
P E R V I C E S C O R P O R AT I O N

C R I M S O N U S E R M A N U A L

2 per vices corporation

Change Log

2014-09-01: Rev A: Initial Release
2014-09-15: Rev B: Additional specification information, system

architecture.
2014-09-18: Rev C: More information on system interfaces, initial

configuration page showing the web UI.
2014-11-04: Rev D: Added register map, data format, updated

specifications, added command guide to mem and uart-app.
2014-11-13: Rev E: Added more information on compatible NIC

cards, updated Time board architecture section.
2015-01-06: Rev F: Updating to correct IP address to manual.
2015-01-12: Rev G: Added SFP+ configuration information.
2015-01-15: Rev H: Updated register map.
2015-01-23: Rev I: Updated IP addresses.
2015-03-03: Rev J: Moved + updated specification table about,

added Crimson Update Chapter.
2015-03-04: Rev K: Added RF chain latency information, pending

more information on DSP timings.
2015-05-14: Rev L: Including network flashing instructions, instal-

lation of Per Vices libUHD driver.

Contents

Preface 5

Obligatory Warnings 7

Specifications and Interfaces 11

System Architecture 17

Installation 21

Use and Operation 29

Crimson Device Data Format 33

Crimson Register Map 35

Updating Crimson 47

Last Chapter 57

Preface

Crimson

Crimson is a high performance, wide band, high gain, direct con-
version quadrature software defined radio transceiver and signal
processing platform. It has four channels, each comprised of inde-
pendent receive and transmit blocks, capable of processing up to
322MHz of instantaneous RF bandwidth from DC to 6GHz and syn-
chronized using a JESD204B subclass 1 link to ensure deterministic
latency. Data may be processed on the device itself (we have an Al-
tera Arria V ST FPGA SoC on-board), or sent over low latency dual
10GB Ethernet links by connecting the integrated SFP+ headers to a
compatible 10GBASE-R network device.

Crimson is intended for advanced signal processing and data
collection applications.

Congratulations!

Congratulations on your purchase of the Per Vices Crimson

Transceiver! This manual is intended to provide you with use-
ful information regarding the safe operation and use of your new
Transceiver. Although it may be updated from time to time, you’ll
always be able to find the latest version on the Per Vices website1. 1 http://www.pervices.com

In building Crimson, we aimed to provide advanced capabil-
ities at the lowest possible price. This product aims to provide a
sophisticated platform capable of advanced RF Signal processing and
includes a robust, and fully integrated, RF chain.

Our hope is that you will find Crimson to be a useful and de-
pendable companion in your engineering, development, and research
efforts.

We welcome your feedback; please feel free to contact us at:
solutions@pervices.com

Obligatory Warnings

The following section contains important safety and regulatory infor-
mation. Please pay attention to the following disclaimers, warnings,
and cautions.

This device is intended for engineering, research, or science laboratory use
only - it is not for open office or residential use! This device has not been tested or ap-

proved by any agency or approvals
body for Electrical Safety, Electromag-
netic Compatibility, or Telecommuni-
cations at the time of distribution! You
use this device at your own risk.

Disclaimer

This product is provided «As Is». Per Vices is under no obligation
to provide updates, upgrades, support, or maintenance of any kind.
Per Vices specifically disclaims any and all warranties and guaran-
tees, express, implied or otherwise, arising with respect to the use
of this product including, but not limited, to the warranty of mer-
chantability, the warranty of fitness for a particular purpose, and any
warranty of non-infringement of the intellectual property rights of
any third party. Per Vices neither assumes or authorizes any person
to assume for it any other liability.

Your use of this device is at your own risk. Per Vices shall not be
liable for you or any damages, direct or indirect, incurred or arising
from the use of this product. In no event will Per Vices be liable
for loss of profits, loss of use, loss of data, business interruption,
nor for punitive, incidental, consequential, or special damages of
any kind, however caused, and on any theory of liability, whether
in contract, strict liability, or tort (including negligence or otherwise),
arising in any way out of the use of this product, even if advised of
the possibility of such damages.

Product Functionality

Every effort has been made to ensure that the device you receive is
fully functional - each device is fully tested prior to shipping. How-
ever, risk of damage or loss is transferred immediately upon delivery
to you - we do not generally accept returns or refunds on success-
fully delivered packages. That being said, we do want to ensure your

8 per vices corporation

experience with Per Vices and Crimson is a pleasant one and we en-
courage you to contact us at solutions@pervices.com if you have
any problems.

Specifications

Every effort has been made to test and measure the validity of this
equipment. However, we cannot guarantee the accuracy of specifica-
tions, and they may change at any time.

Warnings

crimson user manual 9

WARNING
RISK OF ELECTRIC SHOCK

Do not attempt to modify or touch this device while powered.
Ensure host computer is properly grounded during operation.

Disconnect AC power during installing or removal.

WARNING
HOT SURFACE

This circuit board may become very hot during operation.
Contact should be avoided.

WARNING
LABORATORY USE ONLY

This device has not been approved by any agency or approvals
body for Electrical Safety, Electromagnetic Compatibility, or

Telecommunications at the time of distribution. Research use only!

ATTENTION
OBSERVE ESD PRECAUTIONS

This device contains electrostatically sensitive components: it
may be damaged by static discharges. Observe ESD precautions &
proper grounding when handling, installing, or removing device.

ATTENTION
RF TRANSMITTER

This device is capable of RF transmission on bands or frequencies
subject to regulatory oversight. Operators are responsible to ensure

use of this device meets local regulatory and legal standards, as
they may apply to you and the band of interest.

This device is intended for test and measurement use only.

Specifications and Interfaces

Crimson is a wide band, high gain, direct conversion quadrature
transceiver and signal processing platform. Using analogue and As Crimson is capable of Digital

Down/Up Conversion, superhet ar-
chitectures can be implemented using
Digital Down/Up Conversion on the
FPGA.

digital conversion, it is capable of processing signal bandwidths up to
322MHz from approximately DC to 6GHz. Crimson is compatible
with GnuRadio, and includes source code for many of its drivers and
peripherals.

Absolute Maximum Ratings

Stresses beyond those listed in table 1, Absolute Ratings, may cause
permanent damage to the device. These ratings are stress specifica-
tions only; functional operation of the product at these conditions
is not implied - exposure to absolute maximum rating conditions
for extended periods of time may affect reliability and is not recom-
mended.

Specification min max units

Operating Temperature 5 85 C
Storage Temperature 0 70 C

Input RF Power 15 dBm

Table 1: Absolute Ratings: Ex-
posure or sustained operation
at absolute ratings may per-
manently damage Crimson.
Ensure fan intake vents (located
on both sides of the device) are
not blocked during operation.

Observed Performance

Crimson is a very flexible radio and signal processing platform that
supports high bandwith communications over a wide tuning range.
The hardware and signal processing capabilities may be configured
to support a very wide variety of applications, each with their own
figures of merit. It is therefore fairly challenging to provide uniform
performance specifications across those different configurations.

To provide a general idea of what this product is capable of, ta-
ble 2 on page 15 provides some conservative figures of the out-of-box
performance of this product. Configuration of the product towards a
specific application may see you exceed some of these figures at the

12 per vices corporation

expense of others. For more information, please don’t hesitate to con-
tact us.

External Interfaces

Crimson has a number of user accessible external interfaces through
which the device can connect to external sources and sinks. Speak-
ing broadly, management functions are generally carried out over a
web page, hosted by the Crimson transceiver, and accessible us-
ing the management Ethernet port on the front face of the device,
and data is sent over the 10Gbps SFP+ ports. Receive and transmit
antennas connect to the SMA connectors on the front of the device.
Other peripherals ports provide access or the capability to improve
functionality.

10/100 Management Port This connects to a Linux system that is
running on the Hard Processing System located on the
FPGA silicon, and provides a unified interface by which
to control and configure the remaining devices.

10GBASE-R SFP+ There are two SFP+ ports on the front panel of the
device that use 10GBASE-R encoding to directly commu-
nicate with an optical module and interface with a ten
gigabit network. These ports directly interface with the
FPGA fabric and support high bandwidth, low latency,
communication between the ADCs and DACs. It is important to note that not all

10Gbps NICs support 10GBASE-R
protocols - it’s important that you
ensure the card you select supports
communication using 10GBASE-R. If
you have questions about this, please
don’t hesitate to ask us!

50Ω SMA There are a number of standard SMA headers, which are
used to connect to external antennas, sinks, or sources,
including:

Rx The four independent receive channels may be
connected to an external source or antenna

Tx The four independent transmit channels may
be connected to external antennas or sinks

Ext. Ref An external 10MHz reference may be applied
to this port in lieu of the default, internal,
10MHz reference

Ext. Sync An external sync may be applied to this port
to synchronize the time keeping across multi-
ple devices, using the features provided in the
LMK04828 chip

Ext. VCO For the most demanding applications, an ex-
ternal VCO may be used to drive the LMK04828

crimson user manual 13

outputs. This implies a completely external
synchronization solution

USB 2.0 A USB port is provided that connects to the Linux system
running on the Hard Processor System.

Micro-SD slot The FPGA and Hard Processor System may be re-
booted or configured using an external Micro-SD card.

Mini-SIM slot A Mini-SIM card may be connected, with its contacts
directly interfacing to the FPGA fabric.

ICE320 Power A standard «computer» cable plugs into this power to
power the unit. The power supply accepts 120V or 240V.

Operating System

Crimson may be used with any operating system. After physically
connecting the Crimson Transceiver to an external network or com-
puter using its dedicated Ethernet management port, you may con-
figure the device using the provided web interface. It is also possible
to SSH into the small Linux distribution running on the processor on-
board.

