
Formal Analysis of Privacy for Anonymous
Location Based Services

Morten Dahl1, Stéphanie Delaune2, and Graham Steel2

1 Department of Computer Science, Aalborg University
2 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. We propose a framework for formal analysis of privacy in location
based services such as anonymous electronic toll collection. We give a formal
definition of privacy, and apply it to the VPriv scheme for vehicular services. We
analyse the resulting model using the ProVerif tool, concluding that our privacy
property holds only if certain conditions are met by the implementation. Our
analysis includes some novel features such as the formal modelling of privacy
for a protocol that relies on interactive zero-knowledge proofs of knowledge and
list permutations.

1 Introduction

The sophistication and quantity of embedded devices in modern vehicles is grow-
ing rapidly. Ad-hoc wireless networking is envisioned as one of the next big
steps, with various car-to-infrastructure and car-to-car communication applica-
tions planned [12, 14]. Many of these applications are location-based, and pro-
viding the precise position of the vehicle is essential to the quality of the service
provided. As these applications are deployed, privacy concerns naturally emerge.

Some of the location-based services already in widespread use today, such as
RFID tag based electronic toll collection systems, offer little privacy protection
to drivers [16]. By using the same fixed identifying tag whenever they have to
pay a toll fee, it becomes trivial to later trace the routes of any driver given the
database of payments. Little is gained by using a fixed random tag instead of
a real-world identifier such as the license plate. Although the tolling database
may not be publicly available, the privacy of drivers is still at risk of exploitation
from within the toll company.

The more widespread employment of such systems, combined with the pos-
sibility of moving them to the emerging general framework for network commu-
nication, increases the need for privacy oriented systems. In this paper, we bring
the privacy analysis of location-based services into the world of formal methods,
leveraging previous work on privacy for vehicular mix-zones [10], electronic vot-
ing [11, 15], and RFID tags [3, 8]. In particular, we concentrate on VPriv [7], a
proposed scheme for building location-based services using zero-knowledge tech-
niques, designed to ensure that the paths of drivers are not revealed to the service
providers, while nonetheless preventing drivers from reporting fake paths. We use
the formal notion of indistinguishability to formalise privacy and carry out the

analysis with the aid of the protocol analysis tool ProVerif [5]. In particular,
we will use a notion of trace equivalence, after explaining why the more usual
notion of observational equivalence is not suitable in this setting. To the best of
our knowledge this is the first use of the tool for analysing a protocol that relies
on interactive zero-knowledge proofs of knowledge. Note that contrary to non-
interactive ones that can be abstracted by means of an appropriate equational
theory (see e.g. [4]), interactive proofs cannot since the interactions between the
participants reveal some information that has to be considered when we carry
out the privacy analysis.

2 The VPriv Scheme

In this section we introduce the VPriv scheme [7], a protocol that offers a variety
of location-based vehicular services such as “pay-as-you-go” insurance, electronic
toll collection, etc. Its goal is to both protect the privacy of drivers whilst en-
suring that they cannot cheat service providers by, for instance, paying a lower
price.

2.1 Description

The participants are a set of users with vehicles and a service provider. We
assume that time is split into periods. The following three phases detailed below
are executed in order by each vehicle during each period. At the start of a period,
the vehicle generates fresh random tags for the period and registers commitments
to encrypted versions of these with the service provider (registration phase).
Then, whenever the vehicle must emit a message containing an identifier during
the period it will choose a new tag from its set of fresh tags. The tags are emitted
in clear and the service provider records all tags v emitted by all vehicles together
with the emission location l and a timestamp t, building a database containing
a mixture of tuples (v, t, l) (driving phase). Finally, at the end of a period, each
user initiates a protocol with the service provider in order to compute and settle
the payable debts (reconciliation phase).

In the following, [M]d denotes a commitment to message M that can only
be revealed with opening key d. Moreover, it is assumed to be a homomorphic
commitment scheme, thus we have that:

[M1]d1 · [M2]d2 = [M1 + M2]d1+d2 .

We further use fk(M) to denote a deterministic one-way function f that is
parametrized by a key k. Note that knowing fk(M) and k does not allow one to
retrieve M but only to compute a new encryption matching fk(M).

