
ON THE IMPLEMENTATION OF AN ANALOG ATPG 

by 

CHIN-LONG WEY, B.S., M.S. 

A DISSERTATION 

IN 

ELECTRICAL ENGINEERING 

Submitted to the Graduate Faculty 
of Texas Tech University in 

Partial Fulfillment of 
the Requirements for 

the Degree of 

DOCTOR OF PHILOSOPHY 



C^p*^ ACKNOWLEDGEMENTS 

I would like to express my sincere thanks to Paul Vihitfield Horn 

Professor Richard E. Saeks for his expert guidance of this dissertation. 

Professors Kwong Shu Chao, John F. VJalkup, Erich E. Kunhardt and Kazuo 

Nakajima for serving on my committee. 

Thanks also to Mrs. Pansy Burtis for her fine work in typing this 

dissertation, and Mr. Henry Ford and Dr. Ashok Iyer for their 

suggestions. It is a pleasure acknowledging their help. 

Finally a special thanks to my wife, Lih-Er, my parents, brothers, 

sisters and friends for their encouragement and support during my 

entire education. 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS i i 

LIST OF TABLES iv 

LIST OF FIGURES. v 

I. Introduction 1 

The Self-Testing Algorithm 4 

Overview of Automatic Testing Programming 6 

Organization 9 

II. The Simulation Model 11 

Linear Case 11 

Nonlinear Case ...: 14 

III. Software Devel opment 17 

Linear Case 18 

Nonlinear Case 26 

IV. Al gori thms 39 

Supporti ng Al gori thms 39 

Decision Algorithms 52 

V. Examples 71 

Linear Case 71 

Nonl inear Case 83 

VI. Conclusions 99 

REFERENCES 101 

APPENDIX 104 

i i i 



LIST OF TABLES 

Table. 4.1. Coupling Table with the Test Result 59 

Table 5.1. Data Sheet - Linear Circuit 72 

Table 5.2. Data Sheet - Nonlinear Circuit 84 

Table 5.3. Test Results - Nonlinear Circuits 98 

IV 



LIST OF FIGURES 

Figure 1.1. Simplified Block Diagram of Typical ATE 8 

Figure 3.1. Design and Test of a Unit Under Test (UUT) 18 

Figure 3.2. Test Program Generation - Linear Case 20 

Figure 3.3. Program Verification - Linear Case 23 

Figure 3.4. Program Validation - Linear Case 27 

Figure 3.5. On-Line Component - Linear Case 29 

Figure 3.6. Test Program Generation - Nonlinear Case 31 

Figure 3.7. Program Verification - Nonlinear Case 33 

Figure 3.8. Program Validation - Nonlinear Case 36 

Figure 3.9. On-Line Component - Nonlinear Case 38 

Figure 4.1. Controlled Sources ....'. 47 

Figure 4.2. Controlled Sources With Component 48 

Figure 5.1. Power Supply Circuit 86 

Figure 5.2. Astable Multivibrator 95 

Figure 5.3. Oscillator 96 

Figure 5.4. SPICE codes for ASTABLE and OSC CKTs-;^ 97 



CHAPTER 1 

INTRODUCTION 

-Electronics design has become very sophisticated during the past 

quarter century. Graphical algorithms have been replaced by CAD 

(Computer-Aided Design), and features of design implementation can be 

studied by simulation, rather than requiring extensive breadboarding. 

Electronics maintenance, however, has changed wery little during the 

same period. In fact, many industries have, found that the life cycle 

maintenance costs for their electronics equipment exceed their capital 

investment. Consequently, it is becoming apparent that the new 

maintenance process, like the design process, must be automated. 

Several formidable problems are faced in the maintenance of mili

tary electronics; the avionics and missiles are becoming far too complex 

for the typical military technician to maintain; the time required to 

test systems is becoming excessively large; system designs are changing 

too fast to keep maintenance documents current. Hence a more economical 

approach to maintenance is an actual necessity. Therefore, a multi

purpose automatic test equipment (ATE) which promises testing at computer 

speeds, fully automatic operation by low-skill operators, the virtual 

elimination of maintenance documents, and universal designs adaptable to 

any test problem through the flexibility of programming, has been in

vestigated by several research groups. 

Efforts at producing algorithms for automatic test program genera

tion systems has concentrated mainly on digital circuits for which 

satisfactory solutions have been found. Several digital automatic test 

1 



program generation systems have been developed and widely used by both 

military and industrial communities. D-LASAR by Digitest, ATVG by 

Gen^raT Electric, TGAS by the U. S. Navy, FAS/SDAP by Honeywell, LOGOS 

by Grumman, GLASH by Micro, SALT by IBM,""^ TESTAID-III by Hewlett-

36 
Packard, etc., are some of the well known systems. 

Several books^'^'^^'"'^'^'^'^^ and articles^^''^^ have discussed the 

fault detection and diagnosis in digital circuits. Typically, in the 

digital circuit, one assumes that all permanent component failures are 

either "stuck-at-zero," (s-a-0), or "stuck-at-one" (s-a-1). Under 

this assumption, one hypothesizes some limit on the number of simultan

eous faults and then simulates the responses of UUT (Unit Under Test) to 

a family of test vectors for each allowed combination of faults. The 

simulated responses are used to set up a fault dictionary which is stored 

in some bulk storage media such as disks and magnetic tapes. When the 

test is conducted the actual responses of UUT are compared with the 

responses in the fault dictionary to locate the failure. Of course, 

this approach is a kind tDf "brute force" search which requires 

one to simulate all possible responses to the various combinations of 

hypothesized faults. However, all these simulations need only be done 

once at the factory of a maintenance depot. The cost of simulation is 

therefore relatively cheap. Clearly, this approach is ideally suited 

for the maintenance environment. With the aid of some sophisticated 

software engineering, this apparently "brute force" approach to the fault 

diagnosis problem has slowly evolved into a workable concept. 



program generation systems have been developed and widely used by both 

military and industrial communities. D-LASAR by Digitest, ATVG by 

GeneraT Electric, TGAS by the U. S. Navy, FAS/SDAP by Honeywell, LOGOS 

by Grumman, GLASH by Micro, SALT by IBM,^^ TESTAID-III by Hewlett-

Packard, etc., are some of the well known systems. 

Several books^'^'^""'"'^'^'''^'^ and articles^"^'^^ have discussed the 

fault detection and diagnosis in digital circuits. Typically, in the 

digital circuit, one assumes that all permanent component failures are 

either "stuck-at-zero," (s-a-0), or "stuck-at-one" (s-a-1 ).^'^ Under 

this assumption, one hypothesizes some limit on the number of simultan

eous faults and then simulates the responses of UUT (Unit Under Test) to 

a family of test vectors for each allowed combination of faults. The 

simulated responses are used to set up a fault dictionary which is stored 

in some bulk storage media such as disks and magnetic tapes. When the 

test is conducted the actual responses of UUT are compared with the 

responses in the fault dictionary to locate the failure. Of course, 

this approach is a kind tDf "brute force" search which requires 

one to simulate all possible responses to the various combinations of 

hypothesized faults. However, all these simulations need only be done 

once at the factory of a maintenance depot. The cost of simulation is 

therefore relatively cheap. Clearly, this approach is ideally suited 

for the maintenance environment. With the aid of some sophisticated 

software engineering, this apparently "brute force" approach to the fault 

diagnosis problem has slowly evolved into a workable concept. 



Unfortunately, the above described success in the digital world has 

not been paralleled by progress in the analog world. The difficulty 

arises from a number of characteristics of the analog problem which are 

not encountered in digital circuits, namely, 

(1) Analog systems have a continuum of possible failures. These 

failures may range from short circuit to open circuit, 

(2) A good component may be "in tolerance" but not nominal, 

(3) Complex feedback structures are encountered, 

(4) Simulation is slow and costly because analog systems are 

frequently nonlinear, 

(5) Post-fault component characteristics may not be known, and 

(6) A fault in one component may induce an apparent fault in 

another. 

Items (5) and (6) imply that the kind of "brute force" fault simulation 

algorithm associated with the digital problem will not be applicable to 

the analog or hybrid case. 

A number of academic researchers have proposed a variety of analog 
o pn pq 

fault diagnosis algorithms. ' ° ' Conceptt^ally, these algorithms can be 

31 
subdivided into three classes; 

(i) simulation-before test, 

(ii) simulation-after-test with a single test vector, and 

(iii) simulation-after-test with multiple test vectors. 

The first is commonly employed in digital testing and is characterized 

by minimal on-line computational requirements, but the high cost of 

analog circuit simulation coupled with the large number of potential 

fault modes limits the applicability of this algorithm. Typically, the 



simulation-after-test technique attempts to model the analog fault 

diagnosis problem as a nonlinear equation in which the internal variables 

or component parameters are computed in terms of the test data. In 

this case, where sufficiently many test points are available, only a 

single test vector is required and the problem reduces to the solution 

2"^ 38 

of a linear equation. ^^ Therefore, the on-line computational require

ments are moderate. However, the test point requirements grow linearly 

with circuit complexity. To reduce the test point requirements one may 

consider using multiple test vectors to increase the number of equations 

obtained from a given set of test points. However, the on-line compu

tation required to solve these complex sets of nonlinear equations (even 

for linear systems) is extremely expensive. 

Comparing the above three techniques, the simulation-after-test, 

with single test vector, seems to be the closest to the "ideal" algo-

rithm. The remaining question is how to reduce the number of test 

points so that this algorithm can be made more applicable. An algorithm 

based on the simulation-after-test, with single test vector, was presented 
41 42 

to reduce the number of test points. ' 

The Self-Testing Algorithm 

A bound on the maximum number of simultaneous failures is used to 

reduce the test point requirements while still retaining the computation

al simplicity inherent in a single test vector algorithm. It is 

reasonable to assume that, at most, two or three components have failed 

simultaneously in a given circuit with several hundred IC's and/or dis

crete components. In fact, rather than solving a set of simultaneous 



equations in n-space, the solution to our fault diagnosis problem 

actually lies in a two-or three-dimensional submanifold which should 

yield a-considerable reduction in test point requirements. Unfortunately, 

we do not know which two or three have failed and a further search is 

still required. Fortunately, with the aid of an appropriate decision 

algorithm the required search can be implemented quite simply. 

Conceptually, the components (individual chips, discrete components 

or subsystems) are subdivided into two groups at each step of the test 

algorithm. At each step we assume that one group is composed of good 

components and we use the known characteristics of these components, 

together with the test data, to determine whether or not the remaining 

components are good. In effect the first group of components is testing 

the second, hence the "self-test" algorithm. Of course, if the testers 

are actually good, then the resultant test results for the remaining 

components will be reliable. On the other hand, if any one of the 

testers is faulty the test data on the remaining components will be 

unreliable. Consequently, we repeat the process at the next step of the 

test algorithm with a different subdivision of components. 

Of course, the number of components which may be tested at any one 

step is dependent on the number of test points available, while the 

number of steps required is determined by the number of components which 

may be tested at any one step and the bounds on the maximum number of 

simultaneous failures. Therefore, this procedure yields a natural set 

of tradeoffs between the number of test points, simultaneous failures 

and steps required by the algorithm. 



6 

Overview of Automatic Testing Programming 

The Purpose of this overview is to introduce the Automatic Test 

Equipment (ATE) which provides test data to our test program. A collec

tion of papers relating to hardware, software, and management aspects of 

20 18 

automatic test equipment was edited by Liguori. In Knowles' book 

he introduced the automatic test systems and its applications. He gave 

a review of the elements which comprise automatic test systems, a survey 

of those factors which affect the choice of test systems, and a dis

cussion on the planning studies which should precede any decision to 
16 adopt ATE. Another book written by Healy concentrates on the automatic. 

testing of the digital integrated circuits. Several articles published 

9 13 24 37 
in IEEE Sprectrum also survey the ATE systems. * ' ' 

A test is a process which is not only performed to obtain informa

tion about the performance of a component or device, it is also allowed 

to detect, locate, or identify faults. The electronic component or 

device which is to be tested is called a unit under test (UUT). Fault 

detection is a procedure for evidencing the presence of faults in a 

system, which is performed^ either during quality control or during 

maintenance. Fault Location determines the faulty element after de

tection of a fault. Fault Diagnosis or identification determines the 

causes of a fault. 

There are essentially two purposes for testing: First, to determine 

whether or not the UUT is bad (functional testing), and then to find out 

which element is faulty and needs to be repaired (fault isolation). 

24 Testing may be performed manually or automatically. Manual testing is 



7 

usually performed by connecting individual pieces of test equipment, in

cluding measurement devices, special-purpose signal generators, power 

supplies, decade boxes, and a collection of clip leads. The technician 

must plug in, set up, and connect all of this equipment to the UUT to 

make the tests he feels are pertinent by the help of some sort of manual 

or set of instructions. 

Automatic testing is a test procedure which is performed with the 

aid of a computer. There are power supplies, stimuli, measurement de

vices, and a switching system to allow the equipment to be arranged in 

desirable configurations. The instruction manual is replaced by a pro

gram file which instructs the computer to carry out test instructions in 

the proper sequence, judge test results, and/or perform calculations. 

The test results are either written by a line printer or displayed on a 

CRT terminal. 

A block diagram of a typical ATE system is shown in Figure 1.1. The 

switch unit is an equipment which is used to connect the device UUT/ATE 

interface to the test system and to vary the connections of the device 

terminals. Examples are multiplexers, relay trees, scanner, and so 

forth. The stinulus unit is a device which generates stimul i, "such as 

power supplies, oscillators, synthesizes, function generators, waveform 

•generators, and D/A converters, among others. For use in automatic test 

such sources are often required to be programmable; that is, all of 

their functions should be controllable by electric signals instead of 

manual control. The measurement unit is an instrument which quantifies 

the response of a UUT to stimuli. The response of a UUT may be a 



8 

r 

Output 

Unit 

— — — — 

Simulus 

Unit 

— — 

4 

i— 
1 

— 

w 
. V 

— 

, 

U U T 
Test 
Program 

. T 
Program 
Input 
Unit 

^^ 

Digital 

Computer 

• i - ^ 
Switch 

Unit 

. UUT / ATE 

Interface 

-i- - - 1 

U U T 

Jt 
^ 

^ 

Measurement 

U n i t • 

1 
1 

"l 
1 
1 

1 
1 
1 

Automatic 
Test 

Equipment 

Figure 1 .1 . S impl i f ied Block Diagram of Typical ATE 



9 

directly measurable quantity such as a voltage, or it may be a derived 

quantity from physical measurements such as a resistance. Therefore, 

these units include voltmeters, current meters, phase meters, impedance 

bridges, frequency counters, A/D converters, etc. UUT/ATE interface 
I 

provides the connection of the UUT to the ATE which has the incompatible 

connecting points. Usually, an adapter is used to define items that in

terface the UUT to the switch unit. It may be test boards, fixtures, or 

sockets that contact the leads or terminals of a component. Output unit 

is a device which is used to display the test results. It may be a CRT 

terminal or line printer, or may transfer this test data to the host 

computer which provides a fault diagnosis. 

The testing starts after connecting the UUT to the test equipment 

through an interface. The computer output, a synthesis of an electrical 

signal, is converted by means of a digital-to-analog (D/A) converter 

into voltage or current levels. These signals are applied to the UUT 

via a switching unit and interfaces. The test results are routed via the 

switching unit to a sampling instrument. The measured quantity is con

verted to digital representation, and this time series is analyzed by 

the computer. The computer output of the results can be presented in 

any form most suitable to the users' display or print-out requirements. 

Organization 

The purpose of this dissertation is to present an Analog Automatic 

Test Program Generation, AATPG, for both linear and nonlinear circuits 

based on the self-testing algorithm. In Chapter 2 a Component Connection 



10 

Model, CCM, is described. This model is used to formulate our test al

gorithm for both linear and nonlinear circuits. The simulation model is 

used^to test one set of components under the assumption that the remain

ing components are good. Based on this model the software development 

of AATPGs for both linear and nonlinear circuits are discussed in 

Chapter 3. Each code is subdivided into off-line and on-line components. 

The off-line component is used by the test system designer to input 

nominal system specification to generate the test program and data base 

which is used by an on-line component. To verify the software's ability 

to locate and detect the faulty component(s), Program Verification is 

used. Similarly, the test program is validated by the measurement of the 

actual UUT. The on-line component is used in the implementation of the 

actual test. In order to run the actual test in a fully automatic mode, 

several supporting algorithms and decision algorithms are discussed in 

Chapter 4. Examples for both linear and nonlinear circuits are present

ed in Chapter 5. The conclusions follow in Chapter 6. 



CHAPTER 2 

THE SIMULATION MODEL 

• .Although our test algorithm can be formulated in terms of any of 

the standard circuit or system models, for the purpose of this exposi

tion we will assume a component connection for the circuit or system 

under test. The component connection model naturally divides the 

system into two sets of equations: Component equations characterized 

by (block) composite component model (for linear case) or by decoupled 

state model (for nonlinear case), and the Connection equations character

ized by coupled linear algebraic equations. Equations (2.1) and (2.20) 

are the component equations of linear and nonlinear systems, respective

ly, while the equations (2.2) and (2.3) are the connection equations. 

The connection matrix L, equations (2.2) and (2.3), characterizes the 

connection of components in the system. At each step of the algorithm, 

a "pseudo circuit" is generated and formulated by the equations (2.9) 

through (2.15) with a new connection matrix K. The data base which is 

used by the on-line component is computed by equation (2.16), matrix M 

for linear case while a SPICE code, based on the equations (2.23) 

through (2.26), is generated for the nonlinear case. 

Linear Case 

In the linear case the UUT is represented by a composite component 

model characterizing its components and/or subsystems together with an 

algebraic connection equation as follows: 

b = Za (2.1) 

11 



12 
and 

k2 72 2 , , 
b = Z a (2.5) 

Here, Z , a and b are the vectors of group "1" transfer functions, 

component input and output variables; and similarly for Z^, a^ and b^. 

