Parallel Assertion Processing
using Memory Snapshots

Junaid Haroon Siddiqui, Muhammad Faisal Igbal, Derek Chiou
The University of Texas at Austin
{igbal, jsiddiqui, derek@ece.utexas.edu

Abstract—Assertions are valuable in producing quality soft- time can be expected to increase, due to factors such as
ware but some assertions like those checking data structure contention, communication, and software structure” [4heD
invariants are costly by nature. The authors of this paper propos to this, any further parallelism that can be extracted would

that costly assertions be queued up for later execution by a . ffici d d Th t h bod
free processor. The state of data is preserved using a memory'mprove einciency and speed up. e current research body

snapshot. Such a scheme will extract further parallelism from a~ has a lot of material on compile time extracting of parasieli

given application and improve its speed up on a parallel machine. from loops [5], [6], [7]. This paper is also concerned about
Three schemes for end user programs to use memory snapshotsextracting parallelism but is focused on the single domdin o

are discussed. One is based on memory mapping likenmap. 5ssertions. This allows domain-specific optimizations and

Second scheme uses unused virtual address space bits for h f ina d denci th de followind th
snapshot identifier. The third scheme uses a software library. scheme lor removing depenadencies on the code following the

Merits and demerits of user interface schemes are identified. = assertion.

Three methods for backend implementation of memory snap- Use of assertions allows catching bugs early, resolvinmthe
shots are discussed. One is based on physical address spacguickly, and consequently improve the quality of softwek [
versioning. It proposes modifications to memory controller in |ncreased density of assertions in the code results in dsere

a way similar to transactional memory. It goes on to introduce in bug density [9]. Experience demonstrates that designers
a snapshot aware cache coherence protocol. The second method g Yy : p 9

is based on virtual address space versioning and suggests kermnefcan save up to 50% of debug time using assertions and thus
modifications. The last method is totally supported in a user improving the time to market [10]. Assertions are also ukefu
I[brary. Advantages and disadvantages of different implementa- in production software. Many modern software applications
tions are compared. have a facility to report back failed assertions. The dewels

Evaluation is not extensive, given the large matrix of im- . . Lo
plementation possibilities. However basic memory controller use this information to remove the bug, resulting in imptbve

snapshot capability is implemented inM5 simulator. Additionally, ~ customer Satisf{:lction and quality of future versions.
a software library approach is implemented. Most valuable Some assertions are simple checks but some are costly

results of this evaluation are the pros and cons of various validations of data structure invariants. Literature reféo
approaches discussed. The feasibility study of various imple- thase checks asepOk [11]. The performance penalty of

mentation schemes is also an important groundwork for future . . : . .
research on memory snapshots. Based on these experimentse th such assertions limits their use in production software and

authors believe that memory snapshot capability is a powerful Sometime$ in debugging. S?_SSionS too. Traditionfi”y thagh hi
tool that allows parallelism where it is not natural without such overhead is reduced by limiting the use of assertions [18] an

a capability. thus compromising the quality. The repOk method for a simple
Index Terms—Assertions, Parallelization, Memory Snapshots binary tree is shown in Figure 1. A binary tree should be
acyclic and every node should have distinct children. Cimgck
these properties is linear in time and space. These intarian
should be evaluated whenever the data structure is altered.
Commodity machines are now getting dual and quad corowever, with these assertions present, binary tree pesor
processing power. Industry is targeting many more cores wrse than a simple array.
every desktop. The 80 core prototype of Intel [1] is one such The authors propose that costly assertions like these be
effort. This creates a big challenge for software writerowhgueued up for later execution by an idle processor. Sinee idl
are accustomed to sequential programming. First effoffisc® time increases with parallelism [4], we can potentially run
this challenge were introducing explicit thread creationl a these assertions at no added cost. The programmer’s view of
management libraries like pthreads [2]. This is the onlyelid assertions is slightly altered. The program is stopped when
adopted scheme but has many drawbacks. Several new paraltelassertion fails, but at a point later than the assertion.
programming models are proposed to address these drawbatke debugging benefits can still be achieved, because the
One example of such a language is cilk [3]. exact assertion that failed is identified. However in pradigunc
Whatever parallel programming model is used, efficiengnvironments, some assertions may need to be evaluated
usually decreases with an increase in speed up. Accordingsemuentially if they precede some critical hon-volatilamge.
Eager, “Along with an increase in speedup comes a decredsesolve this problem, the authors suggest that this scheme b
in efficiency: as more processors are devoted to the executimproved in the future to support rollback.
of a software system, the total amount of processor idleThe biggest challenge in this scheme is that assertions

