

Customer Notification

EW78K

Embedded Workbench® for 78K

Operating Precautions

Y-IAR-EW78K-FULL-MOBILE

Y-IAR-EW78K-FULL

www.renesas.com

Document No. R20UT0002ED0737

Date Published: May 2015

http://www.renesas.com/

 Customer Notification R20UT0002ED0737 2

Notice

1. All information included in this document is current as of the date this document is issued. Such
information, however, is subject to change without any prior notice. Before purchasing or using any
Renesas Electronics products listed herein, please confirm the latest product information with a Renesas
Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted
hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product,
whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to
illustrate the operation of semiconductor products and application examples. You are fully responsible
for the incorporation of these circuits, software, and information in the design of your equipment.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising
from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this
document for any purpose relating to military applications or use by the military, including but not limited
to the development of weapons of mass destruction. Renesas Electronics products and technology may
not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions
from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”,
“High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product
depends on the product’s quality grade, as indicated below. You must check the quality grade of each
Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as “Specific” without the prior written consent of
Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics
shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as “Specific” or for which the
product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly
specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement
equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-
disaster systems; anti- crime systems; safety equipment; and medical equipment not specifically
designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems;
medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that
pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified
by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product
characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate
and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to
radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

 Customer Notification R20UT0002ED0737 3

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the
environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information
contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also
includes its majority- owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas
Electronics.

 Customer Notification R20UT0002ED0737 4

Table of Contents

A) Table of Operating Precautions for the IDE EW78K .. 5

B) Table of Operating Precautions for the Assembler A78K .. 5

C) Table of Operating Precautions for C/C++ Compiler ICC78K .. 6

D) Table of Operating Precautions for the Linker XLINK .. 7

E) Table of Operating Precautions for C-SPY Debugger CS78K ... 8

F) Table of Operating Precautions for the Assembler A78K0R ..10

G) Table of Operating Precautions for C/C++ Compiler ICC78K0R ...11

H) Description of Operating Precautions for the IDE EW78K ...13

I) Description of Operating Precautions for the Assembler A78K ...22

J) Description of Operating Precautions for the C/C++ Compiler ICC78K ..23

K) Description of Operating Precautions for Linker (XLINK) ..37

L) Description of Operating Precautions for Debugger (C-SPY) ..40

M) Description of Operating Precautions for the Assembler A78K0R...56

N) Description of Operating Precautions for the C/C++ Compiler ICC78K0R59

O) Valid Specification ..88

P) Revision ..88

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 5

A) Table of Operating Precautions for the IDE EW78K

No. Outline

 EW78K

Version 4.8a 5.2d 5.5.0 6.0.3 6.0.3.2 6.06.1 6.46.2

A2 An empty Workspace can not be saved

A10

Usage of Soft-Links in output path
definition could cause the IDE to link two
copies of the output files in the
Workspace Windows

A11
78K0R: Project settings for near-
constant-location are not saved.

A12 Heap size input value is limited to 64KB

A13
Linker output file in format IEEE695 can
not be generated

A14 Empty Go to Function Window

A15 Corrupted Default-File Filter

A16
IDE crashes if illegal Values defined for
78K0R Mirror Area

A17
MISRA C checker can not be enabled in
EW78K Dialogue

A18
Actual Linker-MAP-File not automatically
updated in Editor

- - -

B) Table of Operating Precautions for the Assembler A78K

No. Outline

 A78K

Version 4.60a 4.61a 4.62.1 4.70.1 4.71.1 4.80.1

B1
RSEG Directives can not be used in
Macro Definitions

B2
Assembler File must contain at least one
Directive

- - -

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 6

C) Table of Operating Precautions for C/C++ Compiler ICC78K

No. Outline

 ICC78K

Version 4.62.5 4.70.1 4.71.1 4.80.1 4.80.2 4.80.3

C5

No compiler message in case of a
variable redefinition of the same data
type but with the different object
attribute

C66
Wrong Code generated for if condition

resulting in single bit test

C67
Default case is not executed if switch

variable is larger than 0xFFFF

C68
Internal Compiler Error due to non

terminated Jump Size Optimization

C69
Internal Compiler Error at using intrinsic

function ‘__segment_begin’

C71
Internal Compiler Error using bit test and
branch instruction

C72
Wrong Code generated for storing
variable to stack after Function Call

C73
Internal Compiler Error at Negation of
Bitfield-Element

C74
#pragma location Directive does not
support Unions and Structures

C75
Wrong Code generated for Pointer Array
Index

C76
Internal Compiler Error while using
__segment_size as memcpy Parameter

C77
Bit Access generated although Keyword
‘__no_bit_access’ was used

C78
Unclear Description of Parameter
Passing for Structure Types in Compiler
Manual

C79
Wrong Code generated causing an
unreachable else Path

C80 No Code generated for if Condition

C81 MISRA C 2004 Rule 10.6 not triggered

C82 Wrong Code generated for Array Index

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 7

D) Table of Operating Precautions for the Linker XLINK

No. Outline
 XLINK

Version 5.00.1
5.00.2

5.10.8
5.2.6.1

9
5.3.1.26 5.4.1.30 5.6.0.36 6.0.3.49 6.2.2.68

D3
Breakpoint cannot be
defined in Function (only
XCOFF78K Format)

D29
Output file format
UBROFF:
Internal Linker Error 1

D30
Output file format
UBROFF:
Internal Linker Error 2

D31

Output file format
ELF/DWARF:
Error[e113]: Corrupt input
file: "Illegal ELF-register."

D32
ELF/DWARF Format:
Wrong Return Type Entry

D33
Definition of Segment
Area Size ‘0’ causes
Internal Linker Error

-

D34
Erroneously Error e16
‘Segment too long’ is
generated

- - - -

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 8

E) Table of Operating Precautions for C-SPY Debugger CS78K

No. Outline
 CS78K

Version 4.60a 4.60b 4.62.1 4.70.1 4.71.1 4.71.2 4.80.1 4.80.3

E34

If the same name is used for a
data-object and for a data-
type, this data-object can not
be displayed in the Watch
Window

E43

C-SPY 78K0R Simulator
Driver: Interrupt simulation
only works correct at priority
level three.

E44
C-SPY 78K0 MINICUBE2
Driver: Error message about
old firmware version

E45
C-SPY all Drivers: Update
Time Watch Window

E46
C-SPY Simulator Driver:
Incorrect Value shown in Live-
Watch Window

E47
C-SPY 78K0 MINICUBE Driver:
Incorrect System Clock
Selection

E48
Incorrect Variable Address
may be displayed in Event
Window or Watch Window

E49

Stack Initialization in default
cstartup-module triggers C-
SPY Debugger stack
observation

E50
Wrong display of array in C-
SPY Watch Window

E51
C-SPY 78K Simulator Driver:
Wrong macro access to 16bit
data

E52
C-SPY 78K: Displayed floating
point value in watch window
may be wrong

E53
C-SPY 78K: Resetting a
running application causes
stack warning message

E54
C-SPY 78K: Breakpoint can
not be defined at some source
lines

E55
C-SPY 78K0R: Wrong Display
of 16bit SFR in Memory
Window

E56
C-SPY 78K0R IECUBE Driver:
Inaccurate Time Measurement
Result

E57
C-SPY all Drivers:
Program Counter may be
uninitialized

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 9

No. Outline
 CS78K

Version 4.60a 4.60b 4.62.1 4.70.1 4.71.1 4.71.2 4.80.1 4.80.3

E58
C-SPY 78K0R MINICUBE2
Driver: Broken Emulator
Communication

E59

All C-SPY Drivers except
Simulator Driver: System
Macro __driverType not
implemented

E60
All C-SPY Drivers: Incorrect
Flash Memory Upload in Run-
Mode

E61
ORTI Plug in Error Message
„Memory Exhausted”

- -

E62
Constant Data Object located
in Data Flash Area displayed
incorrectly in Watch Window

- -

E63
Reading Data-Flash-Memory
causes an Error

- -

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 10

F) Table of Operating Precautions for the Assembler A78K0R

No. Outline

 A78K0R

Version 4.61a 4.62.1 4.70.1 4.71.1 4.80.1 4.80.2

F1
RSEG Directives can not be used in
Macro Definitions

F11
Illegal indirect MOVW instruction is
accepted and wrong Op-Code is
generated

F12
Illegal Op-Code generated if SFR symbol
is defined after the usage

F13 Directive DS64 is not implemented

F14
Wrong Code Generated for Bit Test
Instructions

-

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 11

G) Table of Operating Precautions for C/C++ Compiler ICC78K0R

No. Outline

 ICC78K0R

Version 4.70.1 4.71.1 4.71.2 4.80.1 4.80.2 4.80.3

G36
Internal Compiler Error due to non
terminated Jump Size Optimization

G37
Internal Compiler Error at using intrinsic

function ‘__segment_begin’

G38
Wrong Code generated for far Branch
Inline-Assembler Instruction

G39
Inline Assembler Range Error Message
triggered by Mistake

G41
Internal Compiler Error at far pointer
access to I/O area

G42
Internal Compiler Error at calling strcpy
or memcpy in far data model

G43
Wrong Pointer Access to Special-
Function-Register in Data Model ‘far’

G44
Error Message Pe028 Triggered by
Mistake

G45
Internal Compiler Error: Casting SADDR
Address into far Pointer

G46 Error in Device Specific Header File

G47
Internal Compiler Error:
EctContextBase::GetValue

G48 Wrong Offset Address Calculation

G49

Internal Compiler Error CoreUtil/General

at using MISRA C and Option –
header_context

G50
Far Pointer defined instead of near
Pointer

G51
Internal Compiler Error at Negation of
Bitfield-Element

G52
Internal Compiler Error at Macro
Expansion

G53
Internal Compiler Error at Returning a
negated right-shifted Value

G54
Internal Compiler Error at Returning a
Comparison Result

G55
Wrong Code generated for Function Call
directly after memcpy-Function call

G56 Compilation process stalls

G57
Wrong Code could be generated for Near
Pointer Indexing

G58
#pragma location Directive does not
support Unions and Structs

G59
Internal Compiler Error while using
__segment_size as memcpy Parameter

G61
Wrong Code generated for Bit Negation
of 32bit Bitfield

G62
CPU Cycle Information of CALLT
Instruction missing in Compiler-List-File

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 12

No. Outline

 ICC78K0R

Version 4.70.1 4.71.1 4.71.2 4.80.1 4.80.2 4.80.3

G63
Wong Code generated at far-Pointer
Arithmetic

G64
Bit Access generated although Keyword
‘__no_bit_access’ was used

G65
Wrong indirect post Increment of a
Result of a post Increment

G66
Unclear Description of Parameter
Passing for Structure Types in Compiler
Manual

G67
Internal Error in case of similar Function
in ‘switch’ and ‘if’ Node

G68
Unnecessary Padding Byte added to
Arrays of Character

-

G70
Wrong Code generated while Copying a
1-Bit Bitfield

G71 MISRA C 2004 Rule 10.6 not triggered

G72 Stack Content can be corrupted by ISR

G73 Wrong Code generated for Array Index

: Applicable : Not applicable - : Not checked

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 13

H) Description of Operating Precautions for the IDE EW78K

No. A2 An empty workspace can not be saved

Details

Although it is described in the user’s manual an empty workspace can not be saved.