Network Interface Card (NIC) Requirements

Crimson uses a 10-gigabit Ethernet connection to quickly send and
receive data. The Crimson uses a 10GBASE-R PHY that interfaces
with the SFP+ port using a single, 10.3125Gbps serial lane and a
scrambled 64B/66B coding scheme. It is very important to ensure
that network devices or interfaces intended to be used to connect
to Crimson support 10GBASE-R. The 10GBASE-R family includes There is a significant difference

between a 10GBASE-X inter-
face (4 serial lanes specified
to 3.125Gbps using 8b/10b
coding), and the 10GBASE-R
interface (1 serial lanes spec-
ified to 10.3125Gbps using
64b/66b coding) that Crimson

uses. Although both standards
may expose the same mechani-
cal SFP+ interface (and thereby
allowing you to mechanically
connect the two interfaces)
the standards are fundamen-
tally incompatible. Connecting
Crimson (10GBASE-R) to a net-
work card that only supports
10GBASE-X or 10GBASE-T will
not work.

10GBASE-KR, 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER inter-
faces.

Note that Crimson also requires active cabling: using passive, di-
rect connect, SFP+ cables is not supported. We recommend using
active optical cabling (AOC) with integrated SFP+ transceivers. Al-
ternatively, you may also choose to use a fibre cable and a compatible
10GBASE-R SFP+ optical transceiver module.

If you have any questions or concerns about NIC card require-
ments, please do not hesitate to contact us!

Mechanical

Crimson conforms to a 1U form factor and 19-inch+ rack. A me-
chanical drawing in included in the Appendix.

14 per vices corporation

RF Chain

Simulated RF chain performance, based on component specifications,
yield the simulated performance indicated in table 3 on page 16.
As both the receive and transmission chains use variable stages the
figures were calculated using midpoint references for attenuation and
gain stages - with proper tuning and calibration, you should expect
better values. More information on the specific RF chain used may be
found in the System Architecture chapter on page 17.

crimson user manual 15

Specification min nom max units
Temperature

Operating Temperature 60 C
Common Radio

RF Tuning (HMC833) 25 6000 MHz
Dyn. Range 10 70 dB
SFDR 65 dB

Receive Radio
RF Input Power -20 dBm
Noise Figure 3.5 11 dB

Power Gain
Low -4.5 65 dB
High -15 55 dB

Group Delay (Radio Chain)
Low 13.7 ns
High 16 ns

ADC (Receive Converter)
Independent Channels 4 -
ADC resolution 16 bits
ADC Sample Rate 322.265625 MSPS
Rx Sampling Bandwidth 322.265625 MHz
Latency (input to serial) 50 ns

Receive DSP and FPGA Specifications (Default firmware)

Decimation (fs
n) 1 256 -

Latency (FPGA DSP) 102 180 ns
Transmit Radio

Transmit Power
Low -10 20 dBm
High

Group Delay (radio chain)
Low 4.3 ns
High 8.9 ns

DAC (Transmit Converter)
Tx Output Bandwidth 322.265625 MHz
DAC resolution 16 bits
DAC Sample Rate 322.265625 MSPS
Latency (serial to output) 50 655 804 ns

Transmit DSP and FPGA Specifications
Interpolation (n · fs) 1 256 -
Latency (FPGA DSP) 96 174 ns

Digital
FPGA - Arria V ST SOC 5ASTMD3E3F31 -
On Board Processor Core ARM Cortex-A9 MP
LPDDR2 RAM 4 Gb
NAND Flash (x8) 4 Gb

Networking
10GBASE-R, Full Duplex each 8 Gbps
Default IP, SFP+ Port A 10.10.10.2 -
Default IP, SFP+ Port B 10.10.11.2 -

Internal Reference (10 MHz)
Frequency Calibration -5 5 ppb

Table 2: Observed Performance.
These specifications reference
observations taken during inter-
nal use and development. Cal-
ibration Measurements relative
to 20

oC

16 per vices corporation

Specification Value units

Input Parameters
Input Power -55 dBm
Frequency 2000 MHz
Analysis B/W 150 MHz

Specification Value units

Rx Chain Analysis
SFDR 40-55 dB
IMD -69 dB
IIP3 -23.5 dB
SNR 33.8 dB
Rx Sensitivity -85 dBm
Input P1dB -43 dBm

Tx Chain Analysis
Power Gain dB
SFDR dB

Table 3: These specifications are
intended to serve as a broad
guide, with variable gain and
attenuation stages set at mid-
points. As variable stages are
adjusted, performance gener-
ally improves.

System Architecture

Overview

Figure 1: Overall system block
diagram.

Crimson uses a highly modular design consisting of four boards,
each connected using shielded, high speed cabling, to support its
operation (Figure 1). The digital board provides an interface to the
control and configures the receive, transmit, and time boards, along
with high speed connections to the receive (Rx) and transmit (Tx)
boards. Clock distribution extends from the Time board, which pro-
vides a very clean and stable clock distribution network. The default
receive and transmit boards each comprise of four fully independent
channels.

Digital board

The Crimson digital board provides the digital processing that
powers the Crimson transceiver. It consists of a Altera Arria V ST
SOC FPGA, which includes an ARM Cortex-A9 processor on the
FPGA, and an Atmel ATxMega Microcontroller (Figure 2 on the next
page). The HPS portion of the board hosts the web server by which
we can configure Crimson, along with an Atmel ATxmega256A3

microcontroller, which is used to communicate with the Rx, Tx, and
time module. A separate, high speed, link allows serial data to be

18 per vices corporation

Figure 2: Digital board system
block diagram.

shared between the Rx and Tx boards and directly with the FPGA
fabric, along with the 10Gbps interface (accessed using the SFP+
ports on the front of the device). Other peripherals, including USB
devices, are accessed through the HPS portion of the FPGA.

Time Board

Figure 3: Time Board Architec-
ture

Clock distribution on the Crimson transceiver is fairly robust
(See Figure 3). Our internal reference source is an oven-controlled
crystal oscillator (OCXO) that provides a very stable (5ppb) and
accurate 10MHz signal. The reference clock is used as an input to
the HMC1031MS8 Clock Generator with integer-N PLL to lock our
external, ultra-low phase noise Crystec CVHD-950-100.000 100MHz
TCVXO to the long term stability of our OCXO. This improves out-
put clock jitter and phase noise while preserving the stability and
accuracy of our 10MHz reference - ultimately leading to superior
frequency stability, data convertor signal-to-noise ratio (SNR), and
digital PHY bit-error rates (BER).

This stable 100MHz output is fed through a 1:9 fan out buffer,
whose primary output drives a Texas Instruments LMK04828B Clock
Distribution chip. The remaining outputs are fed to the frequency
synthesizers on the Rx and Tx boards, as well as providing clean,
100MHz clocks for the digital board.

The outputs of the LMK04828 are used to generate the JESD204B
device and system clocks required to ensure deterministic latency
(subclass 1).

crimson user manual 19

Receive Board Radio Chain

High Stage

BFP843

High Stage LNA
SKY13351-378LF SKY13351-378LF

1
2

3

A
TQP369180

RF Gain

3

2
A

1

IQ Downconverter

ADL5380

I

Q

I

Q

1

A
2

3

RX Antenna SKY13351-378LF
(50 Ohm)

Low Stage

Amplifier

AG403-89G
Frequency Synthesizer

Varactor Circuit (Group Delay)

HMC922LP4

HMC922LP4BB0

BB1

2
A

A

1

1
2

3

3

Q

ADC Driver + Filter

ADRF6518 ADC16DX370

ADC

FPGA
5ASTMD3E

Figure 4: Rx Board RF Channel

The Crimson receive board consists of a radio front end terminat-
ing with the Texas Instruments dual channel ADC16DX370 analog-to-
digital converter, as shown in Figure 4. This architecture is duplicated
four times, once for each channel.

Transmit Board Radio Chain

Figure 5: Tx Board RF Channel

The Crimson transmit board consists of a radio front end origi-
nating with the Texas Instruments quad channel DAC38J84 digital-to-
analog converter, as shown in Figure 5. The radio front end is dupli-
cated four times, but with channels A and B connecting to one DAC,
and channels C and D connecting to another DAC.

Installation

Installation comprises of two parts; physically installing the unit
(attaching antennas, cables, power), configuring the network on your
host computer, and building and installing the Per Vices libUHD
library.

Physical Installation

Physical installation comprises of three steps;

1. Attaching the antennas to the Transmit and Receive ports labeled
RXA - RXD for the receive and TXA - TXD for the transmit.

2. Physically connecting an RJ-45 cable from the Management port
on Crimson to the client computer, and then connecting the
10GBASE-R cables to the host computer.

3. Connecting the power plug of the Crimson unit, and turning on
the unit.

Default Crimson Network Configuration

Crimson boasts three network ports. The Management port is used
to configure the device, while data is sent over the two SFP+ ports.
Each SFP+ data port is connected to a specific antenna port. The de-
fault configuration has data on channels A and C sent over SFP+ A,
and channels B and D sent over SFP+ B, as illustrated in Figure 6 on
the next page. The default network values are listed in Table 4 on the
following page, while the default recommended client networking
configuration is on Table 5 on the next page.

22 per vices corporation

Figure 6: Default networking
set up for Crimson. The desti-
nation IP addresses for receive
ports may be modified us-
ing the web GUI. The default
configuration sees information
from Rx A sent to the destina-
tion IP address of 10.10.10.

SFP+ Interface Management
Port A Port B Mgmt

Crimson IP Address 10.10.10.2 10.10.11.2 192.168.10.2
Radio Channels A C B D -

Destination IP (Rx) 10.10.10.10 10.10.11.10 -
Rx UDP Ports 42820, 42822 42821, 42823 -
Source IP (Tx) any any -
Tx UDP Ports 42824, 42826 42825,42827 -

Table 4: Default Crimson In-
terface Addresses, including
UDP destination ports for SFP+
headers.

