined message format in model
messages.

Synopsys, Inc. 45

Chapter 3: VMT Common Command Reference VMT User’s Manual

combine_watchpoints

Defines a new watchpoint that is a Boolean AND or OR of two previously-defined watchpoints.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

combine_watchpoints (basel, logic, base2, watchpointHandle);

Arguments

basel The integer handle of base watchpoint 1.

logic An integer that selects the Boolean AND or OR logic of combination as
one of the following values (as applied in a single cycle):
VMT_WP_LOGIC_AND - New watchpoint triggers when both base
and base2 watchpoints trigger.
VMT_WP_LOGIC_OR - New watchpoint triggers when either basel or
base2 watchpoint triggers.

base?2 The integer handle of base watchpoint 2.

watchpointHandle A returned integer that identifies the new watchpoint.

Description

The combine_watchpoints command is used to combine two watchpoints (basel and base2) to create
one combined watchpoint that is based on the result of the Boolean logic condition (logic) you choose.

Messages

e INVALID_WATCHPOINT_HANDLE
e INVALID_WATCHPOINT_LOGIC

Prototypes

OpenVera

task combine watchpoints (
integer basel,
integer logic,
integer base2,
var integer watchpointHandle) ;

Verilog

task combine watchpoints;
input [31:0] p basel;
input [31:0] p logic;
input [31:0] p base2;
inout [31:0] p watchpointHandle;

46 Synopsys, Inc. March 20, 2008

VMT User’s Manual

VHDL

procedure combine watchpoints (

CONSTANT shellInstName :

Chapter 3: VMT Common Command Reference

IN string;

CONSTANT basel : IN integer;
CONSTANT logic : IN integer;
CONSTANT base2 : IN integer;

VARIABLE watchpointHandle :

Related Commands

e create_watchpoint

INOUT integer) ;

Defines a new watchpoint for one message type or
identifier.

e watch_for

Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e destroy_watchpoint

Removes a previously-created watchpoint.

e disable_watchpoint
enable_watchpoint

Enables or disables watch_for triggering of a
watchpoint.

set_watchpoint_trigger
get_watchpoint_trigger

Defines or returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

March 20, 2008

Returns watchpoint data.

Synopsys, Inc.

47

Chapter 3: VMT Common Command Reference VMT User’s Manual

create_watchpoint

Defines a new watchpoint for a specific message type or identifier.
Queued: No Blocking: No Zero Cycle: Yes

Syntax
create_watchpoint (wp_type, id, watchpointHandle);
Arguments
wp_type An integer that defines the type watchpoint. The following table shows
specific wp_type settings.
Table 6: Create Watchpoint Types
Type Description
VMT_MESSAGE_TYPE Use a VMT message type for the id argument. For all VMT
message types, see “Predefined Message Types” for all VMT
message types.
VMT_MESSAGE_ID Use a VMT message ID for the id argument. See the message
table for a specific VMT model or VMT Messages for common
VMT messages.
id An integer that defines either the specific message type (when wp_type is
VMT_MESSAGE_TYPE) or message ID (when wp_type is VMT _
MESSAGE_ID) of watchpoint.
watchpointHandle A returned integer that identifies the new watchpoint.
Description

The create_watchpoint command creates a new watchpoint for a specified message type, message 1D,
or constrained random test notification ID.

ZI°5>Note

The create_watchpoint command replaces the VMT_CREATE_WP_MSG_TYPE and
VMT_CREATE_WP_MSG_ID macros.

48 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

Messages

o VMT_MSGID_UNKNOWN_WATCHPOINT_ID
e VMT_MSGID_UNKNOWN_WATCHPOINT_TYPE
e VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT

Prototypes

OpenVera

task create watchpoint (
integer wp type,
integer id,
var integer watchpointHandle) ;

Verilog

task create watchpoint;
input [31:0] p wp type;
input [31:0] p id;
inout [31:0] p watchpointHandle;

VHDL

procedure create watchpoint (
CONSTANT shellInstName : IN string;
CONSTANT wp type : IN integer;
CONSTANT id : IN integer;
VARIABLE watchpointHandle : INOUT integer) ;

March 20, 2008 Synopsys, Inc. 49

Chapter 3: VMT Common Command Reference

50

Related Commands

VMT User’s Manual

e watch_for Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a

e cnable_watchpoint watchpoint.

e set_watchpoint_trigger Defines or returns a watchpoint triggering profile.

e get_watchpoint_trigger

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

Returns watchpoint data.

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

create_watchpoint_range

Defines a new watchpoint for a range of message types or identifiers.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

create_watchpoint_range (wp_type, value_low, value_high, watchpointHandle);

Arguments

wp_type An integer that defines the type watchpoint. See the description of the
create_watchpoint command for a table of specific wp_type settings.

value_low The low integer value that selects an event range of interest for a given type
of watchpoint. The wp_type you have defined will determine the possible
values.

value_high The high integer value that selects an event range of interest for a given
type of watchpoint. The wp_type you have defined will determine the
possible values.

watchpointHandle A returned integer that identifies the new watchpoint.

Description

The create_watchpoint_range command creates a watchpoint for any model-supported watchpoint type
based on the range of values that you select.

Messages
e UNKNOWN_WATCHPOINT_TYPE

Prototypes

OpenVera

task create watchpoint range (
integer wp type,
integer value low,
integer value high,
var integer watchpointHandle) ;

Verilog

task create watchpoint range;
input [31:0] p wp type;
input [31:0] p value low;
input [31:0] p value high;
inout [31:0] p watchpointHandle;

March 20, 2008 Synopsys, Inc. 51

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure create watchpoint range (
CONSTANT shellInstName : IN string;
CONSTANT wp type : IN integer;
CONSTANT value low : IN integer;
CONSTANT value high : IN integer;
VARIABLE watchpointHandle : INOUT integer) ;

Related Commands

52

e create_watchpoint Defines a new watchpoint for one message type or
identifier.

e watch_for Blocks the current command stream until a specific
model event occurs.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a

e cnable_watchpoint watchpoint.

e set_watchpoint_trigger Defines or returns a watchpoint triggering profile.

e get_watchpoint_trigger

e get_watchpoint_data_count Returns watchpoint data.

e get_watchpoint_data_name

e get_watchpoint_data_type

e get_watchpoint_data_size

e get_watchpoint_data_int

e get_watchpoint_data_string

e get_watchpoint_data_bit

e get_watchpoint_data_vec_

<size>

Synopsys, Inc.

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

delete_handle
Deletes result handle, freeing result data memory.

Queued: Yes Blocking: Yes Zero Cycle: Yes

Syntax

delete_handle (streamld, handle);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

handle An integer defining the results handle returned by the command that
generated the results.

Description

The delete_handle command deletes the reference to a result handle so that the memory containing the
results can be freed. The command can be used to free a specific handle, or all handles, using the
VMT_ALL constant.

Messages
e INVALID_SID

Prototypes

OpenVera

task delete handle (
integer streamId,
integer handle);

Verilog

task delete handle;
input [31:0] p streamId;
input [31:0] p handle;

VHDL

procedure delete handle (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT handle : IN integer) ;

March 20, 2008 Synopsys, Inc. 53

Chapter 3: VMT Common Command Reference VMT User’s Manual

destroy_watchpoint

Removes a previously-created watchpoint.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

destroy_watchpoint (streamld, wpHandle);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

wpHandle The integer handle of the watchpoint to be destroyed.

Description

The destroy_watchpoint command removes a watchpoint that was created with the create_watchpoint
command. When you destroy a watchpoint that is no longer needed, performance is improved more
than if the watchpoint was simply disabled or ignored.

© Attention
A watch_for that is waiting on a watchpoint that has been destroyed will never unblock.

Messages
e INVALID_WATCHPOINT_HANDLE

Prototypes

OpenVera

task destroy watchpoint (
integer streamld,
integer wpHandle) ;

Verilog
task destroy watchpoint;
input [31:0] p streamId;
input [31:0] p wpHandle;

VHDL

procedure destroy watchpoint (
CONSTANT shellInstName : IN string;
CONSTANT streamId: IN integer;
CONSTANT wpHandle : IN integer) ;

54 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

e create_watchpoint

Chapter 3: VMT Common Command Reference

Defines a new watchpoint for one message type or
identifier.

e watch_for

Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints

Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e disable_watchpoint
enable_watchpoint

Enables or disables watch_for triggering of a
watchpoint.

set_watchpoint_trigger
get_watchpoint_trigger

Defines or returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

March 20, 2008

Returns watchpoint data.

Synopsys, Inc.

55

Chapter 3: VMT Common Command Reference VMT User’s Manual

disable_msg_feature

Disables a user-defined message format in model messages.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

disable_msg_feature (streamld, scope, feature, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

scope A 32-bit vector. Reserved.

T5>Note

Message scoping functionality is not implemented in this release; set the scope argument
to VMT_MSG_SCOPE_ALL.

eature A 9-bit vector specifying a message feature (such as description, type, or
pecitying g p yp
ID) to disable. To specify more than one feature constant, use bitwise OR
syntax (see the “Example” section below).

For a list of feature constants that you can specity, see the description of the
enable_msg_feature command.

For a list of features that are enabled by default, see Defaults for Message
Types and Features.

msg_loglD An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message Log IDs table that appears
with the enable_msg_log command.

Description

The disable_msg_feature command disables features from being included in message log files and
simluation transcript windows. For more information about controlling messages, see Controlling
Messages.

Example

The following example disables message descriptions and types in all open message log files and the
simulator transcript window. The bitwise OR syntax is used to specify more than one feature.

ul.disable msg feature(sid, scope, “VMT MSG DESC | “VMT MSG TYPE, “VMT MSG ROUTE ALL);

56 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

Prototypes

OpenVera

task disable msg feature (
integer streamId,
bit [(VMT MESSAGE MASK WIDTH-1):0] scope,
bit [(VMT MESSAGE FEATURE WIDTH-1):0] features,
integer msg logID) ;

Verilog

task disable msg feature;
input [31:0] p streamId;
input [31:0] p scope;
input [8:0] p features;
input [31:0] p msg logID;

VHDL

procedure disable msg feature (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT scope : IN std logic vector (31 downto 0);
CONSTANT features : IN std logic vector(8 downto 0);
CONSTANT msg_logID : IN integer) ;

Related Commands

e cnable_msg_type Enables or disables one or more message types from a specified
e disable_msg_type model instance.
e open_msg_log Enables or disables message output to a message log file.

e close_msg_log

e cnable_msg_log Enables or disables message output to a message log file or
e disable_msg_log simulator transcript window.
e cnable_msg_feature Enables a user-defined message format in model messages.

March 20, 2008 Synopsys, Inc.

57

Chapter 3: VMT Common Command Reference VMT User’s Manual

disable_msg_id
Disables a specific message to a message log file or simulator transcript window.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

disable_msg_id (streamld, msgld, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

msgld An integer message ID that identifies a specific message. To obtain the ID
of a displayed message, enable message IDs using the enable_msg_feature
command. Also, message IDs are documented in the message tables for
your specific model and the list of general VMT messages.

msg_loglD An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message Log IDs table that appears
with the enable_msg_log command.

Description

The disable_msg_id command disables a specific message to a message log file or simulator transcript
window. This command overrides default messaging behavior, which is controlled by message type.

The specific message is specified by the msgld argument. To obtain the ID of a message, enable the
message ID feature with the enable_msg_feature command, or search through the message IDs that are
listed in the documentation for your specific model.

This command operates on a specified msg_logID, a simulator transcript window, all currently-opened
log files, or a transcript window and all currently-opened log files. For more information about
controlling messages, see Controlling Messages.

Prototypes

OpenVera

task disable msg id (
integer streamId,
integer msgld,
integer msg logID) ;

Verilog
task disable msg id;
input [31:0] p streamId;
input [31:0] p msgId;
input [31:0] p msg logID;

58 Synopsys, Inc. March 20, 2008

VMT User’s Manual

VHDL

procedure disable msg id (

Chapter 3: VMT Common Command Reference

CONSTANT shellInstName : IN string;

CONSTANT streamId :

IN integer;

CONSTANT msgId : IN integer;

CONSTANT msg logID :

Related Commands

e cnable_msg_id

IN integer);

Enables a specific message to a message log file or
simulator transcript window.

e cnable_type_ctrl_msg_id

March 20, 2008

Resets settings of a specific message to the settings for
messages of that type.

Synopsys, Inc. 59

Chapter 3: VMT Common Command Reference VMT User’s Manual

disable_msg_log
Disables message output to a message log file or simulator transcript window.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

disable_msg_log (streamld, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

msg_logID An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message Log IDs table that appears
with the enable_msg_log command.

Description

The disable_msg_log command stops the flow of messages to a specified msg_logID, a simulator
transcript window, all currently-opened log files, or a transcript window and all currently-opened log
files. Use the enable_msg_log command to start logging messages again. For more information about
controlling messages, see Controlling Messages.

T5>Note

This command does not close a log file; use the close_msg_log command.

Prototypes

OpenVera

task disable msg log (
integer streamld,
integer msg logID);

Verilog
task disable msg log;
input [31:0] p streamId;
input [31:0] p msg logID;

VHDL

procedure disable msg log (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT msg_logID : IN integer) ;

60 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

e cnable_msg_type
e disable_msg_type

Chapter 3: VMT Common Command Reference

Enables or disables one or more message types from a specified
model instance.

e open_msg_log
e close_msg_log

Enables or disables message output to a message log file.

e cnable_msg_log

Enables message output to a message log file or simulator
transcript window.

e cnable_msg_feature
e disable_msg_feature

March 20, 2008

Enables or disables a user-defined message format in model
messages.

Synopsys, Inc. 61

Chapter 3: VMT Common Command Reference VMT User’s Manual

d

62

isable_msg_type
Disables one or more message types from a specified model message routing log file.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

disable_msg_type (streamld, types, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

types A 32-bit vector of message types. All VMT models have the predefined
message types that are listed in the Predefined Message Types table that
appears with the enable_msg_type command. To specify more than one
type, use bitwise OR syntax (see the “Example” section below).
For a list of types that are enabled by default, see Defaults for Message
Types and Features.

msg_loglD An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message Log IDs table that appears
with the enable_msg_log command.

Description

The disable_msg_type command disables the different types of model messaging. By default, all
message types except Fatal, Error, and Warning are disabled. Fatal messages are never disabled because
they apply to situations from which the simulation cannot recover and usually terminates. For more
information about controlling messages, see Controlling Messages.

Example

The following example disables two message types in all open message log files and the simulator
transcript window. The bitwise OR syntax is used to specify more than one type.

ul.disable msg type(sid, “VMT MSG WARNING | “VMT MSG NOTE, “VMT MSG ROUTE ALL) ;
Prototypes

OpenVera

task disable msg type (
integer streamId,
bit [(VMT MESSAGE MASK WIDTH-1):0] types,
integer msg logID) ;

Verilog
task disable msg type;
input [31:0] p streamId;
input [31:0] p types;
input [31:0] p msg logID;

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VHDL

procedure disable msg type (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT types : IN std logic vector (31 downto 0);
CONSTANT msg_logID : IN integer) ;

Related Commands

e cnable_msg_type Enables one or more message types from a specified model
instance.
e open_msg_log Enables or disables message output to a message log file.

e close_msg_log

e cnable_msg_log Enables or disables message output to a message log file or
e disable_msg_log simulator transcript window.
e cnable_msg_feature Enables or disables a user-defined message format in model

e disable_msg_feature messages.

March 20, 2008 Synopsys, Inc. 63

Chapter 3: VMT Common Command Reference VMT User’s Manual

disable_watchpoint

Disables watch_for triggering of a watchpoint.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

disable_watchpoint (streamld, wpHandle);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

wpHandle The integer handle of the watchpoint to be destroyed.

Description

The disable_watchpoint command disables a watchpoint to suspend triggering associated watch_for
commands.

Messages
e INVALID_WATCHPOINT_HANDLE

Prototypes

OpenVera

task disable watchpoint (
integer streamld,
integer wpHandle) ;

Verilog

task disable watchpoint;
input [31:0] p streamId;
input [31:0] p wpHandle;

VHDL

procedure disable watchpoint (
CONSTANT shellInstName : IN string;
CONSTANT streamId: IN integer;
CONSTANT wpHandle : IN integer) ;

64 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

e create_watchpoint

Chapter 3: VMT Common Command Reference

Defines a new watchpoint for one message type or
identifier.

e watch_for

Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints

Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint

Removes a previously-created watchpoint.

enable_watchpoint

Enables watch_for triggering of a watchpoint.

set_watchpoint_trigger
get_watchpoint_trigger

Defines or returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

March 20, 2008

Returns watchpoint data.

Synopsys, Inc.

65

Chapter 3: VMT Common Command Reference VMT User’s Manual

enable_msg_feature

Enables a user-defined message format in model messages.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

enable_msg_feature (streamld, scope, feature, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

scope A 32-bit vector. Reserved--set scope to VMT_MSG_SCOPE_ALL.

feature A 9-bit vector indicating which message feature to enable. See the
following table for a list of feature constants.

msg_loglD An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message LLog IDs table that appears
with the enable_msg_log command.

Description

The enable_msg_feature command enables different message features, which allows custom format
configuration on different message types and message IDs.

All message feature constants are listed in the following table, and you can see an example message on
the next page. The elements of the example message are numbered to identify the corresponding
feature listed in the table.

Table 7: Message Feature Constants

Feature Constant Description

(1) VMT_MSG_DESC Controls the descriptive text “Designware Model.”

(2) VMT_MSG_TYPE Controls the message type, such as ERROR or NOTE. You can
select from the set of predefined message types.

(3) VMT_MSG_ID Controls the message identifier label, for example AHB_
MASTER_ERRMVALID.

(4) VMT_MSG_INST _NAME Controls the model instance name, for example “top.U1.”

(5) VMT_MSG_SIM_TIME Controls the simulator time.

(6) VMT_MSG_TEXT Controls the primary message string, such as “All outputs...”

(7) VMT_MSG_ARGS Controls primary message arguments separated by spaces (when

text is disabled), such as “HWDATA” and “HCLK” in the
example below.

66 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

Table 7: Message Feature Constants (Continued)

Feature Constant Description
VMT_MSG_TEXT_EXT Controls a secondary message string, if one exists.
Note: Most messages do not have secondary message strings.
VMT_MSG_ARGS_EXT Controls secondary message arguments, if they exists.
Note: Most messages do not have secondary message
arguments.
VMT _MSG_FEATURES_ALL Controls all message features.
VMT_MSG_FEATURES_DEFAULT Controls all of the following features in the transcript, which are

the default transcript features:

VMT_MSG_DESC
VMT_MSG_TYPE
VMT_MSG_ INST_NAME
VMT_MSG_SIM_TIME
VMT_MSG_ TEXT
VMT_MSG_ ARGS

VMT_MSG_FEATURES_LOG_DEFAULT Controls all of the following features in the log file, which are
the default log file features:

VMT_MSG_TYPE
VMT_MSG_SIM_TIME
VMT_MSG_ TEXT
VMT_MSG_ ARGS

(1) &) @) (1) 4) 1 6

1 [1

[1T 1T T T 1T
Designware Model ERRCE [AHE MASTER EREMYALID] from top.Ul at 1100:
‘All outputs, except ‘HIJDATA‘, must be walid (not 'X') at the riSing‘

edg=e of HCLE. "x @) (6)
(6) @) (6)

Figure 6: Message Feature Text Example

For more information on controlling VMT message content, see “Controlling Messages.”