I. INTRODUCTION

class BinaryTree {
Node* root; // root node
static class Node {

Node* left; // left child predicate
Node* right; // right child
/1 data
} data
bool repCk() {
std::set <Node*> nodes;
return repCk_node(root, nodes); snapshot id

}
bool repCk_node(Node* n, std::set<Node*>& nodes) {
if(n->left == n->right) return false;

if(n & nodes. find(n) !'= nodes.end()) /
return false; o o

nodes. i nsert(n);

return repCk_node(n->left) && repCk_node(n->right); T T
}
b head tail
Fig. 1. repOk method for a Binary Tree Fig. 2. Structure of Assertion Task Queue

. , . A. Assertion Task Queue
require the state of memory as it was, when the assertion Waﬁ'h tion task is impl ted fixed si
queued. The authors propose an implementation of memory |\© 2SSE€rtion task queue 1S impiemented as a fixed size

snapshots to make this possible. A low cost snapshot |cular buffer. This enables lock-free insertion whenréhis

be taken when the assertion is queued. This old data is ué'eaingle main thread producing assertions. When the original

for assertion processing on the idle processor, after wiieh application is already para.llel,. there should be one queue
resources for this snapshot are freed. This makes it pessibl per thread so that no locking is involved when queuing an

have optional assertions which only run when sufficient id%gsertlon. The performance effect of having a single queue

cycles and snapshot resources are available. Or compuls‘eﬂh locking, or multiple queues without producer locks are

assertions that block the main thread, and wait for previoUg investigated in th_|s Paper. . -
assertions to complete and make resources available. Structure of assertion task queue is shown in Figure 2. Each

The performance of this scheme depends on the overhea ntfry contains the address of a predicate routine, data to be
ne performar . P 88sed to that routine, and a snapshot identifier. The number
taking, maintaining, and releasing a snapshot compareukto

overhead of assertion itself. The snapshot overheads in tur1'E entries in this queue bounds the number of outstanding

o) .. . assertions. However each entry needs a snapshot so there is n
depend on the characteristics of the main applicationfitse .
. .. _ reason to have more queue locations than supported snapshot
The schemes proposed below use copy-on-write, and if m

. . . space overhead of this queue is therefore negligible.
copies have to be made, more resources will be occupied ande P g gig
performance will be worse. If the writes are infrequent, thg

overhead will be much lower. This means that applications

have to be individually evaluated, where this scheme gives al Néré are two steps to be taken at an assertion point. A
performance boost. take snapshotstep and ajueuestep.

1) Take SnapshotA memory snapshot is taken. There is
identifier associated with each snapshot. Since memory
pshots take resources, it is possible that these resourc

Steps at Assertion Point

The rest of the paper is organized as follows. Section ligive
a step by step overview of the proposed scheme. Section il

discusses three ways that memory snapshots can be used.

tion IV details three implementations of memory snapshot@fe not available right away. The caller has the opiion ot-wai_
Preliminary evaluation of two of these schemes, some badi® for resources (b!ockmg snapshot), execute the a_eaeru
results, and feasibility study for more evaluations is aored sequentially, or ignoring the assertion aIt_ogethgr. Thet fwo
in Section V. Section VI concludes along with possible fatur®'®, schemes 'to mal«eompulsqry assertiopswhile the last
work in this direction. option results inoptional assertions

2) Enqueue Assertion Task predicate function, a pointer
to some data structure, and a snapshot identifier are queued i
assertion task queue. Whatever the number of assertion task
processors, there is no locking needed to insert in the queue

