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Introduction 
 

 

Motivation 

In complex networks that contain a large variety in the density of the nodes, it is difficult 
to provide reliable and efficient service. In sparse areas of the network, the mobility of 
the nodes, the limited range of wireless communication, and physical factors such as 
severe weather partition the network These network outages are an unacceptable dilemma 
in networks that require reliability. Message Ferrying is a proactive routing algorithm 
created to address network partitions in sparse networks by establishing non-randomness. 
Message Ferrying is a proactive routing algorithm that incorporates message ferries or 
mobile nodes that carry messages among disconnected nodes [21]. 

Even though the network may contain sparse regions, the ferry may become a point of 
collision as all of the nodes try to connect and send information to the ferry.  This 
problem will be more evident in the ad hoc regions of the network that are densely 
populated with nodes.   

The embedded devices, iPAQ and Smart Badge, are concerned with power and battery 
life.  The most efficient way to save power is to have less hardware or more efficient 
hardware.  In this distributed-memory infrastructure that uses message passing, the nodes 
only transmit to the ferry when the ferry is within range.  Therefore, the nodes spend a lot 
of unnecessary energy maintaining the network interface, even when there is no one 
sending or receiving information. 

In order to save power, a small sensor / radio was added to the infrastructure.  A radio / 
sensor was added to the ferry to broadcast a ferry message.  Another radio / sensor was 
added onto the embedded application to sense when the ferry is nearby.  When the ferry 
is detected, the sensor / radio turns on its network interface, and sends the information.  
After the exchange of information, the network interface turns off again.   

My objective is to implement the Message Ferry Algorithm on some embedded devices 
minimizing collisions on the ferry and minimizing power usage on the embedded device.  
The Message Ferrying Algorithm was created by a doctoral student called Wenrei Zhao.  
The power usage was minimized using an idea of a doctoral student at Georgia Tech 
called Hyewon Jun.   
 

Related Work  

Message Ferrying is a proactive routing algorithm that incorporates message ferries that 
allow communication among disconnected nodes. Ferries travel in a specified route, 
collecting data from sources and delivering data to the appropriate destinations. These 



message ferries allow nodes to communicate when the network is disconnected and when 
nodes do not have global knowledge of the network [21].  

This algorithm is a good solution for sensor networks that may have several densely 
disconnected sections that need to communicate with one another. The underlying 
operating system used in many sensor networks was pioneered by TinyOS. This smart 
dust is a tiny event driven operating system that provides multiple flows of data from a 
single microcontroller [7]. 

With the emergence of advanced hardware and small operating systems, such as TinyOS, 
new types of sensor networks began to appear. A less fine grained mote was used in 
ZebraNet to track wildlife for biology research. This ad hoc peer to peer network was 
energy-efficient and reliable as it used GPS to track Zebras movements in the wild by 
using collars with sensors. A history based protocol that intelligently selected nodes 
based on prior communication patterns proved to satisfy the tradeoffs between storage, 
bandwidth, and energy requirements. This study was important because it demonstrated 
how to forward data in regions where there is not any widely deployed 
telecommunications support [6]. 

Another study called DataMULE addressed the problem of sparse area networks by using 
a similar infrastructure that Message Ferrying uses. Mobile entities called MULEs pick 
up data from sensors and drop off the data at wired access points. DataMULE takes a 
layered approach and contains three tiers of WAN connected devices, mobile agents, and 
sensor nodes. The MULE has low power requirements, low infrastructure cost, and large 
storage capacities. However, the MULE experiences high latency [16]. DataMULE 
differs from Message Ferrying because it uses static sensors and does not use proactive 
movement to deliver data. Another study that address power management in sensor 
networks is Mate. Mate, a tiny virtual machine for sensor networks, addresses the 
problem reprogramming failing nodes in an energy efficient manner [10].  

The emergence an intelligent sensor network called Sensor Web that was capable of 
performing autonomous operation in uncertain environments. Sensor Webs are unique 
because they have pods that gather information and shared the information with 
neighboring pods. The collected data influences the behavior of these mobile pods and 
allows for more efficient collection of data. It also provides heterogeneous 
communication within the Sensor Web by allowing different kinds of pods to be added to 
the network [4] [5]. 