SFP+ Interface Management
Port A Port B Mgmt

Host Address 10.10.10.10 10.10.11.10 192.168.10.4
Net Mask 255.255.255.0 255.255.255.0 255.255.255.0
Broadcast 10.10.10.255 10.10.11.255 192.168.10.255

MTU 9000 9000 1500

Table 5: Host computer net-
work configuration used in
Figure <>, and used in default
configuration.

crimson user manual 23

Configuring Your IP Address to access the Management Site

In order to access the web interface, you shall need to configure your
IP address to share the same sub net (setting your machine to an IP
of 192.168.10.4, and net mask of 255.255.255.0 should work), and then
type the IP address into the browser; 192.168.10.2. This should bring
up the default connection screen for Crimson (shown in Figure 7).

Figure 7: Home page of Crim-
son Web UI, accessible through
connection to the management
port.

You can reconfigure the IP address, and host name, by clicking on
the «Debug» tab of the home page.

You can also SSH into Crimson with user name root and by
default there is no password set up.

Arch Linux

You can assign a static IP address in the console:

ip addr add XXX.XXX.XXX.XXX/YY broadcast ZZZ.ZZZ.ZZZ.ZZZ
dev interface

For example:

ip addr add 192.168.10.3 broadcast 192.168.10.255 dev eth0

Debian/Ubuntu/Kubuntu

Log in as root and open a terminal
Make a backup of your /etc/network/interfaces file by typing the

following in the console:

cp /etc/network/interfaces /etc/network/interfaces.backup

Then open vi by typing:

vi /etc/network/interfaces

24 per vices corporation

Press «i» to enter into insert (editing) mode, and scroll down until
you find your network interface card in the file. This usually starts
with ethX for a wired network card (wireless cards generall start
with wlanX or wifiX). This line generally holds a default value of
«dhcp», which you need to replace with «static», after which you
add the appropriate address, netmask, and network parameters. See
table 6 for a specific example that illustrates the change that needs to
be made. Once you have made the appropriate change, you can type
«:wq» from within vi to save (write) your changes to the file and exit.

After making your changes, you may need to cycle your internet
adapter. You may do this by typing the following command:

ifdown eth0; ifup eth0
Note: if you are remotely logged into the machine, it’s possible this

may bring down the network adapter you are using - therefore, ensure
you have correctly identified your adapter prior to making this change.

Old
<...>

iface eth0 inet dhcp
<...>

New

<...>
iface eth0 inet static

address 192.168.10.3 netmask 255.255.255.0 network 192.168.10.3
<...>

Table 6: Sample line replace-
ment within /etc/network/in-
terfaces

Windows (generic)

The following describes the generic method of changing your IP
address using a Windows machine.

Go to Control Panel
View Network Connections
Right click on Local Area Connection and click on Properties
Under the Networking tab select Internet Protocol Version 4

(TCP/IPv4) and click on Properties
Select «Use the following IP address»
Populate the IP address and subnet mask as described above
Click OK

Configuring Your Data SFP+ IP Addresses

Assuming that the 10GBASE-R network card has already been in-
stalled into your host computer, the following instructions will guide
you in properly configuring the SFP+ ports. From here, we will as-
sume that the SFP+ port A is named XXXNXY. The IP address for
this port will need to be configured to 10.10.10.10.

crimson user manual 25

Arch Linux

You can assign a static IP address in the console:

ip addr add XXX.XXX.XXX.XXX/YY broadcast ZZZ.ZZZ.ZZZ.ZZZ
dev interface

For example, referencing Table 5 on page 22;

ip addr add 10.10.10.10/24 broadcast 255.255.255.0 dev XXXNXY

Type «ip addr show» into the console and the following output
should appear to indicate that the link is up:

5: XXXNXY: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000
qdisc mq state UP group default qlen 1000 link/ether NN:NN:NN:NN:NN:NN
brd ff:ff:ff:ff:ff:ff

You can now ping the SFP+ Port A address 10.10.10.2 to ensure
proper operation by typing the following into the console:

ping -I XXXNXY 10.10.10.2

PING 10.10.10.2 (10.10.10.2) from 10.10.10.10 XXXNXY: 56(84) bytes of
data.

64 bytes from 10.10.10.2: icmp_seq=1 ttl=5 time=0.922 ms

64 bytes from 10.10.10.2: icmp_seq=2 ttl=5 time=1.03 ms

...

In the event that 10.10.10.2 is not responding, you can type the fol-
lowing command into the console to check which IP address the port
is linked to (shown as XX.XX.XX.XX):

ping -I XXXNXY -b 255.255.255.255

WARNING: pinging broadcast address

PING 255.255.255.255 (255.255.255.255) from 10.10.10.10 XXXNXY:
56(84) bytes of data.

64 bytes from XX.XX.XX.XX: icmp_seq=1 ttl=5 time=0.759 ms

64 bytes from XX.XX.XX.XX: icmp_seq=2 ttl=5 time=0.846 ms

...

To configure SFP+ Port B, repeat the above instructions but replace IP
addresses as shown in Table 5 on page 22.

Debian/Ubuntu/Kubuntu

Log in as root and open a terminal
Make a backup of your /etc/network/interfaces file by typing the

following in the console:

cp /etc/network/interfaces /etc/network/interfaces.backup

26 per vices corporation

Then open vi by typing:

vi /etc/network/interfaces

Press «i» to enter into insert (editing) mode, and scroll down until
you find your network interface card in the file. This line gener-
ally holds a default value of «dhcp», which you need to replace with
«static», after which you add the appropriate address, netmask, and
network parameters. See table 7 for a specific example that illustrates
the change that needs to be made. Once you have made the appro-
priate change, you can type «:wq» from within vi to save (write) your
changes to the file and exit.

After making your changes, you may need to cycle your internet
adapter. You may do this by typing the following command:

ifdown XXXNXY; ifup XXXNXY
Note: if you are remotely logged into the machine, it’s possible this

may bring down the network adapter you are using - therefore, ensure
you have correctly identified your adapter prior to making this change.

Old
<...>

iface XXXNXY inet dhcp
<...>

New

<...>
iface XXXNXY inet static

address 10.10.10.10 netmask 255.255.255.0 network 10.10.10.10

<...>

Table 7: Sample line replace-
ment within /etc/network/in-
terfaces

To configure SFP+ Port B, repeat the above instructions but replace
IP addresses as shown in 5 on page 22.

Windows (generic)

Please refer to the previous Windows (generic) IP address configura-
tion section.

Building the UHD Drivers

To fully realize the potential of Crimson, you’ll need to build and
install the UHD drivers. To do this, you will have compile the Per
Vices libUHD sources.

Obtaining the Per Vices UHD Sources

You may easily download the Per Vices UHD sources from github.
From the command line;

$ git clone https://github.com/pervices/uhd.git

crimson user manual 27

Download the dependencies

Once you have downloaded the Per Vices UHD repository, you may
want to confirm that you have all the dependencies required. De-
tailed instructions, including the dependencies are available here;

http://files.ettus.com/manual/page_build_guide.html
Note: In order to use Crimson with UHD, you must download the

Per Vices UHD version, as it contains all the required modifications
needed to support the Per Vices drivers.

Quick Install Instructions

We really recommend that you carefully read the UHD build instruc-
tions. But if you’re impatient, feeling lucky, and confident that you
have all the dependencies, here’s what you should be able to do;

#download the dependencies
$ git clone https://github.com/pervices/uhd.git
#enter the host directory
cd <uhd-repository-directory>/host
mkdir build
cd build
#run cmake with the appropriate compile flags
cmake .. -DCMAKE_INSTALL_PREFIX=/usr/ \
-DPYTHON_EXECUTABLE=/usr/bin/python2 \
-DENABLE_EXAMPLES=OFF \
-DENABLE_UTILS=ON \
-DENABLE_TESTS=OFF \
-DENABLE_E100=ON
make -j4
make install

Use and Operation

This device is designed to be used and configured over a dedicated
management port. The primary user interface can either be the a web
UI, or you may directly configure the device over SSH.

Web UI

You may access the web interface by typing the IP address of the
device in your browser. This directs you to a SCADA-like interface
where you can easily visualize and configure the radio chain and
DSP carried out on the device.

SSH and Command Line

You may also access and configure the device over SSH using com-
mand line parameters. This is primarly done using two programs;
«uart-app» and «mem». The uart-app programs allow you to send
commands over the UART bus to radio peripherals (like ADCs,
DACs, or Amplifiers), and the mem application allows you to read
and write to the memory space shared between the HPS and the
FPGA.

Crimson uart-app

Crimson uses a number of MCUs, located on the Rx, Tx, Synthe-
sizer, and Digital boards, to communicate and interface with various
peripheral devices. This is done through a UART bus between the
ARM Hard Processor System on the FPGA and the Atmel MCU on
the digital board. The digital board has three other UART busses and
forwards or processes requests through to the Rx, Tx, and Synthe-
sizer board. You can directly poll and send commands to the MCU
through the uart-app utility.

For example, to return a list of available commands on the synthe-
sizer board, you might type;

#uart-app ”help -v”

30 per vices corporation

Board: DIG
Usage: [cmd] [-|–][arg1] [-|–][arg2]...
Commands:

fpga Commands for controlling the FPGA.

[r|rst] Resets the FPGA through the reset pin.

dsp Configure the DSP features (FPGA/SW).

[c|chan] Specify which channel a,b,c,d OR bit mask. MUST spec-
ify first.

[s|stage] Enable the interpolator/decimator stage (1 - 5). SHOULD
specify second.

[h|chain] Specify which chain ADC(1), DAC(0). SHOULD specify
third.

[e|en] Enable(1) disable(0) the stage.

[f|freq] Specify the frequency of the NCO.

fwd Forward messages to the other boards.

[b|board] Forward to RX(0), TX(1), SYNTH(2), echo(3).