The steps for parallel assertion processing are describectp there is a single producer.
two parts; the steps taken when an assertion point is reached 1he main thread will proceed execution after queuing this
main code, and the steps taken when an idle processor pigRgertion and may modify the data structure being assemted a
up the assertion task. The communication medium betwe/@qy ISsué more assertions.
the two entities is an assertion task queue. The first section
lays out the queue structure, the next two sections list the Steps at Assertion Task Processing
steps involved, while the fourth section discusses schémes When a processor decides to take up an assertion task, it
allocate processors to do assertion tasks. does adequeusstep, anassertstep, a possibldalt step, and

Il. PARALLEL ASSERTIONPROCESSING

finally a release snapshotstep. systems, is that a thread that picks and serves an event serve
1) Dequeue Assertion TaskAn entry is dequeued from its own assertions after signaling that the event is servhd.

assertion task queue containing a predicate function, rstgroi thread can have cache benefits even on the first run. At the

to be passed to this function, and a snapshot identifier.elf thame time, any dependent events can start in parallel since

system has multiple assertion task queues, then they al haempletion has been signaled.

to be queried for an available task. If they all have tasksethe There can be many other models. The critical aspect is

is a fairness issue and a performance issue in determinéng sieparating assertion point from assertion processing and a

order to process them. The performance issue exists becagmen as that is done, models for parallel assertion prougssi

resource requirements of snapshots grow as time passes. best suited for a given application are not hard to come up
2) Evaluate AssertionThe predicate function is then calledwith.

with the given pointer and snapshot identifier. The predicat

function has to use one of the schemes discussed in section Ill. USERINTERFACE TOMEMORY SNAPSHOTS

on user interface to access data in the old snapshot. There i$he scheme proposed above needsake snapshotop-
a performance penalty to doing this, which means assertiqfigtion, arelease snapshotoperation, and a mechanism to
are now running slower than they were originally runningaccess data within a snapshot. This section discusseslaulti

However the contention is that they are using idle time, ar@mantics for these operations, and compares them.
the main thread has less work to do now, and therefore the

overall performance will improve. . .
. . . . A. Accessing Snapshots by Memory Mappin
3) Possible Halt:Execution has to be halted if the assertion) g P y. y pp. 9 .
fails. There is an issue of semantics here. Programmers aré flexible scheme for taking and accessing snapshot is a
accustomed to the semantics of assertion halting righteat fRmaplike system call with the following signature.
assertion point. For example, they may see more consoleoid* nmep_snapshot (voi d* p, size_t len);
output from after the assertion point. There are two issaes t This would form a snapshot dfen bytes starting ap,

this. Most important is finding the exact point for debuggingand make it accessible at the returned pointer. This scheme

and the given mechanism still points the exact assert|ontpo$ives the flexibility of making snapshots of a specific area.

that failed even though it was evaluated much later. The wever, dynamically allocated node based structures aire n

is another issue of undesirable side effects from after t 8ntiguous The best in that case would be to snapshot the

assert!(_)n pq|nt. The a_uthors believe that given this S@psmhole heap. No separated snapshot identifier is needed. The
capability it is easy to implement a memory rollback fagilit][eturned pointer can serve this purpose

Such a facility would eliminate side effects in memory. | This scheme however requires that the kernel setup page

there are possible side effects on external media or MeMQ s for this new area and set them for copy-on-write
such an assertion should be executed sequentially. Ther &R avior. This means an overhead at the time of taking a

an added advantage to rollback fa_cil_ity. We can modify ths%apshot. Additionally there is overhead when the mairathre
current halt step which a more sophisticated rollbarid halt changes its data causing copy-on-write. The assertioreselr

ste_p that would make an attached dgbugggr break at a;serﬂgg to be much more to offset these overheads.
point, rather than assertion processing point. Rollbachois
discussed any further in this paper and is left as a futuré&wor) .)

4) Release Snapshofhe last step is to release the snagB: ACcessing Snapshots using Virtual Address bits
shot. This will free any resources occupied by the snapshotAnother scheme for taking snapshots of whole memory and
due to modifications from the main thread. avoiding overhead of setting up new page tables is to use

Depending on the assertion task processor allocation modéftual address bits. This means that the virtual addreasesp
the thread can go on and serve more assertions, or go bacistgivided in parts, where one part is the current versiod, an
some other real work that is now available for it to performthe rest of the parts are snapshots of the current version.