Phase 1 - Registration. Each vehicle generates a set V of fresh tags v1, . . . , vn

and a set of fresh keys k1, . . . , ks for f . It furthermore generates opening keys
dk1, . . . , dks and dv1

1 , . . . , dvs
n. It then forms s round packages

V → S : ri =
(
id, i, [ki]dki , [fki(v1)]dvi

1
, . . . , [fki(vn)]dvi

n

)

consisting of the round number i ∈ [1; s], a commitment to the round key ki,
and commitments to encryptions of the vehicle’s tags under the round key. The
vehicle sends the round packages to the server together with a fixed identifier id
for the user, such as the vehicle’s license plate.

Phase 2 - Driving. Each vehicle emits its tags v1, . . . , vn in random order along
its route. The server records these tags along with the location l where it was
emitted and a timestamp t.

Phase 3 - Reconciliation. The server starts the reconciliation phase by sending
the list W of all m tags wj in its database together with their associated cost
cj , i.e. W contains all tags emitted by all vehicles during the period. Then the
vehicle computes C as the sum of the costs of its own tags contained in W and
sends this back to the server

S → V : W =
[
(w1, c1), . . . , (wm, cm)

]
V → S : id, C

The remaining part of the protocol consists of several rounds. For each round
i, the vehicle generates opening keys dci

1, . . . , dci
m. Then, it processes all pairs

in W by encrypting the tag wj under its round key ki and committing to the
associated cost cj using opening key dci

j . It permutes the pairs using a random
permutation σi and sends the resulting list U i to S together with its identifier.
Then, the server decides to either verify that U i is indeed the correct processing
of W under ki and dci

1, . . . , dci
m or to verify that the user has correctly calculated

the cost C. In the former case it sends bi = 0 to the vehicle and in the later case
bi = 1.

V → S : id, U i =
[(

fki(wσi(1)), [cσi(1)]dci
1

)
, . . . ,

(
fki(wσi(m)), [cσi(m)]dci

m

)]
S → V : bi

V → S :

{
id, dki, dci

1, . . . , dci
m if bi = 0

id, dvi
1, . . . , dvi

n, Di if bi = 1

If bi = 0 the server receives dki, dci
1, . . . , dci

m from the vehicle. It can then obtain
ki from ri and verify that U i correctly follows from W . If bi = 1 the server
receives dvi

1, . . . , dvi
n to open the commitments in ri to obtain the encrypted

version of the vehicle’s tags fki(v1), . . . , fki(vn). Knowing these it can pick out
the pairs from U i belonging to the vehicle (by the deterministic nature of fki).
It multiplies the cost commitments from these together and verifies that they
indeed open to C under opening key Di that is provided by the vehicle.

If the above mentioned checks pass for every round then the server accepts,
the client is billed, and a new period begins. It can be argued that the probability
of a cheating vehicle convincing the server of a false cost is 2−s. This probability
can hence be made arbitrarily low by choosing a large enough number of rounds.

Spot checks. Note that there is no mechanism in the protocol described above
that prevents vehicles from cheating by not emitting the tags they have com-
mitted to in order to reduce the price they have to pay. To address this the
protocol suggests random spot checks. A spot check consists of an enforcement
device that secretly collects identifying data about passing vehicles at locations
where they are supposed to emit tags, for instance by taking a photograph of
the license plate. This way it will obtain a database DB of tuples (id, v, l, t) each
with an identity id, a tag v, a location l and a timestamp t. Before the reconcili-
ation phase the server will ask the vehicle about its identity id, challenge it with
{(l, t) | (id, v, l, t) ∈ DB}, and e.g. fine the user if it fails to provide matching
tags or the provided tags are not in the server’s database. Since the location of
the spot checks are assumed to be unknown to the vehicles, it can be argued
that they do not know when they can safely avoid emitting a (valid) tag and
hence must do so when they are supposed to. Note that some privacy is leaked
due to the spot checks; it is argued that this is at an acceptable level.

