
 

 
 
 
 
 
 

Chapter III 
 
 
 

Operationally Complex Systems 
 
 

Information Systems and Operational Systems 
 
Since the middle of the twentieth century, electronic systems have been designed to 

perform increasingly complex combinations of tasks. Many of these systems fall within the 
domain of information technology such as database management, text editing, and graphics 
and image processing systems. However, some of the most complex systems are in the 
domain of direct control of physical equipment. The equipment controlled can be nuclear 
power stations, chemical manufacturing plants, oil refineries, or telecommunications 
networks. The electronic systems control these facilities in real time with little or no human 
intervention. These operationally complex systems generally experience constraints on their 
architectural form which are significantly more severe than the constraints experienced by 
information technology systems. A human brain controls very complex physical "equipment" 
(i.e. a body) in real time with little or no external intervention. Analogous constraints on 
architectural form therefore exist, although the resultant form has minimal resemblance to any 
current commercial electronic system. 

An operational system (or control system) is one which acts upon its environment and 
itself in order to achieve objectives. A very simple example of an operational system is a 
thermostat with the objective of keeping the internal temperature of a refrigerator within a 
specified range. The thermostat receives an electrical signal which provides information about 
the temperature within the refrigerator, and turns cooling on if the signal indicates a 
temperature above the range and off if below the range. In addition, the thermostat must 
respond to its input signal within a reasonable period of time.  

A slightly more complex operational system would be a refrigerator thermostat with the 
additional objective of minimizing energy consumption as far as possible. Additional 
behaviours would include turning cooling on at a range of different levels where higher levels 
cooled faster but were less efficient in using energy. An additional sensor input signal could 
be an indication of the temperature external to the refrigerator. The decision on current 
behaviour would depend upon an interaction within the control system between information 
on past and current temperatures inside and outside the refrigerator and the two objectives. 
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For example, rates of temperature change inside and outside the refrigerator might be 
estimated. 

 
 

Operationally Complex Systems 
 
An operationally complex system is one in which the number of possible behaviors is 

very large, there are many potentially conflicting objectives, considerable interaction is 
required within a large body of information derived from sensory inputs to determine 
appropriate behaviour at each point in time, and the time available after occurrence of an 
input condition in which to determine appropriate behaviour is short. 

To illustrate these factors, consider two types of operationally complex electronic 
systems, both of which have been in use for many years. One is the flight simulator [Chastek 
and Brownsword 1996], the other is the even more complex central office 
telecommunications switch [Nortel Networks 2000]. A current flight simulator may have one 
or two million lines of software code, and simulates the environment experienced by the pilot 
of an aircraft such as a military jet, including changes to that environment caused by the 
actions of the pilot. A central office switch with twenty or thirty million lines of code is 
physically connected with 100 thousand telephones and computers, and provides their users 
with a wide range of telecommunications services on demand. 

The behaviours controlled by a flight simulator include changing the images on monitors 
simulating the view through cockpit windows, changing  the settings on cockpit instruments, 
and moving the emulated cockpit platform in three dimensions as the pilot performs tasks 
including takeoff, landing, maneuvering in flight including combat situations, midair 
refueling, and deploying weapons systems. The appropriate system behaviour is determined 
by an interaction between: firstly the past and current settings of the simulated aircraft 
components such as engine, control surfaces, aircraft component failures, radar and weapons; 
secondly the simulated environment such as wind, turbulence, the ground or aircraft carrier, 
and other aircraft; and thirdly the actions of the pilot. The system must generate sufficiently 
accurate behaviour fast enough that the simulated response is sufficiently close to real 
response for pilot training to be effective. For example, slow system responses could mean 
that training was dangerously counterproductive. In addition, timing mismatches between 
visual and movement changes can result in physiological reactions known as simulator 
sickness, even when the mismatches are too slight to be consciously perceived. 

The basic tasks of a central office switch include establishing and taking down 
connections between telephones and computers using a limited pool of connectivity 
resources; collecting billing information; collecting traffic information to determine when and 
where upgrades are required; making changes to services; and identifying problems. 
However, these basic tasks are subject to a number of considerations which make the system 
much more complex than might appear superficially. 

The first consideration is that there are thousands of features which must be taken into 
account in the course of establishing a connection. Features like call forwarding, emergency 
calls, and toll free calls to institutions rather than to specific telephones all require decisions 
on destination, routing, and billing based on information in addition to the actual number 
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dialed. Features like conferencing and call monitoring for law enforcement require 
connectivity to be established between more than two points. Features like fraud prevention 
must intervene before suspect calls are established. Features like prioritization of calls in 
national emergencies must permit some calls to have priority in taking connectivity resources 
from the common pool. Data and quality of service features must make it possible to select 
from different types of end-to-end connectivity. Many of these features interact in the sense 
that the activity of one feature can change the way another feature operates. An example 
would be when one telephone has the service of only accepting calls from a specific set of 
other telephones, and one of those other telephones invokes a service of forwarding all its 
calls to the telephone which restricts its callers. 

The second consideration is a requirement that no single switch be totally out of service 
for more than two hours in a forty year period, including any outage time needed for system 
upgrades and other maintenance. For instance, in 1999 Nortel Networks switches were out of 
service for an average of 18 seconds per switch per year including failure and maintenance 
time. A key reason for this requirement is that one switch provides service to a significant 
geographical area. Failure of just one telephone leaves the option in an emergency of finding 
another working telephone nearby, but failure of the switch removes service from all the 
telephones in the area. One implication of this requirement is that the system must perform 
constant self diagnostics to test the performance of all hardware and software systems. 
Duplicates of critical subsystems must exist, with diagnostics which are capable of 
determining which subsystem is defective and moving all operations on to the other 
subsystem with no loss of service or interruption to existing connections. Any changes to 
individual user services such as location changes or additional features, and any upgrades to 
system hardware or software, must occur without service interruption. 

The third consideration is that dial tone must be provided within a second of any request 
for service, and the connection established within a few seconds of dialing, even if hundreds 
of other new calls are in progress and thousands of connections already exist. Furthermore, 
the time available for information to pass between two points is very limited. The delay in 
transmitting a sound element within a conversation must be less than a few milliseconds, and 
the delay for real time video less than a few tens of milliseconds, even if many other functions 
are using the same physical connection. The quality of the received voice or image must be 
high, with minimal noise or distortion. 

At any given instant in time, multiple behaviours could be indicated, including 
establishing a connection, breaking down a connection and releasing its resources for other 
calls, collecting billing information, performing a diagnostic task, recording the current 
volume of user requests for service, or making a change to the system. If processor or other 
resource limitations make it impossible to perform all the behaviours immediately, an 
interaction between internally specified objectives will determine the relative priority of 
different behaviours. For example, regular diagnostics may be delayed when user service 
demands are high, but if the delay becomes prolonged, the risk of serious undetected failures 
becomes significant and user services will be delayed if necessary to allow diagnostics to 
proceed. The combination of over 100 thousand users, thousands of interacting features, and 
tight reliability and real time constraints make central office switches some of the most 
complex electronic systems in existence. 
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The human brain performs an operationally complex combination of tasks. It must learn 
to select an appropriate response to a vast range of input conditions from within its wide 
range of available behaviours. These available behaviours include body movements 
(including changes to facial expression); verbal behaviours; and attention behaviours. Some 
attention behaviours are body movements (e.g. to look at different objects), others are internal 
actions to retain information active (e.g. the numbers when dialing a telephone call) or to 
activate information not currently active (e.g. mental images). There is often limited time 
within which appropriate behaviour must be selected. 