Prototypes

OpenVera

task enable msg feature (
integer streamId,
bit [(VMT MESSAGE MASK WIDTH-1):0] scope,
bit [(VMT MESSAGE FEATURE WIDTH-1):0] features,
integer msg logID) ;

March 20, 2008 Synopsys, Inc. 67

Chapter 3: VMT Common Command Reference VMT User’s Manual

Verilog

task enable msg feature;
input [31:0] p streamId;
input [31:0] p_ scope;
input [8:0] p features;
input [31:0] p msg logID;

VHDL

procedure enable msg feature (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT scope : IN std logic vector (31 downto 0);
CONSTANT features : IN std logic vector (8 downto 0);
CONSTANT msg_logID : IN integer);

Related Commands

e cnable_msg_type Enables or disables one or more message types from a specified
e disable_msg_type model instance.
e open_msg_log Enables or disables message output to a message log file.

e close_msg_log

e cnable_msg_log Enables or disables message output to a message log file or
e disable_msg_log simulator transcript window.

e disable_msg_feature Disables a user-defined message format in model messages.

68 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

enable_msg_id
Enables a specific message to a message log file or simulator transcript window.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

enable_msg_id (streamld, msgld, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

msgld An integer message ID that identifies a specific message. To obtain the ID
of a message, enable the message ID feature with the enable_msg_feature
command., or search through the message IDs are in the documentation for
your specific model and the list of general VMT messages.

msg_loglD An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message Log IDs table that appears
with the enable_msg_log command.

Description

The enable_msg_id command enables a specific message to a message log file or simulator transcript
window. This command overrides default messaging behavior, which is controlled by message type.
This command can also re-enable a specific message that was stopped with the disable_msg_id
command.

The specific message is specified by the msgld argument. To obtain the ID of a message, enable the
message ID feature with the enable_msg_feature command, or search through the message IDs that are
listed in the documentation for your specific model.

This command operates on a specified msg_logID, a simulator transcript window, all currently-opened
log files, or a transcript window and all currently-opened log files. For more information about
controlling messages, see Controlling Messages.

Prototypes

OpenVera

task enable msg id (
integer streamld,
integer msgld,
integer msg logID) ;

Verilog
task enable msg id;
input [31:0] p streamId;
input [31:0] p msgId;
input [31:0] p msg logID;

March 20, 2008 Synopsys, Inc. 69

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure enable msg id (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT msgId : IN integer;
CONSTANT msg_logID : IN integer) ;

Related Commands

e disable_msg_id Disables a specific message to a message log file or
simulator transcript window.

e cnable_type_ctrl_msg_id Resets settings of a specific message to the settings for
messages of that type.

70 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

enable_msg_log

Enables message output to a message log file or simulator transcript window.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

enable_msg_log (streamld, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

msg_logID An integer containing a message log ID that identifies a specific message
log file. The msg_logID can be the value returned by the open_msg_log
command or a predefined message log ID from the following table. Note
that other message commands can use the IDs listed in this table.

Table 8: Message Log IDs
Message Log Constant Description
VMT_MSG_ROUTE_SIM Applies to messages in the simulator transcript window.

VMT_MSG_ROUTE_ALL_LOGS Applies to all message log files that are currently opened.

VMT_MSG_ROUTE_ALL Applies to all message log files that are currently opened and
messages in the simulator transcript window.

Description

The enable_msg_log command re-starts the flow of messages that was stopped with the
disable_msg_log command. The command operates on a specified msg_logID, a simulator transcript
window, all currently-opened log files, or a transcript window and all currently-opened log files. For
more information about controlling messages, see Controlling Messages.

Prototypes

OpenVera

task enable msg log (
integer streamld,
integer msg_logID) ;

Verilog

task enable msg log;
input [31:0] p streamId;
input [31:0] p msg logID;

March 20, 2008 Synopsys, Inc. 71

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure enable msg log (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT msg_logID : IN integer) ;

Related Commands

e cnable_msg_type Enables or disables one or more message types from a specified
e disable_msg_type model instance.
e open_msg_log Enables or disables message output to a message log file.

e close_msg_log

e disable_msg_log Disables message output to a message log file or simulator
transcript window.

e cnable_msg_feature Enables or disables a user-defined message format in model
e disable_msg_feature messages.

72 Synopsys, Inc. March 20, 2008

VMT User’s Manual

enable_msg_type

Chapter 3: VMT Common Command Reference

Enables one or more message types from a specified model instance.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

enable_msg_type (streamld, types, msg_logID);

Arguments

streamld

types

msg_loglD

Description

An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

A 32-bit vector of message types. All VMT models have the pre-defined
message types shown in the Predefined Message Types table below. To
specify more than one type, use bitwise OR syntax (see the “Example”
section below).

For a list of types that are enabled by default, see Defaults for Message
Types and Features.

An integer specifying a message log ID that identifies a message log file.
The msg_logID can be a value returned by the open_msg_log command or
a predefined message log ID from the Message Log IDs table that appears
with the enable_msg_log command.

The enable_msg_type command enables the different types of model messaging. By default Fatal,
Error, and Warning messages are enabled. Fatal messages are always enabled because they apply to
situations from which the simulation cannot recover and usually terminates. For more information
about controlling messages, see Controlling Messages.

The following table lists the IDs of the message types.

Table 9: Predefined Message Types

Message Constant

Description

VMT_MSG_ERROR

The model has encountered an error, but can recover and resume simulation.

Example: The model receives a command that would put it into an invalid
state.

VMT_MSG_WARNING

The model has encountered a situation that is not an error, but that you should
be aware of.

Example: The model ignores significant bits of an address.

VMT_MSG_TIMING

The model has encountered a timing violation, such as a setup or hold
violation.

VMT_MSG_XHANDLING

The model has encountered an X state on an input port during a read
transaction. The model substitutes a pre-defined default value.

VMT_MSG_NOTE

The model informs you of normal operation and status.

March 20, 2008

Synopsys, Inc. 73

Chapter 3: VMT Common Command Reference VMT User’s Manual

Table 9: Predefined Message Types (Continued)

Message Constant

Description

VMT_MSG_PROTO_CYCLE

Controls messages about model protocol on cycle boundaries, for example
when the model completes beat 3 of a burst read.

VMT_MSG_PROTO_TRANS

Controls messages about model protocol on transaction boundaries. For
example, when a model completes a burst read, a protocol transaction
message would contain all of the relevant details about that transaction.

The transaction information is buffered as the model executes and is output at
successful completion or interruption of the transaction.

VMT_MSG_PROTO_ERROR

Controls all model protocol error messages. These messages identify protocol
errors such as a malformed packet or an invalid response.

VMT_MSG_CMD

Controls all model command messages, which inform you about the
commands the model is executing.

VMT_MSG_REPORT

Controls messages displayed when a command requests model status or
information. For example, a print_msg command generates a VMT_MSG_
REPORT message when this message type is enabled.

VMT_MSG_NOTIFY

Controls all testbench notification messages. These messages do not print to a
log file or simulator transcript, however they provde full watchpoint suipport,
including data arguments.

VMT_MSG_ALL

Controls all model messages except command messages.

VMT_MSG_DEFAULT

Controls default model messages: Error and Warning. Fatal messages are
always enabled.

VMT_MSG_LOG_DEFAULT

Controls default log file messages (Fatal, Error, Report, Warning, Protocol
Cycle and Protocol Error). Fatal messages are always enabled.

Example

The following example enables two message types in all open message log files and the simulator
transcript window. The bitwise OR syntax is used to specify more than one type.

ul.enable msg type (sid, “VMT MSG WARNING | “VMT MSG NOTE, “VMT MSG ROUTE ALL);

Prototypes

OpenVera
task enable msg type (

integer streamld,
bit [(VMT MESSAGE MASK WIDTH-1):0] types,
integer msg logID) ;

Verilog
task enable msg type;

input [31:0] p streamId;
input [31:0] p types;
input [31:0] p msg logID;

74

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VHDL

procedure enable msg type (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT types : IN std logic vector (31 downto 0);
CONSTANT msg_logID : IN integer) ;

Related Commands

e disable_msg_type Disables one or more message types from a specified model
instance.
e open_msg_log Enables or disables message output to a message log file.

e close_msg_log

e cnable_msg_log Enables or disables message output to a message log file or
e disable_msg_log simulator transcript window.
e cnable_msg_feature Enables or disables a user-defined message format in model

e disable_msg_feature messages.

March 20, 2008 Synopsys, Inc. 75

Chapter 3: VMT Common Command Reference VMT User’s Manual

enable_type_ctrl_msg_id
Resets settings of a specific message to the settings for messages of that type.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

enable_type_ctrl_msg_id (streamld, msgld, msg_logID);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

msgld An integer message ID that identifies a specific message.

msg_loglD An integer containing a message log ID that identifies a specific message
log file (the msg_logID value returned by the open_msg_log command or a
predefined set of message log IDs.

Description

The enable_type_ctrl_msg_id command changes the message control for the specified message back to
the control for that message type.

Message settings for a specific message are modified by the enable_msg_id command and the disable_
msg_id command.

Message settings for all messages of a specific type are modified by the enable_msg_type command
and the disable_msg_type command. For more information about controlling messages, see
Controlling Messages.

Prototypes

OpenVera

task enable type ctrl msg id (
integer streamld,
integer msgld,
integer msg logID) ;

Verilog

task enable type ctrl msg id;
input [31:0] p streamId;
input [31:0] p msgId;
input [31:0] p msg logID;

VHDL

procedure enable type ctrl msg id (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT msgId : IN integer;
CONSTANT msg_logID : IN integer);

76 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

e cnable_msg_id

Chapter 3: VMT Common Command Reference

Enables a specific message to a message log file or
simulator transcript window.

e disable_msg_id

March 20, 2008

Disables a specific message to a message log file or
simulator transcript window.

Synopsys, Inc. 77

Chapter 3: VMT Common Command Reference VMT User’s Manual

enable_watchpoint

Enables watch_for triggering of a watchpoint.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

enable_watchpoint (streamld, wpHandle);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

wpHandle The integer handle of the watchpoint to be enabled.

Description

The enable_watchpoint command enables a watchpoint so that it can trigger associated watch_for
commands when its event occurs.

Messages
e INVALID_WATCHPOINT_HANDLE

Prototypes

OpenVera

task enable watchpoint (
integer streamld,
integer wpHandle) ;

Verilog

task enable watchpoint;
input [31:0] p streamId;
input [31:0] p wpHandle

VHDL

procedure enable watchpoint (
CONSTANT shellInstName : IN string;
CONSTANT streamId: IN integer;
CONSTANT wpHandle : IN integer) ;

78 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

e create_watchpoint

Chapter 3: VMT Common Command Reference

Defines a new watchpoint for one message type or
identifier.

e watch_for

Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints

Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint

Removes a previously-created watchpoint.

disable_watchpoint

Disables watch_for triggering of a watchpoint.

set_watchpoint_trigger
get_watchpoint_trigger

Defines or returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

March 20, 2008

Returns watchpoint data.

Synopsys, Inc.

79

Chapter 3: VMT Common Command Reference VMT User’s Manual

end_stream

Ends execution of the command stream started by the new_stream command.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

end_stream (streamld);

Argument

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

Description

The end_stream command is used to indicate the end of a command stream. No more commands
should be issued to the model using the specified streamld after end_stream is sent to the model.

Messages
e INVALID_SID

Prototypes

OpenVera

task end stream (
var integer streamld) ;

Verilog

task end stream;
inout [31:0] p streamId;

VHDL

procedure end stream (
CONSTANT shellInstName : IN string;
VARIABLE streamId : INOUT integer) ;

Related Commands

® new_stream Starts a new command stream associated with a specified
command channel. Returns the Stream ID of the new command
stream.

e block stream Blocks the current command stream.

80 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_config_param
Reads a specified configuration parameter value.

Queued: Yes Blocking: Yes Zero Cycle: Yes

Syntax

get_config_param (streamld, parameter, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

parameter An integer that identifies the configuration parameter. Use a predefined
macro, either from the table in the description of the set_config_param
command, or from the table of configuration parameters for your model.

value A returned integer that contains the current value of the specified
parameter.

Description

The get_config_param command reads the value of a specified configuration parameter of a specified
model. For the parameter argument, use a predefined macro, either from the table in the description of
the set_config_param command, or from the table of configuration parameters for your model.

The command is placed on the command queue and blocked until the command has executed, so that it
can return the value of the configuration parameter after all previously-queued commands execute.

Messages

e INVALID_SID
e INVALID_PARAM

Prototypes

OpenVera

task get config param (
integer streamld,
integer parameter,
var integer value);

Verilog
task get config param;
input [31:0] p streamId;
input [31:0] p parameter;
inout [31:0] p value;

March 20, 2008 Synopsys, Inc. 81

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure get config param (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT parameter : IN integer;
VARIABLE value : INOUT integer) ;

Related Commands

e set_config_param Changes a specified configuration parameter value.

82 Synopsys, Inc.

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_port
Reads a value from a specified port.

Queued: Yes Blocking: Yes Zero Cycle: Yes

Syntax

get_port (streamld, portld, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

portld An integer input port identifier. Use a model-specific define for the port ID.

© Attention
The get_port command can only be used on input ports. You cannot read the value of an
output port.

value A returned bit vector containing the value.

Description

The get_port command retrieves the value of port. The command is placed on the command queue and
blocked until the command has executed, so that it can return the value of the port after all previously-
queued commands execute.

Messages

e INVALID_SID
e INVALID_PORTID

Prototypes

OpenVera

task get port (
integer streamld,
integer portId,
var bit [(maxPortSize-1):0] wvalue);

Verilog
task get port;
input [31:0] p streamId;
input [31:0] p portId;
inout [1023:0] p value;

March 20, 2008 Synopsys, Inc. 83

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure get port (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT portId : IN integer;
VARIABLE value : INOUT std logic vector (1023 downto 0));

Related Commands

e set_port Drives a value onto a specified port.

84 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_register
Reads the value of a specified model register.

Queued: Yes Blocking: Yes Zero Cycle: Yes

Syntax

get_register (streamld, registerld, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

registerld An integer register identifier.

value A returned integer register value.

Description

The get_register command retrieves the value of an internal register. The command is placed on the
queue and blocked until the command has executed, so that it can return the value of the register after
all previously-queued commands execute.

Messages
e VMT_MSGID_INVALID_REGISTER_ID

Prototypes

OpenVera

task get register (
integer streamId,
integer registerlId,
var integer value) ;

Verilog

task get register;
input [31:0] p streamId;
input [31:0] p registerId;
inout [31:0] p value;

VHDL

procedure get register (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT registerId : IN integer;
VARIABLE value : INOUT integer) ;

March 20, 2008 Synopsys, Inc. 85

Chapter 3: VMT Common Command Reference VMT User’s Manual

Related Commands

® set_register Changes the value of a specified model register.

86 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_version

Returns the version of the model.
Queued: No Blocking: Yes Zero Cycle: Yes

Syntax

get_version (version);

Argument

version A returned string containing the model version.

Description

The get_version command returns string that lists the model version.

Prototypes

OpenVera

task get version (
var string version) ;

Verilog

task get version;
inout [127:0] p version;

VHDL

procedure get version (
CONSTANT shellInstName : IN string;
VARIABLE version : INOUT string) ;

March 20, 2008 Synopsys, Inc.

87

Chapter 3: VMT Common Command Reference VMT User’s Manual

get_watchpoint_data_bit
Returns the bit data at a specified position in the specified watchpoint data.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

get_watchpoint_data_bit (dataHandle, position, value, cmd_status);

Arguments

dataHandle The integer handle of the watchpoint data to query, returned by the watch_
for command.

position An integer position of watchpoint data to check.

value The returned bit data member.

cmd_status Returned integer status of 1 if value is valid, or returns a -1 if there was an
error.

Description

The get_watchpoint_data_bit command returns the bit data of the watchpoint event data at a given
position.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION
e BAD_WATCHPOINT_DATA_TYPE

Prototypes

OpenVera

task get watchpoint data bit(
integer dataHandle,
integer position,
var bit value,
var integer cmd status) ;

Verilog

task get watchpoint data bit;
input [31:0] p dataHandle;
input [31:0] p position;
inout p value;
inout [31:0] p cmd status;

88 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VHDL

procedure get watchpoint data bit (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
CONSTANT position : IN integer;
VARIABLE value : INOUT std logic;
VARIABLE cmd status : INOUT integer) ;

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or
identifier.
e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a
enable_watchpoint watchpoint.

set_watchpoint_trigger Defines or returns a watchpoint triggering profile.
get_watchpoint_trigger

get_watchpoint_data_count Returns watchpoint data.
get_watchpoint_data_name

get_watchpoint_data_type

get_watchpoint_data_size

get_watchpoint_data_int

get_watchpoint_data_string

get_watchpoint_data_bit

get_watchpoint_data_vec_

<size>

March 20, 2008 Synopsys, Inc.

89

Chapter 3: VMT Common Command Reference VMT User’s Manual

get_watchpoint_data_count

Returns the number of members in the specified watchpoint data.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

get_watchpoint_data_count (dataHandle, dataCount);

Arguments

dataHandle The integer handle of the watchpoint data to be queried returned by the
watch_for command.

dataCount The returned integer of the number of data members.

Description

The get_watchpoint_data_count command returns the number of data members in a watchpoint event
data object. The following table shows a list of predefined data members.

Table 10: Predefined Watchpoint Event Data Members

Predefined Constants Description
VMT_WP_DATA_EVENT _CAUSE The handle of the watchpoint that triggered on this event
VMT_WP_DATA_EVENT_TYPE The type of the watchpoint that triggered on the event
VMT_WP_DATA_EVENT_ID The value identifier of the watchpoint that triggered on the

event

VMT_WP_DATA_TRIGGER_CYCLE The number of times this event has triggered this watchpoint
in the current cycle

VMT_WP_DATA_TRIGGER_TOTAL The total number of times this event has triggered this
watchpoint since its creation

VMT_WP_DATA NEXT EVENT The handle of the next event data set associated with this
event or -1 if there are no more events that triggered this
watchpoint. There will be only one handle for basic
watchpoint triggers, but combined watchpoints may trigger
due to multiple events and thus have multiple data handles.

20 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Messages
e INVALID_WATCHPOINT_DATA_HANDLE

Prototypes

OpenVera

task get watchpoint data count (
integer dataHandle,
var integer dataCount) ;

Verilog

task get watchpoint data count;
input [31:0] p dataHandle;
inout [31:0] p dataCount;

VHDL

procedure get watchpoint data count (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
VARIABLE dataCount : INOUT integer) ;

March 20, 2008 Synopsys, Inc.

Chapter 3: VMT Common Command Reference

91

Chapter 3: VMT Common Command Reference

92

Related Commands

VMT User’s Manual

e create_watchpoint Defines a new watchpoint for one message type or
identifier.

e watch_for Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a

e cnable_watchpoint watchpoint.

e set_watchpoint_trigger Defines or returns a watchpoint triggering profile.

e get_watchpoint_trigger

e get_watchpoint_data_name Returns watchpoint data.

e get_watchpoint_data_type

e get_watchpoint_data_size

e get_watchpoint_data_int

e get_watchpoint_data_string

e get_watchpoint_data_bit

e get_watchpoint_data_vec_

<size>

Synopsys, Inc.