2.2 Privacy

The privacy definition for the VPriv scheme as stated in [7] asks that the privacy
guarantees from the system are the same as those of a system in which the
server, instead of storing tuples (v, t, l), stores only tag-free path points (t, l).
In other words, from the server’s point of view, the tags might just as well be
uncorrelated and random. This definition accounts for the fact that some privacy
leaks are unavoidable and should not be blamed on the system. For instance, if
one somehow learns that only a single vehicle was on a certain road at a particular
time, then that vehicle’s tags can of course be linked to the tags emitted along
the road at that time.

3 Formal Model

The process calculus used as input to the ProVerif tool is a variant of the applied
pi calculus [1], a process calculus for formally modelling concurrent systems and
their interactions. We here recall the basic ideas and concepts of this calculus
that are needed for our analysis.

3.1 Messages

To describe messages, we start with a set of names used to identify communica-
tion channels and other atomic data, a set of variables x, y, . . . and a signature Σ
formed by a finite set of function symbols f, g, . . . each with an associated arity.
Function symbols are distinguished into two categories: constructors and de-
structors. We use standard notation for function application, i.e. f(M1, . . . ,Mn).
Constructors are used for building messages. Destructors represent primitives for
taking messages apart and can visibly succeed or fail (while constructors always

succeed). Messages M,N, . . . are obtained by repeated application of construc-
tors on names and variables whereas a term evaluation D can also use destruc-
tors. The semantics of a destructor g of arity n is given by a set of rewrite rules
of the form g(M1, . . . ,Mn) → M0 where M0, . . . ,Mn are messages that only
contain constructors and variables. Given a term evaluation D, we write D ⇓ M
when D can be reduced to M by applying some destructor rules.

In the following, we consider constructors to model commitments and the
one-way function f . Since there is no destructor associated to f we have only
one destructor whose semantics is given by the following rule:

open(com(x, y), y) → x.

The applied pi calculus is quite general: it allows us, for instance, to model the
homomorphism property of the commitment scheme by means of an equational
theory containing, among others, the equation

com(x1, y1)× com(x2, y2) = com(x1 + x2, y1 + y2).

However, since ProVerif will not be able to reason with this equation, we will
remove the homomorphic property in Section 5 and instead consider a simplified
version of the protocol with no costs.

3.2 Processes

Processes are built from the grammar described below, where M is a message,
D is a term evaluation, n and c are names, x is a variable, and i is a positive
integer.

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
new n;P name restriction
let M = D in P else Q term evaluation
in(c,M);P message input
out(c,M);P message output
phase i;P phase separation

The process “let M = D in P else Q” tries to evaluate D; if this succeeds
and if the resulting message matches the term M then the variables in M are
bound and P is executed; if not then Q is executed. As explained in [5], the
process phase i;P indicates the beginning of phase i. Intuitively, the process
first executes phase 0, that is, it executes all instructions not under phase i ≥ 1.
Then, when changing from phase i to phase i + 1, all processes that have not
reached a phase i′ ≥ i + 1 instruction are discarded and the instructions under
phase i + 1 are executed. The rest of the syntax is quite standard. To ease
the presentation we will use tuples of messages, denoted by parentheses, while

keeping the reduction rules for these tuples implicit. We will omit “else Q”
when Q is 0. In the remainder of the paper, we use the more intuitive notation
“if M = N then P else Q” instead of “let M = N in P else Q”.

An evaluation context C is a process with a hole, built from [], C | P , P | C
and new n;C. We obtain C[P] as the result of filling the hole in C with P .
A process P is closed if all its variables are bound through an input or a let
construction.

The vehicle process. To illustrate the calculus used throughout this paper, we
give in Figure 1 a partial description of the vehicle process. It follows the descrip-
tion given in the previous section but is simplified in several aspects to keep this
illustrative example as simple as possible. A more accurate model is described
in Section 5.

Here we consider the case where a vehicle only has two tags v1 and v2, and
where the reconciliation phase consists of only one round. We assume that during
the driving phase the vehicle will visit only two locations and that the vehicle
is spot checked at the second location. The vehicle receives a list of tags of size
three (in reality, the length of the list is not known a priori), and instead of
applying a random permutation, we only encode one particular permutation.

