
Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

1

Hypnocube LED Serial Driver
The HypnoLSD is a USB or UART to WS28121 LED strand driver

that simplifies interfacing, reducing costs and need for custom

controllers. Each HypnoLSD controls thousands of LEDs at real

time rates, enough for commercial designs, artwork, hobbyist

needs, lighting projects, and more. The HypnoLSD board takes

standard USB or UART input, buffers images internally, and

handles the sensitive timing needs of the WS2812 LEDs, keeping

images synchronized. The small factor board and low design

requirements aid rapid prototyping at the hobbyist breadboard level up to integration into commercial

designs.

This document shows how to use it in designs.

Quick Start
A quick test of a newly obtained HypnoLSD module is to hook up a short (1-200 length) strand to the data

and ground pins on port 1 (connect ground first, correctly, then the data line next). Add power to the

module by plugging a USB charger or other USB source to the USB plug, and make sure the USB jumper is

set USB, not UART, which should cause the built in LED to light, then blink once per second. For the next

test, remove power, connect a LED strand (be sure to connect to port 1, ground then data), add power to

the strand, and add power the module. Wait a few seconds for built in patterns to be drawn on the LED

strand. Default length will draw patterns on up to 250 LEDs.

Next, remove power, connect a USB cable to a PC (and make sure you have the FTDI drivers) open a

terminal program (such as Putty), change the serial connection terminal settings to 9600 baud, 8 bits, no

parity, and 1 stop bit (8N1), and add power to the HypnoLSD. You should see a startup message. Entering

“help” (with no quotes) followed by a newline (pressing ENTER on most PC terminal programs) will show

a list of commands. Experiment with them. Letting the command terminal sit idle a few seconds will return

to drawing demo images.

Download the Windows software from http://hypnocube.com/product/led_serial_driver/ and play with

it. It allows GUI control of the various commands as well as the ability to set colors.

To run from any serial port, such as an Arduino, Raspberry Pi, etc., disable the USB jumper, connect to the

ground, the proper UART transmit and receive signals, send the bytes “draw\r\n”, wait a millisecond or

so, then send colors bytes (but change any 254 to 255 before sending, 254 has special meaning in draw

mode!), 3 per LED, followed by a 254 to end the image. Repeat as much as you want. This should draw

colors on the LEDs on the first strand. For more strands or longer strands, or faster rates, read the rest of

this document.

1 The HypnoLSD also supports the newer WS2812B, which is essentially the same chip, but under testing we noticed
some power differences. We added a second regulated voltage to the HypnoLSD to handle both well. It also handles
the WS2811 driver chips, which is the WS2812 without the integrated LEDs.

http://hypnocube.com/product/led_serial_driver/

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

2

Overview
The HypnoLSD module has several features to enable large scale projects. Various settings such as baud

rate, specialized timing controls, image size, and a user ID that can be programmatically queried can be

stored in on-chip FLASH to allow programs to distinguish different physical modules. There is a jumper

that can be installed to reset the FLASH settings to defaults in case of error. A diagnostic LED flickers to

denote behavior, which can also be disabled programmatically.

The module has a micro USB connection which uses a FTDI USB to UART bridge, so the device should show

up as a COM port on a computer when connecting to the USB port. If not, you need to find drivers from

the FTDI website for your PC. If you want to connect with a UART directly (from smaller or embedded

chips), set the USB/UART jumper on the module to disable the USB, and connect to the RX, TX, and GND

pins accordingly. The UART supports higher baud rates, which may be needed for larger high frame rate

designs.

There are 16 ports, labeled 1-16, each with a data and ground line. These connect to strands to run,

starting with strand 1, then 2, etc., allowing control of up to 16 LED strands.

Electrical Interface
There are two ways to power the HypnoLSD module: 1) USB power through the micro-B USB jack, and 2)

by the 5V pin and GND pin. LED strands should be connected to port 1, then port 2, etc., in order. This is

the order the drive code sends out signals.

Wires from the HypnoLSD module to the LEDs should be kept as short as possible to prevent signal

problems. Some report ~100 ohm resistors in series as helping, but we have not tested it. If long lengths

need to be run, making the USB cable longer is a better option.