For example, suppose that two people, Rick and Elaine, encounter each other, and 
consider the operational role of Rick's brain. A simple categorization problem would be to 
identify Elaine and speak her name. Even this problem is not as simple as it might appear, 
because variations in Elaine's appearance and the lighting conditions may make the raw visual 
input quite different from previous occasions. Furthermore, the raw visual input to Rick's 
brain is constantly changing as he and Elaine move, as Rick directs his attention to different 
parts of Elaine's face and body, and to other objects in the immediate environment. The 
higher level activated information in Rick's brain may change as he considers mental images 
of various memories. Elaine's appearance (e.g. expression) may be changing in response to 
Rick. To make things even more complex, the real behavioural problem is not a simple 
categorization. For example, depending on the location of the encounter, the appropriate 
response might be "Hi Elaine, what are you doing here?" Depending on her detailed 
appearance it might be "Hi Elaine, are you feeling okay?". This latter response might not be 
appropriate depending on the identities of other people present, but if the appearance 
indicated that Elaine was very unwell would be appropriate independent of who else was 
there. In addition, the appropriate response might include a hug, a kiss, or a handshake. The 
appropriate response also depends upon Rick's internal objectives: enhancing his business or 
personal relationship with Elaine; enhancing his relationships with other people present; 
and/or completing the task he was currently performing without being drawn into a 
conversation. The relative weight of these internal objectives might be affected by changes to 
Elaine's expression and by the responses of co-workers who happened to be present. Internal 
behaviours might include searching through recent memories for anything relevant to Elaine. 
Finally, the appropriate response must be delivered within a couple of seconds, and followed 
up by a sequence of appropriate and consistent other behaviours. 

The human brain thus meets the definition of a operationally complex system: the 
number of possible behaviours is large; there are a number of potentially conflicting 
objectives; considerable interaction is required within a large body of information derived 
from sensory inputs in order to determine appropriate behaviour at each point in time; and the 
time available in which to determine behaviour is short. 

 
 
 
 
 
 



Information Systems and Operational Systems 5 

Organization of System Resources 
 
An operational system does not calculate mathematical functions in any useful sense. 

Rather, it detects conditions within the information space available to it and associates 
different combinations of those conditions with different behaviours. The information space 
available to the system is made up of inputs which provide information about the state of the 
equipment being controlled, the state of the environment in which the equipment operates, 
and the internal state of the system itself. 

In principle, an operational system could be implemented as an immense look-up table, 
with each operationally relevant state of the total information space listed separately with its 
corresponding behaviour. If sequences of such states sometimes determined behaviour, all 
such sequences would also have to be listed in the table. Such an implementation would 
require impractical levels of information recording and processing resources. In practice 
therefore, an operational system must detect a much smaller population of conditions within 
different subsets of its information space, and associate many different combinations of this 
limited set of conditions with different behaviours. Identifying an appropriate but limited set 
of such conditions is a primary design problem for such systems. However, even such a 
comparatively limited set will in general be extremely large for an operationally complex 
system.  

In order to conserve resources, it will therefore also be necessary to collect similar 
conditions into groups. The conditions in one group can be detected by a set of system 
resources optimized for detecting conditions of the group type. In this context, two conditions 
are similar if a significant proportion of the information defining them is the same. It will also 
be necessary to detect complex conditions by first detecting relatively simple conditions 
which occur in many complex conditions, then to detect the more complex conditions using 
the detections of the simpler conditions. A set of system resources optimized for detecting a 
group of similar conditions is called a module. Because similar conditions may be relevant to 
many different behaviours or features, modules will not correspond with such behaviours or 
features.  

Note also that this definition of module is not the same as the concept of identical or 
almost identical units convenient for the construction of a system. There may be some general 
similarities between some modules for construction related reasons as discussed below,  
provided that such similarities are consistent with the primary role of modules. However, the 
primary role of modules is making the best use of resources in the performance of system 
operations, and there will be significant heterogeneity amongst even similar modules in order 
to achieve this primary purpose.  

A system must also have a portfolio of primitive actions which it can perform on itself 
and its environment. For example, the brain has a portfolio of individual muscle movements. 
However, resource limitations will also make it impractical to associate conditions with 
individual actions. It will be necessary to define behaviours as frequently used sequences and 
combinations of actions, and types of behaviour as groups of similar sequences. A component 
contains a set of system resources optimized for driving a group of similar behaviours, and 
will be invoked by the detection of appropriate combinations of conditions. 
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An interaction between two modules occurs when a condition detected by one module is 
incorporated into a condition detected by another module. One condition detected by one 
module may be incorporated into different conditions detected by many other modules, either 
directly or via condition detections by intermediate modules. An interaction between two 
components occurs when both are invoked by currently detected conditions, and it is 
necessary to determine whether both can be invoked at the same time and if not, which of the 
two is most strongly invoked by currently detected conditions. All these interactions can also 
be viewed as information exchanges. 

 
 
The User Manual and the System Architecture 
 
The user manual for a system describes how the features of the system operate and 

interact from the point of view of an external observer. A feature is a group of similar 
behaviours invoked by similar circumstances, but in this context "similarity" is defined for the 
convenience of the external observer.  

The system architecture describes how the operations of the system are separated into 
modules and components, the interactions between these modules and components, and how 
these modules, components and interactions result in the behaviour of the system. The 
separation of the system into modules and components is strongly influenced by resource 
constraints as discussed in the previous section. System modules and components will 
therefore not correspond with user manual type features. Rather, a module or component will 
contribute to the performance of many features and a feature will be dependent upon many 
modules and components. Hence the relationship between system architecture and user 
manual will be very complex. How the system operates is most easily understood from the 
user manual, but how features result from system operations can only be understood from the 
system architecture. 

The implications for the brain are that the system architecture at the physiological level 
may have a very complex relationship with descriptions of cognitive phenomena as measured 
by psychology.  

 
 

Practical Considerations 
which Constrain Architecture 

 
Practical considerations which must be taken into account to some degree for any system 

become critical influences on the architecture of operationally complex systems. The primary 
such consideration is limitation to the available information recording and processing 
resources. As discussed earlier, one effect of this limitation is organization of resources into 
components and modules. However, there are some additional considerations which also have 
an effect on architecture.  