Workaround

Add at least one project to the workspace before saving. The project may be an empty project.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 14

No. A10 Usage of Soft-Links in output path definition could cause the IDE to link two copies of the
output files in the Workspace Windows

Details

If the IAR System soft-links (e.g. $PROJ_DIR$) are used to define the output file path, the Embedded
Workbench may link two copies of the generated output file in the Workspace Window.

Example:

Workaround
Don’t use soft-links in the output file path definition? The issue will be changed in next major
update of EW78K.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 15

No. A11 78K0R: Project settings for near-constant-location are not saved.

Details

The size of the near-constant-location-area is not saved between two Embedded Workbench
sessions. Instead, the default values are loaded.

Workaround
If the default setting is modified, please set the new values manually.

No. A12 Heap size input value is limited to 64KB

Details

The maximum heap size that can be entered in the Embedded Workbench GUI is 64KB. In case
of entering a larger value the following error message is generated:

Workaround
Please specify the heap-size directly in the used linker-control file instead of using the symbol
‘_HEAP_SIZE‘ defined in the Embedded Workbench GUI:

//--

// Heap segment

//--

-Z(DATA)HEAP+0x12000=<start_address>-<end_address>

The problem will be fixed in the next EW78K platform update.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 16

No. A13 Linker output file in format IEEE695 can not be generated

Details

If a 78K0R target device and the linker output file format IEEE695 is selected, no output file is
selected and the following error message is generated:

Fatal Error[e92]: Cannot use the 'ieee695' output format with this cpu

Workaround

Please select another output file format (e.g. C-SPY Debug Format), enable the generation of a
second output file, and select the format IEEE695 for the second output file:

The problem will be fixed in the next EW78K platform update.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 17

No. A14 Empty Go to Function Window

Details

Depending on some source code constructions (e.g. using shift operator to initialize a structure
element) the Go to Function Window may be empty.
Correct Go to Function Window:

Empty Go to Function Window although there are several functions defined in the active source
file:

Workaround
None. The problem will be fixed in the next EW78K platform update.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 18

No. A15 Corrupted Default-File Filter

Details

The default file filter of the C-SPY file selection dialogue after pressing the button '...'
of the code breakpoint 'Enter Location Window' is corrupted and therefore no files are listed
although there are source files in the selected folder:

Workaround
Enter '*.*' as file name to get a list of all available source files and select the file.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 19

No. A16 IDE crashes if illegal Values defined for 78K0R Mirror Area

Details

The IDE crashes while starting the C-SPY Simulator, when illegal values for start address and
size of near constant location in the project options were defined.

Example: Start address: 0xFF000 Size: 4.25KB

Workaround

Use only valid values. By default a correct start address and the maximum size are selected.
If the complete area isn’t used, available space can be used by other segments without
modifying the mirror area setting.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 20

No. A17 MISRA C checker can not be enabled in EW78K Dialogue

Details

The MISRA C checker can not be enabled in the EW GUI:

Workaround

An update patch can be downloaded from the IAR Systems MyPages area to fix this problem.
Further details are described here:

http://supp.iar.com/Updates/?product=EW78K&version=4.70&highlight=1003

As a workaround the compiler can be used by command line interface to use the MISRA C
checker.

http://supp.iar.com/Updates/?product=EW78K&version=4.70&highlight=1003

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 21

No. A18 Actual Linker-MAP-File not automatically updated in Editor

IAR Reference: EW24451

Details

Although the option ‘Scan for changed Files’ is enabled in EW tool options, a linker map file in
HTML format is not automatically updated.

Workarounds
Use text format or update the file manually.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 22

I) Description of Operating Precautions for the Assembler A78K

No. B1 RSEG Directives can not be used in Macro Definitions

Details

The assembler calculates a wrong relative jump-distance if the RSEG directive is used within a

macro definition:

Example

mDummyMacro MACRO

 RSEG CODE

 NOP

 ENDM

Workaround

Don’t use the RSEG directive in macro definitions. The used code-segment must be defined in
the code where the macro is expanded to.

No. B2 Assembler File must contain at least one Directive

Details

An assembler module without any assembler directive causes the following error message:

Error[As073]: Each file must contain at least one directive

Example

#if PLATFORM == RL78

 ; section without directive

#else

 ; section without directive

#endif

Workaround

Please use the END directive:

#if PLATFORM == RL78

 ; section code

 END

#else

 ; section code

 END

#endif

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 23

J) Description of Operating Precautions for the C/C++ Compiler ICC78K

No. C5 No compiler message in case of a variable redefinition of the same data type but with the
different object attribute

Details

The compiler doesn’t generate a message for the user if a variable is redefined with the same
data type but with a different object attribute.

Example:

unsigned int i;

__no_init unsigned int i;

Workaround

Manual check by the user required.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 24

No. C66 Wrong Code generated for if condition resulting in single bit test

For an if-condition resulting in a single bit test wrong code may be generated at optimization
level medium and higher, if it was followed directly by a clear of the variable tested in both
branches.

extern unsigned char func1 (void);

extern unsigned char func2 (unsigned char);

unsigned char var1;

void test(void)

{

 unsigned char local1 = func1();

 unsigned char mask = func2(local1);

 if(var1 & 0x40) {

 var1 = 0;

 if (mask & (0x04)) {

 var1 = 0x04;

 }

 }

 else {

 var1 = 0;

 if (mask & (0x01)) {

 var1 = 0x01;

 }

 }

}

Workarounds:

Reduce the optimization level for the affected function:

#pragma optimize=low

void test(void)

{

 …

}

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 25

No. C67 Default case is not executed if switch variable is larger than 0xFFFF

Due to a problem in the assembler switch routine, switch variable values larger than 0xFFFF
does not execute the default case as expected.

volatile long lVal = 0x10000;

unsigned char test (void)

{

 unsigned char uchRet;

 switch(lVal)

 {

 case 0l:

 case 1l:

 case 2l:

 case 3l:

 uchRet = 1;

 break;

 case 4l:

 case 5l:

 default:

 uchRet = 0;

 break;

 }

 return uchRet;

}

Workarounds:

- the data type of the switch variable to short or smaller

- replace the switch command by if and else commands

The issue will be fixed in the next update (target May 2011)

No. C68 Internal Compiler Error due to non terminated Jump Size Optimization

At optimization level high some complex switch statements cause an internal compiler, because
the jump size optimization will not terminate:

Workaround:

Reduce the optimization level to medium or low for the function including the switch statement

by using #pragma optimization in front of the function definition.

The issue will be fixed in the next update (target May 2011)

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 26

No. C69 Internal Compiler Error at using intrinsic function ‘__segment_begin’

At optimization level medium or higher using the intrinsic function ‘__segment _begin’ inside an
if-statement or any kind of loop may cause an internal compiler error.

Example:

#include <intrinsics.h>

#pragma segment="MYSEG"

extern void func1(unsigned char*);

void test (void* ptr)

{

 if(ptr != ((void*)0)) {

 func1(__segment_begin("MYSEG"));

 }

}

Workarounds:

1)

Reduce the optimization level to low for the function including the if statement by using #pragma

optimization in front of the function definition:

#pragma optimize=low

void test (void* ptr)

{

 …

}

2)
Put the intrinsic function call in a function which is not inlined.

The issue will be fixed in the next update (target May 2011)

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 27

No. C71 Internal Compiler Error using bit test and branch instruction

Details

A bit test and branch instruction that jumped to the immediate next instruction could cause the
compiler to generate an internal error, if optimization level low or none are used.

Example:

static __saddr unsigned char locvar;

void foo1(void)

{

 if (locvar & 0x02u)

 {

 …

 } else if (locvar & 0x04u)

 {

 …

 } else if (locvar & 0x08u)

 {

 …

 } else if (locvar & 0x10u)

 {

 …

 }

}

Workaround:

Use optimization level medium or higher.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 28

No. C72 Wrong Code generated for storing variable to stack after Function Call

Details

Independent of the used memory model storing a variable to stack can generate a store to a
wrong location, if the position is on top of stack and the value stored is a return value from a
function with parameters.

Example:

char szBuffer[16];

void test(void)

{

 char* pszBuffer = szBuffer;

 pszBuffer += sprintf(pszBuffer, "%d ", 1);

}

Workaround:

Use a static pointer:

void workaround (void)

{

 static char* pszBuffer = szBuffer;

pszBuffer += sprintf(pszBuffer, "%d ", 1);

}

No. C73 Internal Compiler Error at Negation of Bitfield-Element

Details

Independent of the selected optimization level an internal compiler error may occur if a negated
bitfield element is used as return value:

Internal Error: [CoreUtil/General]: Stack overflow

Example

struct s{

 int m : 1;

};

int f1(struct s *p){

 return !p->m;

}

Workarounds

Use a temporary variable and select optimization level low:

int f1(struct s *p){

 unsigned int temp = !p->m;

 return temp;

}

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 29

No. C74 #pragma location Directive does not support Unions and Structures

Details

The #pragma location directive does not support unions and structs. An warning is generated to inform the
user:

Warning[Pe609]: this kind of pragma may not be used here

Example

typedef struct

{

 unsigned char no0:1;

 unsigned char no1:1;

 unsigned char no2:1;

 unsigned char no3:1;

 unsigned char no4:1;

 unsigned char no5:1;

 unsigned char no6:1;

 unsigned char no7:1;

} __BITS8;

#pragma location = 0xFF22;

__sfr __no_init volatile union {

 unsigned char PM2;

 __BITS8 PM2_bit;};

Workaround

Use the @ operator instead of #pragma location to define an absolute address:
__sfr __no_init volatile union {

 unsigned char PM2;

 __BITS8 PM2_bit;

} @ 0xFF22;

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 30

No. C75 Wrong Code generated for Pointer Array Index

Details

In rare cases, the value of an index variable of a pointer array may be destroyed, if it is a local
variable of type unsigned char and optimization level medium or higher is used.

