@

OpenEmbedded

Michael Opdenacker
Thomas Petazzoni
Free Electrons

openembedded i

Free Electrons

Embedded Linux
Developers

© Copyright 2004-2009, Free Electrons
feedback@free-electrons.com

Document sources, updates and translations:
http://free-electrons.com/docs/openembedded

@creative Corrections, suggestions, contributions and
c o ﬁoorf'!“?')? 5 translations are welcome!
Attribution — ShareAlike 3.0 Latest update Sep 15, 2009

You are free

© to copy, distribute, display, and perform the work

© to make derivative works

© to make commercial use of the work

Under the following conditions

Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under a license identical to
this one.

© For any reuse or distribution, you must make clear to others the license
terms of this work.

© Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://free-electrons.com/docs/openembedded

» Started as the build system for the OpenZaurus distribution
for Sharp Zaurus PDAs.

» Then developers of the Familiar distribution for PDAs, decided
to share their development efforts with OpenZaurus.
This increased the project momentum and made it more
generic.

» Then, other embedded distributions started to adopt OE too:
Unslug, OpenSimpad, GPE Phone Edition, Angstrom,
OpenMoko...

See http://oe.linuxtogo.org/wiki/SuccesStories
for an impressive list of projects relying on OE.

http://oe.linuxtogo.org/wiki/SuccesStories

» bitbake: self contained cross-compiling and building
environment for embedded devices.

» OpenEmbedded: collection of bitbake recipes (metadata)
describing how to build:

» Packages, for thousands of tools (applications, libraries,
kernels, bootloaders...). In May 2008:
1600 packages in packages/<tool>/
5100 package versions in packages/<tool>/*.bb

» Target machines. May 2008:
161 machines defined in conf/machine/

P Distributions: machine and package configurations. May 2008:
34 machines defined in conf/distro

4

BitBake features (1)

Generates everything from scratch, using package descriptions.

» Implemented in Python.
Created from Gentoo's emerge tool. Still many similarities.

» Fetches sources from the Internet, either from tarballs or from
source control repositories (svn, cvs, git...). It can also use source
MIrrors.

» Applies patches, contained in package descriptions.

» By default, builds the latest version of all components
(unless specific versions are chosen by the distribution).

» Even builds the compiler and cross-compiler versions you
specified, as well as configuration tools (autocont...).

5 1

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

» Configures, compiles and deploys (copies to the root
filesystem and creates packages), including the C library.

» Supports both glibc or uClibc!

» Can be used to compile for several architectures in parallel.
Need to duplicate build directories though.

» Builds filesystem images by creating and installing
packages:
Supports several package formats: . rpm, .ipk, .deb

» Can be used to (cross)compile a single package:
bitbake dropbear

Source
code

Config fetches

fileg Packages

parses

generates

Filesystem

parses |
images

Recipes

d
Using OpenEmbedde

» Use a GNU/Linux workstation with at least 512 MB of RAM
(1 GB recommended). Otherwise, runs are extremely long
(because of swapping).

» Choose a partition with at least 10 GB of free space
(bitbake doesn't clean up sources after compiling)

» Create a working directory with no symbolic link above:
> mkdir S$HOME/oe/

» You are also going to need a lot of time:
OE takes hours to run!

@

Instructions tested on Ubuntu 8.04

P Tools to fetch code from source repositories:
> apt-get install wget curl
> apt-get install cvs subversion monotone git

» Compiler related tools:
> apt-get install m4 make ccache sed bison

» Python Just-In-Time compiler (accelerates bitbake):
> apt-get install python-psyco

P Documentation related tools:
> apt-get install diffstat gawk help2man texi2html texinfo

See http://oe.linuxtogo.org/wiki/RequiredSoftware
if anything changes in the future.

http://oe.linuxtogo.org/wiki/RequiredSoftware

Get the latest stable version of bitbake:

> cd SHOME/oe/
> svn co svn://svn.berlios.de/bitbake/branches/bitbake-1.8/ bitbake

Keep bitbake updated:

> cd SHOME/oe/bitbake
> svn update

Add bitbake to the Unix PATH:

export PATH=$HOME/oe/bitbake/bin:$PATH

You may check whether a new stable branch is available:
see http://oe.linuxtogo.org/wiki/GettingStarted for details.

http://oe.linuxtogo.org/wiki/GettingStarted

The OE database is available through a Monotone repository:

» Get the latest snapshot of the database
> cd $SHOME/oe
> wget http://www.openembedded.org/snapshots/OE.mtn.bz2
> bunzip2 -d OE.mtn.bz2

Warning: this file is big (170 MB as of May 23, 2008)

» Choose a development branch from the list on
http://oe.linuxtogo.org/wiki/DevelopmentBranches

» Let's assume that you chose the org.openembedded.stable
branch (recommended).

http://oe.linuxtogo.org/wiki/DevelopmentBranches

» Update your local copy of the OE database:

>mtn --db=0OE.mtn pull monotone.openembedded.org
org.openembedded.stable

» Now checkout your local copy of the OE tree:
> mtn --db=0OE.mtn checkout --branch=org.openembedded.stable

» It is recommended to keep your database updated frequently

(as it gets multiple updates per day):
> cd SHOME/oe/org.openembedded.stable
> mtn update

Create a local configuration by starting from the supplied template:

> cd SHOME/oe/

> mkdir -p build/conf

> cp org.openembedded.stable/conf/local.conf.sample \
build/conf/local.conf

> vi build/conf/local.conf

Read comments in the build/conf/local.conf file carefully!
You should have at least the following 3 settings...

» Define where .bb files are available:
BBFILES = "S${HOME}/oe/org.openembedded.stable/packages/*/*.bb"

» Choose a machine from
org.openembedded.stable/conf/machine/
or create a new one. For example:

MACHINE = “at9lsam9263ek”

» Choose a distribution from
org.openembedded.stable/conf/distro/
or create a new one. For example:

DISTRO = “angstrom-2008.1"

» Specify a project-wide download directory or mirror

(to save downloading time or to work behind a firewall):
DL DIR = "/work/project/oe/sources"

» Enable parallel compiling and processing:
PARALLEL MAKE = "-j 4"
BB NUMBER THREADS = "4"

» Specify filesystem images to build:
IMAGE FSTYPES = "ext2 tar"

@

» Create and source an environment setting script (example)
export PATH=$SHOME/oe/bitbake/bin:S$PATH
export BBPATH=SHOME/oe/build:S$HOME/org.openembedded.stable

» Tweak for Ubuntu Hardy:

> echo 0 > /proc/sys/vm/mmap min addr

» You are ready to start, at last!

» Pick up a default system image in
org.openembedded.stable/packages/images/

or make your own. Several images, such as opie-image (Qt
based) or gpe-image (GTK based) can be available for the
same core distribution.

» Run bitbake to create your system image:
bitbake <your-system-image>

» Now, be patient!
It will take hours for your machine to complete the job.

P bitbake retrieves sources for a significant number of packages directly
through CVS.

» CVS port often blocked by proxies

» In this case, can use an HTTP mirror with tarballs generated every day.

Just an example (the below URL doesn't seem to work any more):
CVS_TARBALL STASH = "http://oesources.org/source/current/"

» Highly protected networks with no outside HTTP access
can set up their own mirror.

» bitbake parses all configuration and recipe files found in
directories specified by BBPATH environment variable.

» Suggestion: make an overlay directory holding:

» Specific configuration files

» Project specific packages

» Any redefinition of OE files: package (bb) files, configuration files,
classes

» You should set the BBPATH variable as follows:
export BBPATH=$HOME/oe/overlay:
SHOME/oe/org.openembedded.stable

» The overlay/ directory should have the below structure:

P conf/: custom and redefined configuration files

P packages/: project specific and redefined bb files.

e files
figuration and packag
Con

Highest level of configuration files. They define:
» Toolchain and package versions

» Package configuration.
Packages can be built in several ways. The distro chooses which
one.

» Distribution information variables

» High level settings: filesystem formats, use udev, etc.