One such consideration is the need to maintain adequate meaning for all information 
moving within the system. A second consideration which has important implications for 
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information meaning is the need to modify some features without excessive undesirable side 
effects on other features. A third, related consideration is the need to diagnose and repair the 
system without too much difficulty. A fourth is the need to construct many copies of the 
system from some kind of design specification by a process which is not too complex and 
error prone, and which does not require a specification containing an excessive volume of 
information.  

Information moving within the system must have an adequate level of meaning. Firstly, 
temporal relationships between information being processed by different parts of the system 
must be maintained: the results obtained from the processing of a group of system inputs 
which arrived at the same time must not be confused with the results obtained from 
processing inputs which arrived at a later time. Secondly, because the results of processing by 
one module may be communicated to many other modules, and each module may use the 
same result for a different purpose, any changes to modules must be such that an adequate 
meaning for its results is preserved for all modules receiving those results. 

Module changes may be required to add and  modify features, or to recover from physical 
damage. The need to perform such changes efficiently means that it must be possible to 
identify a set of module changes which can implement such modifications or recoveries with 
minimal undesirable side effects on other features. The identification process can only use 
information which is readily available to the agent performing the change. This agent may be 
an external designer, but when changes are learned the agent is the system itself. 

Finally, the need to construct the system by a process which can only use a limited 
volume of design information means that systems tend to be made up of a small set of 
standard building block types. The system then contains many building blocks of each type. 
Each block within a type is fairly similar to the standard for the type. The design of a building 
block type can then be described just once, and individual building blocks only require 
description of their differences from the standard. Since the system must consist of modules, 
a compromise is also required between making modules as similar as possible to minimize 
design information and customizing each module to make the most effective use of system 
resources for its assigned system role. 

Although the brain is not designed under external intellectual control, analogous 
constraints to many of the above exist. A brain able to perform a higher number of features 
with the same physical information handling resources will have significant natural selection 
advantages. The brain must not confuse information derived from different objects perceived 
at different times. Information moving within the brain from any one source to different 
locations must have an adequate level of meaning to all recipients. The brain must be able to 
recover to some degree from physical damage. It must be possible to add features and modify 
existing features without excessive side effects on other features. The genetic information 
space available to specify the construction of the brain is not unlimited, and the construction 
process must be such that it can be specified with limited genetic information and operate 
either without errors or with recovery from errors.  

However, although these constraints are analogous with some of those on electronic 
systems, a critical difference is that the behaviour of an electronic system is specified under 
external intellectual control, but the brain must learn a significant proportion of its behaviour 
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heuristically. The result of this difference is that the architectural form into which the brain is 
constrained is qualitatively different from that into which electronic systems are constrained. 

 
 

Impact of the Practical Considerations 
on System Architecture 

 
The various considerations place constraints on the possible form of a system architecture 

which become more and more severe as operational complexity increases relative to the 
resources available. Some of the constraints are the same for any operationally complex 
system. Others differ depending on whether system features are defined under external 
intellectual control or heuristically through experience (i.e. learned). 

 
 

Hierarchy of Modules 
 

 
 
Figure 3.1 Organization of system operations into a modular hierarchy. The organization of the 
hierarchy is on the basis of condition information similarity with the objective of achieving information 
recording and processing resource economies. Devices are the most detailed “modules” and detect 
groups of very similar conditions. Low level modules are made up of groups of devices and detect all 
the conditions detected by their constituent devices. There is a strong but somewhat lower degree of 
similarity within this larger group of conditions and a significant degree of resource sharing in the 
detection of different conditions is possible. An intermediate level module is made up of a group of low 
level modules. The degree of condition similarity across the set detected by all the constituent low level 
modules is lower, and a lower but still important degree of resource sharing is possible. Higher level 
modules are made up of groups of intermediate level modules with a yet lower but still significant 
degree of condition similarity and consequent resource sharing. 
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As discussed earlier, limitations to resources result in similar conditions being organized 
into groups which can be detected by a module containing resources optimized for the group 
type. To achieve further resource economies, intermediate level modules made up of groups 
of more detailed modules are defined. The set of conditions detected across such a group are 
more different than the set detected by one detailed module, but are sufficiently similar that 
some of the detection process can be performed by optimized resources shared across the 
group. This resource sharing defines the intermediate module. Yet higher level modules can 
be defined by resource sharing across a group of intermediate modules and so on. The 
resultant modular hierarchy is illustrated in figure 3.1. 

 
 

Hierarchy of Components 
 
The level of connectivity required to connect relevant conditions to every primitive action 

driver would be excessive. Frequently used combinations and sequences of actions are 
therefore defined as behaviours with one corresponding control component. This component 
receives inputs from various modules indicating the detection of conditions, and generates 
outputs which drive the appropriate sequence of actions. Groups of similar behaviours 
invoked under similar conditions are collected into higher level components where most of 
the condition detecting inputs can be directed to the higher level component.  

 
 

Information Exchange within a Modular Hierarchy 
 
Condition similarity in an information sense does not guarantee similarity of behavioural 

meaning. The conditions detected by one module will therefore be relevant to many 
behavioural features, and the operation of any one feature will depend upon conditions 
detected by many modules. Using modular hierarchies to reduce resource requirements 
therefore introduces a problem. If the operation of the system must be changed in some 
desirable manner without excessive proliferation of the conditions which must be detected, in 
general some previously defined groups of conditions must be modified. Such modifications 
will tend to introduce undesirable side effects into other operations which employ the original 
unmodified groups. It will therefore be necessary to find a compromise between use of 
resources and ease of modification. To make operational change practicable, modules must be 
defined in such a way that overall information exchange between modules is minimized as far 
as possible. In other words, conditions detected by one module must be used as little as 
possible by other modules, as far as is consistent with the need to economize on resources. 
The modular hierarchy is therefore a compromise between resource economy and ease of 
modification. Experience with the design of operationally complex systems indicates that 
such modular hierarchies are indeed essential to make operational changes possible [Kamel 
1987]. 
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Information Exchange within a Component Hierarchy 
 
The primary role of information exchange within a component hierarchy is to coordinate 

different behaviours and resolve conflicts between them. Because components correspond 
with behaviours, the management of information meanings is simpler than within a modular 
hierarchy. An input to a component can only mean that the corresponding behaviour is 
encouraged or discouraged, and an output that the corresponding behaviour is encouraged 
and/or any other behaviour is discouraged. 

 
 

Examples from Design of Electronic Systems 
 
As an illustration of the compromises needed in defining the various hierarchies, consider 

the flight simulator example. Different modules could be organized to correspond 
approximately with different tasks performed by the pilot, such as takeoff, level flight, 
turning etc. With this approach, most of the information required at any point in time is 
within one module and the processing time required is minimized. It is therefore easier to 
achieve the necessary real time response. However,  information on different parts of the 
aircraft must be maintained in each module and any changes to aircraft design will require 
changes to all modules. If modules are organized to correspond more closely with different 
parts of the aircraft, functional changes to the simulator to reflect aircraft technological 
advances are easier. Simulator architectures have therefore shifted from task modules to 

aircraft component modules as available processing speeds have increased and aircraft 
technological change has accelerated [Bass et al 1998].   