March 20, 2008

VMT User’s Manual

get_watchpoint_data_int

Chapter 3: VMT Common Command Reference

Returns an integer value at a specified position in the specified watchpoint data.

Queued: No Blocking: No Zero Cycle: Yes

Syntax

get_watchpoint_data_int (dataHandle, position, value, cmd_status);

Arguments

dataHandle The integer handle of the watchpoint data to query.

position An integer position of watchpoint data to check. To specify the position,
use one of the data field constants of the message that was specified in the
create_watchpoint command. You can also specify VMT_MSG_EVENT _
ARG_MSG_TYPE or VMT_MSG_EVENT_ARG_MSG_ID to obtain the
message type or ID, respectively.

value The returned integer of the data member.

cmd_status Returned integer status of 1 if the returned value is valid, -1 if there was an
error.

Description

The get_watchpoint_data_int command returns the integer value of the watchpoint event data at a given
position. For more information, see Using Messages as Watchpoints.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION
e BAD_WATCHPOINT_DATA_TYPE

Prototypes

OpenVera

task get watchpoint data int(
integer dataHandle,
integer position,
var integer value,
var integer cmd status) ;

Verilog

task get watchpoint data int;
input [31:0] p dataHandle;
input [31:0] p position;
inout [31:0] p value;
inout [31:0] p cmd status;

March 20, 2008 Synopsys, Inc.

93

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure get watchpoint data int (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
CONSTANT position : IN integer;
VARIABLE value : INOUT integer;
VARIABLE cmd status : INOUT integer) ;

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or
identifier.
e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a
enable_watchpoint watchpoint.

set_watchpoint_trigger Defines or returns a watchpoint triggering profile.
get_watchpoint_trigger

get_watchpoint_data_count Returns watchpoint data.
get_watchpoint_data_name

get_watchpoint_data_type

get_watchpoint_data_size

get_watchpoint_data_string

get_watchpoint_data_bit

get_watchpoint_data_vec_

<size>

94 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_watchpoint_data_name

Returns the name of the watchpoint event data at a given position.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

get_watchpoint_data_name (dataHandle, position, name, cmd_status);

Arguments

dataHandle The integer handle of the watchpoint data to query, returned by the watch_
for command.

position An integer position of watchpoint data to check. To specify the position,
use one of the data field constants of the message that was specified in the
create_watchpoint command.

name The returned string that identifies the name of the data (80 characters
maximum).

cmd_status Returned integer number of characters in name, or -1 if there was an error
detected.

Description

The get_watchpoint_data_name command returns the name of the watchpoint event data at a given
position.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION

Prototypes

OpenVera

task get watchpoint data name (
integer dataHandle,
integer position,
var string name,
var integer cmd status) ;

Verilog

task get watchpoint data name;
input [31:0] p dataHandle;
input [31:0] p position;
inout [sizeofstring:0] p name;
inout [31:0] p cmd status;

March 20, 2008 Synopsys, Inc. 95

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure get watchpoint data name (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle: IN integer;
CONSTANT position : IN integer;
VARIABLE name : INOUT string;
VARIABLE cmd status : INOUT integer) ;

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or
identifier.
e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a
enable_watchpoint watchpoint.

set_watchpoint_trigger Defines or returns a watchpoint triggering profile.
get_watchpoint_trigger

get_watchpoint_data_count Returns watchpoint data.
get_watchpoint_data_name

get_watchpoint_data_type

get_watchpoint_data_size

get_watchpoint_data_int

get_watchpoint_data_string

get_watchpoint_data_bit

get_watchpoint_data_vec_

<size>

96 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_watchpoint_data_size
Returns the length of data at a specified position in the specified watchpoint data.
Queued: No Blocking: No Zero Cycle: Yes

Syntax
get_watchpoint_data_size (dataHandle, position, size);
Arguments
dataHandle The integer handle of the watchpoint data to query.
position An integer position of watchpoint data to check. To specify the position,
use one of the data field constants of the message that was specified in the
create_watchpoint command.
dataSize The returned integer indicating the size of the data member. A -1 is
returned if there was an error. The meaning of the size depends on the type
of the data as follows:
Integer — no unit - the return value is always one
String — the number of characters in the string
Vector — the number of bits in the vector
Description

The get_watchpoint_data_size command returns the size of the watchpoint event data member at a
given position.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION

Prototypes

OpenVera

task get watchpoint data size (
integer dataHandle,
integer position,
var integer dataSize) ;

Verilog

task get watchpoint data size;
input [31:0] p dataHandle;
input [31:0] p position;
inout [31:0] p dataSize;

March 20, 2008 Synopsys, Inc. 97

Chapter 3: VMT Common Command Reference VMT User’s Manual

VHDL

procedure get watchpoint data size (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
CONSTANT position : IN integer;
VARIABLE dataSize : INOUT integer) ;

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or
identifier.
e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a

e ecnable_watchpoint watchpoint.

e set_watchpoint_trigger Defines or returns a watchpoint triggering profile.
e get_watchpoint_trigger

get_watchpoint_data_count Returns watchpoint data.
get_watchpoint_data_name

get_watchpoint_data_type

get_watchpoint_data_int

get_watchpoint_data_string

get_watchpoint_data_bit

get_watchpoint_data_vec_

<size>

98 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_watchpoint_data_string
Returns a string of text at a specified position in the specified watchpoint data.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

get_watchpoint_data_string (dataHandle, position, line_index, value, cmd_status);

Arguments

dataHandle The integer handle of the watchpoint data to query.

position An integer position of watchpoint data to check. To specify the position,
use one of the data field constants of the message that was specified in the
create_watchpoint command.

line_index An integer number that indicates the desired line number from which to get
the string, beginning at 0.

value The returned string data line (80 characters maximum).

cmd_status Returned integer number of characters set in value, or returns a -1 if there
was an error.

Description

The get_watchpoint_data_string command returns the selected line of string data of the watchpoint
event data at a given position.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION
e BAD_WATCHPOINT_DATA_TYPE

Prototypes

OpenVera

task get watchpoint data string(
integer dataHandle,
integer position,
integer line index,
var string value,
var integer cmd status) ;

March 20, 2008 Synopsys, Inc. 929

Chapter 3: VMT Common Command Reference VMT User’s Manual

Verilog

task get watchpoint data string;
input [31:0] p dataHandle;
input [31:0] p position;
input [31:0] p line index;
inout [sizeofstring:0] p value;
inout [31:0] p cmd status;

VHDL

procedure get watchpoint data string (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
CONSTANT position : IN integer;
VARIABLE line index : IN integer;
VARIABLE value : INOUT string;
VARIABLE cmd status : INOUT integer) ;

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or

identifier.

e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints

Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint

Removes a previously-created watchpoint.

e disable_watchpoint
e cnable_watchpoint

Enables or disables watch_for triggering of a
watchpoint.

set_watchpoint_trigger
get_watchpoint_trigger

Defines or returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

Returns watchpoint data.

Synopsys, Inc.

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_watchpoint_data_type
Returns the data type at a specified position in the specified watchpoint data.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

get_watchpoint_data_type (dataHandle, position, dataType);

Arguments

dataHandle The integer handle of the watchpoint data to query.

position An integer position of watchpoint data to check. To specify the position,
use one of the data field constants of the message that was specified in the
create_watchpoint command.

dataType The returned integer indicating the type of the data member. See the
following table for possible return values. If there is an error, a -1 is
returned.

Description

The get_watchpoint_data_type command returns the type of the watchpoint event data at a given
position. The following table shows possible return data types.

Table 11: Predefined Watchpoint Data Types

Predefined Constants Description

VMT_WP_DATA_INT TYPE Integer data. Can hold a handle value represented by an integer
as well.

VMT_WP_DATA_STRING_TYPE String data

VMT_WP_DATA_BIT_TYPE Bit data
VMT_WP_DATA_VEC_TYPE Bit Vector Data
Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION

Prototypes

OpenVera

task get watchpoint data type (
integer dataHandle,
integer position,
var integer dataType) ;

March 20, 2008 Synopsys, Inc. 101

Chapter 3: VMT Common Command Reference VMT User’s Manual

Verilog
task get watchpoint data type;
input [31:0] p dataHandle;
input [31:0] p position;
inout [31:0] p dataType;
VHDL

procedure get watchpoint data type (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
CONSTANT position : IN integer;
VARIABLE dataType : INOUT integer);

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or
identifier.
e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a

e cnable_watchpoint watchpoint.

e set_watchpoint_trigger Defines or returns a watchpoint triggering profile.
e get_watchpoint_trigger

get_watchpoint_data_count Returns watchpoint data.
get_watchpoint_data_name

get_watchpoint_data_size

get_watchpoint_data_int

get_watchpoint_data_string

get_watchpoint_data_bit

get_watchpoint_data_vec_

<size>

102 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

get_watchpoint_data_vec_<size>
Returns a specified word of vector data at a specified position in the specified watchpoint data.
Queued: No Blocking: No Zero Cycle: Yes

Syntax
get_watchpoint_data_vec_<size> (dataHandle, position, word, value, cmd_status);

TI5>Note

<size> is the number of bits in the value vector. Substitute one of the following values for
<size>:2,4,8, 16,32, 64, 128, 256, 512, or 1024. For example: get_watchpoint_data_

vec_2.

Arguments

dataHandle The integer handle of the watchpoint data to query, returned by the watch_
for command.

position An integer position of watchpoint data to check. To specify the position,
use one of the data field constants of the message that was specified in the
create_watchpoint command.

word An integer number of the word to get from the vector, beginning at 0.

value The returned bit vector data word.

cmd_status Returned integer of bits set in value, or returns a -1 if there was an error.

Description

These get_watchpoint_data_vec_<size> commands return the selected word of vector data of the
watchpoint event data at a given position. The word <size> (number of bits in the value vector) is
encoded into the command name.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE

e INVALID_WATCHPOINT_DATA_POSITION

e BAD_WATCHPOINT_DATA_TYPE

e INVALID_WATCHPOINT_DATA_VEC_WORD

Prototypes
T5>Note

In the following prototypes, substitute the appropriate value for <size>, which is one of
the following: 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024.

March 20, 2008 Synopsys, Inc. 103

Chapter 3: VMT Common Command Reference VMT User’s Manual

OpenVera

task get watchpoint data vec <sizes>(
integer dataHandle,
integer position,
integer word,
var bit[<size>-1:0] value,
var integer cmd status) ;

Verilog

task get watchpoint data vec <sizes;
input [31:0] p dataHandle;
input [31:0] p position;
input [31:0] p word;
inout [<size>-1:0] p value;
inout [31:0] p cmd status;

VHDL

procedure get watchpoint data vec <size> (
CONSTANT shellInstName : IN string;
CONSTANT dataHandle : IN integer;
CONSTANT position : IN integer;
CONSTANT word : IN integer;
VARIABLE value : INOUT std vector(<size>-1 downto 0) ;
VARIABLE cmd status : INOUT integer) ;

104 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

Related Commands

e create_watchpoint Defines a new watchpoint for one message type or
identifier.
e watch_for Blocks the current command stream until a specific

model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a
enable_watchpoint watchpoint.

set_watchpoint_trigger Defines or returns a watchpoint triggering profile.
get_watchpoint_trigger

get_watchpoint_data_count Returns watchpoint data.
get_watchpoint_data_name

get_watchpoint_data_type

get_watchpoint_data_size

get_watchpoint_data_int

get_watchpoint_data_string

get_watchpoint_data_bit

get_watchpoint_data_vec_

<size>

March 20, 2008 Synopsys, Inc. 105

Chapter 3: VMT Common Command Reference

get_watchpoint_trigger

Returns a watchpoint triggering profile.

Queued: Yes Blocking: No Zero Cycle: Yes

VMT User’s Manual

Syntax

get_watchpoint_trigger (streamld, wpHandle, profile, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

wpHandle The integer handle of the watchpoint for which to retrieve the
configuration.

profile An integer that defines the type of profile configuration to retrieve. For a
table of supported watchpoint trigger profiles, see the set_watchpoint_
trigger command description.

value The returned integer value of the profile configuration.

Description

The get_watchpoint_trigger command gets a current configuration value of a watchpoint’s triggering

profile.

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION

Prototypes

OpenVera

task get watchpoint trigger (
integer streamld,
integer wpHandle,
integer profile,
var integer value) ;

Verilog
task get watchpoint trigger;
input [31:0] p streamId;
input [31:0] p wpHandle;
input [31:0] p profile;
inout [31:0] p value;
106

Synopsys, Inc.

March 20, 2008

VMT User’s Manual

VHDL

procedure get watchpoint trigger (

Chapter 3: VMT Common Command Reference

CONSTANT shellInstName : IN string;
CONSTANT streamId: IN integer;
CONSTANT wpHandle : IN integer;
CONSTANT profile : IN integer;
VARIABLE value : INOUT integer) ;

Related Commands

e create_watchpoint

Defines a new watchpoint for one message type or
identifier.

e watch_for

Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints

Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint

Removes a previously-created watchpoint.

e disable_watchpoint
e cnable_watchpoint

Enables or disables watch_for triggering of a
watchpoint.

set_watchpoint_trigger

Returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

March 20, 2008

Returns watchpoint data.

Synopsys, Inc.

107

Chapter 3: VMT Common Command Reference VMT User’s Manual

hew_stream

Starts a new command stream associated with a specified command channel. Returns the Stream ID of
the new command stream.

Queued: No Blocking: No Zero Cycle: Yes

Syntax

new_stream (channelld, streamld);

Arguments

channelld An integer command channel that the new command stream is associated
with.

streamld A returned integer that specifies the command stream that was created.

Description

The new_stream command creates a new command stream and returns the streamld value. The default
channelld for models with a single command channel is VMT_DEFAULT_CMD_CHANNEL. For
models with multiple command channels, the default streamld and channelld values are model
specific. For more information on command streams, see “Command Channels and Command
Streams.”

T5>Note

Prior to issuing this command, the streamld to use for all commands is the default
streamld. For single command channel models, that value is VMT_DEFAULT _
STREAM_ID. For multiple command channel models, consult the model databook for
that specific model.

Every new streamld generated is unique and corresponds to a particular command channel.

el
© Attention
If the new_stream command is issued before the start command, the returned streamld is
-1. If you attempt to use the -1 returned streamld, those commands will fail and will not be
queued.

Messages
e INVALID_CHANNEL_ID

Prototypes

OpenVera

task new stream (
integer channellId,
var integer newStreamld) ;

108 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

Verilog

task new stream;
input [31:0] p channelId;
inout [31:0] p newStreamId;

VHDL

procedure new stream (
CONSTANT shellInstName : IN string;
CONSTANT channelId: IN integer;
VARIABLE newStreamId : INOUT integer) ;

Related Commands

e end_stream Ends execution of the command stream started by the new_
stream command.

e block stream Blocks the current command stream.

March 20, 2008 Synopsys, Inc. 109

Chapter 3: VMT Common Command Reference VMT User’s Manual

open_msg_log

Enables message output to a message log file.

Queued: Yes Blocking: Yes Zero Cycle: Yes

Syntax

open_msg_log (streamld, "msg_log_filename", mode, msg_logID);

Arguments

streamld

"msg_log_filename"

An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

A string containing the relative or full pathname to the message log output
file. If msg_log_filename is not specified, the default filename is ./inst_
name.msg.

T5>Note

Log files are intended to be used by a single model instance. Although you can assign a
log file to more than one instance by using append mode, message order in the log file will

be unpredictable.

mode

msg_loglD

Description

An integer that specifies if the messages are appended (VMT_MSG_LOG_
MODE_APPEND) to the file or overwritten (VMT_MSG_LOG_MODE_
OVR).

A returned integer containing the message log ID that identifies a message
log file. This handle controls message filtering and configuration for all
messages that are output to the log file.

The open_msg_log command enables the routing of messages to different output files. Log files can be
opened in append or overwrite mode. For more information about controlling messages, see

Controlling Messages.

Prototypes

OpenVera

task open msg log (

integer streamld,
bit [VMT MESSAGE LOG STRING WIDTH-1:0] filename,

integer mode,

var integer msg logID) ;

Verilog

task open msg log;

input [31:0] p streamId;
input [2047:0] p filename;
input [31:0] p mode;

inout [31:0] p msg logID;

110

Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VHDL

procedure open msg_log (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT filename : IN string;
CONSTANT mode : IN integer;
VARIABLE msg logID : INOUT integer);

Related Commands

e cnable_msg_type Enables or disables one or more message types from a specified
e disable_msg_type model instance.

e close_msg_log Disables message output to a message log file.

e cnable_msg_log Enables or disables message output to a message log file or

e disable_msg_log simulator transcript window.

e cnable_msg_feature Enables or disables a user-defined message format in model

e disable_msg_feature messages.

March 20, 2008 Synopsys, Inc. 111

Chapter 3: VMT Common Command Reference VMT User’s Manual

print_msg
Prints a text message in a simulation transcript.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

print_msg (streamld, message);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

message A string text message to print.

format A character or characters to print.

Description

The print_msg command causes the model to issue a message of type Report. The string in the message
argument displays as the message text.

All standard VMT messaging functionality applies to this command, such as enable/disable, message
destination, and so on.

Messages
e VMT_MSGID_PRINT_MSG_TEXT

Prototypes

OpenVera

task print msg (
integer streamld,
string message) ;

Verilog
task print msg;
input [31:0] p streamId;
input [639:0] p message;

VHDL

procedure print msg (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT message: IN string);

112 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

reset_model

Resets the model.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

reset_model (rst_type);

Argument

rst_type An integer reset type. Can be set to VMT_SOFT, VMT_FIRM, VMT_
HARD or model-specific reset types. See the command description for an
explanation of each reset type.

Description

The reset_model command clears model command queues, watchpoints, configuration, and/or ports,
depending on the rst_type chosen. Valid rst_type settings are summarized in the following table.

Table 12: Reset Types

Reset Actions
Command Configuration
Reset Type Queue Watchpoints Parameters Issue start after reset
VMT_SOFT Yes No No No. Not allowed.
VMT_FIRM Yes Yes No No. Not allowed.
VMT_HARD Yes Yes Yes Yes. Must be issued.

Varies by model. See model documentation.

model-specific®

a. Consult model-specific documentation for further details on model-specific reset capabilities.

A VMT_SOFT reset, or soft reset, is used to clear the command queue and bring the model back to a
known state. The soft reset preserves all configuration settings. As a result, the start command cannot
be re-issued after a soft reset.

A VMT_FIRM reset, or firm reset, does everything that a soft reset does, plus it deletes all watchpoints.
You use a firm reset to retain the configuration of the model, but clear all watchpoints and command
queue. All watch_for commands in the testbench are triggered by a firm reset, then watch_for returns a
handle of value VMT_WP_TERMINATED_BY_RESET. As a result, all of your watch_for routines
must trap VMT_WP_TERMINATED_BY_RESET to implement any reset activities or to clean up
unwanted testbench threads.

A VMT_HARD, or hard reset does everything that a firm reset does, plus the following:
e Clears all configuration settings to their defaults.

e Removes all message log file handles.

March 20, 2008 Synopsys, Inc. 113

Chapter 3: VMT Common Command Reference VMT User’s Manual

You use a hard reset when you want to get the model to the same state it was in just after instantiation.
New configurations can be set, and then a model start command re-issued.

