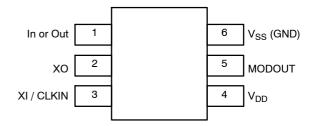
EMI TSOP6 EVB Universal Evaluation Board User's Manual

Board Description

The EMI TSOP6 EVB universal Evaluation Board was designed to provide a flexible and convenient platform to quickly evaluate, characterize and verify the performance and operation of all twelve NB2XXXA EMI devices, and all of their possible configurations. This user's manual provides detailed information on board contents, layout and its use. It should be used in conjunction with the appropriate NB2XXXA datasheet: (www.onsemi.com). See Table 1.

Board Features


- Accommodates the Electrical Characterization of the NB2XXXA, Reduced EMI Series in the TSOP-6 Package
- Multiple Configurations Refer to NB2XXXA Configurations Tables 1 and 2
- 26 Ω Series Termination Resistor Installed on MODOUT
- 15 pF Output Load Capacitor Installed on MODOUT
- Selectable Jumpers for SELECT Pin Logic Levels

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Twelve EMI products share the same TSOP-6 (TSOT-23-6) package, but have minor pin configuration differences. See Table 2.

Figure 1. NB2XXXA TSOP-6 Pinout

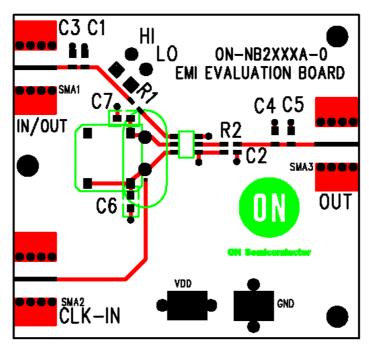


Figure 2. Evaluation Board

Table 1. NB2XXX PIN FUNCTION (see datasheet)

EMI Device	fin (MHz)	XTAL	CLKIN (External)	PD	SSON	Mod Eqn	Freq.	REFOUT
NB2579A	13 – 30	Υ	Y	N	Υ	f _{in} ÷ 640	±1%	N
NB2669A	6 – 13	N	Y	Y	N	f _{in} ÷ 256	±1%	N
NB2760A	6 – 13	Υ	Υ	Υ	N	f _{in} ÷ 256	± 0.75%	N
NB2762A	6 – 13	Υ	Υ	Υ	N	f _{in} ÷ 256	-1.25%	N
NB2769A	6 – 13	Υ	Υ	Υ	N	f _{in} ÷ 256	±1%	N
NB2779A	13 – 30	Υ	Υ	Υ	N	f _{in} ÷ 640	±1%	N
NB2780A	30 – 50	Y	Y	Y	N	f _{in} ÷ 1280	±0.75%	N
NB2869A	6 – 13	Υ	Υ	N	N	f _{in} ÷ 256	±1%	Υ
NB2870A	13 – 30	Υ	Υ	N	N	f _{in} ÷640	± 0.75%	Υ
NB2872A	15 – 30	Υ	Υ	N	N	f _{in} ÷ 640	-1.25%	Υ
NB2879A	15 – 30	Y	Y	N	N	f _{in} ÷ 640	±1%	Y
NB2969A	6 – 13	Υ	Υ	N	N	f _{in} ÷ 256	±1%	Y, REFOUT ÷2

Table 2. NB2XXX PIN ASSIGNMENT (see datasheet)

EMI Device	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	See Table 4
NB2579A	I	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2669A	I	NC	CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2760A	I	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2762A	I	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2769A	I	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2779A	I	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2780A	I	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 0 Ω
NB2869A	0	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	R1 = 26 Ω
NB2870A	0	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	C1
NB2872A	0	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	C1
NB2879A	0	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	C1
NB2969A	0	XO	XI / CLKIN	V_{DD}	MODOUT	V _{SS} (GND)	C1

LAB SETUP PROCEDURE

Lab Setup and Measurement Procedure

Equipment Used

- Agilent Signal Generator #81110A (or Crystal)
- Real-Time Oscilloscope, Frequency Counter or Spectrum Analyzer
- Agilent #6624A DC Power Supply
- Digital Voltmeter

Power Supply Connections

The NB2XXXA has a positive supply pin, V_{DD} , and a negative supply pin, GND.