[m|msg] Forward message, max 25 chars.

switch Switches the UART communication to another board.

[t|tx] Switches to the TX board.

[r|rx] Switches to the RX board.

[s|synth] Switches to the Synth board.

jesd Executes any JESD required commands.

[s|sync] Re-sync all of the boards’ sysref syncs.

status Provides the status of the board.

[f|fpga] Reads the status of the FPGA.

[e|eth] Reads the status of the 10G ethernet PHY.

[r|ret] Reads the return value of the last function that was called.

[p|pwr] Reads the current enabled power rails and pgood status.

[i|i2c] Reads the status byte for the i2c register.

test Executes test vectors.

[f|fpga] Runs specified test vector of the FPGA.

crimson user manual 31

[e|eth] Runs specified test vector of the 10G ethernet PHY.

board Controls the board level functions. Sequential exec of argu-
ments.

[i|init] Rewrite all regs for entire board.

[d|demo] Turn on outputs (per channel).

[e|diag] Runs diagnostic on peripheral (per channel). Should print
all registers.

[m|mute] Turn off outputs (per channel).

[r|reset] Power cycle peripherals and runs board init (per chan-
nel).

[k|kill] Turn off peripherals. [p|panic] Turns everything off.

[v|version] Prints out the software and hardware version.

[l|led] Blinks the LED a specified number of times.

[t|temp] Provides the temperature (0-1).

[a|ram] Provides the amount of RAM left (bytes).

boot Bootloader options.

[e|enter] Enter the boot loader.

exit Doesn’t do anything, place holder.

[-|–] No argument necessary.

help Prints out the help menu for the board.

[v|verbose] Prints out in verbose mode. 1 to enable.

Switching to a different board, and typing the ”help -v” operator pro-
vides you with board specific commands and configuration utilities
for the respective peripherals.

Crimson mem

If you choose to directly interface with the device over SSH, the mem
tool is a helpful utility that allows you to read and write registers
from the command line. The mem tool supports the following op-
tions:

mem [mr|mw|md|rr|rw|rd|rl] [address|reg_name|verbosity]
[value|length]

Where,

mr memory read

32 per vices corporation

mw memory write

md memory

rr raw read

rw raw write

rd read double

rl read long

address the memory address in question

reg_name the register memomic (as defined in the Crimson Register
Map).

value hex value to write

length length (in bytes) of a read

Crimson Device Data Format

Crimson uses complex, signed, 32-bit integers to communicate data
over the SFP+ ports.

Data Format

Data are transmitted in IQ pairs. Each IQ pair is 32 bits, with the I
and Q components represented by two 16 bit signed integers. The
specific format is represented in Table 8. To read this data inside
GNU radio, you can use a flow chart similar to that shown in Fig-
ure 8.

Bit Position 31:24 23:16 15:8 7:0

Representation Re[7:0] Re[15:8] Im[7:0] Im[15:8] Table 8: Data structure

Figure 8: Sample gnuradio data
sink, visualizing waterfall data.

Crimson Register Map

The following pages detail the Crimson registermap. This is used to
configure various paramers on the FPGA, and includes 10Gbps back-
haul, and JESD204B parameters between the FPGA and converter
devices.

Channel Register Address Default Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Address Register

System
sys0 0x0000 0x00000000 reserved[31:4] opr_mode[3:0] 0x0000 sys0
sys1 0x0010 0xffff003f rtx_rdy[31:16] reserved[15:7] rst_ctrl_busy jesd_pll_lock_l jesd_pll_lock_r rx_alldev_aligned[3:0] 0x0010 sys1
sys2 0x0020 0x00000000 reserved[31:4] pack_mode[3:0] 0x0020 sys2

Network

SFP+A

net0 0x0200 0x05780002 pl_size[31:16] reserved[15:3] sel crc_en rst 0x0200 net0
net1 0x0210 0x00000000 ipv6_src_ip_uu[31:0] 0x0210 net1
net2 0x0220 0x00000000 ipv6_src_ip_ul[31:0] 0x0220 net2
net3 0x0230 0x00000000 ipv6_src_ip_lu[31:0] 0x0230 net3
net4 0x0240 0x00000000 ipv6_src_ip_ll[31:0] 0x0240 net4
net5 0x0250 0x0a0a0a02 ipv4_src_ip[31:0] 0x0250 net5
net6 0x0260 0x00000000 ipv6_dest_ip_uu[31:0] 0x0260 net6
net7 0x0270 0x00000000 ipv6_dest_ip_ul[31:0] 0x0270 net7
net8 0x0280 0x00000000 ipv6_dest_ip_lu[31:0] 0x0280 net8
net9 0x0290 0x00000000 ipv6_dest_ip_ll[31:0] 0x0290 net9

net10 0x02a0 0x00000000 ipv4_dest_ip[31:0] 0x02a0 net10
net11 0x02b0 0x0000aa00 reserved[31:16] mac_addr_u[15:0] 0x02b0 net11
net12 0x02c0 0x00000000 mac_addr_l[31:0] 0x02c0 net12
net13 0x02d0 0x00007a69 reserved[31:16] src_port[15:0] 0x02d0 net13
net14 0x02e0 0x00000000 reserved[31:16] dest_port[15:0] 0x02e0 net14

SFP+B

net15 0x02f0 0x05780002 pl_size[31:16] reserved[15:3] sel crc_en rst 0x02f0 net15
net16 0x0300 0x00000000 ipv6_src_ip_uu[31:0] 0x0300 net16
net17 0x0310 0x00000000 ipv6_src_ip_ul[31:0] 0x0310 net17
net18 0x0320 0x00000000 ipv6_src_ip_lu[31:0] 0x0320 net18
net19 0x0330 0x00000000 ipv6_src_ip_ll[31:0] 0x0330 net19
net20 0x0340 0x0a0a0b02 ipv4_src_ip[31:0] 0x0340 net20
net21 0x0350 0x00000000 ipv6_dest_ip_uu[31:0] 0x0350 net21
net22 0x0360 0x00000000 ipv6_dest_ip_ul[31:0] 0x0360 net22
net23 0x0370 0x00000000 ipv6_dest_ip_lu[31:0] 0x0370 net23
net24 0x0380 0x00000000 ipv6_dest_ip_ll[31:0] 0x0380 net24
net25 0x0390 0x00000000 ipv4_dest_ip[31:0] 0x0390 net25
net26 0x03a0 0x0000aa00 reserved[31:16] mac_addr_u[15:0] 0x03a0 net26
net27 0x03b0 0x00000001 mac_addr_l[31:0] 0x03b0 net27
net28 0x03c0 0x00007a6a reserved[31:16] src_port[15:0] 0x03c0 net28
net29 0x03d0 0x00000000 reserved[31:16] dest_port[15:0] 0x03d0 net29

NOTE: Registers 0x03d1 to 0x03ff are RESERVED. Default: 0x00000000

RX

A

rxa0 0x0400 0x00000000 phase_word[31:0] 0x0400 rxa0
rxa1 0x0410 0x000000ff reserved[31:16] decimation[15:0] 0x0410 rxa1
rxa2 0x0420 0x00000000 iq_amp[31:0] 0x0420 rxa2
rxa3 0x0430 0x00000000 iq_phase[31:0] 0x0430 rxa3
rxa4 0x0440 0x00000000 reserved[31:14] revphase dest_sink[12:9] enable rx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0440 rxa4
rxa5 0x0450 0x0a0a0a0a ipv4_dest_ip[31:0] 0x0450 rxa5
rxa6 0x0460 0x0000ffff reserved[31:16] mac_addr_u[15:0] 0x0460 rxa6
rxa7 0x0470 0xffffffff mac_addr_l[31:0] 0x0470 rxa7
rxa8 0x0480 0x0000a744 reserved[31:16] port[15:0] 0x0480 rxa8

NOTE: Registers 0x0481 to 0x04ff are RESERVED. Default: 0x00000000

B

rxb0 0x0500 0x00000000 phase_word[31:0] 0x0500 rxb0
rxb1 0x0510 0x000000ff reserved[31:16] decimation[15:0] 0x0510 rxb1
rxb2 0x0520 0x00000000 iq_amp[31:0] 0x0520 rxb2
rxb3 0x0530 0x00000000 iq_phase[31:0] 0x0530 rxb3
rxb4 0x0540 0x00000200 reserved[31:14] revphase dest_sink[12:9] enable rx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0540 rxb4
rxb5 0x0550 0x0a0a0b0a ipv4_dest_ip[31:0] 0x0550 rxb5
rxb6 0x0560 0x0000ffff reserved[31:16] mac_addr_u[15:0] 0x0560 rxb6
rxb7 0x0570 0xffffffff mac_addr_l[31:0] 0x0570 rxb7
rxb8 0x0580 0x0000a745 reserved[31:16] port[15:0] 0x0580 rxb8

NOTE: Registers 0x0581 to 0x05ff are RESERVED. Default: 0x00000000

C

rxc0 0x0600 0x00000000 phase_word[31:0] 0x0600 rxc0
rxc1 0x0610 0x000000ff reserved[31:16] decimation[15:0] 0x0610 rxc1
rxc2 0x0620 0x00000000 iq_amp[31:0] 0x0620 rxc2
rxc3 0x0630 0x00000000 iq_phase[31:0] 0x0630 rxc3
rxc4 0x0640 0x00000000 reserved[31:14] revphase dest_sink[12:9] enable rx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0640 rxc4
rxc5 0x0650 0x0a0a0a0a ipv4_dest_ip[31:0] 0x0650 rxc5
rxc6 0x0660 0x0000ffff reserved[31:16] mac_addr_u[15:0] 0x0660 rxc6
rxc7 0x0670 0xffffffff mac_addr_l[31:0] 0x0670 rxc7
rxc8 0x0680 0x0000a746 reserved[31:16] port[15:0] 0x0680 rxc8