In the case of the much more complex central office switch, call processing, diagnostics, 
billing and traffic measurement are different  major customer features. However, the 
operational complexity of these tasks and the interactions between them is so great that if 
high level modules corresponded with these features, the interactions between modules and 
the demands for computing resources would be excessive. For example, billing requires 
information on the features invoked in the course of call processing, and call processing 
requires immediate information on problems identified by diagnostics.  

As a result, there is very little correspondence on any level between modules and 
identifiable customer features. At the highest level, there are no modules corresponding with 
the major feature domains like call processing, diagnostics or billing. There are no modules 
on any level which correspond exactly with features like conferencing or call processing. 
Rather, at a detailed level the management of a connection between two users, from 
originating a connection through answering the call to disconnection of both users, is 
managed by repeated invocation of software modules performing functions with names like 
queue handler, task driver, event router, function processor, or arbitrator, and differences in 
the features invoked are only reflected in the information provided to these modules. 
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Modules in the Brain 

 
Limitations to information handling resources are certainly present in biology, and will 

tend to result in a modular hierarchy in the brain. However, modules are not simply arbitrary 
parts from which the system is constructed, but must have specific properties tailored so that 
the brain achieves resource economies. The modular hierarchy must divide up the population 
of operations performed by the brain into major modules in such a way that similar operations 
are grouped together but the information exchange between them is minimized as far as 
possible. Major modules must be divided into submodules on the same basis, and so on down 
to the most detailed system operations. One general result of this process is that a module on 
any level will tend to have much more information exchange internally (i.e. between its 
submodules) than with other modules. Because, in the brain, information flows along physical 
connection pathways, this leads to the expectation of a hierarchy of anatomical modules 
distinguished by much more internal connectivity than external. 

To illustrate the resource/modifiability problem for the brain, consider how visual input 
could be used to control a number of types of behaviour with respect to a river. These types of 
behaviour could include white water canoeing in, swimming in, fording, fishing in, drinking 
from, and verbally describing the river. For each of these types there are different visual 
characteristics which identify the optimum locations and ways to perform different 
behaviours within the type. These visual characteristics are all observations of the river which 
correlate partially with operationally significant conditions like depth of water, rate of flow, 
presence of visible or hidden rocks, evenness of the river bed, condition of the river banks etc. 
Such characteristics might include areas of white water, areas of smooth water, visible rocks, 
or whirlpools. The shapes and internal variations of different instances of these characteristics 
could be relevant to determining behaviour and therefore be part of the characteristic. 

However, the shape and appearance of an area of relatively smooth water most 
appropriate for indicating a place to stop the canoe and plan the next part of the route through 
the rapids may not be exactly the same as the shape and appearance most appropriate for 
indicating the probable location of a fish, and the shape and appearance of a smooth area in 
which drinking water would contain the least sediment may be different again. Furthermore, 
even within one behaviour type, the shape and appearance of the relatively smooth area most 
appropriate for stopping the canoe may be different from the relatively smooth area indicating 
the best point of entry into a rapid. These high level characteristics might be constructed from 
more detailed characteristics like ripples, waves, relative colorations and shades, boundaries 
of different types etc. However, again the more detailed characteristics best for constructing 
the most appropriate higher level characteristics may not be the same for all behaviours. 

One solution would be to define characteristics independently on all levels for each 
behaviour for which optimum characteristics were different in any way. This solution will in 
general be very resource intensive for an operationally complex system, and in most cases a 
compromise must be found. For example, a characteristic "patch of smooth water" might be 
used for multiple behaviours but for each behaviour there could be additional characteristics 
which could distinguish between operationally different patches. 
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Consider now the problem of learning an additional behaviour, such as learning to find a 
place to ford a river after white water canoeing, fishing, and drinking have been learned. 
Suppose that this learning must occur with minimum consumption of resources but also with 
minimum interference with already learned behaviours. Minimizing the use of resources 
would be achieved by minimizing the number of additional characteristics, in other words by 
modifying existing characteristics for the new behaviour. Minimized interference would be 
achieved by creating a new characteristic whenever there was a difference between the 
optimum characteristic for the new behaviour and any existing characteristic. Some 
compromise must be found between these two extremes, in which some already defined 
characteristics are slightly modified in a way which does not severely affect existing 
behaviours, and only a small number of additional characteristics are defined when the side 
effects of modification would be extensive and/or hard to correct. The effect of this process is 
that individual characteristics will not correspond with conditions which are behaviourally 
useful for just one behaviour. Rather, they are conditions which in different combinations are 
effective for managing multiple behaviours. 

Cognitive science has made many attempts to define modules at relatively high 
psychological levels, with the hope of being able to identify such modules with physiological 
structures. "Module" in this context has generally been understood (following Fodor) as a unit 
which can only access a limited subset of the information available to the system, which 
performs a set of tasks following algorithms not visible to other modules, and which has a 
dedicated neural structure. Such a definition has some similarities with the minimized 
information exchange requirement. Cognitive modules of many different types have been 
proposed, including peripheral modules, domain specific modules, and conceptual modules. 
Proposed peripheral modules include early vision, face recognition, and language. Such 
modules take information from a particular domain and only perform a specific range of 
functions. Proposed domain specific modules include driving a car or flying an airplane 
[Hirschfeld and Gelman 1994]. In such modules highly specific knowledge and skill is well 
developed in a particular domain but does not translate easily into other domains. Conceptual 
modules are innate modules containing intuitive knowledge of broad domains, such as folk-
psychology and folk-physics, with limited information flow to other parts of the brain [Leslie 
1994]. However, various reasons including the difficulty of associating any such modules 
with plausible physiological structures has led to growing skepticism of the existence of such 
modules in the brain. 

Because of the high operational complexity of the functions performed by the brain, the 
modules which would be expected to develop on the basis of practical considerations would 
not correspond with cognitive functions such as those described in the previous paragraph. 
However, the modules would be expected to correspond with physiological structures. 
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Module and Component Physical Similarities 
 
Because systems must be constructed using a volume of design information which is as 

limited as possible, modules tend to resemble each other. Such a resemblance means that the 
same design information can be used with minor overlays to construct many different 
components and modules. For example, in electronic systems transistors are formed into 
integrated circuits and integrated circuits assembled on printed circuit boards, but the 
numbers of different types of transistors, integrated circuits, and printed circuit assemblies are 
kept as small as possible. Software is generally written in a high level language which can be 
translated (compiled and assembled) to assembly and machine code, but the portfolios of 
machine code, assembly code and high level language instructions are limited as much as 
possible. 

A brain is constructed by a process which uses genetic information, and limiting the 
volume and complexity of this information could be expected to reduce the risk of copying 
errors and errors in the construction process. Brains can therefore be expected to be 
constructed from basic sets of modules and components on many levels of detail, which can 
be combined in various ways to achieve all required system functions. Note, however, that 
although the physical structure may be generally similar, every module and component will 
have a different operational role and will be physically different at a detailed level. 