In 32-bit processors, the virtual address space is already
scarce, but in 64-bit processors, there is much more space
available. However no 64-bit processor has a 64-bit virtual

Based on the parallelism model adopted by the applicaticaddress space. For example, Alpha EV5 [15] has a 43-bit
an appropriate model can be chosen for processing assertivtual address space. If rest of the 21 bits in 64-bit posite
tasks. One model is creating one or more dedicated assertonld have been used, they are enough for a snapshot identifie
processing tasks. These tasks should preferably be boundJtdortunately, the Alpha ISA also uses this information and
processors so that caching benefits can be used. For examghepdes only 43 bits in addresses contained in instructions
if a data structure invariant is repeatedly checked, most®f The ISA needs to be changed to support an alternate instruc-
data can be found in processor cache. This binding of tagken encoding.
to processors is called processor affinity. Popular opegati The other approach is to use some bits in the valid address
system provide calls for this purpose [13], [14]. space. This is the only scheme applicable in 32-bit machines

Another model is that of a work queue based system. In suthis means that the operating system has to change its groces
a system, assertion can go in the same work queue possiullglress space model. This is a significant change in the
with low priority. Another model to use in custom event drive kernel. Many user applications also make assumptions about

D. Processor Allocation for Assertion Tasks

cl ass snapshot _manager {
snapshot _i d take(bool bl ock); SnapShOt block id block data
voi d rel ease(snapshot _id id); bit vector
void nodi fy_notification(void* p, size_t len);
voi d* read_ptr(void* p, snapshot_id id);

¥

class assertion_queue { .

assertion_queue(snapshot _manager & sn;

bool queue(predicate_type pred, void* data, bool block);

bool process(bool bl ock);

h

Fig. 4. Structure of Snapshot Cache

Fig. 3. Software Library for Parallel Assertion Processing
A. Snapshots of Physical Address Space

the address space. However, ignoring those applicatiofss, i This scheme uses bits in physical address space for snap-
possible to support this in the kernel. ;hots. This is again restrigtive for 32-bit machines, as -max
When a page fault occurs in the snapshot area of the virt@Um allowed memory will decrease. However for 64-bit
address space, the kernel has to perform a mapping. Howet&chines, there are enough bits that few can be used for
the kernel can calculate this mapping at fault time. ThismseaSnapshot identifier. . _
that the cost of setting up page tables is transferred from” Mechanism for taking and releasing snapshots needs to
main thread to assertion processing thread. If this scheRfe introduced. Being in hardware, the maximum number of
is compiled with physical memory snapshot impIementatio?FapShOts has to be fixed. The following details are destribe

below, then no fault will be generated and the kernel will ndP" 16 snapshots. Four high order bits will be reserved for
be bothered. snapshot identification. A 16-bit register in memory coliéro

remembers which snapshots are taken and which are released.
For example if bit X is set, then snapshot X has been taken.
C. Accessing Snapshots from a Software Library This register is referred below as tls@apshot registeifhe
There is a pure software solution to this problem. Thehapshot register will be accessed using memory mapped I/O
overheads however are much higher, and there is an ad{f2deke and release snapshots.
cost on the software developer. It is useful therefore inefew O COPYy-On-write behavior, the memory controller has

circumstances. However being in software, it is availabl@ divide memory in blocks, referred here as juBbcks
everywhere. Experimentation can determine the granularity best suited

Two classessnapshot _manager and assertion_queue most applications. Potentially it can be as small as a cache

are proposed. There methods are listed in Figure 3. Clalk'srhe and as large as a page. HOV\r’ﬁver Iarlglgerbtl)lockkshr;sult in
assertion_queue usessnapshot _manager to implement onger copy-on-write operations while smaller blocks fesu

parallel assertions. Other applications that want to use-snMOr€ COPy-on-write operations.
shots can usenapshot _manager directly. Other than snapshot register, the memory controller keeps a

To implement copy-on-write in software, the data Structur%lOCk cache for old copies of data, callsdapshot cacherhis

has to inform the snapshot manager of any changes its goin 05|m|Iar fo the way transac_tmnal ”?e”,‘ory |mple_mentat|ons
make. For example a binary tree would inform it of any nod ep a seqond copy [16]. UnI|.ke Herlihy's transactlonalhaac_
it is going to delete, or any nodes whose internal pointeiss itcontalned in the processor, this scheme keeps the tramsalcti

going to change. This needs changes in the data structure %he with the memory controller. Snapshot cache strugdure

is not hugely demanding. There are fairly limited and easi wn in Figure 4. The purpose of t.he fields is as unde_r:
identifiable places where data structure is altered. » The snapshot bit vector tells which snapshots contain the