The LED strands should be powered each 200-300 or so LEDs, since it appears that the power drop on

longer strands causes signaling issues, even with the signal reshaping the WS2812 supports. We also

noticed color drops as the strands went further without power, so you may need to test your LED setup

to determine needed power connections. Power consumption should max at 60 mA/LED site (as all white,

which is actually three LEDs at 20 mA each). When we tested, we found that each LED site (3 LEDs) used

under 60mA, and dropped off nearly linearly as the color (0-255) viewed dropped.

Programming Interface
This section lists programming commands, how to send images, and technical details for optimizing

software for high performance display.

Overview
The HypnoLSD allows controlling to 1-16 strands of LEDs, arranged however the user desires, at baud

rates from 9,600-12,000,000. The reason for choosing different numbers of strands and baud rates is to

allow fast image updates in different scenarios. The number of strands controlled is called width. The

length of the strands is called length (also called height in the module), and the resulting LEDs are treated

as a width by length image buffer of red, green, and blue bytes. Internally all strands are treated as the

same length, so it is best if your design has the same physical fixed length. If not, you must still send bytes

to the module as if the LEDs were a rectangular grid.

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

3

The HypnoLSD allocates 30,000 bytes of RAM as an image buffer, which is partitioned according to the

width. Due to technical details, the maximum LED strand length allowed varies as width as follows:

Strands (width) Max length Total pixels Bytes used Bytes unused % used

1 10,000 10,000 30,000 0 100.00

2 5,000 10,000 30,000 0 100.00

3 3,125 9,375 28,125 1,875 93.75

4 2,500 10,000 30,000 0 100.00

5 1,875 9,375 28,125 1,875 93.75

6 1,250 7,500 22,500 7,500 75.00

7 1,250 8,750 26,250 3,750 87.50

8 1,250 10,000 30,000 0 100.00

9 625 5,625 16,875 13,125 56.25

10 625 6,250 18,750 11,250 62.50

11 625 6,875 20,625 9,375 68.75

12 625 7,500 22,500 7,500 75.00

13 625 8,125 24,375 5,625 81.25

14 625 8,750 26,250 3,750 87.50

15 625 9,375 28,125 1,875 93.75

16 625 10,000 30,000 0 100.00

The signaling protocol to the LEDs runs at 800khz, with 24 bits per pixel, so can light 800,000/24=33,333

pixels per second. For 30 frames per second (fps) animation, this amounts to a maximum strand length of

1111. More strands allows updating more LEDs per second.

The input baud rate limits the speed at which data can be sent into the HypnoLSD. The signaling is 8 data

bits, no parity, and one stop bit, called 8N1, and results in transmitting one byte per 10 baud. This means

a 9600 baud connection will transfer 960 bytes per second. A 1,000,000 baud connection can transfer

100,000 bytes per second. In general you should select the slowest usable baud rate that meets your

design criteria.

Example 1: highest performance is sixteen strands of length 625 (so width is 16), giving 625*16=10,000

LEDs. The HypnoLSD can refresh length 625 in 800,000/(625*24)=53 times a second. Filling 10,000 pixels

takes 30,000 bytes (one for each of red, green, and blue), and a 12,000,000 baud connection can transmit

(12,000,000/10)/(30,000)=40 frames per second. So in this case the baud rate is the limiting factor (40 <

53), but 40 frames per second is a good animation rate.

Example 2: Suppose you want to run 4,000 LEDs at 40 frames per second. This requires

4000*40*3=480,000 bytes per second, or a minimum of 4,800,000 baud input. The only supported speeds

above this are 6 and 12 Mbaud. Next, for output, the rate of 800,000/(24*40)=833 shows that at most

833 LEDs can be on a strand. 4000/833=4.8 means at least 5 strands should be used. This could be 5

strands of length 800 (cutting it close) or 8 strands of length 500. Thus parameters of 6,000,000 baud and

8 strands of length 500 would be a good design choice.

The HypnoLSD operates in two different modes: command mode and drawing mode. In command mode,

commands are sent as ASCII commands. In drawing mode, sequences of bytes are interpreted as colors

to send out to serial LEDs. Upon powering up, the HypnoLSD defaults to 9600 baud, 8N1, and command

mode, where ASCII commands are used.