T 5=Note

VMT_SOFT, VMT_FIRM, and VMT_HARD do not perform any device reset functions.
A model-specific reset may perform a device reset. Consult the model documentation for
all information on model-specific reset.

Messages
e VMT_MSGID_INVALID_RESET_TYPE

Prototypes

OpenVera

task reset model (
integer rst type);

Verilog

task reset model;
input [31:0] p rst type;

VHDL

procedure reset model (
CONSTANT shellInstName : IN string;
CONSTANT rst type: IN integer);

Related Command

® start Starts model execution.

114 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

set_config_param

Changes a specified configuration parameter value.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

set_config_param (streamld, parameter, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

parameter An integer that identifies the configuration parameter. Use a predefined
macro, either from the table below or from the table of configuration
parameters for your model.

value An integer that contains the new value of the parameter.

Description

The set_config_param command sets the value of a specified configuration parameter for a specified
model.

The only configuration parameter that is common to all VMT models is listed in the table below. For all
other configuration parameters, refer to the table of configuration parameters for your model.

Table 13: Common Configuration Parameters

[Default] and Legal Values Description

VMT_FORCE_CMD_BLOCKING

ON If ON, causes commands not to be queued and blocks the
[OFF] command stream flow until command execution is complete.
Messages

e INVALID_SID
e INVALID_PARAM
e INVALID_FORCE_BLOCK_PARAM

Prototypes

OpenVera

task set config param (
integer streamld,
integer parameter,
integer value);

March 20, 2008 Synopsys, Inc. 115

Chapter 3: VMT Common Command Reference

Verilog
task set config param;
input [31:0] p streamId;
input [31:0] p parameter;
input [31:0] p value;

VHDL

procedure set config param (
CONSTANT shellInstName :

IN string;

CONSTANT streamId : IN integer;
CONSTANT parameter : IN integer;
CONSTANT value : IN integer);

Related Commands

e get_config_param Reads a specified configuration parameter value.

116

Synopsys, Inc.

VMT User’s Manual

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

set_port

Drives a value onto a specified port.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

set_port (streamld, portld, value, numDelayClocks, numDriveClocks);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

portld An integer output port identifier. Use a model-specific define for the port

ID.

17
© Attention
The set_port command can only be used on output ports. You cannot set the value of an

input port.
value A bit vector containing the value.
numDelayClocks An integer number of clock cycles to delay before the new value is forced
on the port.
numDriveClocks An integer number of clock cycles the new value is forced on the port.
Description

The set_port command drives a value onto a specified port. This command overwrites any value the
model would normally drive. The numDelayClocks argument sets the delay, in clock cycles, before the
new value is forced. The numDriveClocks argument sets the duration, in clock cycles, that the new
value is forced on the port.

Messages

e INVALID_SID e INVALID_DLYCLKS_ARG
e INVALID_PORTID e INVALID_DRVCLKS_ARG
Prototypes

OpenVera

task set port (
integer streamld,
integer portId,
bit [(maxPortSize-1):0] wvalue,
integer numDelayClocks,
integer numDriveClocks) ;

March 20, 2008 Synopsys, Inc. 117

Chapter 3: VMT Common Command Reference

Verilog

task set port;
input [31:0] p streamId;
input [31:0] p portId;
input [1023:0] p value;
input [31:0] p numDelayClocks;
input [31:0] p numDriveClocks;

VHDL

procedure set port (

CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;

CONSTANT portId : IN integer;

CONSTANT value : IN std logic vector (1023 downto 0);
CONSTANT numDelayClocks : IN integer;
CONSTANT numDriveClocks : IN integer);

Related Commands

e get_port Reads a value from a specified port.

118 Synopsys, Inc.

VMT User’s Manual

March 20, 2008

VMT User’s Manual

set_register

Chapter 3: VMT Common Command Reference

Changes the value of a specified model register.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

set_register (streamld, registerld, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

registerld An integer register identifier.

value An integer register value.

Description

The set_register command changes the value of the specified internal model register.

Messages
e VMT_MSGID_INVALID_REGISTER_ID

Prototypes

OpenVera

task set register(
integer streamId,
integer registerld,
integer value) ;

Verilog
task set register;
input [31:0] p streamId;
input [31:0] p registerId;
input [31:0] p value;

VHDL

procedure set register (
CONSTANT shellInstName : IN string;
CONSTANT streamId : IN integer;
CONSTANT registerId : IN integer;
CONSTANT value : IN integer) ;

Related Commands

e get_register Reads the value of a specified model register.

March 20, 2008 Synopsys, Inc.

119

Chapter 3: VMT Common Command Reference VMT User’s Manual

set_watchpoint_trigger

Defines a watchpoint triggering profile.
Queued: Yes Blocking: No Zero Cycle: Yes

Syntax

set_watchpoint_trigger (streamld, wpHandle, profile, value);

Arguments

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

wpHandle The integer handle of the watchpoint to be configured.

profile An integer that defines the type of profile configuration to set. See the
following table for supported profile types.

value An integer of the new value of the profile configuration.

Description

The set_watchpoint_trigger command configures a watchpoint's triggering profile. Configuring the
profile automates the enabling and disabling of the watchpoint and, therefore, how watch_for

commands unblock.

The following table shows the supported profile types. Throughout this table, a cycle equates to the

clock cycle for the model. .

Table 14: Watchpoint Triggering Profile Configuration Types

Predefined Constants

Description

VMT_WP_TRIGGER_PARAM

Controls the event triggering protocol within a single cycle. Valid values are:
e VMT_WP_TRIGGER_HANDSHAKE - watch_for commands can
be triggered multiple times per cycle.

e VMT _WP_TRIGGER_ONE_SHOT - watch_for commands can
be triggered once per cycle. This is the default setting.

VMT_WP_START_PARAM

Delays the start of the watchpoint for a specified number of cycles.
Effectively suppresses triggering of the watchpoint until the given number of
cycles has passed.

VMT_WP_STOP_PARAM

Disables the watchpoint after a specified number of cycles. This parameter is
a cycle timer that decrements to zero, then literally disables the watchpoint.

VMT_WP_IGNORE_PARAM

Suppresses triggering for the specified number of events. This parameter is
an event counter that suppresses triggering while it decrements to zero.

VMT_WP_LIMIT_PARAM

Disables the watchpoint after the specified number of events. This parameter
is an event timer that decrements to zero, then disables the watchpoint.

VMT_WP_EXACT_PARAM

Triggers once when exactly the specified number of events has occurred.
Just like ignoring (n-1) and limiting (1) in one profile.

120

Synopsys, Inc. March 20, 2008

VMT User’s Manual

Messages

e INVALID_WATCHPOINT_DATA_HANDLE
e INVALID_WATCHPOINT_DATA_POSITION
e INVALID_WATCHPOINT_PROFILE_VALUE

Prototypes
OpenVera

task set watchpoint trigger (
integer streamld,
integer wpHandle,
integer profile,
integer value) ;

Verilog
task set watchpoint trigger;
input [31:0] p streamId;
input [31:0] p wpHandle;
input [31:0] p profile;
input [31:0] p value;
VHDL

procedure set watchpoint trigger (
CONSTANT shellInstName : IN string;
CONSTANT streamId: IN integer;
CONSTANT wpHandle : IN integer;
CONSTANT profile : IN integer;
CONSTANT value : IN integer) ;

March 20, 2008 Synopsys, Inc.

Chapter 3: VMT Common Command Reference

121

Chapter 3: VMT Common Command Reference

Related Commands

122

VMT User’s Manual

e create_watchpoint Defines a new watchpoint for one message type or
identifier.

e watch_for Blocks the current command stream until a specific
model event occurs.

e create_watchpoint_range Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint Removes a previously-created watchpoint.

e disable_watchpoint Enables or disables watch_for triggering of a

e cnable_watchpoint watchpoint.

e get_watchpoint_trigger Defines a watchpoint triggering profile.

e get_watchpoint_data_count Returns watchpoint data.

e get_watchpoint_data_name

e get_watchpoint_data_type

e get_watchpoint_data_size

e get_watchpoint_data_int

e get_watchpoint_data_string

e get_watchpoint_data_bit

e get_watchpoint_data_vec_

<size>

Synopsys, Inc.

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

start

Starts model execution.
Queued: No Blocking: No Zero Cycle: Yes

Syntax

start

Description

The start command is issued in the initialization sequence for the model. All model parameters, such as
bus width, must be set before start is issued.

Prototypes

OpenVera

task start;

Verilog

task start;

VHDL

procedure start (
CONSTANT shellInstName : IN string);

Related Command

o reset_model Resets the model.

March 20, 2008 Synopsys, Inc. 123

Chapter 3: VMT Common Command Reference VMT User’s Manual

start_stream

7
© Attention
Deprecated command; not recommend for new design. Use new_stream instead.

Starts a new command stream and returns the Stream ID of the new command stream.
Queued: No Blocking: No

Syntax

start_stream (streamld);

Argument

streamld An integer that specifies the command stream where the command is sent,
returned by the new_stream command.

Description

The start_stream command returns a new streamld associated with a new command stream.

@ Attention
If the start_stream command is issued before the start command, the returned streamld is
-1. If you attempt to use the -1 returned streamld, those commands will fail and will not be
queued.

ZI°5>Note

Prior to issuing this command, the streamld to use for all commands is the default
streamld, VMT_DEFAULT_STREAM_ID.

Prototypes

OpenVera

task start stream (
var integer newStreamld) ;

Verilog

task start stream;
inout [31:0] p newStreamId;

VHDL

procedure start stream (
CONSTANT shellInstName : IN string;
VARIABLE newStreamId : INOUT integer);

124 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference
Related Commands

e end_stream Ends execution of the command stream started by the new_
stream command.

March 20, 2008 Synopsys, Inc. 125

Chapter 3: VMT Common Command Reference VMT User’s Manual

watch_for
Blocks the current command stream until a specific model event occurs.
Queued: No Blocking: Yes Zero Cycle: Yes

Syntax

watch_for (wpHandle, objHandle);

Argument

watchPoint An integer event identifier.

handle A returned integer handle to the event that triggered the watchpoint.

TI°5=>Note

When a watchpoint terminates because of the reset_model command, handle returns
VMT_WP_TERMINATED_BY_RESET. For more information, see the description of the
reset_model command.

Description

The watch_for command waits for an event from the model. The command blocks until the event
happens.

Messages
e VMT_MSGID_INVALID_WATCHPOINT

Prototypes

OpenVera

task watch for (
integer wpHandle,
var integer objHandle);

Verilog
task watch for;
input [31:0] p wpHandle;
inout [31:0] p objHandle;

VHDL

procedure watch for (
CONSTANT shellInstName : IN string;
CONSTANT wpHandle : IN integer;
VARIABLE objHandle : INOUT integer) ;

126 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Related Commands

e create_watchpoint

Chapter 3: VMT Common Command Reference

Defines a new watchpoint for one message type or
identifier.

e create_watchpoint_range

Defines a new watchpoint for multiple message types
or identifiers.

e combine_watchpoints

Defines a new watchpoint that is a boolean AND or
OR of two previously-defined watchpoints.

e destroy_watchpoint

Removes a previously-created watchpoint.

e disable_watchpoint
enable_watchpoint

Enables or disables watch_for triggering of a
watchpoint.

set_watchpoint_trigger
get_watchpoint_trigger

Defines or returns a watchpoint triggering profile.

get_watchpoint_data_count
get_watchpoint_data_name
get_watchpoint_data_type
get_watchpoint_data_size
get_watchpoint_data_int
get_watchpoint_data_string
get_watchpoint_data_bit
get_watchpoint_data_vec_
<size>

March 20, 2008

Returns watchpoint data.

Synopsys, Inc. 127

Chapter 3: VMT Common Command Reference VMT User’s Manual

Command Macro Reference

VMT_CREATE_WP_MSG_TYPE

@ Attention
Deprecated macro; not recommend for new design. Use the command create_watchpoint
(page 48) instead.

VMT macros are only supported under OpenVera control.

Creates watchpoints for different message types.

Syntax

VMT_CREATE_WP_MSG_TYPE (types, handle);

Arguments

types A 32-bit vector that defines the message types for which to create a
watchpoint.

handle A returned integer handle to the new watchpoint.

Description

The VMT_CREATE_WP_MSG_TYPE macro creates a watchpoint for a specified message type. See
Table 9 on page 73 for a list of all message types.

128 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_CREATE_WP_MSG_ID

© Attention
Deprecated macro; not recommend for new design. Use the command create_watchpoint
(page 48) instead.

VMT macros are only supported under OpenVera control.

Creates watchpoints for different message IDs.

Syntax

VMT_CREATE_WP_MSG_ID (msgID, handle);

Arguments

msglD A returned integer set of predefined message IDs that are defined for each
message that comes from a VMT model.

handle A returned integer handle to the new watchpoint.

Description

The VMT_CREATE_WP_MSG_ID macro creates a watchpoint for a specified message IDs. Each
message ID is documented within each command reference page in this chapter and also in all
verification IP databooks for VMT models.

Some message IDs, such as VMT_MSGID_SID_INVALID, are common to most commands.
Fields: Field Type:

March 20, 2008 Synopsys, Inc. 129

Chapter 3: VMT Common Command Reference

VMT Messages

VMT_MSGID_CMD_DONE
Command Done: <cmd> : (Tag = <tag>)
<arglist>

Msg Type: VMT_MSG_CMD

Fields:
VMT_MSGID_CMD_DONE_ARG_CMD

VMT_MSGID_CMD_DONE_ARG_TAG
VMT_MSGID_CMD_DONE_ARG_ARGLIST

VMT_MSGID_CMD_EXECUTE
Command Execute: <cmd> : (Tag = <tag>)
<arglist>

Msg Type: VMT_MSG_CMD

Fields:
VMT_MSGID_CMD_EXECUTE_ARG_CMD

VMT_MSGID_CMD_EXECUTE_ARG_TAG
VMT_MSGID_CMD_EXECUTE_ARG_ARGLIST

VMT_MSGID_CMD_QUEUED
Command Queued: <cmd> : (Tag = <tag>)
<arglist>

Msg Type: VMT_MSG_CMD

Fields:
VMT_MSGID_CMD_QUEUED_ARG_CMD

VMT_MSGID_CMD_QUEUED_ARG_TAG
VMT_MSGID_CMD_QUEUED_ARG_ARGLIST

VMT_MSGID_ADDR_EXIST_AS_FIFO
The address <address> already exists as a FIFO
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_ADDR_EXIST_AS_FIFO_ARG_ADDRESS

VMT_MSGID_ALREADY_STARTED
’start’ has already been executed

Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_BAD_WATCHPOINT_DATA_TYPE
’<command>’ can not evaluate data type : <type>.

Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_BAD_WATCHPOINT_DATA_TYPE_ARG_COMMAND
VMT_MSGID_BAD_WATCHPOINT_DATA_TYPE_ARG_TYPE

VMT_MSGID_BLOCKING_CALLBACK

Model detected a blocking implementation for non-blocking call to callback method: <callback>

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_BLOCKING_CALLBACK_ARG_CALLBACK

130 Synopsys, Inc.

VMT User’s Manual

Field Type:

String
Integer
String

Field Type:

String
Integer
String

Field Type:
String
Integer
String

Field Type:

Integer

Field Type:

String
Integer

Field Type:
String

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_CCONTROL_INVALID_CBK _FLAG

Internal Error While Running C Testbench, Invalid Flag Passed to The CallBack Function.
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_CFG_ILLEGAL_PARAM
Cannot set <param_name> to <value>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CFG_ILLEGAL_PARAM_ARG_PARAM_NAME String
VMT_MSGID_CFG_ILLEGAL_PARAM_ARG_VALUE Integer

VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO
Cannot set <param_name> with value <value> because it conflicts with <param_name2> with value <value2>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_PARAM_NAME String
VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_VALUE Integer
VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_PARAM_NAME2 String
VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_VALUE2 Integer

VMT_MSGID_CFG_POST_START
Configuration error; *<param_name>’ can not be changed after start
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CFG_POST_START_ARG_PARAM_NAME String

VMT_MSGID_CMD_BEFORE_START

Non configure command *<command>’ is not valid before ’start’

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CMD_BEFORE_START_ARG_COMMAND String

VMT _MSGID_CMD_INVALID_PARAM
’<name>’ : Invalid parameter <id>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CMD_INVALID_PARAM_ARG_NAME String
VMT_MSGID_CMD_INVALID_PARAM_ARG_ID Integer

VMT_MSGID_CMD_NOT_SUPPORTED
The model does not support the ’<name>" command
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CMD_NOT_SUPPORTED_ARG_NAME String

VMT_MSGID_CONFIG_PARAM_ERR
<command> : Invalid Parameter <parameter>.
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CONFIG_PARAM_ERR_ARG_COMMAND String
VMT_MSGID_CONFIG_PARAM_ERR_ARG_PARAMETER Integer

March 20, 2008 Synopsys, Inc. 131

Chapter 3: VMT Common Command Reference VMT User’s Manual

VMT_MSGID_COV_DATA_READ_FORMAT_ERROR

Cannot recognize ’<element>’ as coverage data element line while loading coverage data. Skipping this line

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_COV_DATA_READ_FORMAT_ERROR_ARG_ELEMENT String

VMT_MSGID_CP_EXISTS
Coverage point ’<coverage_point>’ already exists. Did not create new coverage point
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_CP_EXISTS_ARG_COVERAGE_POINT String

VMT_MSGID_DISABLE_FATAL_MSG

Can not DISABLE fatal message with id <message_id>.

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_DISABLE_FATAL_MSG_ARG_MESSAGE_ID Integer

VMT _MSGID_ENABLE_MSG_LOG_FAILURE

Unable to open message log file "<filename>".