Snapshot data is accessed usingd_pt r which may return state of memory given in this entry. o
an old copy or the latest data if it is still unchanged. There * Block of memory this entry is about is titock identifier
is a synchronization issue here that the assertion thread do * ©O!d copy of data is contained idata field.
not want the main thread to modify datile it is reading it. Behavior of memory controller is changed as follows.
Callingread_ptr poses an overhead but this overhead is only « When a snapshot is taken, the memory controller sets the
for the assertion thread. Overheads for the main thread are bit in snapshot register.
nodi fy_notification and the synchronization issue when « When memory is written, the memory controller finds
the assertion thread is accessing latest data. More abeset th the affected block and finds the snapshots that already
issues are discussed in Section IV-C. have this block in snapshot cache. For snapshots that do
not have this in snapshot cache, a new entry is made. It
contains these snapshots in the snapshot bit vector, the
memory block identifier, and the actual current data of
Three schemes are discussed to implement memory snap- memory.
shots. One in which the hardware supports snapshots using When a snapshot is released, the memory controller has
physical address space bits, one in which the kernel support to traverse the snapshot cache, reset the corresponding
snhapshots, and the third is a pure software solution. bit in every entry, and then reset the corresponding bit in

IV. IMPLEMENTATION OF MEMORY SNAPSHOTS

s_napshot tag state data memory controller’§ task is simplified and its limited sniapis
bit vector cache is better utilized.
The advantage of physical memory versioning is that most
011101000 X Shared e of the operations are done in hardware and can be optimized
000000001 X Exclusive Cee to do their specific tasks. There are several disadvantages a
well. The snapshot cache is limited in size and at some point
the memory controller has to discard some snapshots or block

further writer. The later is not practical as it will stalleth
processor altogether. Another approach can be to run aapeci
handler once it reaches near its capacity.

snapshot register. This is a long operation but it can be”Another problem with snapshots of physical memory is
done lazily. However if someone tries to take a snapshipat Performance of one application is dependent on another

with the same identifier, it has to be blocked until thEVen though one application cannot change or access data

lazy release operation finishes. in another application, its changes are causing new eritries
. snapshots made by the other. The logical conclusion from thi
So far this scheme needs no help from caches. Two copies

of same memory from different snapshots have different ta|ssappllcat|ons are truly interested in snapshots of thein o

in the cache. The advantage of this scheme is that any cachrtual address space apd not the global phygical addresesp
coherence protocol and unmodified processor core can be us related problem with ;napshots of phys!cal addre;s space
with this memory controller. The disadvantage, on the oth& caused by demand paging. If '_somethlng IS on the.d'Sk’ and
hand, is that the potential advantage of hitting snapsltiatta we are taking snapshots of physical address space, it dbes no
in the cache is now gone. It can be argued that snapsﬁgfome part of the snapshot. There can be some ways around

is being taken for another processor to use, so there is 'M\’ith kernel support. However kernel support directs us to

advantage to hitting the snapshot data in the cache. Thisdjdnore direct solution of making snapshots of virtual adglres