Power supply "anvil" terminals are provided for V_{DD} and GND. Use of "minigrabber" banana plug cables work well for connections to the power supply.

Device Pin	Single Power Supply
V_{DD}	V _{DD} = +3.3 V
GND	GND = 0 V

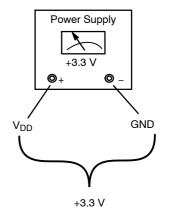


Figure 3. Power Supply Configuration

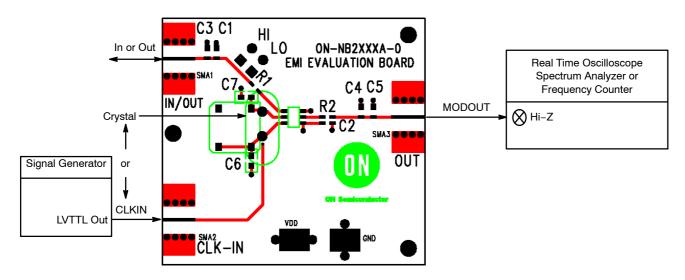


Figure 4. Input / Output Configuration

NB2XXXA

Lab Test Set-up Procedure

To monitor the MODOUT output on an oscilloscope, spectrum analyzer or frequency counter:

1. Connect a power supply to the evaluation board. (see Figure 3)

Connect V_{DD} to +3.3 V Connect GND to 0 V

- 2. Connect an external clock reference to the CLKIN Pin 3 or install a crystal and appropriate (see CLKIN) crystal load capacitors to Pins 2 and 3.
- 3. Connect the MODOUT output to the measurement instrument.
- 4. For the MODOUT output, the NB2XXXA board provides a series 26 Ω source termination resistor and a load capacitor pad for each output; 15 pF is installed.

Board Layout

The evaluation board is constructed with FR4 material and 50 Ω trace impedance, designed to minimize noise and crosstalk.

Layer Stack

- L1 Signal (top)
- L2 Ground
- L3 V_{DD} (positive power supply)
- L4 Blank (bottom)

Pin 1 – IN / OUT Configuration

Pin 1 of the EMI TSOP6 EVB universal evaluation board can be configured to serve as an input or output, depending on device

See Tables 1 and 2.

An SMA connector is provided to access Pin 1. If Pin 1 is an input, a 0 Ω resistor may be used at R1.

Table 4. PIN 1 INPUT/OUTPUT

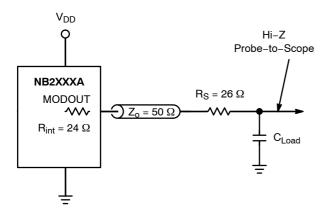
Device	Pin #1	R1	C1 (or C3)
See Table 2	Input	0 Ω	Open
See Table 2	Output	26 Ω	15 pF

If Pin 1 is an output, C1 can be used to install an output load capacitor, ie. a 15 pF capacitor. C1 and C3 can be used to parallel two output load capacitors. Also, a 26 Ω series termination resistor should be installed at R1.

When Pin 1 is an input, the select header pins, HI and LO, can manually control the Pin 1 logic level via the appropriate jumper/shunt. A connection from each header must then be made to the Pin 1 metal trace. When either HI or LO are jumpered, Pin 1 is forced to V_{DD} (logic High) or GND (logic Low).

MODOUT Output Series Resistor

An R2 resistor pad is provided to series terminate the MODOUT output and is installed with a 26 Ω resistor. This series resistor complements an internal 24 Ω resistor to match the 50 Ω trace impedance.


MODOUT Output Load Capacitor

An output load capacitor pad is provided to load the MODOUT output and is installed with a 15 pF capacitor. C4 and C5 can be used to parallel two output load capacitors for various combinations of capacitive loads, if needed.

CLKIN

An SMA connector is provided for CLKIN if an external clock source is used on Pin 3. The metal trace at the crystal pad is intentionally open for crystal use, and must be shorted for a connection to Pin 3 for external clock use. The unused component pad labeled C6 (used for the crystal load capacitor) may be used for a 50 Ω resistor to ground to terminate a signal generator.