Another study that addresses communication among heterogeneous devices is iMASH 
(Interactive Mobile Applications Sessions Handoff) Project. iMASH created an 
architecture for fast, secure wireless communication across heterogeneous client devices 
and networks. iMASH utilized semantic savepointing, middleware only handoff, and 
content adaptation to allow heterogeneous communication in a wireless network. First, 
semantic savepointing identifies the essential state that needs to be sent for delivery. Then 
in middleware handoff, the middleware server initiates the handoff of data resulting in a 



lower latency time. Finally, only client appropriate data is delivered to the client 
application through content adaptation [3]. 

Another study that also uses intelligent reasoning in a sensor network is PlantCare. 
LaMarca designed a ubiquitous computing infrastructure that was usable, easily 
configurable, and required no user intervention. Self-maintained robots were built to 
automatically water plants using information on light, humidity, and temperature 
gathered from wireless sensors [9]. This study was important because it demonstrated the 
importance of continuous, automated service with no user intervention. 
 

 Design 
 

 

Programming the Ad Hoc Message Ferrying Code 

The application created is a text messaging system that allows short messages to be 
passed back and forth between users.  A simple implementation of Message Ferrying was 
implemented using ad hoc networking.  A problem encountered when programming in ad 
hoc network is how to do the network address translation (NAT) from the IP address to 
the MAC address.  In infrastructure mode, the base station contains the NAT and does the 
conversion.  To overcome this problem, I used raw socket programming.  Raw socket 
programming bypasses the TCP/IP layer and sends data by using the MAC address.   A 
Master’s Student at Georgia Tech named Johnny Franslay had done previous work with 
RAW socket programming and Message Ferrying.  Johnny’s functions for opening the 
sockets and sending information provided the basic infrastructure for my communication. 

UDP was chosen instead of TCP because TCP with slow start and the three way 
handshake make initialization and setup a slow process.  With message ferrying, the ferry 
can be traveling at a high speed and may only have a few seconds to connect to the ad 
hoc network and transmit data.  The time it takes for the ferry to join the network will cut 
into the time for the message to be passed. Also, it has been proven from simulations that 
TCP throughput drops a lot with node movement.  The throughput decreases because the 
movement of the nodes causes link failures.  TCP cannot distinguish the difference 
between congestion and link failure. Therefore, when a links fails, TCP believes it is 
congestion and reduces its congestion window and in the instance of a timeout, starts 
backing off its retransmission timeout (RTO) [8]. Due to these problems, TCP was not 
used in the implementation of Message Ferrying.  

In my code, I implemented a simple flow of control.  The ferry first begins broadcasting 
out messages to the nodes.  The broadcast interval is set to two seconds.  The node 
however will not be able to receive the beacon because it has its network interface card 
off.  The network interface card is off because it is assumed that the ferry is not within 
range.   



The ferry contains a ferry signal transmitter and the node contains a ferry signal receiver.  
The ferry signal generator notifies the ferry signal receiver that the ferry is near.  When 
the ferry signal receiver receives the signal, it brings up it network interface card and 
begins to listen for the ferry broadcast signal.  When the node received the beacon it 
replies back with information about its MAC address and that it is ready to receive data.  
If the ferry has data to send to the node, it sends it.  When all data is sent, it sends a Ferry 
Done Message to the node.  The node then sends data if it has data to send.  When the 
node it finished, it sends a Node Done Message to the Ferry.  The Ferry ends the 
communication by sending an ACK. 

The node is multithreaded and is continuously running the main program and is listening.  
The node is either listening for the ferry sensor to turn on its network card or the node is 
listening for the ferry beacon to open up a channel of communication.  The main node 
program provides the user with three basic tasks.  The user can compose a message by 
pressing “c” .  The user can print out all messages already composed and waiting to be 
sent by pressing “p” .  The user can also quit by pressing “q” .  When messages are 
received they are also displayed on the screen.  The messages are stores in queues. 

After the flow of control was implemented, an additional problem arose. The ferry 
experienced congestion and collisions when the nodes sent out data to the ferry.  When 
the ferry broadcasted out the message, all the nodes received it at the same time.  They all 
simultaneously sent their packets to ferry which resulted in collisions.  To combat this 
problem, a scheduler was implemented on all the nodes.  When the nodes were initialized 
they all received a random number.  When they wanted to send information to the ferry, 
they waited for the specified random time before sending the data.  This desynchronized 
the traffic flow and resulted in fewer collisions. 

Future work for Message Ferrying would be to implement different versions, such as 
Node Initiated Message Ferrying (NIMF) and Ferry Initiated Message Ferrying (FIMF).  
In these versions, the location and the destination of the node and the ferry would have to 
be tracked. 