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

4

Command Mode
Commands are case-sensitive ASCII text, followed by the control characters \r\n, which are line feed (\r

= 0x0D hexadecimal = 13 decimal) and new line (\n = 0x0A hexadecimal = 10 decimal).

After each is completed, the text "OK\r\n" is returned. Any error sends a line with "ERROR: " followed

by error text, then "\r\n", then the "OK\r\n". Commands ignore input while processing, so you must

wait for the final "OK\r\n" before sending another command. Most commands execute quite quickly and

a millisecond wait should suffice if you don’t want to read the feedback messages.

In the following command table, entries of the form nnnn denote decimal integers.

Command Result
help Return basic help text.
version Return version as major.minor format.
info Print system info.
stats Show debugging stats for checking memory integrity, connection quality, etc.
sizes Show max length for each width.
get speed Get the current baud rate information.
set speed nnnn Change the baud rate divisor to nnnn in 0 to 65535. See below.
get size Get the current buffer size width x length
set size wwww hhhhh Set the buffer size. wwww is width 1 to 16; hhhh is length 1 to max for this width. Use the

sizes command to find the max length for each height. Default is width 1, length 250.
get id Get the current user identification value 0-65535.
set id nnnn Set an identification value 0-65555, useful for multi-controller designs. Default 0.
get bitdelay Get the bit timing delay 0-65535 on each bit output. Default to 0.
set bitdelay nnnn Set the bit timing delay 0-65535 on each bit output.
draw Enter drawing mode. See the drawing section.
dump image nnnn Dumps buffer RAM for debugging. nnnn is 1 to 30,000.
test conn nnnn rrrrr Testing mode. nnnn is size for each pass of 1 to 30,000, and rrrr is the repeat value in

1 to 231 − 1. After this, send one copy of the buffer of length nnnn to test, then rrrr
copies that are checked against the original. When done, the error counts are returned
if anything did not work.

reset stats Reset the stats counters. Useful for debugging.
save settings Saves settings to flash memory so they do not need set each time. The settings saved

are User ID, connection rate, width, length, diagnostic LED on/off status, and demo
delay. Do not set this too often as the flash will wear out over time. The PIC
documentation gives a 20,000 cycle erase lifespan, so after about 20,000 writes the
device is out of specification. If the FLASH gets corrupted values, then default values
apply. The reset jumper allows an external reset of default.

timings This dumps some timing values for frame drawing code, used for debugging.
skewtest a b c d e Test skew timing on strand. Used for debugging.
Latchtest nnnn mmmm Test minimal latch timing. Used for debugging.
rundemo m nnnn Run built in demo m (1 to max demo from info command) for nnnn milliseconds (1 to

65535). Demo 0 means do all demos. 0 milliseconds means to run the given demo until
a byte is seen in the command channel.

demodelay mm Set the delay before a demo runs to mm seconds (0-99). 0 means never show demos.
Defaults to 5 seconds. In command mode, if bytes are not seen for this long, then built
in demos run on any connected strands according to the current image size.

LED n Enable/disable the onboard diagnostic LED flickering. If n=0, LED is always off. If n=1,
the LED flickers. The LED turns on at power up, flickers once per second in command
mode, and then toggles each SYNC executed in drawing mode. Defaults to 1.

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

5

Baud Rate Calculations
The baud rate of the HypnoLSD module is changed by setting

a clock divisor through the “set speed nnnn” command

where nnnn is a divisor in the range 0 to 65535. The resulting

baud rate is given by 12,000,000/(nnnn+1). This results in

rates from 12,000,000 baud (when nnnn=0) down to 183.1

baud (nnnn=65535). However, going below 9,600 baud is

not recommended as it is untested (and probably not

useful).

Note the actual baud rate might not be the desired baud

rate, in which case you should check the error and tolerances

of your devices. Most devices support a few percent error

between desired and actual baud rates. A few common baud

rates and best divisors are in the baud rate table.

 Note at the higher baud rates there is not as much selection

due to running out of divisors.