To retain notational compatibility with equations (2.4) and (2.5) we re

order and partition the connection equations of (2.2) and (2.3) to be 

conformable with (2.4) and (2.5) as follows: 

1 _ , 11 .1 , ,12 .2 ^ ,1 (^ ^s 
a - L., b + L,, b + L12 u (2.6) 

a^ = L^^ b^ . L^^ b^ . L^ u (2.7) 
11 11 12 

y = L^^ b^ + L\^ b^ + L22 u (2.8) 

Unlike the commonly encountered circuit analysis problem, in which 

one desires to simulate the output responses y of a given circuit, in our 

application the vector y is obtained by the test engineer measuring 

the responses at various test points. The test responses y are, there

fore, known for the purpose of our application. Given equations (2.4) 

through (2.8), our goal is to compute the group "2" component vari-

2 2 2 

ables, a and b . To this end we assume that L2-1 admits a left inverse, 

which, in turn, determines the allowable component subdivisions. Under 

this assumption one may then formulate a component connection model for 

a "pseudo circuit" composed of the group "1" components with external 
n 9 9 

input vector u^ = col(u,y) and external vector y^ = col(a ,b ) in the 

form. b^ = Z^ a^ (2.9) 

and 



â  = K^^ b^ + K 
12 u' 

..j^ = K^^ b^ + K22 uP 

13 

(2.10) 

(2.11) 

where K is the connection matrix of the pseudo circuit. Some algebraic 

manipulation of equations (2.6) through (2.8), together with the assump

tion that [1-2]]"^ exists, will yield 

11 12 r. 2 -i-L . 1 
Kn = a - L ^ [L^J-^ L' ] 11 11 11 '-'-21 •21 

^12 = [L 12 - L̂ 2 TL^ r^ L 
L11 LL2-,J L22 

L̂ ^ rL^']-^ 1 
^11 '-^21-' ^ 

K 21 

^21 _ 22 . 2 .-L 1 
11 

K 22 

12 

- [L^ r^ L̂  

-L?? l l l Y ^ L 
11 •21 22 

- [L^ r^ L 
LL2-,J L22 

L^^ [L^ 1-L •-ll "-̂ 21-1 

[L^,]-

(2.12) 

(2.13) 

(2.14) 

(2.15) 

For each pseudo circuit, substituting equation (2.9) into equations 

(2.10) and (2.11), the equations with the transfer function matrix M are 

shown as follows: 

a^ = (K^^ z b b^ + K^2 Lî  

2̂1 - >> D . .X22 yP = (K,. Z') b' + K „ uP 

and 

yP = M uP 

where 

M = K2-, Z^ (I-K^^ Z^)""" K^2 "̂  ̂ 22 (2.16) 

Specifically, 



14 

a = '̂ 11 IJ + M^2 ^ (2.17) 

2 
b = M2^.u + M22 y (2.18) 

> -

Since the matrix M is independent of the test data and computed in 

terms of the nominal values of the group "1" components, it may be com

puted off-line and stored in a data base to be retrieved at the time a 

test is conducted. Furthermore, since only a single test vector is 

required, single frequency testing can be employed. In this case M need 

only be computed at a single frequency. The only on-line computation 

required for the fault diagnosis of a linear system is the matrix/vector 

multiplication indicated by equations (2.17) and (2.18) together with 

the computation of 

^2 2 2 
b^ = T- a^ (2.19) 

to determine which, if any, of the group "2" components are bad. 

Nonlinear Case 

For the nonlinear case one may formulate an identical algorithm in 

which the component characteristics are represented by a set of decoupled 

state models, together with an algebraic equation as follows: 
• 

X. = f-(x.,a.) 
^ ^ ^ ^ ; x.(0) = 0 ; i = 1,2,..n (2.20) 

b. = g.(x.,a.) 

and 

a = L^^ b + L^2 ^ (2.2) 

y = ^21 b + L22 u (2.3) 



15 
Here, x / s are the component state variables. The component equation 

(2.20) is modeled in the time domain. 

• ,Similarly, as in the linear case, the components are subdivided 

into two groups. The variables in (2.20) are then partitioned as 

and 

;"* J/ 1 IN x = f (x ,a ) 

b ^ = g \ x \ a ^ ) 

k' - f'{/J) 

K2 2, 2 2v b = g (x ,a ) 

; x^O) = 0 (2.21) 

; x^(0) = 0 (2.22) 

The connection equations (2.2) and (2.3) are partitioned as the equations 

(2.5) through (2.7). 

For each component subdivision, a pseudo circuit is generated in 

the form. 

•1 .1,1 K 
X = f (x ,a ) 

» x'(0) = 0 (2.23) 

b = g (x ,a ) 

â  = K^^ b^ + K^2 ^̂  (2-24) 

yP = K2^ b"" + K22 uP (2.25) 

where the connection matrix K of the pseudo circuit is derived in the 

equations (2.12) through (2.15). Since in our test algorithm both u and 

y are known, the above equations can be solved via any standard circuit 

analysis code, SPICE,^^ NAP2,2^ etc., to compute yP = Col(a^,b^). Once 

2 2 the values a and b are computed, with the computation of 



16 

c2 4̂ 2/ 2 2. X = f (x ,a ) 

; x^O) = 0 (2.26) 
r2 2f 2 2x 
b = g (x ,a ) 

to determine which, if any, of the groups two components are faulty. 

However, the above test results are dependent on our assumption 

that the group "1" components are not faulty, they are not immediately 

applicable. A decision algorithm is required to cope with this ambiguity 

problem so that the actual fault(s) can be precisely identified. Follow-

2 14 30 
ing the philosophy initiated by Preparata, Metze, and Chein ' ' in 

their study of self-testing computer networks, if one assumes a bound 

on the maximum number of components, it is possible to determine the 

actual fault(s) from an analysis of the test results obtained at the 

various steps of the algorithm. To this end we have derived the complete 

theory required to locate a single fault, together with Boolean algebraic 

and heuristic methods, which is applicable to the multiple fault 

case.39'^0.42 



CHAPTER 3 

SOFTWARE DEVELOPMENT 

• >The AATPG code for both linear and nonlinear circuits is subdivided 

into off-line and on-line components. The former, corresponding to the 

test system design stage, is used by test system designer to input nom

inal system specifications to generate a data base which is used by the 

on-line component. To implement the actual test, the field engineer in

vokes the on-line component input data describing the UUT: the assumed 

maximum number of simultaneous failures, the type of decision algorithm 

to be employed, and the source of the test data. The actual test can 

then be run in a fully automatic mode or interactively. 

As illustrated in Figure 3.1, a circuit description and test objec

tives are given to the off-line component to generate the test program. 

Necessary changes are indicated if the resultant test does not satisfy 

all of the requirements. If the design is satisfactory, the off-line 

component will generate the necessary data for the on-line test program 

and the data base. In the test package, the greatest part of the re

quired computation is carried out by the off-line component with the 

"pseudo-internal test data" being obtained from the test measurements 

via a simple on-line matrix/vector multiplication of equations (2.17) 

and (2.18). To the contrary, in the nonlinear code SPICE is used to 

evaluate the "pseudo-internal test data" via the on-line simulation of 

an appropriate pseudo circuit. 

In our implementation, to use the actual measured test data with 

these AATPGs, a HP 9825A is used to control special purpose ATE 

17 



18 

UJ 

• — « 

_ _ » 

u_ u_ o 

+-> 
to 
OJ 

• o 
c: 

E 
fO 

s_ 
CD 
fO 

• I — 

Q 

+-> 
•r— 

3 
o I -

• 1 — 

<_> 

cA 
OJ 
> 

•r™' 
4-> 

o 
(U 

•"-J 
J 3 
o 
+-> to 
(U 

^ -

- • 

^ c \ 
>> <u V 
+-> c \ 

- - \ n3 E V 
U- O 1 " 1 

<o 

CO 
OJ 

cn 
to 
OJ 

Q 

CD 



19 

(Automatic Test Equipment) which generates test signals, and stores the 

measured test results. After some necessary calculations, the data is 

transferred to the host (VAX 11/780) where the on-line component of the 

ATPG takes over. 

Both the off-line and on-line components have user-oriented inter

faces to simplify the process of generating a new test program. The 

AATPG has been implemented on a VAX 11/780 in FORTRAN 77 and DCL (Dec 

39 40 Command Language). ' In the linear code the user specifies the 

circuit in terms of certain standard elements, while in the nonlinear 

code standard SPICE circuit models are employed. The input syntax is a 

free-format style-

Linear Case 

Off-line Component: Design Stage 

The objective of the off-line component is to generate the test 

program and the appropriate data for the test program, verify and vali

date the test program so that the faulty components can be actually 

detected and located. 

Test Program Generation: As illustrated in Figure 3.2, the input re

quirements in the test program generation are Circuit Description, Input 

Frequency, and Accessible Test Terminals. 

Circuit Description: The Component Connection Model is used to 

simulate the UUT under nominal and faulty conditions. In the case of a 

linear circuit, the UUT components are characterized by a composite 

component model and the component equations are modeled in frequency 

domain. The circuit description consists of two steps, namely: 



20 

—¥ 

— • 

k 
f 

Circuit 

Description 

Input 

Frequency 

Test Points 

Description 

Data Base 

(M) 

k 
r 

—• 

Ik 
P 

i 

\ r 

LI-Matrix 

i 
L2-Matrix 

i 
Pseudo Circuit 

K 

Eqns.2.12-2.15 

^ r 
Calculate 
Matrix M 
Eqn. 2.16 

1 
f 

h 
r 

h 
w 

Display/Print 

Ll-Matrix 

Display/Print 

L2-Matrix 

Component 

Subdivisions 

Table 

Figure 3.2. Test Program Generation - Linear Case 



21 
(1) Component Description, 

(2) Source Description. 

In the former, the user is required to input the component type (the 

component types currently available in this package are resistors, in

ductors, capacitors, transistors, op-amps, and transformers), give a 

unique name to each component (where the first letter identifies ttie 

component type), define the value of the appropriate elements by the 

input of a numerical constant, and indicate the current flow direction 

by specifying the nodes. Nodes must be nonnegative integers, but need 

not be numbered sequentially. The ground node must be numbered zero. 

In the source description, the independent sources are assumed to be lo

cated in series/parallel with a component, therefore, the branch which 

contains the source will be specified as well as the orientation of this 

branch. 

Input Frequency: The component equations for our linear circuits 

are modeled in the frequency domain. Since a single test vector is re

quired, single frequency testing can be employed. With this single fre

quency, the component transfer matrix Z is generated by computing the 

impedance or admittance for each one port component, such as a resistor, 

capacitor, or inductor. The square matrix Z contains all zeros every

where except the diagonal blocks (where the block size depends on the 

number of ports of each component). For the two-port components, such 

as transistor, the hybrid pi parameters are used to characterize, the com

ponent, and the dimension of the diagonal block is two rows by two 

columns with the h-parameters or the transformed parameters depending 



22 

upon the entries selected in the vector a. Together with the data 

generated in the above description, the first part of the connection 

is generated as shown in equation (2.2). 

Accessible Test Terminals: The accessible Test Terminals are used 

to generate the second part of the connection matrix. In our 

test package the user is required to input manually the test point 

locations where the test points may be current measurements through 

components or voltage measurements across any two nodes. However, the 

test points may not be an entry of the vector a. With the assumption 

2 -L 

that the matrix [Lp-i] exists, a component subdivisions table is gen

erated, where the elements in each subdivision are the group "2" com

ponents. As discussed in the previous section, given a subdivision, a 

"pseudo circuit" with the connection matrix K is created by computing 

equations (2.12) through (2.15), and the data base, M-matrix, is derived 

by using equation (2.16). 

At the end of the test program generation process, the following 

data files are created; the connection matrix L, the component transfer 

matrix Z and the external input vector u, the component subdivisions 

table, the data base (M-matrix), and the test program. 

Program Verification: The generated test program is tested in 

software, as shown in Figure 3.3, to verify its ability to detect and 

locate faults. To verify the test program, three tests are performed on 

each circuit, namely: 



23 

Component 

Subdivision 

th nonfaulty com 

•-> 
Component 

Subdivisions 
Table 

ponent 

^ Next Test Type 

I 
Call 
SPICE 

Program 

Compare 

"2 2 
b^ and b"̂  

SPICE Code 
for the 

given circuit 

L 

i-

SPICE Code 
for 

u and y 

Data Base 

(SPICE Codes) 

Test 
Result 

Figure 3.3. Program Verification - Linear Case 



24 

Test with single 
out-of-tolerance 

failure component Program 

± Test with single 

Loop for 
Component i 
i=I to n 

catastrophic 
failure component Loop for 

Component i 
i=l to n • 

OPEN CKT 

Modification 

SHORT CKT 

Modification 

T 

From 
> 

User 

Out-of-
Tolerance 

Modification 

Modified SPICf! 
Code for the 

given circuit 

£ 

T 
Modified SPICE 
Code for the 

given circuit 

r 

Component 

Subdivision 

Test 

i-^ 
Component 

Subdivisions 
Table 

4i 
Component 

Subdivision 

! Result I 
I ^ I 

I Test j 

I Result ' 

Figure 3.3. (Continued) 



25 

(1) A test with nonfaulty components, 

(2) Tests with single catastrophic (open and short circuits) 

failures, and 

(3) Tests with a single out-of-tolerance failure. 

The first test verifies the correctness of the test program, while the 

remaining tests are performed to check whether or not the selected test 

points can actually locate and detect the faults. If the test is not 

satisfactory, the design engineer may change-the test points and repeat 

the process of program generation. The source of test data for program 

verification is a simulation program in which the test data, y,is cal

culated by the following equation. 

y = [L2^ Z (I - L^^ Z)""" L^2 "̂  ̂ 22^ ^ 7 (̂•""̂  

In the first test, since no faulty component is assumed, all the 

group "1" components are good so that the test results should be reliable. 

If one of the test results is found to be bad in an arbitrary subdivision, 

which contradicts our nonfaulty component assumption, the process will be 

terminated with an error message. An error check routine is then loaded 

to check for correctness of the Circuit and Test Point Descriptions. If no 

error is detected, the program generation process is repeated with new 

test points. If no faulty component is detected in all possible sub

divisions, the catastrophic failure test will be executed. In this test, 

components, taken one at a time, are modeled as open circuits. Using the 

calculated y of equation (3.1), the test results are obtained, and the 

actual faulty component will be located by the exact single fault algo

rithm. The details of the decision algorithms will be discussed later. 



26 
After the test with the open circuits for each component is executed 

successfully, a similar test where the components are short circuited is 

performed. If either one of the above tests fails the error check 

routine will be loaded. If all the above tests are processed successfully, 

similar tests for out-of-tolerance failures are executed. Once all tests 

are completed successfully, the test program is assumed correct. 

Following the successful test program verification, the test program 

is validated by the measurement of the actual- UUT, as shown in Figure 3.4. 

On-line Component: Test Stage 

The implementation of the actual test on a UUT is as illustrated in 

Figure 3.5. The maximum number of simultaneous failures allowed is 

specified by the user; the data files (matrix Z and vector u). and the 

test program are loaded and the host computer will send an instruction to 

the HP 9825A controller to conduct the test measurement. After the ATE 

is instructed to generate stimuli for the UUT, the measured test data 

will be stored and transferred to the host computer. When the data 

transfer is completed, the test program will compute the test result and 

identify the faulty component(s) with the aid of the decision algorithm. 

Nonlinear Case 

Off-line Component: Design Stage 

In the nonlinear case, the objective of the off-line component is to 

generate the test program, test data for test program use, and SPICE 

codes. These SPICE codes are generated for the given circuit, test in

puts u and test data y, and pseudo circuits with equations (2.23) through 



27 

Test 

Program 

rr 
t 

"1 
H P 

V Yes 

Test with nonfaulty compopentj' j_ 

Component Component 
4-> Subdivisions 

Subdivision Table 

I A T E 

^ Next Test Type | 

i 

I f 
U U T 

Call 
SPICE 

Program 

I 
Compare 

^2 2 
b^ and b^ 

LL 

SPICE Code 
for 

Test Data 
J ^ 

Data F i le 
fo r 

Test Data Jj 
SPICE Code 

for 
u and y 

SPICE code 
for 

Test Data 

Data Base 

(SPICE Codes) 

Test 
Result 

Error 

Check 

Figure 3.4. Program Validation - Linear Case 



28 

Test with single 
out-of-tolerance 

I 
Loop for 

Component i 
i=I to n 

failure component 

Test with single 
catastrophic 
failure component Loop for 

Component i 
i=l t o n • 

OPEN CKT 

Modification 

SHORT CKT 

Modification 

From 
> 

User 

3: 
Out-of-

Tolerance 
Modification 

I '-^ ) 
|- SPICE Code I 

L. ,-.Ies.t Dat.aJ 
. i 

Figure 3.4. (Continued) 



29 

Maximum Number 
of 

Simultaneous Failures 

Data File 
for 

Z and u 

I 
Test 

program 

I 
Data File 

for 
Test Data y 

Component 
Subdivisions 

Table 
4-^ 

I 
Component 

Subdivision 

Print /Display 
Faulty 

Component(s 

H P 

A T E 

U U T 

Decision 

Algorithm 

Figure 3.5. On-Line Component - Linear Case 



30 

(2.26). Similar ways to verify and validate the test program in the 

linear case are also employed here. 

As illustrated in Figure 3.6, the input requirements in the test 

program generation are Circuit Description, Time Steps for Transient 

Analysis, and Accessible Test Terminals. 