however not true, because the other process may toached
the data some time ago just for performance. Also in the
case of parallel assertion processing, an assertion thmegd
have the data cached from the last time it processed the saEr’r'1esnapShOtS of Virtual Address Space
assertion. Therefore it is always useful to have a snapshoOperating system takes the central role in supporting snap-
aware cache. shots of virtual address space. It can support them with
To solve this problem, support for snapshots is added dither of the three schemes discussed in Section Ill. Haelwa
caches. The cache is aware of the snapshot identifier bitssirpport can help in the performance of operating system.
the physical address. It contains its own snapshot register To support a memory mapping based scheme, the operating
well. Any access to the snapshot register will still go on theystem would find and map a new range of memory to the
bus for other caches and memory controller to update theiime physical range. It would then set the range for copy-on-
state. On a non-bus system, broadcast has to be used. E@é¢te behavior.
entry in the cache is modified to contain a snapshot bit vectorsypporting a scheme of virtual address space bits is similar
implying the snapshots for which this entry is valid. This igjowever it needs to restrict its use of virtual address space
pictured in Figure 5. to the portion where snapshot identifier is zero. Other than
The behavior of cache is modified as follows: restricting its use of virtual address space, it has to sttap
« When a snapshot is taken, the corresponding bit is markadidress translation for snapshots. It can do by eithengaiip
in every entry which is current. A current entry means thaill page tables right away like in a memory mapping scheme,
it is in snapshot 0, which is the current state of memorgr like in fork. Alternately, page table can be setup as needed
« When data is read or written, the snapshot bits aom page faults. This is possible since the virtual to physica
separated, the tag is separated which does not contain ttepping for snapshots is identical to current memory until
snapshot bits. Then an associative lookup is done usisgmething is modified.
tag for entries that have the corresponding bit set. The problem however is that setting the complete address
« When data is written and there is any bit other than thgpace for copy-on-write is a significant overhead, both in
current bit set in the cache line entry, a duplicate has #etting it up, and for future write operations by the maire#tt.
be made in the cache. This can cause a write-back. THisis is a special concern for operating systems using copy-
duplicate will only have the current bit set, while the olcbn-write for fork operation.
copy has it cleared as shown in Figure 5. This gives rise to the third option of kernel support for a
« When a snapshot is released, the corresponding bitsisftware library. Two things that kernel has and user saftwa
cleared in every entry. This can again be a lazy operatiadbes not have are address translation control, and copy-on-
as discussed for memory controller above. Any entry witfyrite. If software library has access to these, it can supgor
all bits cleared is now a free entry. mechanism where only the necessary pages are set for copy-
Giving preference to new copies in cache replacement algm-write, and the standard translation mechanism is used to
rithms can potentially improve performance. This is beeauaccess old copies.

Fig. 5. Cache entry duplicated on being written to

C. Snapshots User Library memtest " memtest
This section discusses a software implementation of inter-

faces given in Section IlI-C. Thassertion_queue can be altered to take
implemented using a simple queue with consumer locks. If and access snapshots
there are more than one producer, producer locks can be used

or alternately one queue per producer can be used. cache cache

The snapshot _nanager keeps the snapshot cache in
a software map. The unit of storage in snhapshot cache
is not fixed. Rather it is the same as passed to
modi fy_notification. Thus if different sized nodes are

reported tarodi fy_notification, they will be copied using bus
dynamic allocation and stored in the map. The actions of
shapshot manager are as follows: /\
« When a new snapshot is taken, it just remembers it in a
bit vector. . o ' . ~ altered to access hvsical shapshot
« When a modify notification is given, it sees if the given o|d version in IF“)neymory cache
data has already been cached by active snapshots. sltapshot cache (NEW)
makes a new cache entry for snapshots that do not already

have this data cached.
« When a read request is received, it sees if it has ddt§: 6- Memory Snapshot Capability in M5
for the requested version. It returns the cached data if
available, or else returns the same pointer. This means that
the data has not since changed. There is a synchronization
issue here that the data may be changed after returi@ to accessing the snapshots. And due to this dependency
from this function. One way to handle this is blockinghe main application is much slower.

the main thread until a nemead_done function is called. o)
Another way is to haveread return actual data and The memory controller based scheme is implemented in
not pointers. This results in more calls tead but can M5 [18] . Two other simulators were thoroughly investigated

possibly keep the main thread a bit faster. for implementation but they did not allow sufficient infrast-

« When a snapshot is released, every entry in cache shotfff t© implement this new controller. Gems [19] provides a
have its bit cleared. Any entries stored only for thi§€mory timing model, but does not provide a functional model

snapshot are freed. Lastly, its bit is reset in the snapsi¥ere @ different data can be provided by changing code.
bit vector. That part was contained in proprietary Simics code. Therothe

. . . . ion investi waPIN instrumentation | [20] which
Major advantage of this scheme is that no changes in op0 tio estigated wab strumentation tool [20] ¢