When selecting a baud rate, make sure your driving device

can handle it as well.

The HypnoLSD with the built-in USB to UART bridge uses a

FT230X from FTDI3. The spec sheet4 describes the available

baud rates from 183 to 3Mbaud. The achievable baud rates are given by 3,000,000/(n+x) where n is an

integer in 2 to 16384 and x can be any of the 8 values {0, 0.125, 0.250, 0.375, 0.500, 0.675, 0.750, 0.875}.

A final case of n=1 and x=0 gives the top speed of 3Mbaud. When using Windows, Linux, or Mac OSX the

values should be set transparently in the OS driver when the serial port is opened.

NOTE: Note that the HypnoLSD module speeds above 3Mbaud can be reached by using the UART

interface (on the non-USB version) combined with devices based on the FT232H chip from FTDI. They

sell a breakout board that we have tested for high speed connections.

Demos
Six demos are integrated into the module to help debugging and to provide simple test patterns. They are

1. Solid color, slowly changing

2. Solid color blocks slide towards module.

3. A “plasma” of colors fades and evolves over the LEDs.

4. “Splats” of color are displayed, and each fades out slowly.

5. Eight different color blobs chase each other over the length of the strand.

6. Random flickering dots

2 Not reachable on the USB to UART version of the module. Needs a separate high-speed UART.
3 http://www.ftdichip.com/
4 http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT230X.pdf

Desired Rate Actual Rate Divisor % Error

9600 9600 1249 0

19200 19200 624 0

38400 38338.66 312 0.16

56000 56074.77 213 -0.13
57600 57692.31 207 -0.16

115200 115384.62 103 -0.16

250000 250000 47 0

300000 300000 39 0

375000 375000 31 0

400000 400000 29 0

480000 480000 24 0

500000 500000 23 0

600000 600000 19 0

750000 750000 15 0

800000 800000 14 0

1000000 1000000 11 0

1200000 1200000 9 0

1500000 1500000 7 0

20000002 2000000 5 0

24000002 2400000 4 0

3000000 3000000 3 0

40000002 4000000 2 0

60000002 6000000 1 0

120000002 12000000 0 0

http://www.ftdichip.com/
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT230X.pdf

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

6

Drawing Mode
In drawing mode, colors are sent as triples of colors, thought of as red, green, and blue, written RGB.

However, the order of bytes sent in is the same order the go to the LED strand, and most strands take

order green, red, blue (GRB), so the order you write them may need modified to match LED requirements.

Each byte value can be 0-255, except byte 254 is reserved as a synchronization byte, called SYNC. This

means whenever you want to send color 254, you should change that to 255. This is done in case a buggy

UART connection loses or mangles a byte, so the image can be resynchronized. Color 254 was chosen

because the visual difference between 254 and 255 is negligible.

The color order is to fill width first, then next value for the length, repeat. When all bytes for the current

frame are sent, send a SYNC byte, which marks the end of a frame and denotes to the output code that it

can begin. In fact, each SYNC byte increments an internal counter, and each frame of output that is started

by the internal code decrements this counter.

A SYNC byte also tells the writing code to start at the top of the image buffer for the next byte.

Entering two SYNC bytes in a row exits drawing mode back to command mode.

Detailed Control
There may be some uses where careful timing of the input and output streams needs synchronized for

robust images, no tearing, or to sync with other needs such as video.

Internally, the code has a RAM buffer for the image consisting of 30,000 bytes laid out in a special manner

allowing efficient code to manage it quickly. In drawing mode, this buffer is simultaneously being written

into with incoming data (from the USB or UART interfaces) and read from to get outgoing data (to the

LEDs). It is possible for reading/writing to step on each other during a frame, which can result in a “tearing”

of images. The SYNC byte (254) which marks the end of a frame also allows careful timing control to avoid

any accidental stepping on each other.