O

#QTYPE: Distribution
#@NAME: GMUstix
#@DESCRIPTION: Gumstix distribution for GMU (George Mason University)

INHERIT += "package tar package ipk"

TARGET OS = "linux-uclibc"

TARGET FPU = "soft"

IMAGE FSTYPES = "jffs2"

PREFERRED PROVIDERS += " virtual/${TARGET PREFIX}gcc-initial:gcc-cross-initial"
PREFERRED PROVIDERS += " Virtual/${TARGET_PREFIX}gCC:gcc—cross"
PREFERRED PROVIDERS += " Virtual/${TARGET_PREFIX}g++:gcc—cross"
PREFERRED PROVIDERS += " Virtual/${TARGET_PREFIX}libc—for—gcc:uclibc"
PREFERRED PROVIDER classpath = "classpath-minimal"
PREFERRED VERSION gcc-cross-initial = "3.4.4"

PREFERRED VERSION gcc-cross = "3.4.4"

PREFERRED VERSION gcc-cross-sdk = "3.4.4"

PREFERRED VERSION gcc = "3.4.4"

PREFERRED_VERSION_ipkg—native = "0.99.160"
PREFERRED VERSION gemu-native = "0.8.0"

DISTRO_VERSION = "uno"

IPK_EXCLUDE SOURCE = "1"

24

Defines board specific features, such as
» Architecture

» Compiler version and CPU instruction set / optimizations (such as
armv5te and 1686).

» Kernel version and package provider

» Board specific libraries, services and utilities.

O

#QTYPE: Machine

#@Name: Atmel AT91SAM9263EK Development Platform

#@DESCRIPTION: Machine configuration for the at91sam9263ek development
board with a at91sam9263 processor

TARGET ARCH = "arm"

PACKAGE EXTRA ARCHS = "armv4t armv5te"
PREFERRED PROVIDER virtual/kernel = "linux"
PREFERRED PROVIDER xserver = "xserver-kdrive"

#don't try to access ttyl

USE VT = "0"

MACHINE FEATURES = "kernel26 alsa ext2 usbhost usbgadget screen"

used by sysvinit 2

SERIAL CONSOLE = "115200 ttySoO"

IMAGE FSTYPES ?= "jffs2"

EXTRA IMAGECMD jffs2 = "--pad --little-endian --eraseblock=0x20000 -n"

require conf/machine/include/tune-arm926ejs.inc

KERNEL TIMAGETYPE = "ulmage"

26

. bb files:

» Declare environment variables needed by bitbake to build a
package (mainly package related information).

» Declare methods to execute to build a package: fetching,
configuring, compiling, installing...

» Classes
Common steps for a class of packages.
Example: all Qtopia Core packages are built in the same way
(with gmake)

» Packages
Inherit classes and add or override specific settings or steps.
Also declare package dependencies.

» Tasks
Define collections of packages to be built

» Images
Create filesystem images from tasks.

O

def gnome verdir(v):
import re
m = re.match(""([0-9]+)\.([0-9]+)", V)
return "%s.%s" % (m.group(l), m.group(2))

SECTION ?= "x11/gnome"
SRC_URI = "${GNOME MIRROR}/${PN}/${@gnome verdir("${PV}")}/${PN}-$
{PV}.tar.bz2"

DEPENDS += "gnome-common"
FILES ${PN} += "${datadir}/application-registry ${datadir}/mime-
info \

${datadir}/gnome-2.0"

inherit autotools pkgconfig gconf

gnome stage_includes() {
autotools stage includes

}

29

O

DESCRIPTION = "Lightweight gtk+ browser, enhanced version, with support for SSL,
frames, tabs and much more..."

HOMEPAGE = "http://www.dillo.org"

SECTION = "x1l1l/network"

PRIORITY = "optional"

LICENSE = "GPL"

DEPENDS = "gtk+-1.2 libpng openssl"

RCONFLICTS = "dillo2"

PR = Ilr2ll

SRC_URI="http://www.dillo.org/download/dillo-${PV}.tar.bz2 \
file://dillo-il8n.diff;patch=1 \
file://dillo.desktop \
file://dillo.png"

S = "${WORKDIR}/dillo-${PV}/"
inherit autotools pkgconfig

FILES ${PN} += " /usr/lib/dillo/ /usr/bin/dpid /usr/bin/dpidc "
FILES ${PN}-dbg += " ${libdir}/dillo/dpi/*/.debug/"

export PNG CONFIG = "${STAGING BINDIR CROSS}/libpng-config"
EXTRA OECONF = "--disable-dlgui --disable-anti-alias"

do install append() {
o install -d ${D}S${datadir}/applications
install -d ${D}${datadir}/pixmaps
install -m 0644 ${WORKDIR}/dillo.desktop ${D}$
{datadir}/applications/dillo.desktop
install -m 0644 ${WORKDIR}/dillo.png ${D}${datadir}/pixmaps/dillo.png

}

30

Typical classes:

» Base: basic user space applications to boot to a command line
prompt: C library, BusyBox, init scripts, sshd.