Example
typedef struct

{

 unsigned char stringSize; unsigned char string[1];

}STRING_01;

typedef struct

{

 unsigned char stringSize; unsigned char string[7];

}STRING_07;

const STRING_07 string1 ={7,{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}};

const STRING_01 string2 ={1,{0x09}};

const STRING_01 string3 ={1,{0x0A}};

void *const array[3]={(void *)&string2,(void *)&string1,(void *)&string3};

unsigned char *ptr;

unsigned char dispbuffer[15];

void test (void)

{

 unsigned int local1=1;

 DISP_STRING_01 *local2;

 unsigned char *local3;

 unsigned char local4;

 unsigned char local5=0;

 if(local1 < 3u) {

 local2 = (STRING_01 *)array[local1];

 local3 = &(local2->string[0]);

 local4 = local2->stringSize;

 ptr = ((unsigned char *)(void *)&dispbuffer);

 if(local4 != 0) {

 do {

 if (((*local3) > 1u) && ((*local3) <= 254u)) {

 local5 = 1;

 }

 else {

 local5 = 0;

 }

 local3 = &local3[local5];

 if(local4 >= local5) {

 local4 -= local5;

 }

 else {

 local5 = 0;

 }

 }while(local4 != 0);

 }

 else {

 }

 }

 else{

 }

}

Workarounds
Declare index variable (=local5) as volatile or reduce optimization level for this function to low

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 31

No. C76 Internal Compiler Error while using __segment_size as memcpy Parameter

Details

Using intrinsic function __segment_size as size parameter for memcpy function causes an
internal compiler error:

Internal Error: [PaType – MemoryAttribute]: no memory attribute set

Example

#include <string.h>

#pragma segment="MY_SEGMENT_1" __near

#pragma segment="MY_SEGMENT_2" __near

void test(void)

{

 memcpy(__segment_begin("MY_SEGMENT_1"),

 __segment_begin("MY_SEGMENT_2"),

 __segment_size("MY_SEGMENT_2"));

}

Workaround

Use a temporary variable:

void workaround(void)

{

 size_t my_var;

 my_var= __segment_size("MY_SEGMENT_2");

 memcpy(__segment_begin("MY_SEGMENT_1"),

 __segment_begin("MY_SEGMENT_2"),

 my_var);

}

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 32

No. C77 Bit Access generated although Keyword ‘__no_bit_access’ was used

Details

The compiler doesn’t take care on the keyword __no_bit_access in pointer definitions.Although
a pointer is correctly defined using the keyword ‘__no_bit_access’, the compiler generates a bit
access. For some I/O registers this causes an illegal I/O register access.

Example

volatile unsigned short __no_bit_access v1;

volatile unsigned short __no_bit_access* ptr1 = &v1;

void test (void)

{

 *ptr1 = 0x0123U;

 *ptr1 |= 0x4000U;

}

Workaround

Use direct access instead of indirect pointer access

void workaround (void)

{

 v1 = 0x0123U;

 v1 |= 0x4000U;

}

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 33

No. C78 Unclear Description of Parameter Passing for Structure Types in Compiler Manual

IAR Reference: EW24225

Details

At page 108 of the RL78 C/C++ Compiler Reference Guide (2nd Edition) parameter passing to
function is described. It is described that structure types parameters are passed via stack except
the size is 1,2,4 and 4 bytes:

Structure types: struct, union, and classes, except structs and unions

of sizes 1, 2, and 4

This is correct, but additionally the structure type element must be word aligned. The alignment
of the element is defined by the data type of the largest member.

Example

typedef struct {

 unsigned char e1;

 unsigned char e2;

} s1_TYPE;

The above structure is passed via stack as only byte aligned elements are included.

Workaround

Include the structure type element in a union to force word alignment:

typedef union {

 struct {

 unsigned char e1;

 unsigned char e2;

 };

 unsigned short dummy;

} s1_TYPE;

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 34

No. C79 Wrong Code generated causing an unreachable else Path

IAR Reference: EW24492

Details

Using high optimization level an optimization trying to determine whether a test had the same
outcome for all values of the loop variable didn't handle expressions over- or under-flowing
(going from UINT_MAX to zero, or vice versa) correctly.

The optimization incorrectly assumed ((loc1 - 4u) < 4u) would never be true for any value of
loc1.

The problem can be triggered by tests inside loops, if
* the loop has constant lower and upper bounds,
* the expressions in the test consists of the loop variable and constants, and
* any expression in the test overflows or underflows when the lower or upper bounds are
inserted in the test.

Example

void test(void)

{

 char loc1;

 char loc2 = 0u;

 for (loc1 = 0u; loc1 < 8u; loc1++) {

 if(loc1 < 4u) {

 if ((((loc1 < 4u)&&(0u < 2u)) ? foo1(0u,loc1) : 0u)) {

 loc2 |= (char)(0x01u << (loc1));

 }

 }

 else {

 if (((((loc1-4u)<4u)&&(1u < 2u)) ? foo1(1u,(loc1 - 4u)) : 0u)) {

 loc2 |= (CHAR)(0x01u << (loc1));

 }

 }

 }

}

Workaround
Lower optimization level to medium or low.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 35

No. C80 No Code generated for if-Condition

IAR Reference: EW24694

Details

A combination of cross-jump optimization and memory tracking may generate a faulty
optimizations using high-speed optimization. As a result no code is generated for the if-
condition.

Example

typedef void (*T_pFct)(void);

extern void func1 (void)

static unsigned char volatile a1[2];

static __no_init unsigned char volatile a2[2];

static __no_init unsigned char volatile a3[2];

static unsigned char const a4[2] = {0x11u, 0x22u};

static T_pFct const tab[2] = {func1, (T_pFct)0};

unsigned char test(unsigned char const p1)

{

 unsigned char loc1 = 0u;

 unsigned char loc2 = 0u;

 unsigned char loc3 = 0u;

 unsigned char loc4 = 0u;

 if (p1 < 2) {

 loc1 = a1[p1]; loc2 = a2[p1]; loc3 = a3[p1];

 if((loc1 == loc2) && (loc2 == loc3)) {

 }

 else {

 if (loc1 == loc2) {

 a3[p1] = loc1 ;

 }

 else if (loc1 == loc3) {

 a2[p1] = loc1 ;

 }

 else if (loc2 == loc3) {

 a3[p1] = loc2 ;

 }

 else {

 a1[p1] = a4[p1]; a2[p1] = a4[p1];a3[p1] = a4[p1];

 loc4 = 1u ;

 }

 loc1 = a1[p1] ;

 }

 /* no code generated for following if condition at -Ohs */

 if((loc4 != 0u) && (tab[p1] != (T_pFct)0)) {

 (tab[p1])() ;

 }

 }

 return (loc1) ;

}

Workaround
Lower optimization level to medium or define local variable loc4 as volatile.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 36

No. C81 MISRA C 2004 Rule 10.6 not triggered

IAR Reference: EW24733

Details

The compiler does not check MISRA-C 2004 rule 10.6 correctly. It bases the check on the usage
of the constant instead of on the type of the constant.

Example:

#define UNSIGNED_CHAR_C 0x12

#define UNSIGNED_SHORT_C 0x1234

#define UNSIGNED_LONG_C 0x12345678

unsigned char var1 = UNSIGNED_CHAR_C; /* Error [Pm127]: */

unsigned short var2 = UNSIGNED_SHORT_C; /* no error MISRA C 2004 */

unsigned long var3 = UNSIGNED_LONG_C; /* no error MISRA C 2004 */

In above example error Pm127 should be triggered three times instead of only one.

Workaround
None; it will be fixed in next update.

No. C82 Wrong Code generated for Array Index

IAR Reference: EW25315

Details

Using an unsigned variable as index type can generate illegal indexes if the variable type is
smaller than the pointer index type and optimization level ‘high’ is used.

 Example:

const unsigned char id_tbl[2] = { 0x01, 0x02};

unsigned char id = 0x02;

int test(void)

{

 static unsigned char n;

 n = 2;

 while(n > 0) {

 n--;

 if(id_tbl[n] == id) {

 break;

 }

 }

 return 0;

}

Workaround

Use a signed index variable: static signed char n;

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 37

K) Description of Operating Precautions for Linker (XLINK)

No. D3 Breakpoint cannot be defined in function (only XCOFF78K Format)

Details

In case of using a function with a name of 32 characters (or more) and using static local variables a debug
problem occurs in the XCOFF78K format if the format modifier –ysp is set to truncate long symbol names.
It is not possible to define a breakpoint within the function.

Workaround

Don’t use the format modifier –ysp for the XCOFF78K format.
The format modifier –ysp was required by previous versions of the RENESAS debuggers. The
format modifier is not necessary anymore if the following debugger versions are used:
ID78K0x-NS: V2.50 or later
ID78K0x-QB: V2.80 or later

No. D29 Output file format UBROFF: Internal Linker Error 1

Details

When generating output in the UBROF output format, an internal linker error may occur if
statement information was generated for data declarations in assembler files:

 * * * I N T E R N A L E R R O R * * *

In function: unknown

Diagnostic: unexpected exception

P0: 1 P1: 0

Workarounds

None. The problem is fixed in linker version V4.61t

No. D30 Output file format UBROFF: Internal Linker Error 2

Details

When generating output in the UBROF output format, an internal linker error may occur if a
common segment is duplicated by linker option -K

 * * * I N T E R N A L E R R O R * * *

In function: unknown

Diagnostic: unexpected exception

P0: 1 P1: 0

Workarounds

None. Please use linker version V5.00.1 or later.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 38

No. D31 Output file format ELF/DWARF: Error[e113]: Corrupt input file: "Illegal ELF-register."

Details

The following sample causes a linker error e113 occurs in case of selecting the ELF/DWARF
output file format:

Fatal Error[e113]: Corrupt input file: "Illegal ELF-register." in

module func_issue (…)

Example:

unsigned char testvar;

void test_func(const unsigned char xxx)

{

 testvar = xxx;

}

Workarounds

None. Please use linker version V5.3.1.23 (available e/o February 2012) or later.

No. D32 ELF/DWARF Format: Wrong Return Type Entry

Details

When generating output in the ELF/ DWARF output format, XLINK output the type of the
function instead of the return type of the function.

Workaround

Update XLINK to version V5.3.1.26 or later.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 39

No. D33 Definition of Segment Area Size ‘0’ causes Internal Linker Error

Details

Definition of an area size of '0' in a packed segment definition (option –P) causes an internal
linker error:

 IAR Universal Linker V5.4.1.30

 Copyright 1987-2012 IAR Systems AB.

Tool Internal Error:

Internal Error: In function:

Diagnostic: Value is too large to be represented as a unsigned 32-bit

quantity.

P0: 0 P1: 0

Internal Error: In function:

Diagnostic: Value is too large to be represented as a unsigned 32-bit

quantity.

P0: 0 P1: 0

Error while running Linker

Example

-P(CONST)MYCONST=1000:+0

Workaround

Please specify an area greater size than ‘0’

No. D34 Erroneously Error e16 ‘Segment too long’ is generated

IAR Reference EW24343

Details

When placing an empty segment (= size 0 bytes) in a placement range of 0 bytes using the
notation START:+SIZE, erroneously error message e16 ‘Segment too long’ is generated even
though the segment actually fits:

Error[e16]: Segment DFLIB_SHORT_RAM_RESERVED (size: 0 align: 0) is too

long for segment definition. At least 0 more bytes needed. The problem

occurred while processing the segment placement command

Workaround

Use a placement range greater than 0 bytes.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 40

L) Description of Operating Precautions for Debugger (C-SPY)

No. E34 If the same name is used for a data-object and for a data-type, this data-object can not be
displayed in the Watch Window.

Details

If the same name is used for a data-object and for a data-type, this data-object can not be
displayed in the Watch Window. After adding the data-object to the Watch window, an error
message is displayed instead of the value:

[syntax error, unexpected TYPE_NAME] column 1

Example

struct same_name {

 struct same_name * next;

 unsigned int dummy1;

 unsigned int dummy2;

};

struct same_name s1;

struct same_name *same_name;

Workaround
1) Use different names for data-objects and data-types
2) Enter the physical address of the data-object and the corresponding type-cast to the

Watch Window instead of the symbolname.