At all times the reader (for LED output) and writer (for incoming data from UART or USB) are walking

through memory, top to bottom, trying to do their jobs. When a SYNC is sent, a 32-bit SYNC counter is

incremented, the low order byte is output to the UART so you can track it, and the writer is restarted from

the top, with the first color channel (R in RGB, or G in GRB, etc.). Whenever the reader reaches the end of

whatever it is doing, it checks this counter, and if it is not greater than zero, the reader has a delay until it

checks again. Whenever the SYNC counter is greater than zero, the reader decrements the counter, and

sends (low order counter byte + 64) to the UART port. The +64 is to help track what is going on in your

code.

Note that the reader does not send these output bytes if there are already bytes being transmitted from

a previous round. If your baud rate is too slow some output bytes will be skipped.

Once these bytes are seen, the reader starts at the top, reading from the top of RAM and sending the data

to the LEDs.

Here is the important timing detail: The reader processes output at 800kbits per second (on each strand

since it’s done in parallel). After one pixel of output is sent, it is safe to write one pixel of input. If your

writer fills pixels into RAM faster than they are output by the reader, then you will catch and pass the

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

7

reader. So if you’re finding some tearing of your images, think through this and try to make a proper delay

to sync the images. The internal code timing is rock solid, so doing some testing should demonstrate what

delays you may need to prevent the input and output from stepping on each other. In practice we have

yet to see any problems with this.

Long Strand Issues
When strands get longer, the signal shaping in the WS2812 modules begins to have problems keeping a

solid image. With the default timing, we have successfully run 2500 length strands with no problems, in a

4x2500 configuration. For longer strands, such as the 2x5000 or 1x10000 configuration, we had to add

small delays on output timing to prevent signals from “bunching up” and dropping signal. This is

accomplished by the set bitdelay command. The default bitdelay of 0 outputs equal spaced timing for

each bit, longer delays lengthen the mandatory low between bits.

The delay needed depends on the wiring, especially if there are long connectors between some LEDs. We

have found signals seems to get messed up more often where there are long wires between LEDs, where

soldering patterns change, etc. For a 10K display we created using 8 panels, each with 1250 LEDs in series,

we were able to drive all 10K as one strand using a bit delay between 6 to 99. Larger values resulted in

garbage. Arranged as two 5K strands, we were able to use a bit delay of 2. In practice use the lowest value

that allows your display to work reliably.

For details see our article “Design and Implementation of Serial LED Gadgets.”5

Gallery

Figure 1 - 10,000 LED curved panel

5 http://hypnocube.com/2013/12/design-and-implementation-of-serial-led-gadgets/

http://hypnocube.com/2013/12/design-and-implementation-of-serial-led-gadgets/

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

8

Figure 1 shows 10,000 LEDs arranged in eight curved panel pieces we made to test all of the

HypnoLSD features. We set it up to test all combinations of strand counts and lengths to make

sure the device can handle many configurations. A video of it running graphics demos we created

is available at https://www.youtube.com/watch?v=SzpcPrnh9LY.

Other projects we have made for testing include Christmas lights, 60x16 panel, a conical hat, and

numerous other small devices. If you build interesting projects using this device send us a

description and images if you want, and we will try to add them to our website and future versions

of this document.

Happy hacking 

https://www.youtube.com/watch?v=SzpcPrnh9LY

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

9

Appendix A - Sample Code
Here are a few code samples to show how to use the HypnoLSD.

Sample software can be obtained from http://hypnocube.com/product/led_serial_driver/.

C# Sample
using System;
using System.IO.Ports;
using System.Text;
using System.Threading;

namespace Hypnocube.LSD.Sample1
{

 // TODO - explain C# for newbs
 // Don't need to delete like C++
 // We tried to remove most C#-isms from the below to make the code
 // easier to port to C or JAVA. We removed normal XML commenting,
 // implicit variables, the default static class for Main, TODO
 // This C# should work in Linux under mono, Windows, and Mac under mono (TODO)
 class Program
 {
 // This is the string used to mark end of a command to the device
 const string CommandEnd = "\r\n";

 // This is the value of a sync byte used for sending images.
 // Images cannot have this byte in them - we recommend replacing
 // such bytes any with value 255.
 const byte SyncByte = 254;

 // This is a sample program, showing how to set up the device and
 // perform various options
 void SampleProgram(string[] args)
 {
 // get the name of the port we will use
 string portName = "COM8";
 if (args.Length == 1)
 portName = args[0];

