
Cookbook for Developers of ArgoUML

An introduction to ArgoUML Programming

by Markus Klink and Linus Tolke

Cookbook for Developers of ArgoUML: An introduction to ArgoUML
Programming
by Markus Klink and Linus Tolke

The purpose of this Cookbook is to help in coordinating and documenting the development of ArgoUML.

This version of the cookbook is loosely connected to the version 0.14 of ArgoUML.

Copyright (c) 1996-2003 The Regents of the University of California. All Rights Reserved. Permission to use, copy, modify, and distribute this
software and its documentation without fee, and without a written agreement is hereby granted, provided that the above copyright notice and this
paragraph appear in all copies. This software program and documentation are copyrighted by The Regents of the University of California. The
software program and documentation are supplied "AS IS", without any accompanying services from The Regents. The Regents does not warrant
that the operation of the program will be uninterrupted or error-free. The end-user understands that the program was developed for research pur-
poses and is advised not to rely exclusively on the program for any reason. IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE
LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALI-
FORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DIS-
CLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVER-
SITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

Table of Contents
1. Introduction ...

1.1.Thanks ...1
1.2. About the project .. 1
1.3. How to contribute ... 1
1.4. About this Cookbook .. 3

1.4.1. In this Cookbook, you will find... .. 3
1.4.2. In this Cookbook, you will not find... ... 3

1.5. Mailing Lists ...3
2. Building from source ...

2.1. Getting started ...4
2.1.1. Which tools do I need to build ArgoUML? ... 4
2.1.2. Which tools are part of the ArgoUML development environment? 4
2.1.3. What libraries are needed and used by ArgoUML? ... 5

2.2. Download from the CVS repository ... 5
2.3. Build Process ..6

2.3.1. How ANT is run from the ArgoUML development environment 6
2.3.2. How documentation is presented ... 8
2.3.3. Troubleshooting the development build .. 10

2.4. The JUnit test cases .. 10
2.4.1. How to write a test case .. 11

2.5. Manual Test Cases ... 13
2.5.1. Running the manual tests ... 13
2.5.2. Writing the manual tests .. 13
2.5.3. The list of tests .. 14

2.6. Making a release .. 15
2.6.1. The release did not work ... 18

3. ArgoUML requirements ...
3.1. Requirements for Look and feel .. 19
3.2. Requirements for UML ... 20
3.3. Requirements on java and jvm .. 20
3.4. Requirements set up for the benefit of the development of ArgoUML ... 21

4. ArgoUML Design, The Big Picture ..
4.1. Definition of component .. 23
4.2. Relationship of the components ... 24
4.3. Definition of layer .. 25
4.4. Layer 0 - Description of components .. 25
4.5. Layer 1 - Description of components .. 25
4.6. Layer 2 - Description of components .. 26
4.7. Layer 3 - Description of components .. 27

5. Inside the components ...
5.1.Model ..29

5.1.1.Factories ..30
5.1.2.Helpers ..30
5.1.3. The model event pump .. 30
5.1.4. How do I...? .. 33

5.2. Critics and other cognitive tools .. 34
5.2.1. Main classes ...34
5.2.2. How do I ...? ... 36
5.2.3. org.argouml.cognitive.critics.* class diagram .. 38

5.3.Diagrams ..38
5.3.1. How do I add a new element to a diagram? ... 39
5.3.2. How to add a new Fig ... 39

5.4. Property panels ..41

iv

5.4.1. Adding the property panel ... 41
5.5. Reverse Engineering Component ... 54
5.6. Code Generation Component .. 55
5.7. Java - Code generations and Reverse Engineering ... 55

5.7.1. How do I ...? ... 55
5.7.2. Which sources are involved? .. 55
5.7.3. How is the grammar of the target language implemented? ... 55
5.7.4. Which model/diagram elements are generated? .. 55
5.7.5. Which layout algorithm is used? ... 56

5.8. Other languages ...58
5.9. The GUI Framework ... 59

5.9.1. Multi editor pane ... 60
5.9.2. Details pane ..61

5.10. Help System ..61
5.11. Internationalization ...61

5.11.1. Organizing translators ...62
5.11.2. Ambitions for localization ... 63
5.11.3. How do I ...? ... 63

5.12.Logging ..65
5.12.1. What to Log in ArgoUML ... 65
5.12.2. How to Create Log Entries... .. 66
5.12.3. How to Enable Logging... .. 67
5.12.4. How to Customize Logging... ... 69
5.12.5.References ..69

5.13. JRE with utils .. 69
5.14. To do items ... 69
5.15.Explorer ..69

5.15.1. Details of current implementation .. 70
5.15.2.Requirements ..70
5.15.3. Key Classes ..70
5.15.4. How do I ...? ... 71

5.16. Module loader ..72
5.16.1. What the ModuleLoader does ... 72

5.17.OCL...72
6. Extending ArgoUML ...

6.1. How do I ...? ... 73
6.2. Modules and PlugIns ... 73

6.2.1. Differences between modules and plugins .. 73
6.2.2.Modules ...74
6.2.3.Plugins ..75
6.2.4. Tip for creating new modules (from Florent de Lamotte) ... 78

6.3. How are modules organized in in the java code .. 79
6.3.1. How do I ...? ... 79

7. Organization of ArgoUML documentation ...
8. CVS in the ArgoUML project ...

8.1. How to work against the CVS repository .. 82
8.2. Creating and using branches ... 83

8.2.1. How do I ...? ... 83
8.3. Other CVS comments ... 85
8.4. CVS repository contents .. 86

9. Standards for coding in ArgoUML ...
9.1. Settings for Eclipse ... 90
9.2. Settings for NetBeans .. 90
9.3. Settings for Emacs .. 90

10. Further Reading ..
10.1. Jason Robbins Dissertation ... 92

10.1.1.Abstract ...92
10.1.2. Where to find it ... 92

Cookbook for Developers of ArgoUML

v

10.2. Martin Skinners Dissertation ... 92
10.2.1.Abstract ...92
10.2.2. Where to find it ... 92

11. Processes for the ArgoUML project ..
11.1. The big picture for Issues ... 94
11.2. Attributes of an issue ... 95

11.2.1.Priorities ..95
11.2.2.Resolutions ...96

11.3. Roles Of The Workers ... 96
11.3.1. The Reporter ...96
11.3.2. The Resolver ...97
11.3.3. The Verifier ..98

11.4. How to resolve an Issue ... 98
11.5. How to verify an Issue that is FIXED ... 99
11.6. How to verify an Issue that is rejected ... 100
11.7. How to Close an Issue ... 101
11.8. How to relate issues to problems in subproducts ... 101

Index ...

Cookbook for Developers of ArgoUML

vi

List of Tables
7.1. Bits of documentation ... 80

vii

List of Examples
2.1. An example without javadoc comments .. 12
5.1. For log4j version 1.2.x .. 66
5.2. Improving on speed/performance .. 67
5.3. Various URLs ...67
5.4. Command Line for argouml.jar ... 68
5.5. Modification of build.xml .. 68
5.6. External Execution Property (Arguments) ... 69

viii

Chapter 1. Introduction
1.1. Thanks

We, the authors, would like to take the opportunity to thank everyone involved in the creation of this documentation,
and especially the people behind setting up the DocBook environment. In particular thanks go out to Alejandro
Ramirez, Phillipe Vanpeperstraete and Andreas Rueckert. Thank you!

1.2. About the project
ArgoUML is an open source project, so it depends on people that volunteer to work on it. Especially in the area of
development there is still so much to do! This Cookbook is dedicated to everyone interested in taking part in the Ar-
goUML project as such and should help to transfer the knowledge from the old experts to them. Please feel free to
send more questions and/or answers to the dev mailing list [mailto:dev@argouml.tigris.org]!

1.3. How to contribute
You can help, there are big tasks and small tasks waiting for you.

Here is a suggestion on how you could become part of the ArgoUML Project. This could be perceived as a ladder to
climb but remember that if so it is firstly a ladder of levels of commitment and time spent by you. You get no price
for climbing higher, you just get more responsibility in the project and more work.

1. Use ArgoUML.

2. Subscribe to the dev list.

Monitor the discussions and as soon as you see something discussed where you have an opinion, jump right in!

3. Apply for an Observer role.

This shows that you are commited to the project and also allows you to enter and comment on issues etc.

4. Familiarize yourself with the project and how we work.

Suggestion on how to go about this:

a. Read through most of the User manual and install and run the latest version of ArgoUML.

b. Subscribe to the issues list.

You will get updates on all issues so you can monitor what we are doing in the project. (It could be a lot of
mails. If it turns out you don't like watching issues in this way just unsubscibe again.)

c. Subscribe to the cvs list.

You will get updates on all changes that are done to code, documentation, and the web site. (It could be a
lot of mails. If it turns out you don't like watching what is going on in the project in this way just unsub-
scibe again.)

d. Read the process part of the Developers Cookbook at Chapter 11, Processes for the ArgoUML project.

1

mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org

This will give you the idea of how the ArgoUML project attempts to release with good quality and espe-
cially how Issuezilla works.

e. Get the Observer role granted.

f. From this on you can report bugs yourself directly in Issuezilla.

You can also verify issues according to the verification process (see Section 11.5, “How to verify an Issue
that is FIXED”).

This will help you understand the terminology used in the project and also gives you an idea of the current
quality of ArgoUML and what needs to be done in the future.

This is also a very low-commitment level task that could be completed in a couple of minutes (depending
on your choice of issue).

g. Read the rest of the Developers Cookbook.

There is a lot of stuff discussed in here that is interesting for your understanding of the project and the
code.

h. Check out the source from cvs and build.

5. Familiarize yourself with the code.

For this a good knowledge of Java is more or less a prerequisite.

Suggestion on how to go about this:

a. Take active part in the discussions on the dev-list.

b. Solve issues registered in Issuezilla.

c. Convince someone to commit your changes.

d. Repeat.

This can go on until you find that your main problem is the to get someone to actually commit your
changes, not because they are hard to convince but because they don't have time to do commits to keep up
with your pace.

6. Apply for a Developer role.

This allows you to do commits on your own and you can now increase the pace in which you are working.

There are a lot of special requirements on you to get this granted.

Noted here for Linus to keep track on what to verify.

• Understanding and accepting the goals.

• Understanding where we are in the development process.

Introduction

2

• Understanding the terminology used in the project.

• Good knowledge of CVS.

• Understanding the set of tools (ant, junit) and how to use them.

7. Focus your work in a specific area.

Everybody has different interests and the best contribution is made when someone is allowed to pursue his own
interests. Hopefully ArgoUML provides you with interesting challanges to your taste.

8. Accept responsibility for a specific area.

With this you are part of the core team developing ArgoUML.

1.4. About this Cookbook
This document, the Cookbook for Developers of ArgoUML, is provided with the hopes of being helpful for the de-
velopers of ArgoUML when it comes to learning and understanding how ArgoUML work in order to improve on its
functions and features. It can also be of interest for persons that wish to analyse the ArgoUML project for whatever
purpose that may be.

1.4.1. In this Cookbook, you will find...
Information on how you can compile ArgoUML.

Information on how different features of ArgoUML are implemented.

Information on how you should add modules and Plug-ins to ArgoUML.

Information that you, as a developer of ArgoUML, need to know about how the project is organized and how to con-
tribute.

1.4.2. In this Cookbook, you will not find...
You will not find information on how to install and use ArgoUML.

You will not find information on what UML is and if or how you should use it in your project.

You will not find information on how to convince your project to use ArgoUML as a modelling tool.

1.5. Mailing Lists
All developers MUST subscribe to the mailinglist for developers. Please find the details at:
http://argouml.tigris.org/servlets/ProjectMailingListList

It is also recommended to join the CVS and Issues mailing lists. Both give you a good idea of what is going on. De-
velopers should also work with Issuezilla registering or fixing problems found by themselves and others.

Introduction

3

http://argouml.tigris.org/servlets/ProjectMailingListList

Chapter 2. Building from source
If you are in a hurry:

C:\Work>set CVSROOT=:pserver:guest@cvs.tigris.org:/cvs
C:\Work>cvs login (use guest as password)
C:\Work>cvs checkout argouml_src
C:\Work>set JAVA_HOME=C:\Programs\jdkwhatever
C:\Work>cd argouml\src_new
C:\Work\argouml\src_new>build run

A window from the newly compiled ArgoUML opens after a while!

That was the compact version for Windows + JDK. (Note: jdk cannot be installed in a directory that contains space
in its name.)

If you don't understand this or it doesn't work read the rest of the chapter that describes all the nitty details about
why and how.

2.1. Getting started
In order to develop with ArgoUML it is absolutely mandatory to get the CVS version of ArgoUML. How this is
done is described in Download from the CVS repository.

Notice that the CVS contents is not only a set of source files but instead it is the complete development environment
for all work within the ArgoUML project.

2.1.1. Which tools do I need to build ArgoUML?
These are the tools not included in the cvs repository that you need to work with ArgoUML.

• A computer with a free disk space for your work.

100MB is enough to download everything from the repository. (Currently March 2003 it is 68MB). 150MB is
enough to download all and build the tool and the documentation. (Currently March 2003 it is 114MB). 250MB
is enough to build it all (javadocs, documentation, classes, packages, ...).

• CVS for getting the files and committing source code updates.

• JDK, at least version 1.3 (includes the java compiler)

2.1.2. Which tools are part of the ArgoUML development envi-
ronment?

These tools are provided by the development environment that you get when you check out from CVS.

•
ANT, the tool to manage compiling and packaging.

•
ANTLR, for regenerating the built-in parser.

4

•
JUnit, for running the JUnit test cases.

•
JDepend, for examining the code.

For building the documentation from docbook format, these tools are also provided with the development environ-
ment that you get when you check out from CVS.

• saxon for building documentation from docbook format.

•
Docbook XSL stylesheets.

•
fop for generating pdf versions of the docbook format.

To build a pdf file with the pictures included you need Jimi.

2.1.3. What libraries are needed and used by ArgoUML?
These libraries are provided in the development environment that you get when you check out CVS. They are
checked by the java compiler when compiling, needed for running ArgoUML and therefore distributed with Ar-
goUML.

•
nsuml, the Novosoft UML library.

ArgoUML project doesn't include the developing of Java classes for the purpose of storing, saving and loading
an UML Model. That work is done by NSUML and is used by ArgoUML.

•
GEF graph editing framework, available from gef.tigris.org [http://gef.tigris.org].

It is also recommended that you check out GEF at the same time as you check out ArgoUML because many
things in Argo relate to GEF and it is quite handy to have the source code available. GEF is also residing at tigris
so you can do a simple cvs -d :user@cvs.tigris.org:/cvs co gef (with the same checkout arguments you
had when you checked out ArgoUML) to get it.

• The ocl package to parse and run the Object Constraint Language things.

Details about the package are available from sourceforge OCL Compiler [http://dresden-ocl.sourceforge.net/].

•
log4j, a library with infrastructure for logs.

• antlrall, the run-time part of the antlr tool.

2.2. Download from the CVS repository
The CVS repository at Tigris is accessable using the pserver protocol. The CVS root is /cvs at cvs.tigris.org. You
use your Tigris login and Tigris password.

Building from source

5

http://gef.tigris.org
http://dresden-ocl.sourceforge.net/
http://dresden-ocl.sourceforge.net/

This means that you will set the CVSROOT-variable to :pserver:login@cvs.tigris.org:/cvs where login is
your Tigris login. This needs to be done for the first checkout. After that the root will be remembered by the checked
out copy.

The next thing to do is to login. It is done using the command: cvs login. This only needs to be done once and then
the account on your machine remembers this.

Then you do the actual checking out. cvs checkout modulename.

The CVS module you need to check out to build ArgoUML is argouml_src. This will check out the directories
argouml/lib, argouml/tools, argouml/src, argouml/src_new, and argouml/tests.

If you want to build the documentation you check out the module argouml_doc. This will check out the directories
argouml/lib argouml/tools and argouml/documentation.

If you want to work with the web site you check out the directory argouml/www.

If you give the argument argouml all of ArgoUML is checked out. That is no problem except for the extra use of
bandwidth and disk space but if you have plenty of both, get it all, and eventually you will see how everything is
used for a purpose in the project.

If you don't want to acquire a tigris login to do this you can use the "guest" account with the password "guest". Since
the checked out copy remembers the login you used to do the check out, if you do this, you will have to remember to
delete this copy and start over if you get a developer role in the project and want to do commits directly.

2.3. Build Process
The ArgoUML build process is driven by ANT, and it is highly recommend that you stick to that. There are people
known to build from JBuilder or Netbeans, but always make sure that your work compile with the plain vanilla build
process.

Ant is a tool written in java developed for Apache that reads an xml-file with rules telling what to compile to what
result and what files to include in what jar-file.

The rule file is named build.xml. There is one of those in every separate build directory (src_new, documenta-
tion, and modules/whatever).

2.3.1. How ANT is run from the ArgoUML development envi-
ronment

For your convenience the ant tool of the correct version is present in the CVS repository of ArgoUML in the file
argouml/tools/ant-1.4.1/lib/ant.jar.

Normally ant is started with the command ../tools/ant-1.4.1/bin/ant arg and in the modules
../../tools/ant-1.4.1/bin/ant arg . On windows the command ..\tools\ant-1.4.1\bin\ant arg runs the program
ant.bat.

To keep you from having to write this and keeping track if you are working with a module or not there are two
scripts (one for Unix and one for Windows) that are called build.sh and build.bat respectively present in most
of the directories that contain a build.xml file. These two scripts run the equivalence of the above paths.

By setting JAVA_HOME to different values you can at different times build with different versions of jdk and java.

To use different versions of ANT, you are responsible for installing your own version. Also, you must execute /
where/ever/you/placed/your/new/ant target rather than build target.

Building from source

6

2.3.1.1. Compiling for Unix

Here is what you need to do in order to compile and run your checked out copy of ArgoUML under Unix.

1. JAVA_HOME=/where/you/have/installed/jdk

export JAVA_HOME

This is for sh-style shells like sh, ksh, zsh and bash. If you use csh-style shells like csh and tcsh you will instead
have to write setenv JAVA_HOME /where/you/have/installed/jdk.

2. Change the current directory to the directory you are building

cd /your/checked/out/copy/of/argouml/src_new

3. Start ant using ./build.sh

This gives you a list of targets with descriptions

4. Compile and run Argouml using ./build.sh run

You can do this over and over again when you have modified something or want to compile and run again.

2.3.1.2. Compiling for Windows

1. set JAVA_HOME=\where\you\have\installed\jdk

2. Change the current directory to the directory you are building

chdir \your\checked\out\copy\of\argouml\src_new

3. Start ant using build

This gives you a list of targets with descriptions

4. Compile and run Argouml using build run

You can do this over and over again when you have modified something or want to compile and run again.

If you do this from Cygwin you work just like for Unix.

2.3.1.3. Customizing and configuring your build

It is possible to customize your compilation of ArgoUML.

If you issue the command build list-property-files you can see what files are searched for properties.

Don't change the argouml/src_new/default.properties file (unless you are working with updating the de-
velopment environment itself). Instead create one of the other files locally on you machine. The properties in these
files have precedence over the properties in argouml/src_new/default.properties.

Remember that if you do this, you have modified your development environment. To be sure that you will not break
anything for anyone else when checking in things developed using this modified environment, remove these files
temporarily for the compiling and testing you do just before you commit.

Building from source

7

2.3.1.4. Building javadoc

By running ANT again using build prepare-docs the javadoc documentation is generated and put into argouml/
build/javadocs.

2.3.1.5. Building one of the modules

If you want to run ArgoUML with modules enabled the build.xmls are set up to do this in two ways:

1. Test just one module

a. Build argouml, the package

This is done with ant package in the argouml/src_new-directory.

b. Run the module

This is done with ant run-command in the argouml/modules/whatever -directory.

2. Test several modules together

a. Build argouml, the package

This is done with ant package in the argouml/src_new-directory.

b. Compile and install the modules

This is done with ant install-command in each of the argouml/modules/whatever -directories.

c. Start argouml

This is done with ant run in the argouml/src_new-directory.

This will start ArgoUML with all modules available.

2.3.2. How documentation is presented
This describes how the documentation arrives on the web site.

2.3.2.1. How the ArgoUML web site works

Tigris provides the ArgoUML site to be edited through CVS. Everything that is checked in under argouml/www be-
comes immediatly available at the url http://argouml.tigris.org/ with some added decorations.

Example: The file argouml/www/project.html is available at http://argouml.tigris.org/project.html.

This is the way the site is maintained and updated.

2.3.2.2. The ArgoUML documentation

For the ArgoUML project the same documenation shall be available in both html, pdf and javahelp. To this end the
documentation is written in docbook xml and generated into two versions of html (one page per chapter and one

Building from source

8

http://argouml.tigris.org/
http://argouml.tigris.org/project.html

page for the whole book), pdf and javahelp.

We have tools that does the conversion from docbook xml to html and pdf. The conversion is done whenever you
need to look at the result or when you want to present the final result on the web site.

There are currently three different books generated in this way, each into its own directory. They are cookbook (this
document), manual and quick-guide. They are all generated and stored in the exact same way except for the name of
the directory that is one of cookbook, manual or quick-guide. Below I will reference these directories using
book.

When a new version of the documentation is to be made available on the web site the responsible document release
person does the following:

1. He checks out everything needed and a copy of the argouml/www.

The module argouml_docs is there for this purpose.

If wanted, the CVS repository could be tagged and then the tag can be checked out. This makes it possible to
know exactly how a certain version of the documentation was generated.

2. The documentation is generated using build docs.

This generates all three books and the result appears in
argouml/build/documentation/defaulthtml/book, argouml/
build/documentation/printablehtml/book, and argouml/build/documentation/pdf/book.

This has been done several times before while preparing the release so no problems are expected. If there are
problems then the preparations were not good enough and the process is best stopped right here.

3. All the old files are removed from the checked out copy of
argouml/www/documentation/defaulthtml/book,
argouml/www/documentation/printablehtml/book.

4. New files are copied into the checked out copy of www on top of the previous files there replacing them.

All the files are copied from argouml/build/documentation/defaulthtml/book to argouml/
www/documentation/defaulthtml/book. The same for printablehtml and pdf.

5. No longer used files in argouml/www/documentation are removed from CVS and new files are added.

cvs -n update

Watch for "Missing" and "Unknown" files.

The missing files are scheduled to be removed by: cvs remove each of the missing files

The "Unknown" files are scheduled to be added by: cvs add each of the added files

This removing of missing files and adding of unknown files may seem backward but it is from the perspective
of CVS. The missing files are the ones that were present in the previous version of the documentation and do
not have a replacement, either because that chapter does not exist anymore or that the tool generates filenames
differently. The Unknown files are files with filenames that for the same reason appear from one version of the
documentation to the next.

6. Commit the changes thus publishing it on the web site.

cvs commit -m'New version of the documentation published'

Building from source

9

7. The pdf book is uploaded to the download page.

2.3.2.3. How developers work with documentation

Developers that work with the documentation or with the tools to generate the documentation (or anyone else inter-
ested in this) can generate the documentation like described above and examine the result in argouml/build. It is
only the last part about checking in and upploading the result under argouml/www/documentation that requires
write access in the CVS and synchronisation with the rest of the project.

In order to do this you need to check out the whole of the argouml/documentation directory. You also need the
directory argouml/lib and argouml/tools that contain the tools used: ANT, Fop, saxon, ...

The subdirectories of argouml/documentation, cookbook, manual, and quick-guide each contain one of the
four books. The subdirectory docbook-setup contains two things. It contains the configuration files that control
how the generation is done. It contains the xsl rules for all the generation. The subdirectory images contains all the
required pictures for all the books.

2.3.3. Troubleshooting the development build

2.3.3.1. Compiling failed. Any suggestions?

It might be that some other developer has made a misstake in checking in things that contain errors, or forgotten to
check in some files in a change. Look at the last couple of hours on the developers mailing list
[http://argouml.tigris.org/servlets/BrowseList?listName=dev]! It is probably on fire.

Another reason for problems is an unclean local source tree. This means that if you have updated different parts of
your source tree at different times it might contain inconsistencies. If you suspect this, first try to fix it by doing
build clean and cvs update -d before trying to build again. If that doesn't work remove your checked out copy com-
pletely and get it all again through CVS.

Another reason might be that you have an build.properties or argouml.build.properties file that you
have been working with earlier and that is doing something. If in doubt, remove those files.

If nothing helps, ask the developers mailing list [mailto:dev@argouml.tigris.org]!

2.3.3.2. Can't commit my changes?

You need to have a developer role in the ArgoUML project. If you don't then you cannot do commit yourself. Dis-
cuss what you have done and how best to test it on the developers mailing list [mailto:dev@argouml.tigris.org]!
Eventually someone will commit it for you.

Furthermore the checkout of your copy needs to be done with your tigris id that has the Developer role. If you for
some reason have earlier checked out a copy as guest and then made modifications, changed the CVSROOT vari-
able you still cannot commit changes done in the repository since the checked out copy contains information on who
checked out. For this reason, it is best to apply for an Observer role in the project if you are going to work with the
source at all. The Observer role is probably granted within a couple of days (we welcome everybody!) and then you
can check out with your tigris id. This means that when you eventually are granted a Developer role you can con-
tinue working with the same checked out copy.

2.4. The JUnit test cases
ArgoUML has a set of automatic test cases using JUnit-framework for testing the insides of the code. The purpose
of these are to help in pin-pointing problems with code changes before even starting ArgoUML.

The JUnit test cases are residing in a separate directory and run from ant targets in the src_new/build.xml. They

Building from source

10

http://argouml.tigris.org/servlets/BrowseList?listName=dev
http://argouml.tigris.org/servlets/BrowseList?listName=dev
http://argouml.tigris.org/servlets/BrowseList?listName=dev
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org

are never distributed with ArgoUML but merely a tool for developers.

By running the command build tests guitests in src_new these test cases are started, each in their own jvm.

Each test case writes its result on the Ant log.

The result is also generated into a set of files that can be found at build/
test/reports/junit/output/html/index.html.

The testcases java source code is located under argouml/tests/org/argouml.

2.4.1. How to write a test case
Now this will make all you java-enthusiasts go nuts! We have both classnames and method names with a special
syntax.

The name of the test case starts with "Test" (i.e. Capital T, then small e, s and t) or "GUITest" (i.e. Capital G, U, I, T
then small e, s, t). The reason for this is that the special targets in src_new/build.xml searches for test cases with
these names. If you write a test case that does not comply to this rule you still can run the test case manually after
having started with build run-with-test-panel but it wont be known and run by other developers and automatic
build mechanisms so don't do it.

Testcases that doesn't require GUI components in place have filenames like Test*.java. They must be able to run
on a headless system. To make sure that this works, always run your newly developed test case with build tests us-
ing jdk1.4 or later.

Testcases that do require GUI components in place have filenames like GUITest*.java.

We should try to get as many tests from the GUITest* class to the corresponding Test* class because the latter are
run by automatic builds regularly.

Every class org.argouml.x.y.z stored in the file src_new/org/argouml/x/y/z.java should have a JUnit test
case called org.argouml.x.y.Testz stored in the file tests/org/argouml/x/y/Testz.java containing all
the Unit Test Cases for that class that don't need the GUI components to run. Classes that have things that needs to
be tested that do need GUI components to run should also have a class named org.argouml.x.y.GUITestz stored
in the file tests/org/argouml/x/y/GUITestz.java

If you only want to run your newly written test cases and not all the test cases, you could start with the command
build run-with-test-panel and give the class name of your test case like org.argouml.x.y.Testz or
org.argouml.x.y.GUITestz. You will then get the output in the window. You could run all tests in this way by
specifying the special test suite org.argouml.util.DoAllTests in the same way.

The test case imports the JUnit framework:

import junit.framework.*;

and it inherits TestCase (i.e. junit.framework.TestCase).

Methods that are tests must have names that start with "test" (i.e. all small t, e, s, t). This is a requirement of the JU-
nit framework.

Try to keep the test cases as short as possible. There is no need in cluttering them up just to beautify the output. Pre-
fer

// Exampel from JUnit FAQ
public void testIndexOutOfBoundsExceptionNotRaised()

throws IndexOutOfBoundsException {
ArrayList emptyList = new ArrayList();
Object o = emptyList.get(0);

}

Building from source

11

over

public void testIndexOutOfBoundsExceptionNotRaised() {
try {

ArrayList emptyList = new ArrayList();
Object o = emptyList.get(0);

} catch (IndexOutOfBoundsException iobe) {
fail("Index out of bounds exception was thrown.");

}
}

because the code is shorter, easier to maintain and you get a better error message from the JUnit framework.

A lot of times it is useful just to run the compiler to verify that the signatures are correct on the interfaces. Therefor
Linus has thought it is a good idea to add methods called compileTestStatics, compileTestConstructors,
and compileTestMethods that was thought to include correct calls to all static methods, all public constructors,
and all other public methods that are not otherwise tested. These methods are never called. They serve as a guarantee
that the public interface of a class will never lose any of the functionality provided by its signature in an uncon-
trolled way in just the same way as the test-methods serve as a guarantee that no features will ever be lost.

Example 2.1. An example without javadoc comments

package org.argouml.uml.ui;
import junit.framework.*;

public class GUITestUMLAction extends TestCase {
public GUITestUMLAction(String name) {

super(name);
}

// Testing all three constructors.
public void testCreate1() {

UMLAction to = new UMLAction(new String("hejsan"));
assert("Disabled", to.shouldBeEnabled());

}
public void testCreate2() {

UMLAction to = new UMLAction(new String("hejsan"), true);
assert("Disabled", to.shouldBeEnabled());

}
public void testCreate3() {

UMLAction to = new UMLAction(new String("hejsan"), true, UMLAction.NO_ICON);
assert("Disabled", to.shouldBeEnabled());

}
}

and the corresponding no-gui-class:

package org.argouml.uml.ui;
import junit.framework.*;

public class TestUMLAction extends TestCase {
public TestUMLAction(String name) {

super(name);
}

// Functions never actually called. Provided in order to make
// sure that the static interface has not changed.
private void compileTestStatics() {

boolean t1 = UMLAction.HAS_ICON;
boolean t2 = UMLAction.NO_ICON;
UMLAction.getShortcut(new String());

Building from source

12

UMLAction.getMnemonic(new String());
}

private void compileTestConstructors() {
new UMLAction(new String());
new UMLAction(new String(), true);
new UMLAction(new String(), true, true);

}

private void compileTestMethods() {
UMLAction to = new UMLAction(new String());
to.markNeedsSave();
to.updateEnabled(new Object());
to.updateEnabled();
to.shouldBeEnabled();

}
}

2.5. Manual Test Cases
The manual test cases are here to help us test ArgoUML in order to cover things that are not testable with the JUnit
test cases. Since it is a little bit more cumbersome to run them, a tester must read the test cases, understand what he
is supposed to do, do it, and document the result, we try to go as far as possible with the JUnit test cases and have as
few manual test cases as possible. I.e. If one of these tests can be converted into a JUnit test case we shall try to do
so because it can save us a lot of time. On the other hand, there are several things that cannot possibly be tested with
JUnit tests, so there probably are a lot of Manual Test Cases to be written.

2.5.1. Running the manual tests
Anyone can run the manual tests on any version of ArgoUML. If it doesn't work, i.e. the expected result is not seen,
then this is a defect in that version of ArgoUML and should be reported using Issuezilla.

At every release, the ambition is to run through all manual tests. Initially, when the amount of manual tests is small,
this is done by the release responsible while testing the newly compiled release. Later on, when the amount of man-
ual tests makes it unpractical to this during the release work, the work can be done by anyone, or any group of peo-
ple within the project, after a development release is made and before a stable release is made. A signed statement
with list of run tests including version number, a list (hopefully empty) of failed tests together with their Issuezilla
DEFECT number, the host type, OS, jdk version, ArgoUML version, ... shall be mailed to the dev list when these
tests are completed.

2.5.2. Writing the manual tests
Adding a new manual test to the group of already existing manual tests or improving one of the existing tests helps
the project forward. Remember that the first priority is to test things with the JUnit tests because they can be, to
some extent, run automatically and have their result reported automatically but then manual tests are the next big im-
provement.

Every test has several attributes to make sure that we can identify the test and help the developers and testers.

• A name

This name is the title of the subsection where the test is described.

• A number

These start with TEST1 and are allocated in sequence and maintained manually in this document (TEST2,
TEST3, TEST4, ...). They are never reused when made available by removing a test case.

Building from source

13

• A revision

Every test case has a revision. These start with REV1 and are increased with one every time the test case is
changed.

• A list of requirements tested

This list is references to the requirements as stated in Chapter 3, ArgoUML requirements.

• Preparations i.e. what to do before the test

This is Optional. The default is that you have just started ArgoUML.

• A description on what to do an what to expect

This is a description in plain English telling the tester exactly what to do and what to expect. If this description
doesn't work or is ambigous in any way the tester should consider the test to be DEFECT and report it in Is-
suezilla.

This is probably best written like this:

Do: whatever

Expected output: whatever

Do: whatever

Expected output: whatever

2.5.3. The list of tests
This section contains all the tests each in a subsection of its own.

2.5.3.1. Modules are enabled

TEST1 REV1 (Does not test any current requirements.)

Preparations: Download and install ArgoUML together with the modules.

Do: Start in a window that allows you to see the output on Stdout.

Expected output:

Loaded Module: Java from classes
Loaded Module: GeneratorCpp
Loaded Module: GeneratorCSharp
Loaded Module: GeneratorPHP

Do: Press F7 (or select menu Generation => Generate All Classes...)

Expected output: A window pops up with Class Name, Java, Cpp, CSharp, and PHP.

Do: Select menu File => Import sources, then open the drop-down box Select language for import: to the far right.

Expected output: The drop-down box contains Java and Java from classes.

Building from source

14

2.5.3.2. Class diagram

TEST2 REV1 (Requirements tested: 1 and 2)

Do: Select the Class Diagram. Click the Package symbol on the Edit pane toolbar. Click on the diagram. Click the
Class symbol on the Edit pane toolbar. Click on the diagram. Click the Interface symbol on the Edit pane toolbar.
Click on the diagram.

Expected output: The Class diagram and the explorer now contains one package, one class, and one interface.

Do: Select the class. Drag from the four quick-buttons located along the sides of the class and release somewhere on
the diagram. Click on the fifth quick-button (buttom-left of the class). Select the interface. Drag from the quick-but-
ton located along the buttom of the interface symbol and release somewhere on the diagram.

Expected output: When releases on the diagram a new class is created both on the diagram, where released and in
the explorer. The type of the association corresponds with the quick-button type. The association created when
clicking the fifth quick-button goes back to the class itself.

2.6. Making a release
To simplify for the person that is actually doing the release work and to make sure that everything is done in the ex-
act same way every time and nothing is forgotten, this list of what to do when releasing is maintained.

It is provided with the hopes of being helpful.

To understand this you need knowledge of how cvs works and how you normally build and test ArgoUML.

This instruction is supposed to work on a windows system (running build.bat). The author (Linus Tolke) has for
some time been running it on a cygwin system (running build.sh) assuming that this will be the same as on any unix
system. How it is actually run on a cygwin/unix system is also noted.

What needs to be done when one actually does a release:

1. Tag the whole CVS repository with the freeze tag!

Normally this tag is "VERSION_X_Y_Z_F", e.g. VERSION_0_9_7_F. The according command line CVS
command is cvs rtag VERSION_X_Y_Z_F argouml. (Because of a problem on the Tigris site, this doesn't
work. Instead make sure you have a complete checked out copy of ArgoUML, go to the root directory ar-
gouml and run the command cvs tag VERSION_X_Y_Z_F.)

2. Check out a new copy of the source!

This is done by checking out from the tag using the command cvs co -r VERSION_X_Y_Z_F ar-
gouml_modules and cvs co -r VERSION_X_Y_Z_F argouml/tests in a newly created directory.

These commands assume that you have set the CVSROOT correctly. If not you will have to use commands like
cvs -d :pserver:user@cvs.tigris.org:/cvs co ... instead.

3. Build the release!

This is done in the argouml/src_new directory of the newly created copy by issueing the command build
dist-release! (Linus: It takes around 10 minutes on my machine JDK1.3.1_01/700MHz/256MB (May 2003), It
takes around 30 minutes on a Lysator machine simultaneously doing a lot of other things.
JDK1.3.1_06/sun4d/256MB (July 2003).)

On a Cygwin/Unix system you need to first make the ant executable with the command chmod +x
../tools/ant-1.4.1/bin/ant and then issue the command with ./build.sh instead of build.

Building from source

15

The output should be the files ArgoUML-VERSION-libs.tar.gz, ArgoUML-VERSION-libs.zip,
ArgoUML-VERSION-modules.tar.gz, ArgoUML-VERSION-modules.zip,
ArgoUML-VERSION-src.tar.gz, ArgoUML-VERSION-src.zip, ArgoUML-VERSION-app.tgz,
ArgoUML-VERSION.tar.gz, and ArgoUML-VERSION.zip in the argouml directory in your new copy.

4. Test the release!

Either the ArgoUML-VERSION.tar.gz or ArgoUML-VERSION.zip file is tested by unpacking, starting and then
running through the test cases. Currently there isn't any defined test cases for manual testing.

There are two sets of automatic test cases.

• Run the JUnit test cases in argouml/tests by issueing the command build alltests in the argouml/
src_new directory. (Linus It takes around 12 minutes on my machine JDK1.3.1_01/700MHz/256MB (May
2003), It takes around three hours on a Lysator machine simultaneously doing a lot of other things and the
X session over a 50kb/s modem. JDK1.3.1_06/sun4d/256MB (July 2003).)

There should not be any failed tests. (See details on where to find the result in Section 2.4, “The JUnit test
cases”).

• Run the JUnit test cases in modules/junit by cd:ing to modules/junit and running build run, invok-
ing JUnit tests from the Tools menu, specifying the Test Case TestAll, and running without "Reload classes
every run" checked. (See details in Section 2.4, “The JUnit test cases”).

The corresponding build.sh is not available for a Cygwin/Unix system so you must run the ant command
directly. First make the ant executable with the command chmod +x ../../tools/ant-1.4.1/bin/ant if you
havn't made it above and then issue the command ../../tools/ant-1.4.1/bin/ant run instead of the build run
command.

No problems shall be found.

If the tests did not pass See Section 2.6.1, “The release did not work”.

5. Tag the whole repository with the release tag!

This tag is "VERSION_X_Y_Z", e.g. VERSION_0_9_7. The according command line CVS command is cvs
tag VERSION_X_Y_Z when your are standing in the argouml-directory.

6. Open the repository for commits towards the next version.

This is done by setting the argo.core.version in default.properties to Number of next release,
commiting and telling everyone on the developers mailing list. Notice that this cannot be done in the tagged
copy but you either need to go back to your other working tree or need to check out the file argouml/
src_new/default.properties specifically to do this.

7. Upload the files onto the tigris website!

Only a project owner can do that. Please write the descriptions of the files like this:

• libraries

libraries needed to compile

• sources

Building from source

16

source code without libraries. If you want to build ArgoUML from source, the cvs version is recommended.

For the gnu version add also: Unpack with GNU-tar.

• complete set

binary distribution, including all libraries

• application bundle

binary distribution, runnable as application bundle

8. Contact Jason Robbins to make the new Webstart version available!

Jason Robbins takes care of the signing and publishing of the Webstart version.

9. Go through Issuezilla and check things.

Things to check are:

a. That there is a Version created in issuezilla for the newly created release.

The purpose of this is to make it possible for everyone to report bugs on the new release.

b. Make sure that the upcoming releases have target milestones created for them.

c. Change the target milestones of all the not yet resolved issues for this release to ---.

d. Move all issues reported on 'current' to this release.

These items were reported between the previous version and this version. Since 'current' will be reused for
the next release, they need to be locked to the closest release to where they were found.

e. Other stuff.

This can also be a good time to change all RESOLVED/REMIND and RESOLVED/LATER. Search for
them and Reopen them.

10. Update the web page

The Lists of Issues [http://argouml.tigris.org/documentation/issuezilla/frequentlyusedlists.html] page contains a
link to each version and needs to be updated.

11. Make announcements!

Write a News announcements and a short note on the dev, users and announce lists. Announcer should make
sure that he/she is already subscribed to all lists with a reference to the news item.

The announcement shall include a statement on what kind of release this is, information on what has changed
(for stable releases this is a list of what has changed since the last stable release), the list of resolved issues, a
list of serious known problems with this release (stable releases shouldn't have any), technical details on how
the release was built, and the plan for the following release.

Freshmeat: currently Thierry Lach does the freshmeat announcements which require a login so just inform him.

Building from source

17

http://argouml.tigris.org/documentation/issuezilla/frequentlyusedlists.html
http://argouml.tigris.org/documentation/issuezilla/frequentlyusedlists.html
http://argouml.tigris.org/documentation/issuezilla/frequentlyusedlists.html

2.6.1. The release did not work
This shouldn't happen! This really shouldn't happen!

The reason that this has happened is that one of the developers has made a mistake. You now must decide a way for-
ward.

2.6.1.1. Fix the problem yourself.

If the problem is obvious to you and you can fix it quickly, do so. This is done by doing the following:

• Make the release tag into a branch

cvs rtag -b -r VERSION_X_Y_Z_F BRANCH_X_Y_Z

• Update your checked out copy to be on that branch

cvs update -r BRANCH_X_Y_Z

• Fix the problem in your checked out copy

• Commit the problem in the branch

cvs commit -m'Fix of problem blabla'

• Continue the build process

This is done by restarting the build dist-release-command and from that point on working in the branch instead
of at the tag.

• Explain to the culprit what mistakes he has made and how to fix it.

It is now his responsibility to make sure that the problem will not appear in the next version. He can do this ei-
ther by merging in your fix or by fixing the problem in some other way.

At this point an in-detail description of how poor programming skills the culprit has and how ugly his mother is,
is probably in place but please keep it constructive! Remember, you might be mistaken when you guess who the
responsible is.

2.6.1.2. Delay the release waiting for someone to fix the problem.

Create the branch as described in Section 2.6.1.1, “Fix the problem yourself.”. Then tell the culprit and everyone on
the developer list what the problem is and that it is to be fixed in the release branch a.s.a.p.

Monitor the changes made to the branch to verify that no one commits anything else but the solutions to the prob-
lems.

When you get notified that it is completed, update your checked out copy and continue the release work.

Building from source

18

Chapter 3. ArgoUML requirements
Linus Tolke

This chapter contains a description on how ArgoUML should work and behave for the users.

These things might not be implemented yet and the solutions might not even be clear but it is a definition of the
goal.

The fact that it is not implemented or doesn't work as stated here should be registered as a bug in the bug registering
tool.

Every requirement has a number (REQ1, REQ2, REQ3, ...) that never changes, a revision (REV1, REV2, REV3, ...)
that changes when the requirement change, a text that is the requirement text to implement, a rationale that is the de-
scription on why this is important, a stakeholder that is one of the stakeholders in the vision for who this is impor-
tant.

3.1. Requirements for Look and feel
This describes how the ArgoUML look and feel shall behave.

1. When multiple visual components are showing the same model element they shall be updated in a consistent
manner throughout the application.

REQ1 REV1

Rationale: There is no way of telling where the user is looking while working with ArgoUML. For this reason
he might be terribly confused if some other view that happens to show the same element is not showing the
same thing.

Stakeholder: User of ArgoUML

2. As soon as the model element changes then all views shall update. For text fields, this can be at every key
stroke.

REQ2 REV1

Rationale: If a user makes an update of a part of the model, an immediate feedback in all other parts that are
currently showing might help him to get it right.

Stakeholder: User of ArgoUML

3. There shall be no indication of an exception on the screen or in the log if it has occured merely because of a
user mistyping or not being aware of UML syntax.

REQ3 REV1

Rationale: An exception in the log or on the screen is always the sign of a serious error in the application that
should be reported as a DEFECT. If a mistyping generates such a problem the user might loose interest in Ar-
goUML as a tool because he percieves it as not working correctly.

Stakeholder: User of ArgoUML

4. All text fields shall have context sensitive help.

19

As follows:

a. A tooltip that explains the data and format expected by the particular field.

This can be omitted when there is a header stating the data of the field and the format is obvious.

b. Pressing F1 or choosing help from the menu shall display a popup window explaining for data and format
required by the current input field. Input focus shall be left on the field during any user interaction with the
popup (dragging, scrolling or closing).

REQ4 REV1

Rationale: Throughout a complex application like ArgoUML there are lots of text fields. Unless there is a pos-
sibility to always get this kind of help the user might not be able to make out what he is actually supposed to do
in that field.

Stakeholder: User of ArgoUML

3.2. Requirements for UML

1. ArgoUML shall be a correct implementation of the UML 1.3 model.

REQ5 REV1

Rationale: The vision of ArgoUML is to provide a tool that helps people work with an UML model. The UML
model might later on be used in some other tool. If the implementation is not correct then ArgoUML will not
be compatible with that other tool or the user will be confused. There might be a lot of tough decisions when it
comes to if it is ArgoUML or some other tool that deviates from the UML 1.3 but there shall never be any
doubt that the intention of ArgoUML is to implement UML correctly.

Stakeholder: User of ArgoUML

2. ArgoUML shall implement everything in the UML 1.3 model.

REQ6 REV1

Rationale: The ambition is to implement all of UML. This means that no matter how you use UML ArgoUML
will always be a working tool.

Stakeholder: User of ArgoUML

3.3. Requirements on java and jvm

1. Choice of JRE

We will support any JRE compatible with the Sun specification one version behind the most recent stable JRE
from Sun. A stable JRE is considered to be one that has had a second non-beta release.

ArgoUML requirements

20

This is to allow ArgoUML to gradually take on board new stable features of the Java language while still offer-
ing users some choice of JRE.

REQ7 REV1

Rationale: The JREs and the adjoining libraries (especially swing) are always improving to include new fea-
tures and new ideas. The developers of ArgoUML would like to use these new features.

Interpretation: This means that we currently want to support JREs 1.3.0, 1.3.1, 1.4.0, and 1.4.1. When a JRE
compatible to Sun JRE 1.5.1 has come out for all major platforms: Solaris, Linux, Windows, Mac, support for
1.3.0 and 1.3.1 will be discontinued.

Stakeholder: Developers of ArgoUML

2. Download and start

It shall be possible to install ArgoUML locally on the machine and use without Internet connection.

REQ8 REV1

Rationale: ArgoUML is an application that edits an UML model. There is no need to have any network defined
while doing this.

Stakeholder: User of ArgoUML

3. Console output

Logging or tracing information shall not be written to the console or to any file unless explicitly turned on by
the user.

REQ9 REV1

Rationale: ArgoUML is an application that edits an UML model. Any information written to anywhere but the
files that the user specifies the user won't know what to do with and it will be perceived as garbage generated
by the ArgoUML application.

Stakeholder: User of ArgoUML

3.4. Requirements set up for the benefit of the de-
velopment of ArgoUML

1. Logging

The code shall contain entries logging important information for the purpose of helping Developers of Ar-
goUML in finding problems in ArgoUML itself.

REQ10 REV1

Rationale: When the developers are searching for some problem or when they ask any of the users to help them
pinpoint some problem such logging messages are very helpful.

Stakeholder: Developers of ArgoUML

ArgoUML requirements

21

ArgoUML requirements

22

Chapter 4. ArgoUML Design, The Big
Picture

Currently this is more of a base for discussion and ambition but hopefully this will mature and prove useful.

The code within ArgoUML is separated in components that each have a responsibility.

Chapter 5, Inside the components explains each component in details. This chapter just gives an overall picture.

The components are organized in layers. The purpose of the layers is to keep a clear view of what components pro-
vide services to others and to allow us to know how much is involved when testing each component.

TODO: Insert UML diagram describing the relation between components and layers.

This chapter contains a list of all components and what layer they are in and the definition of the responsibility of
each component.

4.1. Definition of component
All ArgoUML code is organized in components.

Each component has:

• A name

• A single directory/java package where it resides

Subparts of the component can reside in subdirectories of this directory. Auxiliary parts of the components can
reside somewhere else.

Each component has a single Facade class that can be used by all other components when using the component. The
Facade class is called ComponentNameFacade and is located in the component package. How it is used is primarily
documented in the class file itself (as javadoc) but the more complex picture is documented in the Cookbook (in
Chapter 5, Inside the components).

Each component can also have one or several plug-in interfaces. That is Facade objects where modules or plug-ins
can connect themselves to modify or augment the behavior of that component.

The plug-in interfaces are also all located in the component package and called
ComponentNamePluginPlug-inType. Example: ModelPluginDiagram, ModelPluginType.

If the component uses a callback-technique the callback is always made to an interface. The interface is also in the
component package and it is called ComponentNamePlug-inTypeInterface. Example:
ModelDiagramInterface, ModelTypeInterface.

23

4.2. Relationship of the components
Each component that is used by other components provide two ways for other components to use them:

• The Facade class

The use of Facade class is not wide spread in ArgoUML. This is because ArgoUML is traditionally built as a
whole and no components were clearly defined.

A Facade class provides the most common functions other components want to do when using that components
to reduce the need of having to use anything else but the Facade class. The Facade class should be very much
more stable than the component itself. Methods in the Facade should change really slowly and only be removed
after several months (and one stable release) of deprecation.

The Facade class is documented in the class file itself (as javadoc) and the more complex picture (if needed) is
documented in the Cookbook (in Chapter 5, Inside the components).

• Calls to public methods

Traditionally components interface through public methods and public variables. For this reason, always exer-
cise extreme caution when changing the signature of a public method. (See Section 8.1, “How to work against
the CVS repository”.)

This way of communicating is still to be used when it is not convenient to use the Facade for a specific use of
that component.

For each component X in ArgoUML that uses the component Y the designer of that component X, must decide if he
wants to use calls to public methods when using the component Y (putting a set of import

ArgoUML Design, The Big Picture

24

org.argouml.Y.internals.blabla.*; statements in each file in the files of component X that uses component Y) or just
use the Facade class of component Y (putting only one import org.argouml.Y.YFacade; in each file in the compo-
nent X that uses component Y).

The public calls solution makes the component X depending on the component Y meaning that when we change the
insides of the component Y we must also change component X. The facade calls solution doesn't make the compo-
nent X depending on the component Y but just the Facade of component Y.

If the public calls solution or facade calls solution is used shall be described in the Cookbook's description of com-
ponent X in the list of used components.

4.3. Definition of layer
Layers are used to organize and clairify the relationships between the different components within ArgoUML.

ArgoUML is built from the bottom and up. Components on a higher level are relying on components on a lower
level and never the other way around. A component cannot even rely on a component in the same layer.

This means that when testing a component, it can always be tested with just that component and components on
lower levels.

4.4. Layer 0 - Description of components
Layer 0 contains some infrastructure components that just are there for every other layer to use.

They are all insignificant enough not to be mentioned when listing dependencies.

• Logging

Calls can be spread all over that would go through some rule set and then end up on file, on the output or not at
all.

• Internationalization

This is the set of files that is a repository of localized strings. Every other module uses these strings in all com-
muncations with the user.

The Internationalization Component is described in detail in Section 5.11, “Internationalization”.

• JRE with utils

Every other component can use the classes available with the JRE.

4.5. Layer 1 - Description of components
Layer 1 is the lowest layer. The components in this layer do not rely on any other part (except layer 0) of ArgoUML

ArgoUML Design, The Big Picture

25

to do their work. They can all be tested in full individually i.e. independant of any other component.

• The Model

The Model contains a modifyable view of the UML model and the diagrams.

The Model presents several different views and access methods for the information. Among other things, the in-
formation can be saved, loaded, examined, and observed.

The Model is described in detail in Section 5.1, “Model”.

• To do items

This is the To do items. They can be created, deleted and saved.

The To Do Items Component is described in detail in Section 5.14, “To do items”.

• The GUI Framework

This is the framework with menus, tabs, and panes available for the other components to fill with actions and
contents.

The GUI Framework Component is described in detail in Section 5.9, “The GUI Framework”.

• Help system

Not yet implemented.

This is the component that the other components can call to present some help for the user.

The Help System Component is described in detail in Section 5.10, “Help System”.

4.6. Layer 2 - Description of components
These components rely on components of layer 1 in order to do their work.

ArgoUML Design, The Big Picture

26

• Diagrams

This is the diagram view of the model. The notation is a property that belongs in the Diagrams so the different
language register their provided notation in the Diagrams component.

The Diagrams Component is described in detail in Section 5.3, “Diagrams”.

• Property panels

This is the prop panel view of the model.

The Property Panels Component is described in detail in Section 5.4, “Property panels”.

• Explorer

This is the tree view of the model.

The Explorer Component is described in detail in Section 5.15, “Explorer”.

• Code Generation

This is the common code for and the point where each language with Code Generation possibility registers.

The Code Generation Component is described in detail in Section 5.6, “Code Generation Component”.

• Reverse Engineering

This is the common code for and the point where each language with Reverse Engineering possibility registers.

The Reverse Engineering Component is described in detail in Section 5.5, “Reverse Engineering Component”.

• Module loader

This is the load mechanism for loading all Layer 3 components and other modules into ArgoUML.

The Module Loader Component is described in detail in Section 5.16, “Module loader”.

4.7. Layer 3 - Description of components
These components are primarily connected through the pluggable interfaces meaning that they can be individually
disabled using the module loader.

ArgoUML Design, The Big Picture

27

• Java Code generation, Reverse engineering

This is the ArgoUML connection to the java language.

The Java Component is described in detail in Section 5.7, “Java - Code generations and Reverse Engineering”.

• Other languages - Code generation, Reverse engineering

Languages are plugged into the notation, the import (reverse engineering), and code generation.

See Section 5.8, “Other languages”.

• Critics and checklists

This is the critics.

The Critics Component is described in detail in Section 5.2, “Critics and other cognitive tools”.

• OCL

This is the editing of the OCL strings.

The OCL Component is described in detail in Section 5.17, “OCL”.

ArgoUML Design, The Big Picture

28

Chapter 5. Inside the components
Warning

This chapter is currently under rework with new component organization.

...

5.1. Model
Purpose - to provide the data structures that keep track of the model and the diagrams. This comes with a complete
set of methods to modify the model and register interest in changes to the model.

The Model is located in org.argouml.model.

The Model is a Layer 1 component. See Section 4.5, “Layer 1 - Description of components”.

This is implemented using NSUML to implement the UML model.

ArgoUML uses several factories and helperclasses to manipulate the NSUML model. The NSUML model itself
does not define enough 'business' logic to be directly used and the factories and helperclasses provide a centralized
place for accessing this 'business' logic. Per section of chapter 2 of the UML 1.3 specification there is one factory
and one helper. They are placed in their own packages. The package name convention is:
org.argouml.model.uml.SECTIONNAME where sectionname is one of the following:

• foundation

• foundation.core

• foundation.extensionmechanisms

• foundation.datatypes

• behavioralelements

• behavioralelements.commonbehavior

• behavioralelements.statemachines

• behavioralelements.usecases

• behavioralelements.collaborations

• behavioralelements.activitygraphs

• modelmanagement

Each package has at least a helper and a factory in it. The factories contain all methods that deal with creating and
building modelelements. The helpers contain all utility methods needed to manipulate the modelelements.

Both helpers and factories are singletons. The static method to access them is getFactory for the factory and
getHelper for the helper.

29

5.1.1. Factories
The factories contain at least for each modelelement a create method. Example: createClass resides in CoreFac-
tory in the package org.argouml.model.uml.foundation.core. Besides that, there are several buildmethods
to build classes. The build methods have a signature like

public MODELELEMENT buildMODELELEMENTNAME(params);

.

Each build method verifies the wellformednessrules as defined in the UML spec 1.3. The reason for this is that NS-
UML does not enforce the wellformedness rules even though non-wellformed UML can lead to non-wellformed
XMI which leads to saving/loading issues and all kinds of illegal states of argouml.

If you want to create an element you shall use the create methods in the factories. You are strongly advised to use a
build method or, if there is none that suits your needs, to build one thereby reusing the allready existing build meth-
ods and utility methods in the helpers. One reason for this is that the eventlisteners for the newly created modelele-
ment are setup correctly.

TODO: Am I allowed to call the factories from any thread?

5.1.2. Helpers
The helpers contain all utility methods for manipulating modelelements. For example, they contain methods to get
all modelelements of a certain class out of the model (see getAllModelelementsOfKind in Modelmanagemen-
tHelper).

To find a utility method you need to know where it is. As a rule of thumb, a utility method for some modelelement
is defined in the helper that corresponds with the section in the UML specification. For example, all utility methods
for manipulating classes are defined in CoreHelper.

There are a few exceptions to this rule, mainly if the utility method deals with two modelelements that correspond to
different sections in the UML specification. Then you have to look in both corresponding helpers and you will prob-
ably find what you are searching for.

TODO: Am I allowed to call the helpers from any thread?

5.1.3. The model event pump

5.1.3.1. Introduction

Late 2002, the ArgoUML community decided for the introduction of a clean interface between the NSUML model
and the rest of ArgoUML. This interface consists of three parts:

1. The model factories, responsible for creation and deletion of modelelements

2. The model helpers, responsible for utility functions to manipulate the modelelements and

3. The model event pump, responsible for sending model events to the rest of ArgoUML.

In other paragraphs the model factories and the model helpers are already introduced. Therefore we won't discuss
them here again.

The model event pump is the gateway between the model elements and the rest of ArgoUML. Events fired by the
modelelements are catched by the pump and then 'pumped' to those listeners interested in them. The main advantage
of this model is that the registration of listeners is concentrated in one place (see picture *). This makes it easier to

Inside the components

30

change the interface between the model and the rest of argouml.

Besides this, there are some improvements to the performance of the pump made in comparision to the situation
without the pump. The main improvement is that you can register for just one type of event and not for all events
fired by some modelelement.

The model event pump will replace all other event mechanisms for model events in the future. These mechanisms
(like UMLChangeDispatch and ThirdPartyEventlisteners for those who are interested) are DEPRECATED. Do not
use them therefore and do not use classes that use them.

5.1.3.2. Public API

You might wonder: how does this all work? Well, very simple in fact.

A modelevent (from now on a MEvent) has a name that uniquely identifies the type of the event. In most cases the
name of the MEvent is equal to the name of the property that was changed in the model. In fact, there is even a 1-1
relationship between the type of MEvent and the property changed in the model. Therefore most listeners that need
MEvents are only interested in one type of MEvent since they are only interested in the status of 1 property.

TODO: What thread will I receive my event in? What locks will be held by the Model while I receive my event i.e.
is there something I cannot do from the event thread?

In the case described above (the most common one) you only have to subscribe with the pump for that type of event.
This is explained in section Section 5.1.3.2.1, “ How do I register a listener for a certain type event ” and Sec-

Inside the components

31

tion 5.1.3.2.2, “How do I remove a listener for a certain event”

Besides the case that you are interested in only one type of event (or a set of types), there are occasions that you are
interested in all events fired by a certain modelelement or even for all events fired by a certain type of modelele-
ment. For these cases, the pump has functionality too. This is described in section Section 5.1.3.2.3, “ Hey, I saw
some other methods for adding and removing? ”.

5.1.3.2.1. How do I register a listener for a certain type event

This is really very simple. Use the model

addModelEventListener(MElementListener listener, MBase modelelement, String eventName)

like this:

UmlModelEventPump.getPump().addModelEventListener(this, modelelementIAmInterestedIn, "IamInterestedInThisEventnameType");

Now your object this gets only the MEvents fired by modelElementIAmInterestedIn that have the name "IamInter-
estedInThisEventnameType".

5.1.3.2.2. How do I remove a listener for a certain event

This is the opposite of registering a listener. It all works with the method

removeModelEventListener(MElementListener listener, MBase modelElement, String eventName)

on UmlModelEventPump like this:

UmlModelEventPump.getPump().removeModelEventListener(this, modelelementIAmInterestedIn, "IamInterestedInThisEventnameType");

Now your object is not registered any more for this event type.

5.1.3.2.3. Hey, I saw some other methods for adding and removing?

Yes there are some other method for adding and removing. You can add a listener that is interested in ALL events
fired by a certain modelelements. This works with the method:

addModelEventListener(MElementListener listener, MBase modelelement)

As you can see no names of events you can register for here.

Furthermore, you can add a listener that is interested in several types of events but coming from 1 modelelement.
This is a convenience method for not having to call the methods explained in section Section 5.1.3.2.1, “ How do I
register a listener for a certain type event ” more than once. It works via:

addModelEventListener(MElementListener listener, MBase modelelement, String[] eventNames)

You can pass the method an array of strings with eventnames in which your listener is interested.

Thirdly there is a very powerfull method to register your listener to ALL events fired by a ALL modelelements of a
certain class. You can understand that using this method can have severe performance impacts. Therefore use it with
care. The method is:

addClassModelEventListener(MElementListener listener, Class modelClass)

There are also methods that allow you to register only for one type of event fired by all modelelements of a certain

Inside the components

32

class and to register for a set of types of events fired by all modelements of a certain class.

Of course you can remove your listeners from the event pump. This works with methods starting with remove in-
stead of add.

5.1.3.3. Tips

1. Don't forget to remove your listener from the eventpump if it's not interested in some event any more.

If you do not remove it, that's gonna cost performance and it will give you a hard time to debug all the logical
bugs you see in your listener.

2. When you implement your listener, it is wise to NOT DO the following:

propertyChanged(MElementEvent event) {
// do my thing for event type 1
// do my thing for event type 2
// etc.

}

This will cause the things that need to be done for event type 1 to be fired when event type 2 do arrive.

This still happens at a lot of places in the code of ArgoUML, most notably in the modelChanged method of the
children of FigEdgeModelElement.

5.1.3.4. The future

Some people might wonder if we cannot make a better interface between the model and the rest of ArgoUML if we
use our own event types. These people are right. There are plans to replace the MElementListener with Property-
ChangeListeners and using the PropertyChangeEvents instead of the MElementEvent. This has not been done yet
since this involves a lot of work and testing.

Next to this, it is likely that the implementation of the Event pump itself is going to change. Not the API but the im-
plementation! At the moment the event pump does not use the AWT Event Thread for dispatching events. This can
make argouml slow (in the perception of the user).

Besides that, the current implementation does not use the standard data structure that Swing uses for event registria-
tion (i.e. javax.swing.EventListenerList). We are in the process of researching if it is a good thing to use this
standard instead of our own implementation.

5.1.4. How do I...?

• ...add a new model element?

Make a parameterless build method for your NSUML modelelement in one of the UML Factories (for instance
CoreFactory). Stick to the UML 1.3 spec to choose the correct Factory. The package structure under
org.argouml.model.uml follows the chapters in the UML spec so get it and read it! In the buildmethod, cre-
ate a new modelelement using the appropriate create method in the factory. The build method e.g. is a wrapper
around the create method. For all elements there are already create methods (thanks Thierry). For some elements
there are already build methods. If you need one of these elements, use the build method before you barge into
building new ones. Initialize all things you need in the build method as far as they don't need other modelele-
ments. In the UML spec you can read which elements you need to initialize. See for example buildAt-
tribute() for an example.

If you need to attach other already existing modelelements to your modelelement make a

Inside the components

33

buildXXXX(MModelelement toattach1, ...) method in the factory where you made the build method.
Don't ever call the create methods directly. If we use the build methods we will always have initialized mod-
elelements which will make a difference concerning save/load issues for example.

Now you probably also need to create a Property Panel and a Fig object (See Section 5.3.2.5, “Creating a new
Fig (explanation 2)”).

• ...create a new create method?

Create it in the correct factory.

• ...create a new utility method?

Create it in the correct helper.

5.2. Critics and other cognitive tools
Purpose - to provide cognitive help for the User. This help is based on the current model that the User works with.

The Critics are located in org.argouml.cognitive.

The Critics is a Layer 3 component. See Section 4.7, “Layer 3 - Description of components”.

The Critics component depends on the Model that it works against to take all decisions and the To Do Items used to
present the information.

This component contains the following main class types:

• Critics provide help to find artifacts in the model that do not obey simple design "rules" or "best practises".

• Checklists provide help for the user to suggest and keep track of considerations that the user should make for
each design element. Checklists are currently (0.9.5 and 0.9.6) turned off.

• ToDoItems provide a way for the Critics to communicate their knowledge to the User and let the User start Wiz-
ards.

• Wizards are step by step instructions that fix problems found by the Critics.

5.2.1. Main classes
Here is an illustration of the main classes implementing critics

Inside the components

34

Inside the components

35

Critics are currently located in:

• org.argouml.cognitive.critics

These are basic critics, which are very general in nature. For example ArgoUML keeps nagging when Modelele-
ments overlap, which makes the Diagram hard to read.

This package also contains the base classes for the handling.

• org.argouml.uml.cognitive.critics

These are Critics which are directly related to UML issues (well, more or less). For example, it will nag when a
class has too many operations, because that makes it hard to maintain the particular class.

This package also contains Wizards used by these Critiques.

• org.argouml.pattern.cognitive.critics

These are critics related to patterns. Currently they deal only with the Singleton pattern

• org.argouml.language.java.cognitive.critics

These are critics which deal with java specific issues. Currently this is only a warning agains modelling multiple
inheritance.

The Base class for Wizards is org.argouml.kernel.Wizard.

Checklists are located in the package org.argouml.cognitive.checklist.

Helper classes for To Do Items, To Do Pane, Wizards and the Knowledge Types are located in the package
org.argouml.cognitive.ui.

5.2.2. How do I ...?

• ...create a new critique?

Currently the only way to add a new critique is to write a class that implements it so that is described here. There
have however been ideas on a possibility to build critics in some other way in the future, as a set of rules instead
of java code.

Create a new critic class, of the form CrXxxxYyyyZzzz, extending CrUML. Typically your new class will go in
the package org.argouml.uml.cognitive.critics, but it could go in one of the other cogni-
tive.critics packages.

Write a constructor, which takes no argouments and calls the following methods of CrUML:

• setResource("CrXxxxYyyyZzzz"); to set up the locale specific text for the critic headline (the one liner
that appears in the to-do pane) and the critic description (the detailed explanation that appears in the to-do
tab of the details pane).

• addSupportedDecision(CrUML.decAAAA); where AAAA is the design issue category this critic falls into
(examples include STORAGE, PATTERN METHODS).

• setPriority(ToDoItem.BBB_PRIORITY); where BBB is one of LOW, MEDIUM or HIGH, to set the priority for

Inside the components

36

the critic in the to-do pane.

• addTrigger("UML MetaClass"); where UML MetaClass is a UML MetaClass, with initial lower capital,
e.g. "associationEnd". The intention is that critics should only trigger for elements (or children) of particular
UML metaclasses. I (Jeremy Bennett february 2002) believe this code is not yet working so you can proba-
bly leave it out. You can have multiple calls to this method for different metaclasses.

After this add a method public boolean predicate2(Object dm, Designer dsgr);. This is the decision routine
for the critic. dm is the UML entity (an NSUML object) that is being checked. The second argument, dsgr is for
future development and can be ignored. The Critic class conveniently defines two boolean constants
NO_PROBLEM and PROBLEM_FOUND to be returned according to whether the object is OK, or triggers the critic.

dm may be any UML object, so the first action is to see if it is an artifact of interest and if not return
NO_PROBLEM.

The remaining code should examine dm and return NO_PROBLEM or PROBLEM_FOUND as appropriate.

Having written the code you need to add the text for the headline and description to the cognitive resource bun-
dles. These are in the package org.argouml.i18n, in the file UMLCognitiveResourceBundle.java. You
need to add two keys for the head and description, which will be named respectively CrXxxxYyyyZzzz_head
and CrXxxxYyyyZzzz_desc. There are plenty of examples to look at there. The other files UMLCognitiveRe-
(sourceBundle_en_GB.java, UMLCognitiveResourceBundle_es.java, ... for British English, Spanish,
... respectively) are the responsibility of the corresponding language team. Notify the language teams that there
is work to be done.

In method Init of the class org.argouml.uml.cognitive.critics.Init, add two statements:

public static Critic crXxxxxYyyyZzzz = new CrXxxxxYyyyZzzz();
...

Agency.register(crXxxxxYyyyZzzz, DesignMaterialCls);

If you want to add a critic to a design material which is not already declared (for example the Extend class), you
will have to add a third statement to the Init method as well, which is:

java.lang.Class XxxYyyyZzCls = MXxxYyyyZzImpl.class;

where MXxxYyyyZzImpl.class should be part of the NovoSoft UML package.

Finally you should get a new section added to the user manual reference section on critics. The purpose of this is
to collect all the details and rationale around this critic to complement the short text in the description. It should
go in the ref_critics.xml file and have an id tag named critics.CrXxxYyyyZzzz.

• ...write the test in a critique?

The critiques tests are essentially a combination of conditions that are to be fulfilled. The conditions are often
simple tests on simple model elements.

The class org.argouml.cognitive.critics.CriticUtils contains static routines that are commonly
needed when writing predicate2 (for example to test if a class has a constructor). If you find you are writing
code that may be of wider use than just your critic, you should add it to CriticUtils rather than putting it in
your critic.

For commented examples to copy, look at
org.argouml.pattern.cognitive.critics.CrConsiderSingleton,
org.argouml.pattern.cognitive.critics.CrSingletonViolated and
org.argouml.uml.cognitive.critics.CrConstructorNeeded.

Inside the components

37

• ...fix a critique?

Locate the critique and insert some logging code. You should make sure that you understand all the implications
of changes, therefore it is a good idea to see what makes the critic nag in the first place. But rest assured: some
of the critics haven't been updated to reflect the latest changes in ArgoUML, so this is a procedure which is well
worth digging into, since it gives you also some exposure to related NSUML elements.

• ...change the text of a critique?

The texts of the critics should be in the according localization files and resource bundles. Be careful: in some
critics the text is still in the critic, but if you change that, you will notice that it doesn't have any effect.

5.2.3. org.argouml.cognitive.critics.* class diagram

5.3. Diagrams
Purpose - to generate a graphical view of the diagrams in the model with tools. The contents of the diagrams and

Inside the components

38

model is modifyable. TODO: Notation!

The Diagrams will be located in org.argouml.???.

The Diagrams is a Layer 2 component. Section 4.6, “Layer 2 - Description of components”.

The Diagrams are depending on the Model and the GUI framework.

5.3.1. How do I add a new element to a diagram?
To add a new element to a diagram, two main things have to be done.

1. Create new Fig classes to represent the element on the diagram and add them to the graph model and renderer.

2. Create a new property panel class that will be displayed in the property tab windown on the details pane. This is
described in Section 5.4, “Property panels”.

Throughout we shall use the example of adding the UML Extend relationship to a use case diagram. This allows two
Use Cases to be joined by a dotted arrow labelled «extend» to show that one extends the behavior of the other.

The classes involved in this particular example have all been well commented and have full Javadoc descriptions, to
help when examining the code. You will need to read the description here in conjunction with looking at the code.

5.3.2. How to add a new Fig
The new item must be added to the toolbar. Both the graph model and diagram renderer for the diagram will need
modifying for any new fig object.

5.3.2.1. Adding to the toolbar

Find the diagram object in uml/diagram/XXXX/ui/UMLYYYYDiagram.java, where XXXX is the diagram type
(lower case) and YYYY the diagram type (bumpy caps). For example uml/dia-
gram/use_case/ui/UMLUseCaseDiagram.java. This will be a subclass of UMLDiagram (in uml/dia-
gram/ui/UMLDiagram.java).

Each toolbar action is declared as a protected static field of class Action, initiated as a new CmdCreateNode (for
nodal UML elements) or a new CmdSetMode (for behavior, or creation of line UML elements). These classes are
part of the GEF library.

The common ones (select, broom, graphic annotations) are inherited from UMLDiagram, the diagram specific ones
in the class itself. For example in UMLUseCaseDiagram.java we have the following for creating Use Case nodes.

protected static Action _actionUseCase =
new CmdCreateNode(MUseCaseImpl.class, "UseCase");

The first argument is the class of the node to create from NSUML, the second a textual tool tip.

For creating associations we have:

protected static Action _actionAssoc =
new CmdSetMode(ModeCreatePolyEdge.class,

"edgeClass", MAssociationImpl.class,

Inside the components

39

"Association");

The first argument is a GEF class that defines the type of behavior wanted (in this case creating a poly-edge). The
second and third arguments are a named parameter used by ModeCreatePolyEdge ("edgeClass") and its value
(MAssociationImpl.class). The final argument is a tooltip.

The toolbar is actually created by defining a method, initToolBar() which adds the tools in turn to the toolbar (a
protected member named _toolBar).

The default constructor for the diagram is declared private, since it must not be called directly. The desired construc-
tor takes a namespace as an argument, and sets up a graph model (UseCaseDiagramGraphModel), layer perspec-
tive and renderer (UseCaseDigramRenderer) for nodes and edges.

5.3.2.2. Changing the graph model

The graph model is the bridge between the UML meta-model representation of the design and the graph model of
GEF. They are found in the parent directory of the corresponding diagram class, and have the general name YYYY-
DiagramGraphModel.java, where YYYY is the diagram name in bumpy caps. For example the use case diagram
graph model is in uml/diagram/use_case/UseCaseDiagramGraphModel.java

The graph model is defined as a child of the GEF class MutableGraphSupport, and should implement Mutable-
GraphModel (GEF), VetoableChangeListener (Java) and MElementListener (NSUML).

5.3.2.3. Changing the renderer

The renderer is responsible for creating graphic figs as required on the diagram. It is found in the same directory of
the corresponding diagram class, and has the general name YYYYDiagramRenderer.java, where YYYY is the dia-
gram name in bumpy caps. For example the use case diagram graph model is in uml/dia-
gram/use_case/ui/UseCaseDiagramRenderer.java

This provides two routines, getFigNodeFor(), which provides a fig object to represent a given NSUML node ob-
ject and getFigEdgeFor(), which provides a fig object to represent a given NSUML edge object.

In our example, we must extend getFigEdgeFor() so it can handle NSUML MExtend objects (producing a
FigExtend).

5.3.2.4. Creating a new Fig (explanation 1)

New objects that are to appear on a diagram will require new Fig classes to represent them. In our example we have
created FigExtend. They are placed in the same directory as the diagram that uses them.

The implementation must provide constructors for both a generic fig, and one representing a specific NSUML ob-
ject. It should provide a setFig() method to set a particular figure as the representation. It should provide a method
canEdit() to indicate whether the Fig can be edited. It should provide an event handler modelChanged() to cope with
advice that the model has changed.

5.3.2.5. Creating a new Fig (explanation 2)

Assuming you have your modelelement already defined in the model and your PropPanel for that modelelement you
should make the Fig class.

1. For nodes, that are Figs that are enclosed figures like FigClass, extend from FigNodeModelElement. For
edges, that are lines like FigAssociation, extend from FigEdgeModelElement. The name of the Fig has to
start with (yes indeed) Fig. The rest of the name should be equal to the modelelement name.

Inside the components

40

2. Create a default constructor in the Fig. In this default constructor the drawing of the actual figure is done. Here
you draw the lines and text fields. See FigClass and FigAssociation for an example of this.

3. Create a constructor FigMyModelelement(Object owner). Set the owner in this method by calling se-
tOwner. Make a method setOwner that overrides it's super. Let the method call it's super. Set all attributes of
the Fig with data from it's owner in this setOwner method. See setOwner of FigAssociation for an exam-
ple.

4. Create an overriden method protected void modelChanged(). This method must be called (and is if you
implement the fig correctly) if the owner changes. In this method you update the fig if the model is changed.
See FigAssociation and FigClass for an example.

5. If you have text that can be edited, override the method textEdited(FigText text). In this method the
edited text is parsed. If the parsing is simple and not Notation specific, just do it in textEdited. But for most
cases: delegate to ParserDisplay. See the method parseAttribute in ParserDisplay for an example. Stick to
the Notation you are using to have the right parsing scheme. There is work to be done here but please don't
make it an even bigger mess :)

6. Make an Action that can be called from the GUI. If you are lucky, you just can use CmdCreateNode. See for
examples UMLClassDiagram of using CmdCreateNode.

7. Adapt the method canAddEdge(Object o) on subclasses of GraphModel if you are building an edge so it
will return true if the edge may be added to the subclass. Subclasses are for example ClassDiagramGraph-
Model and UseCaseDiagramGraphModel. If you are building a node, adapt canAddNode(Object o).

8. Adapt the method getFigEdgeFor on implementors of GraphEdgeRenderer if you are implenting an edge
so it will return the correct FigEdge for your object. If you are implementing a node, adapt the method get-
FigNodeFor on implementors of GraphNodeRenderer. In argouml classes like ClassDiagramRenderer
implement these interfaces.

9. Add an image file for the buttons to the resource directory org/argouml/Images. This image file must be of
Gif format and have a drawing of the button image to be used in itself. This image is also used on the Prop-
Panel. The name of the Image file should be modelelement.gif

10. Add buttons to the action you created on those places in the gui that have a need for it. This should be at least
the button bar in each diagram where you can draw your modelelement. Probably the parent of your modelele-
ment (e.g. class in case of operation) will want a button too, so add it to the PropPanel of the parent. In case of
the diagrams, add it in UMLdiagram.java, so in UMLClassDiagram if it belongs there. In case of the PropPan-
els, most of them don't use actions, they implement them directly as methods in the PropPanel themselves.
Please don't do that but use an action so we have one place of definition.

5.4. Property panels
Purpose - to provide a form view of the diagrams and objects in the model. The contents of the model is modifyable.

The Property panels will be located in org.argouml.?.

The Property panels is a Layer 2 component. See Section 4.6, “Layer 2 - Description of components”.

Currently the PropPanels for the diagrams are in org.argouml.uml.diagram.ui and the property panels for the
other object are in org.argouml.uml.ui.NS-UML path.

5.4.1. Adding the property panel

Warning

Inside the components

41

This description is old and the property panels has undergone some fundamental changes since it was
written. It would be good if someone that knows how it works now could write a description on how it
works now.

Property Panels are found as class PropPanelXXX.java, where XXX is the UML metaclass. They are in sub-
packages of org.argouml.uml.ui corresponding to the XXX NSUML packages, which in turn correspond to their sec-
tion in the chapter 2 of the UML 1.3 spec. This packaging is essential for their lookup through Java reflection.

So for our example we create a new class PropPanelExtend in package
org.argouml.uml.ui.behavior.use_cases.

Any associated classes that do not fall into the NSUML classification are provided in org.argouml.uml.ui.

Typically the constructor for the new class invokes the parent constructor, and then builds the fields required on the
property tab. The parent constructor may need an icon. If you need a new icon, it should be placed in org/ar-
gouml/Images and a call to ResourceLoader.lookupIconResource() made (note this is a method of a GEF
class). This is usually added to PropPanelModelElement. For our example we have had to add Extend.gif.

Finally the property panel must be added to the list of property panels in the run() method of the TabProps class,
with a new call of _panels.put(). If you don't do this, navigation listeners won't know about it!

The property panel is created as a grid with a predefined number of columns (2 if there are only a few fields, 3 if
there are a lot). Into each row of each column is placed a caption and a corresponding field.

Adding a caption or field is through one of a small number of utility methods which require you to specify which
column and which row and also a weighty parameter to specify the amount of padding to be added when fields are
stretched to fit a column. Vertical padding is distributed in proportion to weighty amongst all fields in the column
that have non-zero weighty values.

Tip

You should always ensure at least one field or caption in each column has a non-zero value for
weighty. If you wish everything fixed size and floated to the top, make the value for the final caption
in the column non-zero.

Every field is built from Java Swing components. However these are extended by ArgoUML to help in the provision
of action methods for fields in the property tab. Several fields involve lists, and these require in addition list models
to compute the members of the list.

The fields that you might add to a property panel include.

• Simple editable text. For example the Name field. Supported through the UMLTextField class.

• A drop down box of options that can be selected, with an icon to the right allowing navigation to the property
panel for the currently selected item. For example the Stereotype field. Supported in general by the UMLCom-
boBox class and more speficically by its subclass for stereotypes, UMLStereotypeComboBox.

• A non-editable text box, with a pop-up menu that allows opening, addition, deletion, moving up and moving
down of entries. For example the Generalizations field. Supported by the UMLList class. The list model is usu-
ally provided by a sub-class of UMLModelElementListModel. There is a varient UMLModelEle-
mentListLinkModel which adds a link option to the pop-up menu, allowing connection to existing model ele-
ments (used for the Extension Points field for example).

• A set of check boxes for modifiers. Supported by the PropPanelModifiers class.

Inside the components

42

Examples of these in more detail now follow.

5.4.1.1. Adding a simple list field

For example we need to add a field to the use case property panel for the extends relationships that derive from this
use case.

This field consists of a label and a scrollable pane (JScrollPane) containing the list (JList), possibly empty, or
extends relationships from this use case.

Rather than a straight JList, we use its child, UMLList, which implements the MouseListener and NSUML El-
ementListener interfaces.

The constructor for UMLList requires two arguments, a list model and a flag to indicate whether the list is naviga-
ble, i.e. responds to the mouse.

The list model should be a subclass of UMLModelElementListModel, a subclass of the Swing AbstractList-
Model that implements the NSUML ElementListener interface.

5.4.1.1.1. The list model

In our example we create UMLExtendListModel. Its constructor should take three arguments:

1. The container, where this list is being built. I.e. the PropPanelUseCase (from which we can then derive the
NSUML MUseCase, which is the “target” of the extends relationship).

2. A string naming an NSUML event that should force a refresh of the list model. A null value will cause all
events to trigger a refresh. The best way to identify the event you want to use is to look at the NSUML source
for the container object (MUseCaseImpl in our example) for calls to fireXXX(). The first argument is the
name of the event (in our case extend). There is no definitive list, but from the NSUML source, these are all
the names of events that are used:

• action

• actionSequence

• activator

• activityGraph

• actualArgument

• addition

• aggregation

• alias

• annotatedElement

• argument

• association

• associationEnd

• associationEndRole

Inside the components

43

• associationRole

• attribute

• attributeLink

• availableContents

• availableFeature

• availableQualifier

• base

• baseClass

• baseElement

• behavior

• behavioralFeature

• binding

• body

• bound

• callAction

• changeability

• changeExpression

• child

• classifier

• classifierInState

• classifierRole

• classifierRole1

• client

• clientDependency

• collaboration

• collaboration1

• comment

• communicationConnection

• communicationLink

• componentInstance

Inside the components

44

• concurrency

• condition

• connection

• constrainedElement

• constrainedElement2

• constrainingElement

• constraint

• container

• contents

• context

• createAction

• defaultElement

• defaultValue

• deferrableEvent

• deploymentLocation

• discriminator

• dispatchAction

• doActivity

• dynamicArguments

• dynamicMultiplicity

• effect

• elementImport

• elementImport2

• elementResidence

• entry

• event

• exit

• expression

• extend

• extend2

Inside the components

45

• extendedElement

• extender

• extenderID

• extension

• extensionPoint

• feature

• generalization

• guard

• icon

• implementationLocation

• include

• include2

• incoming

• initialValue

• instance

• instantiation

• inState

• interaction

• internalTransition

• isAbstarct

• isAbstract

• isActive

• isAsynchronous

• isConcurent

• isDynamic

• isInstantiable

• isLeaf

• isNavigable

• isQuery

• isRoot

Inside the components

46

• isSpecification

• isSynch

• kind

• link

• linkEnd

• location

• mapping

• message

• message1

• message2

• message3

• message4

• method

• modelElement

• modelElement2

• multiplicity

• name

• namespace

• nodeInstance

• objectFlowState

• occurrence

• operation

• ordering

• outgoing

• ownedElement

• owner

• ownerScope

• package

• parameter

• parent

Inside the components

47

• participant

• partition

• partition1

• powertype

• powertypeRange

• predecessor

• presentation

• qualifiedValue

• qualifier

• raisedSignal

• receiver

• reception

• recurrence

• referenceState

• representedClassifier

• representedOperation

• requiredTag

• resident

• residentElement

• script

• sendAction

• sender

• signal

• slot

• source

• sourceFlow

• specialization

• specification

• state

• state1

Inside the components

48

• state2

• state3

• stateMachine

• stereotype

• stereotypeConstraint

• stimulus

• stimulus1

• stimulus2

• stimulus3

• structuralFeature

• subject

• submachine

• submachineState

• subvertex

• supplier

• supplierDependency

• tag

• taggedValue

• target

• targetFlow

• targetScope

• templateParameter

• templateParameter2

• templateParameter3

• top

• transition

• trigger

• type

• useCase

• value

Inside the components

49

• visibility

• when

3. A flag to indicate that a label “none” should be used when the list is empty.

Quite usually it is sufficient to just invoke the constructor of the parent class.

This list model should then be provided with a number of methods. The following are mandatory, since they are de-
clared abstract in the parent.

protected int recalcModelElementSize()Recomputes the number of elements in the list (zero if empty).

protected MModelElement getModelElementAt(int index)Returns the element at the given index in the list, or null if there isn't one.

The following are sometimes provided as an override of the parent, although for many uses the default is fine.

public void open(int index)Perform the action associated with the “open” pop-up menu on the element at the
given index. The default provided in the parent just navigates to that element.

public boolean buildPopup(JPopupMenu popup, int index)Build a pop-up menu for the list and return whether it should be displayed. Any ac-
tions will be associated with the item at the given index in the list. This is built using
UMLListMenuItem, which can record the index, rather than plain JListItem. The
default provides open, add, delete, move up and move down, with add disabled if there
are already as many elements as the upper bound (if any) for the list, open and delete
disabled if there are no elements and move up and move down disabled if they cannot
be invoked on the given element. The default implementation always returns true.

The following should be declared as needed to support particular pop-up functions.

public void add(int index)Perform the actions associated with the “add” pop-up menu on the element at the
given index. There is no default provided, so this must be given if the “add” operation
is supported. The addAtUtil() method (see below) may prove helpful.

In this routine you may create a new NSUML entity. There seem to be three ways to
do this, in order of preference 1) use a utility from the MMUtil class, 2) use the
NSUML Factory class to create what you want 3) use new on a MXXXImpl class.
Whilst 1) is best, most of the MMUtil routines are not yet general enough.

Be sure to set it up (don't forget e.g namespace etc). Remember also to change any-
thing that references the newly created entity.

Warning

The NSUML routines generally set up the “other” end of a relationship
automatically if you set up one end. If you try to do both (on a NxM rela-
tionship) you will probably end up doing it twice. If you do encounter
this, the rule of thumb is to explicitly set the ordered end (if you do it the
other way round, NSUML will assume you mean the "other" end to be at
the end of its ordered list).

Inside the components

50

public void delete(int index)Perform the actions associated with the “delete” pop-up menu on the element at the
given index. There is no default provided, so this must be given if the “delete” opera-
tion is supported.

public void moveUp(int index)Perform the actions associated with the “move up” pop-up menu on the element at the
given index. There is no default provided, so this must be given if the “move up” oper-
ation is supported.

public void moveDown(int index)Perform the actions associated with the “move down” pop-up menu on the element at
the given index. There is no default provided, so this must be given if the “move
down” operation is supported.

The following normally use the default method, but may be declared to override methods in the parent

public void resetSize()Called when an external event may have changed the size of the list. The default just
sets a flag, which will ensure recalcModelElementSize (see above) is invoked as
needed.

public Object formatElement(MModelElement element)Return an object (invariably a String) that represents an element. The default provided
in the parent defers this to the container, which in turn defers it to the current profile.
This is usually perfectly satisfactory.

public void targetChanged()Called when the number of elements in the displayed list (including “none”) may have
changed. Default invokes the necessary Swing operations to advise of a change in list
size.

public void targetReasserted()Called when the navigation history has been changed (and navigation buttons may
need changing). Not clear why anything is needed, but default recomputes the list size,
and invokes the necessary Swing operations.

public void roleAdded(final MElementEvent event)part of the NSUML EventListener interface. Called when an add event happens, i.e.
some NSUML object has been added. The default provided looks to see if the event is
the role name we declared, or we are listening to all events, and if so looks to see if it
relates to an element in our list. If so Swing is notified that the element has been
added.

public void roleRemoved(final MElementEvent event)part of the NSUML EventListener interface. Called when a remove event happens, i.e.
some NSUML object has been removed. The default provided looks to see if the event
is the role name we declared, or we are listening to all events, and if so looks to see if
it relates to an element in our list. If so Swing is notified that the element has been re-
moved.

public void recovered(final MElementEvent p1) , public void listRoleItemSet(final MElementEvent p1) , public
void removed(final MElementEvent p1) , public void propertySet(final MElementEvent p1)

these are all required as part of the NSUML EventListener interface, which is not well
documented. In each case the default implementation recomputes the size, and advises
Swing that the entire list has changed. Needs more investigation.

public void navigateTo(MModelElement modelElement)a request to navigate to the specified object as part of the NavigationListener interface.
The default in the parent just invokes navigateTo() on the container (ultimately Prop-
Panel).

The following utility routines are also provided in the parent. They are not normally overridden.

public int getUpperBound()get any upper bound (-1 is used if there is none).

public void setUpperBound(int newBound)set the upper bound (-1 is used if there is none).

Inside the components

51

public final String getProperty()returns the NSUML event name being monitored (null if all are being monitored).

protected final int getModelElementSize()returns the number of elements in the list. Invokes recalcModelElementSize()
(see above) if necessary.

final Object getTarget()returns the NSUML object associated with the container (some child of PropPanel
usually) that holds this list model.

final UMLUserInterfaceContainer getContainer()returns the the container (some child of PropPanel usually) that holds this list model.

public int getSize() returns the size of the list. Including if there are no elements in the model, but the list
has a default text when empty.

public Object getElementAt(int index)returns the element at the given index in the list.

static protected Collection addAtUtil(Collection oldCollection, MModelElement newItem, int index)helps in writing the “add” function. newItem is added at the specified index in the
given oldCollection.

static protected java.util.List moveUpUtil(Collection oldCollection, int index)helps in writing the “move up” function. Swaps the elements at offsets index and in-
dex-1. Not clear why it doesn't return a Collection.

static protected java.util.List moveDownUtil(Collection oldCollection, int index)helps in writing the “move down” function. Swaps the elements at offsets index and
index-1. Not clear why it doesn't return a Collection.

static protected MModelElement elementAtUtil(Collection collection, int index, Class requiredClass)helps in writing the getElementAt(). Finds the element at a specific index. The last
argument is ignored!

5.4.1.2. Building the field

By convention the background of the list is set to the same as the background of the PropPanel and the foreground to
Color.blue.

The list is then added to a JScrollPane. Although ArgoUML has historically not used scrollbars JScroll-
(Pane.VERTICAL_SCROLLBAR_NEVER and JScrollPane.HORIZONTAL_SCROLLBAR_NEVER), it is more helpful
to permit at least a vertical scrollbar where needed (JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED and
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED).

Finally the inherited method addCaption() is used to add the label for the field and addField() to add the asso-
ciated scrollpane.

The second argument of each of these identifies the index of the caption/field pair in the vertical column of the grid
for this property panel. The third argument identifies the column index. The final argument is a vertical weighting to
expand the field if there is room in the property tab. This is usually set to the same non-zero value for all fields and
corresponding captions that can have multiple entries, so they expand equally. If none of the fields should expand,
the caption only of the last field in each column should be given a non-zero value.

5.4.1.3. Adding Property Tab Toolbar Buttons

These are added by creating new instances of PropPanelButton (you don't need to assign them to anything—just
creating will do). This has six arguments.

• The container, i.e this property panel (usually just use this).

• The panel for the buttons. Use buttonPanel which is inherited from PropPanel.

• The icon. Lots of these are already defined in PropPanel.

Inside the components

52

• The advisory text for the button. Use localize(string) to ensure international portability.

• The name of the method to invoke when this button is used. Some of the standard ones (e.g for navigation) are
provided, but you will need to write any specials.

• The name of the method (if any) to invoke to see if this button should be enabled. Use null if the button should
always be enabled.

In our example, the extend property panel has a “add extension point” button, with a method newExtensionPoint
that we provide to create a new use case.

5.4.1.4. Support for stereotypes

The PropPanel should override the following (note the spelling of the method name).

protected boolean isAcceptibleBaseMetaClass(String baseClass). Returns true if the given base
class is a class of the target in the PropPanel.

This is used to determine what stereotypes may be shown for this property panel.

5.4.1.5. Other sorts of fields

Another sort of field that may be useful is the ComboBox. This is useful to allow users to select from a pre-defined
list of alongside a navigation arrow to go to the selected entry.

For example this is used to provide drop-down lists for the base and extension use cases of an Extend relationship in
PropPanelExtend.

The model behind the drop down is created by using UMLCombBoxModel: UMLCombBoxModel(container,
predicate, event, getter, setter, allowVoid, baseClass, useModel).

The container is the PropPanel where we are setting up this ComboBox, the predicate is the name of a public
method in that PropPanel that, given a model element, determines if it should be in the drop down, the event is the
NSUML MElementEvent name we are looking for (see earlier for the list), getter is the name of a public method
in the PropPanel that yields the current entry in the comboBox (of type baseClass), setter (with a single argu-
ment of type baseClass) sets that entry, allowVoid if true will allow an empty entry for the box, baseClass is
the NSUML metaclass from which all entries must descend, useModel is true to consider all the elements in the
standard profile model for inclusion (so the Java types, standard stereotypes etc.).

For our PropPanelExtend, we provide a predicate routine the call for the “base” field is:

UMLComboBoxModel(this, "isAcceptableUseCase", "base", "getBase", "setBase", true,
MUseCase.class, true);

and we define the methods isAcceptableUseCase, getBase and setBase in PropPanelExtend.

5.4.1.6. How UMLTextField works

This information is provided by Jaap Branderhorst (September 2002).

UMLTextField implements several kinds of event listeners:

• MMelementListener

• DocumentListener

Inside the components

53

• FocusListener

Furthermore it is a UMLUserInterfaceComponent.

Since it is an UMLUserInterfaceComponent it must implement targetChanged and targetReasserted.
TargetChanged is called everytime the UMLTextField is selected. targetReasserted is of no interest for
UMLTextField. It plays a role in keeping history but since history is not really implemented at the moment in Ar-
goUML it is of no interest. targetChanged does two things:

• It calls the targetChanged method of the UMLTextProperty this UMLTextfield is showing.

• It calls the update method. The update method is described further on.

Besides UMLUserInterfaceComponent there are several other interfaces of interest. One of them is MMEle-
mentListener.

Every time a MModelElement is changed this will fire an MEvent to UMLChangeDispatch. UMLChangeDis-
patch will dispatch these events to all containers implementing UMLUserInterfaceComponents interested in this
event, including UMLTextField. It will also dispatch the event to all childs of an interested container implementing
UMLUserInterfaceComponent. By this it is only necessary to register a PropPanel which holds an UML-
TextField at UMLChangeDispatch to dispatch the event to the UMLTextField too. MMelementListener
knows several methods of which only one is of interest to UMLTextFields:

• propertySet

Called everytime a property in a MModelElement is set. This method calls update too if the UMLTextProp-
erty really is affected.

Furthermore UMLTextField implements DocumentListener. This is very typical for UMLTextField. At the mo-
ment it is not possible to change the style of the text in the UMLTextField. Therefore the method changedUpdate
does not have a body. This method is only called when a DocumentEvent occurs that changes the style/layout of
the text. The methods insertUpdate and removeUpdate are respectively called when a character is added to the
document UMLTextField contains or removed. Since both methods are called when there is true userinput and
when the contents of the document are changed programmatically, the methods distinguish between them. Inser-
tUpdate and removeUpdate are both handled via the protected method handleEvent. HandleEvent updates the
property in UMLTextProperty if it is really changed. If the update comes via userinput, it is checked if it is valid
input. If it is not, a JOptionPane is shown with ' a warning and the change is not commited into the model. If it is
not via userinput, the input is not checked and the property is set. If the property is set, the update method is called.

The implementation of FocusListener makes sure that the checking of userinput only happens when focus is lost.
Otherwise, it would not be possible to enter 'intermediate' values that are not legal. For instance, say the value class
is not legal. Without the implementation of FocusListener, it would not be possible to enter classdiagram since
handleEvent would popup a warning messagebox.

The method update updates both the actual JTextfield as the diagram as soon as some property is set. The up-
dating of the diagram is done by calling the damage method of the figs that represent the property on the diagram.

5.5. Reverse Engineering Component
Purpose: Point where the different languages register that they know how to do reverse engineering and common re-
verse engineering functions for all languages.

The Reverse Engineering is located in org.argouml.uml.reveng.

Inside the components

54

The Reverse Engineering Component is a Layer 2 component. See Section 4.6, “Layer 2 - Description of compo-
nents”.

5.6. Code Generation Component
Purpose: Point where the different languages register that they know how to do code generation and common func-
tions for all languages.

The Code Generation is located in org.argouml.language.

The Code Generation component is a Layer 2 component. See Section 4.6, “Layer 2 - Description of components”.

5.7. Java - Code generations and Reverse Engineer-
ing

Purpose - two purposes: to allow the model to be converted into java code and updated either in java or in the
model; to allow some java code to be coverted into a model.

The java things are located in org.argouml.language.java.

The Java component is a Layer 3 component. See Section 4.7, “Layer 3 - Description of components”.

5.7.1. How do I ...?
...

5.7.2. Which sources are involved?
The package org.argouml.uml.reveng is supposed to hold those classes that are common to all RE packages. At the
moment this is the Import class which is mainly responsible to recognize directories, get their content and parse ev-
ery known source file in them. These are only java files at the moment, but there might be other languages like C++
in the future. With this concept you could mix several languages within a project. The DiagramInterface is used to
visualize generated NSUML metamodel objects then.

The package org.argouml.uml.reveng.java holds the Java specific parts of the current RE code. C++ RE might go to
org.argouml.uml.reveng.cc, or so...

5.7.3. How is the grammar of the target language imple-
mented?

It's an Antlr (http://www.antlr.org) grammar, based on the Antlr Java parser example. The main difference is the
missing AST (Abstract Syntax Tree) generation and treeparser. So the original example generates an AST (a treelike
data structure) and then traverses this tree, while the ArgoUML code parses the source file and generates NSUML
objects directly from the sources. This was done to avoid the memory usage of an AST and the frequent GC while
parsing many source files.

5.7.4. Which model/diagram elements are generated?
The *context classes hold the current context for a package, class etc. When the required information for an object is
available, the corresponding NSUML object is created and passed to the DiagramInterface to visualize it.

Inside the components

55

http://www.antlr.org

5.7.5. Which layout algorithm is used?
The classes in org.argouml.uml.diagram.static_structure.layout.* hold the Classdiagram layout code. No layout for
other diagram types yet. It's based on a ranking scheme for classes and interfaces. The rank of a class/interface de-
pends on the total number of (direct or indirect) superclasses. So if class B extends A (with rank(A)=0), then
rank(B)=1. If C extends B, then rank(C)=2 since it has 2 superclasses A,B. An implemented interface is treated simi-
lar to a extended class. The objects are placed in rows then, that depend on their rank. rank(0)=1st row. rank(1) =2nd
row (below the 1st one) etc. Example:

In the next diagramm, a link goes to an object that is not in the row above:

Inside the components

56

In this case, insert virtual objects which are linked to the actual target and link to them:

The objects are sorted within their row then to minimize crossing links between them. Compute the average value of
the vertical positions of all linked objects in the row above. Example: we have 2 ranks, 0 and 1, with 3 classes each:

Inside the components

57

A B C : rank 0

D E F : rank 1

We give the superclasses an index in their rank (assuming that they are already sorted):

A:0, B:1, C:2

D, E, F have the following links (A, B, C could be interfaces, so I allow links to multiple superclasses here):

D -> C

E -> A and C

F -> A and B

Compute the average value of the indices:

D = 2 (C has index 2 / 1 link)

E = 0 + 2 / 2 = 1 (A=0, C=2 divide by 2 links)

F = 0 + 1 / 2 = 0.5 (A=0, B=1, 2 links)

Then sort the subclasses by that value:

F(is 0.5), E(is 1), D(is 2)

So the placement is:

A B C

(here are the links, but I can hardly paint them as ASCIIs)

F E D

5.8. Other languages
Each other language supported by ArgoUML has its own component. They are each different in level of support and
implementation language.

Currently C++ has no reverse engineering but only code generation (and a very simple one at that). Java class files
has only reverse engineering.

Inside the components

58

5.9. The GUI Framework
Purpose - Provide an infrastructure with menus, tabs and panes available for the other components to fill with ac-
tions and contents.

This component has no knowledge of UML, Critics, Diagrams, or Model.

The GUI Framework is located in org.argouml.???.

The GUI Framework is a Layer 1 component. See Section 4.5, “Layer 1 - Description of components”.

This is implemented directly on top of Swing and Java2.

The GUI has (currently) the following main parts

• The menu

• The toolbar

• Explorer pane (Navigator pane)

Upper left.

Contains a tree of the model.

• Multi editor pane

Upper right.

Contains the diagrams (could eventually be something else).

Inside the components

59

• To do pane

Lower left.

To do items, different views.

• Details pane

Lower right.

Contains a wizard from a To do item, a property panel of the current object, some other view of the current ob-
ject.

5.9.1. Multi editor pane
The multieditorpane is the pane with the diagram editor in it. Normally it is placed in the upper right corner of the
application. One of the feature requests is to make the pane dockable so maybe it won't be there in the future.

The multieditorpane consists of tabs that hold editors as you can see in the classdiagram.

At the moment there is only one editor tab in place. This is the TabDiagram that shows an UMLDiagram, the target.

The TabDiagram is spawnable. This means that the user can double click the tab and the diagram will spawn as a
separate window.

The target of the MultiEditorPane is set via the setTarget method of the pane. This method is called by the setTarget
method of the ProjectBrowser. The pane's setTarget method will call each setTarget method of each tab that is an in-
stance of TabModelTarget. Besides setting the target of the tabs, the setTarget method also calls MultiEditor-
Pane.select(Object o). This selects the new target on a tab. This probably belongs in the setTarget method of the in-
dividual tabs and diagrams but that's how it's implemented at the moment.

Inside the components

60

5.9.1.1. How do I ...?

• ...add a new tab to the MultiEditorPane?

Create a new class that's a child of JPanel and put the following line in argo.ini:

multi: fully classified name of new tab class

5.9.2. Details pane
Currently (May 2003) the Details pane contains several tabs: Property Panels (See Section 5.4, “Property panels”,
Critics explanations and wizards (belonging to the Critics component) (See Section 5.2, “Critics and other cognitive
tools”), Documentation, Style, Source, Constraints (an ocl view of the current object) (See Section 5.17, “OCL”),
and Tagged values.

Warning

It is not clear in what component Documentation, Style, Source, and Tagged values belong.

5.9.2.1. How do I ...?

• ...add a tab in the Details Panel?

Create your TabXXX class in org.argouml.uml.ui by copying from another TabYYY.java (e.g. TabSrc,
TabStyle). Then register your TabXXX in org/argouml/argo.ini by adding a line giving the compass point
to place the tab. Like -

south: TabXXX

• ...remove a tab from the Details Panel?

Remove the line for the tab from org/argouml/argo.ini.

5.10. Help System
Purpose - to provide the menu actions that start the help and other documentation. To provide infrastructure that
makes context sensitive help possible.

The Help System is not yet implemented.

The Help System will be located in org.argouml.help.

The Help System is a Layer 1 component. See Section 4.5, “Layer 1 - Description of components”.

Javahelp or some other help function will probably be used.

5.11. Internationalization

Inside the components

61

Purpose - to provide the infrastructure that the other components can use to translate strings; to provide the infras-
tructure that makes it possible to plug in new languages; to administer the default (English U.S.) language; to admin-
ister all supported languages.

The Internationalization is located in org.argouml.i18n.

The Internationalization is a Layer 0 component. See Section 4.4, “Layer 0 - Description of components”.

The internationalization is currently changing from ListResourceBundles to Property files. This chapter is not up-
dated to fit the change. Please read carefully.

In ArgoUML internationalization (sometimes called i18n) is done using the ListResourceBundle-classes and parts of
it is handled by the GEF infrastructure.

There are several sets of Bundle files for different domains within ArgoUML. Each domain has a name and is han-
dled by a file. This is set up in org.argouml.application.Main.

5.11.1. Organizing translators
The problems with internationalization are not so much the technical problems as to how it works but more so the
problems are with getting, keeping and coordinating the correct competences to do the job. This comes from the fact
that by necessity the different persons working with internationalization have different native languages and that
complicates the communications.

To handle this problem for GNU applications there is a community set up around gettext with one language team per
language working with all gettext applications. There are also tools to help the translator do his job delivered with
gettext that are the same for all the applications. In each of these language teams discussions are held that ensure a
consistant use of words over all these applications.

It is for me (Linus Tolke, May 2002) unclear if and how such a community exists for Open Source Java tools and
ArgoUML cannot simply benefit from the gettext communities since we don't use gettext and cannot use the same
tools.

To get things done, we organize our own Language Teams with ArgoUML. Each language teams are actually just
one or several persons that know that language and are eager to work with translating ArgoUML.

The language team has the following responsibilities:

1. All localized strings and resources shall be tranlated into the language.

This is a constant work with keeping up with the changes that will be made to the ArgoUML code since Ar-
goUML is under fast development.

2. The terminology used shall be correct.

This requires work in keeping up with the current literature in the domain of ArgoUML.

3. Help with the improvements on ArgoUML by pin-pointing where ArgoUML needs to be modified to allow for
localization.

As ArgoUML is originally built without localization we still have a big backlog of stuff in the GUI that is not
localizable just by modifying the resource bundles. Each such thing is a Defect and shall be corrected.

4. See that the used libraries also provide their part in that language.

This is mostly GEF since GEF is central both when it comes to the fact that it has localized strings of its own
but also because it handles parts of the localization.

Inside the components

62

This means discussing with the teams developing the underlaying package as to how best to provide the local-
ization for those parts. Either by providing localization for that team to include in the package or by having Ar-
goUML overriding that package in that respect.

5.11.2. Ambitions for localization
Let me (Linus Tolke, May 2002) try to define the levels of ambition for us to try to make it possible to discuss
where we are going.

1. No translation

This is the lowest level of ambition that is a "do nothing"-level. This goes for all languages where we have not
done anything like Swahili, Polish, South African English, ...

2. Tool translation

This is the basic level of ambition that each Language Team should aim for. It means that in ArgoUML all
strings are localized so that ArgoUML is giving a complete appearance of being a tool for that language.

Setting this level of ambition for a language (or creating a team for the language) is pointless if there is no win-
dow system available for the language in questions. I mean, if neither the people working with Windows, Linux
(KDE or Gnome) or java has collected enough interest to do a translation of the basic infrastructure there is no
point in doing so for ArgoUML. (My Windows 2k has 80 supported languages so I would think that this is a
no-issue.)

3. User environment translation

This is the next level of ambition that can be set out by a Language Team that works really well and has plenty
of translation resources left.

It means that not only the ArgoUML tool should be translated but also everything around it that the user sees
i.e. the User Manual, the Quick Guide, the FAQ, the Users' part of the ArgoUML Web site.

Setting this level of ambition for a language is pointless if the problem domain does not exist in that language. I
mean, if the professionals that use UML or other Software Engineering tools, in their every day work don't use
their native language to discuss UML concepts, then there is no use in translating these concepts to their lan-
guage, they will not use the translation because they are more comfortable with the English concepts. Note that
the UML Specification does only exist in English and a natural part of this level of ambition would probably be
to translate that.

4. Development environment translation

Here I mean that everything that the developer of ArgoUML sees shall be translated.

This begins with this Cookbook, then the Developers' part of the ArgoUML web site and also includes the
javadoc comments in the code of ArgoUML and design documentation of included packages such as GEF,
NSUML...

We don't do this in the ArgoUML project.

5.11.3. How do I ...?

Inside the components

63

• ...verify that all translations are up to date?

Run checkstyle. Search for comments on keys.

• ...start a new Language Team?

The Language Teams are loosely defined by the web page of language teams on the Tigris site. As soon as the
language code and names (at least one) are in place the team is created.

From that point it is the Language Teams responsibility to do a good job.

• ...find the languages internationalization code for the language you will add: en, es, en_GB,...

The one you are currently using is shown in the log when ArgoUML starts. Search for lines looking like: Lan-
guage: sh Country: unknown

• ...start the work?

Look at the files in org/argouml/i18n, under argouml/src_new.

Translate all the texts in each of these classes of files.

This is a lot of extremely qualified work including searching well-known litterature on UML and Software Engi-
neering in order to get the correct terms for the domain. Discuss with other UML and Software Engineering pro-
fessionals with the same native language to get it right.

Create the files with the translations and store them in argouml/src_new/org/argouml/i18n. They will
have the names: UMLResourceBundle_language code.java, UMLCognitiveResourceBundle_language
code.java, ActionResourceBundle_language code.java, SettingsResourceBundle_language
code.java, MenuResourceBundle_language code.java, DiagramResourceBundle_language
code.java, TreeResourceBundle_language code.java, and NotationResourceBundle_language
code.java.

Add the language to the JUnit list of tested languages and run the JUnit tests.

The purpose of this is for you to get the simple JUnit tests to work for your language also.

This is in the file argouml/modules/junit/src/org/argouml/util/CheckResourceBundle.java.
Search for the supportedLanguages-array.

Now you have completed the first iteration of the Tool translation ambition. The work will probably be more
maintenance-like from here on.

• ...join an existing Language Team

Discuss with the Language Team on where the team is in its work and what you can do.

• ...add or modify code with localized things?

1. Write your code using the same way of handling strings as the surrounding code.

This means that strings are denoted by "labels" or "tags" and then the resolution of the "tag" is in a
DomainResourceBundle.java-file.

The name for the domain is most often specified in a variable like

protected static final String BUNDLE = Domain;

Inside the components

64

or

protected static final String RESOURCE_BUNDLE = Domain;

in a base class to what you are doing and there is a convenience method in the class
org.argouml.application.api.Argo so normal strings are written

import org.argouml.application.api.*;
...

String localized = Argo.localize(BUNDLE, tag);

2. Add your "tag" and resolution in English in the non-localized DomainResourceBundle.java-file.

How do I choose the tag? Jean-Hugues de Raigniac has made a small investigation as to how this is done in
the java world and found that there is no real consensus on how to do this. He suggests a hierarchical choice
of tags like this:

{"docpane.label.since", "Since"},
{"docpane.label.deprecated", "Deprecated"},
{"docpane.label.see", "See"},

{"stylepane.label.bounds", "Bounds"},
{"stylepane.label.fill", "Fill"},
{"stylepane.label.no-fill", "No Fill"},

3. Contact all the language-teams so that they can update their files.

Notice that if you somewhere change the meaning of a specific localized thing it would be a good idea to use a
new "tag" for the new meaning. This will make it easier for the translation team to spot the modification.

There eledgedly are tools in the java world to spot this kind of changes. Until we have the tools and processes in
place to handle them it is better to rely on this simpler mechanism to guarantee correctness.

5.12. Logging
Purpose - to provide an api for debug log and trace messages.

The purpose of debug log and trace messages is: To provide a mechanism that allows the developer to enable output
of minor events focused on a specific problem area and to follow what is going on inside ArgoUML.

The Logging is located in org.argouml.???

The Logging is a Layer 0 component.

Logging is currently implemented using log4j.

ArgoUML uses the standard log4j [http://jakarta.apache.org/log4j/] logging facility. The following sections deal
with the current implementation in ArgoUML. By default, logging is turned off and only the version information of
all used libraries are shown on the console.

5.12.1. What to Log in ArgoUML

Inside the components

65

http://jakarta.apache.org/log4j/

Logging entries in log4j belong to exactly one level.

• The FATAL level designates very severe error events that will presumably lead the application to abort. Every-
thing known about the reasons for the abortion of the application shall be logged.

• The ERROR level designates error events that might still allow the application to continue running. Everything
known about the reasons for this error condition shall be logged.

• The WARN level designates potentially harmful situations. This is if CG can't find all the information required
and has to make something up.

• The INFO level designates informational messages that highlight the progress of the application at coarse-
grained level. This typically involves creating modules, components, and singletons, loading and saving of files,
imported files, opening and closing files.

• The DEBUG Level designates fine-grained informational events that are most useful to debug an application.
This could be everything happening within the application.

This list is ordered according to the priority of these logging entries i.e. if logging on level WARN is enabled for a
particular class/package, all logging entries that belong to the above levels ERROR and FATAL are logged as well.
For performance reasons, it is advised to do a check before all DEBUG and INFO log4j messages (see
Example 5.2). The purpose of this test is to avoid the creation of the argument.

5.12.2. How to Create Log Entries...
You should not use System.out.println in ArgoUML Java Code. The only exception of this rule is for output in
non-GUI mode like to print the usage message in Main.java.

To make log entries from within your own classes, you just need to follow the three steps below:

1.
2.
3.

Example 5.1. For log4j version 1.2.x

import org.apache.log4j.Logger;
...
public class theClass {
...

private static Logger _cat =
Logger.getLogger(theClass.class.getName());

...

public void anExample() {
_cat.debug("This is a debug message.");
_cat.info("This is a info message.");
_cat.warn("This is a warning.");
_cat.error("This is an error.");
_cat.fatal("This is fatal. The program stops now working...");

}

For performance reasons, a check before the actual logging statement saves the overhead of all the concatenations,
data conversions and temporary objects that would be created otherwise. Even if logging is turned off for DEBUG

Inside the components

66

and/or INFO level.

Example 5.2. Improving on speed/performance

if (_cat.isDebugEnabled()) {
_cat.debug("Entry number: " + i + " is " + entry[i]);

}
if (_cat.isInfoEnabled()) {

_cat.info("Entry number: " + i + " is " + entry[i]);
}

Warning

Since this has a big impact also on the readability, only use it where it is really needed (like places
passed several times per second or hundreds of times for every key the user presses).

For more information go to the log4j homepage at http://jakarta.apache.org/log4j [http://jakarta.apache.org/log4j/].

5.12.2.1. Reasoning around the performance issues

Most of the log statements passed in ArgoUML are passed with logging turned off. This means that the only thing
log4j should do is to determine that logging is off and return. Log4j has a real quick algorithm to determine if log-
ging is on for a certain level so that is not a problem.

The problem is instead explained by noticing the following log statement:

int i;
...

_cat.debug("Entry number: " + i + " is " + entry[i]);

It is quite innocent looking isn't it? Well that is because the java compiler is very helpful when it comes to handling
strings and will convert it to the equivalent of:

StringBuffer sb = new StringBuffer();
sb.append("Entry number: ");
sb.append(i);
sb.append(" is ");
sb.append(entry[i].toString());
_cat.debug(sb.toString());

If the entry[i] is some object with a lot of calculations when toString() is called and the logging statement is passed
often some action needs to be taken. If the toString() methods are simple you are still stuck with the overhead of cre-
ating a StringBuffer (and a String from the sb.toString()-statement.

5.12.3. How to Enable Logging...
log4j uses the command line parameter -Dlog4j.configuration = URL to configure itself where URL points to
the location of your log4j configuration file.

Example 5.3. Various URLs

Inside the components

67

http://jakarta.apache.org/log4j/

org/argouml/resource/filename.lcf

http://localhost/shared/argouml/filename.lcf

file://home/username/filename.lcf

filename.lcf
filename.lcf
filename.lcf

5.12.3.1. ...when running ArgoUML from the command line

There are currently two possibilities of running ArgoUML from the command line:

1.argouml.jar

2.
In the first case, the configuration file is specified directly on the command line, whereas in the latter case this pa-
rameter is specified in the build.xml (which in that case needs to be modified). ArgoUML is then started as usual
with ./build run.

Example 5.4. Command Line for argouml.jar

[localhost:~] billy% java -Dlog4j.configuration=URL -jar argouml.jar

Example 5.5. Modification of build.xml

<!-- === -->
<!-- Run ArgoUML from compiled sources -->
<!-- === -->
<target name="run" depends="compile">

<echo message="--- Executing ${Name} ---"/>
<!-- Uncomment the sysproperty and change the value if you want -->
<java classname="org.argouml.application.Main"

fork="yes"
classpath="${build.dest};${classpath}">
< sysproperty key="log4j.configuration"

value="org/argouml/resource/filename.lcf"></sysproperty>
</java>

</target>

5.12.3.2. ...when running ArgoUML from WebStart

To view the console output, the WebStart user has to set Enable Java Console in the Java WebStart preferences.
In the same dialog, there is also an option to save the Console Output to a file.

Inside the components

68

As you cannot provide any userspecific parameters to a WebStart Application from within WebStart, it is currently
not possible to choose log4j configuration when running ArgoUML from Java Web Start.

5.12.3.3. ...when running ArgoUML from NetBeans

At the time of writing this paragraph, it is not possible to set the logging configuration file on a per project basis in
NetBeans. Instead, the Global Options of [Debbuging and Execution/Execution Types/External Execution/External
Process] need to be changed.

Example 5.6. External Execution Property (Arguments)

-cp {filesystems}{:}{classpath}{:}{library} -Dlog4j.configuration=URL
{classname} {arguments}

5.12.4. How to Customize Logging...
There are some sample configuration files provided in org.argouml.resource. Modify these according to your
needs. Or alternatively, you can try configLog4j [http://www.japhy.de/configLog4j] to assist yourself in creating a
log4j configuration file.

5.12.5. References

•http://jakarta.apache.org/log4j [http://jakarta.apache.org/log4j/]

•http://www.japhy.de/configLog4j [http://www.japhy.de/configLog4j/]

5.13. JRE with utils
Purpose - to provide the infrastructure to run everything.

The JRE is a Layer 0 component. See Section 4.5, “Layer 1 - Description of components”. It is not distributed with
ArgoUML but considered to be a precondition in the same respect as the user's host.

This is a Java3 JRE so swing and awt can be used together with reflection.

5.14. To do items
Purpose - To keep track of the To do items. Items are generated and removed automatically by the critics. They
could also be created by other means.

The To do items are located in org.argouml.?

The To do items is a Layer 1 component. See Section 4.5, “Layer 1 - Description of components”.

5.15. Explorer
Purpose - to provide tree views of the model elements, diagrams and other objects.

Inside the components

69

http://www.japhy.de/configLog4j
http://jakarta.apache.org/log4j/
http://www.japhy.de/configLog4j/

The Explorer will be located in org.argouml.ui.navigator ??.

The Explorer is a Layer 2 component. See Section 4.6, “Layer 2 - Description of components”.

Several tree views are provided by means of Perspectives. Objects showin in the trees are the model elements, dia-
grams and other objects (such as profiles, groupings of model elements etc.).

The Explorer is currently shown in the Explorer Pane - the upper left hand pane of ArgoUML. (See Section 5.9,
“The GUI Framework”.)

There is also a Explorer Configurator dialog, which allows the user to tailor the existing perspectives and create new
perspectives to their needs (although the settings are not persisted).

5.15.1. Details of current implementation
Some of the classes are actually reused by the other tree view, i.e. the todo/critics list.

The Explorer provides some 'history' capability (although this is disabled presently and should problably be factored
out) to navigate back to previously selected model elements.

Currently the Explorer Pane is mixed with the GUI framework and actions in org.argouml.ui. The Explorer is
also dependant on "go rules", which are rules that help identify children nodes for and particular parent. "Go rules"
are mixed with Diagrams and Property panels under org.argouml.uml.diagram.ui and
org.argouml.uml.diagram.diagram.ui.

Explorer was previously called Navigator Tree or Navigator Pane.

5.15.2. Requirements
The Explorer must react to user and application events.

User events include

1. selection of a node, which must notify the other views to make the same selection.
2. right click on a node, which brings up a popup menu.
3. selection of another perspective in the Combox box, which must change the tree model to that perspective.
4. node expansion and collapse.

Application Events include:

1. change of project, the tree must update
2. change in selection in another view, any relevant rows to be highlighted.
3. model changed, the tree must update to reflect additions/deletions and name changes in the model.

5.15.3. Key Classes
The Explorer contains Swing components, and there is currently no abstraction layer (to help implement a IDE plu-
gin for example.

There is a JTree subclass, DisplayTextTree, for the tree, with a TreeModel, Perspective. The Perspective is
made of several 'Go rules', this enables Argo to convert the graph-like structure of a uml model into a tree and it is
easily extensible.

Inside the components

70

There are several different ways of implementing a TreeModel in Swing. ArgoUML already has a model (the
NSUML MModel instance), so we create a class (NavPerspective) that encapsulates the MModel instance and
implements TreeModel (contains methods that enable the JTree to calculate the tree structure). This implementa-
tion does not build/load a tree model on instantiation, rather it provides children nodes for any given parent node
when the user requests a node expansion. The NavPerspective delegates the task of calculating child nodes to the
Go rules, making the tree model very flexible. However, the price for this (at the moment) is slow node expansion
times for large models.

Each node is displayed with a name and an Icon, representing the type of node it is in the UML model. This is done
using the org.argouml.uml.ui.UMLTreeRenderer (for the Icon), and the text is produced in the convertVal-
ueToText(...) method in DisplayTextTree.

Event handling is done in DisplayTextTree and NavigatorPane.

5.15.4. How do I ...?

• ...add another perspective?

• at runtime perspectives can be changed using the NavigatorConfigDialog

• hard code it

Perspectives are build in the NavigatorPane, so you can add your one there. Also create new Go rules that
are subclasses of AbstractGoRule, then register them with the Perspetive instance using addSub-
TreeModel(TreeModel).

• ...improve the PopUp menu?

Look in the NavigatorPane class. The menu is built at runtime in reaction to a mouse event.

Inside the components

71

5.16. Module loader
Purpose - to provide the mechanisms to load (and unload) the Layer 3 and auxiliary modules.

The Module loader will be located in org.argouml.?.

The Module loader is a Layer 2 component. See Section 4.6, “Layer 2 - Description of components”.

Currently the module loader is located in org.argouml.application.modules.ModuleLoader with interfaces
in org.argouml.application.api.

This handles the enabling and disabling of every module.

An idea on how it could work: It is then the modules responsibility to connect and register to the component or com-
ponents it is going to work with using that components Facade or Plugin interface.

For details on how to build a module see Section 6.2, “Modules and PlugIns”.

5.16.1. What the ModuleLoader does
The ModuleLoader is looking for module jars. It actually scans through all jars available in the argo ext dir direc-
tory. See Edit Settings Environment tab. If you turn on logging on the debug level while running ArgoUML you
should be able to see what jar files it finds and what it does with them.

A module jar contains the classes, resources and a manifest file. The manifest file points out the classes to be loaded.
Also notice that the Specification-Title and Vendor must be specified correctly for this to work.

5.17. OCL
Purpose - To allow for editing of strings in the OCL language.

The OCL is located in org.argouml.ocl.

The OCL is a Layer 3 component. See Section 4.7, “Layer 3 - Description of components”.

The OCL editor gui interface is org.argouml.uml.ui.TabConstraints (shown in the bottom right hand panel -
details panel).

org.argouml.ocl.ArgoFacade adapts the tudresden.ocl.gui.OCLEditor for ArgoUML. There are some
other helper classes in org.argouml.ocl, with names beginning with OCL but they are used for other purposes.
Historicaly GEF uses OCL as a kind of template language to convert the uml diagrams to pgml(and back again), it
doesn't have anything to do with ocl constraints in your uml model.

ArgoFacade is reused by GeneratorJava and TabConstraints.

Currently this component is more or less only Dresden OCL Toolkit and adaptation.

Because of a problem with the interpretation of the UML specification and the OCL specification, the implementa-
tion of constraints in ArgoUML is only possible for Classes, Interfaces and Features (Attributes and Operations).
See Issue 1805 [http://argouml.tigris.org/issues/show_bug.cgi?id=1805].

Inside the components

72

http://argouml.tigris.org/issues/show_bug.cgi?id=1805
http://argouml.tigris.org/issues/show_bug.cgi?id=1805

Chapter 6. Extending ArgoUML
This section is not yet updated to discuss layers.

This section explains some general concepts which come in handy, when programming in ArgoUML.

6.1. How do I ...?

• ...get the according NS-UML element for a given FigXXX class?

Each FigXXX implements the method getOwner() which returns the appropriate owner element which is re-
sponsible for this Fig element.

• ...get the according Fig element for a given MModelElement?

for this one needs to iterate through all fig elements and invoke getOwner. Compare the result with the given
MModelElement. Beware that there might be more than one Fig Element per MModelElement.

6.2. Modules and PlugIns
This section is not yet updated to discuss layers.

6.2.1. Differences between modules and plugins
The ArgoUML tool provides a basis for UML design and potentially an executable architecture environment for
other applications. This is solved by clear interfaces between the ArgoUML core and the extensions. Extensions are
called modules and the classes within the modules that attach to ArgoUML core are called plugins.

• Modules

A module is a collection of classes and resource files that can be enabled and disabled in ArgoUML. Currently
this is decided by the modules' availability when ArgoUML starts but in the future it could be made possible to
enable modules from within a running ArgoUML.

This module system is the extension capability to the ArgoUML tool. It will give developers of ArgoUML and
developers of applications running within the ArgoUML architecture the ability to add additional functionality to
the ArgoUML environment without modifying the basic ArgoUML tool. This flexibility should encourage addi-
tional open source and/or commercial involvement with the open source UML tool.

The module extensions will load when ArgoUML starts. When the modules are loaded they have the capability
of attaching to internal ArgoUML architectural elements. Once the plugins are attached, the plugins will receive
calls at the right moment and can perform the correct action at that point.

Modules can be internal and external. The only difference is that the internal modules are part of the ar-
gouml.jar and the external are delivered as separate jar-files.

• Plugins

A plug-in in ArgoUML is a module that implements the org.argouml.application.api.Pluggable inter-
face.

73

The Pluggable interface acts as a passive dynamic component, i.e. it provides methods to simplify the attach-
ing of calls at the correct places. There are several Pluggable interfaces that each simplify the addition of one
kind of object. Examples PluggableMenu, PluggableNotation.

One Module can implement several Pluggable interfaces.

This is essentially and implementation of the Dynamic Linkage pattern as described in Patterns in Java Volume 1 by
Mark Grand ISBN 0-471-25839-3. The whole of ArgoUML Core is the Environment, the classes inheriting Plug-
gable are the AbstractLoadableClass.

6.2.2. Modules

6.2.2.1. Module Architecture

The controlling class of the module/plugin extension is org.argouml.application.modules.ModuleLoader.
ModuleLoader is a singleton created in the ArgoUML main initialization routine.

ModuleLoader will:

• read in the property file

• for each of the classes found

1. create the specified classes

2. call initializeModule on this class

3. place the class object into the internal list of modules

6.2.2.2. The ArgoModule interface

Each class must derive from the ArgoModule interface. This interface provides the following methods:

• String getModuleName (void);
String getModuleDescription (void);
String getModuleVersion (void);
String getModuleAuthor (void);

provides information about the ArgoUML module.

• boolean initializeModule (void);

initializeModule is called when the class loader has created the module, and before it is added into the mod-
ules list. initializeModule should initialize any required data and/or attach itself as a listener to ArgoUML
actions. initializeModule for all modules is invoked after the rest of ArgoUML has been initialized and
loaded. Any menu modifications or system level resources should already be available when the module initial-
ization process is called.

initializeModule should return true if the initialization is successful (or if no initialization is necessary).

The only available mechanism for handling dependencies between modules is the order in which they are read

Extending ArgoUML

74

from the file.

• void shutdownModule (void);

The shutdownModule method is called when the module is removed. It provides each module the capability to
clean up or save any required information before being cleared from memory.

• void setModuleEnabled (boolean tf);
boolean isModuleEnabled (void);

Reserved for future implementation.

• Vector getModulePopUpActions (void);

Reserved for future implementation.

The plan is to have this called for each module when the module should add its entries in PopUpActions.

• String getModuleKey (void);

Returns a string that identifies the module.

6.2.2.3. Using Modules

When modules are used they can't be distinguished from the rest of the ArgoUML environment.

6.2.2.4. How do I ...?

• ...create a module?

• ...tell when a module is loaded?

6.2.3. Plugins

6.2.3.1. Plugin Architecture

Each class must derive from the Pluggable interface. In addition to the methods declared in ArgoModule, which
Pluggable extends (see Section 6.2.2.2, “The ArgoModule interface”), the interface provides the following
method:

• boolean inContext (Object[] context);

inContext allows a plug-in to decide if it is available under a specific context.

One example of a plugin with multiple criteria is the PluggableMenu. PluggableMenu requires the first context to be
a JMenuItem which wants the PluggableMenu attached to as the context, so that it can determine that it would attach
to a menu. The second context is an internal (non-localized) description of the menu such as "File" or "View" so that
the plugin can further decide.

Extending ArgoUML

75

6.2.3.2. How do I ...?

• ...create a pluggable settings tab?

...

• ...create a pluggable menu item?

Look at the modules junit and menutest for examples of how to add to menus using the PluggableMenu inter-
face.

The implementation of inContext() that you provide should be similar to:

public boolean inContext(Object[] o) {
if (o.length < 2) return false;
if ((o[0] instanceof JMenuItem) &&

("Create Diagrams".equals(o[1]))) {
return true;

}
return false;

}

The string "Create Diagrams" is a non-localized key string passed in ProjectLoader at about line 440 in the state-
ment

appendPluggableMenus(_createDiagrams, "Create Diagrams");

There is no restriction on a single class implementing multiple plugins - quite the contrary, that is one of the rea-
sons for providing the generic Pluggable interface that PluggableThings extend.

• ...create a pluggable notation?

...

• ...create a pluggable diagram?

Let's say we want to enable a new diagram type as a plug-in. We use the interface PluggableDiagram that uses a
method that returns an JMenuItem object:

public JMenuItem getDiagramMenuItem();

The returned menu item will be added to the diagrams menu to allow to open a new diagram of this type.

In this example we do this by creating a helper class in the package org.argouml.application.helpers that imple-
ments the created plug-in interface PluggableDiagram, and call it DiagramHelper:

public abstract class DiagramHelper extends ArgoDiagram
implements PluggableDiagram {

/** Default localization key for diagrams
*/

public final static String DIAGRAM_BUNDLE = "DiagramType";

/** String naming the resource bundle to use for localization.
*/

protected String _bundle = "";

public DiagramHelper() {

Extending ArgoUML

76

_bundle = getDiagramResourceBundleKey();
}

public void setModuleEnabled(boolean v) { }

public boolean initializeModule() { return true; }

public boolean inContext(Object[] o) { return true; }

public boolean isModuleEnabled() { return true; }

public Vector getModulePopUpActions(Vector v, Object o) { return null; }

public boolean shutdownModule() { return true; }

public JMenuItem getDiagramMenuItem()
{

return new JMenuItem(Argo.localize(_bundle,"diagram_type"));
}

public String getDiagramResourceBundleKey() {
return DIAGRAM_BUNDLE;

}
}

The extension of ArgoDiagram is specific to this example; the plug-in will provide a new ArgoUML diagram.

Important

Don't forget to do the localization stuff, because the plug-in might be used in all languages Ar-
goUML offers!

• ...do the localization stuff (not plug-in specific, but important)?

...

• ...create a pluggable resource bundle?

...

• ...create a new pluggable type?

1. Create the plug-ins interface

In the package org.argouml.application.api, create an interface that extends Pluggable (in the same pack-
age). The class name must begin with 'Pluggable'.

Note

One of the main purposes of a plugin is to provide the capability to add an externally defined
class that will be used by ArgoUML in the same way as a similar internal class. This means
that modifications are needed all over ArgoUML in order to call the pluggable interface.
Therefore this must be done in ArgoUML itself and cannot be done in any module.

It now inherits from ArgoModule the methods

Extending ArgoUML

77

public boolean initializeModule();

public boolean shutdownModule();

public void setModuleEnabled(boolean tf);

public boolean isModuleEnabled();

public String getModuleName();

public String getModuleDescription();

public String getModuleVersion();

public String getModuleAuthor();

public Vector getModulePopUpActions(Vector popUpActions, Object context);

public String getModuleKey();

and from Pluggable the methods

public boolean inContext(Object[] context);

and thus provides the basic mechanism that plug-ins need.

2. Decide in what context this is to be enabled and add calls there

It is useful for those plugins which actually use context to provide a helper method
Object[] buildContext (classtype1 parameter1, classtype2 parameter2);
which will serve two purposes.

First, it will provide a simple way of creating the Object[] parameter.

Second, it helps to document the context parameters within the class itself.

Again using PluggableMenu as an example, it contains the function

public Object[] buildContext(JMenuItem parentMenuItem, String menuType);

which is used as follows:

if (module.inContext(module.buildContext(_help, "Help"))) {
_help.add(module.getMenuItem(_help, "Help"));

}

6.2.4. Tip for creating new modules (from Florent de Lamotte)
Florent wrote a small tutorial for creating modules. It can be found on the ArgoPNO website
[http://argopno.tigris.org/documentation/argouml.html].

Extending ArgoUML

78

http://argopno.tigris.org/documentation/argouml.html
http://argopno.tigris.org/documentation/argouml.html

6.3. How are modules organized in in the java code
This section is not yet updated to discuss layers.

The previous section describes how modules and plugins are connected on the java level totally independant of how
they are actually linked into ArgoUML.

Within the ArgoUML project some parts of the code are for different reasons developed and kept separate from the
main ArgoUML source code. These parts can be modules or plugins on the java level but on the source code level
they are called modules. This section describes how they are organized and how you create such source-code mod-
ules.

6.3.1. How do I ...?

• ...create a new source-code module.

Suggestion, copy from the junit module as described here.

Make a copy of argouml/modules/junit into argouml/modules/yourname.

Remove junit.jar from argouml/modules/yourname/lib.

Add any jar you need to argouml/modules/yourname/lib.

Edit argouml/modules/yourname/module.properties

Edit references to junit.jar in argouml/modules/yourname/build.xml to any new jars you need.

Edit argouml/modules/yourname/src/org/manifest.mf.

Reorganize the source files as necessary. Something like org.argouml.yourname as the package root.

• ...get Argo to use a plugin?

Once you've created a jar file with a plugin in it, you need to make sure that Argo can find the jar to be able to
execute it.

If you are using a "standard" ArgoUML source structure, then you should be able to execute build install or ant
install in the source directory of the plugin. This will copy the jar file to the proper directory in the main Ar-
goUML build target. You can test your plugin by running build run in the src_new directory.

If you need to install the jar "the hard way", try the following steps.

•
•Edit->SettingsEnvironment${argo.ext.dir}

•
•

Extending ArgoUML

79

Chapter 7. Organization of ArgoUML
documentation
Linus Tolke

This chapter contains written down ideas on what goes into what part of the documentation. These ideas are formu-
lated by Linus Tolke.

There are seven significantly different bits of documentation in the ArgoUML project. By documentation I mean
some information of the product that is developed alongside the product and that has a persistant value.

1. The code, variablenames, class names

2. The javadoc

3. The cookbook

4. The web site in CVS

5. The manual and quick-guide

6. Help texts within the running ArgoUML

7. The FAQ

These different bits have all different purpose and audience and the purpose of this chapter is to try to define that.

Table 7.1. Bits of documentation

Bit Audience Main purpose Contains

The code

1. Other developers
that will maintain
and improve on the
code.

2. The compiler.

Implement ArgoUML in
a maintainable and un-
derstandable way.

See Chapter 9, Standards
for coding in ArgoUML
for more information.

The javadoc Developers writing code
that communicates or in
other ways interact with
this class.

Make it easy to see what
the functions of every
class are and how to use
them.

Description of the func-
tions of all classes, all
public and protected
methods, variables, and
constants.

The cookbook Developers writing code,
maintaining the docu-
mentation or the web
site.

Make it easy to learn
how ArgoUML works
and how to extend it. Be
a collection of knowl-
edge around how every-
thing is set up. Be a store
of the agreed solution

Instructions on how to
add new functions and
behavior. Instructions on
how to do the chores
around maintenance
(build a release, publish
a release, build the docu-

80

Bit Audience Main purpose Contains

around fundamental de-
sign decisions i.e. design
decisions that are so big
that it is meaningless to
store them in the
javadoc. Be a collection
of knowledge around
how and why the project
makes certain decisions.

mentation part of the re-
lease, test ArgoUML,
test the documentation,
...). Agreed project rules
like what level of quality
is aimed for and descrip-
tion of processes that
achieves that level.

The web site in CVS Everyone, i.e. developers
in the project, users of
the product, people
searching for UML tools
for the purpose of trying,
testing, evaluating, and
using the tools.

Be an entry point for the
other parts of the docu-
mentation. Be the main
download area for the
ArgoUML product. Be
the central point of the
ArgoUML user commu-
nity. Be the central point
of the ArgoUML devel-
opment project.

References to all the
other parts of the docu-
mentation. Current
project information like
the contents of the up-
coming releases and the
plan for the nearest fu-
ture. Easy access illustra-
tion for users to be.
Some illustrations that
do not work well in the
other parts of the docu-
mentation. This is done
as a complement to the
other parts. Examples,
tours.

The manual and quick-
guide

Users of ArgoUML. Per-
sons that want to evalu-
ate ArgoUML for the
purpose of starting to use
it. Persons that are train-
ing to use UML and Ar-
goUML.

Describe how ArgoUML
is installed and used. De-
scribe how UML is used
with ArgoUML.

Complete installation in-
structions for all sup-
ported installation
schemes. Complete de-
scription on how to use
ArgoUML in your
project. Complete refer-
ence on how to use Ar-
goUML.

Help texts within the
running ArgoUML

Users of ArgoUML. Give a quick help with a
specific feature or but-
ton. Give short explana-
tions of all commands
and actions.

A complete set of quick
help and explanations.

The FAQ Users of ArgoUML.
Members of the users
mailing list.

Cope for shortcomings in
ArgoUML, the help text,
the Manual and quick-
guide and the web site.

A list of issues that are
not addressed in the
other part of the docu-
mentation. It is written in

questions-an-
swers-format and the
contents is governed by
the issues discussed re-
cently in the user com-
munity.

Organization of ArgoUML documentation

81

Chapter 8. CVS in the ArgoUML project
8.1. How to work against the CVS repository

The CVS repository is a shared resource in the project. This means that once you commit your stuff it has the poten-
tial of getting in the way of everybody else's work in the project. For this reason special considerations are needed.
This chapter describes the how you should do to limit the risk of causing someone else problems.

When you have done all the work, and all the testing and are about to commit something please do:

1. Compile argouml (build run or build package).

This goes for all changes, even changes in comments.

2. If your changes include removing files make a clean compile. (build clean followed by build run or build
package).

3. If your changes include removing public or protected operations and attributes make a clean compile (build
clean followed by build run or build package).

The build mechanism does not yet have reliable dependancy checker enabled so this is the best way to make
sure.

4. If your changes include adding abstract operations make a clean compile (build clean followed by build run
or build package).

The build mechanism does not yet have reliable dependancy checker enabled so this is the best way to make
sure.

5. If you have changed anything that has the potential of affecting something in a totally different part of the code
like internal data structure, handling of exceptions, run all JUnit test cases and start the tool and do some more
testing.

If in doubt, run all JUnit test cases.

6. Do a cvs update in src_new to make sure that you do not forget to commit any file and to make sure that no
one else has commited anything in the mean time.

Remember that if you do not commit all the files from src_new that cvs update found (marked A, R, and M) in
the same commit then you would better remove those file from the checked out copy, update to get the original
version from the repository and start over with the compilation.

If someone else have updated a file (cvs update shown U, or no longer pertinent) please compile again.

7. Commit all files that are included in a change at the same time.

This reduces the chance of anyone getting an inconsistant set of files by updating in the middle of your commit.

8. Commit often.

Remember that the repository is also a backup copy of your work.

If your change is so big and involves so many files that you would like to commit it for backup reasons but it
doesn't compile or doesn't work or for some other reason should not confuse the main branch in cvs, create a
branch to work in. Then when your work is complete, you merge the branch into the main branch.

82

Rationale: These ground rules is for the purpose of not stopping or hindering the work for anyone. Remember that
there might be several developers working with different agendas and different efficiency (slower or faster) and the
commits is the melting point of this.

Perspective: If this will take you an extra two minutes before every commit remember that if you commit something
that will not work this will take everyone else (guess 10 persons) the extra time of looking at the compilation error
or see the tool crash (1 minute), wonder why (1 minute), search for the error in his own changes (3 minutes), search
for the error somewhere else (1 minute), glance at the mailing list to see if someone else has noticed this and send a
mail (1 minute), wait for some response (1 hour wait), update (1 minute), compile (1 minute). This amounts to 10
hours wait and 1,5 hours extra work for all developers in the project.

8.2. Creating and using branches
We use the following standards in ArgoUML:

• Released versions get the tag VERSION_X_X_X

• Developers working on code, with an unspecified due date are requested to put the code into a branch if it is
deemed useful that the code can be shared. Developer branches follow the scheme:
work_explanation_owner, where

• work is a literal

• explanation is something like javahelp, propertypanel, cppcodegeneration

• owner is a self explaining code for the owner of the branch, e.g. tlach (Thierry Lach) or mklink (Markus
Klink).

Merging branches together is causing some work. So please use them sparingly and announce your intentions before
on the mailing list.

8.2.1. How do I ...?

• ...commit stuff?

You have made, the change, tested it and are satisfied with it.

Do a cvs update -d and see that only the files you have changed are marked as modified. If files are updated or
patched by this command, please recompile and test again.

Do a cvs diff on each of the files and verify that only the lines you have changed are modified.

Do a single cvs commit for all the files included in the change. This reduces the risk that someone else updates
in the middle of your work and also reduces the amount of notifications of commits sent out. Include changes to
documentation and JUnit tests if applicable.

Don't forget to update the corresponding issue (if any) in Issuezilla i.e. set it to RESOLVED/FIXED.

• ...get my update or patch into CVS if I don't have CVS write rights?

Contact any of the active developers on the list and send them your updates. They're very nice about it the first
few times.

CVS in the ArgoUML project

83

Supposing that you have checked out CVS as guest, then after you have mailed a diff or file to an active devel-
oper, and he has entered it in CVS your checked out copy contains the change but is not in sync and the next cvs
update will result in an merge error. The simplest way to solve this is to do remove all files modified by you be-
fore doing the cvs update. The cvs update will restore all the files from the CVS repository and you can start
with the next update.

• ...get a list of the currently active working branches?

You can't from CVS. You need to follow the announcements of created and discontinued branches on the mail-
ing list to know what branches are interesting.

• ...create a branch for my work on xxxyyy and start work on that branch?

This assumes that you have a checked out copy of argouml

1. Change directory to the directory where argouml is checked out.

2. Enter the argouml directory: cd argouml or chdir argouml

3. Create your branch: cvs tag -b work_xxxyyy_myname

myname is is a self explaining code for you (your Tigris login).

4. Change your checked out copy to be on the branch: cvs update -r work_xxxyyy_myname

5. Do your work!

6. Check in your changes in the branch: cvs commit -m'Blablabla' [file]

7. Continue working and checking in!

• ...move my work from my working branch into the release?

This is done when your work with the feature xxxyyy is finished and you have decided/received clearance to en-
ter it in the main branch.

1. Change directory to the directory where argouml is checked out.

If you are just working on one feature at a time this is the place where you have a checked out copy on the
branch in question. If not, this could be any checked out copy of the source that does not contain any un-
commited changes.

2. Enter the argouml directory: cd argouml or chdir argouml

3. Move the checked out copy that you are working on to the main branch: cvs update -A

4. Merge the changes from the branch into your checked out copy: cvs update -j work_xxxyyy_myname

5. Compile and run all your tests again.

This is to verify that the merge was all right, no one else had done any changes that in the meantime that
has in any way modified the work made in the branch.

6. Commit your changes in the main branch: cvs commit -m'xxxyyy entered in the main branch

CVS in the ArgoUML project

84

7. Discontinue your branch!

From this point on it is important that you do not reuse your branch for any work. Only check it out for the
purpose of examining how things were in the branch. Make sure that all other developers that have been
looking at your branch also knows that it is discontinued.

• ...look at someone else's work in a branch?

You need the name of the branch, i.e. the work_xxxyyy_hisname.

There are two alternatives:

• Check out argouml or part of it on that branch: cvs co -r work_xxxyyy_hisname argouml

• Update your copy of argouml to be on that branch: cvs update -r work_xxxyyy_hisname

Make sure that your copy does not have any uncommited code or else your uncommited code will be present
in your checked out copy on the branch. This could, on the other hand, be useful if you want to test if your
uncommited code works also with the additions on that branch.

8.3. Other CVS comments
This is included in the cookbook because it seems that there are persons within the project that don't have the in-
depth knowledge of CVS nor the interest or need to acquire it. For that reason some simple questions are answered
here for use of CVS in the project.

• Why do I get double lines? Why do I get ^M at the end of each line? Why do I get the whole checked out file on
a single line?

CVS is line oriented. It stores in the repository the concept of a new line after each line. It is the CVS clients (the
program you have installed on you machine) responsibility to convert the conceptual new line to the correct new
line character on your system.

Note

This is only so for normal files (not marked with -kb in cvs).

If files are moved from one system to another or for that matter checked out on one system and used and edited
on another (NFS, SMB, ...) this is not done correctly. There could also be CVS clients out there, not doing this
correctly.

Systems known to the author (Linus Tolke) are Unix uses LF, DOS/Windows uses CR-LF, Mac uses CR.

Most of the time this really doesn't matter because the editors and java compiler on all systems are very forgiv-
ing.

There are however some cases when this is cumbersome.

1. When an editor (or developer) decides to "fix-it".

CVS in the ArgoUML project

85

This means that the editor (or the developer) goes through the file and removes ^M on every line or some-
thing else that touches every line in the file.

This is a problem because the subsequent commit will also touch every line in the file making that file un-
mergeable. This means that every developer that had it modified in a branch or in a checked out copy will
have no help from cvs when doing his merging.

Remember that you never know what other developers are working with.

This is fixed by not doing any such fixes and doing a cvs diff before each check in so that your editor has
not done this for you.

2. When cvs clients and file systems are not in sync

This could result in one of several things. Either each line gets an extra empty line when commited, or the
whole file turns out to be on the same line.

This is the case on several files in the repository at the moment (August 2002, Linus) and can be cumber-
some for the developers.

These cases should be fixed because the files are no longer readable. For the first case, removing every
other line (the empty ones) can in some cases be done without cvs having problems with merging later on.
For the second case, with a single long line, this will be very problematic so even though it might cause
problems for other developers it is better to do this as soon as possible.

When this is fixed, let the fix be the only thing done in that commit.

To avoid this in the future, always do a cvs diff before doing your change to make sure that only the lines
that you have actually modified will be changed by cvs and not the whole file.

Files that are binary that shall be stored in cvs shall be marked as binary. They are marked with the admin flag -
kb. This means that the line ending conversion mechanism will not be applied on those files and they will be ex-
actly the same on all systems. This is good for jars, gifs, and other such files.

8.4. CVS repository contents
This chapter describes what parts of the CVS repository is used for what purpose. This is a rather terse collection.
Further details on specific parts can sometimes be found elsewhere in this document.

This chapter is organized as the CVS repository itself and everything is in alphabetical order.

• build

Directory where the built things end up.

There is actually no real need to keep this in CVS. It is there just as a place holder.

• conf

Not used. Empty.

• documentation

Directory where the source of the documentation is.

CVS in the ArgoUML project

86

• cookbook

XML-source code for this cookbook.

• docbook-setup

XML Tools and configuration files used for the formatting of the documentation from the XML-source to
HTML and PDF.

• images

Pictures for all documents are collected here.

• javahelp

Not used. Empty.

• manual

XML-source code for the User Manual.

• quick-guide

XML-source code for the Quick Guide.

• extra

Not used. Empty.

• lib

A set of jar files.

This directory contains the jar files of products used by the ArgoUML (such as log4j, nsuml).

These are distributed with argouml and have licenses that allow this. For clarity the README files and licenses
and other distribution details of each used jar will also be stored in this directory. (Quick summary: BSD Li-
cense, Apache License, LGPL are OK, GPL is not.) Don't forget to arrange for the modules version and license
information to appear when starting ArgoUML and in the About box.

Take care also to make the versions of these libraries explicit, so as to allow people building from sources to fig-
ure out exact dependencies. Easiest way is to rename the files to include versioning informations, the same way
as shared libraries in Unix world: foo-x.y.z.jar, bar-x.y.z.jar, etc...

• modules

Contains source level modules of ArgoUML.

Source level modules are modules that can be compiled and deployed independantly (after) the rest of Ar-
goUML. Each module is located in its own subdirectory. This is the list as it looks now (March 2003).

• jscheme

Module that allows to extend ArgoUML using scheme.

• junit

CVS in the ArgoUML project

87

Old directory with JUnit tests. These should be migrated to and all new JUnit tests should be created in the
directory tests.

• menutest

Test module that tests the plugin interface for the menus.

• php

Language generating, Notation and reverse engineering for PHP.

• cpp

Code generation for C++.

• csharp

Code generation for C#.

• src

Source code.

This will contain one directory for each component within ArgoUML. They will all compile and be tested with
controlled dependencies to other components.

• src_new

All source code for ArgoUML including pictures of icons.

• tests

All source code for JUnit tests of everything that is in the src_new directory. See Section 2.4, “The JUnit test
cases”.

• tools

All tools used during the build process.

Tools also have the readme files, licenses and other distribution files stored in this directory in much the same
way as the libraries in lib. However the requirement on the license is different. The tools are never distributed
with argouml but merely used in the development of argouml so it is enough to have a license that does not al-
low distribution. (Quick summary: BSD License, Apache license, LGPL, GPL, Freeware are OK.)

• www

This is all the static contents of the web site. See Section 2.3.2.1, “How the ArgoUML web site works”.

CVS in the ArgoUML project

88

Chapter 9. Standards for coding in
ArgoUML

The coding style for ArgoUML is the following

• Each file starts with some header info: file, version info, copyright notice, classes in this file (if more than one),
original author (if you want). Like this:

// Id
// Copyright (c) 2003 The Regents of the University of California. All
// ...

// Classes: blabla, blabla (all classes of interest in this file)
// Original Author: who ever

• All instance variables are private and their names begin with an underscore. If the variable should be accessible
then add public or protected accessor methods with the same name as the variable without the underscore with
"get" or "set" prepended. For example: _lineWidth, setLineWidth(), and getLineWidth().

• In general, write short code. If a method will fit comfortably on one line, then put it on one line.

• Use javadoc for each class, instance variable, and method. In general do not put comments in the body of a
method. If you are doing something complex enough to need a comment, consider breaking it out into its own
private commented method.

• Indicate places of future modifications with

// TODO: reason

• Name all classes with an initial uppercase letter, and all variables and methods with a lowercase one. I use the
allTogetherWithCaps naming style. Name static variables with an underscore and an inital capital letter, e.g.,
_PossibleLanguages. Name constants with all upper case and underscores, e.g., GRIP_MARGIN.

• To emphasize clusters of classes we are using what we call the binomial naming style (I am sure others have
thought of this also): The root class of the cluster has a short name (e.g., Layer), other members of the cluster use
that name as a prefix (e.g., LayerGrid). This makes many of the class name longer than they might be normally
(e.g., Grid would be shorter). But this provides a lot of context without having to look at a class inheritance dia-
gram. It is also very nice when you have to look at an alphabetical list of classes. I try to name class clusters so
that they are not lexigraphically close others (e.g., the Net cluster used to be named Model, but that lexigraphi-
cally overlapped the Mode cluster).

• Four spaces should be used as the unit of indentation. Tabs must be set exactly every 8 spaces (not 4) and repre-
sent 2 indents.

This is exactly as it is stated in the Sun Code Conventions. It is here just for the emphasis.

• If possible use lines shorter than 80 charaters wide.

This is exactly as it is stated in the Sun Code Conventions. It is here just for the emphasis.

• Open brace on same line (at end). Both for if/while/for and for class and functions definitions.

This is exactly as it is stated in the Sun Code Conventions. It is here just for the emphasis.

89

• For everything else follow Code Conventions for the Java Programming Language
[http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html]!

9.1. Settings for Eclipse
These style guides correspond to the following settings in Eclipse:

• In Preferences => Java => Code Formatter => New Lines

None of the boxes "Insert a new line before opening brace", "Insert new lines in control statements", "Clear all
blank lines", "Insert new line between 'else if'", or "Insert a new line inside an empty block" are checked.

• In Preferences => Java => Code Formatter => Line Splitting

Maximum line length is 80.

• In Preferences => Java => Code Formatter => Style

None of the boxes "Compact assignment" or "Indentation is represented by a tab" are checked.

Number of spaces representing a tab: 4. This should probably be read as Number of spaces representing a level
of indentation.

• In Preferences => Java => Java Editor => Appearance

Displayed tab width: 8

"Insert space for tabs (see Formatting preferences)" checked. There seems to be no way of having tabs set at
width 8 and the indentation level set at 4 at the same time so we must let Eclipse generate code without tabs to
obey the Sun Coding standard.

9.2. Settings for NetBeans
These style guides correspond to the following settings in NetBeans:

• In (Tools =>) Options => Editing => Editor Settings => Java Editor

Tab Size = 8

• In (Tools =>) Options => Editing => Indentation Engines => Java Indentation Engine

Add Newline Before Brace: False, Add Space Before Parenthesis: False, Expand Tabs to Spaces: False, Number
of Spaces per Tab: 4 (Should probably be read as Number of Spaces per indentation level).

9.3. Settings for Emacs
These style guides correspond to the default java settings in Emacs:

("java"
(c-basic-offset . 4)
(c-comment-only-line-offset 0 . 0)

Standards for coding in ArgoUML

90

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

(c-offsets-alist
(inline-open . 0)
(topmost-intro-cont . +)
(statement-block-intro . +)
(knr-argdecl-intro . 5)
(substatement-open . +)
(label . +)
(statement-case-open . +)
(statement-cont . +)
(arglist-intro . c-lineup-arglist-intro-after-paren)
(arglist-close . c-lineup-arglist)
(access-label . 0)
(inher-cont . c-lineup-java-inher)
(func-decl-cont . c-lineup-java-throws)))

Standards for coding in ArgoUML

91

Chapter 10. Further Reading
10.1. Jason Robbins Dissertation

Cognitive Support Features for Software Development Tools

The dissertation of Jason Robbins is a MUST READ for everyone concerned about ArgoUML. Be careful though,
since it is based on an old version of ArgoUML, but many of the concepts remain intact.

10.1.1. Abstract
Software design is a cognitively challenging task. Most software design tools provide support for editing, viewing,
storing, sharing, and transforming designs, but lack support for the essential and difficult cognitive tasks facing de-
signers. These cognitive tasks include decision making, decision ordering, and task-specific design understanding.
To date, software design tools have not included features that specifically address key cognitive needs of designers,
in part, because there has been no practical method for developing and evaluating these features.

This dissertation contributes a practical description of several cognitive theories relevant to software design, a
method for devising cognitive support features based on these theories, a basket of cognitive support features that
are demonstrated in the context of a usable software design tool called ArgoUML, and a reusable infrastructure for
building similar features into other design tools. ArgoUML is an object-oriented design tool that includes several
novel features that address the identified cognitive needs of software designers. Each feature is explained with re-
spect to the cognitive theories that inspired it and the set of features is evaluated with a combination of heuristic and
empirical techniques.

10.1.2. Where to find it
LINK: Robbins Dissertation [http://argouml.tigris.org/docs/robbins_dissertation/]

10.2. Martin Skinners Dissertation
Enhancing an UML Modelling Tool with Context-Based Constraints for Components

10.2.1. Abstract
Noch vor der Erstellung eines detaillierten Entwurfs hilft ein Spezifikationsmodell eines komponenten-basierten
Systems dabei, Probleme so früh im Entwicklungsprozess wie möglich zu entdecken. Die Sprache CCL
('Component Constraint Language') wurde bei CIS entwickelt und erlaubt den Entwickler 'Contextbased Constraints'
dem Spezifikationsmodell hinzuzufügen. Dadurch entsteht ein Modell, das über die Beschreibung der statische
Struktur des Systems hinausgeht. Zur Zeit existiert allerdings kein Werkzeug, dass das Komponentenspezifikations-
modell in den Entwicklungsprozess integriert. Ziel dieser Diplomarbeit war der Entwurf eines solchen Werkzeugs,
um die Philosophie des Continuous Software Engineering (CSE) zu unterstützten.

Before starting a detailed design, a specification model of the component-based system assists the software devel-
oper in early problem detection as soon as possible in the development process. The Component Constraint Lan-
guage (CCL) developed at CIS enables the developer to add context-based constraints (CoCons) to a component
specification model. This produces a model which goes beyond the simple description of the system's static struc-
ture. At this time, there is no tool to integrate the component specification model into the development process. The
goal of this master's thesis was to design such a tool, thereby supporting the Continuous Software Engineering
(CSE) philosophy.

10.2.2. Where to find it

92

http://argouml.tigris.org/docs/robbins_dissertation/
http://argouml.tigris.org/docs/robbins_dissertation/

LINK: Martin Skinners dissertation [http://www.cocons.org/publications/CCL_plugin_for_ArgoUML.pdf]

Further Reading

93

Chapter 11. Processes for the ArgoUML
project

This chapter contains processes used when working with the ArgoUML project.

These processes are provided with the hope of being helpful for the members of the project and if they feel too com-
plicated, ambitious or overworked, please raise the issue of simplifying them on the developers' mailing list
[mailto:dev@argouml.tigris.org].

11.1. The big picture for Issues
Here is the big picture of the life of an Issue.

94

mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org

11.2. Attributes of an issue
This is what the different attributes mean and how they are used in the ArgoUML project. This is to be read as an
addendum to the Tigris definition of the resolutions
[http://argouml.tigris.org/project/www/docs/issue_lifecycle.html] and for that reason it is not a complete list.

11.2.1. Priorities
The priorities are used in the following manner in ArgoUML:

Processes for the ArgoUML project

95

http://argouml.tigris.org/project/www/docs/issue_lifecycle.html
http://argouml.tigris.org/project/www/docs/issue_lifecycle.html
http://argouml.tigris.org/project/www/docs/issue_lifecycle.html
http://argouml.tigris.org/project/www/docs/issue_lifecycle.html
http://argouml.tigris.org/project/www/docs/issue_lifecycle.html

• P1 - Fatal error

ArgoUML cannot start. Crashes program, jvm or computer.

• P2 - Serious error

Information lost.

• P3 - Not so serious error

Functions not working. Strange behavior. Exceptions logged.

• P4 - Confusing behavior

Incorrect help texts and documentation. Inconsistant behavior. UI not updated. Incorrect javadoc.

• P5 - Small problems

Spelling errors. Ugly icons. Excessive logging. Missing javadoc.

11.2.2. Resolutions

• LATER and REMIND

Not used.

• WORKSFORME

This means that it works in a released version of ArgoUML. State the version in the comment.

If the version stated by the reporter in the issue is not the same as the version in the comment then this probably
means that problem was fixed in some release without anyone noticing that this problem was fixed.

11.3. Roles Of The Workers
The roles described below are per issue, i.e. for every issue, there is at least a reporter, a resolver and a verifier.
Hence, each person involved in issues for the ArgoUML project can - at the same time - have different roles, and
consequently, has issues to report, issues to close, issues to resolve, and issues to verify.

11.3.1. The Reporter
The Reporter is the person who enters the issue in Issuezilla.

Skills: The reporter is an ArgoUML user, should not need any knowledge of what the ArgoUML project is actually
doing.

Responsibilities:

• Report an issue

The address to enter new issues is: http://argouml.tigris.org/issues/enter_bug.cgi
[http://argouml.tigris.org/issues/enter_bug.cgi]. For entering new issues, registering (as described in 1.3) is not

Processes for the ArgoUML project

96

http://argouml.tigris.org/issues/enter_bug.cgi

required.

• Answer clarification requests

Occasionally, the developers of ArgoUML need to request the Reporter more information, to be able to solve the
issue correctly. Another way of putting it is to say that if the issue was reported without some vital information
the Reporter has some more work to do.

• Close the issue

This applies to an issue that is in verified state only. At the end of processing the issue, the reporter has the final
word: he can check the result, and if he agrees with the solution, close the issue himself. Closing an issue re-
quires at least "observer" role in the ArgoUML project.

• Reopen the issue

This applies to an issue that is in verified state only. The reporter has the final word: he can check the result, and
when he does not agree that the solution is correct, he can reopen the issue himself. Reopening an issue requires
at least "observer" role in the ArgoUML project.

11.3.2. The Resolver
The Resolver is the software developer who attempts to resolve the issue. Doing so requires at least "observer" role.
The "developer" role is only needed to commit things into CVS (e.g. submit changed Java code, scripts or documen-
tation).

Remark: Someone who does not have the developer role, but solves the issue and convinces someone else to commit
the solution, is still the Resolver even though he cannot commit things into CVS.

The goal of the Resolver is to progress the issue to the status of "Resolved". The resolver may be the same person as
the reporter.

Responsibilities:

• Decide usefulness (if this issue is really a bug or enhancement and if it is worth solving)

The Resolver has to decide if solving the issue is really a useful improvement for ArgoUML. The Reporter of
the issue may very well be mistaken in entering a bug-issue for what is in fact a feature, or entering an enhance-
ment-issue which is not really an enhancement. Another thing that could be is a bug that appears in very excep-
tional circumstances and that may have large impact on ArgoUML architecture. If the Resolver decides after the
investigation that this bug is really not that important or that he is not the right person to solve it he enters his
findings as a comment and assigns the issue back to anyone (issues@argouml) and moves along to work on an-
other issue instead.

• If applicable, program and test a solution

As this might take considerable time it might be a good idea of the Resolver to assign the issue to himself to re-
serve the issue. He can also signal progress by setting the issue to the state Started.

• If applicable, write test cases

• Set the issue in the end on "Resolved".

When the resolver is finished with the issue, he puts it in "Resolved" status, and indicates the "resolution" is
Fixed, Worksforme, Invalid, Wontfix, or Duplicate.

Processes for the ArgoUML project

97

Skills: The resolver needs to know a lot of the insides of the ArgoUML code, Java, coding standards, and also the
current status of the project with goals, requirements and release plans.

11.3.3. The Verifier
The Verifier may be neither the Reporter, nor the Resolver of the issue. The task of the Verifier is to check the qual-
ity of the solution by confirming that the solution is complete, to the point, bug-free, etc. This is an important part of
the quality assurance work we do in the ArgoUML project and the object is to make sure that a resolved issue is in
fact resolved.

The test must be done on the "Target Milestone" version of the issue, or any later version released to the public.

Responsibilities:

• Check that the issue is solved in the stated version of ArgoUML

• Mark the issue as "verified"

If the Verifier can conclude that the problem does not exist or the feature/enhancement is now present the issue
is marked as verified.

• Reopen the issue if the solution is not fully correct

If the solution is not correct or the feature/enhancement does not work, it is the duty of the Verifier to reopen the
issue.

Skills: The verifier needs only to focus on that issue, how the problem in it is formulated. He doesn't need to know
how it is actually solved.

11.4. How to resolve an Issue
This can be performed by any member of the project (any role). Persons without the Developer role need a person
with the Developer role to actually commit the work if the resolution involves changing some artefact. There might
be special skills involved but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any Issue that is NEW or REOPENED that you from the description think that you are able to solve. Best
result if you also find some Issue that you really feel needs to be solved. The list of all of them

is-
sue_status=REOPENE
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&D].

2. Look at your personal schedule and how much time you have during the next couple of weeks and compare that
to the amount of time you think you will need to spend for solving the issue. Compare this to the release plan to
see what release your contribution will fit in.

3. Accept the Issue and reserve it by assigning it to yourself. Set the Target Milestone to the release you have cho-
sen.

4. Make sure you have a checked out copy of ArgoUML or else check out a new one.

How this is done is described in Chapter 2, Building from source.

5. Mark the issue as Started (this could be done while assigning also).

Processes for the ArgoUML project

98

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED

6. Change the code to solve the problem.

7. Compile and test your new code.

This should include developing a JUnit test case to verify that the problem is solved. You could also develop
the JUnit test case before actually solving the problem.

If your solution did not work as intended, continue changing it until it does.

If you feel that your estimation of the complexity of the problem and your own abilities and time available was
incorrect, then change the Target Milestone of the Issue to another one that fits your new estimation. This is
just a change of plan.

If you, at this point, feel that your personal plans have changed so that you won't have time to pursue the work,
change the Issue back to "NEW" with your experiences sofar stated in the comment. This means that you are
giving up and giving the Issue back to anyone. You should also assign it back to issues@argouml or if you
know someone else in the ArgoUML team that will continue the work, assign it to him. Remember not to com-
mit your changes in the main branch but please commit your changes (if any) into a work branch and state the
name of the branch in the issue. That will make it possible for someone to make use of your work so far.

8. Commit your changes and the JUnit test cases stating the number of the Issue in the comment.

If you don't have a developer role in the project, this involves sending your changes to someone who has and
then convincing him to commit them for you.

9. "Resolve" the Issue with the resolution "FIXED".

10. Sit back and feel the personal satisfaction of having completed a something that will be part of the ArgoUML
product.

11. If you during this, have discovered other problems, create new Issues stating those new problems according to
the rule for creating Issues.

11.5. How to verify an Issue that is FIXED
This can be performed by any member of the project (any role). There might be special skills involved but it differs
widely depending on the nature of the Issue.

Do the following:

1. Pick any Issue that is RESOLVED/FIXED or WORKSFORME and that you have not raised, nor solved and
that is included in a release (Target milestone set to a release available on the site). The list of all RESOLVED/
FIXED and RESOLVED/WORKSFORME issues

resolu-
re
so
lu
ti
o
n
=
W
O
R
K
S

Processes for the ArgoUML project

99

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME

FORME].

2. Run the specified release of ArgoUML as provided for downloads or through Java Web Start.

3. Test the problem in the issue and verify that the problem is no longer there or the feature is provided.

4. Do one of the following:

• If the problem is gone, the feature is present put the Issue in Status VERIFIED.

• If the problem is still there, the feature does not work, put the Issue in Status REOPENED with a descrip-
tion of what is still there, is still missing.

5. If you during this, have discovered other problems than the ones that are stated in the Issue, create new Issues
stating those new problems according to the rule for creating Issues.

6. Do this as many times as you like until there are no Issues left.

11.6. How to verify an Issue that is rejected
This can be performed by any member of the project (any role). There might be special skills involved but it differs
widely depending on the nature of the Issue.

Do the following:

1. Pick any issue that is RESOLVED/(INVALID, WONTFIX, or DUPLICATE) that you have not raised nor
solved. The chosen issue need not be connected to an available release. The list of all RESOLVED/INVALID,
RESOLVED/WONTFIX and RESOLVED/DUPLICATED issues

resolu-

Processes for the ArgoUML project

100

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE

&resolution=WONTFIX&resolution=DUPLICATE].

2. Read through the description provided.

3. Do one of the following:

• If you agree with the statement and feel that the rejection is done for correct reasons, put the Issue in Status
VERIFIED.

• If you don't agree, put the Issue in status REOPENED and give a description as to why you don't agree.

4. Do this as many times as you like until there are no Issues left.

11.7. How to Close an Issue
This is performed by the person that originally raised the Issue or by the QA responsible for that area. You need to
be a member of the project (any role). This can also be done by someone who would raise the issue but did not be-
cause it was already present in Issuesilla.

1. Pick any Issue that is Verified and that you have raised or that you have found and refrained from raising be-
cause somebody else already had written it. The list of all VERIFIED issues
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED].

2. See that you are satisfied with the solution. This could involve reading through the resolution and starting the
tool to verify it.

3. Do one of the following:

• If you are satisfied, put the Issue in Status CLOSED.

• If you are not satisfied but the problem is solved as it is written in the Issue, put the Issue in Status
CLOSED and open a new Issue with the rest of the problem.

• If you are not satisfied and the problem is not solved, put the Issue in status REOPENED with a description
on what you are not satisfied with.

11.8. How to relate issues to problems in subprod-
ucts

ArgoUML uses some product internally and is to some respect very dependant on the well functioning of these
products. This are products like GEF, NS-UML, ocl, log4j, xerces, jre, ...

Occasionally a bug found in ArgoUML is found to be a problem in one of these subproducts and cannot or is ex-
tremely complicated to fix within ArgoUML.

If this happens this is the way to register that Issue in Issuezilla.

This can be performed by any member of the project (any role). There might be special skills involved depending on
the nature of the Issue.

Processes for the ArgoUML project

101

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED

Do the following:

1. During your examination of an issue you find that it is a problem in one of the ArgoUML subproducts (GEF,
NS-UML, ocl, jre, ...).

2. Write a comment in the issue stating which one of the subprojects that is the problem (and what the problem
is).

3. Post a bug in that subproducts bug reporting tool (or find the bug already registered).

I am assuming that there is such a tool for all the subproducts. If there isn't for the product in question, then ex-
plain the problem to the responsible person for this product so that we are sure that the problem is communi-
cated.

4. Set the Issue in Issuezilla to RESOLVED/WONTFIX and enter the reference from the subproducts bug report-
ing tool and if possible the URL to the bug reporting tool or to the bug in question.

The person responsible for the sourceing of the subtool in question (Currently (December 2002) the subproduct re-
sponsible role is not explicitly pointed out but could be anyone that feels that something must be done.) does the fol-
lowing for each new release of a subproduct.

1. Looks at the new release of that subproduct to see if any of the outstanding issues against that subproduct are in
fact fixed in the release.

2. If any of the issues are fixed, then he weights together the importance of the issues fixed, the amount of work
needed to fit the new version of the subproduct instead of the old one, the planned releases of the subproduct
with other issues promised to be fixed, and the current release plan of ArgoUML. From this he decides wether
it is time to do the update of the subproduct within ArgoUML or to wait.

3. If he decides that it is time to update, he adds the new version of the subproduct, does all the needed work
within ArgoUML, tests and commits everything, puts the issues indeed fixed in VERIFIED/WONTFIX, and
also closes the bugs registered in the subproducts bug reporting tool.

Processes for the ArgoUML project

102

Index
A

ANT, 4, 6, 6
how it is used, 6

ANTLR, 4
ArgoUML Design, 23

B
build.xml, 6
Building, 4, 6, 8

ArgoUML, 6
javadoc, 8
tools, 4

C
Check lists, 34
Checking out from CVS, 5
checklists, 28
Code Generation, 27, 55
Code generation, 55

Java, 55
Coding Standards, 89
Compiling, 7, 7, 7, 7, 7, 7

argouml.build.properties, 7
build.properties, 7
customized, 7
Cygwin, 7
Unix, 7
Windows, 7

Constraints, 72
Contents of the CVS repository at Tigris, 86
Critics, 28, 34
CVS, 3, 5, 82, 82, 83

branches, 83
checking out from, 5
how to work with, 82
Mailing list, 3
standards, 82

CVS repository contents, 86
Cygwin Compilation, 7

D
Details Panel, 59
Developers' Mailing List, 3
Diagrams, 27, 38
Docbook, 5
Documentation, 8, 10

work with, 10
Dresden OCL Toolkit, 72

E
Explorer, 27

F
fop, 5

G
GEF, 5
GUI Framework, 26, 59

H
Help system, 26, 61

I
I18n, 25, 61
Internationalization, 25, 61
Issue, 95, 96

Priority, 95
Resolution, 96

Issues, 3, 94, 98, 99, 99, 99, 100, 100, 100, 100, 101
Closing, 101
Mailing list, 3
Resolving, 98, 100, 100, 100, 100

Duplicate, 100
Invalid, 100
Rejected, 100
Wontfix, 100

Verifying, 99, 99, 99
Fixed, 99
Works for me, 99
WORKSFORME, 99

J
Jason Robbins, 92

Dissertation, 92
Java, 28, 55
Javadoc building, 8
jdepend, 5
JRE, 25
JUnit, 5
JUnit testing, 10

L
L10n, 61
Language teams, 62
layer, 23
Localization, 61
log4j, 5
Logging, 25

M
Mailing lists, 3
Making a release, 15
Martin Skinner, 92

Dissertation, 92
Model, 26
Module loader, 27

103

N
Navigator Tree, 27
Notation, 27
NSUML, 5, 78

understanding, 78

O
Object Explorer, 27
OCL, 28, 72

P
Pluggable interface, 27
Priorities, 95

on Issues, 95
Processes, 94
Property panels, 27

R
Repository contents, 86
Resolution, 96

of Issues, 96
ResourceBundles, 61
Reverse Engineering, 27, 54, 55

Java, 55
Roles, 96
Round-trip Engineering, 55

Java, 55

S
Standards, 82, 89

Coding, 89
CVS, 82

subproducts, 101

T
Testcases, 11, 12

an example, 12
writing, 11

Testing ArgoUML, 10, 11
To Do Items, 26, 69
Tools, 4, 4

needed for building, 4
used, 4

Translators, 62
Troubleshooting, 10, 10, 18

commiting changes, 10
development build, 10
during the release work, 18

U
Unit testing of ArgoUML, 10, 11
Unix, 7

compilation, 7

W
Web Site, 8, 8

documentation, 8
maintaining, 8

Windows, 7
Compilation, 7

Wizards, 34
Workers, 96
Writing testcases, 11

X
XSL stylesheets, 5

Index

104

	Cookbook for Developers of ArgoUML
	Chapter 1. Introduction
	1.1. Thanks
	1.2. About the project
	1.3. How to contribute
	1.4. About this Cookbook
	1.4.1. In this Cookbook, you will find...
	1.4.2. In this Cookbook, you will not find...

	1.5. Mailing Lists

	Chapter 2. Building from source
	2.1. Getting started
	2.1.1. Which tools do I need to build ArgoUML?
	2.1.2. Which tools are part of the ArgoUML development environment?
	2.1.3. What libraries are needed and used by ArgoUML?

	2.2. Download from the CVS repository
	2.3. Build Process
	2.3.1. How ANT is run from the ArgoUML development environment
	2.3.1.1. Compiling for Unix
	2.3.1.2. Compiling for Windows
	2.3.1.3. Customizing and configuring your build
	2.3.1.4. Building javadoc
	2.3.1.5. Building one of the modules

	2.3.2. How documentation is presented
	2.3.2.1. How the ArgoUML web site works
	2.3.2.2. The ArgoUML documentation
	2.3.2.3. How developers work with documentation

	2.3.3. Troubleshooting the development build
	2.3.3.1. Compiling failed. Any suggestions?
	2.3.3.2. Can't commit my changes?

	2.4. The JUnit test cases
	2.4.1. How to write a test case

	2.5. Manual Test Cases
	2.5.1. Running the manual tests
	2.5.2. Writing the manual tests
	2.5.3. The list of tests
	2.5.3.1. Modules are enabled
	2.5.3.2. Class diagram

	2.6. Making a release
	2.6.1. The release did not work
	2.6.1.1. Fix the problem yourself.
	2.6.1.2. Delay the release waiting for someone to fix the problem.

	Chapter 3. ArgoUML requirements
	3.1. Requirements for Look and feel
	3.2. Requirements for UML
	3.3. Requirements on java and jvm
	3.4. Requirements set up for the benefit of the development of ArgoUML

	Chapter 4. ArgoUML Design, The Big Picture
	4.1. Definition of component
	4.2. Relationship of the components
	4.3. Definition of layer
	4.4. Layer 0 - Description of components
	4.5. Layer 1 - Description of components
	4.6. Layer 2 - Description of components
	4.7. Layer 3 - Description of components

	Chapter 5. Inside the components
	5.1. Model
	5.1.1. Factories
	5.1.2. Helpers
	5.1.3. The model event pump
	5.1.3.1. Introduction
	5.1.3.2. Public API
	5.1.3.2.1. How do I register a listener for a certain type event
	5.1.3.2.2. How do I remove a listener for a certain event
	5.1.3.2.3. Hey, I saw some other methods for adding and removing?

	5.1.3.3. Tips
	5.1.3.4. The future

	5.1.4. How do I...?

	5.2. Critics and other cognitive tools
	5.2.1. Main classes
	5.2.2. How do I ...?
	5.2.3. org.argouml.cognitive.critics.* class diagram

	5.3. Diagrams
	5.3.1. How do I add a new element to a diagram?
	5.3.2. How to add a new Fig
	5.3.2.1. Adding to the toolbar
	5.3.2.2. Changing the graph model
	5.3.2.3. Changing the renderer
	5.3.2.4. Creating a new Fig (explanation 1)
	5.3.2.5. Creating a new Fig (explanation 2)

	5.4. Property panels
	5.4.1. Adding the property panel
	5.4.1.1. Adding a simple list field
	5.4.1.1.1. The list model

	5.4.1.2. Building the field
	5.4.1.3. Adding Property Tab Toolbar Buttons
	5.4.1.4. Support for stereotypes
	5.4.1.5. Other sorts of fields
	5.4.1.6. How UMLTextField works

	5.5. Reverse Engineering Component
	5.6. Code Generation Component
	5.7. Java - Code generations and Reverse Engineering
	5.7.1. How do I ...?
	5.7.2. Which sources are involved?
	5.7.3. How is the grammar of the target language implemented?
	5.7.4. Which model/diagram elements are generated?
	5.7.5. Which layout algorithm is used?

	5.8. Other languages
	5.9. The GUI Framework
	5.9.1. Multi editor pane
	5.9.1.1. How do I ...?

	5.9.2. Details pane
	5.9.2.1. How do I ...?

	5.10. Help System
	5.11. Internationalization
	5.11.1. Organizing translators
	5.11.2. Ambitions for localization
	5.11.3. How do I ...?

	5.12. Logging
	5.12.1. What to Log in ArgoUML
	5.12.2. How to Create Log Entries...
	5.12.2.1. Reasoning around the performance issues

	5.12.3. How to Enable Logging...
	5.12.3.1. ...when running ArgoUML from the command line
	5.12.3.2. ...when running ArgoUML from WebStart
	5.12.3.3. ...when running ArgoUML from NetBeans

	5.12.4. How to Customize Logging...
	5.12.5. References

	5.13. JRE with utils
	5.14. To do items
	5.15. Explorer
	5.15.1. Details of current implementation
	5.15.2. Requirements
	5.15.3. Key Classes
	5.15.4. How do I ...?

	5.16. Module loader
	5.16.1. What the ModuleLoader does

	5.17. OCL

	Chapter 6. Extending ArgoUML
	6.1. How do I ...?
	6.2. Modules and PlugIns
	6.2.1. Differences between modules and plugins
	6.2.2. Modules
	6.2.2.1. Module Architecture
	6.2.2.2. The ArgoModule interface
	6.2.2.3. Using Modules
	6.2.2.4. How do I ...?

	6.2.3. Plugins
	6.2.3.1. Plugin Architecture
	6.2.3.2. How do I ...?

	6.2.4. Tip for creating new modules (from Florent de Lamotte)

	6.3. How are modules organized in in the java code
	6.3.1. How do I ...?

	Chapter 7. Organization of ArgoUML documentation
	Chapter 8. CVS in the ArgoUML project
	8.1. How to work against the CVS repository
	8.2. Creating and using branches
	8.2.1. How do I ...?

	8.3. Other CVS comments
	8.4. CVS repository contents

	Chapter 9. Standards for coding in ArgoUML
	9.1. Settings for Eclipse
	9.2. Settings for NetBeans
	9.3. Settings for Emacs

	Chapter 10. Further Reading
	10.1. Jason Robbins Dissertation
	10.1.1. Abstract
	10.1.2. Where to find it

	10.2. Martin Skinners Dissertation
	10.2.1. Abstract
	10.2.2. Where to find it

	Chapter 11. Processes for the ArgoUML project
	11.1. The big picture for Issues
	11.2. Attributes of an issue
	11.2.1. Priorities
	11.2.2. Resolutions

	11.3. Roles Of The Workers
	11.3.1. The Reporter
	11.3.2. The Resolver
	11.3.3. The Verifier

	11.4. How to resolve an Issue
	11.5. How to verify an Issue that is FIXED
	11.6. How to verify an Issue that is rejected
	11.7. How to Close an Issue
	11.8. How to relate issues to problems in subproducts

	Index