 Example (struct same_name*) 0xFB00

The problem will be fixed in version V4.50a or later.

No. E43 C-SPY 78K0R Simulator Driver: Interrupt simulation only works correct at priority level
three.

Details
If an interrupt level two to zero (highest) is defined, the interrupt simulation doesn’t work
correctly. Although the interrupt configuration (mask-flag and general interrupt enable flag) is
correct, interrupts at any other level than three are disabled.

Workaround

Please use only priority level three (lowest) until the problem will be fixed in the next version.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 41

No. E44 C-SPY 78K0 MINICUBE2 Driver: Error message about old firmware version

Details

After the installation of the update patch CS78KE_V460b the following error message will occur
if the firmware-version of the MINICUBE2 is less than V4.06:

Workaround

The MINICUBE2 firmware V4.06 will be available b/o October 2008. Until then please contact

the Renesas software tool support team (software_support-eu@lm.renesas.com) to receive

further information fixing the problem.

No. E45 C-SPY all Drivers: Update Time Watch Window

Details

If a larger structure (size of several KB) shall be displayed in the C-SPY Watch Window, the
update time can be up to five minutes if the OCD-emulator (e.g. MINICUBE2) is used and up to
two minutes if the IECUBE emulator is used.

Workaround

None.

mailto:software_support-eu@lm.renesas.com?subject=EW78K%20Operating%20Precautions%20Item%20E44

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 42

No. E46 C-SPY Simulator Driver: Incorrect Value shown in Live-Watch Window

Details

For certain source code when changing a element of a anonymous structure, an incorrect value
is shown in the live watch window of the C-SPY simulator; when changing one of the bits, the
whole base type value is changed.

#define TRUE 1

#define FALSE 0

volatile struct {

 UNSIGNED INT extP0_flag:1;

 UNSIGNED INT TM00_flag:1;

};

void test(void)

{

 extP0_flag = TRUE;

 extP0_flag = FALSE;

 TM00_flag = TRUE;

 TM00_flag = FALSE;

}

Workarounds

Use the Watch Window or use standard bitfields.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 43

No. E47 C-SPY 78K0 MINICUBE Driver: Incorrect System Clock Selection

Details

If no oscillator is mounted on the target hardware and no external oscillator is mounted on the
78K0 MINICUBE2 clock board, three different system clocks (4 MHz, 8 MHz, or 16 MHz) can be
provided by MINICUBE2. The selection is done in the C-SPY Hardware Setup Dialogue:

Independent of the selection, the provided system clock is always 4 MHz.

Workaround

Mount an external oscillator on the socket at the 78K0 MINICUBE2 clock board. If this is not

acceptable, please contact the Renesas software tool support team (software_support-

eu@lm.renesas.com) for further support.

mailto:software_support-eu@lm.renesas.com?subject=EW78K%20Operating%20Precautions%20Item%20E47
mailto:software_support-eu@lm.renesas.com?subject=EW78K%20Operating%20Precautions%20Item%20E47

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 44

No. E48 Incorrect Variable Address may be displayed in Event Window or Watch Window

Details

If a variable with the same name as one of the CPU registers (a, x, b, c, d, e, h, l) is used by an
application, the symbol lookup cannot distinguish between variable and register name. The
address of the symbol name found first is used, but it is undefined which symbol is found first
and therefore a wrong address may be displayed.

Workaround

Please avoid using the variable names equal to the 78K register names until the problem is

fixed.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 45

No. E49 Stack Initialization in default cstartup-module triggers C-SPY Debugger stack observation

Details

A modified cstartup-module included in the compiler update patch V4.61a, triggers by fault the
C-SPY stack-observation. In the modified cstartup-module the stack area is initialized to avoid
faulty
IECUBE emulator fail safe breaks messages about a read access from uninitialized RAM.

Workaround

Please add the cstartup-module source code included in the EW78K (cstrtup.s26, subfolder

78K\src\lib\) to your application and change the fill-up value in line 135 from 0x00 to 0xCD.

;--

; CSTARTUP source for 78K

;

; This module contains the code executed before the C/C++ "main"

; function is called.

; The code usually must be tailored to suit a specific hardware configuration.

;

; Assembler options:

;

; -D__STANDARD_MODEL__ To assemble for use with compiler standard

; code model.

;

; -D__BANKED_MODEL__ To assemble for use with compiler banked

; code model.

;

; -D__NEAR_MODEL__ To assemble for use with compiler near

; code model.

;

; -D__FAR_MODEL__ To assemble for use with compiler far

; code model.

;

; Linker options:

;

; -D_CODEBANK_REG=0 To link for use with "standard" code model,

; no banked functions.

;

; -D_CODEBANK_REG='addr' To link for use with "banked" code model or

; "standard" code model with banked functions.

; 'addr' = bank switch register address.

;

;--

; Copyright (c) 2003-2008 IAR Systems AB.

; $Revision: 3577 $

;--

…

 MOV A, #0xCD ; line 135 change fill-up value from 0x00 to 0xCD

…

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 46

No. E50 Wrong display of array in C-SPY Watch Window

Details

If an array is displayed in the watch window, not only the correct content is displayed, but also
the following addresses until the next string-end-character.

#include <stdio.h>
__root unsigned char aa[3]={0x30,0x30,0x30};

unsigned char array1[6] ="Hello";
unsigned char array2[6] ="World";

Workaround

None. The issue will be fixed in a future update.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 47

No. E51 C-SPY 78K Simulator Driver: Wrong macro access to 16bit data

Details

If a 16bit variable is accessed by a C-SPY macro triggered by an immediate breakpoint cause
by an access to the same variable, the macro access may deliver a wrong result.

unsigned short test_cnt_u16=0x1717;

void test (void)

{

 test_cnt_u16 ++;

}

C-SPY Macro:

log_counter()

{

 __message "Testcounter : ", test_cnt_u16:%d;

}

Workaround

Use a software breakpoint to trigger the C-SPY macro. The problem will be fixed in the next

update.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 48

No. E52 C-SPY 78K: Displayed floating point value in watch window may be wrong

Details

The displayed value of a floating point variable in the Watch Window may be incorrect.

float d1, d2, d3, float_a, float_b, float_c;

void main(void)

{

 float_a = 0.1;

 float_b = 0.0153;

 float_c = 0.015299999;

 d1 = float_a * float_b;

 d2 = float_a * float_c;

 d3 = d1 * 20.0;

 while(1){}

}

The displayed value of ‘d1’ is wrong, but the application uses the correct value. This can be
seen in the calculated value of d3.

Workaround

None. The problem will be fixed in the next update.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 49

No. E53 C-SPY 78K: Resetting a running application causes stack warning message

Details

When reset an application while it is running a stack pointer out of range warning is generated.

The stack pointer for stack 'Stack' (currently Memory:0xFFC00) is

outside the stack range (Memory:<stack_start> to Memory: <stack_end>)

This error message is cause by a debugger problem and doesn’t show an application problem.

Workaround

Manually stop the application before resetting it.

No. E54 C-SPY 78K: Breakpoint can not be defined at some source lines

Details

Due to missing statement information in the debug information generated by the compiler,
breakpoints could in rare cases not be set on specific C source lines.

Workaround

Define the breakpoint in the assembler window. Please keep mind that this breakpoint may get

invalid after a modification of the application.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 50

No. E55 C-SPY 78K0R: Wrong Display of 16bit SFR in Memory Window

Details

The high byte of a 16bit special function register maybe displayed incorrectly in the Memory
Window. The correct value is displayed in the Register Window

The issue occurs at the IECUBE driver as well as at the MINICUBE driver.

Workaround

Please use only the Register Window to check the correct content of special function registers.

No. E56 C-SPY 78K0R IECUBE Driver: Inaccurate Time Measurement Result

Details

The execution time measurement results displayed in the Register Window are inaccurate as
they are calculated on a timer resolution of 17ns instead of the 16.6667ns.

Example
The execution time of 1000 nop-instructions at a CPU clock of 20MHz should be 50000 ns, but
the displayed result is 50999 ns

Workaround

Please use a conditional timer or manually correct the displayed value by the factor (16.6667/17)

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 51

No. E57 C-SPY all Drivers: Program Counter may be uninitialized

Details

If additional images are downloaded to emulator, the program counter may be uninitialized
(value 0xFFFF).

Workaround

Please use a manual RESET signal to initialize the Program counter.

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 52

No. E58 C-SPY 78K0R MINICUBE2 Driver: Broken Emulator Communication

Details

After selecting the internal sub clock as CPU clock the communication between debugger and
emulator will be broken at a manual stop, if single wire target connection (-> TOOL0) is used:

Example:
After a manual break while CPU is running at sub clock, the following error messages occur and
the debugger session is closed:

Workaround

Please use the two wire target selection (TOOL0 + TOOL1).

Operating Precautions for EW78K

 Customer Notification R20UT0002ED0737 53

No. E59 All C-SPY Drivers except Simulator Driver: System Macro __driverType not implemented

Details

Although described in the User’s Manual, the system macro __driverType is not

implemented. Using the macro causes the following error message:

Error: Unknown or ambiguous symbol. __driverType

Workaround

None. The missing macro will be implemented in future update.

No. E60 All C-SPY Drivers: Incorrect Flash Memory Upload in Run-Mode

Details

When performing a memory upload (Debug --> Memory --> Save...) while the application is
running the content of the output file is incorrect.

Workaround

Stop application before memory update.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 54

No. E61 ORTI Plug in Error Message „Memory Exhausted”

Details

Due to a memory leak in the ORTI plug in a memory exhausted error message may be
generated after selecting the ORT file:

Download complete.

Loaded debugee: C:\...\ORTI_Test_V471.d26

Target reset

ORTI Plug-in. ORTI Plug-in. File:

C:\...\TUTORIAL.ORT", memory exhausted.

ORTI Plug-in. ORTI Plug-in. Row: 65: ""GetEvent:

Called from invalid call context" = 0x4306", Col: 105

Disabled due to above error.

Workaround

Reduce size of table defined in ORT file.

No. E62 Constant Data Object located in Data Flash Area displayed incorrectly in Watch Window

Details

A constant data object located Data Flash area is displayed incorrectly in Watch Window.
Instead of the correct value, at each break of the application a different and incorrect value is
displayed.

Workaround

Use the Data Flash Window instead of Watch Window. Will be corrected in future update.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 55

No. E63 Reading Data-Flash-Memory causes an Error

IAR Reference: EW25176

Details

Reading Data-Flash-Memory while application is running may cause errors.

The following error will be shown during the debug session start, if the Data-Flash-Window is
opened with more than 12 address lines:

If such a warning occurs, the Data-Flash-Window shows wrong values:

Workaround

Turn of ‘Run to main’ feature or make the Data-Flash-Window so small that its data is read

before C-SPY starts the application to reach main function.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 56

M) Description of Operating Precautions for the Assembler A78K0R

No. F1 RSEG Directives can not be used in Macro Definitions

Details

The assembler calculates a wrong relative jump-distance if the RSEG directive is used within a

macro definition:

Example

myDummyMacro MACRO

 RSEG CODE

 NOP

 ENDM

Workaround

Don’t use the RSEG directive in macro definitions. The used code-segment must be defined in
the code where the macro is expanded to.