Circuit Description: In the SPICE program, each component in' the 

circuit is specified by a component card that contains the component 

name, the circuit nodes to which the component is connected, and the 

values of the parameters that determine the electrical characteristics 

of the component. The first letter of the component name specifies the 

component type. Nodes must be nonnegative integers but need not be 

numbered sequentially. The ground node must be numbered zero. To des

cribe the circuit analysis to SPICE, which is the same as the component 

description discussed in the linear case, the user is required to input 

the component type (any SPICE accepted component type) with a unique 

name, define the component value by any number field accepted by SPICE, 

and specify the nodes. For the semiconductor components, such as diodes, 

BJTs, JFETs, and MOSFETs, user needs to specify only the pertinent 

model parameter values. The model for the BJT is based on the integral 

charge model of Gummel and Poon; however, if Gummel-Poon parameters are 

not specified, the model reduces to the simpler Ebers-Moll model. In 

either case, charge storage effects, ohmic resistances, and a current-

dependent output conductance may be included. The diode model can be 

used for either junction diodes or-, schottky barrier diodes. The JFET 

model is based on the FET model of Shichman and Hodges. The model for 



31 

I 
— • 

Circuit 

Description 

k r 

SPICE Code 

^ 
f 

Test Points 

Description 

^ r 

SPICE Code 
for 

u and y 

— • 

\ 

p 

1U1 C M C 

given circui 

, Ll-Matrix 

^^ 

L2-Matrix 

Pseudo Circuit 

Eqns.2.12-2.15 

SPICE Code . 
for 

Eqns.2.23-2.26 

Data Base 

(SPICE Codes) 

A 
• ^ 

k 

f 

• 

4 — • 

Time Steps 
- for Transient 

Analysis 

Display/Print 

Ll-Matrix 

Display/Print 

L2-Matrix 

1 
Component 

Subdivisions 
Table 

Figure 3.6. Test Program Generation - Nonlinear Case 



32 

MOSFET is based on the Frohman-Grove model; however, channel-length 

modulation, subthreshold condition, and some short-channel effects are 

25 
included. In the source description, any independent source in SPICE 

can be assigned a time-dependent value for transient analysis, and the 

source value can be a constant or independent source function (Pulse, 

Exponential, Sinusoidal, or Piecewise Linear). Therefore, the user may 

input the source value by a constant, or any above function. 

Time Steps for Transient Analysis: The. transient analysis portion 

of SPICE computes the transient .output variables as a function of time 

over a user-specified time interval. 

Accessible Test Terminals: When the accessible test terminals are 

specified, the L2-matrix, a table consisting of all possible component 

subdivisions, and a SPICE code for the test inputs u and test data y are 

generated. As discussed in the linear case, the connection matrix K of a 

pseudo circuit is created by computing the equations (2.12) through 

(2.15). For each subdivision, based on this generated K-matrix and 

equations (2.23) through (2.26), a SPICE code is generated and stored in 

a data base which will be used by the on-line component. 

At the end of the program generation process, the following data 

files are generated: SPICE code for the given circuit, SPICE code for u 

and y, and data base (SPICE codes for the equations (2.23) through 

(2.26)). 

Program Verification: In the linear case, three tests are used to 

verify the software's ability to locate the faulty component. Instead of 

using the test data y by computing equation (3.1) in the linear case, 

here, as indicated in Figure 3.7, we will modify the SPICE code for the 



Data File 
for 

Z and u 

L 
Calculate y 

(eqn. 3.1) 

33 

Test 

Program 

Test with nonfaulty. component 

Component 

Subdivision 

Component 
Subdivisions 

Table 

-f- Next Test Type 

Calculate 
2 

= [M] 
u 

.yj 

4 — > 

Data Base 

(M) 

K2 - 72 ,2 D = Z a 

I Test 
Result 

Compare 

b^ and b^ 

Figure 3.7. Program Verification - Nonlinear Case 



34 

Data File 
for 

Z and u 

Test with single 
out-of-tolerance 

Z 
Loop for 

Component i 
i=I to n 

failure component 

Test with single 
catastrophic 
failure component Loop for 

Component i 
i=l to n 

OPEN CKT 

Modification 

SHORT CKT 

Modification 

J. 

From 
> 

User 

Out-of-
Tolerance 

Modification 

Calculate 

y 

i 

T 
Calculate 

y 

Component 

Subdivision 

Test 

! Result 1 
I -. I 

^ 

Component 
Subdivisions 

Table 
f) 

Component 

Subdivision 

Figure 3.7. (Continued) 



35 

given circuit by assigning a simulated faulty value. Concatenating 

this code, the code for u and y, and the code for any subdivision, 

as an input file of the SPICE program, the output file stores the 

2 ^ 2 
values of b and b . The test results are then obtained by comparing 

these two values. 

Following the successful test program verification, the test pro

gram is validated as shown in Figure 3.8, by measurement of the actual 

UUT. 

On-line Component: Test Stage 

To implement the actual test on a UUT, as illustrated in Figure 

3.9, the user inputs the maximum number of simultaneous failures allowed. 

The host computer loads the test program and sends instructions to 

command the HP 9825A controller conducting the test measurement. A data 

file is created to store the test data which is transferred from controller. 

A SPICE code for these test data is generated to replace the code for the 

given circuit when the SPICE program is run for the test results. 



Data File 
for 

Z and u 

36 

Test with nonfaulty component 

Data File 
for 

Test Data 

11 

Test Data 
y 

Component 

Subdivision 

Component 
Subdivisions 

Table 

f Next Test Type 

Calculate 
2 

Data Base 

(M) 

Test 
Result 

Figure 3.8. Program Validation - Nonlinear Case 



37 

Data F i le 
for 

Z and u 

Test 

Program 

I 

Test with single 
out-of-tolerance 

failure component 

Loop for 
Component i 
i=l to n 

Test with single 
catastrophic 
failure component Loop for 

Component i 
i=l to n • 

4̂  

OPEN CKT 

Modification 

SHORT CKT 

Modification 

From 
> 

User 

Out-of-
Tolerance 

Modification 

Test Data 
^ 

T 
" 1 

I Test Data 

L. ' L. _ y I 

Component 
Subdivisions 

Table 

Component 

Subdivision 

Figure 3.8. (Continued) 



38 

Maximum Number 
- of 

Simultaneous Failures 

Data File 
for 

Z and u 

I 
Test 

program 

I 
Data File 

for 
Test Data y-

>.r 

Component 
Subdivisions 

Table 
4-> 

Component 

Subdivision 

XT 
Test 

! Result 

n 

Print/Display 
Faulty 

Component(s 

H P 

A T E 

E 
U U T 

Decision 

Algorithm 

Figure 3.9. On-Line Component - Nonlinear Case 



CHAPTER 4 

ALGORITHMS 

Along with the software developed in the previous chapter, it is 

desirable that the AATPG be run in a fully automatic mode, or inter

actively, in order to simplify the process of generating new test pro

grams for both linear and nonlinear circuits. To this cause some 

supporting algorithms are discussed in the first section. In the 

second section, three decision algorithms are presented to make the de

cision for the choice of the component subdivision. 

Supporting Algorithms 

As described in the previous section, given a circuit, one can 

generate a data base by computing the matrix K together with some known 

parameters. The measured data and the stimuli will be used as the inputs 

to the test program while a test is conducted, and then a number of on

line simulations will be carried out. In this section, the following 

problems with algorithms are discussed: 

(1) The generation of the connection matrix L with the users' 

inputs, 

(2) The kind of subdivisions to be chosen, under the assumption 

2 -L 
that [L2i] exists, 

(3) Based on the above subdivisions, how to set up the data base 

off-line so that the executing time of the on-line can 'be mini

mized, and 

(4) How to decide a "good" component from the computed data. 

39 



40 

L-Matrix: This commonly encountered geometric connection model is 

the linear graph used for electric networks and other bilateral com-

23 ponents. The linear graph, like the signal flow graph, is a directed 

graph composed of vertices and edges. Here each edge represents a single 

bilateral component or a part thereof. Associated with each edge is a 

pair of variables, V- and I.. For an electrical network V̂ . depicts the 

port voltage and I. the port current. V. is often generically termed an 

across variable and I. a through variable. .They are not a priori identi

fied as the component input and output. For most components either may 

serve as the input with the other taken as the-output. The usual conser

vation laws constrain the variables V. and I.. In particular, the 

Kirchhoff vol tage law constrains V., the Kirchhof currant law constrains I-. 

Let a graph have a specified tree containing r edges and the comple

mentary co-tree containing (p-r) edges. (Here p is the number of edges 

in the graph. ) The number r always equals "n-1" where n is the number 

of vertices in the graph.'^ Let B^ be the fundamental circuit matrix and 

Sr: be the fundamental cut-set matrix, then 

B, = [X I Ip.,] (̂ -1) 

S, = [Ip I D ] (̂ -2) 

-where, X is a (p-r)xp matrix, Ip_^ and Ip are identity matrices, and D 

is a px(p-r) matrix. It can be easily verified that 

X = -D^ 

therefore, the equation (4.1) can be written as 



41 

Let I = col(1^,1^) and V = col(V^,V^) be the current and voltage 

vectors of the circuit respectively, where I.(V.) and I (V ) are denoted 
L L C C 

as the,currents.(valtage) in the tree and co-tree edges, respectively. 

According to the Kirchhoff's current law and Kirchhoffs voltage law, we 

obtain the equations 

and 

0 = S. 1 = 1. + D I 
T t C 

0 = B. V = -D^V^ + V 
T t C 

(4.3) 

therefore 

~ ^ t ' 

Jc_ 

0 -D 

D^ 0 

~ \ ~ 

I _ c_ 
(4.4) 

To obtain the matrix D, an incidence matrix A can be transformed 

into the form 
I 

n 
0 

D 

0 by using a Gaussian elimination process. 

In order to derive the L-matrix, equations (2.2) and (2.3), we will 

specify a tree in a linear graph modeling the topology of an electric 

network. Let a = col(.I^,V^) and b = col(V.,I ) be our composite compon

ent input and output vectors. Inherently, tree edges correspond to com

ponents having the impedence models and co-tree edges correspond to com

ponents with admittance models. Usually, the choice of a tree depends 

on the choice of a model for the various components. Assuming that 

there is no intra-component coupling between components represented by 

tree edges and co-tree edges, the composite component model for the 

linear circuit becomes 



42 

=. 
~ \ 

0 

0 

\ _ 

(4.5) 

where Z^ and Y^ are block diagonal matrices, the size of the diagonal 

block depends on the number of ports of the component. For one-port 

components: resistors, capacitors, and inductors; Z. is the composite 

component impedance matrix for components identified with tree edges and 

Y is the composite component admittance matrix for components identi

fied with co-tree edges. For two-port components such as the transis

tors, a two by two block is used to describe this component, the values 

are defined by the hybrid-pi parameters or appropriately transferred 

parameters, depending upon the elements of the transistor model 

employed. 

With the choice of "a" and "b" the connection matrices follow 

directly from the equation (4.4) taking the form 

11 
0 

D' 

-D 

0 
(4.6) 

However, for the network sources, the following assumptions will be 

made: each voltage source is connected inseries with an element which 

is not a source, and each current source is connected in parallel with 

an element which is not a source. Under these assumptions, the matrix 

L-jp will be derived from the location of sources. 

Suppose a voltage source E^ is located in the tree edge i, 

Vti = ̂ 'ii ' '^ h 
where co is defined as follows: 



43 

1 if the orientation of the source 
w = i coincides with that of the edge, 

-1 otherwise. 

From the equations (4.3),(4.4), and (4.6) we obtain 

n .. 
I l^\ V . k = n+1, N+2,.., b 

j=l '• Ĵ 

" kj w . .ki „, . .ki 

V = V I kj 

'- ̂ l, 1̂1 hi ' n̂ hi ' -^u h (4.7) 
• # • 

Hence, the (k,s)-entry of the matrix L,2 equals to a)L![]. 

Similarly, if a current source J is located in the co-tree edge i, the 
s 

ki 
(k,s)-entry of l.r. is also OJL,.. •1 « 1 i a 1 i u UJI.-| 1 

Suppose a voltage source E is located in the co-tree edge i, 

hi = ̂ci ̂  " ^: 
and 

n 
hk- I Ll̂  hi ^ = ""1- ""2...b 

which implies 
n 

ĉk = I H'I hi - " ŝ (̂ -8) 

therefore, the (k,s)-entry of L-|2 equals -w. Similarly, the (k,s)-entry 

of Li2 for a current source J located in the tree edge i is also -w. 

Since the vector y is the system responses measured at the various 

test points, the matrices L21 and L22 in the equation (2.3), therefore, 

'depend on the selection of the test points. The test points can be 

selected to measure the current or voltage of any edge or the voltage 

across any two nodes. In the former case, i.e., the current flow through 

k-th co-tree edge or the voltage across the k-th tree edge, the response 

y. is then an element of vector a. Therefore, the jth rows of the 



44 

matrices L21 and L22 are just the k-th rows of L,-, and L,2» respectively. 

In the latter case the responses y. will be written in terms of vectors 

b and y, and the coefficients form the jth rows of L-,-. and L22» 

respectively. 

ALGORITHM I: (L-Matrix) 

Step 1. Generate the incidence matrix A. 
Step 2. Obtain matrix D from matrix A by Gaussian 

elimination process. 
Step 3. Generate L-|-j-matrix from the equation (4.5). 
Step 4. Let e be the number of voltage sources and 

j be the number of current sources 
Ll2(*,*) = 0 . 

Step 5. IF e = 0 THEN go to step 6 (no voltage source) 
DO i=l TO e 

IF the voltage source is in the tree edge 
(assume they are k-th edge and jth source) 

THEN 
DO m=p-r TO p 

IF Lii(m,k)?^0 THEN Li2(m,j)=a)*Lil (m,k) 
End of loop 

ELSE (in the co-tree edge) 
Li2(k,j)= -00 

End If 
End of Loop 

Step 6. IF j = 0 THEN go to step 7 (no current source) 
DO i=l TO j 

IF the current source is in the tree edge 
THEN 

DO m=l TO r 
IF L]i(m,k)7^0 THEN Li2(m,j)=a)*Lii (m,k) 
End of loop 

ELSE 
Li2(^<»j)= -^ 

End If 
End of Loop 

Step 7. (Generate matrices L21 and L22) 
(assume the number of test points is mj 
DO i=l TO m 
(assume y^ is the i-th system response) 

IF y-j is selected from the entry of "a" 
(let it be the k-th entry of vector "a") 
THEN 

L2l(i,*)=Lii(k,*) and L22(i>*)=Li2(k,*) 



45 

ELSE (y^ is specified by user) 
(let P(t) be the specified value corresponding to 
the nonzero column t) 

1-2 (i,t)=P(t) for all nonzero t 
End If 
End of Loop 

Component Subdivisions Table: The component subdivisions table is 

derived from the allowable component subdivisions which satisfy the 

2 L 
assumption that [L2-|] exists. Consider an n components circuit with 

m test points. The L21 matrix is then a m by n matrix. For the soft

ware implementation, m x m matrices are constructed by selecting all 

possible combinations of m columns from the n columns in the matrix L21, 

and checking whether or not the matrices are invertible. The sub

divisions are recorded into the following table if and only if the 

matrices are invertible. 

Subdivision 
number 
m -
(2) 

Group 1 
Component 

Group 2 
Component 

Group m 
Component 

(C) * . * 

ALGORITHM II: (Component Subdivisions Table) 

Step 1. (Matrix L2i is an m by b matrix) 
pick any m columns of matrix L21 to form a matrix 

Step 2. IF matrix is invertible 
THEN 

record the number of these m's column. 
ELSE 

pick next m columns to form a matrix. 
Step 3. Repeat 2 until all combinations have been chosen. 

Data Base: Given any component subdivision, a pseudo circuit with 

connection matrix K is created by computing the equations (2.12) through 



46 

(2.15). The data base for the linear case is generated by computing 

matrix M, equation (2.16), and stored in the data files. 

In the nonlinear case, the data base is SPICE codes for equations 

(2.23) through (2.26). The SPICE code is generated as follows: 

Consider the equations (2.23) through (2.26), 

k' = f' {x\ab 

1 1 , 1 1 . ; x^(0) = 0 (2.23) 
b = g (x ,a ) 

â  = K^^ b^ + K^2 u^ (2.24) 

yP = K2^ b^ + K22 uP (2.25) 

•2 ^ 2 , 2 2^ 
x = f (x ,a ) 2 

; x''(0) = 0 (2.26) k2 2 , 2 2s 
b = g (x ,a ) 

2 .2 where uP = col (u,y) and yP = col(a ,b ). Our goal is to compute the 

2 "2 1 

values of b and b from the above equations. Solving the values b 

from equations (2.23) and (2.24), plugging b into equation (2.25) for 

yP, i.e., a and b , and substituting the values a into (2.26) to solve 

Mathematically, the equation (2.24) shows that the element a., i-th 

element of a , is the sum of the products of the i-th row of K.-, and b , 

and the products of the i-th row of K,2 and uP. Physically, suppose that 

a. is a one-port component, if the element a. is a voltage measurement, 

the b. is then a current measurement. Therefore, the voltage a. is the 
1 T 

sum of the measured voltages of b and uP where the corresponding terms 

of the i-th rows of K,, and K,2 are not zero. For example, if 



47 

b' =col [V^,, 1^2, Vj^3, I^,, V^^] 

i-th row of K.ĵ  = [1, 0, -1, 0, 0] and 

i-th row of K^2 = ["•» 0> 0» -1] 

then 

V . = V^, - V,^ + V , - V . 
ai bl b3 ul u4 

(4.9) 

i.e., the voltage measurement at component â- is the sum of the measured 

voltages, V.-j, -V^^, V^^, and -V^^. In order to solve the equation (4.9) 

with SPICE program, a cirduit type of description is used to generate 

the SPICE code. Here, the voltage controlled sources connected in series 

are used to indicate the sum of measured voltages. 

V 
bl 

Or 
-V 

53 

O + •K> <yr -^ 

Figure 4.1. Controlled Sources 

and the voltage measured at node * is then the value of V^.. Obviously 

once the values a^ are known, the component equation (2.23) will give 

the values b\ In circuit specification, the above box will be filled 

by the component. Given the values a \ evidently the values b may be 



48 

derived from their characteristics. For example, if the component is a 

resistor, connecting the resistor in series with the above sources as 

shown in Figure 4.2. Since a. is a voltage measurement, the current la. 

is the current that flows through the resistor. 