 // wrap this in try/catch blocks to catch errors
 try
 {
 // open the serial port at the default rate of 9600
 OpenPort(9600, portName);

 // get attention of the device by sending a few empty lines
 // Also helps in case the built in demos were running.
 WriteString(CommandEnd);
 WriteString(CommandEnd);
 // wait a moment.
 Delay();

 // Ask for the version
 WriteString("version" + CommandEnd);
 Delay();

 // to draw images quickly, we will use a higher baud
 // rate of 115200 (most serial device should support it)
 // This requires a "divider" of 103. (See manual for values).
 int divider = 103;
 WriteString("set speed " + divider + CommandEnd);
 Delay();

 // must close and re-open port
 ClosePort();
 Delay();

http://hypnocube.com/product/led_serial_driver/

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

10

 OpenPort(115200, portName);
 Delay();

 // see if port changed - should see this message
 // if not, increase the delay. Or comment out the code
 // that changes speed, and see if everything works.
 WriteString("get speed" + CommandEnd);
 Delay();

 // now, let's draw some images!
 imageWidth = 4; // 4 strands wide
 imageHeight = 30; // 30 pixels tall
 WriteString("set size " + imageWidth + " " + imageHeight + CommandEnd);
 Delay();
 WriteString("get size " + CommandEnd);
 Delay();

 DrawImages();

 // make sure to get the console again
 WriteString(CommandEnd);
 // wait a moment.
 Delay();

 // return to 9600 speed so we don't have to reset the hardware
 // to run this sample again
 divider = 1249; // divider value for 9600 baud
 WriteString("set speed " + divider + CommandEnd);
 Delay();
 ClosePort();
 Delay(); // we put more delays here since 9600 is slow
 OpenPort(9600, portName);
 Delay();

 // check help screen for fun
 WriteString("help" + CommandEnd);
 Thread.Sleep(5000); // wait 5 seconds for all data to come back

 // close port
 ClosePort();
 Delay();

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("Finished running sample code. Press a key to exit.");
 WaitForKeypress();

 }
 catch (Exception e)
 {
 Console.WriteLine("EXCEPTION: " + e.Message);

 // The most common exception is an invalid port name, so
 // we'll output them all here.
 Console.WriteLine("Available port names are:");
 foreach (string name in SerialPort.GetPortNames())
 Console.WriteLine("Port: " + name);

 }

 }

 // since the device is not terribly fast, we recommmend
 // delays between commands in console mode. In drawing mode
 // these are not needed.
 void Delay()
 {
 // 200 millisecond delay

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

11

 Thread.Sleep(200);
 }

 // here is our serial port. Various languages and OSes
 // have different ways of dealing with them.
 SerialPort port;

 // We will open a port given the name and desired baud rate.
 // The device defaults to 9600 baud, 8N1, no handshake, so we
 // set that in here. Since we also want faster signaling than
 // 9600, we allow the baudrate as a parameter.
 void OpenPort(int speed, string portName)
 {
 // if we already have a port, Close it first
 if (port != null)
 ClosePort();

 // create a new port with desired parameters
 port = new SerialPort
 {
 BaudRate = speed,
 DataBits = 8,
 Parity = Parity.None,
 StopBits = StopBits.One,
 Handshake = Handshake.None,
 // C#/.NET needs to change the default encoding on a serial port
 // to get bytes back and forth without interference.
 // This encoding will do it.
 Encoding = Encoding.GetEncoding("Windows-1252")
 };

 // we attach some listeners (think function pointer)
 // to catch errors and returned bytes
 port.DataReceived += DataReceived;
 port.ErrorReceived += ErrorReceived;

 // set the port name, such as "COM2" in windows
 port.PortName = portName;

 // And try to open it.
 // This throws an exception if it cannot be opened.
 port.Open();
 }

 // close the serial port
 void ClosePort()
 {
 if (port != null)
 {
 // remove listeners
 port.DataReceived -= DataReceived;
 port.ErrorReceived -= ErrorReceived;
 if (port.IsOpen)
 port.Close();
 }
 // set to null for safety
 port = null;
 }

 // we send all string commands to the port through here,
 // because strings in C# are unicode, and we must send
 // ASCII strings
 void WriteString(string format, params object[] args)
 {
 byte [] bytes = Encoding.ASCII.GetBytes(String.Format(format, args));
 WriteBytes(bytes);
 }

 // Write an array of bytes to the port.