Vehicle(id, l1, l2)
def=

phase 1; (* registration phase *)
new v1; new v2;
new k; new dk; new dv1; new dv2;
out(c, (id, com(k, dk), com(f(v1, k), dv1), com(f(v2, k), dv2)));
phase 2; (* driving phase *)
out(c, (l1, v1)); out(c, (l2, v2, id));
phase 3; (* reconciliation phase *)
in(c, (x1, x2, x3));
out(c, (id, f(x2, k), f(x1, k), f(x3, k)));
in(c, y);
if y = false then out(c, (id, dk)) else out(c, (id, dv1, dv2))

Fig. 1. Illustrative vehicle process

The operational semantics of processes is essentially defined by two rela-
tions, namely structural equivalence and reduction. Structural equivalence, de-
noted by ≡, is the smallest equivalence relation on processes that is closed under
application of evaluation contexts and standard rules such as associativity and
commutativity of the parallel operator. Moreover, in order to deal with the phase

construct, we have also the following rules (see [6]):

new n; phase i;P ≡ phase i; new n ;P
phase i; (P | Q) ≡ phase i;P | phase i;Q

phase i; phase i′;P ≡ phase i′;P if i < i′

Reduction at phase i, denoted by −→i, is the smallest relation closed under struc-
tural equivalence and application of evaluation contexts such that:

RED I/O phase i; (out(c,M).Q | in(c,N).P) −→i phase i; (Q | Pσ)

RED FUN 1 phase i; let N = D in P else Q −→i phase i;Pσ if D ⇓ M

RED FUN 2 phase i; let N = D in P else Q −→i phase i;Q
if there is no M such that D ⇓ M

REPL phase i; !P −→i phase i; (P |!P)

where σ is the substitution defined on the variables that occur in N and such
that M = Nσ. In case such a substitution does not exist, the resulting process
will be Q | in(c,N).P for the RED I/O rule and Q for the RED FUN 1 rule. We
denote −→=

⋃
i≥0 −→i and we write −→∗ for the reflexive and transitive closure of

reduction.

4 Privacy for Interactive Zero-Knowledge Protocols

We will define privacy using indistinguishability, which in turn will be formalized
by a notion of equivalence. Equivalences have already been used to model privacy
properties in formal analysis for e.g. vehicular mix-zones [10] and electronic
voting [11, 15]. The precise notion used is often observational equivalence but as
we will explain, it happens that this notion is too strong to analyse interactive
zero-knowledge protocols. So, we will rely on trace equivalence to formalize our
notion of privacy in Section 4.2. However, the only equivalence relation supported
by ProVerif is a stronger notion called diff-equivalence, and thus we explain in
Section 4.3 how to use this tool to analyse trace equivalence-based properties.

4.1 Equivalences

One equivalence notion for formalizing indistinguishability is observational equiv-
alence [17]. Here we write P⇓c when P can send an observable message on the
channel c; that is, when P −→∗ C[phase i; out(c,M);Q] for some evaluation
context C that does not bind c, some message M , some process Q, and some
integer i.

Definition 1 (Observational equivalence). Observational equivalence, de-
noted ∼o, is the largest symmetric relation R on closed processes P and Q such
that P R Q implies:

1. if P⇓c then Q⇓c;
2. if P → P ′ then there exists Q′ such that Q →∗ Q′ and P ′ R Q′;
3. C[P] R C[Q] for all evaluation contexts C.

Intuitively, a context may represent an attacker, and two processes are observa-
tionally equivalent if they cannot be distinguished by any attacker at any step:
every output step in an execution of process P must have an indistinguishable
equivalent output step in the execution of process Q. If not then there exists a
context that ‘breaks’ the equivalence.

In the case of privacy for the VPriv protocol, we will see that this notion is
too strong (see the discussion in Section 4.2). Instead, we will use the notion of
trace equivalence (also called testing equivalence in some other contexts [2]).

Definition 2 (Trace equivalence). Trace equivalence ∼t is the largest sym-
metric relation on closed processes P and Q such that for all evaluation contexts
C we have C[P]⇓c if and only if C[Q]⇓c.