-V. V -V 
bl 'b3 ul u4 

O. O; <>^ O7 
R 

y ^ 
la 

Figure 4.2. Controlled Sources with Component 

Similarly, the current controlled sources connected in parallel are used 

to describe the current measurement case. 

After the SPICE code for equation (2.24) is generated properly, con

sider the equation (2.25) with the partitioned matrices, 

2 = KI b̂  + K L UP 
71 22 

b^ = K2^ b^ + K22 uP 

(4.10) 

(4.11) 

The SPICE code for equation (4.11) is generated the same as that for 

equation (2.24), except that the box in Figure 4.1 is replaced by a zero, 

valued voltage source if the element of b^ is a current measurement, or 

by a resistor with resistance 1 for a voltage measurement. Similarly, 

the SPICE code for equation (4.11) can be generated in the same way. 



49 

however, what we are interested in is the values b^. Therefore, the box 

in Figure 4.1 is filled by the component with equation (2.26) to 

"2 
compute the value b . 

ALGORITHM III: (Data Base) 

Step 1. (Linear Case) 
(Let C be the number of all possible subdivisions) 
DO i=l TO C 

Compute K-matrix (Equations (2.12) through (2.15)). 
Compute M-matrix (Equation (2.16)). 
Store M to a data file named TEOO**.DT, **=i. 
End of Loop. 

Step 1. (Nonlinear Case) 
Let N be the number of components 

M be the number of test points, 
NM=N-M 

Step 2. (For equations (2.23) and (2.24)) 
DO i=l TO NM 

IF a-j is a voltage measurement 
THEN 

Connecting the controlled sources, which 
have nonzero elements in K]i and K]25 
in series. 

ELSE 
Connecting the controlled sources, which 

have nonzero elements in K n and K]2 
in parallel. 

Connecting a zero-valued voltage source in 
series. 

(Remark: In SPICE, a zero-valued voltage 
source is used to measure the current) 

End if 
Connecting the group "1" component i in series. 
End of Loop 

Step 3. (For equations (4.10) and (2.26)) 
DO i=l to M 

2 
If â- is a voltage measurement 
THEN 

Connecting the controlled sources, which 
have nonzero elements in K]] and Ki2» 
in series. 



50 

ELSE 
Connecting the controlled sources, which 

have nonzero elements in K ^ and Ki2, 
in parallel. 

Connecting a zero-valued voltage source in 
•̂  series. 

End if 
Connecting the group "2" component i in the series. 
End of Loop 

Step 4. (For equation (4.11)) 
DO i=l TO M 

2 
IF b-j is a voltage measurement 
THEN 

Connecting the controlled, sources, which 
have nonzero elements in K-|i and K-i2, 
in the series. 

Connecting a resistor with resistance 1. 
ELSE 

Connecting the controlled sources, which 
have nonzero elements in Kii and K-]2, 
in parallel. 

Connecting a zero-valued voltage source in 
series 

End If ^ • 
End of Loop 

Test Results: In the linear case, only matrix-vector multiplica

tions, equations (2.17) through (2.19), are required to evaluate b^ 

"2 
and b while the SPICE program is executed for the nonlinear case. 

Use of this computed data to determine test outcome (either 

"good" or "bad" for each group "2" component) may be obtained by compar-

2 - 2 2 "2 
ing b and b . If b. is equal to b., then we say that the test outcome 

for the group "2" component i is "good"; otherwise, the component is 

2 "bad". In a more realistic environment, instead of requiring that b' 

-2 2 
and b. be equal one may say that a component is "good" if b. is suffi-

-2 
ciently close to b. in some reasonable sense. In this way one may com-

10 2 "2 
pensate for numerical errors and tolerance. Moreover, b. and b. are 



51 

not necessarily scalars, they may be vectors, depending upon the com

ponent type with which one deals. For instance, a two-port component 

may. require a'two-tuple vector to represent its input/output character

istics. 

ALGORITHM IV: (Test Results) 

Step 1. (Linear Case) 
Let Z2 be the transfer function matrix for group "2" 

UY=col(u,y) 
M be the matrix for the data base. 

Step 2. Choose a component subdivision. 
Step 3. Retrieve the matrix M for this subdivision from 

the data base. 
Step 4. (Compute a2 and b2) 

DO i=l TO m 
DO j=l TO s (s is the dimension of UY) 

A2(i) = A2(i) + M(T,j)* UY(j) 
B2(i) = B2(i) + M(m+i,j)*UY(j) 
End of Loop j 

End of Loop i 
Step 5. (Compute b2) 

DO i=l TO m 
B2W(i) = A2(i)* Z2(i,i) 
End of Loop 

Step 6. (Compare b2 with b2) 
(Let z be the tolerance) 
DO i=l TO m 

VALUE = |B2li(i)-B2(i)|/|B2(i)| 
IF VALUE < = e THEN 

RESULT(i) = 0 
ELSE 

RESULT(i) = 1 
End If 

End of Loop 

Step 1. (Nonlinear Case) 
Let SOURCE.DT be a data file which contains the 

SPICE code for test inputs and test data. 
Let SPICE.DT be a data file which contains either 

(1) Modified SPICE code for the given circuit, or 
(2) SPICE code for test data. 

Step 2. Retrieve the data base, assume i-th subdivision is 

Step 3 Concatenating the file SPICE.DT, SOURCE.DT and TEOO*.DT 
(where *=i) as an input file of SPICE program. 

Step 4. The output values b2 and B2 are stored in a data file. 



52 

Once the test outcomes have been obtained, the algorithm reduces 

to a combinatorial "self-testing problem" in which one locates the 

actual failure. In other words, one may complete the test algorithm 

by implementing an appropriate decision algorithm. 

Decision Algorithms 

Three decision algorithms, with their software implementation are 

presented: 

(1) Exact Algorithm, 

(2) Heuristic Algorithm, and 

(3) Boolean Expression Algorithm. 

The first algorithm is employed to locate single failures, while the re

maining two algorithms are used to identify multiple failures. 

Exact Algorithm: In the single failure case, we assume that at 

most one component is faulty. As discussed in 42, we summarize all 

possible test results obtained from a given step of the algorithm, to

gether with the conclusions as follows: 

Test Result Conclusions 
(1 2 3 . . . m) 

0 0 0 . . . 0 all group "2" components are good 
1 0 0 . . . 0 all group "2" except 1 are good 
1 1 0 . . . 0 all group "2" components are good 

1 1 1 . . 1 0 
1 1 1 , . 1 1 all group "2" components are good 

In the first case we conclude that all group "2" components are good. 

If a group two component were actually faulty then our test results are 

incorrect, which would only happen if one of the group "1" components 



53 

was faulty. This would imply that the system has two faulty components, 

contradicting our assumption that, at most, one component is faulty. 

In case two, the same argument we used above will guarantee that the 

components which test good, say 2 through m, are good, and we have no in

formation about X. It may be faulty or, alternatively, the test results 

may be due to a faulty group "1" component. In the remaining cases we 

have the same conclusion as in the first case. Since, under our assump

tion of a single failure, it is impossible for two or more group "2" 

components to be faulty,; these test results imply that at least one of 

the group "1" components is bad. However, since we have assumed that 

there is, at most, one faulty component, and the group "1" component is 

the only faulty component, then the group "2" components are all good. 

Consistent with the above arguments, at each step of the test al

gorithm, either all, or all but one, of the group "2" components are 

found to be good. If we choose our subdivision so that good components 

are included in group "1" the test results obtained at that step will 

be reliable, thereby, allowing us to accurately determine the faulty 

components in group "2." 

From the above algorithm, one may be interested in the problem of 

how many steps are required to locate the faulty component(s): For 

single failure case, in each step of the algorithm, one concludes that 

all, or all but one, group "2" components are good. Thus, one may 

select a minimum collection of subdivisions which covers all components, 

i.e.. 

Let N = {l,2,..,n} be a set of n components. 



54 

S = {#1, #2,..#C} be a collection of all possible subdivisions, 

where C is the number of subdivisions, 

• ,.then 

B = min {T c S | N c T} (4.12) 

is the minimum subcollection of S which covers N. 

The subcollection B is not unique. If B ={B., B2,..,B }, where B̂ . is 

in S, then, t is the minimum steps needed to locate the faulty component. 

Recall that all, or all but one, components are known to be good at 

each step of the algorithm. After completing the test simulations with 

the above indicated subdivisions, a component which is the only one with 

test results "1" in a subdivision, may be faulty. If there exists only 

one such component, eventually, the component is located as faulty. 

However, if more than than one such components exist more steps are 

needed to identify the faulty components. 

Let P = {Pn,P2,..sPg) ^ B, where P. is the subdivision with the 

pattern that contains all "0" but one "1", 

R = {Ri,R2»-->R )> R- e P-> where R. is the component with 

test results "1", all R. may not be distinct, and 

Let R' = {r,,r2,..,r^,} = R, where all r. are distinct. 

In the next steps, a subdivision with more than two components of R' 

is selected to simulate the test results, and the components which are 

known to be good will be excluded from R'. Therefore, the set R' is 

getting smaller. Repeating the above process until no such subdivision 

can be chosen, the algorithm is then terminated. Here, the number of 

times of the above processes plus t, the minimum steps needed in 



55 

equation (4.12),is the maximum steps needed to locate the faulty com

ponent, and the components remaining in the set R' is the ambiguity set. 

.. ALGORITHM V: (Exact Algorithm for single failure case) 

Step 1. (Off-line job) 
Select the minimum subcollection of the subdivisions 
which covers all components. B = {B,,62,..,B.}. 

Step 2. (On-line) 
Simulate each subdivision B.j, i = l,2,..t. 

Step 3. Let P = {Pi ,P2,.. ,Ps} ^ B, where Pi are the subdivisions 
with pattern (all "0" but one "1"). 

Step 4. Let R = {R] ,R2,.. ,RJ, R. e P•, are the components with 
test result "1" ^ ^ '̂ 

Step 5. IF s'=l THen STOP [the component r] is faulty]. 
Step 6. (More than one subdivisions with the above pattern) 

Find a subdivision that contains more than one component 
in R'. 

Step 7. IF no such subdivision THEN GOTO Step 8. 
ELSE 

Simulate the test result 
R' < — R' excludes the simulated good components. 
GOTO Step 6. 

Step 8. R' is the ambiguity set, and the components in R' are all 

possible faulty components. 

From the above algorithm, the step 1, B = {B,,B2,..,B }, can be 

derived off-line, and each B- subdivision is simulated independently. 

Therefore, they can be computed by multiple processors, i.e., the 

parallel processors can be used to reduce the executing time. Thus 

the number t is the maximum number of processors needed. 

To handle the multiple failure, following Liu, the problem can be 

greatly simplified if an "analog heuristic" is adopted. The effect will 

20 

be that two independent analog failures will never cancel. Need

less to say, this is an inherently analog heuristic, since two binary 

failures have a fifty-fifty chance of canceling one another. In the 

analog case, however, two independent failures are highly unlikely to 



56 

cancel one another (as long as one works with reasonably small 

tolerances). Based on the above argument, we may assume that a com

ponent is definitely good if the test result shows "0." Therefore, if 

a t-diagnosable system is assumed, that is, the number of faulty 

components does not exceed t, all possible test results with the 

conclusions are shown as follows: 

Test Result Conclusions 

(1 2 3 .. t . . .. m) 
0 0 0 . . 0 . . . . 0 all group "2" components are good 
1 0 0 .. 0 : : :: 0 components 2 thru m are good 
• • • • • • • • • • • a 

• • • • • • • • • • • • 
• • • • • • • • • • • « 

• • • • • » • • • • • • 

1 1 1 .. 1 0 0 .. 0 components t+1 thru m are good 
1 1 1 .. 1 1 0 .. 0 components t+2 thru m are good, and 

at least one faulty component in 
group "1" 

• • • • • • • • • • • • 
• • • • • • • • • • a • 

1 1 1 1 at least one faulty component in group 

"1" 

In the first t+1 cases the results show that the component with test 

result "0" will be good. In the (t+2)-th case we claim that the com

ponents (t+2) through m are good and at least one faulty component in 

group "1." If none of the group "1" components were actually faulty 

then the test results obtained at this step are reliable. The system 

would then have t+1 faulty components contradicting our assumption to 

the effect that, at most, t components are faulty. The remaining cases 

are the same as above. Unfortunately, the above argument gives the in

formation that at least one of the group "1" components is faulty, but 

the identification of the faulty component in group "1" is still not 

available. 



57 

Heuristic Algorithm: Based upon the "Analog heuristic" the 

Heuristic algorithm was presented as a multifailure decision algo-

41 42 
rithm. » In practice, the Heuristic algorithm is used with a cou
pling table. 

The coupling table is designed to detect whether or not a faulty 

group "1" component will effect the test results on a group "2" com

ponent. Two components are called "coupled" if they are functions of 

each other. In order to set up this coupling table, we first look for 

the relationship between the group "2" components and the group "1" 

components. 

Consider the equations (2.10) and (2.11) with the constant matrix 

K. One can rewrite the equation (2.10) as follows: 

1̂ 
n-m 

= [K„] 

1̂ 
^n-m 

+ constant term 

and then 
, n-m ik -. 

a. = y Î Ti t), + constant term 
k=l " ^ 1 

If K]^ is not zero, then the group "1" component k effects the group 

"1" component i. Thus the (n-m) equations give the relationships between 

the group "1" components. The equation (2.11) can be written as 

n-m ik J I KJ^ b! + constant term 
k=l ^̂  ^ 

n-m 
I 

k=l 

tk 1 . 
^21 ^k "̂  constant term, t = m + i 



ik tk ^̂  
If K2^ or K2^ is not zero, then the group "1" component k effects the 

group "2" component i, and the components i and k are therefore coupled. 

..ALGORITHM VI: (Coupling Table) 

Step 1: (Generate the matrix A for the relationship between 
the group "1" components) 
(By a transitive closure algorithm 

A = I 6 E % E^ e ... © E*̂  

where E gives an explicit accounting of all the vertices 
jointed by paths of length k, ® is the Boolean "or" ex
pression, and A., is defined as 

Â . . =. 1 if i effects j 
^ = 0 otherwise ) 

Let E be the matrix K n in the equation (2.12). (Kn is 
a m by m matrix and Ko} is a 2m by m matrix) 
Initialize A(*,*)=0, F(i,i)=l for i=l,2,..m. 
DO i=l TO m 

F < — F * E (i.e., F = E M 

IF F(j,k)=l THEN A(j,k)=l for all j and k 
End of loop 

Step 2: (Generate the matrix B for the relationship between the 
group "2" components and the group "1" components) 
(Let B-] and B2 be two Boolean matrices which are defined 
as follows: 

BY= 0 if K2̂ ' = 0; i = l,2,..m. 

= 1 if K2^ ^ 0 
j = l ,2,..,n-m. 

and 

^l^= 0 if KI] = 0; i=m+l,m+2,..2m, 

= 1 if K2^ 7̂  0; j = l,2,..n-m. 

therefore, 

B = B-, e B2 ) 

(define the matrices B-| and B2) 
DO i=l TO m 

DO j=l TO n-m 
IF K2i(iJ) = 0 THEN Bi(i,j) = 0 



59 
ELSE Bi(i,j) = 1 
^^ K2i(i+m,j)=0 THEN Bo(i,j)=0 
ELSE B2(i,j)=l ^' 
End of Loop j 

End of Loop i 

(define B = B, 6 Bo) 
DO i=l TO m ^ ^ 

DO j=l TO n-m 
IF BT(i,j)=l OR B2(i,j)=l THEN B(i,j)=l 
ELSE B(i,j)=0 
End of Loop j and i 

Step 3. Generate a matrix C — for coupling table) 
(Let C - B * A, where * is the Boolean multiplication, 
and then matrix C is the desired coupling table) 

Interestingly, our .heuristic can be carried a step further than 

indicated above since, under our heuristic, a bad group "1" component 

would normally yield erroneous test results. An exception would, how

ever, occur if some of the group "1" components are totally decoupled 

from some of the group "2" components. Consider the coupling table and 

the simulation results are shown in the following table: 

Table 4.1. Coupling Table with the Test Results 

"2"\^ 

1 
0 
1 
0 

I 1 1 1 I 

^1 
#2 
7̂ 3 

#6 

M 

1 
0 
1 
0 

#5 

1 
1 
1 
1 

#7 

1 
1 
1 
1 

#8 

1 
1 
1 
1 

^9 

1 
1 
1 
1 

#10 

1 
1 
1 
1 

The test results show that #2 and #6 are good in the test. Our heuri

stic implies that the components #5, #7, #8, #9 and #10, which are 

coupled by components #2 and #6, are also good. There are no informa

tion from n and #3. Therefore, all components are good except #1, ^3 



60 

and #4 are unknown. Moreover, in the single failure case, the test 

results show that the components #1 and #3 are also good, and a con

clusion will be immediately obtained in this simulation result — 

the component #4 is faulty. 

ALGORITHM VII: (Heuristic Algorithm) 

Step 1. Input t, the maximum number of simultaneous failures 
FLAG(j)= .false., j=l,2,..,n. 

Step 2. Choose a component subdivision 
Step 3. Call subroutines to derive the simulation results. 
Step 4. Let GOOD(j) be the good components, j=l,2,..,s. 
Step 5. Retrieve the coupling table TABLE(m,n-m). 

DO j=l TO s 
Let X be the row of the component GOOD(j) 
DO k=l TO n-m 

IF TABLE(x,k)=l THEN 
record this component as good 

End of Loop k 
End of Loop j 

Step 6. IF t > 1 GOTO Step 9. 
(For single failure case) 
All or all but one components in group "2" are known 

to be good. 
Step 7. FLAG(GOOD(j))=.true., j=l,2,..,s 
Step 8. To have more simulations ? if so, go to step 2. 

Otherwise, end of this algorithm. 

Boolean Algorithm: In this algorithm, a Boolean expression is 

derived from each step of the test algorithm, which includes all possible 

fault patterns associated with the test data. The actual fault(s) can 

be located by multiplying the Boolean expressions associated with several 

steps of the algorithm or equivalently comparing the fault patterns 

obtained from each test step and excluding the impossible fault patterns. 