 
 

Condition Synchronicity 
 
An operational system receives a constant sequence of input information. Frequently, a 

behaviourally relevant condition occurs within information that becomes available to the 
system at the same point in time. Other behaviourally relevant conditions may be made up of 
groups of simpler information conditions which are detected and became available to the 
system at different times separated by specific time intervals. Whether a condition is made up 
of direct system inputs or of subconditions made up directly or indirectly of system inputs, all 
of the information making up the condition must be derived from system inputs at the same 
point in time or at times with the appropriate temporal relationships. 

For example, in the aircraft simulator example, a change to the orientation of the aircraft 
initiated by the pilot at one point in time could result in changes to many different aircraft 
components and to the cockpit displays and platform orientation. The module corresponding 
with each component could take a different time to determine its new status, and it is critical 
that all status changes occur synchronously.  

A module will take a certain amount of time after the arrival of its inputs to detect the 
presence of any of its conditions and generate outputs indicating those detections. Outputs 
will take a certain amount of time to travel from the module generating them to the modules 
utilizing them. In the absence of correction, these delay times will tend to result in condition 
detections within information which does not have the appropriate temporal relationships. 

The system architecture must therefore have the capability to ensure that conditions are 
detected within information with the appropriate temporal relationships. There are two 
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possible approaches to this synchronicity management: global and local. The two approaches 
are illustrated in figure 3.2. 

In the global approach, all the relevant inputs at the same point in time are recorded in a 
reference memory. Modules detect their conditions using the input information in this 
reference memory, and record the presence or absence of conditions they detect in this input 
set in the memory. Such recorded conditions can then be used by other modules. Modules 
must detect conditions in a sequence which ensures that the presence of a condition is not 
tested until all its component conditions have been tested. 

In the local approach, modules are arranged in layers, and one layer can only draw 
condition defining information from the immediately preceding layer, or from system inputs 
in the case of the first layer. If all the modules in one layer take the same amount of time to 
detect their conditions and transmission time to any module in the next layer is the same, then 
all conditions will be detected within a set of system inputs at the same point in time. 

The global approach requires additional resources and complexity to support explicit 
management of synchronicity. The local approach avoids the need for this explicit 
synchronicity management process, but in general will be less accurate. 

 

 
Figure 3.2.  The global and local approaches to ensuring appropriate temporal relationships within the 
information making up conditions. In the global approach, an input state containing the input 
information at one point in time is recorded in a reference memory. Conditions are detected using 
information from that memory. The presence or absence of conditions in the input state is also recorded 
in the memory for use in the detection of more complex conditions. All conditions are therefore 
detected in a synchronous input state. In the local approach, simple conditions are detected within the 
information from the input state in a first layer of modules. Outputs from these modules indicating 
detection of their conditions are provided to a second layer which detects more complex conditions and 
so on. The layering and predominant connectivity only from one layer to the next layer means that all 
the conditions detected in one layer are within a synchronous input state provided module processing 
times and communication times are consistent across the layer. The local approach is therefore less 
complex but more prone to errors. 

 
In commercial operational systems, global management of synchronicity is invariably 

used to ensure that the order in which module operations occur minimizes the probability of 
errors. For example, in actual flight the orientation and motion of an aircraft affects the 
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operation of a weapon system and the operation of a weapon system affects the orientation 
and motion of the aircraft. The timing of the arrival of updated information between modules 
influencing these different components therefore affects the overall accuracy of the 
simulation. In a central office switch, call processing uses connectivity resources from a 
common pool, and both call processing and diagnostics can add and remove resources from 
the pool. If the knowledge of what remains in the pool is not updated in an appropriate 
sequence, a call in progress may plan to include a resource which is no longer in the pool, and 
have to recalculate its end-to-end connectivity path when it discovers that the resource is not 
actually available. 

 
 
Modification, Diagnosis and Repair Processes 
 
Although modules do not correspond with identifiable features, the modular hierarchy 

nevertheless makes it possible to add or modify features while limiting side effects and to 
diagnose and fix problems. To understand how the module hierarchy provides these 
capabilities in an electronic system, the first step is to recognize that a side effect of the way 
modules are defined is that the module hierarchy can operate as a hierarchy of descriptions 
for operational processes. If a module participates several times in the course of some 
process, a description which names the module rather than providing a full description of 
every internal operation will be simpler. Because modules are defined so that most 
interactions (i.e. information exchanges) are within modules and only a small proportion are 
with other modules, such a description can just include reference to the small external 
proportion. Such descriptions are more likely to be within the information handling capacity 
of the human brain. Although a particular feature will not in general be totally within one 
module, the criterion for module definition will tend to limit any one feature primarily to a 
relatively small set of modules.  

An operational process can therefore be described at high level by making explicit 
reference to the names of each module which participates in the process and to the relatively 
small level of interaction between the modules. A new feature or a problem can be understood 
at that level, and the necessary changes or corrections to each module at high level 
understood. Consideration can then be limited to each participating high level module in turn 
by considering only the parts of the operational process in which each  such module is active. 
These parts of the process are considered at the level of the submodules of each  such module 
and the changes or corrections to each participating submodule which will create the desired 
module changes determined. Each submodule can then be considered separately and so on 
down to the level of software instructions and transistors at which changes can be 
implemented. In practice this change process also involves shifts back to higher levels, to 
determine whether a proposed change at detailed levels actually achieves the desired change 
at higher level, and whether it has undesirable side effects  when different operational 
processes involving the same modules are considered at higher level. The modular hierarchy 
thus makes it possible to determine an appropriate set of detailed implementable changes to 
achieve a required high level feature or corrective change by a process which is always within 
the information capacity limitations of a human being. 
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If features must be modified heuristically, the existence of the modular hierarchy as 
defined is still an advantage. If circumstances are experienced which indicate the need for a 
change in behaviour, the set of modules most often active in those circumstances can be 
identified as the most appropriate targets for change. The overall minimization of information 
exchange will tend to limit the size of this set. 

The existence of a modular hierarchy can also make recovery from damage more 
effective. For example, suppose that one module has been damaged. An external designer 
could of course identify the damaged module. A system which must use only its own 
resources to recover from damage is less likely to have such a direct capability. Brains need 
(and exhibit) the capability to recover from some of the deficits created by a stroke. It is 
essential that the actions selected heuristically to achieve recovery from damage have a high 
probability of achieving the desired change and low probability of undesirable side effects. 
This high probability must be achieved using only whatever information is actually available 
to the system. Such information could include identification that some modules were no 
longer receiving inputs (because these inputs came from the now damaged module). 
Resources for a new module to replace those inputs could be assigned, with outputs to the 
modules no longer receiving inputs. If the system has the capability to identify which 
modules have often been active in the past at the same time (see below for reasons why such a 
capability will in general be required), then the new module could be given provisional inputs 
from modules which were frequently active in the past at the same time as the modules no 
longer receiving inputs. These input biases will improve the probability that as the new 
module learns, it will replace the operations of the damaged module. Modularization and 
minimization of information exchange thus improves the effectiveness of damage recovery. 