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_ENABLE_MSG_LOG_FAILURE_ARG_FILENAME String

VMT _MSGID_EXCEEDED_INST REG_LIMIT

Registration limit for this coverage instance has been exceeded, unable to do registerInstance
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_FAILED_AT_DISABLEFIFO_ADDRESS

Disable for fifo location <location> failed

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_FAILED_AT_DISABLEFIFO_ADDRESS_ARG_LOCATION Integer

VMT_MSGID_FIFOALLMEM_ALREADY_ENABLED
All the memory addresses are already enabled as FIFOs

Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_FIFO_NOT_ENABLED
The address <address> of memory is not enabled as a FIFO location
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_FIFO_NOT_ENABLED_ARG_ADDRESS Integer

VMT_MSGID_FILE_WRITE_ERROR
Cannot open file ’<filename>’ to write coverage data to
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_FILE_WRITE_ERROR_ARG_FILENAME String

132 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_ILLEGAL_DISABLE _FIFOALLMEM_ENABLED

Cannot disable individual address when all the memory addresses are enabled as FIFO
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_ILLEGAL_ENABLE_FIFOALLMEM_ENABLED
All the memory addresses are already enabled as a FIFO

Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_ILLEGAL_OPERATION_IN_NON_RVM_MODE
Illegal notify operation while not in RVM mode

Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X
<command> : Integer parameter ’<parameter_name>" contains X (<value>)
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X_ARG_COMMAND String
VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X_ARG_PARAMETER_NAME String
VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X_ARG_VALUE Integer

VMT_MSGID_INVALID_ADDR

Invalid address: <address>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_ADDR_ARG_ADDRESS Integer

VMT_MSGID_INVALID_CHANNEL_ID
<command> : Invalid argument : channelld (<channel_id>) does not exist
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_CHANNEL_ID_ARG_COMMAND String
VMT_MSGID_INVALID_CHANNEL_ID_ARG_CHANNEL_ID Integer

VMT_MSGID_INVALID_CMD_HANDLE
Invalid command handle : <handle>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_CMD_HANDLE_ARG_HANDLE Integer

VMT_MSGID_INVALID_CROSS_STREAM_HANDLE
Handle : <handle> was not found in current stream <current_stream>, but as a non started command in stream <found_
stream>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_CROSS_STREAM_HANDLE_ARG_HANDLE Integer
VMT_MSGID_INVALID_CROSS_STREAM_HANDLE_ARG_CURRENT_STREAM Integer
VMT_MSGID_INVALID_CROSS_STREAM_HANDLE_ARG_FOUND_STREAM Integer

VMT_MSGID_INVALID_DATAWIDTH
Invalid data width: <width>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_DATAWIDTH_ARG_WIDTH Integer

March 20, 2008 Synopsys, Inc. 133

Chapter 3: VMT Common Command Reference

VMT_MSGID_INVALID DLYCLKS_ARG

<command> : Invalid argument : numDelayClocks (<delay_clock>) must be >=0

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_INVALID_DLYCLKS_ARG_ARG_COMMAND

VMT_MSGID_INVALID_DLYCLKS_ARG_ARG_DELAY_CLOCK

VMT_MSGID_INVALID_DRVCLKS_ARG

<command> : Invalid argument : numDriveClocks (<drive_clocks>) must be >=0

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_INVALID_DRVCLKS_ARG_ARG_COMMAND

VMT_MSGID_INVALID_DRVCLKS_ARG_ARG_DRIVE_CLOCKS

VMT_MSGID_INVALID_FIFO_INDEX

The index <index> is not a valid index in the FIFO at address <address>

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_INVALID_FIFO_INDEX_ARG_INDEX
VMT_MSGID_INVALID_FIFO_INDEX_ARG_ADDRESS

VMT_MSGID_INVALID_FORCE_BLOCK_PARAM
<command> : Invalid VMT_FORCE_CMD_BLOCKING value <value> use (ON/OFF)

Msg Type: VMT_MSG_ERROR
Fields:

VMT_MSGID_INVALID_FORCE_BLOCK_PARAM_ARG_COMMAND
VMT_MSGID_INVALID_FORCE_BLOCK_PARAM_ARG_VALUE

VMT_MSGID_INVALID _MSGID
’<command>’ got an invalid message id: <id>
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_MSGID_ARG_COMMAND
VMT_MSGID_INVALID_MSGID_ARG_ID

VMT_MSGID_INVALID_MSG_LOG_ID
<command> : Invalid message log id <log_id>.
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_MSG_LOG_ID_ARG_COMMAND
VMT_MSGID_INVALID_MSG_LOG_ID_ARG_LOG_ID

VMT_MSGID_INVALID_ NUM_WORDS
Invalid number of words: <words>

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_INVALID_NUM_WORDS_ARG_WORDS

VMT_MSGID_INVALID_PARAM

<command> : Invalid argument : parameter (<parameter>) must be >= 0

Msg Type: VMT_MSG_ERROR
Fields:

VMT_MSGID_INVALID_PARAM_ARG_COMMAND
VMT_MSGID_INVALID_PARAM_ARG_PARAMETER

134

Synopsys, Inc.

VMT User’s Manual

Field Type:
String
Integer

Field Type:

String
Integer

Field Type:

Integer
Integer

Field Type:

String
Integer

Field Type:
String
Integer

Field Type:

String
Integer

Field Type:

Integer

Field Type:

String
Integer

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_INVALID PATTERN_BASE

Invalid memory pattern base: "b<pattern_base>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_PATTERN_BASE_ARG_PATTERN_BASE Integer

VMT_MSGID_INVALID_PORTID
<command> : Invalid argument : portld (<port>) must be >= 0
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_PORTID_ARG_COMMAND String
VMT_MSGID_INVALID_PORTID_ARG_PORT Integer

VMT_MSGID_INVALID PORT_WIDTH
Model port *<port>> width *<width>" does not match the configured width ’ <config_width>’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_PORT_WIDTH_ARG_PORT String

VMT_MSGID_INVALID_PORT_WIDTH_ARG_WIDTH Integer
VMT_MSGID_INVALID_PORT_WIDTH_ARG_CONFIG_WIDTH Integer

VMT_MSGID_INVALID_REGISTER_ID
<command> : Invalid argument : registerld (<register_id>) must be >=0
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_REGISTER_ID_ARG_COMMAND String
VMT_MSGID_INVALID_REGISTER_ID_ARG_REGISTER_ID Integer

VMT_MSGID_INVALID _RESET _TYPE
<command> : Invalid argument : resetType (<reset_type>) must be either <supported_types>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_RESET_TYPE_ARG_COMMAND String
VMT_MSGID_INVALID_RESET_TYPE_ARG_RESET TYPE Integer
VMT_MSGID_INVALID_RESET_TYPE_ARG_SUPPORTED_TYPES String

VMT_MSGID_INVALID_RVM_XACT

Model got an invalid transaction on an input channel
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_INVALID_SID
<command> : Invalid streamld (<stream>)
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_SID_ARG_COMMAND String
VMT_MSGID_INVALID_SID_ARG_STREAM Integer

VMT_MSGID_INVALID_TIMEOUT_ARG
<command> : Invalid argument : timeout (<timeout>) must be >=0
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_INVALID_TIMEOUT_ARG_ARG_COMMAND String
VMT_MSGID_INVALID_TIMEOUT_ARG_ARG_TIMEOUT Integer

March 20, 2008 Synopsys, Inc. 135

Chapter 3: VMT Common Command Reference

VMT_MSGID_INVALID WATCHPOINT

watch_for’ got an invalid handle <handle>; stream will suspend indefinitely

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_INVALID_WATCHPOINT_ARG_HANDLE

VMT_MSGID_INVALID_WATCHPOINT _DATA_HANDLE
’<command>’ got an invalid watchpoint data handle <handle>.
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_DATA_HANDLE_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_DATA_HANDLE_ARG_HANDLE

VMT_MSGID_INVALID WATCHPOINT _DATA_POSITION
’<command>’ got an invalid watchpoint data position <position>.
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_DATA_POSITION_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_DATA_POSITION_ARG_POSITION

VMT_MSGID_INVALID_WATCHPOINT_DATA_STRING_LINE
’<command>’ got an invalid line (out of bounds): </ine>.

Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_DATA_STRING_LINE_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_DATA_STRING_LINE_ARG_LINE

VMT_MSGID_INVALID_WATCHPOINT_DATA_VEC_WORD
’<command>" got an invalid word (out of bounds): <word>.

Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_DATA_VEC_WORD_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_DATA_VEC_WORD_ARG_WORD

VMT_MSGID_INVALID_WATCHPOINT _HANDLE
’<command>’ got an invalid watchpoint handle <handle>.
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_HANDLE_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_HANDLE_ARG_HANDLE

VMT_MSGID_INVALID WATCHPOINT_LOGIC
’<command>’ got an invalid logic operator value: <operator>.
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_LOGIC_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_LOGIC_ARG_OPERATOR

VMT_MSGID_INVALID_WATCHPOINT_PROFILE
’<command>’ got an invalid profile: <profile>.

Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_INVALID_WATCHPOINT_PROFILE_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_PROFILE_ARG_PROFILE

136 Synopsys, Inc.

VMT User’s Manual

Field Type:

Integer

Field Type:

String
Integer

Field Type:

String
Integer

Field Type:

String
Integer

Field Type:
String
Integer

Field Type:

String
Integer

Field Type:
String
Integer

Field Type:

String
Integer

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_INVALID WATCHPOINT PROFILE_VALUE
’<command>’ got an invalid profile value: <value>.
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_INVALID_WATCHPOINT_PROFILE_VALUE_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_PROFILE_VALUE_ARG_VALUE

VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT

Field Type:
String
Integer

’<command>’ can not create a watchpoint by message id </abel>(<id>) because its notification events are suppressed.

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT_ARG_COMMAND
VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT_ARG_LABEL
VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT_ARG_ID

VMT_MSGID_LIC_SLI_ERROR
Encountered SLI error ’<error>’

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_LIC_SLI_ERROR_ARG_ERROR

VMT_MSGID_LIST_INDEX_ERROR

The location <location> for the FIFO at address <address> is not filled
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_LIST_INDEX_ERROR_ARG_LOCATION
VMT_MSGID_LIST_INDEX_ERROR_ARG_ADDRESS

VMT _MSGID_MATCHING_COV_DATA_ELEM_ERROR
Matching coverage data element ’<element>’ exists. Skipping this line
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_MATCHING_COV_DATA_ELEM_ERROR_ARG_ELEMENT

VMT_MSGID_OPEN_LOG_FAILURE

Unable to open Output mcd File (<filename>), model change dump file will not be created.

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_OPEN_LOG_FAILURE_ARG_FILENAME

VMT_MSGID_OPEN_MSG_LOG_FAILURE
Unable to open message log file "<filename>".

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_OPEN_MSG_LOG_FAILURE_ARG_FILENAME

VMT_MSGID_PORT_CONFLICT
set_port : Port <id> drive conflict; move set_port ahead of command you want to affect
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_PORT_CONFLICT_ARG_ID

March 20, 2008 Synopsys, Inc.

Field Type:

String
String
Integer

Field Type:
String

Field Type:

Integer
Integer

Field Type:
String

Field Type:
String

Field Type:
String

Field Type:

Integer

137

Chapter 3: VMT Common Command Reference

VMT_MSGID_PORT_NOT_CONNECTED
Model port ’<port>’ not connected

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_PORT_NOT_CONNECTED_ARG_PORT

VMT_MSGID_PROGRAMMABLE_COV_UNSUPPORTED
Programmable coverage is not supported, <method> request ignored.
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_PROGRAMMABLE_COV_UNSUPPORTED_ARG_METHOD

VMT_MSGID_SS_BEFORE_START
command <command> is not valid before ’start’
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_SS_BEFORE_START_ARG_COMMAND

VMT_MSGID_TRIGGER_ALREADY_ADDED

The trigger at location </ocation> for FIFO at address <address> is already present
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_TRIGGER_ALREADY_ADDED_ARG_LOCATION
VMT_MSGID_TRIGGER_ALREADY_ADDED_ARG_ADDRESS

VMT_MSGID_TRIGGER_NOT_PRESENT

Trigger is not present at index <index> in Fifo at address <address>
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_TRIGGER_NOT_PRESENT_ARG_INDEX
VMT_MSGID_TRIGGER_NOT_PRESENT_ARG_ADDRESS

VMT _MSGID_UNABLE_TO_FIND_REG_INST

Coverage instance not registered, unable to do unregisterInstance
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_UNALIGNED_ACCESS

Unaligned access: addr: <address>, data width: <width>
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_UNALIGNED_ACCESS_ARG_ADDRESS
VMT_MSGID_UNALIGNED_ACCESS_ARG_WIDTH

VMT_MSGID_UNKNOWN_FLUSH_TYPE
Unknown flush type (<type>)

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_UNKNOWN_FLUSH_TYPE_ARG_TYPE

VMT_MSGID_UNKNOWN_PATTERN
Unknown memory pattern

Msg Type: VMT_MSG_ERROR

Fields: None

138 Synopsys, Inc.

VMT User’s Manual

Field Type:
String

Field Type:
String

Field Type:
String

Field Type:

Integer
Integer

Field Type:

Integer
Integer

Field Type:

Integer
Integer

Field Type:

Integer

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_UNKNOWN_PORT
<operation> Port : Bad Port <id>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_UNKNOWN_PORT_ARG_OPERATION String
VMT_MSGID_UNKNOWN_PORT_ARG_ID Integer

VMT_MSGID_UNKNOWN_WATCHPOINT_ID
’create_watchpoint’ got an unknown watchpoint id : <id>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_UNKNOWN_WATCHPOINT_ID_ARG_ID Integer

VMT_MSGID_UNKNOWN_WATCHPOINT _TYPE

’create_watchpoint’ got an unknown watchpoint type : <type>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_UNKNOWN_WATCHPOINT_TYPE_ARG_TYPE Integer

VMT_MSGID_XACT_ALL_ITEMS_ILLEGAL_IN_DISALLOW
VMT_XACT_ALL_ITEMS is an illegal item identifier in disallow_enum_item
Msg Type: VMT_MSG_ERROR

Fields: None

VMT _MSGID_XACT_ALL_ZERO_WEIGHTS

At least one weight value for attribute ’<attribute>’ has to be greater than zero

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_ALL_ZERO_WEIGHTS_ARG_ATTRIBUTE String

VMT_MSGID_XACT_BAD_ATTR_USAGE
Attribute ’<attribute>’ can not be used in an expression
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_BAD_ATTR_USAGE_ARG_ATTRIBUTE String

VMT_MSGID_XACT_BAD_EXPR_ATTR
Attribute ’ <attribute>’ does not exsist on protocol transaction item with index <index>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_BAD_EXPR_ATTR_ARG_ATTRIBUTE String
VMT_MSGID_XACT_BAD_EXPR_ATTR_ARG_INDEX Integer

VMT_MSGID_XACT_BAD_REPEAT RANGE_WEIGHT

Invalid weight (<weight>) for repeat range, can not be negative

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_BAD_REPEAT_RANGE_WEIGHT_ARG_WEIGHT Integer

VMT_MSGID_XACT_BAD_THROTTLE_LIMIT
Bad throttle limits (low = <low_limit> high = <high_limit>); low limit must be less than high limit and greater than 0’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_BAD_THROTTLE_LIMIT_ARG_LOW_LIMIT Integer
VMT_MSGID_XACT_BAD_THROTTLE_LIMIT_ARG_HIGH_LIMIT Integer

March 20, 2008 Synopsys, Inc. 139

Chapter 3: VMT Common Command Reference VMT User’s Manual

VMT_MSGID_XACT_BITVEC_RANGE_ERROR
Low value (<low_value>) is greater than high value (<high_value>) for attribute ’ <attribute>
Msg Type: VMT_MSG_ERROR

i

Fields: Field Type:
VMT_MSGID_XACT_BITVEC_RANGE_ERROR_ARG_LOW_VALUE Integer
VMT_MSGID_XACT_BITVEC_RANGE_ERROR_ARG_HIGH_VALUE Integer
VMT_MSGID_XACT_BITVEC_RANGE_ERROR_ARG_ATTRIBUTE String

VMT_MSGID_XACT_CANNOT_GET_HIDDEN_CP
<coverage_point> is a hidden coverage point. Cannot get its reference.
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_CANNOT_GET_HIDDEN_CP_ARG_COVERAGE_POINT String

VMT_MSGID_XACT_CANNOT_MODIFY_READONLY_CP
<coverage_point> is a read-only coverage point. Cannot <operation>.
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_CANNOT_MODIFY_READONLY_CP_ARG_COVERAGE_POINT String
VMT_MSGID_XACT_CANNOT_MODIFY_READONLY_CP_ARG_OPERATION String

VMT_MSGID_XACT_CHOICE_LIMIT
Total number of items in a choice are more than max allowed : <max_items>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_CHOICE_LIMIT_ARG_MAX_ITEMS Integer

VMT_MSGID_XACT_CHOICE_NEG_WEIGHT
Weights for choice items can not be less than zero
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_XACT_CI_CLEARED

Item in the <xact> to be evaluated is missing. Finishing evaluation with a failure

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_CI_CLEARED_ARG_XACT String
Extended Msg Text and Args:

The item was probably removed by a clear_item command

Fields: None

VMT_MSGID_XACT_CONSTRAINTS_LIMIT
Total number of constraints for attribute ’<attribute>’ are more than max allowed : <max_weights>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_CONSTRAINTS_LIMIT_ARG_ATTRIBUTE String
VMT_MSGID_XACT_CONSTRAINTS_LIMIT_ARG_MAX_WEIGHTS Integer

VMT_MSGID_XACT_CONSTRAINT_ERROR
Invalid string ’ <constraint>" as part of constraint for attribute ’<attribute>’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_CONSTRAINT_ERROR_ARG_CONSTRAINT String
VMT_MSGID_XACT_CONSTRAINT_ERROR_ARG_ATTRIBUTE String

140 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_XACT_DIFF_ASSIGN_TYPES
Assignment types for attribute ’<attribute>’ are different; use only weights or only percentages
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_DIFF_ASSIGN_TYPES_ARG_ATTRIBUTE String

VMT_MSGID_XACT_EMPTY_CHOICE

Can not execute a choice with no transactions, or all weights set to ’0’
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_XACT_EMPTY_SEQUENCE
Can not execute a sequence with no transactions
Msg Type: VMT_MSG_ERROR

Fields: None

VMT_MSGID_XACT_ENUM_REUSE
Enumerated identifier *<value>’ for attribute ’<attribute>" can only be assigned weight once
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_ENUM_REUSE_ARG_VALUE String
VMT_MSGID_XACT_ENUM_REUSE_ARG_ATTRIBUTE String

VMT _MSGID_XACT_EXPR_C_ATTR_ERR

<message>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_EXPR_C_ATTR_ERR_ARG_MESSAGE String

VMT _MSGID_XACT_EXPR_C_EVAL_ERR

<message>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_EXPR_C_EVAL_ERR_ARG_MESSAGE String

VMT_MSGID_XACT_EXPR_C_EXPR_ERR

<message>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_EXPR_C_EXPR_ERR_ARG_MESSAGE String

VMT_MSGID_XACT_EXPR_C_PARSE_ERR
Attribute relations parse error : <message>

expression : ’<expression>’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_EXPR_C_PARSE_ERR_ARG_MESSAGE String
VMT_MSGID_XACT_EXPR_C_PARSE_ERR_ARG_EXPRESSION String

VMT _MSGID_XACT_EXPR _TYPE_MISMATCH
Attribute type mismatch for sub-expression <eid> in ’<expression>’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_EXPR_TYPE_MISMATCH_ARG_EID Integer
VMT_MSGID_XACT_EXPR_TYPE_MISMATCH_ARG_EXPRESSION String

March 20, 2008 Synopsys, Inc. 141

Chapter 3: VMT Common Command Reference VMT User’s Manual

VMT _MSGID_XACT_ILLEGAL_HIT LIMIT VAL
Illegal hit count limit (</imit>) for coverage point ’<coverage_point>’. Hit count limit must be a positive integer.
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_ILLEGAL_HIT_LIMIT_VAL_ARG_LIMIT Integer
VMT_MSGID_XACT_ILLEGAL_HIT_LIMIT_VAL_ARG_COVERAGE_POINT String

VMT_MSGID_XACT_ILLEGAL_NOTIFY_ID_VAL
Illegal notification ID (<id>) for coverage point ’<coverage_point>’. Notification ID must be a positive integer.
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_ILLEGAL_NOTIFY_ID_VAL_ARG_ID Integer
VMT_MSGID_XACT_ILLEGAL_NOTIFY_ID_VAL_ARG_COVERAGE_POINT String

VMT_MSGID_XACT_INFO_NO_GENERATOR

The info object with handle <handle>, does not contain a valid generator

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INFO_NO_GENERATOR_ARG_HANDLE Integer