NOTE: Registers 0x0681 to 0x06ff are RESERVED. Default: 0x00000000

D

rxd0 0x0700 0x00000000 phase_word[31:0] 0x0700 rxd0
rxd1 0x0710 0x000000ff reserved[31:16] decimation[15:0] 0x0710 rxd1
rxd2 0x0720 0x00000000 iq_amp[31:0] 0x0720 rxd2
rxd3 0x0730 0x00000000 iq_phase[31:0] 0x0730 rxd3
rxd4 0x0740 0x00000200 reserved[31:14] revphase dest_sink[12:9] enable rx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0740 rxd4
rxd5 0x0750 0x0a0a0b0a ipv4_dest_ip[31:0] 0x0750 rxd5
rxd6 0x0760 0x0000ffff reserved[31:16] mac_addr_u[15:0] 0x0760 rxd6
rxd7 0x0770 0xffffffff mac_addr_l[31:0] 0x0770 rxd7
rxd8 0x0780 0x0000a747 reserved[31:16] port[15:0] 0x0780 rxd8

NOTE: Registers 0x0781 to 0x07ff are RESERVED. Default: 0x00000000

TX

A

txa0 0x0800 0x00000000 phase_word[31:0] 0x0800 txa0
txa1 0x0810 0x000000ff reserved[31:16] Interpolation[15:0] 0x0810 txa1
txa2 0x0820 0x00000000 iq_amp[31:0] 0x0820 txa2
txa3 0x0830 0x00000000 iq_phase[31:0] 0x0830 txa3
txa4 0x0840 0x00000000 reserved[31:14] revphase src_sink[12:9] enable tx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0840 txa4
txa5 0x0850 0x0000a748 reserved[31:16] port[15:0] 0x0850 txa5

NOTE: Registers 0x0851 to 0x08ff are RESERVED. Default: 0x00000000

B

txb0 0x0900 0x00000000 phase_word[31:0] 0x0900 txb0
txb1 0x0910 0x000000ff reserved[31:16] Interpolation[15:0] 0x0910 txb1
txb2 0x0920 0x00000000 iq_amp[31:0] 0x0920 txb2
txb3 0x0930 0x00000000 iq_phase[31:0] 0x0930 txb3
txb4 0x0940 0x00000200 reserved[31:14] revphase src_sink[12:9] enable tx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0940 txb4
txb5 0x0950 0x0000a749 reserved[31:16] port[15:0] 0x0950 txb5

NOTE: Registers 0x0951 to 0x09ff are RESERVED. Default: 0x00000000

C

txc0 0x0a00 0x00000000 phase_word[31:0] 0x0a00 txc0
txc1 0x0a10 0x000000ff reserved[31:16] Interpolation[15:0] 0x0a10 txc1
txc2 0x0a20 0x00000000 iq_amp[31:0] 0x0a20 txc2
txc3 0x0a30 0x00000000 iq_phase[31:0] 0x0a30 txc3
txc4 0x0a40 0x00000000 reserved[31:14] revphase src_sink[12:9] enable tx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0a40 txc4
txc5 0x0a50 0x0000a74a reserved[31:16] port[15:0] 0x0a50 txc5

NOTE: Registers 0x0a51 to 0x0aff are RESERVED. Default: 0x00000000

D

txd0 0x0b00 0x00000000 phase_word[31:0] 0x0b00 txd0
txd1 0x0b10 0x000000ff reserved[31:16] Interpolation[15:0] 0x0b10 txd1
txd2 0x0b20 0x00000000 iq_amp[31:0] 0x0b20 txd2
txd3 0x0b30 0x00000000 iq_phase[31:0] 0x0b30 txd3
txd4 0x0b40 0x00000200 reserved[31:14] revphase src_sink[12:9] enable tx_mode[7:5] signd conv end rst_dsp rst_pkr 0x0b40 txd4
txd5 0x0b50 0x0000a74b reserved[31:16] port[15:0] 0x0b50 txd5

NOTE: Registers 0x0b51 to 0x0eff are RESERVED. Default: 0x00000000

Reserved

rsvd0 0x0f00 0x00000000 reserved[31:0] 0x0f00 rsvd0
rsvd1 0x0f10 0x00000000 reserved[31:0] 0x0f10 rsvd1
rsvd2 0x0f20 0x00000000 reserved[31:0] 0x0f20 rsvd2
rsvd3 0x0f30 0x00000000 reserved[31:0] 0x0f30 rsvd3
rsvd4 0x0f40 0x00000000 reserved[31:0] 0x0f40 rsvd4
rsvd5 0x0f50 0x00000000 reserved[31:0] 0x0f50 rsvd5
rsvd6 0x0f60 0x00000002 reserved[31:0] 0x0f60 rsvd6
rsvd7 0x0f70 0x00000000 reserved[31:0] 0x0f70 rsvd7
rsvd8 0x0f80 0x00000000 reserved[31:0] 0x0f80 rsvd8
rsvd9 0x0f90 0x00000000 reserved[31:0] 0x0f90 rsvd9

rsvd10 0x0fa0 0x00000000 reserved[31:0] 0x0fa0 rsvd10
rsvd11 0x0fb0 0x00000000 reserved[31:0] 0x0fb0 rsvd11
rsvd12 0x0fc0 0x00000000 reserved[31:0] 0x0fc0 rsvd12
rsvd13 0x0fd0 0x00000000 reserved[31:0] 0x0fd0 rsvd13
rsvd14 0x0fe0 0x00000000 reserved[31:0] 0x0fe0 rsvd14
rsvd15 0x0ff0 0x00000000 reserved[31:0] 0x0ff0 rsvd15

NOTE: Registers 0x0ff1 to 0x0fff are RESERVED. Default: 0x00000000
Channel Register Address Default Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Address Register

sys0 (0x0000) - System Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

sys0 0x0000 31:4 reserved Reserved 0x0 RW
3:0 opr_mode Operation mode of the system: 0x0 RW

0000: Normal Operation
0001: Loopback. This mode will route RXn->TXn bypassing DSP engine
0010: Reserved
...
1110: Reserved
1111: Set System Reset (Enable system reset)

sys1 (0x0010) - System Register, Default: 0xffff003f
Register Name Address (Hex) Bit Name Function Default Access

sys1 0x0010 31:16 rtx_rdy Displays the status of the transceiver reset controller. Bits are asserted when respective transceiver is out of reset and ready to receive data: 0xffff RO
31:24 = TX7..TX0
23:16 = RX7..RX0

15:7 reserved Reserved 0x0 RO
6 rst_ctrl_busy Busy signal for System Reset controller. Asserted while reset sequence is in progress, and deasserted once reset sequence complete. 0x0 RO
5 jesd_pll_lock_l PLL lock status for the left transceiver bank. Asserted when PLL is locked. 0x1 RO
4 jesd_pll_lock_r PLL lock status for the right transceiver bank. Asserted when PLL is locked. 0x1 RO

3:0 rx_alldev_aligned Indicates that all lanes for this device are aligned: 0xf RO
bit 0 = ADC A is aligned
bit 1 = ADC B is aligned
bit 2 = ADC C is aligned
bit 3 = ADC D is aligned

sys2 (0x0020) - System Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

sys2 0x0020 31:4 reserved Reserved 0x0 RW
3:0 pack_mode Specifies the data packing order for SFP+. Each data packet will consist of 64’b which is equivalent to four 16’b samples. 0x0 RW

The supported modes are:
0000: Reserved
0001: [A0A1A2A3]
0010: [B0B1 B2 B3]
0011: [A0B0A1B 1]
0100: [C0C 1C2C3]
0101: [A0C0A1C1]
0110: [B0C0B 1C 1]
0111: Reserved
1000: [D0D1D2D3]
1001: [A0D0 A1 D1]
1010: [B0D0 B1D1]
1011: Reserved
1100: [C0D0C 1 D1]
1101: Reserved
...
1110: Reserved
1111: [A0B0C 0D0]

net0 (0x0200) – SFP+ A Register, Default: 0x05780002
Register Name Address (Hex) Bit Name Function Default Access

net0 0x0200 31:16 pl_size Payload size for SFPA. 0x0578 RW
15:3 reserved Reserved 0x0 RW

2 sel IP Protocol 0x0 RW
0: IPV4
1: IPV6

1 crc_en CRC Enable 0x1 RW
0: Disable
1: Enable

0 rst Active HIGH Reset. SFPA block will be placed in reset. 0x0 RW

net1 (0x0210) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net1 0x0210 31:0 ipv6_src_ip_uu Most significant 32'b of IPV6 Crimson address. 0x0 RW

net2 (0x0220) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net2 0x0220 31:0 ipv6_src_ip_ul 2nd most significant 32'b of IPV6 Crimson address. 0x0 RW

net3 (0x0230) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net3 0x0230 31:0 ipv6_src_ip_lu 2nd least significant 32'b of IPV6 Crimson address. 0x0 RW

net4 (0x0240) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net4 0x0240 31:0 ipv6_src_ip_ll Least significant 32'b of IPV6 Crimson address. 0x0 RW

net5 (0x0250) – SFP+ A Register, Default: 0x0a0a0a02
Register Name Address (Hex) Bit Name Function Default Access

net5 0x0250 31:0 ipv4_src_ip IPV4 Crimson address. 0x0a0a0a02 RW

net6 (0x0260) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net6 0x0260 31:0 ipv6_dest_ip_uu Most significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net7 (0x0270) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net7 0x0270 31:0 ipv6_dest_ip_ul 2nd most significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net8 (0x0280) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net8 0x0280 31:0 ipv6_dest_ip_lu 2nd least significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net9 (0x0290) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net9 0x0290 31:0 ipv6_dest_ip_ll Least significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net10 (0x02a0) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net10 0x02a0 31:0 ipv4_dest_ip IPV4 destination address. (Deprecated) 0x0 RW

net11 (0x02b0) – SFP+ A Register, Default: 0x0000aa00
Register Name Address (Hex) Bit Name Function Default Access

net11 0x02b0 31:16 reserved Reserved 0x0 RW
15:0 mac_addr_u Most significant 16'b of Crimson MAC address 0xaa00 RW

net12 (0x02c0) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net12 0x02c0 31:0 mac_addr_l Lower 32'b of Crimson MAC address 0x00000000 RW

net13 (0x02d0) – SFP+ A Register, Default: 0x00007a69
Register Name Address (Hex) Bit Name Function Default Access

net13 0x02d0 31:16 reserved Reserved 0x0 RW
15:0 src_port UDP source port 0x7a69 RW

net14 (0x02e0) – SFP+ A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net14 0x02e0 31:16 reserved Reserved 0x0 RW
15:0 dest_port UDP destination port (Deprecated) 0x0 RW

net15 (0x02f0) – SFP+ B Register, Default: 0x05780002
Register Name Address (Hex) Bit Name Function Default Access

net15 0x02f0 31:16 pl_size Payload size for SFPB. 0x0578 RW
15:3 reserved Reserved 0x0 RW