 
Selecting and Programming the Sensor Hardware 

I investigated different types of sensor and radio technologies to optimize the embedded 
application that would run on a smart badge.  I investigated several types of sensors / 
radios:  GPS, Infrared, Active RF ID, CMOS, the Berkeley Mote, solar power, laser 
radar, and transmitter/receivers.  GPS was unacceptable because one has to know the 
route of the ferry at all times and it was very expensive to implement.  Infrared had a very 
low transmission rate.  Laser radar needed a clear line of site and would be blocked by 
building and, therefore, was an unacceptable technology.  CMOS, Solar powered sensors, 
and Active RFid were either expensive or hard to attain.  Primarily, I choose a simple 
transmitter / receiver because it was easily accessible and was the most basic, affordable, 
and attainable hardware candidate.   A simple transmitter / receiver can be found in any 
garage door opener.  However, upon purchasing the hardware, it was discovered that the 



transmitter / receiver consumed a large amount of power (12V).  After some further 
investigation, I then decided to use Berkeley motes.  The Berkeley motes have a large 
communication range of 250 feet.  They not only have a transmitter and receiver, but the 
kits came with many additional sensors.  They were also affordable for our experiment 
because they could be loaned from the Systems Group Lab.  However, the Berkeley mote 
kit is sold for approximately $500 from Crossbow and would not be a very cheap 
implementation for mass production. 

 
The Berkeley Mote has three parts:  a processor board, a sensor board, and a 
programming board.  I attained four Mote Processor Radio Boards (MPR), two Mote 
Interface Programming Boards (MIB), and four sensor boards (Figure 1).   The sensor 
board is a MTS310CA and contains a light sensor, a temperature sensor, an acoustic 
sensor, a sounder sensor, a 2-axis accelerometer, and a 2-axis magnetometer.  The 
processor board that is used to program the processor is a MDA500CA data acquisition 
board that provides a flexible user-interface for connecting external signals to the mote.  
The processor board is a MPR400CA. The MPR400CA uses an Atmel ATmega 128L 
microprocessor which runs TinyOS from its internal flash memory.  This microprocessor 
can run the sensor processing and radio / network communication stack simultaneously.   

 
 
 
 

 

 

 
Figure 1: Mote Interface Programming Board, Mote Processor Radio Boards, and a Sensor Board. 

 
Our architecture only requires two MPRs, but some testing of the radio communications 
require three MPRs.  Also, the sensor boards were used for testing of MPR 
communication, but were not used in the actual experiment.  Both Mote Interface 
Programming Boards (MIB) worked correctly.  Some additional hardware modifications 
had to be done to the motes.  The antenna had to be soldered on to the MPRs.  .    

In running the experiments, we also have to take into consideration the Smart Badge 
itself.  The Smart Badge shown in Figure 2 is the device that will have its network 
interface turned on and off.  The Berkeley motes are the actual sensing device that detects 
when the ferry is close and turns on the network interface.  Smart Badges are 
experimental sensor platforms that run embedded Linux.  Smart Badges consists of 32-bit 
StrongArm SA1110 processors, StrongArm1111 coprocessor, Flash, SDRAM, sensors, 
built in communication links, a SO-DIMM socket, PCMCIA interface, and a Compact 
Flash interface. 



 
Figure 2:  Front Side of Smart Badge4 

The documentation for the TinyOS and NesC, the programming language is not good.  
NesC is a new structured component-based language primarily used for embedded 
systems, such as sensor networks.  In addition to learning a new programming language, 
other difficulties had to be overcome.  First, the wrong version of the software was 
included with the Crossbow TinyOS CD.  It included the software and instructions for 
Mica hardware, whereas I have Mica2 hardware.  Also, a printer cable was used when 
downloaded the code to the mote, but the COM1 port was used when communicating 
with the smart badge.  Many environmental variables in odd files had to be changed 
because Mica2 runs at 57.5K baud and the sensor board is a micasb not a basicsb.  The 
basicsb is the sensor board for the more generic Berkeley motes.  A Makelocal file had to 
be created to set the power to 916MHz and set the group ID.  The group ID in the 
message header allows several groups of motes to share the same radio channel. After 
these interesting difficulties were overcome, I wrote the program for the ferry sensor in 
NesC to communicate as in the below diagram (Figure 3).     