No. F11 Illegal indirect MOVW instruction is accepted and wrong Op-Code is generated

Details

For the illegal instruction MOVW AX,[BC] the opcode for MOVW, word[BC] is used but the
offset address is not entered.

Example

 PUBLIC asm_func

 RSEG CODE:CODE

asm_func:

 MOVW AX,[BC] ; -> illegal instruction, opcode for MOVW

 ;AX,word[BC] generated, but no offset entered

 ret

Workaround

Please use correct instruction ‘MOVW AX,0x0000[BC] ’.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 57

No. F12 Illegal Op-Code generated if SFR symbol is defined after the usage

Details

The assembler generates an illegal opcode, if a sfr-symbol is defined after the usage. Instead of
a three byte instruction (2 byte opcode + 1byte for the low-byte SFR-address) a four byte
instruction (2 byte opcode + 2byte address) is generated.

Example

 PUBLIC test

SFR1 DEFINE 0xFFFF0

 RSEG CODE

test:

 MOV1 SFR1.0,CY

 MOV1 SFR2.0,CY ; illegal opcode generated

 RET

SFR2 DEFINE 0xFFFF1

 ret

Workaround

Please make sure that all SFR symbols are defined before using them.

No. F13 Directive DS64 is not implemented

Details

Although described until the 3rd edition of the 78K assembler manual, the directive DS64 is not
implemented and usage causes a syntax error message:

Error[As001]: Invalid syntax <asm-source-file> <line-number>

Example

 PUBLIC v1

 RSEG NEAR_Z:DATA

V1: DS64 1

 END

Workaround

Please use the DS or any other implemented DS<x> directive instead of DS64 (e.g. DS64 1 can
be replaced by DS 8 or DS32 2). Documentation will be updated

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 58

No. F14 Wrong Code Generated for Bit Test Instructions

IAR Reference EW24018

Details

In case of using absolute segments (ASEG or ASEGN) the assembler generates wrong hex code for the
bit test instructions like e.g. BZ and BNZ. A wrong branch address is calculated.

Example

 ASEGN C2:CODE,0x10

m1:

 MOV a,#1

 CMP a,#0

 BNZ m1

 RET

List-File:

 000014 DF0E BNZ m1 <- wrong hex coode should be DFFA

Workaround

Use a relocatable instead of an absolute segment:

 RSEG RCODE:CODE

m1:

 MOV a,#1

 CMP a,#0

 BNZ m1

 RET

List-File:

 000004 DFFA BNZ m1

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 59

N) Description of Operating Precautions for the C/C++ Compiler ICC78K0R

No. G36 Internal Compiler Error due to non terminated Jump Size Optimization

Details

At optimization level high or medium some complex switch statements cause an internal
compiler, because the jump size optimization will not terminate:

Workaround:

Reduce the optimization level to low or the function including the switch statement by using

#pragma optimization in front of the function definition.

The issue will be fixed in the next update (target May 2011)

No. G37 Internal Compiler Error at using intrinsic function ‘__segment_begin’

Details

At optimization level medium or higher using the intrinsic function ‘__segment _begin’ inside an
if-statement or any kind of loop may cause an internal compiler error.

Example:

#include <intrinsics.h>

#pragma segment="MYSEG"

extern void func1(unsigned char*);

void test (void* ptr)

{

 if(ptr != ((void*)0)) {

 func1(__segment_begin("MYSEG"));

 }

}

Workarounds:

1)

Reduce the optimization level to low for the function including the if statement by using #pragma

optimization in front of the function definition:

#pragma optimize=low

void test (void* ptr)

{

 …

}

2)
Put the intrinsic function call in a function which is not inlined.

The issue will be fixed in the next update (target May 2011)

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 60

No. G38 Wrong code generated for far Branch Inline-Assembler Instruction

Details

If the inline assembler instruction ‘br F:xxxxx’ is used inside an if statement and an earlier
instruction had accessed a non-absolute near address, faulty code is generated. Instead of
using the given high byte of the address (bit 16-23), 0x0F is used.

Example:

#include <intrinsics.h>

unsigned char Array[3];

extern void func2 (void);

void test (void)

{

 func2();

 if (Array [0]== 0xFF) {

 asm("br F:0x003010");

}

}

The generated assembler code is

\ 000009 EC10300F br F:0x003010

Workarounds:

1)
Use an indirect branch via register AX

 if (Array [0]== 0xFF) {

 asm("movw AX,#0x3010");

 asm("br AX ");

}

2)
If it is acceptable to use a call instead of a branch instruction, a C function pointer can be used:

 void (*ptr)(void);

func2();

if (Array [0]== 0xFF) {

 ptr= (void (*)(void)) 0x3010;

 ptr();

}

The issue will be fixed in the next update (target May 2011).

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 61

No. G39 Inline Assembler Range Error Message triggered by Mistake

Details

If the inline assembler instruction ‘br N:xxxx’ is used inside an if statement, range error message
[As026] is triggered by mistake:

Error[As026]: Limit exceeded: Allowed range is 0 - 0xffff (0 - 65535),

value is 0xf3010 (995344)

Example:

#include <intrinsics.h>

unsigned char Array[3];

extern void func2 (void);

void test (void)

{

 func2();

 if (Array [0]== 0xFF) {

 asm("br N:0x3010");

}

}

Workarounds:

1)
Use an indirect branch via register AX

 if (Array [0]== 0xFF) {

 asm("movw AX,#0x3010");

 asm("br AX ");

}

2)
If it is acceptable to use a call instead of a branch instruction, a C function pointer can be used:

 void (*ptr)(void);

func2();

if (Array [0]== 0xFF) {

 ptr= (void (*)(void)) 0x3010;

 ptr();

}

The issue will be fixed in the next update (target May 2011).

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 62

No. G41 Internal Compiler Error at far pointer access to I/O area

Details

Using a far pointer access into the I/O register area cause an internal compiler error:

 Internal Error: [CoreUtil/General]: Size mismatch for "MOVW

 HL, ES:0xFFE0", inserted as 3 bytes, assembled as 4 bytes

Example:

#define GetIF0 (*((volatile unsigned short int __far *) (0xffe0u)))

void test (void)

{

 if (GetIF0 != 0xAAAAu) {

 …

 }

}

Workaround:

Avoid using pointer access to I/O area and use direct memory access.
The issue will be fixed in the next update (target May 2011).

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 63

No. G42 Internal Compiler Error at calling strcpy or memcpy in far data model

Details

Calling strcpy or memcpy in the far data model using optimization level ‘low’ may cause an
internal compiler error:

 Internal error [assign_colors_C01]: coloring failed

Example:

#include "string.h"

typedef struct t_deviceData_tag

{

 unsigned char cCompleteTypeNumber;

 unsigned char u8Data;

}t_deviceData;

typedef struct t_meterCache_tag

{

 t_deviceData device[2];

} t_deviceCache;

t_deviceCache deviceCache;

void test(unsigned char u8Interface, unsigned char u8Data)

{

 t_deviceCache *pDeviceCache = &deviceCache;

memcpy((void*)&pDeviceCache->device[u8Interface].u8Data,

 (void*)u8Data, sizeof(u8Data));

}

Workaround:
Use optimization level medium or higher.
The issue will be fixed in the next update (target May 2011).

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 64

No. G43 Wrong Pointer Access to Special-Function-Register in Data Model ‘far’

Details

When using a pointer to a special-function-register in the far data model the ES register is set to
0x00 instead of 0x0F. During an IECUBE C-SPY debug session this causes a fail safe break:

Break reason: Illegal write to write protected area.

Unable to execute: driver error.

Example:

extern __sfr __no_init volatile unsigned char PM0 @ 0xFFF20;

typedef union tMyUnion_tag

{

 unsigned char BYTE;

 struct

 {

 unsigned char BIT0:1;

 unsigned char BIT1:1;

 unsigned char BIT2:1;

 unsigned char BIT3:1;

 unsigned char BIT4:1;

 unsigned char BIT5:1;

 unsigned char BIT6:1;

 unsigned char BIT7:1;

 } bit_view;

} tMyUnion;

void test (void)

{

 ((volatile tMyUnion *)((&PM0)))->BYTE = (0x70));

}

Workaround:

Use a near pointer:

void test (void)

{

 ((volatile tMyUnion __near *)((&PM0)))->BYTE = (0x70));

}

The issue will be fixed in the next update (target June 2011).

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 65

No. G44 Error Message Pe028 Triggered by Mistake

Details

Using CLIB as runtime library, data model far and NULL pointer definition of header file
“stddef.h” triggers error message Pe028 by mistake:

Error[Pe028] expression must have a constant value.

Example:

#include <stddef.h>

unsigned char __near * const __near DataPointerArray[1] ={ NULL};

typedef void (__near_func *NearFuncPtr)(void);

const NearFuncPtr __near FuncPointerArray[1] ={ NULL };

Workaround:

Use DLIB as runtime library.
The issue will be fixed in the next platform update (target October 2012).

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 66

No. G45 Internal Compiler Error: Casting SADDR Address into far Pointer

Details

When casting the address of a short address variable to a far pointer and using optimization
level medium or high, the compiler could optimize the code in a way that caused an internal
error when generating the assembler code.

Example

typedef struct MyStruct

{

 int mAlpha;

 int mBeta;

}tS;

__saddr struct MyStruct Gamma;

__root int myFunc(void)

{

 tS * pS;

 pS = Γ

 if(pS->mAlpha != pS->mBeta) {

 return 1;

}

else {

 return 0;

}

}

Workaround

Use optimization level low.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 67

No. G46 Error in Device Specific Header File

Details

If two 8bit-access register names are defined at the same I/O register address and also a 16bit-access
symbol is defined, a wrong I/O register access is defined for the second 8bit register.

Affected devices: All RL78 devices including a serial array unit.

Example

Register Name Access Size Register Address

SDR00 16 0xFFF10

SIO00 8 0xFFF10

TXD0 8 0xFFF10

__saddr __no_init volatile union {

 unsigned short SDR00;

 struct {

 unsigned char SIO00;

 unsigned char TXD0;

 };

} @ 0xFFF10;

Due to the above definition the compiler generates code where register TXD0 is located at
address 0xFFF11 instead of 0xFFF10.

Workaround

Please install the latest version of the header files using the corrected definitions.

Example

__saddr __no_init volatile union {

 unsigned short SDR00;

 union {

 unsigned char SIO00;

 unsigned char TXD0;

 };

} @ 0xFFF10;

The corrected header files are included in the service pack SP-EW78K-V4712 available at the
IAR MyPages .

https://na1.salesforce.com/secur/login_portal.jsp?orgId=00D30000000YATY&portalId=06030000000VGHy

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 68

No. G47 Internal Compiler Error: EctContextBase::GetValue

Details

A far data access inside an interrupt function may cause an internal compiler error at optimization level
medium or higher.