VMT_MSGID_XACT_INFO_NO_HANDLE

The info object with handle <handle>, does not contain a valid data handle

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INFO_NO_HANDLE_ARG_HANDLE Integer

VMT_MSGID_XACT_INT_RANGE_ERROR
Low value (<low_value>) is greater than high value (<high_value>) for attribute ’ <attribute>’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INT_RANGE_ERROR_ARG_LOW_VALUE Integer
VMT_MSGID_XACT_INT_RANGE_ERROR_ARG_HIGH_VALUE Integer
VMT_MSGID_XACT_INT_RANGE_ERROR_ARG_ATTRIBUTE String

VMT_MSGID_XACT_INVALID_ATTR_NAME

Invalid attribute name : <name>

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INVALID_ATTR_NAME_ARG_NAME String

VMT_MSGID_XACT_INVALID_ATTR_TYPE_COMB
The attributte *<attribute>’ is not of type <xact_type>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INVALID_ATTR_TYPE_COMB_ARG_ATTRIBUTE String
VMT_MSGID_XACT_INVALID_ATTR_TYPE_COMB_ARG_XACT_TYPE String

VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET
After relationship applied, attribute (<attribute>) gets invalid value (d<dec_value>, Ox<hex_value>)
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET_ARG_ATTRIBUTE String

VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET_ARG_DEC_VALUE Integer
VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET_ARG_HEX_VALUE Integer

142 Synopsys, Inc. March 20, 2008

VMT User’s Manual

VMT_MSGID_XACT_INVALID_CHOICE_IDX
Invalid item index (<index>) for choice item

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_INVALID_CHOICE_IDX_ARG_INDEX

VMT_MSGID_XACT_INVALID_CONSTRAINT_ATTR
Invalid attribute name : <attribute> in constraint ’<constraint>’
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_INVALID_CONSTRAINT_ATTR_ARG_ATTRIBUTE
VMT_MSGID_XACT_INVALID_CONSTRAINT_ATTR_ARG_CONSTRAINT

VMT_MSGID_XACT_INVALID_ENUM_ID

Invalid enumerated identifier ’<value>’ for attribute ’<attribute>’
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_INVALID_ENUM_ID_ARG_VALUE
VMT_MSGID_XACT_INVALID_ENUM_ID_ARG_ATTRIBUTE

VMT_MSGID_XACT_INVALID_ENUM_VALUE
Invalid enumerated value <value> for attribute ’ <attribute>’
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_INVALID_ENUM_VALUE_ARG_VALUE
VMT_MSGID_XACT_INVALID_ENUM_VALUE_ARG_ATTRIBUTE

VMT_MSGID_XACT_INVALID_HANDLE
Invalid <type> : <handle>

Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_INVALID_HANDLE_ARG_TYPE
VMT_MSGID_XACT_INVALID_HANDLE_ARG_HANDLE

VMT_MSGID_XACT_INVALID_INFO_HANDLE
Invalid info object handle <handle>

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_INVALID_INFO_HANDLE_ARG_HANDLE

VMT_MSGID_XACT_INVALID_PAYLOAD_TYPE

Chapter 3:

Invalid payload type, method only valid on payload of type <payload_type>

Msg Type: VMT_MSG_ERROR
Fields:
VMT_MSGID_XACT_INVALID_PAYLOAD_TYPE_ARG_PAYLOAD_TYPE

VMT_MSGID_XACT_INVALID_SEQUENCE_IDX
Invalid item index (<index>) for sequence item

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_INVALID_SEQUENCE_IDX_ARG_INDEX

March 20, 2008 Synopsys, Inc.

VMT Common Command Reference

Field Type:

Integer

Field Type:

String
String

Field Type:
String
String

Field Type:

Integer
String

Field Type:
String
Integer

Field Type:

Integer

Field Type:
String

Field Type:

Integer

143

Chapter 3: VMT Common Command Reference VMT User’s Manual

VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT
Invalid throttle limit min/max (<low_limit>/<high_limit>); min must be atleast <min_Ilimit> and max > min
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT_ARG_LOW_LIMIT Integer
VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT_ARG_HIGH_LIMIT Integer
VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT_ARG_MIN_LIMIT Integer

VMT _MSGID_XACT_INVALID_WEIGHT _VALUE
Invalid weight (<weight>), can not be negative, for attribute ’ <attribute>’
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_INVALID_WEIGHT_VALUE_ARG_WEIGHT Integer
VMT_MSGID_XACT_INVALID_WEIGHT_VALUE_ARG_ATTRIBUTE String

VMT_MSGID_XACT_LONG_CONSTRAINT_ERR

Constraints string ’<constraint>’ to long; max 256 char

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_LONG_CONSTRAINT_ERR_ARG_CONSTRAINT String

VMT_MSGID_XACT_MULTIPLE_STARS

Only one star is valid in constraints for attribute ’<attribute>
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_MULTIPLE_STARS_ARG_ATTRIBUTE String

)

VMT_MSGID_XACT_NEGATIVE_WEIGHT
Negative weight (<weight>) on Attribute (<attribute>)
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_NEGATIVE_WEIGHT_ARG_WEIGHT Integer
VMT_MSGID_XACT_NEGATIVE_WEIGHT_ARG_ATTRIBUTE String

VMT_MSGID_XACT_NOT_A_PTG

Specified reference transaction (<index>) is not a protocol transaction

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_NOT_A_PTG_ARG_INDEX Integer

VMT_MSGID_XACT_NO_ATTR_NAME

No attribute name found in string ’<expression>’

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_NO_ATTR_NAME_ARG_EXPRESSION String

VMT_MSGID_XACT_NO_CP_BY_NAME
<coverage_point>: Coverage point by the name ’<name>’ could not be found in this model
Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_NO_CP_BY_NAME_ARG_COVERAGE_POINT String
VMT_MSGID_XACT_NO_CP_BY_NAME_ARG_NAME String

144 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3:

VMT _MSGID_XACT_NO_PAYLOAD_FILE
Could not open payload file : <filename>

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_NO_PAYLOAD_FILE_ARG_FILENAME

VMT_MSGID_XACT_NO_XACT_ON_STREAM

No start_transactions command is associated with streamld <stream_id>
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_NO_XACT_ON_STREAM_ARG_STREAM_ID

VMT_MSGID_XACT_OPEN_PLAYBACK_FAILURE
Unable to open random playback input file (<filename>)
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_OPEN_PLAYBACK_FAILURE_ARG_FILENAME

VMT_MSGID_XACT_PAYLOAD_READ_ERR
<message>

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_PAYLOAD_READ_ERR_ARG_MESSAGE

VMT_MSGID_XACT_PAYLOAD_WIDTH_ERR

Invalid width specification : <width>; should be between 1 and <max_width>
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_PAYLOAD_WIDTH_ERR_ARG_WIDTH
VMT_MSGID_XACT_PAYLOAD_WIDTH_ERR_ARG_MAX_WIDTH

VMT_MSGID_XACT_PERCENT_TOO_LARGE

Total weight values for attribute ’ <attribute>’ add up to more that 100 percent
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_PERCENT_TOO_LARGE_ARG_ATTRIBUTE

VMT_MSGID_XACT_PERCENT_TOO_SMALL

Total weight values for attribute ’ <attribute>’ does not add up to 100 percent
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_PERCENT_TOO_SMALL_ARG_ATTRIBUTE

VMT_MSGID_XACT_REFERENCE_INDEX

Invalid reference item index (<index>) for attribute relationship
Msg Type: VMT_MSG_ERROR

Fields:

VMT_MSGID_XACT_REFERENCE_INDEX_ARG_INDEX

VMT_MSGID_XACT_RELATION_INDEX
Invalid item index (<index>) for attribute relationship
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_RELATION_INDEX_ARG_INDEX

March 20, 2008 Synopsys, Inc.

VMT Common Command Reference

Field Type:
String

Field Type:

Integer

Field Type:
String

Field Type:
String

Field Type:

Integer
Integer

Field Type:
String

Field Type:
String

Field Type:

Integer

Field Type:

Integer

145

Chapter 3: VMT Common Command Reference

VMT_MSGID_XACT_REPEAT_RANGE_ERROR
Low value (<low>) is greater than high value (<high>) for repeat range
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_REPEAT_RANGE_ERROR_ARG_LOW
VMT_MSGID_XACT_REPEAT_RANGE_ERROR_ARG_HIGH

VMT_MSGID_XACT_REPEAT _RANGE_INDEX
Invalid item index (<index>) for repeat range

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_REPEAT_RANGE_INDEX_ARG_INDEX

VMT_MSGID_XACT_REPEAT _RANGE_ITEM
Could not add repeat range to last item

Msg Type: VMT_MSG_ERROR

Fields: None

VMT _MSGID_XACT_REPEAT_RANGE_LIMIT
Total number of repeat ranges are more than max allowed : <max_ranges>
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_REPEAT_RANGE_LIMIT_ARG_MAX_RANGES

VMT_MSGID_XACT_SC_MISSING_CONSTRAINTS
No constraints provided for attribute ’<attribute>’
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_SC_MISSING_CONSTRAINTS_ARG_ATTRIBUTE

VMT_MSGID_XACT_SC_TYPE_MISMATCH
Constraint value mismatch. Attribute ’<attribute>’ expects ’<type>’ type values
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_SC_TYPE_MISMATCH_ARG_ATTRIBUTE
VMT_MSGID_XACT_SC_TYPE_MISMATCH_ARG_TYPE

VMT_MSGID_XACT_STREAM_HAS_XACT
The streamld <stream_id> already has an active transaction generator
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_STREAM_HAS_XACT_ARG_STREAM_ID

VMT _MSGID_XACT_WRONG_GET_METHOD_ON_ATTR
Incorrect get method used to access attribute(<attribute>).

Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_WRONG_GET_METHOD_ON_ATTR_ARG_ATTRIBUTE

VMT_MSGID_XACT_WRONG_MODEL_TYPE
Transaction generator (<xact_type>) gets wrong model type input (<model>)
Msg Type: VMT_MSG_ERROR

Fields:
VMT_MSGID_XACT_WRONG_MODEL_TYPE_ARG_XACT_TYPE
VMT_MSGID_XACT_WRONG_MODEL_TYPE_ARG_MODEL

146 Synopsys, Inc.

VMT User’s Manual

Field Type:

Integer
Integer

Field Type:

Integer

Field Type:

Integer

Field Type:
String

Field Type:

String
String

Field Type:

Integer

Field Type:
String

Field Type:

String
String

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT _MSGID_XACT_WRONG_SET METHOD _ON_ATTR

Incorrect set method used to change attribute(<attribute>) weight.

Msg Type: VMT_MSG_ERROR

Fields: Field Type:
VMT_MSGID_XACT_WRONG_SET_METHOD_ON_ATTR_ARG_ATTRIBUTE String

VMT_MSGID_CCONTROL_AIX_IS_UNSUP

Unable To Run C Testench, C Control Is Not Supported On AIX.
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_CCONTROL_CINSTANCEID_NOT_SET

Unable To Run C Testbench, Clnstanceld Attribute Is Not Set. Please Set This Attribute And ReRun The Simulation.
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_CCONTROL_CMDHANDLE_FETCH_FAIL
Error While Running C Testbench, Unable To Fetch Cmd Handles From VmtModelManager.

<error>

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_CMDHANDLE_FETCH_FAIL_ARG_ERROR String

VMT_MSGID_CCONTROL_MTIVHDL_LINUX_IS_UNSUP

Unable To Run C Testench, In Order To Run C Control On Linux With MTI-Vhdl You Need To Use Vera Version 6 Or Higher.
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_CCONTROL_NOT_SUPPORTED
Model Instance(<name>) Does Not Support C Control.
Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_NOT_SUPPORTED_ARG_NAME String

VMT_MSGID_CCONTROL_PENDING_REG_FAILURE

<error>

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_PENDING_REG_FAILURE_ARG_ERROR String

VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR
Internal Error, Illegal Direction(<direction>) Encountered While Connecting To Port(<port>) With Width(<width>).
Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR_ARG_DIRECTION Integer
VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR_ARG_PORT String

VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR_ARG_WIDTH Integer

VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_IDX
Internal Error, Illegal Index(<index>) Passed To(<command>).
Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_IDX_ARG_INDEX Integer
VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_IDX_ARG_COMMAND String

March 20, 2008 Synopsys, Inc. 147

Chapter 3: VMT Common Command Reference VMT User’s Manual

VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL

Port Access Failure. Unable To Connect To Node(<node>) With Width(<width>) And Direction(<direction>).
Possible Causes Of Failure Are:

- Your Simulator Was Not Compiled With The Correct Options, Refer To The Users Guide For More Details.

- Path To The Port Is Specified Incorrectly , Refer To The Users Guide For More Details.

- Width or Direction Attributes Are Incorrectly Specified.

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL_ARG_NODE String
VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL_ARG_WIDTH Integer
VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL_ARG_DIRECTION String

VMT_MSGID_CCONTROL_RUN_C_TESTBENCH_FAIL
Unable To Run C Testbench.

<error>

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_RUN_C_TESTBENCH_FAIL_ARG_ERROR String

VMT_MSGID_CCONTROL_UNABLE_TO_RUN_C

Unable To Run C Testench, Registration For This Instance Failed. Turn On Warnings To See The Registration Failure.
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_CCONTROL_UNSUPP_MODEL_VERSION

Model(<name>) Is Not C Control Compatible.

Please Update The Model In Order To Use C Control.

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_UNSUPP_MODEL_VERSION_ARG_NAME String

VMT_MSGID_CCONTROL_VERA_CALLBACK_FAIL

<error>

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_CCONTROL_VERA_CALLBACK_FAIL_ARG_ERROR String

VMT_MSGID_EMPTY_INSTANCE_NAME

Invalid Instance Name, Instance Name cannot be an empty string.
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_LIC_ACTCHECKOUT_FAIL
ACT license checkout failure. ACT authorization not granted for model * <name>’
Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_LIC_ACTCHECKOUT_FAIL_ARG_NAME String

VMT_MSGID_LIC_CHECKOUT_FAIL

License checkout failure. Authorization not granted for model ’ <name>’

Msg Type: VMT_MSG_FATAL

Fields: Field Type:
VMT_MSGID_LIC_CHECKOUT_FAIL_ARG_NAME String

148 Synopsys, Inc. March 20, 2008

VMT User’s Manual Chapter 3:

VMT_MSGID_RESCOURE_ALLOCATION
Unable to allocate Semaphore/Region resources
Msg Type: VMT_MSG_FATAL

Fields: None

VMT _MSGID_XACT_BAD_ATTR_TYPE

Bad attribute type : <type> for attribute ’ <attribute>’
Msg Type: VMT_MSG_FATAL

Fields:

VMT_MSGID_XACT_BAD_ATTR_TYPE_ARG_TYPE
VMT_MSGID_XACT_BAD_ATTR_TYPE_ARG_ATTRIBUTE

VMT_MSGID_XACT_BAD_PLAYBACK_DATA
Invalid random playback data : *<data>’

Msg Type: VMT_MSG_FATAL

Fields:
VMT_MSGID_XACT_BAD_PLAYBACK_DATA_ARG_DATA

VMT_MSGID_XACT_BAD_XACT
Bad transaction handle

Msg Type: VMT_MSG_FATAL
Fields: None

VMT _MSGID_XACT_FATAL_FUNCTION

This method *<method>’ is not supported by this transaction type
Msg Type: VMT_MSG_FATAL

Fields:

VMT_MSGID_XACT_FATAL_FUNCTION_ARG_METHOD

VMT_MSGID_XACT_INVALID_ATTRID
Invalid attribute id <attr_id>

Msg Type: VMT_MSG_FATAL

Fields:
VMT_MSGID_XACT_INVALID_ATTRID_ARG_ATTR_ID

VMT_MSGID_XACT_PLAYBACK_SEQ_FAILURE

Random sequence in playback file does not match expected model sequence
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_XACT_RESERVED_ATTR_NAME
>ALL_ATTRIBUTES’ is a reserved attribute name
Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_XACT_RESERVED_ENUM_VALUE
*ALL_ITEMS’ is a reserved enumerated value

Msg Type: VMT_MSG_FATAL

Fields: None

VMT_MSGID_ALL_MEM_FULLEMPTY_ON

VMT Common Command Reference

Field Type:

Integer
String

Field Type:
String

Field Type:
String

Field Type:

Integer

The FIFO feature is set for all addresses. So the full and empty messages have been enabled for the entire address range

Msg Type: VMT_MSG_NOTE
Fields: None

March 20, 2008 Synopsys, Inc.

149

Chapter 3: VMT Common Command Reference

VMT_MSGID_CCONTROL_C_TESTBENCH_END
End C/C++ Testbench(<name>).

Msg Type: VMT_MSG_NOTE

Fields:
VMT_MSGID_CCONTROL_C_TESTBENCH_END_ARG_NAME

VMT_MSGID_CCONTROL_C_TESTBENCH_START
Start C/C++ Testbench(<name>).

Msg Type: VMT_MSG_NOTE

Fields:
VMT_MSGID_CCONTROL_C_TESTBENCH_START_ARG_NAME

VMT_MSGID_ENABLE_MSG_LOG_SUCCESS
Enabled message log file "<filename>" with log id <log_id>.
Msg Type: VMT_MSG_NOTE

Fields:

VMT_MSGID_ENABLE_MSG_LOG_SUCCESS_ARG_FILENAME
VMT_MSGID_ENABLE_MSG_LOG_SUCCESS_ARG_LOG_ID

VMT_MSGID_ENABLE_RVM_MODE
Enable RVM Mode

Msg Type: VMT_MSG_NOTE

Fields: None

VMT_MSGID_FIFO_EMPTY_AT_ADDRESS
The FIFO at address <address> is empty

Msg Type: VMT_MSG_NOTE

Fields:
VMT_MSGID_FIFO_EMPTY_AT_ADDRESS_ARG_ADDRESS

VMT_MSGID_FIFO_FULL_AT_ADDRESS
The FIFO at address <address> is full

Msg Type: VMT_MSG_NOTE

Fields:
VMT_MSGID_FIFO_FULL_AT_ADDRESS_ARG_ADDRESS

VMT_MSGID_INCR_COV_ON
Incremental coverage enabled
Msg Type: VMT_MSG_NOTE
Fields: None

VMT_MSGID_OPEN_MSG_LOG_SUCCESS

Opened message log file "<filename>" with log id <log_id>.
Msg Type: VMT_MSG_NOTE

Fields:

VMT_MSGID_OPEN_MSG_LOG_SUCCESS_ARG_FILENAME
VMT_MSGID_OPEN_MSG_LOG_SUCCESS_ARG_LOG_ID

VMT_MSGID_READ_TRIGGER_AT_FIFO_INDEX_ ADDRESS
Read Trigger at FIFO at index <index> at address <address> reached
Msg Type: VMT_MSG_NOTE

Fields:

VMT_MSGID_READ_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_INDEX
VMT_MSGID_READ_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_ADDRESS

150 Synopsys, Inc.

VMT User’s Manual

Field Type:
String

Field Type:
String

Field Type:

String
Integer

Field Type:

Integer

Field Type:

Integer

Field Type:
String
Handle

Field Type:

Integer
Integer

March 20, 2008

VMT User’s Manual Chapter 3: VMT Common Command Reference

VMT_MSGID_SUMMARY
Summary of messages:

<summar y>

Msg Type: VMT_MSG_NOTE

Fields: Field Type:
VMT_MSGID_SUMMARY_ARG_SUMMARY String

VMT_MSGID_WRITE_TRIGGER_AT FIFO_INDEX_ ADDRESS
Write Trigger at FIFO at index <index> at address <address> reached
Msg Type: VMT_MSG_NOTE

Fields: Field Type:
VMT_MSGID_WRITE_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_INDEX Integer
VMT_MSGID_WRITE_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_ADDRESS Integer

VMT_MSGID_XACT_COVERAGE_POINT _MATCHED
Coverage point ’<coverage_point>’ matched. Lasted over <clocks> clocks [<start> -> <stop>]
Msg Type: VMT_MSG_NOTE

Fields: Field Type:
VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_COVERAGE_POINT String

VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_CLOCKS Integer
VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_START Integer
VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_STOP Integer

VMT _MSGID_XACT_PAYLOAD_EXHAUSTED
Payload exhausted

Msg Type: VMT_MSG_NOTE

Fields: None

VMT_MSGID_XACT_REPORT

<report>

Msg Type: VMT_MSG_NOTE

Fields: Field Type:
VMT_MSGID_XACT_REPORT_ARG_REPORT String

VMT_MSGID_PRINT _MSG_TEXT

<text>

Msg Type: VMT_MSG_REPORT

Fields: Field Type:
VMT_MSGID_PRINT_MSG_TEXT_ARG_TEXT String

VMT_MSGID_TR_REPORT

<report>

Msg Type: VMT_MSG_REPORT

Fields: Field Type:
VMT_MSGID_TR_REPORT_ARG_REPORT String

VMT_MSGID_XACT_DUMP

<xact>

Msg Type: VMT_MSG_REPORT

Fields: Field Type:
VMT_MSGID_XACT_DUMP_ARG_XACT String

March 20, 2008 Synopsys, Inc. 151

Chapter 3: VMT Common Command Reference

VMT_MSGID_BLOCKED_SID
<command> : Command sent to blocked streamld (<stream>)
Msg Type: VMT_MSG_WARNING

Fields:
VMT_MSGID_BLOCKED_SID_ARG_COMMAND
VMT_MSGID_BLOCKED_SID_ARG_STREAM

VMT_MSGID_CCONTROL_REGISTER_FAIL
Model Registration Failed.