» Core: core tools and libraries needed by the applications.

» Apps / Ul: class of applications corresponding to product
applications.

DESCRIPTION = "Games task package for GPE Palmtop
Environment"

PR = "r6"

LICENSE = "MIT"

inherit task

RDEPENDS_${PN} = "\
gpe-go \
gpe-lights \
gpe-othello \
gpe-tetris \
gsoko \
xdemineur"

» Specify what goes into the root filesystem

» Image types defined in the distro or local configuration
P Flash file systems to store on flash storage: jffs2
» Other filesystem images for block storage: ext2, ext3, squashfs

P Tarballs for nfsroot, initramfs or init ramdisks.

» Remember that root filesystems are created from packages.

» Images files are created in tmp/deploy/images/

IMAGE LINGUAS = ""

IMAGE INSTALL = "\
${MACHINE TASK PROVIDER} \
task-openmoko-linux \
task-openmoko-net \
task-openmoko-ui \
task-openmoko-base \
task-openmoko-phone \
task-openmoko-games \
task-openmoko-pim \

DEPENDS = "\
${MACHINE TASK PROVIDER} \
task-openmoko \

inherit image

ROOTFS POSTPROCESS COMMAND += 'date "+%m%d3HIM3Y" >$
{IMAGE ROOTFS}/etc/timestamp'

34

» When you build a new application for an OE based system, OE is
a too heavy environment to compile your application every time
you update the sources.

» With OE, it's possible to export a standalone SDK which can be
used to develop your application.

» The SDK can be shared by the whole team.

» Of course, at the end, you can add a recipe for your package and
build your system with it.

See packages/meta/meta-toolchain-gpe.bb and
packages/meta/meta-toolchain.bb for more information.

Conclusions and references

OpenEmbedded strengths

Oy

» Best tool for embedded distribution makers, targeting multiple
devices of the same kind, or generic devices open to third-
party / community applications.

» Allows developers to share their experience building common
libraries and utilities, and compete only on the embedded
system itself!

» Brings determinism and reproducibility in product development
(provided you froze the versions of all the components!).

» Big user community. Look at the packages/ directory and
discover packages you didn't know about!

37

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

OpenEmbedded drawbacks

» Very long runs.!!!

» Too complex filesystems sometimes
You may want to have the applications, without the packages
(to save space in very small systems).

» Builds generic filesystems by default. Good for PDAs and
phones, or systems which are meant to be general purpose. A lot
of overrides needed to generate a system with a very limited
purpose, without creating components that you won't use.

» Builds all interface translations by default!

» Powerful but complex. Long learning curve.
Buildroot more difficult to customize but much easier to use.

» |t relies on Monotone!

38

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Too modular

» Great flexibility and great for development.

» But too many shell scripts duplicating the same tests
(environment variables, existence of files or devices, device
information) over and over again, unaware of what has already
been tested.

To0 generic

» Generic scripts testing things or features which are not present in
the system.

» Still too close to a generic GNU/Linux system.

All this costs tens of seconds in boot time!
Execution performance is all right though.

39

At the end of development with OE, when everything works fine.
» Remove unneeded and duplicate tests in init scripts.

» Even better: replace individual init scripts
by a single startup one.

» Remove any file or executable you do not need.

» Look for duplicate files.

» Block storage: put all your programs and libraries
in a SquashFS partition! Reading files faster can boost
startup time too.

» ELC 2008 presentation, by Matthew Locke:
http://www.celinux.org/elc08 presentations/mlocke-elc2008-oe.pdf

P First Project, a very nice testimonial and getting started instructions:
http://oe.linuxtogo.org/node/65/diff/416/417

» OpenEmbedded getting started guide:
http://oe.linuxtogo.org/wiki/GettingStarted

» BitBake user manual
http://bitbake.berlios.de/manual/

» OpenEmbedded Wiki:
http://oe.linuxtogo.org/wiki

» OE mailing lists
http://www.openembedded.org/contact

41

http://www.celinux.org/elc08_presentations/mlocke-elc2008-oe.pdf
http://oe.linuxtogo.org/node/65/diff/416/417
http://oe.linuxtogo.org/wiki/GettingStarted
http://bitbake.berlios.de/manual/
http://oe.linuxtogo.org/wiki
http://www.openembedded.org/contact

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