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

12

 void WriteBytes(byte[] data)
 {
 if (port.IsOpen)
 port.Write(data, 0, data.Length);
 }

 // the image width (# of strands 1-16)
 int imageWidth;
 // the image height (length of a strand)
 int imageHeight;
 // the image will be stored here as it is constructed, then
 // once set, will be sent at once
 // The image is stored width first, then height. Each pixel is
 // 3 bytes of red, green, blue color (RGB).
 byte [] buffer;

 // given a coordinate i,j and color red,green,blue,
 // set a pixel in the buffer
 void SetPixel(int i, int j, int red, int green, int blue)
 {
 // pixels go in buffer as:
 int index = (i + j*imageWidth)*3;
 // check bounds
 if (index < 0 || buffer.Length <= index)
 return; // out of bounds. Ignore
 // set the red, green, and blue components
 buffer[index++] = (byte)red;
 buffer[index++] = (byte)green;
 buffer[index] = (byte)blue;
 }

 // Fill image with one color. Useful for clears
 void Fill(int red, int green, int blue)
 {
 for (int i =0 ; i < imageWidth; ++i)
 for (int j = 0; j < imageHeight; ++j)
 SetPixel(i, j, red, green, blue);

 }

 // this is a very important function. It copies the buffer
 // to the device, but first it ensures no SYNC bytes are in the
 // image. It replaces any SYNC bytes in the buffer with 255, then
 // appends a SYNC byte to notify the gadget that the image is done.
 // Finally, it transfers the data over the serial port to the gadget.
 // NOTE: the gadget must be in drawing mode for this to work.
 void TransferImage()
 {
 // remember - we cannot send a sync byte in the image, so
 // we'll remap in place
 for (int i = 0; i < buffer.Length; ++i)
 if (buffer[i] == SyncByte)
 buffer[i] = 255;
 buffer[buffer.Length - 1] = SyncByte; // image ends with a sync byte
 // draw it
 WriteBytes(buffer);
 }

 // we track drawing mode so we can print returned bytes differently
 bool drawing = false;

 void DrawImages()
 {
 // each pixel needs three bytes for RGB
 // we add one byte to append a SYNC byte
 buffer = new byte[imageWidth * imageHeight * 3 + 1];

 // enter draw mode
 drawing = true;

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

13

 WriteString("draw" + CommandEnd);
 Delay();

 Console.WriteLine("Press a key for red");
 WaitForKeypress();

 // Fill buffer with red
 Fill(255,0,0);

 // send the image to the device
 TransferImage();

 // green
 Console.WriteLine("Press a key for green");
 WaitForKeypress();
 Fill(0, 255, 0);
 TransferImage();

 // blue
 Console.WriteLine("Press a key for blue");
 WaitForKeypress();
 Fill(0, 0, 255);
 TransferImage();

 Console.WriteLine("Press a key for a plasma");
 WaitForKeypress();

 // do a demo of something more complex
 ShowPlasma();

 // clear image before exiting
 Fill(0,0,0);
 TransferImage();

 // exit drawing - spec calls for 2 sync bytes, but we send three to make sure :)
 byte [] syncs = new byte[] {SyncByte, SyncByte, SyncByte};
 WriteBytes(syncs);
 Delay();
 drawing = false;
 }

 // show a plasma colored demo until a key is pressed
 void ShowPlasma()
 {
 Console.WriteLine("Press a key to exit plasma");

 int frame = 0;
 while (Console.KeyAvailable == false)
 {
 // fill the image
 for (int i = 0; i < imageWidth; ++i)
 for (int j = 0; j < imageHeight; ++j)
 {

 // compute some colors based on position and frame
 double angle = frame/10.0;
 double c = Math.Sin(
 angle +
 Math.Sin(i/10.0+angle/10.0) +
 12*Math.Cos(j/27.0+i/30.0)
);
 // c is in -1 to 1, so map to 0-255 for red
 int red = (int)(((c + 1) / 2.0 * 255.0));