Example1

typedef struct

{

 int rx_busy;

 unsigned char rx_byte;

} uart_t;

__far uart_t uart;

__interrupt void isr_sr2(void)

{

 if(uart.rx_busy == 1)

 {

 uart.rx_byte = SDR21;

 }

}

Workarounds

1) Reduce the optimization level for the interrupt function:

#pragma optimize=low

 __interrupt void isr_sr2(void)

 {

 …

 }

2) use a near data access: __near uart_t uart;

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 69

No. G48 Wrong Offset Address Calculation

Details

A wrong offset address is calculated at optimization level medium or higher if the calculation
touches the 64KB border 0xFFFF (near data access). Instead of an address inside the highest
64KB segment the corresponding address in the lowest 64KB segment is used, e.g. 0x00158
instead of 0xF0158.

Example

typedef unsigned char U08;

typedef union tMCMPC1_tag

{

 U08 u8_view;

 struct

 {

 U08 DIR0:1;

 U08 DIR1:1;

 U08 ADB0:1;

 U08 ADB1:1;

 U08 TEN:1;

 U08 ZPD:1;

 U08 TWIN:1;

 U08 AOUT:1;

 } bit_view;

 struct

 {

 U08 DIR0:1;

 U08 DIR1:1;

 U08 ADB0:1;

 U08 ADB1:1;

 U08 TEN:1;

 U08 ZPD:1;

 U08 TWIN:1;

 U08 AOUT:1;

 } bitgroup_view;

} tMCMPC1;

struct _tstMCMPCn_tag

{

 tMCMPC1 _xMCMPC1;

};

extern __near __no_init volatile tMCMPC1 _xxMCMPC1 @ 0xF016A;

#define _nAddrMCMPC1 (&_xxMCMPC1)

#define nAddrMCMPC1 (&_xxMCMPC1)

#define pMCMPC1 ((volatile tMCMPC1 __near *)(nAddrMCMPC1))

volatile tMCMPC1 __near * pTestPtr;

void test (void)

{

 pTestPtr = ((volatile tMCMPC1 __near *)(((volatile U08 __near *)(pMCMPC1))-(18)));

 *((volatile U08 __near *)(&(pTestPtr->u8_view)))=(U08)0x08U;

}

Workarounds

Reduce the optimization level for the function:
#pragma optimize=low

void test(void)

{

 …

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 70

No. G49 Internal Compiler Error CoreUtil/General at using MISRA C and Option –header_context

Details

Misra errors without a file-position cause an internal compiler error when the option
--header_context is used

Example

__near_func void test (void);

__near_func void test()

{

}

Workarounds

None. Issue will be fixed in future update.

No. G50 Far Pointer defined instead of near Pointer

Details

Although defined correctly as pointer to near near object according to the description at page
205 of the compiler manual (C78K-4, April 2010) a pointer to far object is generated by the
compiler, if the pointer is a member of a structure.

Example

typedef unsigned char tu8;

typedef struct {

 __far tu8 * TestPtr1; /* should not point at __far */

 tu8 __far * TestPtr2;

 tu8 * TestPtr3;

}TestPtrStruct;

__near TestPtrStruct TestPtrStruct1;

__far TestPtrStruct TestPtrStruct2;

Workarounds

None. Issue will be fixed in future update.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 71

No. G51 Internal Compiler Error at Negation of Bitfield-Element

Details

Independent of the selected optimization level an internal compiler error may occur if a negated
bitfield element is used as return value:

Internal Error: [CoreUtil/General]: Access violation

Example

struct s{

 int m : 1;

};

int test(struct s *p)

{

 return !p->m;

}

Workarounds

Use a temporary variable and select optimization level low:

int test(struct s *p)

{

 unsigned int temp = !p->m;

 return temp;

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 72

No. G52 Internal Compiler Error at Macro Expansion

Details

Using an optimization level medium or higher an internal compiler error may occur at the
following macro expansion:

Internal Error: [CoreUtil/General]: Stack overflow

Example

#define EXPAND(x) x x x x x x x x x x

int test(int b)

{

 int n = b+1;

 int m = b+2;

 EXPAND (EXPAND (n+=m; m-=n;))

 EXPAND (EXPAND (n+=m; m-=n;))

 return n+m;

}

Workarounds

Reduce optimization to level low for the function:

#pragma optimize=low

int test(int b)

{

 …

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 73

No. G53 Internal Compiler Error at Returning a negated right-shifted Value

Details

Independent of the used optimization level an internal compiler error may occur at returning a
negated right-shifted value:

Internal Error: [CoreUtil/General]: Access Violation

Example

int test(unsigned int x)

{

 return -((int)(x >> 15));

}

Workaround

Reduce optimization level to low for the function and use a temporary variable:

#pragma optimize=low

int test(unsigned int x)

{

 int temp = x >> 15;

 return -(temp);

}

No. G54 Internal Compiler Error at Returning a Comparison Result

Details

If an optimization level medium or higher is used an internal compiler error may occur at
returning a comparison result including a logical and operation:

Internal Error: [CoreUtil/General]: Access Violation

Example

int test(int x)

{

 return (x & 2) == 0;

}

Workaround

Reduce optimization level to low for the function:

#pragma optimize=low

int test(int x)

{

 …

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 74

No. G55 Wrong Code generated for Function Call directly after memcpy-Function call

Details

At optimization level high the compiler generates wrong code at parameter preparation for a
function call directly afterwards a memcpy function call.
After the memcpy function call the local variable 'y' is not updated before calling memtest:

Example

#include<stdio.h>

#include<string.h>

int func1(int p1){

 …

}

int test(int *p1){

 int y=100;

 memcpy(&y, p1, 2);

return func1(y);

}

Workarounds

1) Reduce optimization to level medium for the function:

#pragma optimize=medium

int test(int b)

{

 …

}

2) Add a nop-instruction by using inline assembler between the function calls:

int test(int *yy){

 int y=100;

memcpy(&y, yy, 2);

asm(“nop”);

return func1(y);

}

2) Define the local variable as volatile:

int test(int *yy){

 volatile int y=100;

memcpy(&y, yy, 2);

return func1(y);

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 75

No. G56 Compilation process stalls

Details

Comparing two non-volatile char variables located in saddr memory space could cause the
78K0R compiler to hang on higher optimization levels.

Example

__saddr char a = 5;

__saddr char b = 7;

int test(void)

{

 if (a == b) {

 return 1;

 }

 return 0;

}

Workarounds

1) Reduce optimization to level medium for the function:

#pragma optimize=medium

int test(void)

{

 …

}

2) Define variable as volatile

3) Define only one SADDR varibale

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 76

No. G57 Wrong Code could be generated for Near Pointer Indexing

Details

Near pointer indexing could generate a faulty use of the word[BC] address mode, if it is in the
form of array[-var] or of array[<constant>-var].

Example

extern unsigned short len;

extern unsigned char buffer[];

extern unsigned char result;

void test (void)

{

 result = buffer[10 - len];

}

Workaround

Please use a temporary variable to calculate the index:

extern unsigned short len;

extern unsigned char buffer[4];

extern unsigned char result;

void workaround (void)

{

 unsigned char temp;

 temp = 10-len;

 result = buffer[temp];

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 77

No. G58 #pragma location Directive does not support Unions and Structs

Details

The #pragma location directive does not support unions and structs. An warning is generated to inform the
user:

Warning[Pe609]: this kind of pragma may not be used here

Example

typedef struct

{

 unsigned char no0:1;

 unsigned char no1:1;

 unsigned char no2:1;

 unsigned char no3:1;

 unsigned char no4:1;

 unsigned char no5:1;

 unsigned char no6:1;

 unsigned char no7:1;

} __BITS8;

#pragma location = 0xFFF22;

__sfr __no_init volatile union {

 unsigned char PM2;

 __BITS8 PM2_bit;};

Workaround

Use the @ operator instead of #pragma location to define an absolute address:
__sfr __no_init volatile union {

 unsigned char PM2;

 __BITS8 PM2_bit;

} @ 0xFFF22;

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 78

No. G59 Internal Compiler Error while using __segment_size as memcpy Parameter

Details

Using intrinsic function __segment_size as size parameter for memcpy function causes an
internal compiler error:

Internal Error: [CoreUtil/General]: Access Violation

Example

#include <string.h>

#pragma segment="MY_SEGMENT_1" __near

#pragma segment="MY_SEGMENT_2" __near

void test(void)

{

 memcpy(__segment_begin("MY_SEGMENT_1"),

 __segment_begin("MY_SEGMENT_2"),

 __segment_size("MY_SEGMENT_2"));

}

Workaround

Use a temporary variable:

void workaround(void)

{

 size_t my_var;

 my_var= __segment_size("MY_SEGMENT_2");

 memcpy(__segment_begin("MY_SEGMENT_1"),

 __segment_begin("MY_SEGMENT_2"),

 my_var);

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 79

No. G61 Wrong Code generated for Bit Negation of 32bit Bitfield

Details

If a 32bit bitfield is used wrong code is generated to negate a single bit. Instead of negating the
port-bit the result is always 1 due to the instruction sequence.

Example

#include <io78f1845_a0.h>

struct {

 unsigned long bit0:1;

} s1;

void error (void)

{

 s1.bit0 = !P12_bit.no4;

}

Workarounds

Use one or two 16bit bitfields:

struct {

 unsigned int bit0:1;

} s2;

void workaround (void)

{

 s2.bit0 = !P12_bit.no4;

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 80

No. G62 CPU Cycle Information of CALLT Instruction missing in Compiler-List-File

Details

The CPU cycle information of CALLT instructions in missing the compiler list file:

 16 f1();

 \ ??main_0:

 \ 000000 61.. CALLT [__T_f1]

 17 f2();

 \ 000002 FD.... CALL f2 ;; 3 cycles.

CPU cycle information was added to list file since compiler version V4.71.x.

Example

__callt void f1 (void)

{

}

void f2 (void)

{

}

void main (void)

{

 while(1) {

 f1();

 f2();

 }

}

Workaround

None. Listed as improvement proposal for future update

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 81

No. G63 Wong Code generated at far-Pointer Arithmetic

Details

Constant folding of far pointers might generate faulty addresses if the addition causes an
overflow into bit 12.

Example

#define DFLASH_START_PTR ((unsigned char __far *)(0xE9800uL))

volatile unsigned long result;

void test(void)

{

 result = (unsigned long)(DFLASH_START_PTR + 2047uL); // correct

 result = (unsigned long)(DFLASH_START_PTR + 2048uL); // incorrect

}

Workaround

Use 32bit arithmetic:

 result = (unsigned long)(DFLASH_START_PTR) + 2048uL;

No. G64 Bit Access generated although Keyword ‘__no_bit_access’ was used

Details

The compiler doesn’t take care on the keyword __no_bit_access in pointer definitions.Although
a pointer is correctly defined using the keyword ‘__no_bit_access’, the compiler generates a bit
access. For some I/O registers this causes an illegal I/O register access.

Example

volatile unsigned short __no_bit_access v1;

volatile unsigned short __no_bit_access* ptr1 = &v1;

void test (void)

{

 *ptr1 = 0x0123U;

 *ptr1 |= 0x4000U;

}

Workaround

Use direct access instead of indirect pointer access

void workaround (void)

{

 v1 = 0x0123U;

 v1 |= 0x4000U;

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 82

No. G65 Wrong indirect post Increment of a Result of a post Increment

Details

Independent of the selected optimization level the compiler generates wrong code for the
indirect post increment of a result of a post increment. This issue only occurs in the DLIB
runtime is used.