2 sel IP Protocol 0x0 RW
0: IPV4
1: IPV6

1 crc_en CRC Enable 0x1 RW
0: Disable
1: Enable

0 rst Active HIGH Reset. SFPB block will be placed in reset. 0x0 RW

net16 (0x300) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net16 0x300 31:0 ipv6_src_ip_uu Most significant 32'b of IPV6 Crimson address. 0x0 RW

net17 (0x310) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net17 0x310 31:0 ipv6_src_ip_ul 2nd most significant 32'b of IPV6 Crimson address. 0x0 RW

net18 (0x320) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net18 0x320 31:0 ipv6_src_ip_lu 2nd least significant 32'b of IPV6 Crimson address. 0x0 RW

net19 (0x330) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net19 0x330 31:0 ipv6_src_ip_ll Least significant 32'b of IPV6 Crimson address. 0x0 RW

net20 (0x340) – SFP+ B Register, Default: 0x0a0a0b02
Register Name Address (Hex) Bit Name Function Default Access

net20 0x340 31:0 ipv4_src_ip IPV4 Crimson address. 0x0a0a0b02 RW

net21 (0x350) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net21 0x350 31:0 ipv6_dest_ip_uu Most significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net22 (0x360) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net22 0x360 31:0 ipv6_dest_ip_ul 2nd most significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net23 (0x370) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net23 0x370 31:0 ipv6_dest_ip_lu 2nd least significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net24 (0x380) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net24 0x380 31:0 ipv6_dest_ip_ll Least significant 32'b of IPV6 destination address. (Deprecated) 0x0 RW

net25 (0x390) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net25 0x390 31:0 ipv4_dest_ip IPV4 destination address. (Deprecated) 0x0 RW

net26 (0x3a0) – SFP+ B Register, Default: 0x0000aa00
Register Name Address (Hex) Bit Name Function Default Access

net26 0x3a0 31:16 reserved Reserved 0x0 RW
15:0 mac_addr_u Most significant 16'b of Crimson MAC address 0xaa00 RW

net27 (0x3b0) – SFP+ B Register, Default: 0x00000001
Register Name Address (Hex) Bit Name Function Default Access

net27 0x3b0 31:0 mac_addr_l Lower 32'b of Crimson MAC address 0x00000001 RW

net28 (0x3c0) – SFP+ B Register, Default: 0x00007a6a
Register Name Address (Hex) Bit Name Function Default Access

net28 0x3c0 31:16 reserved Reserved 0x0 RW
15:0 src_port UDP source port 0x7a6a RW

net29 (0x3d0) – SFP+ B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

net29 0x3d0 31:16 reserved Reserved 0x0 RW
15:0 dest_port UDP destination port (Deprecated) 0x0 RW

rxa0 (0x0400) – Rx Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxa0 0x0400 31:0 phase_word Phase increment for the NCO. 0x0 RW

rxa1 (0x0410) – Rx Chain A Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

rxa1 0x0410 31:16 reserved Reserved 0x0 RW
15:0 decimation DSP decimation by a factor of up to 256. 0xff RW

rxa2 (0x0420) – Rx Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxa2 0x0420 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

rxa3 (0x0430) – Rx Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxa3 0x0430 31:0 iq_phase IQ phase for the input signal. 0x0 RW

rxa4 (0x0440) – Rx Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxa4 0x0440 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 dest_sink Specifies the destination sink for the data for RX Channel: 0x0 RW
0000: SFPA
0001: SFPB
0010: Loopback (redirects data to TX channel)
0011: Reserved
...
1111: Reserved

8 enable Enables RX Channel 0x0 RW
7:5 rx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the RXA_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the RXA_DSP data packer block will be in reset.

rxa5 (0x0450) – Rx Chain A Register, Default: 0x0a0a0a0a
Register Name Address (Hex) Bit Name Function Default Access

rxa5 0x0450 31:0 ipv4_dest_ip IPV4 destination address. 0x0a0a0a0a RW

rxa6 (0x0460) – Rx Chain A Register, Default: 0x0000ffff
Register Name Address (Hex) Bit Name Function Default Access

rxa6 0x0460 31:16 reserved Reserved 0x0 RW
15:0 mac_addr_u Most significant 16'b of destination MAC address 0xffff RW

rxa7 (0x0470) – Rx Chain A Register, Default: 0xffffffff
Register Name Address (Hex) Bit Name Function Default Access

rxa7 0x0470 31:0 mac_addr_l Lower 32'b of destination MAC address 0xffffffff RW

rxa8 (0x0480) – Rx Chain A Register, Default: 0x0000a744
Register Name Address (Hex) Bit Name Function Default Access

rxa8 0x0480 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa744 RW

rxb0 (0x0500) – Rx Chain B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxb0 0x0500 31:0 phase_word Phase increment for the NCO. 0x0 RW

rxb1 (0x0510) – Rx Chain B Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

rxb1 0x0510 31:16 reserved Reserved 0x0 RW
15:0 decimation DSP decimation by a factor of up to 256. 0xff RW

rxb2 (0x0520) – Rx Chain B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxb2 0x0520 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

rxb3 (0x0530) – Rx Chain B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxb3 0x0530 31:0 iq_phase IQ phase for the input signal. 0x0 RW

rxb4 (0x0540) – Rx Chain B Register, Default: 0x00000200
Register Name Address (Hex) Bit Name Function Default Access

rxb4 0x0540 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 dest_sink Specifies the destination sink for the data for RX Channel: 0x1 RW
0000: SFPA
0001: SFPB
0010: Loopback (redirects data to TX channel)
0011: Reserved
...
1111: Reserved

8 enable Enables RX Channel 0x0 RW
7:5 rx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the RXB_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the RXB_DSP data packer block will be in reset.

rxb5 (0x0550) – Rx Chain B Register, Default: 0x0a0a0b0a
Register Name Address (Hex) Bit Name Function Default Access

rxb5 0x0550 31:0 ipv4_dest_ip IPV4 destination address. 0x0a0a0b0a RW

rxb6 (0x0560) – Rx Chain B Register, Default: 0x0000ffff
Register Name Address (Hex) Bit Name Function Default Access

rxb6 0x0560 31:16 reserved Reserved 0x0 RW
15:0 mac_addr_u Most significant 16'b of destination MAC address 0xffff RW

rxb7 (0x0570) – Rx Chain B Register, Default: 0xffffffff
Register Name Address (Hex) Bit Name Function Default Access

rxb7 0x0570 31:0 mac_addr_l Lower 32'b of destination MAC address 0xffffffff RW

rxb8 (0x0580) – Rx Chain B Register, Default: 0x0000a745
Register Name Address (Hex) Bit Name Function Default Access

rxb8 0x0580 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa745 RW

rxc0 (0x0600) – Rx Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxc0 0x0600 31:0 phase_word Phase increment for the NCO. 0x0 RW

rxc1 (0x0610) – Rx Chain C Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

rxc1 0x0610 31:16 reserved Reserved 0x0 RW
15:0 decimation DSP decimation by a factor of up to 256. 0xff RW

rxc2 (0x0620) – Rx Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxc2 0x0620 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

rxc3 (0x0630) – Rx Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxc3 0x0630 31:0 iq_phase IQ phase for the input signal. 0x0 RW

rxc4 (0x0640) – Rx Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxc4 0x0640 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 dest_sink Specifies the destination sink for the data for RX Channel: 0x0 RW
0000: SFPA
0001: SFPB
0010: Loopback (redirects data to TX channel)
0011: Reserved
...
1111: Reserved

8 enable Enables RX Channel 0x0 RW
7:5 rx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the RXC_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the RXC_DSP data packer block will be in reset.

rxc5 (0x0650) – Rx Chain C Register, Default: 0x0a0a0a0a
Register Name Address (Hex) Bit Name Function Default Access

rxc5 0x0650 31:0 ipv4_dest_ip IPV4 destination address. 0x0a0a0a0a RW

rxc6 (0x0660) – Rx Chain C Register, Default: 0x0000ffff
Register Name Address (Hex) Bit Name Function Default Access

rxc6 0x0660 31:16 reserved Reserved 0x0 RW
15:0 mac_addr_u Most significant 16'b of destination MAC address 0xffff RW

rxc7 (0x0670) – Rx Chain C Register, Default: 0xffffffff
Register Name Address (Hex) Bit Name Function Default Access

rxc7 0x0670 31:0 mac_addr_l Lower 32'b of destination MAC address 0xffffffff RW

rxc8 (0x0680) – Rx Chain C Register, Default: 0x0000a746
Register Name Address (Hex) Bit Name Function Default Access

rxc8 0x0680 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa746 RW

rxd0 (0x0700) – Rx Chain D Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxd0 0x0700 31:0 phase_word Phase increment for the NCO. 0x0 RW

rxd1 (0x0710) – Rx Chain D Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

rxd1 0x0710 31:16 reserved Reserved 0x0 RW
15:0 decimation DSP decimation by a factor of up to 256. 0xff RW

rxd2 (0x0720) – Rx Chain D Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxd2 0x0720 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

rxd3 (0x0730) – Rx Chain D Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rxd3 0x0730 31:0 iq_phase IQ phase for the input signal. 0x0 RW

rxd4 (0x0740) – Rx Chain D Register, Default: 0x00000200
Register Name Address (Hex) Bit Name Function Default Access

rxd4 0x0740 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 dest_sink Specifies the destination sink for the data for RX Channel: 0x1 RW
0000: SFPA
0001: SFPB
0010: Loopback (redirects data to TX channel)
0011: Reserved
...
1111: Reserved