Consider the case where group "1" contains five components, a, b, 

c, d and e, group "2" contains three components, x, y and z. Suppose 

that the test results is indicated as follows: 



61 

•'2"\ I 1 1 1 I 

0 
1 
0 

x 
y 
z 

The group "1" components are assumed to be all good so that the test 

is reliable; that is, the components a, b, c, d and e are good. The 

test results show that x and z are good and y is possibly faulty (where 

the test result "0" means "good" and "1" means "fault"). Therefore, the 

Boolean form for this possible test result 'can be expressed as follows: 

F F F d ' e x y z 

Here, the letter a indicates the component "a" is bad, and a means the 

component "a" is good. However, the test may be unreliable if one of 

the group "1" components is bad. In that case the remaining components 

could be either good or bad, and those components are thus defined as 

"don't care" (with the notation "4)"). If the group "1" component a is 

assumed to be bad, for instance, the possible pattern is that a is bad 

and the remaining components are "don't care," and the expression for 

this pattern is a(= acj^HHH)- Therefore, the completed results for 

this test will be expressed by a Boolean form as follows: 

T-,=a + b + c + d + e + I F ^ d ' e " x " y z " (4.13) 

Our goal is to combine the information derived from various test 

results so that the actual fault(s) can be fully identified. 

Consider the test results for another subdivision in this example, 

where components a, b, c, x and z are in group "1" and components d, e 

and y are in group "2." The test result is assumed to be 



62 

" 2 " \ 

1 
1 
0 

II -] II 

d 
e 
y 

a 

The Boolean expression for this test is 

Tr> = a + b + c + x + z + a b c d e X y z (4.14) 

If we combine these two results, the intersection of the two 

expressions, T^ and T2, is derived by directly applying the multiplica

tion rule of two logical functions, and thus 

T = T * T I 1^ I2 

= (a + b + c + d + e + ? F c ' d " ¥ x ' y 7 ) * 

(a + b + c + x + z + i T F c ' d e x ' y r ) 

= a + b + c + d x + d z + e x + e z + abcdexyz 

The number of possible faulty patterns is really reduced in this re

sultant expression (there were 249 faulty patterns for each, and now it 

becomes 241 patterns). Each test step generates a temendous number of 

possible fault patterns. This is almost useless unless we can combine 

the fault patterns from the various test steps and eliminate patterns 

which do not appear in each step and/or pattern. 

The interesting problems are: how to implement this symbolic 

Boolean expression to a software program? And how to accelerate the 

speed of convergence? 

A tabulated expression may be readily implemented in software. One 

can tabulate all possible fault patterns corresponding to the test re

sults in (4.13) as follows (where i> denotes the "don't care" terms): 



63 

a b c d e x y z 

1 < | ' 4 ' 4 > 4 ' < j > < J > < } ) 
<l> 1 (J) 4) <t> (|) (|> (}) 
4> 4) 1 4) (|> 4) (}) (|) 

4* 4> 4) 1 i> <\> (t> i> 

0 0 0 0 0 0 1 0 

Recall for the expression of equation (4.13), the first term a means 

the component "a" is bad and the remaining components are "don't care." 

Therefore, as a tabulated expression, the bad component "a" is denoted 

by "1," and the remaining components are denoted by "4)." The following 

four terms have similar expressions, as above. For the last term, in 

equation (4.13), the group "1" components are all good, i.e., the com

ponents a, b, c, d, and e are good, denoted by "0," and the test results 

for X, y and z will be copied under them. 

ALGORITHM VIII. (Tabulated Expression) 

Step 0. Let GR](i) be the group "1" components, i = l ,2,.. ,n-m. 
GR2(i) be the group "2" components, i=l,2,..,m. 
RESULT(i) be the test results, i=l,2,..,m. 
TABLE(n,n-m+1) be the tabulated expression. 

Step 1. (If one of group "1" components is faulty) 
DO i=l TO n-m 

Initialize TABLE(m,i ) = "4)", j=l,2,..,n. 
TABLE(GR](i),i)="l" 
End of Loop 

Step 2. (Case of the group "1" components are all good) 
DO i=l TO n-m 

TABLE(i,n-m+1)="0" 
End of Loop 

Step 3. (Copy the test results) 
DO i=l TO m 

TABLE(n-m+i,n-m+1)=RESULT(i) 
End of Loop 

Similarly, following this algorithm, the tabulated expression for 

equation (4.14) can be written as follows: 



64 

l 4 > 4 ' 4 ^ 4 ' 4 > 4 ' 4 ' 
4)1 4 > 4 ' 4 ^ 4 ' 4 ' 4 ' 
4 ' 4 > l - 4 ' 4 ' 4 > 4 ' 4 ' 

• < 4 ' 4 > 4 ' ^ 4 > 1 4 ' 4 ' 
4 ' 4 ' ' I ' ^ ^ < I > 4 ' 1 
0 0 0 1 1 0 0 0 

The following rules will be used to compute the intersection of any 

two Boolean expressions, 

Rule 1: Let the Boolean set B = {0, 1, 4)}, the 
(1) X * X = X 
( 2 ) x * 4 ) = 4 ) * x = x 

where x = 0, 1, or 4). 
(3) 0 * 1 = 1 * 0 = null (impossible pattern) 

Rule 2: (A + B + C) * (A + B + D) = A + B + CD 

ALGORITHM IX: (Intersection of two Boolean expressions) 

Step 0. Let Ti(n,ti) and T2(n,t2) be the two inputs 
expressions, T3(n,tO be the output expression. 
NUM be the number of the common terms of Ti and 
T2. NUM is initialized by 0. 

Step 1. (Searching for the common terms) 
DO i=l TO t] 

DO j=l TO to 
Compare Ti(k,i) withT2(k,j), k=l,2,..,n 
If they have the common terms then record them. 
End of loop j 

End of Loop i 
Step 2. (Reorder the expressions of T-j and T2 by placing the 

common terms to the beginning terms, and copy this 
common terms to the first "NUM" terms of T3) 
IF NUM=0 THEN GOTO Step 3 
ELSE 

Reorder T] and T2. 
Copy first "NUM" terms to T3. 

Step 3. (Find the intersection) 
TERMS=NUM 
DO i=NUM+l TO t-j 

DO j=NUM+l TO to 
TERMS=TERMS+T 
DO k=l TO n 

IF Ti(k,i) = "4." THEN 
T3(k,TERMS)=T2(k,j) 



65 

ELSE 
IF (T](k,i) = "l" AND T2(kJ) = "0") OR 

(Ti(k,i)="0" AND T2(k,j)/"1") THEN 
T3(k,TERMS=TT(k,i) 

ELSE 
TERMS=TERMS-1 

End of Loop k 
End of Loop j and i 

Following the above algorithm, the tabulated expression of the inter

section of T, and T2 can be expressed as follows: 

T = T. 

row a b c d e x y z 
( 1 ) 1 4) 4) 4) 4) 4)' 4) 4) 
( 2 ) 4) 1 4> 4) 4) 4) 4) 4) 
( 3 ) 4) 4) 1 4) 4) 4) 4) 4) 
( 4 ) 4) 4) 4) 1 4) 4) 4) 4) 

y 

4, 4, 
0 0 

a b 
1 ĉ  

-e
-

4, 4, 
4, 4, 

4> 4' 
0 0 
d) 4) 
4, 4) 
0 0 
n u l l 
n u l l 
n u l l 

-e
-

0 

c 

4* 
4> 
1 

4-
4) 
0 
4) 
9 
0 

-e-

0 

d 

* 

4* 
4> 
1 
1 
1 

4) 
4) 
1 

1 
0 

e 

-0-

4' 
4) 
4* 
4) 
1 
1 
1 
1 

4) 
0 

X 

4> 
4> 
4) 
1 

-e-

0 
1 

4> 
0 

-e-

1 

y 
4> 
4^ 
4> 
(̂  

4) 
0 

4> 
(̂  

0 

4) 
0 

z 

4) 
4 ' 
<̂  

4) 
1 
0 

4 ' 
1 
0 

1 (^ • ^ 4^ 4^ 

4> 1 4* 4* 4> 
4> 4^ 1 4^ 4^ 
4) 4^ ( t 4^ 4^ 
i) (b (i) i> i) 

0 0 0 1 1 

operation 
common term 
common term 
common term 
Ti(4)*T2(4) 
Tl(4)*T2(5) 
Tl(4)*T2(6) 
T](5)*T2(4) 
T l ( 5 ) n 2 ( 5 ) 
T l ( 5 ) n 2 ( 6 ) 
T i (6)*T2(4) , 0 
T i (6 ) *T2(5) , 0 
T l (6)*T2(6) , 0 

4> 

-e
-

-e-

1 
4> 
0 

* 1 
* 1 
* 1 

4> 

-e
-

-e-

-e
-

* 
0 

for 
for 
for 

4> 
<^ -e-

i> 
1 
0 

X 
z 
d 

After deleting the duplicated terms and rearranging their order, the re

duced table becomes: 

y 
1 

4> 
4> 
<? 
4> 
4* 
4> 
0 

4) 
1 

4> 
4) 
<\> 

4) 
4> 
0 

4) 
4^ 
1 

<> 
(̂  

4) 
<t> 
0 

4> 
4> 
4) 
1 
1 

4) 
4> 
1 

-e-

4) 
4^ 
4) 
4> 
1 
1 
1 

<f> 
4) 
4) 
1 

4-
1 
<̂  
0 

-e-

<ĵ  
4) 
4= 
4^ 
4> 
4> 
0 

<̂  

<t> 
4> 
4) 
1 

4) 
] 
0 



66 

The above algorithm is called Regular Boolean algorithm. To 

accelerate the speed of convergence one may specify the maximum number 

of simultaneous failures. Once this number has been specified the im

possible patterns will be reduced. For example, if a single failure is 

assumed, recall from the first term of (4.13),a, the component "a" is 

bad and the remaining components are "don't care," either good or bad. 

Since at most one faulty component is allowed, the remaining components 

would not be bad, therefore, the component ','a" is the only bad component 

in this possible pattern. It is the same as the remaining terms in 

equation (4.13). The tabulated expression will be rewritten as follows: 

a b c d e x y z 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 

Similarly, the tabulated expression for (4.14) can be simplified by 

replacing "4)" by "0." 

The intersection of these two expressions, as shown above, will be 

reduced by deleting those terms which contain more than one failure, 

that is, the items 4, 5, 6, 7, and 8 are deleted, and by replacing all 

"4)" by "0" in items 1, 2, and 3. The tabulated expression of this inter-

'section is thus shown as follows: 

a b c d e x y z 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 



67 
which shows that the components a, b and c are possibly "faulty." 

Similarly, for any multiple failure case, say t failures, the impossible 

fault patterns with more than t faulty components will be eliminated. 

ALGORITHM X: (Regular Boolean Algorithm) 

Step 1. Retrieve the component subdivisions table and input t. 
(the maximum number of simultaneous failures) 

Step 2. Choose a subdivision. 
Step 3. Call subroutines to derive the test results and the 

tabulated expression. 
Step 4. Search the pattern which contains more than t's "1" 

and delete the impossible patterns. 
Step 5. If the subdivision is the first one, go to step 2, 

otherwise do the next step. 
Step 6. Call a subroutine to compute the product of this 

expression and the previous one. 
Step 7. Search for the impossible patterns and delete them. 
Step 8. Repeat the above steps until the actual faulty 

component is determined. 

Since the Regular Boolean algorithm often requires a great number 

of steps to accelerate the speed of convergence, two additional algo

rithms are presented: Boolean Exact Algorithm and Boolean Heuristic 

Algorithm. 

Boolean Exact Algorithm: This algorithm is developed by applying 

the concept of the Exact algorithm into the Regular Boolean algorithm. 

Conceptually, recall from the discussion of the Exact algorithm, thetest 

result obtained from a given step of the algorithm will indicate all of 

the good components in group "2," and a set of all possible fault 

patterns will be generated by this test result (by Regular Boolean 

algorithm). Hov/ever, some of these patterns will be eliminated when one 

or more components, which were known to be good, v̂ ere predicted as bad by 

the pattern. "Don't care" values in the pattern will be replaced with 

good when a component is known to be good. 



68 

For example, consider the resultant expressions T. and T2, since 

the components x and z are known to be good in the first subdivision 

(T-j)<and then all 4) in columns x and z are replace by "0" to rewrite 

the tabulated expression for T-.. 

a b c d e x y z 

1 4 ) 4 ) 4 ) 4 ) 0 4 ) 0 
4) 1 4) 4) 4) 0 4) 0 
4) 4) 1 4) 4) 0 4) 0 
4) 4) 4> 1 4> 0 4) 0 
4) 4) 4) 4) 1 0 4) 0 
0 0 0 0 0 0 1 0 

Similarly, the component y is known to be good in the second subdivision 

(T2). Therefore, the impossible patterns in T, will be eliminated again 

for the good component y, that is, the last row will be deleted because 

of contradicting that component y is known to be good, and all i> in the 

column y of the remaining rows will be replaced by "0." Since the com

ponents X, y, and z are known to be good, as a result, all "4)" in the 

columns x, y, and z in T2 are replace by "0." This heuristic reduces 

and simplifies the possible patterns for both T-j and T2. 

T-,: a b c d e x y z T2: a b c d e x y z 

l 4 , 4 ) 4 , 4 ) ' ^ 0 0 1 4 , 4 ) 4 ) 4 ) 0 0 0 
4 ) 1 4 , 4 . 4 ) 0 0 0 4 ) 1 4 , 4 ) 4 , 0 0 0 
4 , 4 ) 1 4 ) 4 , 0 0 0 4 ) 4 , 1 4 , 4 ) 0 0 0 
4 ) 4 , 4 ) 1 4 ) 0 0 0 0 0 0 1 1 0 0 0 
4, 4) 4) 4) 1 0 0 0 

After mul t ip ly ing these two Boolean expressions, the reduced table for 

the in tersect ion i s , 

a b c d e x y z 

1 4) 4) 4) 4) 0 0 0 
4, 1 4) 4) 4) 0 0 0 
4) 4, 1 4) 4) 0 0 0 
0 0 0 1 1 0 0 0 



69 

The tremendous number of possible fault patterns is then greatly reduced. 

Moreover, if the maximum number of simultaneous failures is specified, 

the resultant expression will be much more applicable. 

ALGORITHM XI: (Boolean Exact Algorithm) 

Step 1. Retrieve the component subdivisions table and input t. 
(The maximum number of simultaneous failures) 
FLAG(j)=.false., j=l,2,..,n. 

Step 2. Choose a subdivision. 
Step 3. Call subroutines to derive the test results and the 

tabulated expression. 
Step 4. Search the pattern which contains more that t's "1", and 

delete the impossible patterns. 
Step 5. Let GOOD(j) be the good components, j=l,2,..,s. 

(For single failure case, all or all but one components 
in group "2" are known to be good. 
For multiple failure case, the component with test result 
"0" is indicated to be good). 
FLAG(GOOD(j))=.true., j=l,2,..,s. 

Step 6. If this subdivision is the first one, go to Step 2. 
Step 7. (Eliminate the impossible patters for both expressions). 

Delete the patterns which predict the good components as 
bad, and replace all "4)" to be "0" for the good components. 

Step 8. Call a subroutine to compute the product of this expression 
and the previous one. 
Search for the impossible patterns and delete them. 

Step 9. Repeat the above steps until the actual faulty components 

are determined. 

Boolean Heuristic Algorithm: Because of the advantages discussed in 

the previous algorithms, where the heuristic algorithm was applied to the 

Regular Boolean algorithm, the heuristic algorithm can be carried a step 

further than indicated above. Most of the good components will be de

termined in few steps using the help of the coupling table. 

ALGORITHM XII: (Heuristic Boolean Algorithm) 

Step 1. Retrieve the component subdivisions table and input t. 
(The maximum number of simultaneous failures) 
FLAG(j) = .false., j = l ,2,.. ,n. 

Step 2. Choose a subdivision. 



70 

Step 3. Call subroutines to derive the test results and the 
tabulated expression. 

Step 4. Search the pattern which contains more than t's "1", 
and delete the impossible patterns 

Step 5. Let GOOD(j) be the good components, j=l,2,..,s. 
Retrieve the coupling table TABLE(m,n-m) 
DO j=l TO s 

Let X be the row of the component GOOD(j) 
DO k=l TO n-m 

IF TABLE(x,k)=l THEN 
Record this component as good 

End of Loop k 
End of Loop j 

Step 6. FLAG(GOOD(j))=true., j=l,2,..,s 
Step 7. If this subdivision is the first one, go to Step 2. 

(Eliminate the impossible patterns for both expressions) 
Delete the patterns which predict the good components as 
bad, and replace all "4)" to be "0" for the good components 

Step 8. Call a subroutine to compute the product of this 
expression and the previous one. 
Search for the impossible patterns and delete them. 

Step 9. Repeat the above steps until the actual faulty components 
are determined. 



CHAPTER 5 

EXAMPLES 

In order to implement the algorithms discussed in the previous 

chapters, two examples, with details, are presented in this chapter. In 

the first section a linear circuit a BJT small signal amplifier circuit 

with beta-independent bias is used to describe the procedure of a 
3 

linear circuit package. The second example, is a power supply circuit 

which demonstrates the nonlinear circuit package. 

Linear Case 

Consider a linear circuit, a BJT small signal amplifier circuit 

with beta-independent bias, as shown on the data sheet in Table 5.1. 

The data sheet contains information about the three inputs in the test 

program generation process. The user will enter the above input data by 

responding to the prompt shown on the terminal under "off-line." 