This is a strictly weaker notion than observational equivalence (see e.g. [9])
but intuitively it captures the equivalence upon which we can a priori hope to
base our privacy property, as we explain below.

4.2 Formal Definition of Privacy

In our formal privacy definition we will assume that we have at least two honest
vehicles called A and B. As we are interested in studying privacy guarantees
for A, the process VA for this vehicle will consist of all three phases of the
protocol (registration, driving, and registration). We assume that vehicle A has
three tags, one of which is emitted at one of the two locations route left and
routeright , one which is ‘leaked’, i.e. given to the server along with the vehicle’s
identity to model the spot-check procedure, and one which is not emitted. On
the other hand, vehicle B is only needed to counterbalance the effect of the tag
emitted by A at a route location. Thus, we will consider a vehicle B that only
executes its driving phase, denoted V dri

B in the equivalence below, by emitting
its tag at the route not visited by vehicle A.

We say that privacy holds if the following equivalence holds:

CT

[
VA(route left) | V dri

B (routeright)
]

∼t

CT

[
VA(routeright) | V dri

B (route left)
]

where CT is an evaluation context modelling additional assumptions that may
have to be made for the privacy property to hold (e.g. that the server is curious
but otherwise assumed to be honest and following the protocol, or the existence
of a trusted third party helping vehicles ensure that the list of tags received
from the server contains tags from both vehicles). The next section presents the

analysis we have performed, including the definition of the vehicles processes
and the different contexts CT within which we have performed the analysis.

Note that observational equivalence would be too strong for this property to
hold. This is due to the interactive zero-knowledge subprotocol that occurs in the
reconciliation phase. Consider the two slightly different processes VA(route left)
and VA(routeright) in our privacy definition and assume that the two processes
have reached the reconciliation phase. At this point, the server will send a list
of tags to vehicle A. Then one of the two processes, say the former one, will
commit to a permuted list. To mimic this step, the latter process has also to
commit to a permuted list. However, no matter what list it commits to, this
list will not mimic the former process’ list for either b = 0 or b = 1 because
of the slight difference between them. In other words, the choice of a list to
mimic the former process depends on the challenge bit b that has not yet been
received from the server. Thus observational equivalence is impossible to achieve.
However, moving from observation equivalence to trace equivalence allows us to
choose the mimic trace only after the challenge bit has been learned. Intuitively,
this captures privacy: if an attacker observes a trace of registration, tag emission
and reconciliation, and then guesses that vehicle A took a particular route, then
there is an equivalent trace where vehicle A takes a different route. The fact that
we cannot specify the equivalent trace until we have seen the whole of the first
trace does not seem to lead to any loss of privacy. In fact, from the definition
of zero-knowledge protocols in the computational model [13, §4] we see that the
protocol is actually designed to support only trace equivalence and furthermore,
that soundness contradicts observational equivalence.

4.3 Checking Privacy with ProVerif

The basic idea behind equivalence checking in ProVerif is to overlap the two
processes that are supposedly equivalent, thereby forming a biprocess B. To
achieve this, the syntax of ProVerif contains a choice[M,M ′] operator which
allows us to model a pair of processes that have the same structure and differ
only in the choice of terms. Given a biprocess B, the process P = fst(B) is
obtained by replacing all occurrences of choice[M,M ′] in B with M . Similarly,
Q = snd(B) is obtained by replacing choice[M,M ′] with M ′. When ProVerif is
able to conclude positively on B, this implies that P ≈o Q. However, ProVerif
checks a stronger equivalence than observational equivalence and hence it fails
on some simple examples of processes that are equivalent, but whose equivalence
cannot be simulated by the moves of a single biprocess.

We will use two transformations in order to use ProVerif to check the trace
equivalence defining our privacy property. The first arises from recent work which
shows how to use ProVerif to prove observational equivalence for a wider class
of processes [11]. Additionally, we also transform our biprocess B into another
biprocess B′ that preserves the traces of each underlying process, i.e. fst(B) and
fst(B′) will produce the same traces, and likewise for snd(B) and snd(B′). This
ensures that our transformation preserves trace equivalence. In our case study

this transformation consists of guessing b in advance and deadlocking the process
if it later turns out that the guess was wrong.