 

 
Figure 3: Communication Architecture Between Two Mote Sensors and a Base Mote  



Experimental Results 
 

 
 
Berkeley Mote Experiments 

 
I modified two things in the Berkeley mote: the transmission power and the duty cycle.  
The transmission power affects the range of the ferry sensor.  The range of the ferry 
sensor is directly proportional to how much power the sensor will use.  The longer the 
range, the more power the sensor will use.  Therefore, I performed two power 
adjustments to the sensor.  To extend the range of communication, I also modified the 
network’s communication to include multi-hop routing.  In multi-hop routing, one sensor 
broadcasts out to other sensors that the ferry is within range (Figure 4).  Multi-hop 
communication is especially useful in architectures where the sensors have a low 

 

 
 
transmission range because multi-hop communication will increase the amount of time 
the device has to communicate with the ferry.  Our particular ferry sensor is the Berkeley 
Mote with a very long range of 250 feet.  Therefore, we did not implement multi-hop 
communication.  However, this data will be useful in future implementations where the 
price of the ferry sensor must be cheap.  During the analysis of different types of sensors, 
I discovered that the range of the sensor was inversely proportional to how much the 
sensor cost. 
 
Figure 5 illustrates how higher transmission powers result in a longer communication 
range.  Data in this graph was collected from the MPR /MIB User manual [12].  Some 
preliminary tests were done with the mote to verify its communication range.  At the 
lowest setting, the MPR should have a range of 10 feet.  However, the mote still 
transmitted at the maximum range of our experiment of 25 feet. 
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Figure 4 Single and Multi-hop Routing in Message Ferrying 



Variation in Communication Range 
Caused by Transmission Power
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Figure 5: Affect of Transmission Power on Radio Range 

 
The speed of the ferry also affects the connectivity time between the device and the ferry.  
The sensor must be able to detect the ferry in time for the node to connect to the ferry and 
send information.  If the range is not long enough, then the node will not have enough 
time to connect and finish transmission before it is out of range. A study was done by Ott 
and Kutsher with Wireless LAN communication and automobiles.  In their experiments, 
they proved that a single access point had a reach of at least 200 meters in diameter with 
one IEEE 802.11b access point.  Also, they concluded that the coverage obtained from a 

 

How the Speed of the Ferry Affects 
Throughput
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Figure 6: Speed of the Ferry and Throughput 
 



single access point is more than ten seconds, even at high speeds of 180 km/hr.  They 
state that it takes 300ms for 1250 bytes of data to be sent and received.  The beacon that 
detected the automobile had an interval of one second [13].  Using this information from 
the above study, I calculated the throughput in relation to speed in Figure 6.  The 
assumption was used that packets of 1250 byte packets were used and that there was no 
congestion in the network.  However, in our experiment the maximum packet size is 5000 
byte packets, so results may vary. 

 
The transmission power is programmable and controlled by the PA_POW register.  There 
are three main components on the board in Figure 8 that consume power: the processor, 
the radio, and the data logger.  The processor is an Atmel ATmega 128L.  The radio runs 
at frequency of 916 MHz.  The data logger is a 4M-bit serial FLASH for storing data and 
measurements.  The serial FLASH / Logger component can store over 100,000 
measurements.  I measured power of the entire board.  I investigated also measuring the 
three main components on the board.  However, the chips on the board were not set up to 
allow me to measure the power consumption without major changes to the MPR board.  
In order to measure the power consumption on the MPR board the wires connecting to 
the battery had to be cut and modified to allow me to attach it to a multimeter.  I used a 
Craftsman 82002 Multimeter for this experiment.  The results of the transmission power 
experiment done on single and multi-hop routing is shown in Figure 7. 
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Figure 7: Power Utilization for a Berkeley Mote with Varying Transmission Powers 

 
I also adjust the power by adjusting the duty cycle in the single hop communication 
architecture.  Duty cycle is the proportion of time in which the device is operated.  The 
more a component is used the quicker it will wear out.  In regards to power, lowering the 
duty cycle reduces the power as seen in Figure 8.  When measuring the power with  



Analysis of Power Utilization with Varying 
Duty Cycles
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Figure 8: Power Utilization for a Berkeley Mote using Varying Duty Cycles 

varying duty cycles, there was an observation made that the numbers fluctuated on the 
multimeter.  This was due to the fact that the processing would be reduced during the 
inactive part of the cycle and then jump up during the active part of the cycle.  Therefore, 
there is a high and a low value for the testing of the duty cycle.  The multimeter would 
read the low for the majority of the time and shoot up to the high when the processor 
became busy.  As the duty cycle was lowered, the range between the high and the low 
increased.  However, adjusting the duty cycle does have some negative affects on the data 
rate.  As the can be seen in Figure 9, decreasing the duty cycle reduces the data rate [19].   
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Figure 9: Duty Cycle Modes and Their Corresponding Data Rates 



 
Data used in the diagram was obtained from the TinyOS Tutorial.  Therefore, in our 
application we should be cautious when lowering the duty cycle to ensure that we can 
still maintain our desired throughput. 
 