L-Matrix: After the circuit description is entered, an incidence 

ma trix for this circuit is created as follows 

A = 

1 
1 
0 
0 
0 
0 

0 
-1 

1 
0 
0 
0 

-1 
1 
0 
0 
0 
0 

0 
0 
1 

-1 
0 
0 

0 
1 
0 
0 

-1 
0 

0 
0 
0 
1 

-1 
0 

-1 
0 
0 
0 
1 
0 

-1 
0 
0 
0 
1 
0 

0 
0 
0 
1 
0 

-1 

-1 
0 
0 
0 
0 
1 

-1 
0 
1 
0 
0 
0 

The matrix D, in the equation (4.4) is calculated by calling a sub

routine DMXGEN to transfer the matrix A to the following form 

71 



Table 5.1. Data Sheet - Linear Circuit 
72 

J 1 

CI 

1—!h 
lOuF 

lOOOHz 

R2 

NiifTiber o f c o m p o n e n t s : TI 
N u m b e r o f N o d F - s : c 

-̂ e-

K 
C2 

01 lOwF 

^ RE J - CE 
<S00n T lOOnF 

r. R3 
Q 

1̂?̂  dr vcc 
20V 

C 0.V,p on en t De s c r i D t i or 

1 3 

R 

5,6 7 8 _10_ 

R 

_RL_ 

1000 

< j ) C 

CI 

l .OE-05 

R R 

RC 

1800 

R 

RE 

500 

_ _ C _ _ 

C2 

l .OE-05 

f ; • ) Rl R2 

10000 

Ql CE 
+ • 

40000 2000 l .OE-04 

C-;) 
0 

- f - - +-
240 

+ • • + • + -
!l .0E-05 

+- +- +- •+-

+ - • 
0 

1 

2 

1 

1 

0 

I 
3 

1 

4 

0 
(A ) • + • + 

3 

5 

5 

0 

+ + • + 

+ • + • 

r. rr. p G 
—. - - 4-
1 r ^ • ' t 

? S 2 5 

C i p S C 

O p - C; r, 

V o r 

i t o r 
i r i o u c t o r 

^ 1 c^ < 1 ^ n 

( J 
a b b r 

R 
C 
L 
D 
O 

(3) (4) 
I r •_• V o ? T-: o n c o m •" c n e n "c v a i u P n O O e 

r r TJ n c T o r f n p V 

Rn res i stanc e 
Cri capacitance 
Ln inouctance 
On volta-ge gain 
Gn hybT-id-pi 

(Hi e. Hve, Hf e, 'Hoe ) 
Xn tran s f orrrt̂  12 on 

ra t 2 o 

(+), (-) 
(-»), (-) 

(+),(-) 
input( + )^ ( — ), output 
(C ). (B), (E) 

primary (+),{-) 
se-cor.dary (+), (-) 



73 

Table 5.1. (Continued) 

N u m b e r o f c o m p o n e n t s : 
N L» f5f b e T o f N o d p s : 

L o r- p o n e r. T- L-- e S C r i n r i O ri 

' 11 ' 
1 \ 

( = ) : R i 

Ci)]^ R3 ; 

1 

1 

1 

i 
1 

i 2 

: 0 
. . . i "• 

• 
• 

-i
 1 1 1 1 

; i 

1 1 I ; ! 1 i 
1 1 1 1 1 1 1 

) 1 ; I I : i 
1 1 1 1 1 ! ) 

i i 1 : 1 ; i 
> 1 1 1 1 1 I 

1 1 ! 1 1 1 .. 1 
1 1 1 1 1 . i ' 

1 1 1 1 1 1 I 
1 1 1 • > 1 ' 

1 1 1 1 1 1 1 
1 S 1 1 1 I > 

1 1 1 1 I • 1 ) 
1 1 . 1 • > i > 

, 1 1 1 1 I ' > 
I 1 1 I 1 1 ' • 

, 1 1 1 > • ' ' 

1 1 1 1 1 ^ ' ' ' 

; 1 I . 1 : • 1 

, ) 1 1 I > • = 
J , , 1 1 1 1 > 

) (P.) C 3 ) ( 4 ) 

r r-. T: r. r.:: P- r̂  f 

\ f- •. •! r, f. f'.T 

•_ '^ j / tJ C i I . I.* 1 

i : i J.! u c t o r 
n r, — ,-• ,r- p 

t T <•: n S Z £ t f i 

t r f - j H S r OT'.i: 

T" 

C'l 

R 

L 
G 
G 

A 

• •!?• T- cJ T' . 

~ Rn 
C T'l 

L n 
Gn 
Gn 

Xn 

0 T'l 

( H : 

z 0 rr, r. r. n e n T ••.-• =. 
r c- ? i s t c? n c t" 
c a p a c i t a n c e 

i f) u u c t a n c e 
V 0 1 t a 0 e c a ;i n 
h i| b T- i d - p i 
'3, M r e ; H f e , Ho 
t r a n s f o r f i i a 1 1 

r £: t i 0 

1 'J 8 

.: ) 

on 

: ; •_• '_• c 

( + ) . ( - ) 
i . H ) , ( - ) 

( -:• J , i - ) 

: n p L.' t (-!-) ; i - ) , 0 u T- p u i; 
< C ) , (E). ( £ ) 

p T- i m a r y ( + ) ^ ( - ) 
5 e c o r id a r y ( + ) , ( - ) 



Table 5.1. (Continued) 

74 

S G i> r c c L> c s c T- i p t in n 

TM u m b e r o v Voltage Sources : 2 
Number of Current Sources : n 

b l a n c h n u m b 

v a l u e 

n o t a t i o n 

c o i n c i d e T' 

e r 1 

1 
1 

1 
1 

(<•) I 

(*-) D o e s t h e o r i 

X 

( 

c 

n 

( • ^ • < - ) 

• / V Y V 
A .\ A ^ 

Y / f y ) 

n L- c: t. 3 

: 1 

' 2 .0E-

VIN 

! " ' N 

on o f 

03 

t h 

1 

1 

t 

1 
1 

i s 

11 

10 

VCC 

Y 

s o u r 

1 
1 

i 

1 
1 

1 
1 

c e c 0 i n c L d e w i t h 

t 
1 

1 
1 

1 
I 

1 
1 

/ >̂ .̂ -

t I I a t o f t h e b r a n c h "•' 

> a n y n u .<Ti e i i c a i e x p r e s s i o n . 

1 r i v UT e (' u cvi c Ij 

V f o u t HL i; 1000 

£• z X r 0 1 n 

N LI rr: b e r o f T c i -1 P o i n t 

J 

0 c . 

3 

/' 

r 1 
^ ' 1 

6 ; 

I n o t a t i o n 1 ( 1 ) I e n t r y t ( 2 ) 1 c o l u m n s 1 v a l u e s 

X X X X X ! Y / i J 1 n ! n ! <-, rr, <-, ^ \ * , ^^ •«-

i I C l ! Y : 1 : ! ' 

IRI ; Y : 2 1 ! ' 

V45 ' N ' ' 3 '' 1 , 5 , 1 0 ' - 1 , - 1 , - 1 

V13 : N : : 2 1 2 , 4 ; 1 , - 1 

1 1 t f 1 
1 1 t 1 t 

1 1 1 1 t 

(. ) ) f r o m t h e e n t r i e s o f a ? ( Y / N ) 

( ; * ; n u f ; . b e r o f n o n r p r c e l e m e n t s 



75 

A = 

1 
0 
0 
0 
0 

0 

0 
1 
0 
0 
0 

0 

0 
0 
1 
0 
0 

0 

0 
0 
0 
1 
0 

0 

0 
0 
0 
0 
1 

0 

-1 
0 
0 
0 

-1 

0 

-1 
0 
0 
0 

-1 

0 

0 

0 
1 
0 

• 1 

1 

-1 -1 
1 
0 
0 
0 

0 
0 
0 
0 

0 0 0 0 

and the matrix D is 

D = 

1 
0 
0 
0 
1 

-1 
0 
0 
0 

-1 

-1 
1 

-1 
-1 
0 

0 
1 
0 

-1 
1 

-1 
1 
0 
0 
0 

-1 
0 
0 
0 
0 

By the equation (4.6) the L,-, matrix is then derived as 

11 

0 -D 

D̂  0 

0 
0 
0 
0 
0 

1 
1 
1 
0 
1 
1 

0 
0 
0 
0 
0 

0 
0 
1 
1 
1 
0 

0 
0 
0 
0 
0 

0 
0 

-1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 

-1 
-1 
0 
0 

0 
0 
0 
0 
0 

-1 
-1 
0 
1 
0 
0 

1 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 

1 
-1 
1 
1 
0 

0 
0 
0 
0 
0 
0 

0 
-1 
0 
1 

-1 

0 
0 
0 
0 
0 
0 

1 
-1 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

The order of the components was CI, Rl, R2, RC, Ql(l), Ql(2), RE, CE, 

C2, RL, and R3. After the transformation is performed, the order is 

rearranged to be CI, Rl, RL, RC, Ql(l), CE, RE, C2, Ql(2), R3, and R2, 

and the component inputs vector a and component outputs vector b are 

shown as follows: 



76 

.a = 

ICl 
IRI 
IRL 
IRC 
IBQl 
VCE 
VRE 
VC2 
VCEQl 
VR3 
VR2 

b = 

VCl 
VRl 
VRL 
VRC 
VBEQl 
ICE 
IRE 
IC2 
ICQl 
IR3 
IR2 

where the first five components are in the tree edges, and the remaining 

components are in the co-tree edges. 

As illustrated in the data sheet, information for source description 

shows that two voltage sources are located in the branches 1 and 11, 

respectively. Since in branch 1, the capacitor CI is located in the tree 

edge, and the orientation of the voltage source is opposite to that of 

this branch, equation (4.7) therefore implies that the first column of 

L-|2 is the same as the row corresponding to CI in the matrix L,-,. An

other voltage source, VCC, is located in the co-tree edge R3 with the 

same orientation. By equation (4.8), all elements of the second column 

of L-ip are zero except the position which corresponds to that of CI, 

i.e., the 10th row and second column is -1. The L,-matrix is then 

generated as follows 

H = [ I 11 12 
0 
0 
0 
0 
0 

-1 
-1 
-1 

0 
-1 
-1 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 

0 
0 
0 
0 
0 
0 
0 

-1 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

-1 
-1 

0 
0 

0 
0 
0 
0 
0 

-1 
-1 

0 
1 
0 
0 

1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
1 
0 

•0 
0 
0 
0 
0 

1 
-1 

1 
1 
0 
0 
0 
0 
0 
0 
0 

0 
-1 

0 
1 

-1 
0 
0 
0 
0 
0 
0 

1 
-1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 



77 

For convenience, we would like to change the component order back to the 

original component order. A matrix transformation, where the L,-matrix 

and the component input/output are reordered, is shown. 

a = L 11 b + L 
12 u 

where 

L, = 

0 
0 
1 
0 
0 
0 
1 
1 
1 
0 
1 

0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
1 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

-1 
0. 
0 

-1 
0 
0 

0 
0 
0 
0 
0 
1 

-1 
-1 

0 
0 
0 

0 
-1 

0 
1 

-1 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

1 
-1 

0 
1 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 

-1 
0 
0 

1 
-1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
1 
1 
1 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 

a = 

ICl 
IRI 
VR2 
IRC 
IBQl 
VCEQl 
VRE 
VCE 
VC2 
IRL 
VR3 

b -

VCl 
VRl 
IR2 
VRC 
VBEQl 
ICQl 
IRE 
ICE 
IC2 
VRL 
IR3 

u = 
VIN 

VCC 

The connection matrix L-, can be easily checked for correctness by using 

Kirchoff's laws. 

For Lp-matrix a test point description is input. The following 

four test points are selected: ICl, IRI, V45, and V13. The first two 

are current measurements, which are selected from the entries of a, and 

the remaining are voltage measurements, which are input by the users' 

specifications. Therefore, the first two rows of Lp-matrix duplicate 

the first two rows of L,-matrix. In the third row, since 



78 

V45 = -VCl -VBEQl -VRL, all elements in this row are 0 but the positions 

1, 5, and 10 are -1. Similarly, the fourth row contains all 0 except for 

the 2nd. and 4th columns which are 1 and -1, respectively. That is 

] 4 = [ 

= 

0 
0 

-1 
0 

0 
0 
0 
1 

1 
0 
0 
0 

41 
0 
0 
0 

-1 

0 
0 

-1 
0 

0 
-1 

0 
0 

1 
0 
0 
0 

1 
0 
0 
0 

1 
-1 

0 
0 

0 
0 

-1 
0 

1 
-1 

0 
0 

^22 

0 0 
0 0 
0 0 
0 0 

The component connection model for this linear circuit can be expressed 

as follows: 

a 

y 
[ L ] 

b 

u 

where 

L = 
L 11 

•21 

L 12 
L 22 

, y = 

f y i l 
y2 
y3 
y4j 

= 

ICl 
IRI 
V45 
V13 

The Component Transfer Matrix Z: When the single frequency is input, 

the matrix Z is generated and stored in a data file named ZU.DT. The 

component transfer matrix in this example is formed as follows: 

Z = 

^Cl 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^Rl 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^R2 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

R̂C 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^hl 

^ 3 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

YRE 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^CE 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^C2 
0 

0 

0 

0 

0 

0 

0 

0 

0 . 

0 

0 

^Rl 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Y R3 



79 
For the on-port components: resistors, capacitors, and inductors, the 

corresponding element in the matrix Z is nothing but the impedance or 

admittance, depending on whether a current or voltage appears in the 

vector a. Consider the first component, CI, where the current measure

ment is in the vector a and voltage measurement in b, therefore, the 

first diagonal block is the impedance of the component CI. Similarly, 

the impedance/admittance of the remaining one-port components will be 

located in the corresponding diagonal block. For the two-port com

ponents, such as transistors, a two by two block is used to describe 

this component, the values are defined by the hybrid-pi parameters or 

appropriate transformed parameters, depending upon the elements of the 

transistor model employed. 

Recall that two pairs of transistor nodes are used to describe the 

incidence matrix. To define them as component inputs/outputs, there are 

four possible combinations which appear in the vectors a and b; 

a_ b̂  ^ b_ 

(2) V lb 

he h 

(̂) h he 
he h 

When one of the above combinations is selected, the following calculation 

will be performed: 

Let the matrix Z . be a 2x2 block of the component transfer matrix 

( 1 ) 

( 3 ) 

he 
h 

h 
h 

h 
he 

he 
he 

Wl th the respect to the transistor, where Z • is written as 



80 

•q i h h 
For the combination (1) , 

z, = H / (H. * H 1 oe ^ le oe 

h - -^e^ ( " i e * ^ e 

^3 = - " f e / ^^ie*he 

H - "ie / ("ie * he 

For the combination (2), 

"re * "fe) 

"re * "fe^ 

"re * "fe' 

- H 
re *"fe) 

1̂ '-

^4 '-

1.0 / H 
ie 

- "re / "ie 

"fe I "ie 

"oe - "fe * "re / "ie 

For the combination (3), 

1̂ = "ie - "re * "fe ' "oe 

h^ 
h " 
U '-

he' 
-he' 

1.0 / 

"oe 

H oe 

"oe 

For the combination (4), 

1̂ = "ie 

^2- "re 

H fe 

If one of the above combinations is computable, the combination is then 

selected as elements of the vectors a and b. 



81 

Component Subdivisions Table: The component subdivisions table is 

21 generated by the assumption that [L^,]""- exists. Therefore, 34 sub

divisions are generated as follows: 

Subdivision 
Number 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

2 
2 
2 
2 
2 

Component 
Number 

2 
2 
2 
2 
2 
2 
3 
3 
4 
4 
4 
4 
3 
3 
7 
7 
8 

3 9 
3 11 
7 9 
7 11 
8 9 
8 11 
4 9 
4 11 
7 9 
7 11 
8 9 
8 11 
9 10 
10 11 
9 10 
10 11 
9 10 

Subdivision 
Number 

(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 

^431) 
- (32) 
- (33) 
- (34) 

2 
3 
3 
4 
4 
4 
4 
2 
2 
2 
2 
2 
3 
4 
4 
4 
4 

8 
4 
4 
7 
7 
8 
8 
3 
5 
5 
5 
5 
4 
5 
5 
5 
5 

10 
9 
10 
9 
10 
9 
10 
5 
6 
6 
6 
6 
5 
6 
6 

-. 6 
6 

11 
10 
11 
10 
11 
10 
11 
6 
7 
8 
9 
11 
6 
7 
8 
9 
11 

(where the component pair 5 and 6-is a two-port component-) 

• Pseudo Circuit and Data Base: To generate the data base, assume 

the first component division is chosen, i.e., the group 1 components are 

#4, (#5, #6), #7, #8, #10, and #11, and the components #1, #2, #3, and 

#9 are contained in the group 2. By equations (2.12-2.15), the K-matrix 

is computed as follows: 

1 
a h^ 

h) 

K^2 

hz 
U 

y 



IRC 
IBQl 
VCEQl 
VRE 
VCE 
IRL 
VR3 

0 
0 
0 
0 
0 • 

0 
1 

0 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 
0 
0 
1 

0 
0 
1 
1 

-1 
0 
0 
0 

0 
-1 

0 
0 
0 

-1 
0 

0 
0 
0 
0 

0 
0 
1 

-1 

0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

-1 
0 

0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

-1 
0 

0 
0 
0 
1 
1 
0 
1 

0 
0 
1 
0 

-1 
0 
0 
0 

-1 
0 
0 
0 
0 

-1 
0 

0 
0 
0 
0 

0 
0 
0 

-1 

0 
0 
0 
1 
1 
0 
1 

0 
0 
1 
1 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

-1 

0. 
0 
0 
0 

. 0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 

0 
0 
1 
0 

-1 
0 
0 
0 
0 

-1 
0 

0 
1 
0 
0 

0 
0 
1 

-1 

0 
0 
0 
1 
1 
0 
1 

0 
0 
1 
1 

-1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
1 

0 
0 
0 
1 

0 
1 
0 
0 

82 

VRC 
VBEQl 
ICQl 
IRE 
ICE 
VRL 
IR3 

ul 
u2 
yi 
y2 
y3 

y4 

The connection of the pseudo circuit can be verified by the test that 

they satisfy the Kirchoff's laws. 

For the data base, the matrix M is derived from equations (2.17) 

and (2.18) and a data file for each matrix M is created with the name 

TEOO**.DT where ** is the subdivision number. 