5 Privacy Analysis

The purpose of our analysis is to investigate the privacy guarantees provided for
an honest user in the VPriv protocol. We do not attempt to analyse whether
users can cheat the server nor whether the server will accuse an honest user of
cheating.

Section 5.1 contains a description of the simplifications we had to make in
order to carry through the analysis in ProVerif. In Section 5.2 we describe our
formal model of the VPriv protocol using the applied pi calculus from the pre-
vious section. We give the results of our analysis in Section 5.3.

5.1 Simplifications

The following simplifications were necessary in order to carry through the anal-
ysis in ProVerif.

Removing Costs. In the extreme case where a unique price is used for every tag,
the system cannot protect the privacy of users. It seems reasonable however, to
assume that the information leaked by costs will in practice not affect the privacy
of users. Forcing a uniform cost for every tag seems to be the only solution if
we want to carry out our analysis with ProVerif. Furthermore, while we could
model the homomorphic commitment scheme and its arithmetic properties by
means of an equational theory, we know that ProVerif will not be able to deal
with it properly in that it will not terminate. Thus, we remove prices and costs
and proceed with a simplified version of the VPriv protocol. This change only
affects the reconciliation phase where the list W sent by the server is now simply

S → V : W =
[
w1, . . . , wm

]
and the round subprotocol as described in Figure 2.

V → S : id, U i =
[
fki(wσi(1)), . . . , fki(wσi(m))

]
S → V : bi

V → S :

{
id, dki if bi = 0
id, dvi

1, . . . , dvi
n if bi = 1

Fig. 2. Reconciliation round protocol without cost.

Fixing the length of W . It turns out that privacy can be violated if the list of tags
sent by the server is blindly accepted by the vehicles without any scrutiny. Some
sanity conditions must be fulfilled in order to guarantee privacy. Furthermore,
implementing these sanity checks together with the random permutation would
lead us to consider a complex model that ProVerif is not able to handle. So
instead, we fix a priori the length of the list expected by the vehicle to a size
of three. This will allow us to easily encode the sanity checks and the random
permutation, and despite its simplicity, still allow us to discover a number of
issues to which attention should be paid when implementing the protocol. Note
that with the sanity conditions discovered we can argue that fixing the length
to three does not weaken the attacker.

5.2 Analysis Model

The model is represented by the biprocess BS defined in Figure 3. In the following
we show only the main details of this process and refer the interested reader to
the full model available at http://www.cs.aau.dk/∼dahl/vpriv/.

BS(idA, vA
1 , vA

2 , vA
3 , vB

1 , vl, vr)
def=

new pc;
phase 2;Bdri

| phase 3;BBB

| ! new k, dk, dv1, dv2, dv3

(
phase 1;Vreg; phase 3; V b=0

rec

)
| ! new k, dk, dv1, dv2, dv3

(
phase 1;Vreg; phase 3; V b=1

rec

)
Fig. 3. System Biprocess

The system BS consist of five parts: Bdri, Vreg, V b=0
rec , V b=1

rec , and BBB. The
first four of these together make up the behaviour of vehicle A and vehicle B.
Using the choice operator the emitter biprocess Bdri outputs the tags of both
vehicles while Vreg and the two Vrec are responsible for performing registration
and reconciliation, respectively, for vehicle A. By splitting up vehicle A in this
way we accurately model an unbounded number of reconciliation rounds while
only emitting tags once. The bulletin board BBB is responsible for performing
sanity checks on W . It receives a list of tags on a public channel and forwards
the list to the Vrec biprocesses on the private channel pc an unbounded number
of times if the checks succeed. Note that to avoid trivial false attacks, any checks
against vA

1 and vB
1 must use the choice operator and hence the bulletin board

is a biprocess. Finally, we use ProVerif’s phases to orchestrate the processes so
that they follow the order dictated by the protocol.