 
 

Context for Information Exchange 
within a Modular Hierarchy 

 
As discussed earlier, the detection of a condition by one module is sometimes 

communicated to other modules. Such information exchanges also have an operational 
meaning to modules receiving them. To a recipient module, a specific condition detection 
means that the currently appropriate system behaviour is within a specific subset of the set of 
all behaviours influenced by the module. 

A specific condition detection may have a different context (i.e. a different operational 
meaning) in each of the modules which receive it. For example, the detection of a specific 
condition by one module in a flight simulator might be used to indicate the need for changes 
to cockpit monitor images, cockpit displays, and platform motion. 

Changes to a module can include both changes to its input population and changes to the 
conditions it detects within that input population. Such changes will affect outputs, and 
changes for one operational purpose may affect any module which makes use of outputs from 
the changed modules, directly or via intermediate modules. There is no guarantee that these 
secondary changes are desirable. This issue is conceptually illustrated in figure 3.3.  
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For example, a change to the definition of a condition detected by one module in a flight 
simulator made to reflect a change to the instrument displaying such conditions might have 
undesirable side effects on the cockpit platform motion which depended upon the original 
condition definition. The operational change problem can therefore be viewed as a problem of 
maintaining meaningful contexts for all information exchange. The seriousness of the context 
maintenance problem is illustrated by the experience that achieving adequate contexts for 
shared information is a major (and sometimes insurmountable) problem in integrating 
independently developed software systems, even for information technology applications 
[Garlan et al]. 

There are two different confidence levels which could be supported for operational 
meanings. One is unambiguous, in which a condition detection limits appropriate behaviour 
to the specific subset with 100% confidence. In this case a condition detection can be 
interpreted as a system command or instruction.  

The alternative is meaningful but partially ambiguous meanings. In this case a condition 
detection indicates that the appropriate behaviour is probably within a specific subset. Such 
information exchanges can only be interpreted as operational recommendations, with the 
implication that a higher level of condition detection resources will be required to generate 
high integrity behaviours. 

Although a system supporting only ambiguous contexts will require more condition 
detecting resources for a given set of system features, it has the advantage that heuristic 
changes to features are feasible in such a system and generally impractical in a system using 
unambiguous exchanges. To understand the practical issues around heuristic change, consider 
again the set of intercommunicating modules in figure 3.3. 

In that figure, on average each of the eleven modules receives information from 2 
modules and provides information to two modules.  

Suppose that information exchanges are unambiguous. In this case the detection of a 
condition can be interpreted as an operational command. If a change is made to the conditions 
detected by the black module M in order to implement a feature change, that change will 
potentially affect the conditions detected by the three gray modules in figure 3.3 which 
receive information directly from M. Because these modules also influence features not 
requiring change, and the result of a change to a condition will be operational commands 
under the changed condition and not the original, changes may be required to the gray 
modules to correct for undesirable side effects of the change to M. However, any changes to 
the gray modules may affect the four striped modules which receive information from the 
gray modules and so on. 

In a system in which features are defined under external intellectual control, the effects of 
changes to one module must be traced through all affected modules and side effects corrected 
explicitly. This is a difficult problem to solve and accounts for the difficulty of modification 
of such systems. However, if features are defined heuristically, the system must experiment 
with behaviours, receive consequence feedback, and adjust accordingly. 
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Figure 3.3  Spread of impact of information changes from one changed module. The arrows indicate 
information communications. In the illustration the black shaded module M is changed in some way to 
achieve some feature change. Module M provides condition detections to the three gray shaded 
modules. The features influenced by these modules may therefore be affected by the change to M. The 
gray shades modules provide condition detections to the striped modules which may therefore be 
affected by the change to M. The white modules receive inputs from the striped modules and may also 
be affected. There could be an exponentially increasing wave of side effects developing from the 
change to M. 

 
An experimental change to a feature will in general require an experimental change to 

conditions. Any experimental change to a condition will result in a command changes not 
only affecting the targeted feature but also any other features also influenced by the condition. 
The change will therefore introduce uncontrolled side effects on these features. However, 
consequence feedback is received only in response to the targeted feature and will not provide 
useful information on the other features until such features are invoked. 

Thus any experimental change to one feature will result in multiple undesirable side 
effects on other features. Each of these side effects will eventually require an experimental 
change followed by consequence feedback to correct. Because all conditions are 
unambiguous commands, this process is very unlikely to converge on a high integrity set of 
features. In practice, for a large number of features dependent on the same group of shared 
resource modules, it is more likely that system behaviour will steadily diverge from desirable 
behaviour. This is similar to the catastrophic forgetting problem encountered in artificial 
neural networks, in which later learning completely overwrites and destroys earlier learning 
[French]. 

However, if information exchange contexts are partially ambiguous, information 
exchanges are operationally only recommendations. Any accepted behaviour for one feature 
will in practice be supported by a large number of recommending condition detections. 
"Small" changes to a few of these conditions to support changes to other features will not 
necessarily affect the performance of the feature, and any effects on performance could 
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potentially be corrected the next time the feature is invoked. Thus provided condition changes 
are "small", the system could converge on a set of high integrity features. Clearly the 
definition of "small" is critical. 

Local synchronicity management is unlikely to be adequate if an unambiguous level of 
information meaning must be sustained. However, if information exchanges are partially 
ambiguous, some level of synchronicity errors resulting from local synchronicity 
management can be tolerated, and the resource cost and complexity of global management 
can be avoided. 

 
 

The von Neuman Architecture 
 
Some of the reasons for the ubiquitous appearance of the memory, processing von 

Neumann architecture in commercial electronic systems are now apparent. Unambiguous 
information exchanges are used because much less information handling resources are used. 
The command structure of software (e.g. if: [x = a] do: […]) reflects use of unambiguous 
contexts. The use of unambiguous information mandates the memory, processing separation 
in order to maintain synchronicity. Finally, learning in a von Neumann system performing an 
operationally complex task has never been demonstrated in practice. 

 
 

The Recommendation Architecture 
 
If information which is operationally ambiguous is exchanged within a module hierarchy, 

module outputs indicating the presence of information conditions can only be interpreted as 
behavioural recommendations. Multiple recommendations will be generated in response to an 
overall input condition in most cases. A subsystem separate from the modular hierarchy is 
therefore required which can select one behaviour. To make such selections this subsystem 
must have access to information in addition to the overall input state, such as the 
consequences of behaviours under similar conditions in the past.  

The separation between a modular hierarchy and a component hierarchy which interprets 
module outputs as alternative behavioural recommendations and selects one behaviour is one 
of the primary architectural bounds of the recommendation architecture. This separation is 
illustrated in figure 3.4. The hierarchy is called clustering because it clusters conditions into 
modules detecting portfolios of similar conditions, and the selection subsystem is called 
competition because it manages the competition between alternative behavioural options. 