<error>

Msg Type: VMT_MSG_WARNING

Fields:
VMT_MSGID_CCONTROL_REGISTER_FAIL_ARG_ERROR

VMT_MSGID_FILE_READ_ERROR

VMT User’s Manual

Field Type:
String
Integer

Field Type:
String

Incremental coverage file ’<filename>’ not found with incremental coverage enabled. Ignore if this is the first test in the

testsuite
Msg Type: VMT_MSG_WARNING

Fields:
VMT_MSGID_FILE_READ_ERROR_ARG_FILENAME

VMT_MSGID_REPLAY_LOGGING_ON

Model Change Dump turned on, mcd file is ’<filename>’, simulation performance will be degraded.

Msg Type: VMT_MSG_WARNING

Fields:
VMT_MSGID_REPLAY_LOGGING_ON_ARG_FILENAME

VMT_MSGID_RVM_CH_TERMINATED
RVM channel input terminated due to <cause>
Msg Type: VMT_MSG_WARNING

Fields:
VMT_MSGID_RVM_CH_TERMINATED_ARG_CAUSE

VMT_MSGID_XACT_RANDOM_PLAYBACK_ON
This test is running with random playback input file (<filename>)
Msg Type: VMT_MSG_WARNING

Fields:
VMT_MSGID_XACT_RANDOM_PLAYBACK_ON_ARG_FILENAME

152 Synopsys, Inc.

Field Type:
String

Field Type:
String

Field Type:
String

Field Type:
String

March 20, 2008

VMT User's Manual Appendix A: Reporting Problems

A

Reporting Problems

If you think a VMT model is not working properly, you will need to contact a Synopsys Support
Center. Before you contact technical support, you need to create an “MCD” (Model Change Dump) file
for the model. The MCD file captures all of a model’s activity during simulation (that is, stimulus and
response) in ASCII text format. Transmitting a MCD file to technical support will help ensure accurate
diagnosis of the problem.

Creating MCD Files

In order to create an MCD file for a model instance, create a file called vmt_mcd.cfg in the directory
where you run the simulation. All VMT models look for this file and, if it exists, read its contents to
determine which instance to dump. You can select a model instance in any of the following ways:

1. Create an empty vimt_mcd.cfg file. If an empty vmt_mcd.cfg file exists, all instances in the
simulation will create MCD files. Each instance will dump debug activity into a file called
instance_name.mcd.

2. Specify the instance or instances for which you want to create MCD files in the vmt_mcd.cfg
file.

Example:

top.ul
top.u2.ul

This causes instance top.ul and top.u2.ul to create MCD files.

ZI°5>Note

How to identify VMT model instances is explained in the following section.

Identifying an Instance

Each model instance has a unique name, this instance name is different depending on if the model is
being driven from a HDL testbench or from a OpenVera testbench.

HDL Testbench Users

In this case the instance name is the full HDL path to the instance.

March 20, 2008 Synopsys, Inc. 153

Appendix A: Reporting Problems VMT User's Manual

Verilog Example
top.ul

Here the name of the Verilog module is “top” and it has an instance of the VMT model called “ul.”

VHDL Example
/top/ul
Again, the name of the VHDL entity is “top” and this it has an instance of the VMT model called “ul.”

TI5>Note

The path separator for most VHDL simulator is “/”, but the separator may be different for
you simulator. Refer to your simulator documentation for the correct path separator.

OpenVera Testbench Users
In this case the instance name is the full HDL path to the instance plus the name passed to the
constructor of the models instance.
Example
top.ul.ul

Here the name of the Verilog module is 'top' and this module has an instance of the VMT model and
this instance is called “ul.”

Also, when the instance was created, the string “ul” was passed to the new() constructor of the model.

Checking if MCD has been Enabled

When MCD has been turned on for a model instance, a message with Warning severity will be printed
from the model instance. For example:

DesignWare Model Warning from test top.ul.ul at 0:
Model Change Dump turned on, mcd file is 'test top.ul.ul.mcd',
simulation performance will be degraded.

Impact of Turning MCD On

When MCD has been turned on for a model, the model prints debug information to a file. As a result,
simulation performance is degraded.

154 Synopsys, Inc. March 20, 2008

VMT User’s Manual

Appendix B: Glossary

B

Glossary

active command queue

BFM

big-endian

blocked command stream

blocking command

command channel

command queue

command stream

configuration parameter

March 20, 2008

Command queue from which a model is currently taking
commands; see also command queue.

Bus-Functional Model — A simulation model used for early
hardware debug. A BFM simulates the bus cycles of a device
and models device pins, as well as certain on-chip functions.
See also Full-Functional Model.

Data format in which most significant bit comes first; normal
order of bytes in a word.

A command stream that is blocked due to a blocking
command issued to that stream The next command available
to the model begins executing after the blocking command
completes execution. See also command stream, blocking
command, and non-blocking command.

A command that prevents a testbench from advancing to next
testbench statement until the command completes. Blocking
commands typically return data to the testbench from the
model.

Manages command streams. Models with multiple command
channels execute command streams independently of each
other to provide full-duplex mode function.

First-in-first-out queue from which a model command
execution engine retrieves commands; see also active
command queue. VMT models support multiple command
queues.

The communication channel between the testbench and the
model.

A setting that defines a characteristic or behavior of a model.

Configuration parameters are used to define such things as
bus width, operating modes, and error injection.

Synopsys, Inc. 155

Appendix B: Glossary

constraint

cycle command

design_dir

DesignWare Library

endian

Full-Functional Model

HDL

initiator
instantiate

interface

IP

little-endian
model

monitor

non-blocking command

non-queued command

payload

protocol transaction

156

VMT User’s Manual

A limit applied to a constrained random test attribute, such as

a weighting factor, address range, data range, or control range.

A command that executes and causes HDL simulation time to
advance.

A directory structure containing all models required for a
design, all required HDL libraries, design testbenches, and
optionally, Synopsys developed testbench examples.

A collection of synthesizable IP and verification IP
components that is authorized by a single DesignWare
license. Products include SmartModels, VMT model suites,
DesignWare Memory Models, Building Block IP, and the
AMBA OCB synthesizable components.

Ordering of bytes in a multi-byte word; see also little-endian
and big-endian.

A simulation model that describes the complete range of
device behavior, including code execution. See also BFM.

Hardware Description Language — examples include Verilog
and VHDL.

Any model that generates bus or protocol transactions.
The act of placing a model into a design.

Set of ports and parameters that defines a connection point to
a component.

Intellectual property — A term that encompasses simulation
models and synthesizable blocks of HDL code.

Data format in which the least-significant bit comes first.
A verification IP component.

A model capable of logging model and bus activity, and
constrained random test transactions and responses.

A command that immediately allows the testbench thread to
advance to the next testbench statement.

A command that is not placed in the command queue for
execution. Non-queued commands execute immediately.

A file or random generator that can supply data to transactions
to be sent from the initiator to a responder. Lack of payload
causes a transaction generator to terminate.

Model-specific data transfers, such as read, write, burst read,
or burst write.

Synopsys, Inc.

March 20, 2008

VMT User’s Manual Appendix B: Glossary

queued command A command that is placed in the command queue for
execution. Queued commands execute in the order they were
placed in the queue.

responder Any model that reads or writes data in response to commands
from the initiator.

seed value A value inserted into a random number generator to assure a
unique starting value each time the generator is run.

transaction A protocol transaction, transaction sequence, or transaction
choice.
transaction sequence A set of protocol transactions or included transaction

sequences and/or transaction choices executed serially.

transaction choice A set of protocol transactions or included transaction
sequences and/or transaction choices. Each time the
transaction choice is executed, one of the transaction choice
branches is selected for execution.

VIP Verification Intellectual Property — A generic term for a
simulation model in any form.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or
model, allowing easier interfacing. Usually requires an extra,
sometimes automated, step to create the wrapper.

zero-cycle command A command that executes without HDL simulation time
advancing.

March 20, 2008 Synopsys, Inc. 157

Appendix B: Glossary VMT User's Manual

158 Synopsys, Inc. March 20, 2008

VMT User’s Manual

A

active command queue
definition 155

BFM
definition 155
big-endian
definition 155
blocked command stream
definition 155
blocking command
definition 155
Blocking commands, overview 14

C

Command
blocking 20, 32, 37
blocking, examples 33
blocking, overview 14
cycle 15
flow, in VMT 12
non-queued 11, 20
queue 20
queue, active 20
queue, explained 15
queue, turning on and off 15
queued 11, 37
queued, overview 14
reference 41-128
summary 37
zero cycle 14, 15, 20, 37
Command channel
multiple 20
command channel
definition 155
Command macros
VMT_CREATE_WP_MSG_ID 129
VMT_CREATE_WP_MSG_TYPE 128
Command queue
and simulation time 14
execution order 14
command queue
definition 155
Command stream 20
blocked 16

March 20, 2008 Synopsys, Inc.

Index

Index

controlling 16, 17
creating 11
default (initial) 16
multiple 18
pipelined 33

command stream

definition 155

Commands

block_stream 17, 42
close_msg_log 44
combine_watchpoints 46
create_watchpoint 48
create_watchpoint_range 51
delete_handle 53
destroy_watchpoint 54
disable_msg_feature 56
disable_msg_id 58
disable_msg_log 60
disable_msg_type 62
disable_watchpoint 64
enable_msg_feature 66
enable_msg_id 69
enable_msg_log 71
enable_msg_type 73
enable_type_ctrl_msg_id 76
enable_watchpoint 78
end_stream 80
get_config_param 81

get_port 83

get_version 87
get_watchpoint_data_bit 88
get_watchpoint_data_count 90
get_watchpoint_data_int 93
get_watchpoint_data_name 95
get_watchpoint_data_size 97
get_watchpoint_data_string 99
get_watchpoint_data_type 101
get_watchpoint_data_vec_<size> 103
get_watchpoint_trigger 106
new_stream 11

open_msg_log 110

print_msg 112
set_config_param 115
set_port 117
set_watchpoint_trigger 120
start 123

start_stream 124

watch_for 126

Configuration parameter 20

159

Index

configuration parameter
definition 155
Configuration parameter, VMT 115
constraint
definition 156
cycle command
definition 156

design_dir
definition 156

DesignWare Library
definition 156

Documentation
conventions 8
overview 7
related 7

endian
definition 156

F

Full-Functional Model
definition 156

HDL
definition 156

initiator
definition 156
instantiate
definition 156
interface
definition 156
IP
definition 156

little-endian
definition 156

M
MCD (Model Change Dump) file

160

Synopsys, Inc.

VMT User’s Manual

and model messages 154
creating a 153
impact of 154
instance name, OpenVera 154
instance name, Verilog or VHDL 153
introduction 153
Memory patterns 35
Messages
command 27
configuration 23
defaults 22
error 25
fatal 25
features 66
filtering 25
format 23
format, changing 24
introduction 21
log files 71
note 25
notify 26
protocol cycle 26
protocol error 27
protocol transaction 26
report 26
routing 23
testbench notification 26
timing 25
types 73
using as watchpoints 29
warning 25
X-handling 25
model
definition 156
monitor
definition 156

N

non-blocking command
definition 156

non-queued command
definition 156

Notifications
using as watchpoints 31

P
payload
definition 156

protocol transaction
definition 156

March 20, 2008

VMT User’s Manual Index

Q Z
queued command zero-cycle command
definition 157 definition 157
Queued commands, overview 14

R
responder
definition 157
Result handles 31
S
seed value
definition 157
T

Testbench
command sequence 12
execution threads 11
transaction
definition 157
transaction choice
definition 157
transaction sequence
definition 157

VIP
definition 157
VMT
commands, overview 14
overview 11
simulator control 12
VMT models
summary 20

W

Watchpoint 128, 129
Watchpoints

overview 28

using messages as 29

using notifications as 31
wrap

definition 157

wrapper
definition 157

March 20, 2008 Synopsys, Inc. 161

	Contents
	Tables
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions
	Table 1: Documentation Conventions

	Getting Help
	Additional Information

	Comments?

	1 VMT Introduction
	VMT Model Overview
	Figure 1: VMT Command Flow
	Simulator Control
	Figure 2: Simulation Control for VCS with NTB
	Figure 3: Simulation Control for HDL and Vera

	VMT Commands
	Queued and Blocking Commands
	Figure 4: Model Command Queuing

	Command Channels and Command Streams
	Figure 5: Using Multiple Command Streams

	Summary

	2 Using VMT Models
	Controlling Messages
	Defaults for Message Types and Features
	Controlling Message Routing
	Controlling Message Format and Configuration
	Message Filtering
	Message Types

	Watchpoints
	Using Messages as Watchpoints
	Table 2: Message Event Data

	Using Notifications as Watchpoints

	Managing Result Data
	Using Stream Blocking Commands
	Creating Pipelined Command Streams
	Resetting Models
	Memory Patterns
	Table 3: VMT Memory Patterns

	3 VMT Common Command Reference
	Command Summary
	Table 4: VMT Common Command Summary
	Table 5: VMT Common Command Macro Summary

	Command Reference
	VHDL Command Structure
	block_stream
	close_msg_log
	combine_watchpoints
	create_watchpoint
	Table 6: Create Watchpoint Types

	create_watchpoint_range
	delete_handle
	destroy_watchpoint
	disable_msg_feature
	disable_msg_id
	disable_msg_log
	disable_msg_type
	disable_watchpoint
	enable_msg_feature
	Table 7: Message Feature Constants
	Figure 6: Message Feature Text Example

	enable_msg_id
	enable_msg_log
	Table 8: Message Log IDs

	enable_msg_type
	Table 9: Predefined Message Types

	enable_type_ctrl_msg_id
	enable_watchpoint
	end_stream
	get_config_param
	get_port
	get_register
	get_version
	get_watchpoint_data_bit
	get_watchpoint_data_count
	Table 10: Predefined Watchpoint Event Data Members

	get_watchpoint_data_int
	get_watchpoint_data_name
	get_watchpoint_data_size
	get_watchpoint_data_string
	get_watchpoint_data_type
	Table 11: Predefined Watchpoint Data Types

	get_watchpoint_data_vec_<size>
	get_watchpoint_trigger
	new_stream
	open_msg_log
	print_msg
	reset_model
	Table 12: Reset Types

	set_config_param
	Table 13: Common Configuration Parameters

	set_port
	set_register
	set_watchpoint_trigger
	Table 14: Watchpoint Triggering Profile Configuration Types

	start
	start_stream
	watch_for
	Command Macro Reference
	VMT_CREATE_WP_MSG_TYPE
	VMT_CREATE_WP_MSG_ID