8 enable Enables RX Channel 0x0 RW
7:5 rx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the RXD_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the RXD_DSP data packer block will be in reset.

rxd5 (0x0750) – Rx Chain D Register, Default: 0x0a0a0b0a
Register Name Address (Hex) Bit Name Function Default Access

rxd5 0x0750 31:0 ipv4_dest_ip IPV4 destination address. 0x0a0a0b0a RW

rxd6 (0x0760) – Rx Chain D Register, Default: 0x0000ffff
Register Name Address (Hex) Bit Name Function Default Access

rxd6 0x0760 31:16 reserved Reserved 0x0 RW
15:0 mac_addr_u Most significant 16'b of destination MAC address 0xffff RW

rxd7 (0x0770) – Rx Chain D Register, Default: 0xffffffff
Register Name Address (Hex) Bit Name Function Default Access

rxd7 0x0770 31:0 mac_addr_l Lower 32'b of destination MAC address 0xffffffff RW

rxd8 (0x0780) – Rx Chain D Register, Default: 0x0000a747
Register Name Address (Hex) Bit Name Function Default Access

rxd8 0x0780 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa747 RW

txa0 (0x0800) – TX Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txa0 0x0800 31:0 phase_word Phase increment for the NCO. 0x0 RW

txa1 (0x0810) – TX Chain A Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

txa1 0x0810 31:16 reserved Reserved 0x0 RW
15:0 interpolation DSP interpolation by a factor of up to 256. 0xff RW

txa2 (0x0820) – TX Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txa2 0x0820 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

txa3 (0x0830) – TX Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txa3 0x0830 31:0 iq_phase IQ phase for the input signal. 0x0 RW

txa4 (0x0840) – TX Chain A Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txa4 0x0840 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 src_sink Specifies the source sink for the data for TX Channel: 0x0 RW
0000: SFPA
0001: SFPB
0011: Reserved
...
1111: Reserved

8 enable Enables TX Channel 0x0 RW
7:5 tx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the TXA_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the TXA_DSP data packer block will be in reset.

txa5 (0x0850) – TX Chain A Register, Default: 0x0000a748
Register Name Address (Hex) Bit Name Function Default Access

txa5 0x0850 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa748 RW

txb0 (0x0900) – TX Chain B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txb0 0x0900 31:0 phase_word Phase increment for the NCO. 0x0 RW

txb1 (0x0910) – TX Chain B Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

txb1 0x0910 31:16 reserved Reserved 0x0 RW
15:0 interpolation DSP interpolation by a factor of up to 256. 0xff RW

txb2 (0x0920) – TX Chain B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txb2 0x0920 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

txb3 (0x0930) – TX Chain B Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txb3 0x0930 31:0 iq_phase IQ phase for the input signal. 0x0 RW

txb4 (0x0940) – TX Chain B Register, Default: 0x00000200
Register Name Address (Hex) Bit Name Function Default Access

txb4 0x0940 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 src_sink Specifies the source sink for the data for TX Channel: 0x1 RW
0000: SFPA
0001: SFPB
0011: Reserved
...
1111: Reserved

8 enable Enables TX Channel 0x0 RW
7:5 tx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the TXB_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the TXB_DSP data packer block will be in reset.

txb5 (0x0950) – TX Chain B Register, Default: 0x0000a749
Register Name Address (Hex) Bit Name Function Default Access

txb5 0x0950 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa749 RW

txc0 (0x0a00) – TX Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txc0 0x0a00 31:0 phase_word Phase increment for the NCO. 0x0 RW

txc1 (0x0a10) – TX Chain C Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

txc1 0x0a10 31:16 reserved Reserved 0x0 RW
15:0 interpolation DSP interpolation by a factor of up to 256. 0xff RW

txc2 (0x0a20) – TX Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txc2 0x0a20 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

txc3 (0x0a30) – TX Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txc3 0x0a30 31:0 iq_phase IQ phase for the input signal. 0x0 RW

txc4 (0x0a40) – TX Chain C Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txc4 0x0a40 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 src_sink Specifies the source sink for the data for TX Channel: 0x0 RW
0000: SFPA
0001: SFPB
0011: Reserved
...
1111: Reserved

8 enable Enables TX Channel 0x0 RW
7:5 tx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the TXC_DSP block will be in reset. 0x0 RW
0 rst_pkr Active HIGH reset. When asserted, the TXC_DSP data packer block will be in reset.

txc5 (0x0a50) – TX Chain C Register, Default: 0x0000a74a
Register Name Address (Hex) Bit Name Function Default Access

txc5 0x0a50 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa74a RW

txd0 (0x0b00) – TX Chain D Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txd0 0x0b00 31:0 phase_word Phase increment for the NCO. 0x0 RW

txd1 (0x0b10) – TX Chain D Register, Default: 0x000000ff
Register Name Address (Hex) Bit Name Function Default Access

txd1 0x0b10 31:16 reserved Reserved 0x0 RW
15:0 interpolation DSP interpolation by a factor of up to 256. 0xff RW

txd2 (0x0b20) – TX Chain D Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txd2 0x0b20 31:0 iq_amp IQ amplitude for the input signal. 0x0 RW

txd3 (0x0b30) – TX Chain D Register, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

txd3 0x0b30 31:0 iq_phase IQ phase for the input signal. 0x0 RW

txd4 (0x0b40) – TX Chain D Register, Default: 0x00000200
Register Name Address (Hex) Bit Name Function Default Access

txd4 0x0b40 31:14 reserved Reserved 0x0 RW
13 revphase Reverse the phase. Active HIGH signal. 0x0 RW

12:9 src_sink Specifies the source sink for the data for TX Channel: 0x1 RW
0000: SFPA
0001: SFPB
0011: Reserved
...
1111: Reserved

8 enable Enables TX Channel 0x0 RW
7:5 tx_mode Determines bandwidth of the output signals: 0x0 RW

000: High band
001: Base band
010: Reserved
...
111: Reserved

4 signd Determines the signedness of the output: 0x0 RW
0: Signed
1: Unsigned

3 conv Determines the conversion of the block: 0x0 RW
0: Down conversion
1: Up conversion

2 end Determines the endianness of the output data: 0x0 RW
0: Big Endian
1: Little Endian

1 rst_dsp Active HIGH reset. When asserted, the TXD_DSP block will be in reset. 0x0 RW
0 rst_pkr

txd5 (0x0b50) – TX Chain D Register, Default: 0x0000a74b
Register Name Address (Hex) Bit Name Function Default Access

txd5 0x0b50 31:16 reserved Reserved 0x0 RW
15:0 port Destination UDP port for data streaming. 0xa74b RW

Active HIGH reset. When asserted, the TXD_DSP data packer block will be in reset.

rsvd0 (0x0f00) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd0 0x0f00 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd1 (0x0f10) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd1 0x0f10 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd2 (0x0f20) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd2 0x0f20 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd3 (0x0f30) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd3 0x0f30 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd4 (0x0f40) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd4 0x0f40 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd5 (0x0f50) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd5 0x0f50 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd6 (0x0f60) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd6 0x0f60 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd7 (0x0f70) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd7 0x0f70 31:0 reserved Reserved Read-Write Register 0x0 RW

rsvd8 (0x0f80) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd8 0x0f80 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd9 (0x0f90) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd9 0x0f90 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd10 (0x0fa0) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd10 0x0fa0 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd11 (0x0fb0) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd11 0x0fb0 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd12 (0x0fc0) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd12 0x0fc0 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd13 (0x0fd0) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd13 0x0fd0 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd14 (0x0fe0) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd14 0x0fe0 31:0 reserved Reserved Read-Only Register 0x0 RO

rsvd15 (0x0ff0) – Reserved Registers, Default: 0x00000000
Register Name Address (Hex) Bit Name Function Default Access

rsvd15 0x0ff0 31:0 reserved Reserved Read-Only Register 0x0 RO

Updating Crimson

This chapter discusses the procedure required to update the Crim-
son transceiver firmware. Speaking broadly, Crimson has two pri-
mary firmware sources: the FPGA firmware (containing the Linux
file system and FPGA firmware), and the MCU firmware (the At-
mel processor code used to control and configure the radio and time
boards). This chapter explains the procedure to update the MCU More information on the architecture

behind Crimson may be found in on
page 17.

firmware, and configure the FPGA firmware to program the MCU.

MCU Firmware

The MCU code is responsible for controlling the various components
on each radio board. When a command is issued from the digital
board, the MCU interprets the command and configures or adjusts
the various components on the board to the desired mode of opera-
tion.

The capability exists to update this code through the existing
UART interface, the optimal update method takes advantage of the
exposed SATA headers to directly update the Atmel Controller. The
following provides the recommended procedure to update the MCU
firmware.

Automatic MCU Update Pre-requisites

In order to automatically update from Crimson, you require;

1. Firmware binaries (eg; rx.hex, tx.hex)

The actual MCU firmware and binaries are available from Per
Vices. If you are updating from the MCU, you only require the
application binaries (rx.hex, tx.hex, synth.hex, dig.hex). Please
contact us for more information.