After the test generation process is completed, consider the program 

verification with the test in which the impedance of the first component, 

CI, is changed to 1% of the nominal value, i.e., change the value from 

-j*5.000E+04 to -j*5.000E+02. The values of y are then computed as. 

y 

-(0.246291D-03) - j(0.348101D-05) 
(0.249843D-03) + j(0.309305D-06) 

-(0.302768D+01) - j(0.414982D+00) 
(0.305966D+01) + j(0.116744D+00) 

Suppose also that the fifth subdivision is chosen, i.e.. group 2 contains 

the components #1, #2, #8, and #9, then the data base M-matrix in a file 

name d TE0005.DT will be retrieved. With the known values u and y, a and 

b^ are computed from the equations (2.17) and (2.18). We then substitute 



83 

the computed value of a into the component transfer matrix for the 

group •"''2" to obtain the corresponding value for b . Comparing the com-

2 "2 
puted values b and b , if the difference of each component is less than 

a given tolerance, the result is defined to be good ("0"), otherwise it 

is bad ("1"). The result of this simulation is illustrated as follows: 

Components 

#1 
#2 
#8 
#9 

2.492637D-02 
9.994136D+00 
1.756785D-04 
3.486035D-03 

2.492638D-04 
9.994136D+00 
1.756785D-04 
3.486035D-03 

Result 

1 
0 
0 
0 

From this subdivision, we conclude that the test results for components 

#2, #8, and #9 are 0 and for component #1 is 1. With aid of the de

cision algorithm, the actual faulty components will then be determined. 

Nonlinear Case 

Consider a nonlinear circuit, power supply circuit, as per the 

data sheet in Table 5.2. After user enters the number of components, 

the number of nodes, the circuit description, and the test point descrip

tion, the connection matrix L and vectors a, b, u and y are automatically 

generated in the form 

a = 

IRI 
VCl 
IDl 
VC2 
ILl 
VC3 
VRL 

b = 

VRl 
ICl 
VDl 
IC2 
ILl 
IC3 
IRL 

= [Un] [VIN] 

y = 

pll 
^2 

^3 

= 

"IDl" 

ILl 

VRL 
_ _ 



84 

Table 5.2. Data Sheet - Nonlinear Circuit 

W 
1 

R l 
>^5.Q 

Q V I N 

Dl 

^e 
C l 
TyF 

Nurr;ber o f com p o n e n t s : ~] 
IS unit ET o f k'Od e s 

c r; 0 o ~ e:") t. D e s c r : D T; i o 11 

1 

1 

( : • ) ! D 
1 \ 

( 2 ) ; -2 

C O I 5 

• / t 1 

1 } ; 1 1 7 1 : 

2 . 3 = ^ . 5 . 5 . 7 . 

C '• . D ' C ! L ' C ' R 

Cl ' Dl ' C2 ' LI ' C3 •' RL 

iU ' D;^l • 11-; ! 0 . 1 ! iM ' iK 

I ; 1 ! 2 : 2 : 3 : 3 

2 ! 2 ! 0 ! 3 : 0 i 0 

I I I ) . 

1 1 . . . 

1 } 

1 1 

1 1 

1 1 

1 I 
1 1 

1 1 

1 J 

1 1 

1 ' 

,- ,- _ _ - _ _ ^ _ 

• 5 £. : £ t -• V 

C ^ ; j .V c • t 0 V 

1 n c '_' c "C T' v-

Cl J L' L' t 

t ^ ri n f : c- t 0 
r ; : = = r z i ; : r : r i r : z = r : ^ 

. • C' C: c i . - .r T r. 

r: 0 c - } 

^ 

1" 

= = 

— c. 

f̂ ' 

^ ' 4 

u, U -^ 

R 
c 
L 
j_, ' 

G 

= =: = 

u c.' . 

r) ; - (̂  

) 

= = 

c • 

= — 

( 

- z. ~ 

F: n 

CT\ 

Lr, 
Dn 
G'n 

— — — 

r-1 

2 ) 
i c 

= = 

0 c 

~ 

= 

e 

rz 

i 

C C' '~' ' 0 r, E- Ti t \ ' £ '. 

1-- c- -:. 1 s t a ; i c e 

C <:• p £• C i T. a T; C 8 

i n d u c t o- "I c e 
m o d e l ' £ - . £ • 

m c c e 1 n a ~: ? 

= = = ==: = = = = = =: = = 

p a T i , - , e t ET- s 

u 

= = 

c 

= 1 : : 

( 

T-, ^ , '• ' — 

/ 

/ __ 

( • 

•• ~ 

_ ) 

- ) ; 

- ) ; 

_ \ 

iC) , 

- = = — = = 

- ) 

3 ) ; ( E ) 

D:'I1 D l S = 1 . 0 E - 0 6 N = 0 . 9 7 



Table 5.2. (Continue) 

N u m b e r o-T V o l t a g e S o u r c e s : 1 
N u n i b e r o f C u r r t - n t S o u r - c e s : 0 

85 

b. r a n c h numb 

va 1 ue 

n o t a t i o n 

c o i n c i d e o 

c r 1 

J 
1 

1 
1 

( ^ ) ! 

n 

(•^-Hr) 

X X 7 . X X 

( Y / N ) 

1 
1 1 

1 
1 

: s iN(o 10 Bo) 

1 
> 

1 
1 

V I N 

N 

1 
t 

t 
1 

1 
1 

1 
t 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

- 1 
1 

1 
1 

1 
1 

1 
1 

( ^ ) D o e s t h e o r i e n t a t i o n o f t h i s s o u r c e c o i n c i d e w i t h 
t l i G t o f t h e b r a n c h ' T ' 

( <• V-) a n y n LI m e r i c a 1 e x p r e s s i o n . 

E P a r £• n i e t c T- s 

I R ^ ^ . N s i H T i t : 7 i (he s t e p 
F i ri a 1 t i rri e 

( 0 p t i c ri ) s t a r t i r; g t i m e 

lOM 

200M 

C o: i t r o 1 C a r d s ( o D t i o n s ) 

1. 

T f r. t P o i n t 

N u T i b e r o f 1 es I o 1 r i r s 

'. 

/ — I 

\-J 

4 

) 

1 
1 

1 
t 

1 

1 
1 

1 
1 

n Z' 

V 

t a •: } 

T .' X X 

IDl 

I L l 

VRL 

c n 1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

( 

V 

1 \ 

/K' 

Y 

Y 

Y 

1 
1 

1 
1 

1 
1 

1 
1 

1 

1 
1 

r n t r 

n 

3 

5 

7 

y 
1 

1 
1 

1 
1 

1 
1 

1 

1 

1 
t 

( 2 ) 

n 

1 

1 

1 
1 

1 

1 

1 
1 

c o l u m r 

•f-, ^ - , 

c 

' • 

v a 

• ^ ; 

1 

. X . 

j e s 

>̂  

1 
1 

1 
1 

1 
1 

• 
1 

1 

1 

( J ) f r o m t h e e n •r 1 ?> c 1 e s o r a ? ( Y / N ) 

( 2 ) n u m l i e r o f n o n 2 e r o e 1 emen L. s 



86 

L = 
Hi 

4i 

^ 2 " 

2̂2_ 

0 
0 
0 

-1 
0 

-1 
-1 

0 
0 

-1 

0 
0 

-1 
0 
0 
0 
0 

-1 
0 
0 

0 
1 
0 

-1 
0 

-1 
-1 

0 
0 

-1 

1 
0 
1 
0 
0 
0 
0 

1 
0 
0 

0 
0 
0 
0 
0 

-1 
-1 

0 
0 

-1 

1 
0 
1 
0 
1 
0 
0 

1 
1 
0 

1 
0 
1 
0 
1 
0 
0 

1 
1 
0 

0 
0 
0 
1 
0 
1 
1 

0 
0 
1 

SPICE Code for the Circuit: Based on the circuit description, a 

SPICE code is generated as shown below, several new nodes are assigned 

due to the performance of current measurements. The generated SPICE 

code is stored in a data file named MAIN.DT. The circuit diagram, with 

new nodes, is shown in Figure 5.1. 

i Rl 

? VIN 

Figure 5.1. Power Supply Circuit 



87 
The SPICE code is. 

SPICE 
.MODEL 
+ 
VIN 
VK21 
VK22 
Rl 
Cl 
Dl 
C2 
LI 
C3 
RL 

CODE 
DM1 

4 
1 
2 
4 
1 
5 
2 
6 
3 
3 

D IS= 

0 
5 
6 
1 
2 
2 
0 
3 
0 
0 

l.OE-06 N=0.97 

SIN(0 10 60) 
0 
0 
5 
lU 
DM1 
IM 
0.1 
IM 
IK 

.TRAN lOM 200M 

Recall that the test points are IDl, ILl and VRL. In order to measure 

the current flow through Dl, a zero-valued voltage source, VK21, is 

added and a new node, node 5, is assigned to the circuit diagram. The 

current flows through the voltage source VK21, I(VK21), is then equal to 

IDl. Similarly, a zero-valued voltage source and node 6 are added to 

the circuit diagram for ILl. 

SPICE Code for the External Input of "Pseudo Circuit": The external 

input of pseudo circuit 

U^ = col [u I y] = col [VIN | IDl ILl VRL] 

That is, 

u. = VIN = V(4,0) --- the voltage at node 5. 

y, = IDl = I(VK21) --- the current flows through VK21. 

y^ = ILl = I(VK22) --- the current flows through VK22. 

y^ = VRL = V(3,0) --- the voltage at node 3. 

Therefore, the SPICE code is generated and stored in a file named 

SOURCE.DT, 



88 

EE701 701 
RR701 701 
FF702 0 
VK702 702 
FF703 0 
VK703 703 
EE704 704 
RR704 704 

0 4 
0 1 

702 VK21 
0 0 

703 VK22 
0 0 
0 3 
0 1 

0 

1 

1 

0 

The first two cards describe the voltage measurement for VIN. A voltage 

controlled voltage source, EE701, which is controlled by node 5, VIN, 

and a resistor, with resistance 1, are connected in series. The voltage 

at node 701 is, therefore, equal VIN. 

EE701 

Or 
701 

RR701=1 

For the current measurement, cards 3 and 4, a current controlled 

current source, FF702, which is controlled by I(VK21), (=ID1), and 

zero-valued voltage source is connected in the series so that the 

current flowing through the zero-valued source is the same as IDl. 

FF702 VK702=0 

Tc^pr-

^=¥ 
702 

o 
"S^ 

Component Subdivisions tab le : 12 possible component subdivisions 

are generated as fo l lows: 



89 

Subdivision 
Number 

(1) 
.. (2) 

(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 

Component 
Number 

1 2 6 
1 2 7 
1 4 6 
1 4 7 
2 3 6 
2 3 7 
2 5 6 
2 5 7 
3 4 6 
3 4 7 
4 5 6 
4 5 7 

i .e 

#6. 

Pseudo Circuit and Data Base: If the first subdivision is chosen, 

, the components #3, #4, #5 and #7 test the components #1, #2 and 

By the equations (2.12) through (2.15), the K-matrix is calculated 

as follows: 

IDl 
VC2 
ILl 
VRL 

IRI 
VCl 
VC3 

VRl 
ICl 
IC3 

0 
0 
0 
0 

0 
1 
0 

1 
0 
0 

0 
0 
0 
0 

1 
0 
0 

0 
1 
0 

0 
1 
0 
0 

0 
0 
0 

-1 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 

-1 

0 
0 
0 
0 

0 
0 
0 

1 
0 
0 

1 
0 
0 
0 

0 
0 
0 

0 
-1 
0 

0 
0 
1 
0 

1 
0 
0 

0 
1 
1 

0 
1 
0 
1 

0 
0 
1 

-1 
0 
0 

VDl 
IC2 
VLl 
IRL 

^1 

^2 

^3 

(5.1) 

where u^ = VIN, y^ = IDl, y^ = ILl, and y^ = VRL. 

A SPICE code for the equations (2.23) through (2.26) is generated as 

follows: 



90 

**•• 

FFlOl 
VKlOl 
Dl 

EElOl 
VK102 
CClOl 
*••• 

FF102 
VK103 
LLlOl 

EE102 
VK104 
RRlOl 
••*• 

FF103 
VK105 
RRI 02 
•••• 

EE103 
VK106 
CC102 

EE104 
VK107 
CC103 
•*•• 

EE105 
RRI 08 
•••• 

FF104 
VK109 
•••• 

FF105 
VKllO 
.PRINT 
.PRINT 
.PRINT 
.END 

1 
0 

101 
102 
2 
103 
103 
104 
3 

0 
105 
106 
4 
107 
107 
108 
1 

0 
109 
110 
2 
111 
111 
112 
3 
113 
113 
114 
1 
115 
115 
2 
0 

116 
3 

0 
117 
TRAN 
TRAN 
TRAN 

101 
102 

0 

VK702 
0 

DM1 

0 P0LY(2) 106 0 704 0 0 1 1 
104 

0 

105 
106 

0 

0 
108 

0 

0 
IM 

VK703 
0 

0.1 

704 
0 
IK 

0 1 

109 P0LY(2) VK102 VK703 0 1 1 
110 

0 

0 
112 

0 

0 
114 

0 

0 
5 

102 
0 
lU 

704 
0 
IM 

0 1 

0 1 

0 P0LY(4) 102 0 106 0 701 0 704 0 0 -1 -1 1 1 
0 

116 
0 

1 

P0LY(3) 
0 

VK102 VK702 VK703 0 1 - 1 1 

117 P0LY(2) VK104 VK703 0 -1 1 
0 0 
V(115),V(110) 
I(VK109),I(VK106) 
I(VK110),I(VK107) 

As shown in equation (5.1) the first row shows that 

IDl = y^ 

i.e. the current flow through diode Dl equals to the external input y^ 



91 

Define a controlled current source FFlOl which is controlled by the 

current source y^ (=I(VK702)), therefore, the code is generated as 

follows: 

FFlOl 0 101 VK702 
VKlOl 102 0 

1 

As shown in the following circuit, if the current flow through the 

diode is known, then the voltage across the diode can be computed. 

FFlOl 

T ^ 

•VK101=0 

-O- i?F 

Dl 

Therefore, the voltage at node 102 is VDl. 

For the voltage case, consider the second row of the matrix in 

equation (5.1), 

VC2 = VLl + y3 

The voltage across C2 equals to the voltage across inductor LI and the 

external input y3. The voltage source, EElOl, is controlled by the sum 

of the voltages at nodes 106 and 704. 

EElOl 103 0 P0LY(2) 106 0 704 0 0 1 1 

which is equivalent to 

V(103,0) = V(106,0) + V(704,0) 

(where P0LY(2) is the number of controlled nodes, the last three numbers 

are the coefficients of the polynomial.) 

To calculate VC2 in the entry of b . Two cards are specified. 



VK102 103 104 0 
CClOl 104 0 IM 

the equivalent circuit is 

92 

EElOl 

Or 
103 

VK102=0 

104 

CC101=lmF 

— l e — 

When the voltage is calculated, the voltage, at node 103 is known, 

therefore, the current flows through the capacitor, ICl, is represented 

by I(VK102). 

2 "2 2 
To compute b and b , consider the first element of a , 

IRI = IC2 + y ^ . 

The equivalent SPICE code is 

EE103 0 109 P0LY(2) VK102 VK703 0 1 1 
VK105 109 110 0 

gives the value of IRI = I(VK105), and 

RR102 110 0 5 

Using this value of IRI and the component values Rl, the voltage VRl 

which is an element of b is computed. The first element of b is to 

measure the voltage across node 110, V(llO). 
2 

Consider the first element of b , 

VRl = -VDl - VLl + u-j - y3 

The equivalent SPICE code is 

EE105 115 0 P0LY(4) 102 0 106 0 701 0 704 0 0 
RRI08 115 0 1 

These cards compute the voltage of Rl, VR1=V(115). 

- 1 - 1 1 1 



93 

To compare these two values a print control card is used, 

.PRINT TRAN V(115), V(llO) 

2 "2 
in which the values of b, and b, are stored in the output file. 

Each component subdivision creates a pseudo circuit, and each pseudo 

circuit generates a SPICE code as above, which is stored in a data file 

named TEOO**.DT (where ** is the subdivision number). 

Test Results: When the on-line component is conducted, either a 

simulation program or the ATE interface is used to obtain the test data. 

If the simulation program is used, user will specify the simulated faulty 

component, it may be open or short circuit, or out-of tolerance. A data 

file named SIOO**.DT is used to store the SPICE code for the circuit with 

simulated faulty component (where ** is the faulty component number). 

Suppose that the component 1, Rl, is faulty, and it is simulated as 

an open circuit, the SPICE code for the first component was 

Rl 5 1 5 

and now is changed to be 

IRI 5 1 0 

The SPICE code is stored in SIOOOl.DT. 

If the test data is obtained from the measurement of the actual UUT, 

a data file is created in the host computer to collect the test data 

•which transfers from the controller. A SPICE code is then generated by 

using the voltage controlled courses to simulate the test data, and 

stored in a data file named SIOOOl.DT. 

Assume the 5th subdivision is chosen, then the SPICE program is 

executed with an input file which concatenates the data files as follows: 



94 

SIOOOl.DT 

SOURCE.DT 

TE0005.DT 

2 "2 
The values b and b are stored in the output file. Similar to the 

linear case, with the comparison of these two values and the aid of the 

decision algorithm, one will be able to identify the faulty component(s). 

The test tesults of the program verification for the Power Supply 

Circuit are summarized in Table 5.3. 