. : . orks by using the x86 trace flag. However x86 instructions
ating system or hardware are required. However, there |gagl N generate more than one memory access per instruction
perfc_)rmance overhead due to lookups of a software cache.a d the data provided by each of these accesses has to be
hybrid software-kernel scheme should reduce these OMhegontrolled. Finally M5 gave this flexibility. However whem a

significantly, as discussed in the last section. Anotheemut! ISA is used on top of M5, and a normal program is run

g;?\r'&?)?gg En;r;?hngSIIr;gpE;rr:I?edlIZsrs]g:It];g:r?tlgrgcC:snsi;i;;‘l: irtual addrgsses ha_lve to be used. Us?ng virtu_al addresses
finding buds hérder rather than easier poses new issues discussed apove, wh|_ch require the kernel
Mean finding bug ' ' to be modified. To work around it, a special module was used
that replaced the ISA and worked directly with the memory
V. EVALUATION AND RESULTS hierarchy. Using this module and a new physical memory

odule with an attached snapshot cache, the authors were
Two schemes are evaluated. A pure software appro%

and a memory controller based scheme are investigated
the software approach the classes discussed in Secti@h Il h
are implemented. Old snapshots can be correctly acces
Bounded Exhaustive Testing [17] of a Binary Search Tree Wag,
then conducted with assertions on every insertion. Thisl kin
of application is not suited to snapshots as the changes ar@here are lots of different components that need to be in
very frequent putting a strain on snapshot cache. Also tptace for an extensive performance evaluation. Even then,
only real work the application is doing is asserting. Due tthe behavior of application including its current speednd a
the nature of application, there was a significant slowdowvafficiency determine the results to a significant degrees Thi
instead of speedup when assertions were executed in paraflaper is a start in identifying the issues and possible isoisit
The main application was blocking for assertions to finigh, @ this area. The authors believe that further researchim th
it was asserting at a high rate. Assertion processing iseslovdirection will give more quantitative results.

e to experiment taking, releasing, and accessing sotpsh
M5. Figure 6 shows modules from M5 that are involved in
aﬂevaluation. Gray boxes are ports which connect differen
ponents together. Changes done for implementing memory
pshots are highlighted.

VI. FUTURE WORK AND CONCLUSIONS

(6]

Programmers avoid costly assertions like validating data

structure invariants. However these assertions are asltusef
catching bugs early as the simpler checks that programmei@

do use. Extracting costly assertions to be executed inlphral
can improve the parallel speed up of many applications. This
is important as current generation software is not scalingl

to next generation parallel hardware. The exact performan 9
benefit depends on many factors including cost of queuing

and maintaining a snapshot, cost of the actual assertitm, id

parallel processors. The proposed scheme is most benefitidl
when the cost of assertion is high and idle processors g

available, whereas cost of queuing and maintaining a sweapsh

is low.

Our evaluation work shows the feasibility of implementingi2]
a snapshot scheme, both in software and hardware. Howe\{gr
they are useful in different scenarios. We hope that a futfe!

work would give a workload characterization where diffdrerji4]

schemes are most useful.

. . 15
There are numerous potential uses of a generic snapsLno][
scheme. The current paper is concentrated around pazidteli

assertions. We envision some interesting applicationgpsut

(16]

for rolling back to snapshots is added, which should not be

very hard. One of these applications raverse debugging

where one can step back in the debugger. In fact a maoté
interesting and less resource hungry scheme would allow
rollback per stack frame. Other potential uses are memory

transactions and software controlled state rollback. Thieas
will be investigating these potential uses in the future.

(18]

Another concept related to snapshots is having multiple]

active versions. Snapshots are passive versions of memory

as nowrites are allowed. Such a scheme can allow a new
parallelization model where threads work independently on

the same memory, and their work is merged later. This mo

M. J. Martin, D. E. Singh, n. Juan Touri and F. F. Rivera, “Exploiting
locality in the run-time parallelization of irregular logpsn ICPP
'02: Proceedings of the 2002 International Conference orraiel
Processing (ICPP’02) Washington, DC, USA: IEEE Computer Society,
2002, p. 27.

M. Arenaz, n. Juan Touri and R. Doallo, “A gsa-based coemil
infrastructure to extract parallelism from complex loops,’ICS '03:
Proceedings of the 17th annual international conferenceSapercom-
puting New York, NY, USA: ACM, 2003, pp. 193-204.