Embedded Device Experiments 

In order to determine the effectiveness of the ferry sensor, Hyewon, Jeonghwa, and I 
performed several different experiments on the embedded device.  The amount of power 
the ferry sensor uses is drained from the Smart Badge.  Therefore, minimizing the power 
that the ferry sensor uses will minimize the power of the entire application.  Figure 10 
shows how much power is used on the smart badge with and without the ferry sensor in 
the application.  The longer the lifetime of the ferry sensor, the more time the network 
interface mode would be off. 
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Figure 10: Power of Smart Badge With and Without The Ferry Sensor. 
 
The latency to resume the network interface was also measure.   The ferry broadcast 
message interval was reduced to 5 µseconds. Therefore, the latency measured would be 
dominated by how long it took to resume the interface, not by the period of the 
broadcasted message. As shown in Figure 11 and Table 1, the average latency to resume 
the wireless interface is only 237 µseconds. Since the latency is very small, it will 
probably have little to no effect on the throughput of the device. 
 
 
 



 
Figure 11. The Normal Distribution Of Resuming Latency In Ad Hoc Mode. 

 
 

Resume Latency of the Smart Badge and Berkeley Mote 
Mean latency 237.230 msec 

Standard deviation 21.655 
Table 1: The Mean Latency and Standard Deviation of Resume Latency in Ad Hoc Message Ferrying 

 

Conclusion 
 

 
 
As can be seen from the results, using the ferry will save a considerable amount of power 
in the smart card.  The larger the route of the ferry, the more power is saved.  Also, it can 
be concluded that changing the transmission power had little affect on the power 
utilization in both the single and multi-hop experiments.  This may be due to the fact that 
the Berkeley mote was specifically designed to save power and a lot of power 
optimizations in regards to transmission power have already been done.  Therefore, it 
would be beneficial to use the highest transmission level to communicate in the Message 
Ferry Architecture.  From these transmission experiments, it can be ascertained that the 
utilization of the LED lights had an affect on the power utilization.  The utilization went 
up and down in the graphs.  This was due to the fact that the green LED light was toggled 
off and on with each transmission.  An explanation for why the transmission power did 
not change the power of the badge could be that it was because the function to control the 
transmission power is not implemented correctly in the TinyOS Kernel.  The command 
Pot and SetTransmission Power were implemented on the lowest setting and it still had a 
range of over 25 feet instead of 10 feet.  TinyOS still has bugs and the Transmission 
Power may not be implemented correctly in the code. 

 



The particular sensor that we used was the Berkeley Mote.  The Berkeley was affordable 
in our particular case because they were borrowed from another research group.  
However, the MPR costs $150 dollars and the MIB cost $95 dollars.  Crossbow is a new 
company selling the Berkeley motes.  As the market expands, the cost for the Berkeley 
Mote components will become more affordable.  Another alternative is to use a sensor 
with a lower range and use multi-hop routing.  Using multi-hop routing will aid in 
extending the range of the ferry, but more studies need to be done to quantify the exact 
relationship this would have on distance.  At a first glance, it seems that multi-hop 
routing uses more power than single hop routing in the transmission range experiment.  
But upon analyzing the LED light, it can be seen that more LED lights were used in 
multi-hop routing.  Green and red lights were used to display the hop count on the MPR.  
When the lights were turned off and the power measured, it was the same power as single 
hop routing.  Therefore, multi-hop routing did not use more power than the single hop 
routing and is recommended as an optimization in the Message Ferry architecture. 

 
A change in power could be seen by the duty cycle.  However, one must be cautious 
when modifying the duty cycle in order to ensure that the throughput is enough to get the 
data to the ferry before it goes out of the range.  Therefore, the specific application needs 
to be analyzed when determining to adjust the duty cycle. 
 
Optimizations made on the Berkeley mote had little affect on the overall power savings.  
Modifications to the transmission power resulted in no change in the power.  
Modifications to the duty cycle did enhance power savings, but at the cost of throughput.  
The maximum amount of power that could be saved by adjusting the duty cycle on the 
Berkeley mote was only 15mA. 15mA is only 2% of the total power of the device when it 
is active and 6% of the device when it is inactive.  If the application requires high 
throughput, the duty cycle should not be optimized because the power savings are very 
low in comparison to the entire device’s energy consumption. 
 