Example

#include <stdio.h>

#include <assert.h>

char c[2] = {'a','b'};

char *pc[2] = {&c[0],&c[1]};

char **ppc = &pc[0];

int test(void)

{

 char cc_ret;

 cc_ret = *(*ppc++)++;

 assert(pc[0]==pc[1]);

 return (int)cc_ret;

}

Workaround

Use separate statements for post increment:

int workaround (void)

{

 …

 cc_ret = *(*ppc); /* problem */

 (*ppc)++;

 ppc++;

 …

}

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 83

No. G66 Unclear Description of Parameter Passing for Structure Types in Compiler Manual

IAR Reference: EW24225

Details

At page 108 of the RL78 C/C++ Compiler Reference Guide (2nd Edition) parameter passing to
function is described. It is described that structure types parameters are passed via stack except
the size is 1,2,4 and 4 bytes:

Structure types: struct, union, and classes, except structs and unions

of sizes 1, 2, and 4

This is correct, but additionally the structure type element must be word aligned. The alignment
of the element is defined by the data type of the largest member.

Example

typedef struct {

 unsigned char e1;

 unsigned char e2;

} s1_TYPE;

The above structure is passed via stack as only byte aligned elements are included.

Workaround

Include the structure type element in a union to force word alignment:

typedef union {

 struct {

 unsigned char e1;

 unsigned char e2;

 };

 unsigned short dummy;

} s1_TYPE;

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 84

No. G67 Internal Error in case of similar Function in ‘switch’ and ‘if’ Node

IAR Reference: EW24227

Details

An internal error is generated in some cases, when several similar function calls exist in many
"switch" and "if" nodes and optimization levels ‘high size’ and ‘high balanced’ are used.

Example

Due to complexity the sample is not listed here. It is available on request at Renesas Software-
Tool-Support Team.

Workaround

Choose optimization level ‘high speed’ or medium

No. G68 Unnecessary Padding Byte added to Arrays of Character

IAR Reference: EW24453

Details

Alignment of arrays is set to two by the 78K0R compiler even if they are placed at an absolute
location

Example

__root const char array[3] @0x08000= {0x01,0x02,0x03};

Compiler list file:

 \ In segment NEAR_CONST, align 2, root
 3 __root const char arr[3] = {0x01,0x02,0x03};
 \ arr:
 \ 000000 01020300 DB 1, 2, 3, 0

For the 78K0R compiler, string literals and arrays always have an alignment of two, unless
placed at an absolute address. Note: This will cause padding for odd-sized objects.

Workaround

None.

mailto:software_support-eu@lm.renesas.com?subject=Question%20about%20EW78K%20Operating%20Precautions%20(R2UT0002EDxxxx)
mailto:software_support-eu@lm.renesas.com?subject=Question%20about%20EW78K%20Operating%20Precautions%20(R2UT0002EDxxxx)

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 85

No. G70 Wrong Code generated while Copying a 1-Bit Bitfield

IAR Reference: EW24645

Details

Assigning a value from one 1-bit bitfield to another 1-bit bitfield can fail if the byte offset of the
bitfield in the struct is not zero and an optimization level medium or higher is used.

Example

typedef struct

{

 unsigned long u32var1;

 unsigned char u1var6_1:1;

 unsigned char u1var6_2:1;

 unsigned char u1var6_3:1;

 unsigned char u1var6_4:5;

}s1_T;

void test(s1_T * in, s1_T * out)

{

 out->u1var6_1 = in->u1var6_1;

 out->u1var6_2 = in->u1var6_2;

 out->u1var6_3 = in->u1var6_3;

 out->u1var6_4 = in->u1var6_4;

}

Workaround
Lower optimization level to medium or low.

No. G71 MISRA C 2004 Rule 10.6 not triggered

IAR Reference: EW24733

Details

The compiler does not check MISRA-C 2004 rule 10.6 correctly. It bases the check on the usage
of the constant instead of on the type of the constant.

Example:

#define UNSIGNED_CHAR_C 0x12

#define UNSIGNED_SHORT_C 0x1234

#define UNSIGNED_LONG_C 0x12345678

unsigned char var1 = UNSIGNED_CHAR_C; /* Error [Pm127]: */

unsigned short var2 = UNSIGNED_SHORT_C; /* no error MISRA C 2004 */

unsigned long var3 = UNSIGNED_LONG_C; /* no error MISRA C 2004 */

In above example error Pm127 should be triggered three times instead of only one.

Workaround
None; it will be fixed in next update.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 86

No. G72 Stack Content can be corrupted by ISR

IAR Reference: EW24895

Details

Due scheduling error in the optimizer, the stack content can be corrupted if stack is used for
temporary storage in a function and an interrupt occurs also using temporary storage

Example:

In below sample the address of data located on stack is stored in register HL to access it
indirectly. Due to the error the stack pointer is modified to free the stack size before the last
access to the data is finished. If now an interrupt using stack area occurs between modification
of stack pointer and data processing, the data is corrupted:

 \ 00003D 16 MOVW HL, AX ;; 1 cycle

 \ 00003E 710103 MOV1 S:0xFFF03.0, CY ;; 2 cycles

 \ 000041 A7 INCW HL ;; 1 cycle

 \ 000042 1002 ADDW SP, #0x2 ;; 1 cycle

If an interrupt using stack memory occurs here, data used in the next indirect memory access
are corrupted:

 \ 000044 71B4 MOV1 CY, [HL].3 ;; 1 cycle

 \ 000046 710103 MOV1 S:0xFFF03.0, CY ;; 2 cycles

The correct code should be:

 \ 000040 16 MOVW HL, AX ;; 1 cycle

 \ 000041 A7 INCW HL ;; 1 cycle

 \ 000042 71B4 MOV1 CY, [HL].3 ;; 1 cycle

 \ 000044 710103 MOV1 S:0xFFF03.0, CY ;; 2 cycles

 \ 000047 1002 ADDW SP, #0x2 ;; 1 cycle

Workaround
Avoid optimization level high balanced and high speed.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 87

No. G73 Wrong Code generated for Array Index

IAR Reference: EW25315

Details

Using an unsigned variable as index type can generate illegal indexes if the variable type is
smaller than the pointer index type and optimization level ‘high’ is used.

 Example:

const unsigned char id_tbl[2] = { 0x01, 0x02};

unsigned char id = 0x02;

int test(void)

{

 static unsigned char n;

 n = 2;

 while(n > 0) {

 n--;

 if(id_tbl[n] == id) {

 break;

 }

 }

 return 0;

}

Workaround

Use a signed index variable: static signed char n;

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 88

O) Valid Specification

Item Date published Document No. Document Title

1 May 2012 UIDEEW-4
78K IAR Embedded Workbench ® IDE Project Management
and Building Guide

2 May 2010 C78K-4 78K IAR C/C++ Compiler Reference Guide

3 May 2010 A78K-3 78K IAR Assembler Reference Guide

4 May 2009 M78K-3 78K IAR Embedded Workbench Migration Guide

5 October 2012 UCS78K-1 78K C-SPY Debugging Guide

6 June 2012 XLINK-540 IAR Linker and Library Tools Reference Guide

7 January 2011 EWMISRAC1998-4 IAR Embedded Workbench MISRA C 1998 Reference Guide

8 December 2009 EWMISRAC2004-2 IAR Embedded Workbench MISRA C 2004 Reference Guide

P) Revision

Edition Date published Document No. Comment

1 05-07-2004 CESCN0004V10 First release.

2 26-10-2004 CESCN0004V11 Items A1, A2, C2, C3, D1 added

3 06-12-2004 CESCN0004V12
Items A3, A4, A5, B4, C4 added, EW78K version
V4.20a

4 17-01-2005 CESCN0004V13 Items C5, D2, E1 added

5 11-02-2005 CESCN0004V14 Items C6, C7, C8 added

6 07-03-2005 CESCN0004V15 Items C9, C10 added

7 08-04-2005 CESCN0004V16 Items C11, D3, D4, D5, D6 added

8 20-04-2005 CESCN0004V17 Item C12 added

9 10-05-2005 CESCN0004V18 Item C13 added

10 27-05-2005 CESCN0004V19 Items C14, E2 added

11 01-06-2005 CESCN0004V20 Items C15, C16 added

12 22-07-2005 CESCN0004V21
Items C17, B2, D7, E3 added, EW78K version
V4.30a

13 18-08-2005 CESCN0004V22 Items C18, C19, D8, D9, D10, E4 added

14 02-09-2005 CESCN0004V23 Items C20, C21, C22 added

15 13-09-2005 CESCN0004V24
Patch Update for Compiler V4.30c and Debugger
V4.30b

16 13-10-2005 CESCN0004V25 Items D11, E5, E6, E7 added

17 26-10-2005 CESCN0004V26 Items E8, E9 added

18 14-11-2005 CESCN0004V27
Items E10, E11, E12,E13 added,
Patch Update for C-SPY Debugger V4.30d

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 89

Edition Date published Document No. Comment

19 01-12-2005 CESCN0004V28 Items E14, E15, E16 added

20 15-12-2005 CESCN0004V29 Patch Update for C-SPY Debugger V4.30e

21 13-01-2006 CESCN0004V30 Item E17 added

22 26-01-2006 CESCN0004V31 Items C23, C24 added

23 02-03-2006 CESCN0004V32 Items C25, E18 added

24 13-03-2006 CESCN0004V33 Items C26, E19, E20 added

25 15-03-2006 CESCN0004V34 Correction of table (C)

26 03-04-2006 CESCN0004V35 Items C27, E21,E22 added

27 13-04-2006 CESCN0004V36 Items A6, E23 added

28 09-06-2006 CESCN0004V37 Item C25 updated, items B3, C28, C29 added

29 11-07-2006 CESCN0004V38 Item C30 added, EW78K version V4.40a

30 20-07-2006 CESCN0004V39 Items A7, C31, C32, G1, G2 added

31 04-08-2006 CESCN0004V40 Items A8, A9, B4, B5, F3,F4 added

32 01-09-2006 CESCN0004V41
Items B4, A9, F3 updated, items C33, C34, D12,
D13 added

33 07-09-2006 CESCN0004V42 Items D12, D13 updated

34 06-10-2006 U18447EE1V0IF00

Items C35, C36, D14, E24, G3, G4 added
Items D12, D13 updated
Items C1, C2, C3, C7, C8, D2 removed
Patch Update for compiler ICC78K and ICC78K0R
version V4.40b and for linker XLINK version 4.60c
new NEC Electronics world-wide document
number

35 23-10-2006 U18447EE2V0IF00 Items D15, E25, E26, G5 added

36 03-11-2006 U18447EE3V0IF00 Items C37, E27, E28, E29, G6 added

37 17-11-2006 U18447EE3V1IF00 Items D16, E30 added

38 23-11-2006 U18447EE3V2IF00
Items E31, E32 added, patch update for C-SPY
V4.40c