Information on the most appropriate associations between information conditions 
detected within clustering and behaviours must either be derived from the experience of other 
systems (i.e. via design or genetic experience, or the experience of an external instructor) or 
be derived from the experience of the system itself (i.e. from feedback of the consequences of 
behaviours under various conditions in the past). 
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Figure 3.4  Recommendation architecture primary separation between clustering and competition. The 
clustering subsystem defines and detects behaviourally ambiguous conditions in system inputs. Some 
conditions are used to determine when and where other conditions will be added or modified within 
clustering. Other conditions are communicated to the competition subsystem. The competition 
subsystem uses consequence feedback  (sometimes associated with imitation of an external teacher) to 
interpret conditions detected by clustering as behavioural recommendations and to select the most 
appropriate behaviour under current circumstances. Conditions detected by clustering cannot be directly 
changed by competition or by the consequence information available to competition. 

 
In a very simple version of the recommendation architecture, all information conditions 

and behaviour selection algorithms could be specified a priori. In a more sophisticated 
version, conditions and algorithms could be almost entirely specified a priori but slight 
changes could be made to conditions by adding inputs which frequently occurred at the same 
time as most of the condition and deleting inputs which rarely occurred. Consequence 
feedback could tune the behaviour selection algorithms. Learning from experience would be 
present but very limited and the architectural constraints deriving from the need to learn 
without side effects would therefore be less severe. Coward [1990] has argued that this is the 
case for the reptile brain. A yet more sophisticated version would allow conditions to be 
defined heuristically and algorithms to be evolved by consequence feedback and external 
instruction, which as discussed below appears to correspond with the mammal brain. 
Different degrees of a priori guidance in the selection of starting points for conditions and 
algorithms could occur. 

If the conditions detected by clustering modules are defined heuristically, the operational 
ambiguity of information makes it possible to limit the undesirable side effects of heuristic 
changes. In general terms this can be understood as an effect of multiple recommendation 
generation. A wide range of conditions will be detected in the typical overall input state. 
Overall input states corresponding with an already learned behaviour will in general contain a 
high proportion of conditions which have been associated with the behaviour by the 
competition subsystem. Slight changes to some conditions will therefore generally not change 
the behaviour selected. However, a change to a condition will also change any higher 
complexity condition which has incorporated that condition. The critical issue is therefore the 
definition of "slight" and "some", as discussed in the next section. 
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If consequence feedback were applied directly to clustering it would need to be applied to 
the currently active modules. Unfavourable consequence feedback could be interpreted as 
indicating that the wrong conditions were being detected by those modules, but would give no 
indication of how the conditions should be changed. Thus any change could not be 
guaranteed to improve the selection of the current behaviour in the future, and would have 
uncontrolled side effects on any other behaviours influenced by the changed modules. In an 
operationally complex system such changes would be very unlikely to converge on a high 
integrity set of behaviours. Consequence feedback therefore cannot be used directly to guide 
the definition of conditions. The primary information available to guide heuristic definition of 
conditions is therefore limited to frequent occurrence of a condition. This temporal 
information must be utilized to define clusters of input conditions on many levels of 
complexity. The clustering process is conceptually similar to the statistical clustering 
algorithms used in ANN unsupervised learning, as discussed below. External instruction 
could of course influence the definition of conditions by influencing the environment from 
which the system derived its inputs. 

The use of consequence feedback constrains the form of the competition subsystem. 
Competition cannot depend on internal exchange of information with complex operational 
meanings. Components in competition must each be associated with just one behaviour, 
specific sequence of behaviours invoked as a whole, or general type of behaviour. 
Competition therefore corresponds with the component hierarchy discussed earlier. The 
output from such a component to other competition components can be interpreted as a 
recommendation in favour of the behaviour and against all other behaviours, and an output 
which goes outside competition can be interpreted as a command to perform the behaviour. 
Such components can interpret inputs from other clustering modules or competition 
components as either encouraging or discouraging their one behaviour. The relative weights 
of such inputs can be adjusted by consequence feedback in response to that one behaviour. As 
discussed below, this approach is similar to reinforcement learning in ANNs. 

 
 

Heuristic Changes to Conditions 
 
The output of a module within clustering indicates the detection of an information 

condition within the portfolio of such conditions programmed on the module. In an 
operationally complex system such an output may be an input to many other clustering 
modules. The operational meaning of such an input is the recommendation of a set of 
behaviours which will in general be different for each recipient. The major issue is therefore 
how to preserve the multiple meanings which the output of a module has acquired when the 
conditions programmed on the module which generated the output are changing. This is the 
issue of context management. 

To illustrate the issue, consider a simple human example. Suppose that I have an 
understanding with my wife that when I leave a telephone message asking her to call me at 
the office, an emergency has occurred. Suppose also that this understanding is completely 
unambiguous, and I will never leave such a message in the absence of an emergency. In this 
situation, if I leave a message she will stop whatever she is doing and act as if there is an 
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emergency. If one day I just wanted to chat, leaving the message will result in an 
inappropriate response. In other words there is no scope for learning. However, if leaving a 
message was partially ambiguous, then the tone of my voice, the exact wording, my mood 
when I left that morning, and her knowledge of the probability of an emergency at that 
particular time could all contribute to selection of a different response. In other words, 
learning is possible. However, there are limits to the degree of change. I cannot leave a 
message in a foreign language and expect a call, and I cannot leave the usual message and 
expect to be called at the new number I have just been assigned. So the critical issues for 
context maintenance are how much the form of the message generated under the same 
conditions can be changed, and how much the conditions under which the same message is 
generated can be changed without destroying the usefulness of the message to recipients. 

As operational complexity increases, the average degree of change which can be tolerated 
without unacceptable loss of meaning will decrease. For example, at the most detailed level of 
the modular hierarchy there must be devices which can select, record, and detect conditions 
which are combinations of their inputs. Suppose that one such device recorded its first 
combination (or condition) and indicated its presence by producing an output. Devices in 
many other modules might then select that output to be part of their own conditions. In 
general the source device has no "knowledge" of the operational meanings derived from its 
outputs by its targets. If that source device subsequently changed its programmed condition, 
the meaning assigned to the output by its recipients would be less valid. Degree of change to a 
device must therefore be "slight" and located on as "few" devices as possible. Determination 
of when and where change should occur is itself an operationally complex problem which 
must be managed by the system. In other words, some of the conditions detected in some 
modules must determine when change can occur to the conditions programmed on other 
modules. 