As discussed in Section 4, in order to establish the equivalence between the
two cases, the selection of permutation for U i depends upon the bit bi that will be
send by the server. We have two separate reconciliation processes V b=0

rec and V b=1
rec

to model this. They guess that b = 0 and b = 1 will be sent, respectively, and
permute accordingly. If the guess was correct the process proceeds as dictated
by the protocol, otherwise it comes to a deadlock. Formally, let process Pxyz be
defined by

Pxyz = in(s1, ·); out
(
c,

(
idA, f(wx, k), f(wy, k), f(wz, k)

))
; out(s2, ·); 0

which outputs the encrypted tags w1, w2 and w3 permuted according to xyz. The
initial input on s1 is used to ensure that only a single permutation is selected and
the final output on s2 to indicate that the output was completed. The · stands
for any name never used after it is bound. Using this process we then define V b=0

rec

as shown in Figure 4 and V b=1
rec as shown in Figure 5. We note that because of

the diff-equivalence that ProVerif is actually checking (see Section 4.3) it will
only try to match the permutations at the same syntactical position. This means
that we have to specify to ProVerif how permutations should be matched. For
V b=0

rec we can choose the same permutation in the two cases and hence no further
modelling is needed and V b=0

rec is actually just a process. However, this is not
true for V b=1

rec where we have to move the processes Pxyz around depending on
which case we are in. We do this using the choice operator and hence V b=1

rec is
a biprocess. Let vl be the tag emitted at route left and vr the tag emitted at
routeright . We have then chosen to arrange the permutations based on w1 = vl

and w3 = vr and hence need to enforce this in the bulletin board.

V b=0
rec (idA, pc, k, dk) def=

new s1, s2;
in(pc, (w1, w2, w3));

out(s1, ·); 0
| P123 | P132 | P213 | P231 | P312 | P321

| in(s2, ·); in(c, b); if b = 0 then out(c, (idA, dk))

Fig. 4. Reconciliation process for b = 0

V b=1
rec (idA, pc, k, dv1, dv2, dv3)

def=
new s1, s2;
in(pc, (w1, w2, w3));

out(s1, ·); 0
| P123 | P132 | P213 | P231 | P312 | P321

| in(s2, ·); in(c, b); if b = 1 then out(c, (idA, dv1, dv2, dv3))

Fig. 5. Reconciliation process for b = 1

5.3 Analysis Results

Unsurprisingly, it turns out that we have no privacy if W only contains tags of
a single vehicle. It is necessary to ensure that the tags of both of the two honest
vehicles are included in W , i.e. that W contains at least vA

1 (the tag emitted
by vehicle A at its route location), and vB

1 (the tag emitted by the vehicle B at
its route location). Actually, this is not sufficient since the server can still break
privacy by sending a list with duplicates. An attack using this trick was reported
by ProVerif.

With the above model PS we performed several analyses by varying the sanity
checks performed by the bulletin board. For the simplest case without any checks
on W an attack is reported where arbitrary values are sent for w1 = w2 and w3.
This is a false attack caused by the way we match permutations in V b=1

rec . We
can investigate the need for checks by removing all V b=1

rec . Then a real attack is
reported: by sending arbitrary values for w1 and w2 and w3 = vl the server can
tell the cases apart when it sends b = 0.

In the case with W subject to inclusion checks only the attacker is allowed
to choose w2 but must send w1 = vl (i.e. whichever tag was emitted in the left
location) and w3 = vr (whichever tag was emitted on the right). An attack is
found when w2 = vl by a comparison of the encrypted elements of U i.

Finally, for the case with W subject to inclusion checks and no duplicates
ProVerif is unable to conclude when no duplicates is interpreted as w2 6= vl∧w2 6=
vr. However, if we interpret this as w2 = vA

2 ∨ w2 = vA
3 , i.e. rather than using

an arbitrary tag not equal to vl or vr, the attacker must specifically use one of
the unused registered tags, ProVerif is able to prove the equivalence and thus
the privacy property for our model.

5.4 Evaluation

We evaluate first the VPriv protocol, then our analysis. Results on the privacy-
preserving properties of the protocol are largely positive, at least in our abstract
model. We discovered only privacy breaches that are possible for an active at-
tacker who can tamper with the list, not for an ‘honest but curious’ attacker
who merely inspects the protocol trace. We proposed some checks that could
be made on the list W to thwart even an active attacker. The check for no du-
plicates is easy enough for a single vehicle to apply, but the check that the list
really contains the tags of other vehicles is less easy and may require a trusted
third party.