39 15-12-2006 U18447EE3V3IF00 Items C38 , G7 , E33 added

40 02-02-2007 U18447EE3V4IF00 Items E34, E35 , F5, F6, added

41 27-02-2007 U18447EE3V5IF00 Items C39 , C40 , G8 , G9 added

42 09-03-2007 U18447EE3V6IF00 Item E36 added

43 14-05-2007 U18447EE3V7IF00

EW78K version V4.50a
Items C4, C6, C9, C10, C11, C12, C13, C14, C15,
C16, C17, E1 removed
Items C41, D17, D18, G10 added

44 18-06-2007 U18447EE3V8IF00
Items C42 , C43, G11, F7 added,
update of disclaimer, update of valid specification
table

45 22-06-2007 U18447EE3V9IF00
Items G12, E37 added
Items D1, D4, D5, D6 removed
Linker update V4.60i

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 90

Edition Date published Document No. Comment

46 09-07-2007 U18447EE4V0IF00
Compiler update V4.50b, C-SPY update TK78K
V4.50b,
Item E38 added

47 01-08-2007 U18447EE4V1IF00 Items E39 , G13 added

48 27-08-2007 U18447EE4V2IF00 Items C44, G14 added

49 28-09-2007 U18447EE4V3IF00 Items E40, G15 added

50 26-10-2007 U18447EE4V4IF00
Compiler update V4.50c
Item E40 updated, Items A10, C45, G16 added

51 05-11-2007 U18447EE4V5IF00 Item C46 added

52 22-11-2007 U18447EE4V6IF00 Item E41 added

53 06-12-2007 U18447EE4V7IF00 Items C47 , G17 added

54 15-01-2008 U18447EE4V8IF00 Items C48 , G18 added

55 28-01-2008 U18447EE4V9IF00 Item C49 added

56 11-02-2008 U18447EE5V0IF00 Items C50 , G19 added

57 07-03-2008 U18447EE5V1IF00 Items C51 , E42, G20 added

58 17-04-2008 U18447EE5V2IF00 Items C52, G21, F8 added

59 05-05-2008 U18447EE5V3IF00 Items C53, D20 added

60 21-05-2008 U18447EE5V4IF00

Items C18-C28, C30, D7, E3,E4, E7, E10-E12
removed
Embedded Workbench update EW78K V4.60a
Item D20 corrected

61 12-06-2008 U18447EE5V5IF00 Item D21, F9 added

62 09-07-2008 U18447EE5V6IF00

Items C54, G22 added, items E8, E13, E15, E16
removed
C-SPY Update V4.60b (support of new 78K0R/Ix3
series)

63 17-07-2008 U18447EE5V7IF00 Items E43, E44, F10 added

64 22-08-2008 U18447EE5V8IF00 Item A11 added, linker update V4.61h

65 15-09-2008 U18447EE5V9IF00 Items C55, C56, C57, E45, G23 added

66 21-10-2008 U18447EE6V0IF00 Items C58, E46, E47 added

67 15-12-2008 U18447EE6V1IF00

Assembler and compiler update V4.61a,
Item C58 corrected,
Items G1, G2, G3,G4 removed
Item A12, A13, G24 added

68 19-01-2009 U18447EE6V2IF00 Items D22, ,E48, G25 added

69 28-01-2009 U18447EE6V3IF00 Items C59, E49 ,G26 added

70 13-02-2009 U18447EE6V4IF00 Items F11, C60 added

71 02-03-2009 U18447EE6V5IF00 Items A14, E50, F12 added

72 09-03-2009 U18447EE6V6IF00
Items D23, D24 added, linker update V4.61l
Items D8, D9, D10, D11, D20 removed

73 04-05-2009 U18447EE6V7IF00 Items C61, E51, G27 added

74 08-05-2009 U18447EE6V8IF00 Item G28 added

75 20-05-2009 U18447EE6V9IF00 Item G29 added

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 91

Edition Date published Document No. Comment

76 02-07-2009 U18447EE6VAIF00

Update EW78K V4.62,
Items A15, E52 added,
Items A1, A3, B2, B4, C31…C36, C40, C41, E2,
E5, E6, E9, E14, E17… E23, F3, G5, G8…G10
removed

77 07-07-2009 U18447EE6VBIF00 Item C62 added, compiler update V4.50e added

78 27-08-2009 U18447EE6VCIF00
Item E53 added, correction item C62: V4.60a
affected

79 15-09-2009 U18447EE6VDIF00
Item D25 added, items D12, D13, D15 removed,
linker update V4.61p

80 11-11-2009 U18447EE6VEIF00 Items C63, G30 added

81 13-11-2009 U18447EE6VFIF00
Item D26, D27 added, items D16, D17 removed,
linker update V4.62r

82 23-11-2009 U18447EE6VGIF00

Items C63, G30 updated
Items C64, G31 added
Items C42, C43, C44, C47, G11, and G12
removed

83 26-11-2009 U18447EE6VHIF00
Items C65, G32 added, chapter ‘Valid Specification
‘updated

84 13-01-2010 U18447EE6VIIF00 Item A16, D28 added, linker update V4.61s added

85 02-02-2010 U18447EE6VJIF00

Items D29 and G33 added, item D18 removed
Linker update V4.61t added
Correction of item C56; compiler version V4.50c,
v4.50e are not effected.

86 09-03-2010 U18447EE6VKIF00
Item G13, G14, G15 deleted
Compiler Update patch V4.62.5 added

87 28-04-2010 R20UT0002ED0700
New company name, new document number
Items C66, G34, G35 added

88 18-05-2010 R20UT0002ED0701
Linker Update 5.00.1
Item D30 added, item D14 removed

89 25-06-2010 R20UT0002ED0702

EW78K Update V4.70.1, Specification Update,
Items C29, C37,C38, C39, C45, C46, C48, C49,
C50, C51, C52, C53, E24, G6, G7, G16, G17,
G18, G19, G20, G21 removed
Item E54 added

90 09-08-2010 R20UT0002ED0703
Item A17 added
Update of support email addresses

91 01-09-2010 R20UT0002ED0704 Items C67, C68, E55, E56, and G36 added

92 20-10-2010 R20UT0002ED0705 Items C69, C70, G37, G38, G39, and G40 added

93 15-11-2010 R20UT0002ED0706 Item C71 added, update items C70, G38, G40

94 12-01-2011 R20UT0002ED0707 Item G41 added

95 22-02-2011 R20UT0002ED0708 Item G42 added

96 11-04-2011 R20UT0002ED0709 Item G43, G44 added

97 16-05-2011 R20UT0002ED0710 Item C72, E57 added

98 05-07-2011 R20UT0002ED0711

EW78K update V4.71.1,
Items A4, A5, A9, B3, B5, C54–C60, C62, D19,
D21, E31-E32, F2-F6, G22-24, and G32 removed,
items E58 and G45 added

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 92

Edition Date published Document No. Comment

99 20-07-2011 R20UT0002ED0712 Items E59, G46, and G47 added

100 16-08-2011 R20UT0002ED0713

EW78K update V4.71.2
Item E28, E29, E33, E36, G25-G29 removed,
Items G48 and F13 added, G46 updated
Link to current document version changed.

101 13-09-2011 R20UT0002ED0714 Item F13 updated, items G49 and G50 added

102 13-10-2011 R20UT0002ED0715
Items C73, E60, G51, G52, G53 , G54 and G55
added; items E34 and G44 updated.

103 23-02-2012 R20UT0002ED0716
Items B2, D31, G56 and E61 added;
items D22, D23, D24, D25 removed

104 27-02-2012 R20UT0002ED0717 Item G57 added

105 03-04-2012 R20UT0002ED0718
Item D32 added
New Renesas Order Codes since 01.04.2012

106 20-04-2012 R20UT0002ED0719 Items C74, C75 and G58 added, G44 updated

107 05-07-2012 R20UT0002ED0720
Items C76 and G59 added,
item C72 updated (issue may also occur in
standard memory model

108 01-08-2012 R20UT0002ED0721 Items C77, C78, and E62 added

109 06-08-2012 R20UT0002ED0722
Incorrect issue numbers used:
Items G60 (instead of C77) and G61 (instead of
C78) added

110 31-10-2012 R20UT0002ED0723
EW78K Update V4.80.1
Items A6,A7,A8, C61, E38 and G40 removed
Description of item G60 corrected

111 11-03-2013 R20UT0002ED0724 Item G62 and G63 added

112 03-04-2013 R20UT0002ED0725
XLINK update V5.6.0.36, item D33 added, item
G46 updated, items D26 and D27 removed,
previous Renesas order codes removed

113 15-05-2013 R20UT0002ED0726 Items C77, G64 added

114 11-06-2013 R20UT0002ED0727 Item G65 added

115 16-07-2013 R20UT0002ED0728 Item F14 added

116 18-10-2013 R20UT0002ED0729 Items C78 , G66 and G67 added

117 03-02-2014 R20UT0002ED0730 Items G68 and D34 added

118 14-02-2014 R20UT0002ED0731 Items A18, C79 and G69 added

119 12-05-2014 R20UT0002ED0732
Update SP-EW78K V4.80.2
Item G70 added, items C63, C65, C70, D28, F7-
F10, G30, G31, and G33 removed

120 21-05-2014 R20UT0002ED0733 Item C80 added

121 07-08-2014 R20UT0002ED0734 Items C81, G71 and G72 added

122 23-02-2015 R20UT0002ED0735 Item E63 added

123 07-04-2015 R20UT0002ED0736 Items C82 and G73 added

124 26-05-2015 R20UT0002ED0737

Update SP-EW78K V4.80.3
Update item G68
Items C64, E25-E27, E30, E35, E37, E39, E40-
E42, G34, G35, G60, and G69 removed.

Operating Precautions for IAR EW78K

 Customer Notification R20UT0002ED0737 93

Before using this material, please visit our website to confirm using the most current document available:
Current version of this document

In case of any technical question related to the Embedded Workbench for 78K, please feel free to contact the
Renesas Software-Tool-Support Team

http://www.renesas.eu/updates?id=20
mailto:software_support-eu@lm.renesas.com?subject=Question%20about%20EW78K%20Operating%20Precautions%20(R2UT0002EDxxxx)

R20UT0002ED0737

May 2015

	Customer Notification Embedded Workbench for 78K
	Table of Contents
	A) Table of Operating Precautions for the IDE EW78K
	B) Table of Operating Precautions for the Assembler A78K
	C) Table of Operating Precautions for C/C++ Compiler ICC78K
	D) Table of Operating Precautions for the Linker XLINK
	E) Table of Operating Precautions for C-SPY Debugger CS78K
	F) Table of Operating Precautions for the Assembler A78K0R
	G) Table of Operating Precautions for C/C++ Compiler ICC78K0R
	H) Description of Operating Precautions for the IDE EW78K
	I) Description of Operating Precautions for the Assembler A78K
	J) Description of Operating Precautions for the C/C++ Compiler ICC78K
	K) Description of Operating Precautions for Linker (XLINK)
	L) Description of Operating Precautions for Debugger (C-SPY)
	M) Description of Operating Precautions for the Assembler A78K0R
	N) Description of Operating Precautions for the C/C++ Compiler ICC78K0R
	O) Valid Specification
	P) Revision