 
Degree of Change 

The minimum change situation would be if a device could only be programmed with one 
condition, and only produce an output in response to an exact repetition of that condition. 
Such a change algorithm would be extremely expensive in terms of device resources needed. 
A slightly greater degree of change would be if such a device could subsequently be adjusted 
to produce an output in response to any large subset of its original condition. A greater degree 
of change would be if a small proportion of inputs could be added to an existing condition, 
for example if the additional inputs occurred at the same time as a high proportion of the 
condition. A yet greater degree of change would be if the device could be programmed with 
multiple semi-independent conditions with inputs drawn from a population of possible inputs 
which tended to occur frequently at the same time. Such a device would not produce an 
output in response to the presence of a subset of one of its independent conditions, but might 
respond to the simultaneous presence of many such subsets. In all these change algorithms, 
the generation of an output in response to a specific condition results in a permanently 
increased tendency to produce an output in response to an exact repetion of the condition. 
Repeated exposure could be required to guarantee that an output will always occur, or a single 
exposure could be adequate. The key characteristic of the algorithms is that change only 
occurs in one direction, always resulting in expansion of the portfolio. This characteristic will 
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be referred to as “permanent condition recording” although multiple exposures may in some 
cases be needed as also discussed when physiological mechanisms are reviewed in chapter 8. 
To avoid portfolios becoming too large and therefore indiscriminate, as a portfolio expands it 
will become more difficult to add new conditions. A portfolio which became too broad would 
be supplemented by new portfolios in a similar input space as described in the section on 
Resource Management Processes in the next chapter. 

There is nevertheless an information context issue even with permanent condition 
recording algorithms: two identical device outputs at different times may indicate slightly 
different conditions. Change algorithms allowing higher degrees of change may require 
additional mechanisms to maintain context. For example, there could be structure in a device 
output which provided some information about where in the device portfolio the current 
condition was located. In addition there could be management processes to determine the 
consistency by some additional criterion between conditions detected by different devices. A 
source of information for such a criterion could be the timing of past changes to devices. 
Suppose that whenever a relatively low complexity condition was recorded on a device, 
feedback connections were established to that device from devices which were currently 
detecting higher complexity conditions. Then suppose that subsequently if a low complexity 
device produced an output indicating detection of a condition, it would cease producing the 
output unless some of these feedback connections were active. If some low complexity 
devices ceased activity, some higher complexity devices would in general cease activity 
because of loss of their inputs. The population of active devices would therefore be reduced 
towards a set with higher consistency in past recording activity. Release of information 
outside the overall device population could be delayed until the period required for feedback 
had elapsed. Conditions recorded or changed on devices at all levels in that overall population 
would only become permanent if device activity continued beyond the feedback period 
[Coward 2000]. 

Artificial neural networks use change algorithms based on adjustment to relative input 
weights. Such algorithms mean that the device does not necessarily produce an output in 
response to conditions which previously produced an output. As operational complexity 
increases, the problem of maintaining adequate context within the clustering will  become 
more and more severe. These types of algorithm are therefore unlikely to be adequate under 
such conditions. However, under the operationally simpler information contexts within the 
competition subsystem, such relative weight change algorithms will be ubiquitous. 

The selection of the change algorithm is a compromise between resource economy and 
context management adequacy. If there were an input domain within which relatively simple 
conditions could be defined in early system experience, and the definition completed before 
these conditions were incorporated extensively in higher complexity conditions, then the 
change algorithms for the simple conditions could be more flexible, even to the point of using 
relative weight adjustments. However, no such changes could occur after the early learning 
period. For ongoing learning of a very complex set of operations subject to resource 
constraints the most plausible device algorithm is the multiple semi-independent condition 
recording model with mechanisms to enhance context maintenance. This device is described 
in detail in the next chapter. The same compromise between resources and context 
maintenance could also mean that if a condition was recorded but never repeated for a long 
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period of time, elimination of that condition and reuse of the resources would be relatively 
low risk, perhaps provided that the condition was not recorded at the time of a behaviour 
which could be viewed as highly important. 

 
Location of Change 

A further consideration for context management within clustering is the determination of 
when and where changes should occur. To give competition something to work with, even to 
make the decision to do nothing, clustering must generate some output in response to every 
overall input state. If output is inadequate, clustering must add conditions or modify 
conditions until output is adequate. The selection of where such changes should occur is itself 
a operationally complex problem which must therefore be managed by clustering. In other 
words, as described in the next chapter, some detected conditions must determine whether or 
not changes are appropriate in specific modules under current conditions. At the device level 
this implies that there will be change management inputs in addition to the inputs defining 
conditions. These change management inputs will excite or inhibit changes to conditions, but 
will not form part of any condition. 

 
Organization of Change 

As described in more detail in chapters 4 and 6, clustering organizes system input states 
into groups of similar conditions detected within those states. These groups are called 
portfolios, and conditions can be added to a portfolio but not deleted or changed. Portfolios 
are added and expanded to meet a number of objectives. Firstly, every input state must 
contain conditions within at least a minimum number of different portfolios. Secondly, the 
overlap between portfolios must be as small as possible. 

In general terms, the process for definition of a set of portfolios is as follows. A series of 
input states to the portfolio set are monitored to identify groups of individual inputs which 
tend to be active at the same time but at different times for each group. Different groups of 
this type are defined as the initial inputs to different portfolios. Conditions which are subsets 
of a group are then defined in the corresponding portfolio whenever the input state contains a 
high level of activity in the input group. Additional inputs can be added to the group if 
required. However, as the number of different input states containing conditions within one 
portfolio increases, the ability of that portfolio to add conditions decreases. An a priori bias 
placed on the initial input group definitions can improve portfolio definition speed and 
effectiveness. 

The set of portfolios defined in this way will divide up the input space into similarity 
groups which will tend to be different from each other but to occur with similar frequeny in 
input states. Individual portfolios will not correspond exactly with, for example, cognitive 
categories, but will permit discrimination between such categories. Thus different categories 
will tend to activate different subsets of the set of portfolios, and although the subsets may 
partially overlap, the subset for one category will be unique to that category. There are 
mechanisms for detecting if such subsets are not unique and adding portfolios in such 
circumstances. 

As described in more detail in chapter 4, an example would be if a set of portfolios was 
exposed to a sequence of input states derived from different pieces of fruit. Portfolios might 
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be defined that happened to correspond roughly with similarity groups like “red and stalk”, 
“green and round”, or “smooth surface and round” etc. Although no one such portfolio would 
always be detected when one type of fruit was present and never any other fruit, the specific 
combination of portfolios detected could provide a high integrity identification of the type. 
Each portfolio can be given a set of weights corresponding with how strongly it indicates 
different fruit types, and the most strongly indicated fruit across the currently detected 
portfolio population determined. 

Portfolios defined on different levels of condition complexity could provide 
discrimination between different cognitive feature, objects, groups of objects etc. 

 
 

Similarities between Modular Hierarchies 
in Operational Systems and 

Description Hierarchies in Scientific Theories 
 
There are some strong similarities between modular hierarchies in operationally complex 

systems and the hierarchies of description which form theories in the physical sciences as 
discussed in chapter 2. In both cases the units of description on one level are defined in such a 
way that their internal construction can largely be neglected in the description of phenomena 
or processes at that level, and human understanding is made possible by the capability to shift 
freely between levels. 

The modules into which the brain will tend to be constrained by practical resource and 
other considerations can therefore be the basis for a scientific understanding of cognition in 
terms of processes between identifiable physiological structures. 
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