	VMT Messages
	VMT_MSGID_CMD_DONE_ARG_CMD String
	VMT_MSGID_CMD_DONE_ARG_TAG Integer
	VMT_MSGID_CMD_DONE_ARG_ARGLIST String
	VMT_MSGID_CMD_EXECUTE_ARG_CMD String
	VMT_MSGID_CMD_EXECUTE_ARG_TAG Integer
	VMT_MSGID_CMD_EXECUTE_ARG_ARGLIST String
	VMT_MSGID_CMD_QUEUED_ARG_CMD String
	VMT_MSGID_CMD_QUEUED_ARG_TAG Integer
	VMT_MSGID_CMD_QUEUED_ARG_ARGLIST String
	VMT_MSGID_ADDR_EXIST_AS_FIFO_ARG_ADDRESS Integer
	VMT_MSGID_BAD_WATCHPOINT_DATA_TYPE_ARG_COMMAND String
	VMT_MSGID_BAD_WATCHPOINT_DATA_TYPE_ARG_TYPE Integer
	VMT_MSGID_BLOCKING_CALLBACK_ARG_CALLBACK String
	VMT_MSGID_CFG_ILLEGAL_PARAM_ARG_PARAM_NAME String
	VMT_MSGID_CFG_ILLEGAL_PARAM_ARG_VALUE Integer
	VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_PARAM_NAME String
	VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_VALUE Integer
	VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_PARAM_NAME2 String
	VMT_MSGID_CFG_ILLEGAL_PARAM_COMBO_ARG_VALUE2 Integer
	VMT_MSGID_CFG_POST_START_ARG_PARAM_NAME String
	VMT_MSGID_CMD_BEFORE_START_ARG_COMMAND String
	VMT_MSGID_CMD_INVALID_PARAM_ARG_NAME String
	VMT_MSGID_CMD_INVALID_PARAM_ARG_ID Integer
	VMT_MSGID_CMD_NOT_SUPPORTED_ARG_NAME String
	VMT_MSGID_CONFIG_PARAM_ERR_ARG_COMMAND String
	VMT_MSGID_CONFIG_PARAM_ERR_ARG_PARAMETER Integer
	VMT_MSGID_COV_DATA_READ_FORMAT_ERROR_ARG_ELEMENT String
	VMT_MSGID_CP_EXISTS_ARG_COVERAGE_POINT String
	VMT_MSGID_DISABLE_FATAL_MSG_ARG_MESSAGE_ID Integer
	VMT_MSGID_ENABLE_MSG_LOG_FAILURE_ARG_FILENAME String
	VMT_MSGID_FAILED_AT_DISABLEFIFO_ADDRESS_ARG_LOCATION Integer
	VMT_MSGID_FIFO_NOT_ENABLED_ARG_ADDRESS Integer
	VMT_MSGID_FILE_WRITE_ERROR_ARG_FILENAME String
	VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X_ARG_COMMAND String
	VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X_ARG_PARAMETER_NAME String
	VMT_MSGID_INTEGER_PARAMETER_CONTAINS_X_ARG_VALUE Integer
	VMT_MSGID_INVALID_ADDR_ARG_ADDRESS Integer
	VMT_MSGID_INVALID_CHANNEL_ID_ARG_COMMAND String
	VMT_MSGID_INVALID_CHANNEL_ID_ARG_CHANNEL_ID Integer
	VMT_MSGID_INVALID_CMD_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_INVALID_CROSS_STREAM_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_INVALID_CROSS_STREAM_HANDLE_ARG_CURRENT_STREAM Integer
	VMT_MSGID_INVALID_CROSS_STREAM_HANDLE_ARG_FOUND_STREAM Integer
	VMT_MSGID_INVALID_DATAWIDTH_ARG_WIDTH Integer
	VMT_MSGID_INVALID_DLYCLKS_ARG_ARG_COMMAND String
	VMT_MSGID_INVALID_DLYCLKS_ARG_ARG_DELAY_CLOCK Integer
	VMT_MSGID_INVALID_DRVCLKS_ARG_ARG_COMMAND String
	VMT_MSGID_INVALID_DRVCLKS_ARG_ARG_DRIVE_CLOCKS Integer
	VMT_MSGID_INVALID_FIFO_INDEX_ARG_INDEX Integer
	VMT_MSGID_INVALID_FIFO_INDEX_ARG_ADDRESS Integer
	VMT_MSGID_INVALID_FORCE_BLOCK_PARAM_ARG_COMMAND String
	VMT_MSGID_INVALID_FORCE_BLOCK_PARAM_ARG_VALUE Integer
	VMT_MSGID_INVALID_MSGID_ARG_COMMAND String
	VMT_MSGID_INVALID_MSGID_ARG_ID Integer
	VMT_MSGID_INVALID_MSG_LOG_ID_ARG_COMMAND String
	VMT_MSGID_INVALID_MSG_LOG_ID_ARG_LOG_ID Integer
	VMT_MSGID_INVALID_NUM_WORDS_ARG_WORDS Integer
	VMT_MSGID_INVALID_PARAM_ARG_COMMAND String
	VMT_MSGID_INVALID_PARAM_ARG_PARAMETER Integer
	VMT_MSGID_INVALID_PATTERN_BASE_ARG_PATTERN_BASE Integer
	VMT_MSGID_INVALID_PORTID_ARG_COMMAND String
	VMT_MSGID_INVALID_PORTID_ARG_PORT Integer
	VMT_MSGID_INVALID_PORT_WIDTH_ARG_PORT String
	VMT_MSGID_INVALID_PORT_WIDTH_ARG_WIDTH Integer
	VMT_MSGID_INVALID_PORT_WIDTH_ARG_CONFIG_WIDTH Integer
	VMT_MSGID_INVALID_REGISTER_ID_ARG_COMMAND String
	VMT_MSGID_INVALID_REGISTER_ID_ARG_REGISTER_ID Integer
	VMT_MSGID_INVALID_RESET_TYPE_ARG_COMMAND String
	VMT_MSGID_INVALID_RESET_TYPE_ARG_RESET_TYPE Integer
	VMT_MSGID_INVALID_RESET_TYPE_ARG_SUPPORTED_TYPES String
	VMT_MSGID_INVALID_SID_ARG_COMMAND String
	VMT_MSGID_INVALID_SID_ARG_STREAM Integer
	VMT_MSGID_INVALID_TIMEOUT_ARG_ARG_COMMAND String
	VMT_MSGID_INVALID_TIMEOUT_ARG_ARG_TIMEOUT Integer
	VMT_MSGID_INVALID_WATCHPOINT_ARG_HANDLE Integer
	VMT_MSGID_INVALID_WATCHPOINT_DATA_HANDLE_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_DATA_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_INVALID_WATCHPOINT_DATA_POSITION_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_DATA_POSITION_ARG_POSITION Integer
	VMT_MSGID_INVALID_WATCHPOINT_DATA_STRING_LINE_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_DATA_STRING_LINE_ARG_LINE Integer
	VMT_MSGID_INVALID_WATCHPOINT_DATA_VEC_WORD_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_DATA_VEC_WORD_ARG_WORD Integer
	VMT_MSGID_INVALID_WATCHPOINT_HANDLE_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_INVALID_WATCHPOINT_LOGIC_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_LOGIC_ARG_OPERATOR Integer
	VMT_MSGID_INVALID_WATCHPOINT_PROFILE_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_PROFILE_ARG_PROFILE Integer
	VMT_MSGID_INVALID_WATCHPOINT_PROFILE_VALUE_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_PROFILE_VALUE_ARG_VALUE Integer
	VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT_ARG_COMMAND String
	VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT_ARG_LABEL String
	VMT_MSGID_INVALID_WATCHPOINT_SUPPRESSED_EVENT_ARG_ID Integer
	VMT_MSGID_LIC_SLI_ERROR_ARG_ERROR String
	VMT_MSGID_LIST_INDEX_ERROR_ARG_LOCATION Integer
	VMT_MSGID_LIST_INDEX_ERROR_ARG_ADDRESS Integer
	VMT_MSGID_MATCHING_COV_DATA_ELEM_ERROR_ARG_ELEMENT String
	VMT_MSGID_OPEN_LOG_FAILURE_ARG_FILENAME String
	VMT_MSGID_OPEN_MSG_LOG_FAILURE_ARG_FILENAME String
	VMT_MSGID_PORT_CONFLICT_ARG_ID Integer
	VMT_MSGID_PORT_NOT_CONNECTED_ARG_PORT String
	VMT_MSGID_PROGRAMMABLE_COV_UNSUPPORTED_ARG_METHOD String
	VMT_MSGID_SS_BEFORE_START_ARG_COMMAND String
	VMT_MSGID_TRIGGER_ALREADY_ADDED_ARG_LOCATION Integer
	VMT_MSGID_TRIGGER_ALREADY_ADDED_ARG_ADDRESS Integer
	VMT_MSGID_TRIGGER_NOT_PRESENT_ARG_INDEX Integer
	VMT_MSGID_TRIGGER_NOT_PRESENT_ARG_ADDRESS Integer
	VMT_MSGID_UNALIGNED_ACCESS_ARG_ADDRESS Integer
	VMT_MSGID_UNALIGNED_ACCESS_ARG_WIDTH Integer
	VMT_MSGID_UNKNOWN_FLUSH_TYPE_ARG_TYPE Integer
	VMT_MSGID_UNKNOWN_PORT_ARG_OPERATION String
	VMT_MSGID_UNKNOWN_PORT_ARG_ID Integer
	VMT_MSGID_UNKNOWN_WATCHPOINT_ID_ARG_ID Integer
	VMT_MSGID_UNKNOWN_WATCHPOINT_TYPE_ARG_TYPE Integer
	VMT_MSGID_XACT_ALL_ZERO_WEIGHTS_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_BAD_ATTR_USAGE_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_BAD_EXPR_ATTR_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_BAD_EXPR_ATTR_ARG_INDEX Integer
	VMT_MSGID_XACT_BAD_REPEAT_RANGE_WEIGHT_ARG_WEIGHT Integer
	VMT_MSGID_XACT_BAD_THROTTLE_LIMIT_ARG_LOW_LIMIT Integer
	VMT_MSGID_XACT_BAD_THROTTLE_LIMIT_ARG_HIGH_LIMIT Integer
	VMT_MSGID_XACT_BITVEC_RANGE_ERROR_ARG_LOW_VALUE Integer
	VMT_MSGID_XACT_BITVEC_RANGE_ERROR_ARG_HIGH_VALUE Integer
	VMT_MSGID_XACT_BITVEC_RANGE_ERROR_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_CANNOT_GET_HIDDEN_CP_ARG_COVERAGE_POINT String
	VMT_MSGID_XACT_CANNOT_MODIFY_READONLY_CP_ARG_COVERAGE_POINT String
	VMT_MSGID_XACT_CANNOT_MODIFY_READONLY_CP_ARG_OPERATION String
	VMT_MSGID_XACT_CHOICE_LIMIT_ARG_MAX_ITEMS Integer
	VMT_MSGID_XACT_CI_CLEARED_ARG_XACT String
	VMT_MSGID_XACT_CONSTRAINTS_LIMIT_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_CONSTRAINTS_LIMIT_ARG_MAX_WEIGHTS Integer
	VMT_MSGID_XACT_CONSTRAINT_ERROR_ARG_CONSTRAINT String
	VMT_MSGID_XACT_CONSTRAINT_ERROR_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_DIFF_ASSIGN_TYPES_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_ENUM_REUSE_ARG_VALUE String
	VMT_MSGID_XACT_ENUM_REUSE_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_EXPR_C_ATTR_ERR_ARG_MESSAGE String
	VMT_MSGID_XACT_EXPR_C_EVAL_ERR_ARG_MESSAGE String
	VMT_MSGID_XACT_EXPR_C_EXPR_ERR_ARG_MESSAGE String
	VMT_MSGID_XACT_EXPR_C_PARSE_ERR_ARG_MESSAGE String
	VMT_MSGID_XACT_EXPR_C_PARSE_ERR_ARG_EXPRESSION String
	VMT_MSGID_XACT_EXPR_TYPE_MISMATCH_ARG_EID Integer
	VMT_MSGID_XACT_EXPR_TYPE_MISMATCH_ARG_EXPRESSION String
	VMT_MSGID_XACT_ILLEGAL_HIT_LIMIT_VAL_ARG_LIMIT Integer
	VMT_MSGID_XACT_ILLEGAL_HIT_LIMIT_VAL_ARG_COVERAGE_POINT String
	VMT_MSGID_XACT_ILLEGAL_NOTIFY_ID_VAL_ARG_ID Integer
	VMT_MSGID_XACT_ILLEGAL_NOTIFY_ID_VAL_ARG_COVERAGE_POINT String
	VMT_MSGID_XACT_INFO_NO_GENERATOR_ARG_HANDLE Integer
	VMT_MSGID_XACT_INFO_NO_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_XACT_INT_RANGE_ERROR_ARG_LOW_VALUE Integer
	VMT_MSGID_XACT_INT_RANGE_ERROR_ARG_HIGH_VALUE Integer
	VMT_MSGID_XACT_INT_RANGE_ERROR_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_INVALID_ATTR_NAME_ARG_NAME String
	VMT_MSGID_XACT_INVALID_ATTR_TYPE_COMB_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_INVALID_ATTR_TYPE_COMB_ARG_XACT_TYPE String
	VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET_ARG_DEC_VALUE Integer
	VMT_MSGID_XACT_INVALID_ATTR_VALUE_SET_ARG_HEX_VALUE Integer
	VMT_MSGID_XACT_INVALID_CHOICE_IDX_ARG_INDEX Integer
	VMT_MSGID_XACT_INVALID_CONSTRAINT_ATTR_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_INVALID_CONSTRAINT_ATTR_ARG_CONSTRAINT String
	VMT_MSGID_XACT_INVALID_ENUM_ID_ARG_VALUE String
	VMT_MSGID_XACT_INVALID_ENUM_ID_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_INVALID_ENUM_VALUE_ARG_VALUE Integer
	VMT_MSGID_XACT_INVALID_ENUM_VALUE_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_INVALID_HANDLE_ARG_TYPE String
	VMT_MSGID_XACT_INVALID_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_XACT_INVALID_INFO_HANDLE_ARG_HANDLE Integer
	VMT_MSGID_XACT_INVALID_PAYLOAD_TYPE_ARG_PAYLOAD_TYPE String
	VMT_MSGID_XACT_INVALID_SEQUENCE_IDX_ARG_INDEX Integer
	VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT_ARG_LOW_LIMIT Integer
	VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT_ARG_HIGH_LIMIT Integer
	VMT_MSGID_XACT_INVALID_THROTTLE_LIMIT_ARG_MIN_LIMIT Integer
	VMT_MSGID_XACT_INVALID_WEIGHT_VALUE_ARG_WEIGHT Integer
	VMT_MSGID_XACT_INVALID_WEIGHT_VALUE_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_LONG_CONSTRAINT_ERR_ARG_CONSTRAINT String
	VMT_MSGID_XACT_MULTIPLE_STARS_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_NEGATIVE_WEIGHT_ARG_WEIGHT Integer
	VMT_MSGID_XACT_NEGATIVE_WEIGHT_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_NOT_A_PTG_ARG_INDEX Integer
	VMT_MSGID_XACT_NO_ATTR_NAME_ARG_EXPRESSION String
	VMT_MSGID_XACT_NO_CP_BY_NAME_ARG_COVERAGE_POINT String
	VMT_MSGID_XACT_NO_CP_BY_NAME_ARG_NAME String
	VMT_MSGID_XACT_NO_PAYLOAD_FILE_ARG_FILENAME String
	VMT_MSGID_XACT_NO_XACT_ON_STREAM_ARG_STREAM_ID Integer
	VMT_MSGID_XACT_OPEN_PLAYBACK_FAILURE_ARG_FILENAME String
	VMT_MSGID_XACT_PAYLOAD_READ_ERR_ARG_MESSAGE String
	VMT_MSGID_XACT_PAYLOAD_WIDTH_ERR_ARG_WIDTH Integer
	VMT_MSGID_XACT_PAYLOAD_WIDTH_ERR_ARG_MAX_WIDTH Integer
	VMT_MSGID_XACT_PERCENT_TOO_LARGE_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_PERCENT_TOO_SMALL_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_REFERENCE_INDEX_ARG_INDEX Integer
	VMT_MSGID_XACT_RELATION_INDEX_ARG_INDEX Integer
	VMT_MSGID_XACT_REPEAT_RANGE_ERROR_ARG_LOW Integer
	VMT_MSGID_XACT_REPEAT_RANGE_ERROR_ARG_HIGH Integer
	VMT_MSGID_XACT_REPEAT_RANGE_INDEX_ARG_INDEX Integer
	VMT_MSGID_XACT_REPEAT_RANGE_LIMIT_ARG_MAX_RANGES Integer
	VMT_MSGID_XACT_SC_MISSING_CONSTRAINTS_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_SC_TYPE_MISMATCH_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_SC_TYPE_MISMATCH_ARG_TYPE String
	VMT_MSGID_XACT_STREAM_HAS_XACT_ARG_STREAM_ID Integer
	VMT_MSGID_XACT_WRONG_GET_METHOD_ON_ATTR_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_WRONG_MODEL_TYPE_ARG_XACT_TYPE String
	VMT_MSGID_XACT_WRONG_MODEL_TYPE_ARG_MODEL String
	VMT_MSGID_XACT_WRONG_SET_METHOD_ON_ATTR_ARG_ATTRIBUTE String
	VMT_MSGID_CCONTROL_CMDHANDLE_FETCH_FAIL_ARG_ERROR String
	VMT_MSGID_CCONTROL_NOT_SUPPORTED_ARG_NAME String
	VMT_MSGID_CCONTROL_PENDING_REG_FAILURE_ARG_ERROR String
	VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR_ARG_DIRECTION Integer
	VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR_ARG_PORT String
	VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_DIR_ARG_WIDTH Integer
	VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_IDX_ARG_INDEX Integer
	VMT_MSGID_CCONTROL_PORT_ACC_ILLEGAL_IDX_ARG_COMMAND String
	VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL_ARG_NODE String
	VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL_ARG_WIDTH Integer
	VMT_MSGID_CCONTROL_PORT_ACC_SIG_CONN_FAIL_ARG_DIRECTION String
	VMT_MSGID_CCONTROL_RUN_C_TESTBENCH_FAIL_ARG_ERROR String
	VMT_MSGID_CCONTROL_UNSUPP_MODEL_VERSION_ARG_NAME String
	VMT_MSGID_CCONTROL_VERA_CALLBACK_FAIL_ARG_ERROR String
	VMT_MSGID_LIC_ACTCHECKOUT_FAIL_ARG_NAME String
	VMT_MSGID_LIC_CHECKOUT_FAIL_ARG_NAME String
	VMT_MSGID_XACT_BAD_ATTR_TYPE_ARG_TYPE Integer
	VMT_MSGID_XACT_BAD_ATTR_TYPE_ARG_ATTRIBUTE String
	VMT_MSGID_XACT_BAD_PLAYBACK_DATA_ARG_DATA String
	VMT_MSGID_XACT_FATAL_FUNCTION_ARG_METHOD String
	VMT_MSGID_XACT_INVALID_ATTRID_ARG_ATTR_ID Integer
	VMT_MSGID_CCONTROL_C_TESTBENCH_END_ARG_NAME String
	VMT_MSGID_CCONTROL_C_TESTBENCH_START_ARG_NAME String
	VMT_MSGID_ENABLE_MSG_LOG_SUCCESS_ARG_FILENAME String
	VMT_MSGID_ENABLE_MSG_LOG_SUCCESS_ARG_LOG_ID Integer
	VMT_MSGID_FIFO_EMPTY_AT_ADDRESS_ARG_ADDRESS Integer
	VMT_MSGID_FIFO_FULL_AT_ADDRESS_ARG_ADDRESS Integer
	VMT_MSGID_OPEN_MSG_LOG_SUCCESS_ARG_FILENAME String
	VMT_MSGID_OPEN_MSG_LOG_SUCCESS_ARG_LOG_ID Handle
	VMT_MSGID_READ_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_INDEX Integer
	VMT_MSGID_READ_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_ADDRESS Integer
	VMT_MSGID_SUMMARY_ARG_SUMMARY String
	VMT_MSGID_WRITE_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_INDEX Integer
	VMT_MSGID_WRITE_TRIGGER_AT_FIFO_INDEX_ADDRESS_ARG_ADDRESS Integer
	VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_COVERAGE_POINT String
	VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_CLOCKS Integer
	VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_START Integer
	VMT_MSGID_XACT_COVERAGE_POINT_MATCHED_ARG_STOP Integer
	VMT_MSGID_XACT_REPORT_ARG_REPORT String
	VMT_MSGID_PRINT_MSG_TEXT_ARG_TEXT String
	VMT_MSGID_TR_REPORT_ARG_REPORT String
	VMT_MSGID_XACT_DUMP_ARG_XACT String
	VMT_MSGID_BLOCKED_SID_ARG_COMMAND String
	VMT_MSGID_BLOCKED_SID_ARG_STREAM Integer
	VMT_MSGID_CCONTROL_REGISTER_FAIL_ARG_ERROR String
	VMT_MSGID_FILE_READ_ERROR_ARG_FILENAME String
	VMT_MSGID_REPLAY_LOGGING_ON_ARG_FILENAME String
	VMT_MSGID_RVM_CH_TERMINATED_ARG_CAUSE String
	VMT_MSGID_XACT_RANDOM_PLAYBACK_ON_ARG_FILENAME String

	A Reporting Problems
	Creating MCD Files
	Identifying an Instance
	HDL Testbench Users
	OpenVera Testbench Users

	Checking if MCD has been Enabled
	Impact of Turning MCD On

	B Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	V
	W
	Z