The ferry sensor saves a considerable amount of power.  The Smart Badge without the 
ferry sensor uses 590mW when idle and 604mW when transmitting data.  The Smart 
Badge with the ferry sensor uses 240mW of power when idle and 604 mW when 
transmitting data.  This is a considerable power savings.  The power savings increases 
with the lifetime of the embedded device.  
 

Appendix 

 
 

Technical Details on Using the iPAQ 

Code ran on the iPAQ has to be compiled on a specific arm-linux compiler.  The 
compiler must be downloaded in the root directory.  The version that was used was 3.3.1.  
To download the compiled code onto the iPAQ, I had to connect the iPAQ through a 



serial cradle to a COM port in a laptop or PC.  Minicom and Teraterm should then be 
used and the download should be done using the ZModem.  The source and destination 
directories and the baud rate of 115200 must be specified in Minicom.  I had difficulties 
with the Minicom application in Linux and used Teraterm.  When compiling, I used the 
downloaded directory of /usr/local/arm/3.3.1/bin/gcc in the Makefile.  Also, ensure that 
the iPAQ is running the orinoco_cs module and not the wavelen_cs module for the 
network driver.  The wavelen_cs module has bugs and has been discontinued. 

Technical Details on Using the Smart Badge 

Code ran on the Smart Badge had to be compiled on a specific arm-uclibc compiler.  This 
compiler must also be downloaded in the root directory.  The version that was used was 
3.2.  To program and download code onto the Smart Badge, a COM cord was used while 
running Teraterm.  The power supply must also be connected to the badge for it to 
function properly.  The sensor drivers must be loaded with the command modprobe 
badge4_sensors.  NFS must be running on the machine running as the server where the 
code is compiled.  The Smart Badge is mounted with the command mount –o 
rw,nolock,intr 192.168.1.220:/home/badge0 /opt/Badge4.  192.168.1.220 is the IP 
address of the server.  /home/badge0 is the directory on the server where the code is 
changed and can be compiled.  Opt/Badge4 is the directory on the badge where the 
information will be stored.    The code is compiled by typing arm-uclibc-gcc filename.txt. 
 

Technical Details on Using the Berkeley Mote 

Code ran on the Berkeley Mote had to be compiled using the TinyOS software.  The code 
written was in an embedded C language called NesC.  The version used for this 
experiment was 1.1 and the Motes used were Mica2. To compile the code the command 
make mica2 is used.  To download the code onto the mote, the command make mica2 
install.  When setting up the software many variables must be changed and set.  Ensure 
that the baud rate is set to 57.5K, the sensor board is set for micasb when using mica2 
motes, and that a Makelocal file is created to set the power to 916MHz and set the group 
ID.  The group ID in the message header allows several groups of motes to share the 
same radio channel. Check to ensure that the software and instructions match each other 
and also the actual motes that you received.  The software did not match the motes on the 
Crossbow CD.  Also, a printer cable should be used to download the code to the mote and 
the COM1 port should used when communicating with the smart badge.   The COM1 
cable requires a female to female connection. 

 
Recommendation for Future Message Ferrying Lab 

I recommend using some of these embedded technologies in future research with 
Message Ferrying.  The three embedded devices that I used would be good for testing 
different types of wireless communication.  The iPAQ is especially useful due to its 
lightweight size and portability.  The Berkeley Motes were excellent in developing a 



wide variety of applications.  The Berkeley Motes contain a light sensor, a temperature 
sensor, an acoustic sensor, a sounder sensor, a 2-axis accelerometer, and a 2-axis 
magnetometer.  They are also portable and use very low power as can be seen from our 
experiments.  The Smart Badge 4 is also a good embedded platform for sensors with a 
stronger processor than the Berkeley motes.  Sensors, such as accelerometers, biometrics, 
and imaging sensors, may also be connected to the Smart Badge.  It supports audio 
processing, such as speech, noise cancellation, and streaming audio.  Video streaming 
and VoIP can also be done on the Smart Badge. 
 
Also, more complex versions of Message Ferrying involved tracking location.  GPS 
tracks location but only outside and the measurements are not very precise.  Another 
suggestion is to use laser radar.  Laser radar has a range of 100 meters.  The angle that the 
beam is reflected back to the source is calculated to tell the destination of the other entity.  
However, a clear line of site is required and any type of obstruction such as a building 
will not allow this type of technology to work.  In addition to this deficiency, laser radar 
is quite expensive ranging from $200 – $3000. 
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