S. McConnell,Code complete: a practical handbook of software con-
struction Redmond, WA, USA: Microsoft Press, 1993.

] G. Kudrjavets, N. Nagappan, and T. Ball, “Assessing takationship

between software assertions and faults: An empirical StutBEE
ISSRE’06 2006.

Y. Abarbanel, I. Beer, L. Glohovsky, S. Keidar, and Y. W§thal,
Computer Aided Verification Springer Berlin/ Heidelberg, 2000.

A. Milicevic, S. Misailovic, D. Marinov, and S. Khurstj “Korat: A
tool for generating structurally complex test inputs,”I®SE '07: Pro-
ceedings of the 29th International Conference on Softwagirteering
Washington, DC, USA: IEEE Computer Society, 2007, pp. 77477
T. L. Dahlgren and P. T. Devanbu, “Improving scientificfteare
component quality through assertionCM SE-HPCSMay 15 2005.
MSDN Library: MSDNSetThreadAffinityMask Functig@nline]. Avail-
able: http://msdn.microsoft.com/en-us/library/ms686247.85).aspx
Linux Users Manual: taskset [Online]. Available: http://Awww.
linuxcommand.org/marpages/tasksetl.html

“Alpha 21164 microprocessor: Hardware reference maghuaigital
Equipment Corporation, July 1996. [Online]. Available:patth18002.
www1.hp.com/alphaserver/technology/literature/21164pdf

M. Herlihy, J. Eliot, and B. Moss, “Transactional memoAychitectural
support for lock-free data structuresComputer Architecture, 1993.
Proceedings of the 20th Annual International Symposiumpgn 289—
300, 16-19 May 1993.

K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jsak, “Software
assurance by bounded exhaustive testing/S®TA '04: Proceedings of
the 2004 ACM SIGSOFT international symposium on Softwastnte
and analysis New York, NY, USA: ACM, 2004, pp. 133-142.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. &di,
and S. K. Reinhardt, “The m5 simulator: Modeling networkedeays,”
IEEE Micro, vol. 26, no. 4, pp. 52—60, 2006.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, MXu,
A. R. Alameldeen, K. E. Moore, M. D. Hil, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessamaiator (gems)
toolset,” SIGARCH Comput. Archit. Newsol. 33, no. 4, pp. 92-99,
2005.

] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loew

is similar to software development model where code is

developed independently and merged later.

REFERENCES

[1] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tath

(2]

(3]

(4]

(5]

D. Finan, P. lyer, A. Singh, A. Singh, T. Jacob, Al1l0, S. Jain,
Al1l, S. Venkataraman, A12, Y. Hoskote, A13, N. Borkar, and
Al4, “An 80-tile 1.28tflops network-on-chip in 65nm cmos,” in
Solid-State Circuits Conference, 2007. ISSCC 2007. Dige$echnical
Papers. |IEEE International 2007, pp. 98-589. [Online]. Available:
http://dx.doi.org/10.1109/ISSCC.2007.373606

“pthreads: The open group base specifications issue ée istd
1003.1, 2004 edition.” [Online]. Available: http://wwvpengroup.org/
onlinepubs/009695399/basedefs/pthread.h.html

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,HK
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runt system,”
Journal of Parallel and Distributed Computingol. 37, no. 1, pp. 55-69,
1996. [Online]. Available: http:/citeseer.ist.psu.gglumofe95cilk.html
D. L. Eager, J. Zahorjan, and E. D. Lozowska, “Speedupsw&r
efficiency in parallel systems|EEE Trans. Comput.vol. 38, no. 3,
pp. 408-423, 1989.

Y. Lin and D. A. Padua, “On the automatic parallelizatioh sparse
and irregular fortran programs,” ihCR '98: Selected Papers from the
4th International Workshop on Languages, Compilers, and-Rme
Systems for Scalable Computerdondon, UK: Springer-Verlag, 1998,
pp. 41-56.

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building tonsized
program analysis tools with dynamic instrumentation,”RhDI '05:
Proceedings of the 2005 ACM SIGPLAN conference on Progragmi
language design and implementation New York, NY, USA: ACM,
2005, pp. 190-200.