In addition to the Power Supply example, a couple more examples are 
?5 

presented. They are the Astable Multivibrator" in Figure 5.2 and the 

Oscillator in Figure 5.3. The SPICE codes" for both circuits are 

shown in Figure 5.4, and their test results are also summarized in 

Table 5.3 



95 

® 

Figure 5.2. Astable Multivibrator 



96 

— O 

® 

i-
o 

u 
LO 

o 
CO 

LD 

s -



97 

ASTABLE CKT - A SIMPLE ASTABLE MULTIVIBRATOR 
.TRAN O.IUS lOUS 
VIN 5 0 PULSE(0 5 0 1 
VCC 6 0 5.0 
RCV 6 1 IK • 
RC2 6 2 IK 
RBI 6 3 30K 
RB2 5 4 30K 
Cl 1 4 150PF 
C2 2 3 150PF 
Ql 1 3 0 QSTD 
Q2 2 4 0 QSTD 
.OUTPUT VI 1 0 PRINT 
.OUTPUT V2 2 0 PRINT 
.OUTPUT V3 3 0 PRINT 
.OUTPUT V4 4 0 PRINT 

lUS lUS lOOUS lOOUS) 

TRAN 
TRAN 
TRAN 
TRAN 

.MODEL QSTD NPN(IS=1E-16 I 
+ TR=5NS CJE=0.4PF 1 
+ CCS=1PF VA=50) 
.END 

PE=0.{ 

OSC CKT - IKHZ OSCILLATOR 
VCC 2 0 5.6 
Ql 2 1 8 Ql 
Q2 3 6 5 Ql 
Q3 2 10 12 Ql 
Q4 11 3 7 Ql 
Q5 10 11 13 Ql 
Q6 2 10 9 Ql 
Q7 3 8 4 Ql 
Rl 2 3 12K 
R2 4 5 300 
R3 4 0 1.5K 
R4 10 1 98.603K 
R5 2 11 7.5K 
R6 7 0 IK 
R7 12 6 5K 
R8 6 0 lOK 
R9 2 10 1.5K 

PLOT 
PLOT 
PLOT 
PLOT 
3F=50 
B ME=( 

TRAN 
TRAN 
TRAN 
TRAN 
BR=0.1 
D.4 CJC= 

• 

RB̂  
=0.: 

=50 
5PF 

\ 

RC= 
PC= 

=10 TF=0.12NS 
=0.8 MC=0.333 

RIO 13 0 240 
Rll 9 0 150 
.MODEL Ql NPN(BF=60 BR=0.205 IS=1.21E-15) 
.END 

Figure 5.4. SPICE Codes for ASTABLE and OSC CKTs 



I/) 

13 
(J 
S-

98 

c 
o 

t o 
+-> 

CO 

ro 
LO 

OJ 

rtJ 

CD 

LO 

" ^ 1 

CO 

oo 

I 
CL 
Q -
13 

S-

o 
CL. 

n3 

ro 

ro 

Cl. 

o 

oo 

ro i ro 

OJ 
L> 

I— 

o 

I 
4 - ra 
O S -
I Qj; 

4-> I : 
3 o' 
O - M : 

1 

cr. 

OD 

CD 

LO 

5-1 
O 

fl3 

X i 
•r— 
> 

Z3 

21 

OJ 

JD 
fC 
+-» 
LO 

CO 

oo 

UJ 

o 

o 
rr 
C/) 

o 
I c 

4 - fO 
0 s-
1 QJ 

+-> r— 
::3 o 
o - M o oo 

OJ 

C>0 

oo 

0 0 



CHAPTER 6 

CONCLUSIONS 

An analog Automatic Test Program Generator, AATPG, for both linear 

and nonlinear circuits, based on the self-test algorithm, has been pre

sented. The AATPG code was divided into off-line and on-line components. 

In the former, the test engineer inputs the system specifications to 

generate the test program and data base. The test program was also 

verified and validated before the actual on-line test was performed. 

The test is run in a fully automatic mode. 

Basically, the algorithm is unique in its ability to test linear 

and nonlinear subsystems or models of arbitrary size. Actually, as 

shown in Chapter 1, an IC chip or a subsystem can be considered as an 

individual component in the test process. Thus one can use the algo

rithm to test modern electronic circuits. 

Although the on-line computational requirements for the test algo

rithm do not compare with a simulation-before-test algorithm, they can 

be kept within reasonable bounds. One can limit the on-line computation, 

for instance, by restricting the number of algorithm steps. Therefore, 

the proposed AATPG code permits one to trade-off between on-line compu

tational requirements and test points. A formula was derived in Chapter 

4, to define the maximum number of algorithm steps required. This number 

depends on the structure of the matrix L^ which relates to the choice 

of the test points. As the number of test points increase, the steps 

in the algorithm decreases. We believe the testability 

99 



100 

discussed in the Appendix can be used to pick up a set of "good" test 

points. An alternate way to reduce the computational requirements using 

parallel processing was presented in Chapter 4. The minimum number of 

algorithm steps required shows that these subdivisions are chosen inde

pendently; therefore, those steps can be carried out simultaneously. 

To identify the faulty component(s) from the test results, three 

decision algorithms were presented. The next algorithm subdivision can 

be chosen automatically or manually for the single failure case by 

user's choice. But the exact algorithm for the multiple failure case 

is not available. However, it is noteworthy that the underlying combi

natorial decision problem is quite similar to the t-diagnosability 

problem usually associated with self-testing computer networks, 

wherein the multiple fault has been resolved. ''^^ 

Another major open question with respect to the performance of the 

algorithm is robustness, i.e., its sensitivity intolerance deviations 

from nominal of the "good" components. 

Finally, a big ambiguity set shown in Table 5.3 (c) is due to the 

performance of the simulation program. Since, in our algorithm, the 

test data and the test results are simulated from a pseudo circuit, the 

simulation may not be handled by the conventional circuit package. 

Therefore, either accurate simulation models or new circuit packages 

are needed. 



REFERENCES 

1. .Aho A.V., Hopcroft, J.E. and Ullman, J.D., The Design and 
- Analysis of Computer Algorithm, Addison-Wesley, 1974, pp. 199-200. 

2. Amin, T., unpublished notes, Bell Laboratories, 1980. 

3. Aprille, T.J and Trick, T.N., "Steady-State Analysis of Nonlinear 
Circuits with Periodic Inputs", Proc. IEEE, Vol. 60, pp. 108-114, 

4. Boylestad, R. and Nashelksy, L., Electricity, Electronics, and 
Electromagnetics, Prentice-Hall, Englewood Cliffs, N J T 9 7 7 — 
p. 290. . ., , 

5. Breuer, M.A., Editor, Design Automation of Digital Systems, Vol 1, 
Theory and Techniques, Prentice-Hall, Englewood Cliffs, N.J., 1972. 

6. Chang, H.Y., Manning, E.G. and Metze, G., Fault Diagnosis of 
Digital Systems, Wiley, New York, N.Y., 1970^ 

7. DeCarlo, R.A. and Saeks, R., Interconnected Dynamical Systems, 
Marcel Dekker, New York, 1981^ 

8. Duhamal, P. and Rault, J . C , "Automatic test generation techniques 
for analog circuits and systems: a review", IEEE Trans, on Circuits 
Syst., Vol. CAS 26, pp. 411-440, July 1979. 

9. Eleccion, M., "Automatic Test Equipment: Hardware and Software", 
IEEE Spectrum, June 1976, pp. 60-64. 

10. El-Turkey, F.M., and Vlach, J., "Calculation of element values from 
node voltage measurements", 1980 Int. Symp. Circuits Syst. Proc , 
pp. 170-172. 

11 Friedman, A.D. and Menon, P.P., Fault Detection in Digital Circuits, 
Prentice-Hall, Englewood Cliffs, N.J., 1970. 

12. Greenbaum, J.R., "Computer-aided fault analysis - today, tomorrow, 
or never", in Rational Fault Analysis (ed. R. Saeks and S.R. Liberty), 
Marcel Dekker, New York, pp. 96-111, (1977). 

13. Greenspan, A.M., "Automatic Test Systems Dedicated or Integrated", 
in Automatic Test Equipment: Hardware, Software and Management, (ed 
F. Liguori), IEEE Press, New York, N.Y. 1974. 

101 



102 

14. Hakimi, L.S., "Fault analysis in digital systems - A graph 
theoretic approach", in Rational Fault Analysis (ed. R. Saeks and 
S.R. Liberty), Marcel Dekker, New York, pp. 1-12, (1977). 

15. ;Hakimi, S.L. and Nakajima, K., "On a theory of t-diagnosable analog 
systems", IEEE Trans. Circuits and Syst., to appear. 

16. Healy, J.T., Automatic Testing and Evaluation of Digital Integrated 
Circuits, Prentice-Hall, Reston, Virginia, 1981. 

17. Hayes, J. P., "Modeling faults in digital circuits", in Rational 
Fault Analysis (ed. R. Saeks and S.R. Liberty), Marcel Dekker, New 
York, pp. 78-95, (1977). 

18. Knowles, R., Automatic Testing: Systems and Applications, McGraw-
Hill (UK), 1976. 

19. Lee, S.C, Digital Circuits and Logic Design, Prentice-Hall, Engle
wood Cliffs, N.J., 1976. 

20. Liguori, F., Editor, Automatic Test Equipment: Hardware, Software 
and Management, IEEE Press, New York, 1974. 

21. Lin, C.S., Huang, Z.F., and Liu, R.-W., "Fault Diagnosis of Linear 
Analog Networks: A Theory and its Application", Proc. IEEE Int. 
Symp. Circuits and Syst., pp. 1090-1093, May 1983. 

22. Liu, R.-W., unpublished notes, Univ. of Notre Dame, 1980. 

23. Mayeda, W., Graph Theory, Wiley, New York, 1972. 

24. McAleer, H.T., "A Look at Automatic Testing", in Automatic Test 
Equipment: Hardware, Software and Management (ed. F. Liguori), 
IEEE Press, New York, N.Y., 1974. 

25. Nagel , L.W., SPICE2: A computer program to simulate semiconductor 
circuits, Univ. of California, Berkeley, 1975. 

26. NAP2: A Nonlinear Analysis Program for Electric Circuits, Version 2, 
Technical Univ. of Denmark, Lyngby, Denmark, Dec. 1976. 

27. Peatman, J.B., The Design of Digital Systems, McGraw-Hill, 1972. 

28. PI ice, W.A., "A survey of analog fault diagnosis", presented at the 
Workshop on Analog Fault Diagnosis, Univ. of Notre Dame, Notre Dame, 
IN., May 1981. 



103 

29. PI ice, W.A., "Automatic generation of fault isolation tests for 
analog circuit boards: a survey", presented at ATEX East '78, 
Boston, Sept. 1978, pp. 26-28. 

30... ̂  Preparata, F.P., Metze, G., and Chien, R.T., "On the connection 
assignment problem of diagnosible systems", IEEE Trans. Electronic 
Computers, Vol. EC-16, pp. 448-454, (1967). 

31. Saeks, R., "Criteria for analog fault diagnosis", in Nonlinear 
Fault Analysis, Texas Tech Univ., Lubbock, TX pp. 19-28. 

32. Saeks, R., Singh, S.P., and Liu, R.W., "Fault isolation via com
ponents simulation", IEEE Trans. Circuit Theory, Vol. CT-19, 
pp. 634-640, Nov. 1972. 

33. Sellers, F.F., Hsiao, M.Y., and Bearsdn, L.W., Error Detecting 
Logic, McGraw-Hill, New York, N.Y., 1968. 

34. Soecial Issue on Fault-Tolerant Computing, IEEE Trans. Computers, 
Vol. C-20, Nov. 1971. 

35. Special Issue on Fault-Tolerant Computing, IEEE Trans. Computers, 
Vol. C-22, Mar. 1973. 

36. TESTAID-III Logic Simulator, Hewlett-Packard, Palo Alto, California, 
Jan. 1977. 

37. To, K., and Tullos, R.E., "Automatic Testing Systems", IEEE 
Spectrum, September 1974, pp. 44-53. 

38. Trick, T.N., Mayeda, W., and Sakla, A.A., "Calculation of parameter 
values from node voltage measurements", IEEE Trans. Circuits Syst., 
Vol. CAS-26, pp. 466-474, July 1979. 

39. Wey, C L . , AATPG-Linear Circui t Version, User Manual, Texas Tech 
University, lyyz. 

40. Wey, C.L., AATPG-iionlinear Circuit Version, User Manual, Texas 
Tech University, 1983. 

41. Wu, C.-c, Ph.D. Dissertation, Texas Tech Univ., 1981. 

42. Wu, C.-c, Nakajima, K., Wey, C L . and Saeks, R. , "Analog Fault 
Diagnosis with Failure Bounds", IEEE Trans. Circuits Syst., Vol. 
CAS-29, May 1982, pp. 277-284. 



APPENDIX 

Let B be.a m by n matrix, n > m, 

21 
Definition: 

The global column-rank of B is said to be k if every combination of 

k columns of B is linearly independent, and some combination of (k+1) 

columns of B is linearly dependent. 

Definition:^^ 

A system is t-diagnosable if, given the results of all tests, one 

can identify the faulty units provided that the number of faulty units 

does not exceed t. 

In the single failure case, we assume that at most one component is 

faulty. All possible test results obtained from a given step of an 

algorithm are summarized, and together the conclusions are summarized 

as follows 

Conclusions Test Result 

(1 2 3 . . m) 
' " " all group "2" components are good 

all group "2" except #1 are good 
all group "2" components are good 

2" components are good 

t each step of test algorithm 

0 0 0 
1 0 0 
1 1 0 

1 1 1 

0 
0 
0 

i all group 

Consistent with the above arguments, a 

either all or all but one of the group "2" components are found to be 

good , i.e., at most one faulty component is found in each step. 

Lemma 1: 

A system is 1-diagnosable if and only if every pair of elements 

appear in at least one group "2". 

104 



105 

Proof: 

If X and y are two possible faulty components, there exists a 

subdivision which contains x and y. As shown in the above note, in each 

step, at most one faulty component is found, implying that x and y 

cannot be faulty simultaneously, therefore, the system is 

1-diagnosable. 

Conversely, in the worst case, if x and y do not appear in the same 

group "2", and also, x and y are found to be possibly faulty, implying 

that two possible faulty components are in this system, contradicting 

the assumption of 1-diagnosable. Q 

Theorem 1: (For the case of all one-port components) 

The system is 1-diagnosable if and only if the flobal column-rank 

of the matrix Lp-] is at least 2. 

Proof: 

If the system is 1-diagnosable, by Lemma 1, every pair of elements 

appears in at least one group "2". Let x and y be any pair of elements 

appearing in the group "2". In our algorithm, the group "2" components 

are formed by a combination of columns of L^p in which the matrix is 

invertible. Therefore, any two columns of this matrix of the column 

combination must be linearly independent, i.e., the columns correspond

ing to X and y are linearly independent. The global column-rank is then 

at least 2. 

Conversely, if the global column-rank of L̂ -j is at least 2, i.e., 

any two columns of L^^ matrix are linearly independent, then every 



106 

pair of elements can be selected in the same group " 2 " , by Lemma 1 , 

the system is 1-diagnosable.Q 

.-For the mul t ip le-por t component case. Let 

1-21 = B = ^^} ^2 • • • ^r^ ^"^ 

Ŵ  = 7̂  of columns in M^ i = l , 2 , . . , r . 

r 
where Y W. = n 

i= l ' 

Definition: 

M, and Mp are linearly independent, if 

M^ * A^ + M^ * A^ = p̂  then A = 0̂  and A^ = 0 

where A, and A^ are vectors. 

Definition: (Generalized Global column-rank) ("L-rank") 

Let B be subdivided into r partitioned columns, M., as shown above. 

The L-rank of B is said to be k, if every combination of k parti

tioned columns of B is linearly independent. 

Theorem 2: (General case) 

The system is a 1-diagnosable, if and only if the L-rank of the 

matrix Lp-, is at least 2. 

Note: 

Since, if any one port of the multiple-port component is faulty, 

the group is faulty, hence, we can group the multiple ports as one. 

Therefore, the multiple-port problem is equivalent to the one port case. 

In the k failure case, we assume that at most k components are 

faulty. Consider the case of k=2, the possible test results with the 



107 

conclusions, in each step of the algorithm, are summarized as 

follows: 

.. Test Results 

•- (1 2 3 . . m) 
0 0 0 . • 0 all group "2" components are good. 
"1 0 0 . . 0 all group "2" components are good. 

except component #1. 
1 1 0 . . 0 all group "2" except #1 and #2 are 

good. 
1 1 1 . . 0 at least one of group "1" components 

are faul ty. 
II II 

II II 1 1 1 . . 1 

We conclude that, at each step, no more than two faulty components 

are found in the group "2". 

Similar to the arguments and proofs in the single failure case, we 

conclude the following lemma and theorems for multiple failure case. 

Lemma 2: 

A system is 2-diagnosable if and only if every triplet of elements 

appears in at least one group "2". 

Theorem 3: (For the case of all one-port components) 

The system is 2-diagnosable if and only if the global column-rank 

of the matrix Lp-i is at least 3. 

Theorem 4: (General case) 

The system is 2-diagnosable if and only if the L-rank of the matrix 

Lpi is at least 3. 

Similarly, consider an arbitrary integer k, i.e., k failure case, 

all the possible results with the conclusions are shown-as follows: 



108 

Test Results Conclusions 

(1 2 3 . k-1 k k+1 . m) 
0 0 0 . 0 0 0 . 0 all group "2" components are good. 

• • , • 1 0 0 . 0 0 0 . 0 all group "2" except #1 are good. 
; • II II 

1 1 1 . 1 0 0 . 0 all group "2" except #1 through 
#(k-l) are good. 

1 1 1 . 1 1 0 . 0 all group "2" except #1 through 
#k are good. 

1 1 1 . 1 1 1 . 0 at least one of group "1" components 
are faul ty. 

II II 

II II 1 1 1 1 

We conclude that at each step, no more than k faulty components 

are found in the group "2". 

Lemma 3: 

A system is k-diagnosable if and only if every (k+l)-tuple of 

elements appears in at least one group "2". 

Theorem 5: (For the case of all one-port components) 

The system is k-diagnosable if and only if the global column-

rank of the matrix Lp-. is at least (k+1). 

Theorem 6: (General case) 

The system is k-diagnosable if and only if the L-rank of the matrix 

Lpi is at least (k+1). 