NB2XXXA Output Loading

Series Termination Resistor

Clock output traces over one inch should use series termination. To series terminate a 50 Ω trace (a commonly used trace impedance), place a 26 Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 24 Ω .

Figure 5. Output Loading for Test / Evaluation

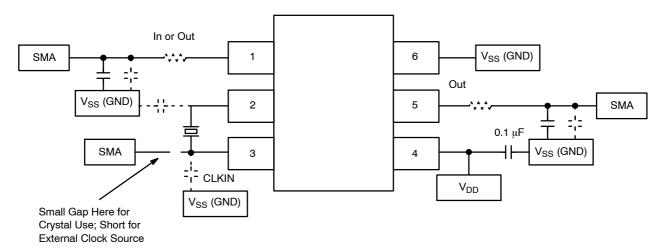


Figure 1. NB2XXXA Evaluation Board Schematic

Table 5. NB2XXXA EVALUATION BOARD BILL OF MATERIALS

	Component	Description	Qty	
SMA 1 – 3	Connector	SMA Connector		
C2	Capacitor	0.1 μF, 10%, KEMET, C0603C104K5RAC, Installed	1	
C6 – C7	Capacitor (Crystal Load)	27 pF, Not Installed		
C1, C3, C4, C5	Capacitor	15 μF, C5 Installed	1-4	
	Jumper Header	100 mil, Berg	4	
	Jumper		2	
R1 – R2	Resistor	26 Ω or 0 Ω , R2 Installed with 26 Ω	2	
C6	Resistor (optional)	50 Ω, 0.1%, 0.25 W	1	
	Power Supply Connector	Anvil – Keystone #5016	2	
U1	NB2XXXA	TSOP-6 device (Installed by User)	1	
X1	Crystal (See Crystal Chart)	Fundamental Mode, Parallel Resonant, Ecliptek www.ecliptek.com	1	
	Pin Recepticle	Through-Hole Crystal Connector	2	
	Capacitor	V_{DD} to GND Bypass Capacitors 10 μF – 22 μF 0.01 μF – 0.1 μF	1	

Table 6.

Table 6.				
Crystal Frequency (MHz)	Ecliptek Part #	ESR (Ω MAX)		
6.000	ECX-6074-6.000M	125		
8.000	ECX-6075-8.000M	70		
10.000	ECX-6078-10.000M	50		
12.000	ECX-6081-12.000M	50		
13.500	ECX-6082-13.500M	50		
14.31818	ECX-6083-14.31818M	50		
15.000	ECX-6084-15.000M	50		
16.000	ECX-6087-16.000M	50		
16.660	ECX-6090-16.660M	50		
18.750	ECX-6125-18.750M	50		
19.440	ECX-6091-19.440M	50		
19.531	ECX-6126-19.531M	50		
20.000	ECX-6094-20.000M	50		
20.1416	ECX-6127-20.1416M	50		
20.480	ECX-6099-20.480M	50		
24.000	ECX-6102-24.000M	40		
25.000	ECX-6105-25.000M	40		
26.5625	ECX-6110-26.5625M	40		
26.6000	ECX-6128-26.6000M	50		
27.000	ECX-6115-27.000M	40		
28.000	ECX-6118-28.000M	40		
30.000	ECX-6119-30.000M	40		
32.000	ECX-6120-32.000M	40		

Table 7.

Crystal Parameter	Specification
Nominal Frequency	See Chart
Frequency Tolerance at 25°C/ Stability over OTR	±15 ppm / ±20 ppm
Operating Temperature Range	0°C to +70°C
Load Capacitance (C _L)	18 pF
Equivalent Series Resistance (Ω) (Maximum)	See Chart
Mode of Operation and Crystal Cut	AT-Cut Fundamental
Storage Temperature	-40°C to +85°C
Drive Level	100 μWatts Correlation 1 mW Maximum
Aging (at 25°C)	±3 ppm / 1st year, ±15 ppm / 10 year Maximum
Insulation Resistance	500 MΩ Minimum,100 V
Shunt Capacitance (pF (Maximum)	5 pF Maximum
Package	E2S (HC-49/UP SMD)

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ${\bf ON\ Semiconductor\ Website:\ www.onsemi.com}$

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative