# **USER'S MANUAL**

# ServoTrack<sup>™</sup> IC

# Tomorrow's Technology for Today's Application™



Bridging the gap between servo, brushless DC and stepper motor performance



Developement

### **PUBLICATIONS HISTORY**

| REVISION | DATE       | CHANGE          |
|----------|------------|-----------------|
| 1.0      | 06/20/2012 | Initial release |

### **COPYRIGHT AND TRADEMARK INFORMATION**

© 2012 Koco Motion US, LLC. All rights reserved.

The information stored in this document is copyright protected and may not be reproduced, stored in a retrieval system in any form or by any means, electronic, mechanical, photocopying or otherwise, without prior permission from the copyright holder, Koco Motion US.

ServoTrack<sup>TM</sup> IC is a worldwide trademark of Koco Motion US. Other products and company names mentioned herein may be the trademarks of their respective owners.

#### **CONTACT INFORMATION**

Koco Motion US, LLC. (Headquarters) 6090 Hellyer Avenue, Suite 175 San Jose, CA 95138 USA Phone: 408-300-9690 www.kocomotionus.com

#### Disclaimer

The information in this manual is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Koco Motion US reserves the right to make changes without further notice to any products to improve reliability, function, or design. KOCO Motion US does not assume any liability arising out of the application or use of any product or circuit described herein; nor does it convey any license under its patent rights of others.

Koco Motion US does not recommend the use of its products in life support, life sustaining, nuclear, aircraft, or other applications wherein a failure or malfunction of the product could reasonably be expected to result in personal injury or death. Per Koco Motion US terms and conditions of sales, the user of Koco Motion US products in life support, life sustaining, nuclear, or aircraft applications assumes all risks of such use and indemnifies Koco Motion US against all damages.

# **Table of Contents**

| CHAPTER 1: Introduction                      | 1  |
|----------------------------------------------|----|
| 1.1 About this Document                      | 1  |
| 1.2 Description                              |    |
| 1.3 Operating Modes                          |    |
| 1.3.1 Clock Mode                             | 1  |
| 1.3.2 Torque Mode                            |    |
| 1.3.3 Velocity Mode                          |    |
| 1.3.4 Variable Current Mode                  |    |
| 1.4 System Block Diagram                     | 2  |
| CHAPTER 2: Understanding ServoTrack          | 3  |
| 2.1 Lead/Lag Limits                          |    |
| 2.2 Microstep and Encoder Resolutions        |    |
| 2.3 Calibration                              |    |
| 2.4 Operating Current                        |    |
| 2.5 Locked Rotor                             |    |
| 2.6 Position                                 |    |
| 2.7 Position Maintenance                     |    |
| 2.8 Maximum System Speed                     |    |
| 2.9 Interrupt Output                         |    |
| 2.10 Velocity Control Function               |    |
| 2.11 Torque Function                         | 7  |
| 2.12 Bypass                                  | 7  |
| 2.13 Configuration Test                      | 8  |
| CHAPTER 3: Specifications                    |    |
| 3.1 64-Pin Plastic TQFP (Fine Pitch) (10x10) |    |
| 3.2 Signal Summary                           |    |
| 3.3 Signal Descriptions                      |    |
| 3.4 Absolute Maximum Rating Values           |    |
| 3.5 Recommended Operating Range              |    |
| 3.6 DC Characteristics                       |    |
| CHAPTER 4: Microcontroller Interface         |    |
|                                              |    |
| 4.1 Microcontroller Bus Timing               |    |
| CHAPTER 5: Hardware Interfaces               |    |
| 5.1 Variable Current Reference               |    |
| 5.2 Differential Encoder Interface           | 19 |
| CHAPTER 6: Command Details                   | 21 |
| 6.1 General Information                      | 21 |
| 6.1.1 Register Types                         |    |
| 6.1.2 Default Values after Reset / Power-up  |    |
| 6.2 Current Control Registers                |    |
| 6.2.1 Run Current                            |    |
| 6.2.2 Reduction Current                      |    |
| 6.2.3 Fixed Hold Current Delay Time          |    |
| 6.2.4 Torque Current                         | 23 |
|                                              |    |

| 6.3    | I/O Cor   | figuration Registers                       | 25 |
|--------|-----------|--------------------------------------------|----|
|        | 6.3.1     | I/O Inversions and Corrections             | 25 |
|        | 6.3.2     | Step Output Pulse Width                    | 26 |
|        | 6.3.3     | Step/Direction and Encoder Input Filtering | 27 |
|        | 6.3.4     | Attention Output                           | 28 |
|        | 6.3.5     | Error LED.                                 | 29 |
| 6.4    | Velocity  | / Configuration Registers                  | 29 |
|        | 6.4.1     | Initial Velocity                           | 29 |
|        | 6.4.2     | Terminal Velocity                          | 30 |
|        | 6.4.3     | Deceleration                               | 30 |
|        | 6.4.4     | Acceleration                               | 31 |
|        | 6.4.5     | Current Velocity                           | 31 |
|        | 6.4.6     | Velocity Strobes                           | 32 |
|        | 6.4.7     | Motor Settling Delay Time                  | 33 |
|        | 6.4.8     | Velocity Flags                             | 33 |
|        | 6.4.9     | Velocity Flags Mask                        | 34 |
|        | 6.4.10    | Velocity and Torque Control                | 35 |
| 6.5    | ServoT    | rack Configuration Registers               | 36 |
|        | 6.5.1     | Set Microstep Resolution                   | 36 |
|        | 6.5.2     | ServoTrack Settings                        | 37 |
|        | 6.5.3     | Position Lead/Lag Error                    | 38 |
|        | 6.5.4     | Set Lag Limit                              | 39 |
|        | 6.5.5     | Set Lead Limit                             | 39 |
|        | 6.5.6     | Set Make-Up Frequency                      | 41 |
|        | 6.5.7     | Miscellaneous ServoTrack Flags             | 42 |
|        | 6.5.8     | Calibration Time                           | 43 |
|        | 6.5.9     | Locked Rotor Timeout                       | 43 |
|        | 6.5.10    | ServoTrack Status Flags                    | 44 |
|        | 6.5.11    | ServoTrack Interrupt Flags                 | 45 |
|        | 6.5.12    | ServoTrack Interrupt Mask                  | 46 |
|        | 6.5.13    | ServoTrack State Flags                     | 47 |
|        | 6.5.14    | Interrupt Level Control                    | 48 |
|        |           | Start Calibration and Type Select          |    |
|        | 6.5.16    | Hardware Version and Reset                 | 50 |
|        | 6.5.17    | Command Summary                            | 51 |
| Append | lix A: Se | rvoTrack Module                            | 55 |
| •••    |           | ction                                      |    |
|        |           | nical Specifications                       |    |
|        |           | cations                                    |    |
|        | •         | eakout Board Option                        |    |
| ••     |           | •                                          |    |
|        |           |                                            |    |
| В.2    | Mechar    | nical Specifications                       | 57 |

# **CHAPTER 1: Introduction**

### 1.1 About this Document

This document contains all the specifications, connectivity information, setup and configuration instructions and software details to fully utilize your ServoTrack<sup>TM</sup> device.

This document should be read in its entirety before attempting to connect or use your ServoTrack device.

Additional copies may be downloaded in electronic (PDF) format from our web site at: http://www.kocomotionus.com.

### 1.2 Description

ServoTrack allows existing systems that utilize standard stepper motor technology to convert their stepper motor system into an advanced, high performance brushless system delivering ultimate performance. ServoTrack works by eliminating the loss of synchronization that can occur in stepper motors due to transient or sustained overload, extreme acceleration or deceleration or excessive slew speeds. ServoTrack<sup>TM</sup> technology allows the user to utilize the full torque of the motor, eliminating the need for derating and often allowing the use of smaller motors.

ServoTrack combines the benefit of servo, stepper and brushless DC motor technologies while eliminating many of the unwanted attributes. There is no tuning or complex setup required with ServoTrack, enabling quick startup times and easy machine changeover while maintaining the benefits of smooth precise motion, stiffness at standstill, and high starting torque. All this is accomplished while maintaining the low cost of a stepper system.

### 1.3 Operating Modes

ServoTrack brings unique capabilities and versatility to your stepper system through various modes of operation, as described below.

#### 1.3.1 Clock Mode

By monitoring the relationship of the motor rotor and stator, ServoTrack reconfigures the incoming step clock and direction signals, so there is no loss of synchronization.

#### 1.3.2 Torque Mode

Torque mode can be used to regulate and maintain a set torque level. Torque mode opens up many new applications requiring constant torque such as:

- Web tensioning
- Capping
- Clamping
- Feeders

These types of applications can now be accomplished with a much lower cost stepper motor system.

#### 1.3.3 Velocity Mode

Velocity mode can be used to provide a constant speed output without the need for an additional controller, saving space and cost without sacrificing capability. When used in applications such as conveyor systems, ServoTrack eliminates the stalling that can occur due to quick and extreme changes in loads.

#### 1.3.4 Variable Current Mode

Both clock and velocity modes have the ability to use variable current mode, which when mated to your drive, allows only the required current necessary to perform the task, greatly increasing system efficiency while reducing the excess heat inherent in traditional stepper systems.

### 1.4 System Block Diagram

The following diagram illustrates the basic ServoTrack system.



Figure 1-1. ServoTrack System Block Diagram

# **CHAPTER 2: Understanding ServoTrack**

**NOTE:** ServoTrack will not compensate for a poor design. ServoTrack will not make a motor more powerful. ServoTrack will maximize the capability of the system and make it more robust.

#### 2.1 Lead/Lag Limits

One of four (4) limits, or control bounds, can be selected. They are 1.1, 1.3, 1.5, or 1.7 full motor steps. Bounds of 1.1 will produce greater torque though maximum speed will be reduced. Bounds of 1.7 will allow greater speed though transient response is decreased.



Figure 2-1. Control Bounds Operation

Best overall performance is achieved with bounds of 1.3 or 1.5 full motor steps.

**NOTE:** For torque mode, the bounds are preset to 1.0 full steps.

### 2.2 Microstep and Encoder Resolutions

Fifteen (15) microstep resolutions and nine (9) encoder resolutions from 100 to 1024 lines are supported in any combination. Higher encoder resolutions generally provide "smoother" operation.

## 2.3 Calibration

The ServoTrack logic requires a calibration to understand the initial relationship between the rotor and stator before ServoTrack operation begins. A calibration is performed on power up to bring the rotor into physical alignment with the stator.

During calibration the motor and position lag / lead logic is cleared and any incoming steps are ignored.

Calibration occurs automatically upon various conditions, such as power on reset, when enabling the ServoTrack functionality, or when MSEL is changed.

| NOTE: | For best results maximum current should be used for calibration.                                                                                                                                                                                                                                                                     |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NOTE: | Regarding changing MSEL or enabling ServoTrack when in motion: the resulting cal-<br>ibration will stop motion abruptly.<br>Any rotor movement during the timed period will reload the timer, therefore the cali-<br>bration time specified is the minimum time. A calibration may be initiated at any time<br>via software command. |  |  |  |
| NOTE: | Calibration should not be performed if the motor is against a hard mechanical stop.<br>The motor should be moved to a position where the shaft is free to rotate when the<br>phases are energized.                                                                                                                                   |  |  |  |

# 2.4 Operating Current

Operating current defines the peak motor current in the motor phases. There are two (2) operating current modes: variable and fixed.

**NOTE:** Use of variable current mode and other current control features require that your drive be equipped with a current reference input. Drivers whose run and reduction current is set by switches or jumpers cannot utilize these features.

Variable mode adjusts the operating current from 2% up to 100% of a defined maximum based on the motor lag / lead from 0 to 1 full step. For example, when lag / lead equals 0.5-full step, operating current would be 51 % of maximum; when lag / lead equals 1-full step, operating current would be 100% of maximum. The operating current is increased immediately when lag / lead increases but is decreased using a filtering algorithm.

Variable mode is useful to reduce heat when the torque requirement is generally modest or varying but comes with a downside of a slight increase in torque ripple. Variable mode provides a smoother response to an external torque applied on the rotor. Variable mode, when enabled, becomes the 1st defense against loss of synchronization.

By only applying the necessary current needed to move the load, variable mode can greatly reduce motor heating and increase system efficiency.

Fixed mode consists of run current when steps are active and hold current when no steps have occurred for a defined period of time. This mode works well for extreme acceleration and / or short moves with a downside of potentially more heat.

The user can freely switch between variable and fixed current modes. When using the torque function the variable and fixed current modes do not apply.

### 2.5 Locked Rotor

A locked rotor is defined as no rotor movement while at the maximum allowed lag for a specified period of time. When lag equals the bounds a timer starts to count down. Upon reaching zero a locked rotor will be indicated by the assertion of a status flag. The timer reloads on any encoder movement. The timer timeout period is user selectable from 2ms to 65.5 seconds.

In torque mode the locked rotor flag can be used to indicate the rotor has been stopped at the specified torque for a preset amount of time.

### 2.6 Position

For reference, position lag is when the motor lags behind the commanded step position. Position lead is when the motor leads the commanded step position.

A count is kept of the difference (error) between the commanded step position and the actual stator position. The host controller can read step position error and take appropriate action when and how desired. Note that the position is step accurate which typically provides higher resolution than an encoder. For example, a 512 line encoder provides a resolution of 2048 while a 1.8 degree motor micro-stepping at 256 has a resolution of 51200. It is important to note that the rotor position can vary by the amount of programmed lead/lag bounds from the stator position. The count is cleared when ServoTrack is disabled or when a calibration occurs. The count also may be manually cleared via software command.

A host controller can set a position lag and lead limit. When either limit is reached or exceeded a status flag will assert. This may be useful as possible indications of excessive binding, maintenance such as lubrication required, or other mechanical system issues.

#### 2.7 Position Maintenance

Automatic position maintenance can be enabled, which will insert steps as required when conditions allow, in the appropriate direction, to bring the position difference between the commanded number of steps and actual steps taken to zero, and the rotor being within the specified bounds.

The speed of position maintenance (the make up frequency) can be performed at one (1) of two (2) speeds. Insertion can be at a specified speed or can be set at the maximum speed the load will allow. There is no acceleration or deceleration applied to position make up, therefore make up could be abrupt if set at a high speed.

Position maintenance will only occur when the motor lag / lead is within 1.1 full motor steps independent of the set bounds. This provides maximum torque.

Depending on various conditions, make up steps may be interleaved with incoming steps and/or made after a move has completed. Where in time position maintenance occurs is dependent on motor lag/lead, step input frequency, and selected make up speed.

Example: Position lag occurred due to overly aggressive acceleration. Make up steps could be interleaved during the slew portion of the move if the make up frequency is higher than the slew frequency. Or make up could occur during the deceleration portion of the move if make up frequency is higher than initial frequency. Make up could also occur at end of profile if the make up frequency is lower than commanded frequency. Make up can also occur during multiple segments of a move profile.

For a very aggressive move profile that is also dependent on time, it is possible there will be no opportunity to make up missing steps during the time allowed for the move. Therefore the move will not complete in the allotted time as make up steps will occur at the end of the move.

Position lag for bidirectional moves with no opportunity for make up may produce an intermediate position offset. For example, moving right from A to B caused a 3 step lag, then immediately moving left from B to A. The ending position could initially be 3 steps to the left of A. The ending position would be corrected. However the intermediate position would have been off by 3 steps.

The position error is maintained in a 32 bit signed counter. This equates to 41,943 revolutions with a microstep resolution of 256 microsteps per step. If the maximum count is reached the counter will stop and an error is generated. The counter will not roll over.

### 2.8 Maximum System Speed

There is a process delay timer within the ServoTrack logic to set the maximum system speed. This is the speed at which step clocks are internally generated. The maximum speed is set via a step width parameter. For example a step width of 200 ns sets the maximum system speed to 2.5 MHz. The absolute maximum speed is limited to 5 MHz by the step clock generator.

There are potential issues to setting the system speed too slow. For example, if the system speed is limited to 1.5 MHz and the incoming slew speed is 2 MHz, the system will only produce steps at the maximum 1.5 MHz rate. This is a fairly benign issue as all incoming steps are still accounted for, so the position error is correct and make up would proceed normally. A more serious issue, though unlikely, is the case of motor lead due to extreme deceleration in a high inertia system. In this case the stator may not be able to keep up with the rotor causing loss of synchronization.

**NOTE:** In torque mode, maximum system speed can be used to limit the speed of an unloaded system.

#### 2.9 Interrupt Output

An output is provided to indicate selected condition(s) have occurred or are occurring. A number of conditions may be combined (a logical OR) to assert the output. For example when position lag, position lead, and locked rotor are selected, any combination will assert the output.

When multiple conditions are selected, the specific cause can be determined by reading status register and/or error code.

Using the output with an indicator lamp can be very helpful when evaluating a motion profile. A good example is to select the ServoTrack active condition to light the indicator. ServoTrack active asserts when ServoTrack is intervening. Therefore if the acceleration portion of the profile is too aggressive, or the slew is too fast, or the deceleration is too aggressive the indicator will light.

The Make Up active condition is also useful for evaluation. It will show when steps are inserted during the motion profile. The user could adjust the make up frequency for the desired result. For example, if time is not critical but speed during the profile is, the user could adjust the parameters so steps are added at end of move rather then being inserted during the move.

Make Up could also be used to indicate to a host controller that move has not been completed and will continue even though the host has completed generation of the required steps.

### 2.10 Velocity Control Function

When setting ServoTrack to function in velocity mode, the Start/Stop input is used to initiate or end movement at a pre-programmed velocity, which is internally generated and routed to the Step Clock Output. A large array of programmable functions such as acceleration/deceleration, and max frequency, as well as many others are available.

### 2.11 Torque Function

When setting ServoTrack to function in torque mode, the Start/Stop input is used to initiate or end a torque whose magnitude has been pre-programmed into the unit. When the Start input is asserted in torque mode an offset between the rotor and stator of 1 full step will try to be maintained to create a torque on the rotor. If the load applied to the rotor is less then the torque required to maintain a 1 full step offset the rotor will begin to rotate in an attempt to generate the required offset. The speed of rotation will vary dependent on load. Rotational speed will increase until such time as a 1 full step phase shift between the rotor and stator is achieved.

| the motor after a desired torque level                           |
|------------------------------------------------------------------|
| is disabled when in torque mode to nput is in the stop position. |
| unction of motor holding torque and                              |
| uncti                                                            |

#### 2.12 Bypass

When ServoTrack is disabled, an incoming step is routed directly to the Step Clock Output. The motor and position lag / lead calculation logic is disabled and the values are cleared. This can be useful in comparing the performance of a standard system without ServoTrack.

The user can freely move between ServoTrack and bypass. Note that an automatic calibration will be performed when ServoTrack is enabled.

## 2.13 Configuration Test

In order to correctly calculate lag / lead the resolution of the installed encoder must be correctly specified and the encoder direction must match the commanded motor direction. For example, if the motor direction is positive (dir = 1) the encoder must turn such that channel A leads channel B (dir = 1), and if a 500 line encoder is installed a 500 line encoder must be specified.

**NOTE:** It is strongly recommended that a configuration test be performed on a newly set up system. A miss-wired or improperly specified encoder will cause erratic operation.

# **CHAPTER 3: Specifications**



# 3.1 64-Pin Plastic TQFP (Fine Pitch) (10x10)

DETAIL OF LEAD END

| ITEM | MILLIMETERS                    |
|------|--------------------------------|
| Α    | 12.0 ± 0.2                     |
| В    | 10.0 ± 0.2                     |
| С    | 10.0 ± 0.2                     |
| D    | 12.0 ± 0.2                     |
| F    | 1.25                           |
| G    | 1.25                           |
| Н    | 0.22 ± 0.05                    |
| I    | 0.08                           |
| J    | 0.5 (T.P.)                     |
| K    | 1.0 ± 0.2                      |
| L    | 0.5                            |
| М    | 0.17 <sup>+0.03</sup><br>-0.07 |
| Ν    | 0.08                           |
| Р    | 1.0                            |
| Q    | 0.1 ±0.5                       |
| R    | 3° +4°<br>-3°                  |
| S    | 1.10 ± 0.10                    |
| Т    | 0.25                           |
| U    | 0.6 ± 0.15                     |
|      |                                |

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

Figure 3-1. 64-Pin Plastic TQFP (Fine Pitch) (Part #: DEST1)

# 3.2 Signal Summary

| Pin # | Signal Name | Signal Function                | Output<br>Drive |
|-------|-------------|--------------------------------|-----------------|
| 1     | GND         | Ground                         | -               |
| 2     | VDD         | Power                          | -               |
| 3     | AD7         | Address/Data bit 7             | 12 mA           |
| 4     | AD6         | Address/Data bit 6             | 12 mA           |
| 5     | AD5         | Address/Data bit 5             | 12 mA           |
| 6     | GND         | Ground                         | -               |
| 7     | AD4         | Address/Data bit 4             | 12 mA           |
| 8     | AD3         | Address/Data bit 3             | 12 mA           |
| 9     | GND         | Ground                         | -               |
| 10    | VDD         | Power                          | -               |
| 11    | AD2         | Address/Data bit 2             | 12 mA           |
| 12    | AD1         | Address/Data bit 1             | 12 mA           |
| 13    | AD0         | Address/Data bit 0             | 12 mA           |
| 14    | GND         | Ground                         | -               |
| 15    | ALE         | ALE input                      | -               |
| 16    | CEN         | Active low Chip Enable input   | -               |
| 17    | WEN         | Active low Write Enable input  | -               |
| 18    | OEN         | Active low Output Enable input | -               |
| 19-21 | VDD         | Power                          | -               |
| 22    | GND         | Ground                         | -               |
| 23    | TDO         | Reserved - No Connection       | -               |
| 24    | VDD         | Power                          | -               |
| 25    | GND         | Ground                         | -               |
| 26    | SYS_CLK     | 20 Mhz System Clock Input      | -               |
| 27    | GND         | Ground                         | -               |

### Table 3-1: Signal Summary

Table 3-1: Signal Summary (Continued)

| Pin # | Signal Name | ame Signal Function                                          |       |
|-------|-------------|--------------------------------------------------------------|-------|
| 28    | RESETN      | Asynchronous active low reset                                | -     |
| 29    | GND         | Ground                                                       | -     |
| 30    | INTR_OUT    | Interrupt Output                                             | 12 mA |
| 31    | PWM_CUR     | Pulsewidth Modulated Motor Phase Current Reference<br>Output | 12 mA |
| 32    | VDD         | Power                                                        | -     |
| 33    | GND         | Ground                                                       | -     |
| 34    | RED         | RED LED output                                               | 24 mA |
| 35    | YELLOW      | YELLOW LED output - Correction Active                        | 24 mA |
| 36    | GND         | Ground                                                       | -     |
| 37    | GREEN       | GREEN LED output - Power On & System OK                      | 24 mA |
| 38    | GND         | Ground                                                       | -     |
| 39    | OE          | Output Enable (OE) output                                    | 12 mA |
| 40*   | STEP_OUT    | Step Clock Output                                            | 24 mA |
| 41    | GND         | Ground                                                       | 24 mA |
| 42    | VDD         | Power                                                        | -     |
| 43*   | DIR_OUT     | Direction Output                                             | -     |
| 44    | LK_RTR      | Locked Rotor Output                                          | 12 mA |
| 45    | GND         | Ground                                                       | -     |
| 46    | ATN_OUT     | Attention Output                                             | 12 mA |
| 47    | GND         | Ground                                                       | -     |
| 48    | VDD         | Power                                                        | -     |
| 49    | GND         | Ground                                                       | -     |
| 50*   | DIR_IN      | Direction Input                                              | -     |
| 51*   | STEP_IN     | Step Clock Input                                             | -     |
| 52    | ST_EN       | Stop/Go/Bypass Input                                         | -     |
| 53    | VDD         | Power                                                        | -     |
| 54    | GND         | Ground                                                       | -     |
| 55    | ENC_B       | Encoder B Input                                              | -     |
| 56    | ENC_A       | Encoder A Input                                              | -     |
| 57    | GND         | Ground                                                       | -     |
| 58    | VDD         | Power                                                        | -     |
| 59-60 | GND         | Ground                                                       | -     |

Table 3-1: Signal Summary (Continued)

| Pin # | Signal Name | Signal Function          | Output<br>Drive |  |
|-------|-------------|--------------------------|-----------------|--|
| 61    | SOUT        | Reserved - No Connection | -               |  |
| 62    | GND         | Ground                   | -               |  |
| 63    | VDD         | Power                    | -               |  |
| 64    | GND         | Ground                   | -               |  |

\* Includes Clock Up / Clock Down and Quadrature Output Modes

### 3.3 Signal Descriptions

- **AD0 AD7** (address/data bits 0 7): address and data signals that are used when interfacing to a microcontroller. Both address and data are shared on the same signals. The address is latched first by exerting the ALE (Address Latch Enable) signal, followed by the data.
- ALE (Address Latch Enable): active high input pulse used for latching the address during a register access.
- CEN (Chip Enable): active low input used to enable access to the internal registers.
- WEN (Write Enable): active low input used to write data to the internal registers.
- **OEN** (Output Enable Input): active low input used to read data from the internal registers.
- SYS\_CLK (System Clock): 20 MHz System Clock.
- **RESETN** (Reset): asynchronous active low input used to reset the device. A minimum of 300 ns is required after the oscillator is operating.

**NOTE:** All internal registers are set to zero after a reset and must be configured before operating the device.

- **INTR\_OUT** (Interrupt Output): signals that a flag, or combination of flags, selected by the user has been set. This output can be configured to be active high or active low.
- **PWM\_CUR** (Motor Phase Current Reference Output): a pulsewidth modulated output that is used to control the phase current in the motor when in Variable Current Mode or when using current reduction when Fixed Current Mode is selected.
- **RED** (Red LED Output): can be configured by the user to flash an LED when the system detects an error has occurred.
- **YELLOW** (Yellow LED Output): can be connected to an LED to indicate that corrective action is being introduced by the ServoTrack IC.
- **GREEN** (Green LED Output): can be connected to an LED to indicate that power is on and the system is functioning properly.
- **OE** (Output Enable Output): goes high when writing to the registers in the ServoTrack IC is completed after a reset or power-up. One use for this output is to disable or tri-state outputs that need to be stable while on power-up.
- **STEP\_OUT** (Step Clock Output): It is used in conjunction with DIR\_OUT to incrementally move the motor position clockwise or counter-clockwise. The two signals can also be programmed to provide Clock Up / Clock Down and Quadrature Output modes.
- **DIR\_OUT** (Direction Output): used to indicate the required direction of the motor. It is used in conjunction with STEP\_OUT. The two signals can also be programmed to provide Clock Up / Clock Down and Quadrature Output modes.

The level of this signal, when used in Step Clock / Direction mode, can be inverted in the I/O configuration register (address 09).

- **LK\_RTR** (Locked Rotor Output): indicates when the pre-programmed time has expired after no movement of the rotor is detected, which occurs when a difference between the number of input step clocks and output step clocks exists.
- **ATN\_OUT** (Attention Output): used to signal that a flag or combination of flags, selected by the user, has been set.
- **DIR\_IN** (Direction Input): used by the System Controller to indicate the desired direction of motor rotation. When used in conjunction with STEP\_IN, the ServoTrack IC can be programmed to accept Clock Up / Clock Down or Quadrature inputs.

The active level of this input can be inverted by programming the I/O configuration register (address 09).

• **STEP\_IN** (Step Clock Input): used to increment the motor position. It is used in conjunction with DIR\_IN to move the motor clockwise or counter-clockwise. The two signals can also be programmed to provide Clock Up / Clock Down and Quadrature Output inputs.

The active level of this input can be inverted by programming the I/O configuration register (address 09).

- AS\_EN (Stop/Go/Bypass Input): used in Velocity and Torque modes. Starts or stops the internal Step Clock signal generator. In Step Clock and Direction mode, it is used to enable the ServoTrack IC correction circuitry or disable it and pass the Step Clock and Direction input signals to the Step Clock and Direction output pins unaltered.
- ENC\_B (Encoder B Input): connects to the B output of the incremental encoder.
- ENC\_A (Encoder A Input): connects to the A output of the incremental encoder.

#### 3.4 Absolute Maximum Rating Values

| Item                          |                           | Symbol           | Conditions                               | Ratings         | Units |
|-------------------------------|---------------------------|------------------|------------------------------------------|-----------------|-------|
| Power Supply volta            | age                       | V <sub>DD</sub>  | -                                        | -0.5 to<br>+4.6 | V     |
| Input voltage                 |                           | VI               | V <sub>I</sub> < V <sub>DD</sub> + 3.0 V | -0.5 to<br>+6.6 | V     |
| Output voltage                |                           | V <sub>O</sub>   | V <sub>O</sub> < V <sub>DD</sub> + 3.0 V | -0.5 to<br>+6.6 | V     |
| Output current                | I <sub>OL</sub> = 12.0 mA | Ι <sub>Ο</sub>   | -                                        | 40              | mA    |
|                               | I <sub>OL</sub> = 24.0 mA | Ι <sub>Ο</sub>   | -                                        | 75              | mA    |
| Operating ambient temperature |                           | T <sub>A</sub>   | -                                        | -40 to<br>+85   | °C    |
| Storage temperatu             | re                        | T <sub>stg</sub> | -                                        | -65 to<br>+150  | °C    |

Table 3-2: Absolute Maximum Rating Values

| NOTE: | Product quality may suffer if the absolute maximum rating is exceeded even momen-<br>tarily for any parameter. That is, the absolute maximum ratings are values at which<br>the product is on the verge of suffering physical damage, and therefore the product<br>must be used under conditions that ensure that the absolute maximum ratings are<br>not exceeded. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE: | 5V or 3.3V must be applied to the I/O pins only after applying the power supply volt-<br>age.                                                                                                                                                                                                                                                                       |

# 3.5 Recommended Operating Range

| Item                          | Symbol          | Conditions        | MIN. | TYP. | MAX. | Units |
|-------------------------------|-----------------|-------------------|------|------|------|-------|
| Power Supply voltage          | V <sub>DD</sub> | -                 | 3.0  | 3.3  | 3.6  | V     |
| High-level Input voltage      | V <sub>IH</sub> | 5V tolerant input | 2.0  | -    | 5.5  | V     |
| Low-level Input voltage       | V <sub>IL</sub> | 5V tolerant input | 0    | -    | 0.8  | V     |
| Input rise time               | t <sub>ri</sub> | -                 | 0    | -    | 200  | ns    |
| Input fall time               | t <sub>fi</sub> | -                 | 0    | -    | 200  | ns    |
| Operating ambient temperature | T <sub>A</sub>  | -                 | -40  | -    | +85  | °C    |

Table 3-3: Recommended Operating Range

### 3.6 DC Characteristics

| ltem                                  |              | Symbol           | Conditions                               | MIN.                  | TYP.     | MAX. | Units |
|---------------------------------------|--------------|------------------|------------------------------------------|-----------------------|----------|------|-------|
| Static current                        | consumption  | I <sub>DDS</sub> | $V_{I} = V_{DD}$ or GND                  | -                     | 2.0      | 300  | μA    |
| Active current<br>(Note 1)            | consumption  | I <sub>DDA</sub> | -                                        | -                     | -        | 48   | mA    |
| OFF-state out<br>(Note 2)             | put current  | I <sub>OZ</sub>  | $V_{O} = V_{DD}$ or GND                  | -                     | - ±10 μA |      | μA    |
| Output influx current<br>(Note 3)     |              | I <sub>R</sub>   | V <sub>O</sub> = 3.0 V                   | -                     | -        | 0.1  | μA    |
| Output short-circuit current (Note 4) |              | I <sub>OS</sub>  | V <sub>O</sub> = GND                     | -                     | -        | -250 | mA    |
| Input leakage                         | current      | I <sub>I</sub>   | $V_{I} = V_{DD} \text{ or } GND \pm 1.0$ |                       | μA       |      |       |
| Low-level                             | 12.0 mA type | I <sub>OL</sub>  | V <sub>OL</sub> = 0.4 V                  | 12.00                 | -        | -    | mA    |
| output<br>current                     | 24.0 mA type | I <sub>OL</sub>  | V <sub>OL</sub> = 0.4 V                  | 24.00                 | -        | -    | mA    |
| High-level                            | 12.0 mA type | I <sub>ОН</sub>  | V <sub>OH</sub> = 2.4 V                  | -3.00                 | -        | -    | mA    |
| output<br>current                     | 24.0 mA type | I <sub>ОН</sub>  | V <sub>OH</sub> = 2.4 V                  | -6.00                 | -        | -    | mA    |
| Low-level output voltage              |              | V <sub>OL</sub>  | I <sub>OL</sub> = 0 mA                   | -                     | -        | 0.1  | V     |
| High-level out                        | put voltage  | V <sub>OH</sub>  | I <sub>OH</sub> = 0 mA                   | V <sub>DD</sub> - 0.2 | -        | -    | V     |

#### Table 3-4: DC Characteristics

Notes 1. Outputs floating.

- 2. For 5 V tolerant three-state output buffers and I/O buffers, the OFF state current of the output increases slightly in order to bias the 5 V protection circuit.
- 3. If the 5 V tolerant output buffers are pulled up at a voltage higher than the supply voltage, a sink current flows from the output pins to the internal circuitry.
- 4. The output short-circuit time is 1 second or less per pin.



Figure 3-2. 5 V Tolerant Output Waveform

# **CHAPTER 4: Microcontroller Interface**

The ServoTrack IC contains a standard microcontroller parallel bus interface that is used for loading parameters, reading and writing data, and reading status information. Address and data share the same 8 bit parallel port.

The signals associated with reading and writing data are:

- ALE (address latch enable): used to latch the address prior to reading/writing the data.
- CEN (chip enable): used to select the ServoTrack IC.
- AD[7..0] (address/data bus): contains the 8 bit address and data.
- WEN (write enable): used to strobe the data into the ServoTrack IC.
- **OEN** (output enable): used to read the data from the ServoTrack IC into the microcontroller.

#### 4.1 Microcontroller Bus Timing



Figure 4-2. Write Cycle

# **CHAPTER 5: Hardware Interfaces**

#### 5.1 Variable Current Reference

The ServoTrack IC contains a pulsewidth modulated motor phase current reference output used to control the motor phase currents when Variable Current Mode is selected.

The following circuit can be used to generate a varying voltage reference proportional to the pulsewidth modulated output for use in controlling the motor phase currents:



Figure 5-1. Variable Current Reference Circuit

#### 5.2 Differential Encoder Interface

In many industrial environments, it may be beneficial to use a differential encoder to reduce the effects of noise generated by the equipment. The following circuit can be used to interface a typical 5 Vdc differential encoder with the ServoTrack IC:



Figure 5-2. Differential Encoder Circuit

# **CHAPTER 6: Command Details**

This section covers in detail the ServoTrack commands and associated register addresses.

#### 6.1 General Information

#### 6.1.1 Register Types

The following describes the types and behavior of the ServoTrack registers:

| Function | Туре              | Description                                                                                                   |
|----------|-------------------|---------------------------------------------------------------------------------------------------------------|
| Write    | Static            | Used to write a value to a register. Performing a read will return the last value written to the register.    |
| Write    | Dynamic           | Used to assign a value to a register. Performing a read will return a value that has been modified by events. |
| Write    | Self Clearing     | Used to generate strobes. Reads are undefined.                                                                |
| Read     | Dynamic           | Performing a read returns a value that has been modified exter-<br>nally. Writes have no effect.              |
| Read     | Write to<br>Clear | Used to read the logic state of a flag. A write will clear the flag.                                          |

**NOTE:** All register values are programmed in hex. Values shown in the following command details have been converted to decimal.

#### 6.1.2 Default Values after Reset / Power-up

| NOTE: | After a reset or on power up, all registers are set to zero and must be initialized.             |
|-------|--------------------------------------------------------------------------------------------------|
| NOTE: | The ServoTrack IC will not operate until all configuration registers have been initial-<br>ized. |

## 6.2 Current Control Registers

### 6.2.1 Run Current

| Register Name |       | Run Current                                                                                                                                                                           |  |  |  |
|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address       |       | 00 (1 Byte)                                                                                                                                                                           |  |  |  |
| Function      |       | Anti-stall disabled run current, anti-stall run current (fixed), anti-stall maxi-<br>mum current (variable).                                                                          |  |  |  |
| Range         |       | 0 - 255                                                                                                                                                                               |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                                         |  |  |  |
| Description   |       | Sets the maximum run current for anti-stall (disabled and enabled) fixed and variable current modes to a per cent. The counts are scaled where 255 = 100% current and 0 = 0% current. |  |  |  |
| Usago         | Read  | @00 Returns previous setting                                                                                                                                                          |  |  |  |
| Usage         | Write | @00 = 128 (set maximum run current to 128 counts, or approx. 50%)                                                                                                                     |  |  |  |

#### 6.2.2 Reduction Current

| Register | Name  | Reduction Current                                                                                   |  |  |  |
|----------|-------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Address  |       | 01 (1 Byte)                                                                                         |  |  |  |
| Functior | 1     | Anti-stall disabled reduction current, anti-stall hold current (fixed).                             |  |  |  |
| Range    |       | 0 - 255                                                                                             |  |  |  |
| Туре     |       | Write, Static                                                                                       |  |  |  |
| Descript | ion   | Sets the reduction current to a percent. The counts are scaled such that 255 counts = 100% current. |  |  |  |
| Usage    | Read  | @01 Returns previous setting                                                                        |  |  |  |
| Usaye    | Write | @01 = 64 (Set the reduction current to 64 counts or 25%)                                            |  |  |  |
| Notes    |       | Not used with anti-stall variable current mode.                                                     |  |  |  |

### 6.2.3 Fixed Hold Current Delay Time

| Register Name |       | Fixed Hold Current Delay Time                                                                                                                                                                                                                                                           |  |  |  |
|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address       | 6     | 02 (2 Bytes)                                                                                                                                                                                                                                                                            |  |  |  |
| Functio       | n     | Delay time (milliseconds) to shift to Hold current.                                                                                                                                                                                                                                     |  |  |  |
| Range         |       | 0, 2 - 65535                                                                                                                                                                                                                                                                            |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                                                                                                                                           |  |  |  |
| Description   |       | Specifies the delay time (milliseconds) before shifting to the reduction cur-<br>rent setting. Used with anti-stall (off) mode and anti-stall (fixed) mode.<br>The range is 2 ms to 65535 ms, with an accuracy of +0/-1 ms.<br>With a setting of zero (0), the current will not reduce. |  |  |  |
| Read          |       | @02 Returns previous setting                                                                                                                                                                                                                                                            |  |  |  |
| Usage         | Write | @02 = 1000 (Set fixed hold current delay time to 1000 ms) Auto writes into registers when most significant byte is written.                                                                                                                                                             |  |  |  |

#### 6.2.4 Torque Current

| Register Name |       | Torque Current                                                                                                                                                       |  |  |  |  |
|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address       | 6     | 04 (1 Byte)                                                                                                                                                          |  |  |  |  |
| Functio       | n     | Torque mode current setting.                                                                                                                                         |  |  |  |  |
| Range         |       | 0 - 255                                                                                                                                                              |  |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                        |  |  |  |  |
|               |       | Specifies the maximum current for torque mode operation.                                                                                                             |  |  |  |  |
| Descrip       | tion  | The relationship between current and torque output is approximately linear, therefore 75% current will equal approximately 75% of holding torque output to the load. |  |  |  |  |
|               |       | The counts are scaled such that 255 counts = 100% torque current.                                                                                                    |  |  |  |  |
| Usage         | Read  | @04 Returns previous setting.                                                                                                                                        |  |  |  |  |
| Usaye         | Write | @04 = 128 (Set torque current to 128 counts or 50%)                                                                                                                  |  |  |  |  |

#### 6.2.5 Calibration Current

| Register Name |       | Calibration Current                                                                                                                                                                                    |  |  |  |
|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address       |       | 05 (1 Byte)                                                                                                                                                                                            |  |  |  |
| Functio       | n     | Calibration current in percent.                                                                                                                                                                        |  |  |  |
| Range         |       | 0 - 255                                                                                                                                                                                                |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                                                          |  |  |  |
| Descrip       | tion  | Specifies the current used for calibrating the rotor-stator relationship.<br>The counts are scaled such that 255 counts = 100% calibration current. Cal-<br>ibration current is typically set to 100%. |  |  |  |
| Read          |       | @05 Returns previous setting.                                                                                                                                                                          |  |  |  |
| Usage         | Write | @05 = 255 (Set calibration current to 100%)                                                                                                                                                            |  |  |  |

# 6.3 I/O Configuration Registers

#### 6.3.1 I/O Inversions and Corrections

| Register Name |       | I/O configuration                                                                                                                                              |  |  |  |  |
|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address       |       | 09 (1 Byte)                                                                                                                                                    |  |  |  |  |
| Functio       | n     | Inverts clock I/O and corrects for incorrect encoder and motor direction.                                                                                      |  |  |  |  |
| Range         |       | See Figure 6-1. Register values will read and write as the hex value of the set bits.                                                                          |  |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                  |  |  |  |  |
|               |       | Figure 6-1 shows the bit positions for this command. By setting three bits to 1, the step and direction inputs may be inverted, the direction output inverted. |  |  |  |  |
| Descrip       | tion  | Using the correct encoder and motor direction bits can correct for issues such as motor phases and encoder channels being swapped in error in wiring.          |  |  |  |  |
|               |       | The bit for Select Motion Source is used to select either the Step Clock input (0) or the internal oscillator (1).                                             |  |  |  |  |
| lleage        | Read  | @09 Returns previous setting.                                                                                                                                  |  |  |  |  |
| Usage         | Write | @09 = 16 (correct encoder direction)                                                                                                                           |  |  |  |  |

| MSb       |                      |                            |         |       |                            | LSb   |
|-----------|----------------------|----------------------------|---------|-------|----------------------------|-------|
| Direction | Invert<br>Step<br>In | Invert<br>Direction<br>Out | Encoder | Motor | Select<br>Motion<br>Source | <br>_ |

Figure 6-1. I/O Inversions and Corrections Bit Positions

### 6.3.2 Step Output Pulse Width

| Register Name |       | Step Pulse Width                                                                                                                                                                                                  |  |  |  |  |
|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address       |       | 0A (1 Byte)                                                                                                                                                                                                       |  |  |  |  |
| Functio       | n     | Sets the pulse width of the Step Clock output in ns/ $\mu$ s                                                                                                                                                      |  |  |  |  |
| Range         |       | 0 - 255 (100 ns to 12.85 μs)                                                                                                                                                                                      |  |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                                                                     |  |  |  |  |
| Description   |       | This register is used to control the pulse width of the output clock to the driver. When 0, the pulse width is 100 ns (5 MHz). The frequency may be stepped down in 50 ns increments to 12.85 $\mu$ s (38.8 kHz). |  |  |  |  |
| lleago        | Read  | @0A Returns previous setting.                                                                                                                                                                                     |  |  |  |  |
| Usage         | Write | @0A = 255 (set output clock width to 12.85 μs)                                                                                                                                                                    |  |  |  |  |

| Registe     | r Name | Inpu                                             | Input Filtering                                                                                                                                                                                                                                                                   |        |                                 |  |  |  |  |
|-------------|--------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|--|--|--|--|
| Address     | 6      | 0B (                                             | 0B (1 Byte)                                                                                                                                                                                                                                                                       |        |                                 |  |  |  |  |
| Functio     | n      | Sets                                             | Sets the filtering for the step and direction inputs and the encoder inputs.                                                                                                                                                                                                      |        |                                 |  |  |  |  |
| Range       |        | 50n                                              | s to 12.9 µs (10 MHz to 38.8                                                                                                                                                                                                                                                      | kHz    | :)                              |  |  |  |  |
| Туре        |        | Writ                                             | e, Static                                                                                                                                                                                                                                                                         |        |                                 |  |  |  |  |
| Description |        | Inp<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1       150ns/3.3MHz       1       150ns/3.3MHz         2       200ns/2.5MHz       2       200ns/2.5MHz         3       300ns/1.67MHz       3       300ns/1.67MHz         4       500ns/1.0MHz       4       500ns/1.0MHz         5       900ns/555kHz       5       900ns/555kHz |        |                                 |  |  |  |  |
|             |        | 9                                                | 6.5µs/76.9kHz<br>12.9µs/38.8kHz                                                                                                                                                                                                                                                   | 8<br>9 | 6.5µs/76.9kHz<br>12.9µs/38.8kHz |  |  |  |  |
| Usage       |        |                                                  | B Returns previous setting.<br>B = 33 (set step/direction and                                                                                                                                                                                                                     | d en   | coder filtering to 300 ns)      |  |  |  |  |

### 6.3.3 Step/Direction and Encoder Input Filtering

|                       | LSb    |
|-----------------------|--------|
| Filter Encoder Inputs |        |
| 0 - 9h                |        |
| 10 MHz - 38.8 kHz     |        |
|                       | 0 - 9h |

Figure 6-2. I/O Filtering

### 6.3.4 Attention Output

| Registe                                                                        | Attention output |                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address                                                                        | 0C (1 Byte)      |                                                                                                                                                                                                 |
| Functio                                                                        | n                | Register settings determine which conditions will cause the activation of the attention output.                                                                                                 |
| RangeSee Figure 6-3. Register will read and write as the hex value of<br>bits. |                  |                                                                                                                                                                                                 |
| Туре                                                                           |                  | Write, Static                                                                                                                                                                                   |
| Description                                                                    |                  | <ul><li>This register controls which conditions activate the attention output.</li><li>These conditions are:</li><li>1. Lag limit reached</li><li>2. Lead limit reached</li></ul>               |
|                                                                                |                  | <ol> <li>Calibration active</li> <li>Locked rotor</li> <li>Position maintenance active</li> <li>ServoTrack active</li> <li>Register will read and write as the binary coded decimal.</li> </ol> |
| Usage                                                                          | Read             | @0C Returns previous setting.                                                                                                                                                                   |
|                                                                                | Write            | @0C = 48 (Attention out active when lag and lead limit is reached)                                                                                                                              |

| MSb |   |                       |                                       | LSb                  |
|-----|---|-----------------------|---------------------------------------|----------------------|
| _   | 0 | Calibration<br>Active | <br>Position<br>Maintenance<br>Active | ServoTrack<br>Active |

Figure 6-3. Attention Output Control Bit Positions

#### 6.3.5 Error LED

| Register Name |       | Error LED                                                             |
|---------------|-------|-----------------------------------------------------------------------|
| Address       | 5     | 0E (1 Byte)                                                           |
| Functio       | n     | Flashes error LED output.                                             |
| Range         |       | _                                                                     |
| Туре          |       | Write, Static                                                         |
| Description   |       | By setting the LSb of this register, the Error LED output will flash. |
| lleage        | Read  | @0E Returns previous setting.                                         |
| Usage         | Write | @0E = 01 (Flash Error LED)                                            |

| MSb |      |   |   |       | LSb                |
|-----|------|---|---|-------|--------------------|
| _   | <br> | _ | _ | <br>_ | Flash Error<br>LED |

Figure 6-4. Flash Error LED Bit Position

# 6.4 Velocity Configuration Registers

## 6.4.1 Initial Velocity

| Register Name |       | Initial Velocity                                                                                                                                                                                                                                                                                                                                          |
|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address       |       | 10 (4 Bytes)                                                                                                                                                                                                                                                                                                                                              |
| Function      |       | Sets the initial (startup) velocity of the axis.                                                                                                                                                                                                                                                                                                          |
| Range         |       | 0 – 8388608 (0 – 5 x 10 <sup>6</sup> steps/second@ 0.596 step/second resolution)                                                                                                                                                                                                                                                                          |
| Туре          |       | Write, Static                                                                                                                                                                                                                                                                                                                                             |
| Description   |       | Initial or startup velocity for all motion commands. The factory default value<br>is 0 clock pulses (steps) per second. The initial velocity for a stepper<br>should be set to avoid the low speed resonance frequency and must be set<br>lower than the pull in torque of the motor. It must also be set to a value<br>lower than the terminal velocity. |
|               |       | Example: to set startup velocity to 1000 steps/second 1000 / 0.596 = 1678.                                                                                                                                                                                                                                                                                |
| Usage         | Read  | @10 Returns previous setting.                                                                                                                                                                                                                                                                                                                             |
|               | Write | @10 = 1678 (set startup velocity to 1000 steps/sec)                                                                                                                                                                                                                                                                                                       |

### 6.4.2 Terminal Velocity

| Register Name |       | Terminal Velocity                                                                                                                                                                                                              |
|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address       |       | 14 (4 Bytes)                                                                                                                                                                                                                   |
| Functio       | n     | Sets the terminal (maximum) velocity of the axis.                                                                                                                                                                              |
| Range         |       | 0 – 8388608 (0 – 5 x 10 <sup>6</sup> steps/second@ 0.596 step/second resolution)                                                                                                                                               |
| Туре          |       | Write, Static                                                                                                                                                                                                                  |
| Description   |       | 0x14 specifies the maximum velocity in steps/counts per second that the axis will reach during a move command. Must be greater than initial velocity.<br>Example: to set terminal velocity to 51200 steps/sec, 51200 / 0.596 = |
|               |       | 85906.                                                                                                                                                                                                                         |
| Usage         | Read  | @14 Returns Previous Setting                                                                                                                                                                                                   |
|               | Write | @14 = 85906 (set terminal velocity to 51200 steps/sec)                                                                                                                                                                         |

#### 6.4.3 Deceleration

| Register Name |       | Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address       | 6     | 18 (4 Bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Functio       | n     | Set axis deceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Range         |       | $0 - 16777215$ (90.9 to 1.5 x $10^9$ steps/sec <sup>2</sup> ) by 90.95 increments.                                                                                                                                                                                                                                                                                                                                                                              |
| Туре          |       | Write, Static                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Description   |       | This register sets the deceleration of the device in steps per second <sup>2</sup> . If set to 76800 steps per second <sup>2</sup> the motor would decelerate at a rate of 76800 steps per second, every second.<br>If the device was running at a maximum velocity of 768000 microsteps per second it would take 10 seconds to decelerate if terminal velocity=0.<br>Example: to set deceleration to 768000 steps/second <sup>2</sup> , 768000 / 90.95 = 8444. |
| Usage         | Read  | @18 Returns Previous Setting                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | Write | @18 = 8444 (set decel to 768000 steps/second <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                     |
#### 6.4.4 Acceleration

| Register Name |       | Acceleration                                                                                                                                                                                                                                                                                           |  |  |  |
|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address       | 5     | 1C (4 Bytes)                                                                                                                                                                                                                                                                                           |  |  |  |
| Functio       | n     | Set axis acceleration.                                                                                                                                                                                                                                                                                 |  |  |  |
| Range         |       | 0 – 16777215 (90.9 to 1.5 x 10 <sup>9</sup> steps/sec <sup>2</sup> ) by 90.95 increments.                                                                                                                                                                                                              |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                                                                                                                                                          |  |  |  |
| Description   |       | This register sets the acceleration of the device in steps per second <sup>2</sup> . If set to 76800 steps per second <sup>2</sup> the motor would accelerate at a rate of 76800 steps per second, every second.<br>Example: to set accel to 768000 steps/second <sup>2</sup> , 768000 / 90.95 = 8444. |  |  |  |
|               |       | Example: to set accel to 768000 steps/second <sup>-</sup> , $768000790.95 = 8444$ .                                                                                                                                                                                                                    |  |  |  |
| Usage         | Read  | @1C Returns Previous Setting                                                                                                                                                                                                                                                                           |  |  |  |
|               | Write | @1C = 8444 (set decel to 768000 steps/sec <sup>2</sup> )                                                                                                                                                                                                                                               |  |  |  |

### 6.4.5 Current Velocity

| Register Name |       | Read Current Velocity                                                                                                                                                                    |  |  |  |  |
|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address       | 6     | 20 (4 Bytes)                                                                                                                                                                             |  |  |  |  |
| Functio       | n     | Register holds the current velocity of the motor.                                                                                                                                        |  |  |  |  |
| Range         |       | 0 – 8388608                                                                                                                                                                              |  |  |  |  |
| Туре          |       | Read, Dynamic                                                                                                                                                                            |  |  |  |  |
| Description   |       | The current velocity of the axis is stored with a resolution of 0.596 steps/<br>second<br>It is calculated as <reg value=""> x 0.596 = <velocity in="" sec="" steps=""></velocity></reg> |  |  |  |  |
| Usaga         | Read  | @20 = Currrent motor velocity                                                                                                                                                            |  |  |  |  |
| Usage         | Write | —                                                                                                                                                                                        |  |  |  |  |

## 6.4.6 Velocity Strobes

| Registe | r Name | Velocity Strobes                                                                                                        |  |  |  |
|---------|--------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address | 6      | 24 (1 Byte)                                                                                                             |  |  |  |
| Functio | n      | Used to strobe in velocity settings or read the current velocity.                                                       |  |  |  |
| Range   |        | See Figure 6-5. Register values will read and write as the hex value of the set bits.                                   |  |  |  |
| Туре    |        | Write, Self Clearing                                                                                                    |  |  |  |
| Descrip | tion   | By setting bits within the register parameter, information is written into the internal registers of the ServoTrack IC. |  |  |  |
|         |        | The register is also used to capture the current velocity of the motor.                                                 |  |  |  |
| Default |        | —                                                                                                                       |  |  |  |
| lleere  | Read   | -                                                                                                                       |  |  |  |
| Usage   | Write  | @24 =20 (write terminal (high) velocity into the velocity register)                                                     |  |  |  |

| MSb          | MSb          |              |               |   |   |   |             |  |  |
|--------------|--------------|--------------|---------------|---|---|---|-------------|--|--|
| Write Strobe | Write Strobe | Write Strobe | Write Strobe  |   |   |   | Read Strobe |  |  |
| Acceleration | Deceleration | Terminal     | Initial (Low) | _ | _ | — | Current     |  |  |
|              |              | (High)       | (Velocity     |   |   |   | Velocity    |  |  |
|              |              | Velocity     |               |   |   |   | -           |  |  |

Figure 6-5. Velocity Strobe Bit Positions

# 6.4.7 Motor Settling Delay Time

| Register Name |       | Motor Settling Delay                                                                                                                                                                    |  |  |  |
|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address       | 5     | 25 (2 Bytes)                                                                                                                                                                            |  |  |  |
| Function      |       | The motor settling delay time allows the motor time to settle into position between moves.                                                                                              |  |  |  |
| Range         |       | 0 to 65000 ms                                                                                                                                                                           |  |  |  |
| Туре          |       | Write, Static                                                                                                                                                                           |  |  |  |
| Description   |       | Specifies the motor settling delay time in milliseconds. This register allows the motor to settle following a move. This is the time between moves if consecutive motions are executed. |  |  |  |
|               | Read  | @25 Returns Previous Setting                                                                                                                                                            |  |  |  |
| Usage         | Write | @25=5000 (set motor settling delay time to 5000 ms). Auto writes into reg-<br>isters when most significant byte is written.                                                             |  |  |  |

## 6.4.8 Velocity Flags

| Registe     | r Name | Velocity Flags                                                                                                                                  |  |  |  |  |
|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address     | 5      | 27 (1 Byte)                                                                                                                                     |  |  |  |  |
| Functio     | n      | Status of velocity functions.                                                                                                                   |  |  |  |  |
| Range       |        | See Figure 6-6. Register values will read and write as the hex value of the set bits.                                                           |  |  |  |  |
| Туре        |        | Read, Write to Clear                                                                                                                            |  |  |  |  |
| Description |        | This register contains the status of the flags set by the ServoTrack IC for completion of motor settling delay, deceleration, and acceleration. |  |  |  |  |
| Usage       | Read   | @27 =04 (Deceleration complete)                                                                                                                 |  |  |  |  |
| USaye       | Write  | @27=00 (clear flags)                                                                                                                            |  |  |  |  |

MSb

LSb

|   |   |   |   |   |          |              |              | 200 |
|---|---|---|---|---|----------|--------------|--------------|-----|
| ſ |   |   |   |   | Motor    | Deceleration | Acceleration |     |
|   | _ | — | _ | _ | Settling | Complete     | Complete     | _   |
|   |   |   |   |   | Delay    | -            | -            |     |
|   |   |   |   |   | Complete |              |              |     |
|   |   |   |   |   |          | •            |              |     |

| Figure 6-6. Vel | ocity Status Flag | Bit Positions |
|-----------------|-------------------|---------------|
|-----------------|-------------------|---------------|

## 6.4.9 Velocity Flags Mask

| Registe     | r Name | Velocity Flags Mask                                                                                 |  |  |  |  |
|-------------|--------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Address     | 5      | 28 (1 Byte)                                                                                         |  |  |  |  |
| Functio     | n      | Enable velocity status bits for interrupt generation.                                               |  |  |  |  |
| Range       |        | See Figure 6-7. Register values will read and write as the hex value of the set bits.               |  |  |  |  |
| Туре        |        | Write, Static                                                                                       |  |  |  |  |
| Description |        | By setting the corresponding mask bit, an interrupt will be generated upon completion of the event. |  |  |  |  |
| Usage       | Read   | @28 Returns Previous Setting                                                                        |  |  |  |  |
| USaye       | Write  | @28=02 (Enable interrupt generation upon completion of acceleration)                                |  |  |  |  |

| MSb |      |   |   |          |                                      | LSb |
|-----|------|---|---|----------|--------------------------------------|-----|
| _   | <br> | _ | 0 | Complete | Acceleration<br>Complete<br>Mask Bit |     |

Figure 6-7. Velocity Status Flags Interrupt Mask Bit Positions

## 6.4.10 Velocity and Torque Control

| Register Name |       | Velocity and Torque Mode Action                                                                                                                                |  |  |  |  |
|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address       | 6     | 29 (1 Byte)                                                                                                                                                    |  |  |  |  |
| Function      |       | Controls the direction, initiation and cessation of a motion for velocity and torque mode operation.                                                           |  |  |  |  |
| Range         |       | See Figure 6-8. Register values will read and write as the hex value of the set bits.                                                                          |  |  |  |  |
| Туре          |       | Write, Dynamic                                                                                                                                                 |  |  |  |  |
| Description   |       | This register controls the motion and direction of motion for torque and velocity mode operation.<br>Register will read and write as the binary coded decimal. |  |  |  |  |
| Usage         | Read  | @29 Returns a value that is modified by events                                                                                                                 |  |  |  |  |
|               | Write | @29=128 (abort motion)                                                                                                                                         |  |  |  |  |

| MSb             |  |                        |                   |   | LSb         |
|-----------------|--|------------------------|-------------------|---|-------------|
| Abort<br>Motion |  | Direction of<br>Motion | Current<br>Motion | _ | <br>Suspend |

Figure 6-8. Velocity and Torque Mode Control Bit Positions

# 6.5 ServoTrack Configuration Registers

### 6.5.1 Set Microstep Resolution

| Registe       | r Name | Microstep Resolution Select                                                                                                          |  |  |
|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address       |        | 30 (1 Byte)                                                                                                                          |  |  |
| Function      |        | Sets the ServoTrack to match the step resolution of the driver.                                                                      |  |  |
| Range         |        | See Figure 6-9. Register values will read and write as the hex value of the set bits.                                                |  |  |
| Туре          |        | Read/Write, Static                                                                                                                   |  |  |
| Descrip       | tion   | This register stores the step resolution of your driver. This MUST match the microstep setting of the driver for proper step factor. |  |  |
| Read<br>Usage |        | @30 Returns Previous Setting                                                                                                         |  |  |
| Usaye         | Write  | @30 =3 (Set resolution to 3200 steps/rev)                                                                                            |  |  |

#### **Binary Resolution Parameters**

| µsteps/step |            | 16   | 32   | 64    | 128   | 256   |
|-------------|------------|------|------|-------|-------|-------|
| @30=        |            | 3    | 4    | 5     | 6     | 7     |
| 1.8° motor  | steps/rev. | 3200 | 6400 | 12800 | 25600 | 51200 |

### **Decimal Resolution Parameters**

| µsteps/step           | 10 | 25   | 50   | 100   | 125   | 200   | 250   |       |
|-----------------------|----|------|------|-------|-------|-------|-------|-------|
| @30=                  |    | 9    | 10   | 11    | 18    | 12    | 20    | 13    |
| 1.8° motor steps/rev. |    | 2000 | 5000 | 10000 | 20000 | 25000 | 40000 | 50000 |

### **Special Resolution Parameters**

| µsteps/step | 108                       | 127                   | 180                |
|-------------|---------------------------|-----------------------|--------------------|
| @30=        | 21                        | 19                    | 17                 |
| 1.8° motor  | 21600 (1 arc/minute/step) | 25400 (0.001 mm/step) | 36000 (0.01°/step) |

| MSb |   |                                  |                              |                              |                              | LSb                          |
|-----|---|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| _   | _ | <br>Microstep<br>Select<br>Bit 4 | Microstep<br>Select<br>Bit 3 | Microstep<br>Select<br>Bit 2 | Microstep<br>Select<br>Bit 1 | Microstep<br>Select<br>Bit 0 |

Figure 6-9. Microstep Resolution Selection Register Bit Positions

### 6.5.2 ServoTrack Settings

| Register Name |       | ServoTrack Settings                                                            | Servo Irack Settings                                                                                                                                                                         |  |  |  |  |
|---------------|-------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address       |       | 31 (1 Byte)                                                                    |                                                                                                                                                                                              |  |  |  |  |
| Functio       | n     | Hold settings.                                                                 |                                                                                                                                                                                              |  |  |  |  |
| Range         |       | See Figure 6-10. Register will read and                                        | write as the binary coded decimal.                                                                                                                                                           |  |  |  |  |
| Туре          |       | Read/Write, Static                                                             |                                                                                                                                                                                              |  |  |  |  |
| Description   |       | Encoder Resolution 31                                                          | Sets the ServoTrack encoder<br>resolution to match the resolu-<br>tion of the installed encoder.<br>Required for proper step factor.<br>Default=512 lines (0x6)<br>See Table 6-1 on page 38. |  |  |  |  |
|               |       | Motor Resolution                                                               | 1 – 0.9, 0 – 1.8                                                                                                                                                                             |  |  |  |  |
|               |       | Motor Lead/Lag Bounds 10                                                       | 00=1.1, 01=1.3, 10=1.5, 11=1.7<br>full steps                                                                                                                                                 |  |  |  |  |
|               |       | ServoTrack Enable                                                              | 1 – Enable, 0 – Disable                                                                                                                                                                      |  |  |  |  |
|               | Read  | @31 Returns Previous Setting                                                   |                                                                                                                                                                                              |  |  |  |  |
| Usage         | Write | @31 =231 (ServoTrack enabled, bounds=1.7, 1.8 degree motor, 1000 line encoder) |                                                                                                                                                                                              |  |  |  |  |

| MSb                  |          |                               |                     |                            |                                | LSb                        |
|----------------------|----------|-------------------------------|---------------------|----------------------------|--------------------------------|----------------------------|
| ServoTrack<br>Enable | Lead/Lag | Motor<br>Lead/Lag<br>Bounds 2 | Motor<br>Resolution | Encoder<br>Resolution<br>3 | <br>Encoder<br>Resolution<br>1 | Encoder<br>Resolution<br>0 |

Figure 6-10. ServoTrack Settings

| Encoder Line<br>Count | ER 3 | ER 2 | ER 1 | ER 0 |
|-----------------------|------|------|------|------|
| 100                   | 0    | 0    | 0    | 0    |
| 200                   | 0    | 0    | 0    | 1    |
| 250                   | 0    | 0    | 1    | 0    |
| 256                   | 0    | 0    | 1    | 1    |
| 400                   | 0    | 1    | 0    | 0    |
| 500                   | 0    | 1    | 0    | 1    |
| 512                   | 0    | 1    | 1    | 0    |
| 1000                  | 0    | 1    | 1    | 1    |
| 1024                  | 1    | 0    | 0    | 0    |

Table 6-1: Encoder Resolutions

## 6.5.3 Position Lead/Lag Error

| Register | r Name | Position Lead/Lag Error                                                                                                                             |  |  |  |
|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address  |        | 32 (4 Bytes)                                                                                                                                        |  |  |  |
| Function |        | Holds the position lead lag error.                                                                                                                  |  |  |  |
| Range    |        | 0 - 2147483647, -2147483647 - 0 (+/- 2.1 x 10 <sup>9</sup> ) counts.                                                                                |  |  |  |
| Туре     |        | Read, Dynamic                                                                                                                                       |  |  |  |
| Descript | tion   | Signed 32 bit register represents position of stator relative to commanded position. A positive value represents lag behind the commanded position. |  |  |  |
| Usage    | Read   | @32 Returns position Lead/Lag error (must be manually strobed)                                                                                      |  |  |  |
| Usaye    | Write  | -                                                                                                                                                   |  |  |  |

## 6.5.4 Set Lag Limit

| Register Name  |  | Lag Limit                                                                                                                                                           |
|----------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address        |  | 36 (4 Bytes)                                                                                                                                                        |
| Function       |  | Sets the rotor lag limit.                                                                                                                                           |
| Range          |  | 0 - 2147483647 (2.1 x 10 <sup>9</sup> ) counts.                                                                                                                     |
| Туре           |  | Write, Static                                                                                                                                                       |
| Description    |  | 32 bit register sets the position lag limit (position of stator behind com-<br>manded position).                                                                    |
| Read           |  | @36 Returns previous setting                                                                                                                                        |
| Usage<br>Write |  | @36=204800 (Set position lag limit to 4 motor revolutions or 204800 steps at 256 microsteps/rev). Auto writes into registers when most significant byte is written. |

#### 6.5.5 Set Lead Limit

| Register Name  |     | Lead Limit                                                                                                                                                           |  |  |  |
|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address        |     | 3A (4 Bytes)                                                                                                                                                         |  |  |  |
| Function       |     | Sets the rotor lead limit.                                                                                                                                           |  |  |  |
| Range          |     | 0 - 2147483647 (2.1 x 10 <sup>9</sup> ) counts.                                                                                                                      |  |  |  |
| Туре           |     | Write, Static                                                                                                                                                        |  |  |  |
| Descript       | ion | 32 bit register sets the position lead limit (position of stator ahead of com-<br>manded position).                                                                  |  |  |  |
| Read           |     | @3A Returns previous setting                                                                                                                                         |  |  |  |
| Usage<br>Write |     | @3A=204800 (Set position lead limit to 4 motor revolutions or 204800 steps at 256 microsteps/rev). Auto writes into registers when most significant byte is written. |  |  |  |



Figure 6-11. Make-up Steps

## 6.5.6 Set Make-Up Frequency

| Register Name |       | Make-up Frequency                                                                                                                                                 |  |  |
|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address       |       | 3E (2 Bytes)                                                                                                                                                      |  |  |
| Function      |       | Sets the frequency (period) for position maintenance if maximum system speed is not used.                                                                         |  |  |
| Range         |       | 0 - 65535                                                                                                                                                         |  |  |
| Туре          |       | Write, Static                                                                                                                                                     |  |  |
| Description   |       | This represents how fast position maintenance (step make up) will occur.<br>To calculate the period from the desired frequency: Period=(1/Frequency in GHz)/50 ns |  |  |
| Read          |       | @3E Returns previous setting                                                                                                                                      |  |  |
| Usage         | Write | @3E=2,000 (Set make-up frequency to 10,000 steps/sec). Auto writes into registers when most significant byte is written.                                          |  |  |

| 6.5.7 | Miscellaneous | ServoTrack Flags |
|-------|---------------|------------------|
|       |               |                  |

| Register | Name  | ServoTra          | ServoTrack Flags                                                                       |  |  |  |  |  |  |
|----------|-------|-------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Address  | ;     | 40 (1 Byte)       |                                                                                        |  |  |  |  |  |  |
| Function | า     | Controls          | various ServoTrack functions.                                                          |  |  |  |  |  |  |
| Range    |       | See Figu<br>bits. | See Figure 6-12. Register values will read and write as the hex value of the set bits. |  |  |  |  |  |  |
| Туре     |       | Mixed             |                                                                                        |  |  |  |  |  |  |
| Descript | tion  | Bit 7             | Strobes the register to read states (Write, Self Clear)                                |  |  |  |  |  |  |
|          |       | Bit 6             | Bit 6 Make up active? 0=No, 1=Yes (Read only)                                          |  |  |  |  |  |  |
|          |       | Bit 5             | t 5 Current Mode: 0=Fixed, 1=Variable (Read/Write)                                     |  |  |  |  |  |  |
|          |       | Bit 4             | 4 Torque mode: ON/OFF: 0=OFF, 1=ON (Read/Write)                                        |  |  |  |  |  |  |
|          |       | Bit 3             | Start Torque Mode: 0=No, 1=Yes (Read/Write)                                            |  |  |  |  |  |  |
|          |       | Bit 2             | Clear Position Error: 0=No, 1=Yes (Read/Write, Self Clear)                             |  |  |  |  |  |  |
|          |       | Bit 1             | Cease Make-up steps: 0=No, 1=Yes (Read/Write)                                          |  |  |  |  |  |  |
|          |       | Bit 0             | Use Make-up Freq? 0=No, 1=Yes (Read/Write)                                             |  |  |  |  |  |  |
| Usage    | Read  | @40 Re            | turns status and previous set values                                                   |  |  |  |  |  |  |
| Usaye    | Write | @40=32            | ? (Set current mode to variable).                                                      |  |  |  |  |  |  |

| MSb         |             |           |               |              |             |              | LSb          |
|-------------|-------------|-----------|---------------|--------------|-------------|--------------|--------------|
| Read Strobe | Make-up     | Current   | Anti-stall or | Start Torque | Clear       | Stop         | Set Make-up  |
| (wr, self   | Active (rd, | Mode (wr, | Torque Mode   | Operation    | Position    | Make-up      | Frequency    |
| clear)      | dynamic)    | static)   | (wr, static)  | (wr, static) | Error (wr,  | (wr, static) | (wr, static) |
|             |             |           | . ,           | . ,          | self clear) | . ,          | . ,          |

Figure 6-12. Miscellaneous ServoTrack Flags

#### 6.5.8 Calibration Time

| Register | r Name | Calibration Time                                                                                              |  |  |  |
|----------|--------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Address  | 5      | 41 (2 Bytes)                                                                                                  |  |  |  |
| Function |        | Sets the countdown timer for calibration.                                                                     |  |  |  |
| Range    |        | 2 - 65535 ms                                                                                                  |  |  |  |
| Туре     |        | Write, Static                                                                                                 |  |  |  |
| Descript | tion   | Sets the time for calibration to occur in ms.                                                                 |  |  |  |
| Read     |        | @41 Returns previous setting                                                                                  |  |  |  |
| Usage    | Write  | @41=500 (Set timed calibration for 500 ms). Auto writes into registers when most significant byte is written. |  |  |  |

#### 6.5.9 Locked Rotor Timeout

| Register | r Name | Locked Rotor Timeout                                                                                                                                                                |  |  |  |  |
|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address  | 5      | 43 (2 Bytes)                                                                                                                                                                        |  |  |  |  |
| Function | n      | Sets the countdown timer for locked rotor condition.                                                                                                                                |  |  |  |  |
| Range    |        | 0, 2 - 65535 ms                                                                                                                                                                     |  |  |  |  |
| Туре     |        | Write, Static                                                                                                                                                                       |  |  |  |  |
| Descript | tion   | When there is no rotor movement this register holds the time in millisec-<br>onds between no rotor movement; locked rotor will be indicated.<br>If set to 0, the timer is disabled. |  |  |  |  |
|          | Read   | @43 Returns previous setting                                                                                                                                                        |  |  |  |  |
| Usage    | Write  | @43=3000 (Set locked rotor timeout to 3000 ms). Auto writes into registers when most significant byte is written.                                                                   |  |  |  |  |

## 6.5.10 ServoTrack Status Flags

| Register | Name  | ServoTrack    | ServoTrack Status Flags                                                                                                                                                                                                                            |  |  |  |  |  |  |
|----------|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Address  |       | 45 (1 Byte)   | 45 (1 Byte)                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Functior | า     | Reads state   | Reads state of various ServoTrack status flags.                                                                                                                                                                                                    |  |  |  |  |  |  |
| Range    |       | See Figure    | See Figure 6-13. Register values will read and write as the hex value of the set bits                                                                                                                                                              |  |  |  |  |  |  |
| Туре     |       | Read, Dynamic |                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Descript | ion   | Bit 7         | Indicates that calibration is complete.                                                                                                                                                                                                            |  |  |  |  |  |  |
|          |       | Bit 6         | Indicates that the encoder line count is correct.                                                                                                                                                                                                  |  |  |  |  |  |  |
|          |       | Bit 5         | Indicates that the encoder direction is correct.                                                                                                                                                                                                   |  |  |  |  |  |  |
|          |       | Bit 4         | In anti-stall mode this flag will assert whenever the Servo-<br>Track is actively preventing loss of synchronization.<br>In torque mode this flag will assert whenever the torque is<br>achieved. (rotor/stator relationship within ±1 full step.) |  |  |  |  |  |  |
|          |       | Bit 3         | Flag asserts when the Locked rotor timer has expired.                                                                                                                                                                                              |  |  |  |  |  |  |
|          |       | Bit 2         | Indicates that the position error counter has reached its maxi-<br>mum value.                                                                                                                                                                      |  |  |  |  |  |  |
|          |       | Bit 1         | Lag limit reached or exceeded.                                                                                                                                                                                                                     |  |  |  |  |  |  |
|          |       | Bit 0         | Lead limit reached or exceeded.                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Usage    | Read  | @45 Return    | s ServoTrack status information                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Usaye    | Write | _             |                                                                                                                                                                                                                                                    |  |  |  |  |  |  |

| MSb      |            |      |                                      |   |   | LSb                   |
|----------|------------|------|--------------------------------------|---|---|-----------------------|
| Complete | Line Count | <br> | Locked<br>Rotor Time-<br>out Reached | - | 0 | Lead Limit<br>Reached |

Figure 6-13. ServoTrack Status Flags

## 6.5.11 ServoTrack Interrupt Flags

| Register    | r Name | ServoTrack Interrupt Flags                                                                                                                         |  |  |  |  |
|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address     | 5      | 46 (1 Byte)                                                                                                                                        |  |  |  |  |
| Functio     | n      | Reads status of interrupt flags.                                                                                                                   |  |  |  |  |
| Range       |        | See Figure 6-14. Register values will read and write as the hex value of the set bits.                                                             |  |  |  |  |
| Туре        |        | Read, Write to Clear                                                                                                                               |  |  |  |  |
| Description |        | The register contains the state of the status flags that, when enabled, will exert an interrupt signal. See " ServoTrack Status Flags" on page 44. |  |  |  |  |
| Usage       | Read   | @46 Returns status of interrupt flags.                                                                                                             |  |  |  |  |
| Usaye       | Write  | @46 Clears Flags                                                                                                                                   |  |  |  |  |

MSb

LSb

| NOD         |   |   |            |             |              |           | L00        |  |
|-------------|---|---|------------|-------------|--------------|-----------|------------|--|
| Calibration |   |   | ServoTrack | Locked      | Max Position | Lag Limit | Lead Limit |  |
| Complete    | — | — | Active     | Rotor Time- | Error        | Reached   | Reached    |  |
|             |   |   |            | out Reached | Reached      |           |            |  |
|             |   |   |            |             |              |           |            |  |

Figure 6-14. ServoTrack Interrupt Flags

## 6.5.12 ServoTrack Interrupt Mask

| Register    | r Name | ServoTrack Interrupt Mask                                                                                                                                                                                                   |  |  |  |  |
|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address     | 5      | 47 (1 Byte)                                                                                                                                                                                                                 |  |  |  |  |
| Function    | n      | Mask interrupt status flags.                                                                                                                                                                                                |  |  |  |  |
| Range       |        | See Figure 6-15. Register values will read and write as the hex value of the set<br>bits.                                                                                                                                   |  |  |  |  |
| Туре        |        | Write, Static                                                                                                                                                                                                               |  |  |  |  |
| Description |        | The register is used to enable/disable the associated status flags from generating an interrupt when the flag becomes set. 1=Enabled, 0=Interrupt Disabled. See " ServoTrack Status Flags" on page 44 for flag description. |  |  |  |  |
|             | Read   | @47 Returns previous setting.                                                                                                                                                                                               |  |  |  |  |
| Usage       | Write  | @47 =05 (assets interrupt when either max position error is reached or lead limit is reached)                                                                                                                               |  |  |  |  |

LSb

| INIOD       |   |   |            |              |              |           | LSD        |
|-------------|---|---|------------|--------------|--------------|-----------|------------|
| Calibration |   |   | ServoTrack | Locked       | Max Position | Lag Limit | Lead Limit |
| Complete    | — | — | Active     | Rotor Time-  | Error        | Reached   | Reached    |
| Mask Bit    |   |   | Mask Bit   | out Mask Bit | Reached      | Mask Bit  | Mask Bit   |
|             |   |   |            |              | Mask Bit     |           |            |

Figure 6-15. ServoTrack Interrupt Mask

## 6.5.13 ServoTrack State Flags

|          |        | 1                |                                                                                    |  |  |  |  |  |  |  |  |
|----------|--------|------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Register | r Name | ServoTrack       | ServoTrack State Flags                                                             |  |  |  |  |  |  |  |  |
| Address  | 5      | 48 (1 Byte)      | (1 Byte)                                                                           |  |  |  |  |  |  |  |  |
| Function | n      | Reads statu      | us of various ServoTrack state flags.                                              |  |  |  |  |  |  |  |  |
| Range    |        | See Figure bits. | e Figure 6-16. Register values will read and write as the hex value of the set     |  |  |  |  |  |  |  |  |
| Туре     |        | Read, Dyna       | lead, Dynamic                                                                      |  |  |  |  |  |  |  |  |
| Descript | tion   | Bit 7            | it 7 Stop/Go/Bypass input state                                                    |  |  |  |  |  |  |  |  |
|          |        | Bit 6            | Bit 6 Encoder A state                                                              |  |  |  |  |  |  |  |  |
|          |        | Bit 5            | Encoder B state                                                                    |  |  |  |  |  |  |  |  |
|          |        | Bit 4            | Asserted when the velocity generator is idle                                       |  |  |  |  |  |  |  |  |
|          |        | Bit 3            | —                                                                                  |  |  |  |  |  |  |  |  |
|          |        | Bit 2            | Asserted when in current reduction. This flag is only valid in fixed current mode. |  |  |  |  |  |  |  |  |
|          |        | Bit 1            | Bit 1 —                                                                            |  |  |  |  |  |  |  |  |
|          |        | Bit 0            | Bit 0 —                                                                            |  |  |  |  |  |  |  |  |
|          | Read   | @48 Return       | @48 Returns value of ServoTrack state flags.                                       |  |  |  |  |  |  |  |  |
| Usage    | Write  | —                | _                                                                                  |  |  |  |  |  |  |  |  |
|          | 1      |                  |                                                                                    |  |  |  |  |  |  |  |  |

| MSb                              |                    |                    |                               |                         |   | LSb |
|----------------------------------|--------------------|--------------------|-------------------------------|-------------------------|---|-----|
| Stop/Go<br>Bypass<br>Input State | Encoder A<br>State | Encoder B<br>State | Velocity<br>Generator<br>Idle | In Current<br>Reduction | _ |     |

Figure 6-16. ServoTrack State Flags

| Register | r Name | Interrupt Level                                                                                                                                                               |
|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address  | 5      | 49 (1 Byte)                                                                                                                                                                   |
| Function | n      | Sets the Level of Interrupt to assert.                                                                                                                                        |
| Range    |        | Register values will read and write as the hex value of the set bits.                                                                                                         |
| Туре     |        | Write, Static                                                                                                                                                                 |
| Descript | tion   | Bit 7 of this register sets the level of the interrupt output when asserted.<br>0 =Interrupt asserted low<br>1 =Interrupt asserted high<br>All other bits are not applicable. |
| Usage    | Read   | @49 Returns previous setting.                                                                                                                                                 |
| Usaye    | Write  | @49 =128 (interrupt out goes high when interrupt is asserted).                                                                                                                |

#### 6.5.15 Start Calibration and Type Select

| Registe | r Name | Start Calibra                               | tart Calibration                                                                         |  |  |  |  |  |  |  |  |  |
|---------|--------|---------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Address | 5      | 4A (1 Byte)                                 |                                                                                          |  |  |  |  |  |  |  |  |  |
| Functio | n      | Manual star                                 | ts the calibration using the selected calibration type.                                  |  |  |  |  |  |  |  |  |  |
| Range   |        | See Figure bits.                            | See Figure 6-17. Register values will read and write as the hex value of the set<br>its. |  |  |  |  |  |  |  |  |  |
| Туре    |        | Mixed                                       |                                                                                          |  |  |  |  |  |  |  |  |  |
| Descrip | tion   | Bit 7 Start calibration - Write, Self Clear |                                                                                          |  |  |  |  |  |  |  |  |  |
|         |        | Bit 2-6                                     | —                                                                                        |  |  |  |  |  |  |  |  |  |
|         |        | Bit 0-1                                     | 0 =Fixed calibration time                                                                |  |  |  |  |  |  |  |  |  |
|         |        |                                             | 1 =Calibration with current ramp                                                         |  |  |  |  |  |  |  |  |  |
|         |        |                                             | 2 =Minimal offset, fixed time                                                            |  |  |  |  |  |  |  |  |  |
|         |        | 3 =Minimal offset with current ramp         |                                                                                          |  |  |  |  |  |  |  |  |  |
| Usage   | Read   | @4A Return                                  | @4A Returns previously set type.                                                         |  |  |  |  |  |  |  |  |  |
| Usage   | Write  | @4A =81 (H                                  | Hex) (start calibration with current ramp)                                               |  |  |  |  |  |  |  |  |  |

| MSb                  |      |       |  | LSb                       |
|----------------------|------|-------|--|---------------------------|
| Start<br>Calibration | <br> | <br>— |  | Calibration<br>Type Bit 0 |

Figure 6-17. Start Calibration Bit Positions

**NOTE:** The selected type occurs automatically when all the appropriate registers are valid. If ServoTrack is disabled, then re-enabled, a calibration will automatically occur. During calibration, all step clocks are ignored, the position error counter is cleared, and the rotor/stator offset accumulator is cleared.

#### 6.5.16 Hardware Version and Reset

| Registe | r Name | Hardware Version                                                                                                                                                                                       |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address | 5      | 7F (1 Byte)                                                                                                                                                                                            |
| Functio | n      | To read the hardware version of the ServoTrack IC and to generate a reset.                                                                                                                             |
| Range   |        | -                                                                                                                                                                                                      |
| Туре    |        | Mixed                                                                                                                                                                                                  |
| Descrip | tion   | Reading this register returns the hardware version of the ServoTrack IC.<br>Writing an AA (Hex) to this register forces a hardware reset of the Servo-<br>Track IC and will set all registers to zero. |
| Usage   | Read   | @7F Returns hardware version.                                                                                                                                                                          |
| Usaye   | Write  | @7F =AA (Hex) (resets the ServoTrack IC)                                                                                                                                                               |

| GROUP   | REGISTER<br>NAME              | WR/RD<br>STROBE                | NOTE | ADDR | OFFSET<br>HEX | OFFSET<br>DEC | # OF<br>BYTES | REGISTER<br>TYPE | BIT7                                   | BIT6                              | BIT5               | BIT4                                | BIT3               | BIT2                            | BIT1      | BIT0     |
|---------|-------------------------------|--------------------------------|------|------|---------------|---------------|---------------|------------------|----------------------------------------|-----------------------------------|--------------------|-------------------------------------|--------------------|---------------------------------|-----------|----------|
| CURRENT | RUN<br>CURRENT                |                                |      | 00   | 0             | 0             | 1             | WR, STATIC       | Sets anti-sta                          | all off run curre                 | nt, anti-stall (fi | (ed) run currer                     | it, anti-stall (va | riable) maximu                  | m current |          |
|         | REDUCTION<br>CURRENT          |                                |      | 01   | 1             | 1             | 1             | WR, STATIC       | Sets anti-sta<br>0 - FFH               | Ill off reduction                 | current, anti-s    | tall (fixed) redu                   | uction current     |                                 |           |          |
|         | CURRENT<br>REDUCTION<br>DELAY | AUTO WR<br>WHEN MSB<br>WRITTEN |      | 02   | 2 - 3         | 2 - 3         | 2             | WR, STATIC       | 0, 2 - FFFF                            | 1                                 |                    | ll (fixed) reduc<br>on, 0 = never r |                    |                                 |           |          |
|         | TORQUE<br>CURRENT             |                                |      | 04   | 4             | 4             | 1             | WR, STATIC       | Sets torque<br>0 - FFH                 | current                           |                    |                                     |                    |                                 |           |          |
|         | CALIBRATION<br>CURRENT        |                                |      | 05   | 5             | 5             | 1             | WR, STATIC       | TIC Sets calibraton current<br>0 - FFH |                                   |                    |                                     |                    |                                 |           |          |
| IO      | I/O CON-<br>FIGURATION        |                                |      | 09   | 9             | 9             | 1             | WR, STATIC       | INV_DIR_IN                             | INV_STP_IN                        | INV_DIRO           | EW_FIX                              | MW_FIX             | VG_PINN<br>0 = DRIVE<br>1 = OSC | SEL_CLK   | SEL_CKL0 |
|         | STEP PULSE<br>WIDTH           |                                |      | 0A   | A             | 10            | 1             | WR, STATIC       | 0 - FFH                                | itput pulse wid<br>2.85 uS, 50 nS |                    |                                     |                    |                                 |           |          |
|         | INPUT<br>FILTERING            |                                |      | 0B   | В             | 11            | 1             | WR, STATIC       | Step and dir<br>0 - 9H<br>10 MHz - 38  | ection digital ir<br>.8 KHz       | nput filter        |                                     |                    |                                 |           |          |
|         | ATTENTION                     |                                |      | 0C   | С             | 12            | 1             | WR, STATIC       |                                        |                                   | LG_LMT             | LD_LMT                              | CAL_ACTV           | LK_RTR                          | MU_ACTV   | AS_ACTV  |
|         | ERROR LED                     |                                |      | 0E   | E             | 14            | 1             | WR, STATIC       |                                        |                                   |                    |                                     |                    |                                 |           | FLASH    |

| GROUP    | REGISTER<br>NAME                | WR/RD<br>STROBE                | NOTE                                                    | ADDR | OFFSET<br>HEX | OFFSET<br>DEC | # OF<br>BYTES | REGISTER<br>TYPE   | BIT7                                                       | BIT6                               | BIT5                       | BIT4                        | BIT3    | BIT2     | BIT1     | BIT0                     |
|----------|---------------------------------|--------------------------------|---------------------------------------------------------|------|---------------|---------------|---------------|--------------------|------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------|---------|----------|----------|--------------------------|
| VELOCITY | INITIAL<br>VELOCITY             | MANUAL<br>(VLOW_STB)           |                                                         | 10   | 10 - 13       | 16 - 19       | 4             | WR, STATIC         | Set initial (lo<br>0 - 800000H<br>0 to 5 x 10 <sup>6</sup> |                                    | 96 step/sec re             | solution                    |         |          |          |                          |
|          | TERMINAL<br>VELOCITY            | MANUAL<br>(VHI_STB)<br>WR      |                                                         | 14   | 14 - 17       | 20 - 23       | 4             | WR, STATIC         | 0 - 800000H                                                | (high) velocity<br>steps/sec, 0.5  |                            | solution                    |         |          |          |                          |
|          | DECEL-<br>ERATION               | MANUAL<br>(DEC_STB)            |                                                         | 18   | 18 - 1B       | 24 - 27       | 4             | WR, STATIC         | Sets deceler<br>0 - FFFFFF<br>90.9 to 1.5 x                |                                    | 2                          |                             |         |          |          |                          |
|          | ACCEL-<br>ERATION               | MANUAL<br>(ACC_STB)            |                                                         | 1C   | 1C - 1F       | 28 - 31       | 4             | WR, STATIC         | Sets acceler<br>0 - FFFFFF<br>90.9 to 1.5 x                |                                    | 2                          |                             |         |          |          |                          |
|          | CURRENT<br>VELOCITY             | MANUAL<br>(CURVEL)<br>RD       |                                                         | 20   | 20 - 23       | 32 - 35       | 4             | RD,<br>DYNAMIC     | Read curren<br>0 - 800000H                                 |                                    |                            |                             |         |          |          |                          |
|          | VELOCITY<br>STROBES             |                                |                                                         | 24   | 24            | 36            | 1             | WR, SELF<br>CLEAR  | WRITE<br>STROBE<br>ACC_STB                                 | WRITE<br>STROBE<br>DEC_STB         | WRITE<br>STROBE<br>VHI_STB | WRITE<br>STROBE<br>VLOW_STB |         |          |          | READ<br>STROBE<br>CURVEL |
|          | MOTOR SET-<br>TLING DELAY       | AUTO WR<br>WHEN MSB<br>WRITTEN |                                                         | 25   | 25 - 26       | 37 - 38       | 2             | WR, STATIC         | 0 - FFFFH                                                  | settling delay tii<br>535 mS, 1 mS |                            |                             |         |          |          |                          |
|          | VELOCITY<br>FLAGS               |                                |                                                         | 27   | 27            | 39            | 1             | RD, WR TO<br>CLEAR |                                                            |                                    |                            |                             | MSDT_DN | DEC_DONE | ACC_DONE |                          |
|          | VELOCITY<br>FLAGS MASK          |                                |                                                         | 28   | 28            | 40            | 1             | WR, STATIC         |                                                            |                                    |                            |                             | MSDT_DN | DEC_DONE | ACC_DONE |                          |
|          | VELOCITY &<br>TORQUE<br>CONTROL |                                | WR LAST<br>IN GROUP,<br>1ST TIME<br>ONLY<br>(REG VALID) | 29   | 29            | 41            | 1             | WR,<br>DYNAMIC     | ABORT_MTN                                                  |                                    | RUNMTN                     | DIRMTN                      | DIR_CV  |          |          | SUSPEND                  |

| GROUP          | REGISTER<br>NAME            | WR/RD<br>STROBE                | NOTE | ADDR | OFFSET<br>HEX | OFFSET<br>DEC | # OF<br>BYTES | REGISTER<br>TYPE | BIT7                                                  | BIT6                                                       | BIT5                  | BIT4                     | BIT3        | BIT2                        | BIT1                   | BIT0                      |
|----------------|-----------------------------|--------------------------------|------|------|---------------|---------------|---------------|------------------|-------------------------------------------------------|------------------------------------------------------------|-----------------------|--------------------------|-------------|-----------------------------|------------------------|---------------------------|
| SERVO<br>TRACK | MICROSTEP<br>RESOLUTION     |                                |      | 30   | 30            | 48            | 1             | WR, STATIC       |                                                       |                                                            |                       | MSEL4                    | MSEL3       | MSEL2                       | MSEL1                  | MSEL0                     |
|                | SERVOTRACK<br>SETTINGS      |                                |      | 31   | 31            | 49            | 1             | WR, STATIC       | AS_EN                                                 | BNDS1                                                      | BNDS0                 | MTRRES                   | ENCRES3     | ENCRES2                     | ENCRES1                | ENCRES0                   |
|                | POSITION<br>ERROR           | MANUAL<br>RD                   |      | 32   | 32 - 35       | 50 - 53       | 4             | RD,<br>DYNAMIC   |                                                       | tion lead / lag (<br>7FFFFFFFH, l<br>) <sup>9</sup> counts |                       |                          | ommanded po | osition)                    |                        |                           |
|                | LAG LIMIT                   | AUTO WR<br>WHEN MSB<br>WRITTEN |      | 36   | 36 - 39       | 54 - 57       | 4             | WR, STATIC       | Sets positio<br>0 - 7FFFF<br>2.1 X 10 <sup>9</sup> co |                                                            | sition of stator I    | pehind comma             | nded)       |                             |                        |                           |
|                | LEAD LIMIT                  | AUTO WR<br>WHEN MSB<br>WRITTEN |      | 3A   | 3A - 3D       | 58 - 61       | 4             | WR, STATIC       | Sets step n<br>0 - FFFFH                              | nake-up freque                                             | ncy (period)          |                          |             |                             |                        |                           |
|                | MAKE-UP<br>FREQUENCY        | AUTO WR<br>WHEN MSB<br>WRITTEN |      | 3E   | 3E - 3F       | 62 - 63       | 2             | WR, STATIC       | Sets positio<br>0 - 7FFFFF<br>2.1 X 10 co             |                                                            | sition of stator l    | pehind comma             | nded)       |                             |                        |                           |
|                | SERVOTRACK<br>FLAGS         |                                |      | 40   | 40            | 64            | 1             | MIXED            | Read strobe<br>RD_STRB<br>(WR, SELF CR)               | MU_ACTV<br>(RD, DYNAMIC)                                   | OPCUR<br>(WR, STATIC) | MODE_BIT<br>(WR, STATIC) |             | CLR_ERRCNT<br>(WR, SELF CR) | STP_MU<br>(WR, STATIC) | USE_MUFRQ<br>(WR, STATIC) |
|                | CALIBRATION<br>TIME         | AUTO WR<br>WHEN MSB<br>WRITTEN |      | 41   | 41 - 42       | 65 - 66       | 2             | WR, STATIC       | Sets calibra<br>0 - FFFFH<br>2 ms to 655              | tion time<br>535 ms (+0/-1),                               | 1 ms resolutio        | n                        |             |                             |                        |                           |
|                | LOCKED<br>ROTOR<br>TIME-OUT | AUTO WR<br>WHEN MSB<br>WRITTEN |      | 43   | 43 - 44       | 67 - 68       | 2             | WR, STATIC       | 0 - FFFFH                                             | l rotor time-out<br>535 ms (+0/-1),                        |                       | n, 0 = disable           | timer       |                             |                        |                           |
|                | SERVOTRACK<br>STATUS FLAGS  |                                |      | 45   | 45            | 69            | 1             | RD,<br>DYNAMIC   | CAL_DONE                                              | ENC_RSP                                                    | ENC_DIR               | ASACTIVE                 | ASLRTM      | MAX_PCNT                    | ASPLGLMT               | ASPLDLMT                  |

http://www.kocomotionus.com

| GROUP          | REGISTER<br>NAME          | WR/RD<br>STROBE | NOTE                                                 | ADDR | OFFSET<br>HEX | OFFSET<br>DEC | # OF<br>BYTES | REGISTER<br>TYPE   | BIT7                            | BIT6  | BIT5  | BIT4    | BIT3  | BIT2    | BIT1     | BIT0     |
|----------------|---------------------------|-----------------|------------------------------------------------------|------|---------------|---------------|---------------|--------------------|---------------------------------|-------|-------|---------|-------|---------|----------|----------|
| SERVO<br>TRACK | INTERRUPT<br>FLAGS        |                 |                                                      | 46   | 46            | 70            | 1             | RD, WR<br>TO CLEAR | ASCAL_EN                        |       |       | AS_ACTV | AS_LR | MAX_CNT | ASPLGLMT | ASPLDLMT |
| · ·            | INTERRUPT<br>MASK         |                 |                                                      | 47   | 47            | 71            | 1             | WR, STATIC         | ASCAL_EN                        |       |       | AS_ACTV | AS_LR | MAX_CNT | ASPLGLMT | ASPLDLMT |
|                | SERVOTRACK<br>STATE FLAGS |                 |                                                      | 48   | 48            | 72            | 1             | RD,<br>DYNAMIC     | SGP_PIN                         | ENC_A | ENC_B | VG_IDLE |       | CURRED  |          |          |
|                | INTERRUPT<br>LEVEL        |                 |                                                      | 49   | 49            | 73            | 1             | WR, STATIC         | INV_INT                         |       |       |         |       |         |          |          |
|                | START<br>CALIBRATION      |                 | WR LAST IN<br>GROUP, 1ST<br>TIME ONLY<br>(REG VALID) | 4A   | 4A            | 74            | 1             | MIXED              | START_CALT<br>(WR, SELF<br>CLR) |       |       |         |       |         | CAL_T1   | CAL_T0   |
|                | HARDWARE<br>VERSION       |                 | WR \$AA<br>TO INITIATE<br>RESET                      | 7F   | 7F            | 127           | 1             | MIXED              | Hardware ve                     | rsion |       |         |       |         | ·        |          |

L

# Appendix A: ServoTrack Module

# A.1 Introduction

The ServoTrack Module is ideal for rapid prototyping and proof of concept designs based around the ServoTrack IC. The module incorporates additional interface hardware, connectors, low voltage power supplies, as well as a microcontroller with a USB communication interface.

The graphical user interface makes it easy to change parameters and verify motor performance. On-board non-volatile memory stores variables and automatically loads them into the ServoTrack IC when power is cycled.



Figure A-1. ServoTrack Module (Part #: STU-01)

### A.2 Mechanical Specifications



# A.3 Specifications

#### **Connections:**

| Power:         | +5 Vdc to +26 Vdc +/-5%<br>Current: 245 mA at 5 Vdc, 52 mA at 24Vdc<br>Connector type - 2 Position, spring clamp terminal block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication: | USB Version 2.0<br>Connector type - Micro USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Signal:        | Encoder power (+5 Vdc - current limited to 100 mA)<br>Encoder A+<br>Encoder A-<br>Encoder B+<br>Encoder B-<br>Encoder Ground<br>Step Clock in Includes clock up/clock down and quadrature input modes<br>Stop/go (in velocity and torque mode); Bypass (in clock and direction mode)<br>Locked rotor - output<br>Interrupt - output<br>Step clock out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/clock down and<br>Direction out (20 mA drive capability) Includes clock up/cl |
|                | Connector Type - Compact Female 15 pin D-type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Illumination:  | LED: 3 color<br>Green - Power on & everything is OK<br>Yellow - Correction active<br>Red - Continuous: locked rotor. Blinking: fault.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mounting:      | 35 mm DIN Rail or Panel mountable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Appendix B: Breakout Board Option**

# **B.1** Introduction

The optional breakout board, when used in conjunction with the ServoTrack Module, facilitates wiring in proof of concept designs. The breakout board may be plugged directly into the ServoTrack, or panel mounted using the included spacers.

Signals are accessed via a pluggable 15-pin clamp-type terminal connector.



Figure B-1. ServoTrack Breakout Board (Part #: BBST1)

### **B.2 Mechanical Specifications**



Figure B-1. ServoTrack Breakout Board Dimensions