2. A client terminal with SSH and SCP installed.

48 per vices corporation

Automatic MCU Update Procedure

1. Copy the firmware binaries over to Crimson, and place them
within the /home/root/pv_mcu directory. If you are using the default
configuration, and wish to update all the MCUs, you may use the
following scp invocation;

cd <firmware_directory>

scp {rx,tx,synth,dig}.hex root@192.168.10.2:/home/root/pv_mcu If you have changed the default man-
agement IP address, then you will have
to use that address.2. Having copied the MCU binaries, we much now program then.

This is done from within Crimson. Accordingly, we need to SSH
into the machine, and then run the MCU update routine located in
the /home/root/pv_mcu directory;

ssh root@192.168.10.2
cd /home/root/pv_mcu
./flash.sh all You may update a specific board by

specifying it; rx, tx, synth, dig.
3. Once the process is completed, restart Crimson.

Manual MCU Update Pre-requisites

You require the following programs and items prior to updating the
MCU firmware;

1. avrdude

avrdude is a program that allows you to program Atmel MCUs.
It is generally available in the package repositories of most Linux
distributions. It is also available from: http://savannah.nongnu.org/projects/avr-
dude/ . We presently use version 6.1.

2. Firmware binaries (eg; rx.hex, rx-boot.hex)

The actual MCU firmware and binaries are available from Per
Vices. Please contact us for more information. In order to fully
program each board, you may require up to two binaries files
per board; one to program the board boot-loader (identified by
the -boot suffix), and an application binary (eg., «rx.hex, tx.hex,
dig.hex, or synth.hex).

3. Programming dongle

A programming dongle is required to interface between the cus-
tom SATA header and an AVR-type programmer. You may build
your own, or request one to be provided (on a limited basis). One
SATA programming dongle is provided for the receive (Rx), trans-
mit (Tx), and time (Synth) boards. A separate, mini-SAS type pro-
grammer is provided for the digital board.

http://savannah.nongnu.org/projects/avrdude/
http://savannah.nongnu.org/projects/avrdude/

crimson user manual 49

Manual MCU Firmware Update Procedure

1. Unplug the Crimson chassis, and remove the cover.

2. Locate the relevant board firmware header (see Figures 9 on the
next page and 12 on page 51).

(a) For the Receive (Rx), Transmit (Tx), or Time board (Synth), this
is the SATA data header located beside the SATA power header.

(b) For the Digital (Dig) board, the Rx port mini-SAS port doubles
as the MCU programming header. You will need to carefully
unplug the Rx Mini-SAS connector in order to insert the pro-
gramming dongle.

3. Mate the programming dongle with the appropriate board pro-
gramming port.

4. Program the application firmware, taking care to ensure you pro-
gram the correct board with the correct firmware.

Your specific programmer and port may vary, requiring you to
modify the port (-P) and controller (-c) options.

We use an avrispmkII compatible programmer over a usb connec-
tion, and want to program the rx.hex application firmware to the
receive (Rx) board. We can use the following avrdude syntax; Remember to confirm that you are

burning the correct application firmware
file to the correct board!avrdude -P usb -c avrispmkII -p x256a3u -B 8 \

-U application:w:rx.hex

Syntax notes:

We use a programmer controller (-c) that is avrispmkII compatible,
and using a port (-P) usb connection, and setting a bit clock period
in nanoseconds (-B) to 8. The part (-p) is an ATxmega256A3U,
specified as x256a3u, and we carry out a memory operation (-U)
that writes the application binary rx.hex to memory.

5. (Optional) Program the board boot-loader.
Your specific programmer and port may vary, requiring you to

modify the port (-P) and controller (-c) options.
We use an avrispmkII compatible programmer over a usb

connection, and want to program the rx-boot.hex boot loader to
the receive (Rx) board. We can use the following avrdude syntax; Remember to confirm that you are

burning the correct boot loader firmware
file to the correct board!avrdude -P usb -c avrispmkII -B 8 -e \

-p x256a3u -U boot:w:rx-boot.hex -U fuse2:w:0xBF:m

Syntax notes:

We use a programmer controller (-c) that is avrispmkII compatible,
and using a port (-P) usb connection, and setting a bit clock period
in nanoseconds (-B) to 8, after first performing a chip erase (-e). The
part (-p) is an ATxmega256A3U, specified as x256a3u, and we carry

50 per vices corporation

out a memory operation (-U) that writes the xboot-boot.hex file to
the boot loader, and subsequently carrying out another memory
operation (-U) to set the fuses to (fuse2:w:0xBF:m).

6. Congratulations! You should have successfully updated the Crim-
son MCU firmware.

Figure 9: The MCU program-
ming header location on the
Receive (Rx) board.

Figure 10: The MCU program-
ming header location on the
Transmit (Tx) board.

crimson user manual 51

Figure 11: The MCU program-
ming header location on the
Time (Synth) board.

Figure 12: MCU programming
header location on the Digital
(Dig) board. It shares the same
port as the mini-SAS cable go-
ing to the Rx board.

52 per vices corporation

Figure 13: A sample debug
adapter mated with an Atmel
Programmer.

FPGA Firmware

The FPGA firmware used by Crimson is stored on the provided
Crimson SD card, and is loaded onto the FPGA during boot. This
procedure describes how to replace or update the FPGA code stored
on the SD card.

It is also possible to update the FPGA firmware using the com-
mand line, or directly over JTAG using a USB Blaster. Updating firmware using the USB

Blaster is not recommended if you are
also using the SoC, as it may adversely
impact SoC operation.FPGA Update Pre-requisites

You require the items prior to updating the FPGA firmware stored on
the FPGA firmware;

1. FPGA Binaries (soc_system.rbf)

This contains the FPGA firmware, as a raw binary file (rbf) named
soc_system.rbf. If you are compiling from source, or from within
Quartus 2, you will have to convert the default output file (with an
.sof extension - SRAM object file) to an appropriate RBF file. To do
this, compile the project first. After compiling the project, open the
Convert Programmer menu (File > Convert Programming Files)
and use the settings shown in Figure 14 on the next page.

crimson user manual 53

2. Crimson SD Card

The SD Card shipped with your Crimson platform.

3. Mini SD Card Reader

All Crimson transceivers ship with a USB card reader. Alterna-
tively, you may use your own.

4. A computer to copy over the SD Card.

In order to copy over the SD Card, you will need a computer to
copy the updated or generated FPGA firmware to the SD Card.

Figure 14: Quartus 2 IDE Con-
vert Programming Files GUI.
The settings illustrate the con-
vert ion of the default (.sof)
file format to the desired raw
binary file (.rbf), with a mode of
Passive Parallel x16, and an out-
put filename of soc_system.rbf.

FPGA Update Procedure

1. If you are generating from your own Quartus Project, ensure that
you have converted the newly generated source code to a Raw
Binary File (see Figure 14).

2. Confirm the file name is:

soc_system.rbf

3. Power down Crimson, and remove the mini SD Card.

4. Insert the SD Card into the provided USB mini-SD Card reader,
and place the assembly into a computer.

5. Identify the partition containing the existing soc_system.rbf file.

54 per vices corporation

The SD Card contains three partitions. Depending on your oper-
ating system, the number of viewable partitions may vary. Using
a reasonable operating system, you should be able to view three
partitions, eg;

sdX1 - partition 1- type b - W95 FAT32 partition (This contains
the RBF file!)

sdX2 - partition 2 - type 83 - Linux ext3 partition (Contains SoC
file system)

sdX2 - partition 3 - type a3 - UBOOT and boot loader (It’s best not
to touch this)

6. Once you identify the correct partition, replace the existing RBF
file with the new one, and cleanly unmount the partition. You must ensure you cleanly unmount

the partition. You risk corrupting the
firmware image (and possibly even
Crimson), if you simply remove the
USB key without first unmounting
(safely removing) the USB key! For
added security, type, «sync» to flush
filesystem buffers prior to removing the
SDCard.

7. Remove the USB mini-SD Card adapter from your computer, and
pull out the mini-SD Card. Insert the bare SD card back into the
Crimson mini-SD Card receptacle.

8. Congratulations! You should have successfully updated the Crim-
son FPGA code.

crimson user manual 55

FPGA Signal Tap

So you’re swimming along, developing your own FPGA firmware
when disaster strikes! There’s a problem in your code. Despite your
countless hours simulating your code, you’ve discovered a bug.
Worse, you aren’t sure exactly where it might lie, though you sus-
pect that the problem might come from that new code that Laura
(from accounting) introduced. Before escalating the issue (or poi-
soning your relationship with your colleague), you want to debug
the issue with Signal Tap. The following procedure indicates how to
attach a USB Blaster to Crimson.

FPGA Signal Tap Pre-requisites

You require the items prior to updating the FPGA firmware stored on
the FPGA firmware;

1. Altera USB Blaster (or clone) with serial input.

2. Crimson Transceiver Platform

FPGA Signal Tap Attachment Procedure

1. Remove the cover from Crimson.

2. Locate the Signal Tap header on the digital board (see Figure 15

on the next page).

Default boards may not include a Signal Tap header; in which case
you shall have to solder on a dual row 10 position header.

3. Attach the Signal Tap header to the Jumpers.

4. Congratulations! You have successfully attached a USB Blaster to
Crimson.

56 per vices corporation

Figure 15: FPGA JTAG header
location on digital board. You
may use this jumper to attach
a USB Blaster 2 device on to
Crimson, which enables you
to use Signal Tap or carry out
JTAG searches.

Last Chapter

	Preface
	Obligatory Warnings
	Specifications and Interfaces
	System Architecture
	Installation
	Use and Operation
	Crimson Device Data Format
	Crimson Register Map
	Updating Crimson
	Last Chapter