 // do similarly for green and blue
 c = Math.Sin(
 1.1*angle +
 1.2*Math.Sin(i / 13.0 + angle / 12.0) +
 7 * Math.Cos(j / 22.0 + i / 27.0)

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

14

);
 int green = (int)(((c + 1) / 2.0 * 255.0));

 c = Math.Sin(
 0.9*angle +
 1.7*Math.Sin(i / 9.0 + angle / 13.0) +
 9 * Math.Cos(j / 31.0 + i / 28.0)
);
 int blue = (int)(((c + 1) / 2.0 * 255.0));

 SetPixel(i,j,red,green,blue);
 }

 // send the image to the device
 TransferImage();

 // Wait a moment to avoid moving too fast :)
 //Thread.Sleep(100);

 // next frame - causes change over time
 ++frame;
 }

 // read any keypresses before returning
 while (Console.KeyAvailable == true)
 Console.ReadKey(true);
 }

 // wait for a key to be pressed.
 // this differs in many languages/OSes, but
 // the same C# code should work.
 void WaitForKeypress()
 {
 // wait for keypress
 while (Console.KeyAvailable == false)
 Delay();
 // absorb keypresses
 while (Console.KeyAvailable == true)
 Console.ReadKey(true);
 }

 // when the serial port sees data, it comes to here, and is output
 // to the console. The color depends on if we're in drawing mode or
 // not.
 private void DataReceived(object sender, SerialDataReceivedEventArgs e)
 {
 SerialPort senderPort = (SerialPort) sender;
 int bytesToRead = senderPort.BytesToRead;
 byte [] data = new byte[bytesToRead];
 senderPort.Read(data, 0, bytesToRead);
 ConsoleColor foregroundColor = Console.ForegroundColor;
 if (drawing == true)
 Console.ForegroundColor = ConsoleColor.Cyan;
 else
 Console.ForegroundColor = ConsoleColor.Yellow;
 foreach (byte b in data)
 {
 // if the byte is printable ASCII, show it as such, else
 // show the byte value in brackets []
 if ((32 <= b && b < 128) || b == 8 || b == 10 || b == 13)
 Console.Write((char) b);
 else
 Console.Write("[" + (int)b + "]");
 }
 // restore the foreground color
 Console.ForegroundColor = foregroundColor;
 }

Hypnocube.com – Hypnocube LED Serial Driver Final Documentation v1.1, July 2014

15

 // serial port errors come through here and are output in red.
 void ErrorReceived(object sender, SerialErrorReceivedEventArgs e)
 {
 ConsoleColor foreground = Console.ForegroundColor;
 Console.ForegroundColor = ConsoleColor.Red; // set an error color
 Console.Error.WriteLine("Port error {0}", e.EventType);
 Console.ForegroundColor = foreground;
 }

 // C# console programs start here
 static void Main(string[] args)
 {
 // create a new instance of this program
 Program program = new Program();

 // and run it
 program.SampleProgram(args);
 }

 }
}

Appendix B – Software/hardware version history

Software
- 1.0 - Nov 2013 – June 2014

Original (unshipped) version.

- 1.1 – July 2014

Fixes a rare timing glitch that locks up the chip.

Hardware
- 1.0 – Nov 2013

Initial internal release

- 1.1 - July 2014

First commercial release. Adds voltage correction to make strands more reliable.

Appendix C – Document History
- 0.1 - Sept 2013

Preliminary Release before hardware available

- 1.0 - Feb 2014

Second preliminary release.

- 1.1 - July 2014

Final release.

Hardware and software ready.

Gallery and code samples included.

END OF DOCUMENT

	Quick Start
	Overview
	Electrical Interface
	Programming Interface
	Overview
	Command Mode
	Baud Rate Calculations
	Demos

	Drawing Mode
	Detailed Control
	Long Strand Issues

	Gallery
	Appendix A - Sample Code
	C# Sample

	Appendix B – Software/hardware version history
	Software
	Hardware

	Appendix C – Document History