Turning to our analysis, it should be clear that a reasonable amount of work
was required to develop an abstract model suitable for ProVerif whilst preserving
the features of the protocol. However, it was not our aim to formalise the protocol
just to exemplify the use of ProVerif but rather to push the boundaries of the
tool in terms of protocol features. As such we have succeeded in identifying
several features that a future version of the tool might handle better, namely
lists, permutations, and homomorphic encryption schemes.

6 Conclusion

We have presented a privacy analysis of the VPriv scheme for anonymous location-
based vehicular services. We have shown how a notion of trace equivalence cap-
tures the privacy notion the protocol is intended to provide, and have formally
verified this property, albeit for an abstract model of the protocol. During our
analysis we uncovered a number of areas where special attention needs to be
paid when implementing such a protocol. We also introduced novel features into
formal privacy modelling such as random list permutations and reasoning about
interactive zero-knowledge protocols.

In future work we plan to investigate proofs of soundness for abstractions
in the context of privacy properties, and apply our method to other privacy-
enhancing protocols. In particular, it would be interesting to investigate a more
general approach to reasoning about zero-knowledge protocols using the ProVerif
tool set.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115, New York, USA, 2001. ACM Press.

2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th ACM Conference on Computer and Communications Security, pages
36–47, Zurich (Switzerland), 1997. ACM Press.

3. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd IEEE Computer Security
Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press,
2010.

4. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus
and automated verification of the direct anonymous attestation protocol. In Proc.
Symposium on Security and Privacy (S&P’08), pages 202 –215. IEEE Computer
Society Press, 2008.

5. B. Blanchet. Cryptographic Protocol Verifier User Manual, 2004. http://www.di.
ens.fr/∼blanchet/crypto/proverif-manual.ps.gz.

6. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

7. A. J. Blumberg, H. Balakrishnan, and R. Popa. VPriv: Protecting privacy in
location-based vehicular services. In Proc. 18th Usenix Security Symposium, 2009.

8. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for
RFID systems. In Proc. 23rd IEEE Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010.

9. V. Cortier and S. Delaune. A method for proving observational equivalence. In
Proc. 22nd IEEE Computer Security Foundations Symposium (CSF’09), pages
266–276, Port Jefferson, NY, USA, 2009. IEEE Computer Society Press.

10. M. Dahl, S. Delaune, and G. Steel. Formal analysis of privacy for vehicular mix-
zones. In Proc. 15th European Symposium on Research in Computer Security
(ESORICS’10), volume 6345 of LNCS, pages 55–70. Springer, 2010.

11. S. Delaune, M. D. Ryan, and B. Smyth. Automatic verification of privacy prop-
erties in the applied pi-calculus. In Proc. 2nd Joint iTrust and PST Conferences
on Privacy, Trust Management and Security (IFIPTM’08), volume 263 of IFIP
Conference Proceedings, pages 263–278. Springer, 2008.

12. M. D. Dikaiakos, S. Iqbal, T. Nadeem, and L. Iftode. VITP: an information trans-
fer protocol for vehicular computing. In Proc. 2nd International Workshop on
Vehicular Ad Hoc Networks (VANET’05), pages 30–39, 2005.

13. O. Goldreich. The Foundations of Cryptography, volume 1. Cambridge University
Press, 2001.

14. IEEE. IEEE standard. IEEE Trial-Use Standard for Wireless Access in Vehicular
Environments – Security Services for Applications and Management Messages,
Approved 8 June 2006.

15. S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied
pi-calculus. In Proc. 14th European Symposium on Programming Languages and
Systems (ESOP’05), volume 3444 of LNCS, pages 186–200. Springer, 2005.

16. N. Lawson. Highway to hell: Hacking toll systems. Presentation at
Blackhat, 2008. Slides available from http://rdist.root.org/2008/08/07/

fastrak-talk-summary-and-slides/.
17. R. Milner. A calculus of communicating systems. Lecture Notes in Computer

Science, 92, 1980.

