
Tridion R5

Content Delivery Reference
Guide

Content Delivery Reference Guide
Revision CD_RG_5.1SP2/5.1SP3/5.1SP4

 2004-2005 Tridion Development Lab B.V.

NOTICE: The accompanying software package is confidential and
proprietary to Tridion Development Lab B.V. or its respective licensors. No
use or disclosure is permitted other than as set forth by written license
with the authorized distributors of Tridion Development Lab BV.

Trademarks

Tridion and Tridion R5 are trademarks of Tridion Development Lab B.V. or
its respective licensors. All other company or product names used herein
are trademarks of its respective owners.

Suggestions

Your suggestions and comments about Tridion R5 functionality,
documentation and course material are highly valued and may be used to
further enhance our offerings available to you. We will be glad to receive
your suggestions at:

Tridion Development Lab B.V.

Product Management

P. O. Box 22709

1100 DE Amsterdam

The Netherlands

fax: +31 (0)20 20 10 501

Email: PMsuggestions@tridion.com

Additional Licenses

Please contact your Tridion sales representative to order additional
licenses of Tridion R5 software. www.tridion.com offers you a complete
overview of Tridion's sales offices and further contact details.

http://www.tridionR5.com
http://www.tridionR5.com

i

Table of contents

Chapter 1 Content Delivery ...1

Chapter 2 Content Delivery product licenses3

2.1 Installing a license file ... 4

2.1.a Transport Service license file ...4

2.1.b Content Delivery product license files5

Part I—Content Distributor

Chapter 3 Content Distributor ..9

Chapter 4 Content Manager Publication Targets 11

4.1 Publishing content ... 12

4.2 Publishing protocols .. 13

4.2.a Local File System, FTP and SFTP protocols 13

4.2.b HTTP(S) protocol .. 15

4.2.c Creating a Protocol Schema ... 15

4.3 Configuring Publication Targets ... 17

4.3.a Creating a Target Type ... 17

4.3.b Creating a Publication Target ... 19

4.4 Publication Target Code Page values 21

4.4.a Overriding mappings for code page values 22

Chapter 5 Configuring ASP.NET support for the Content Distributor 25

5.1 Configuring assemblies .. 25

5.1.a Configuring assemblies for a web application 26

5.1.b Configuring assemblies for a standalone application 26

5.2 Configuring WAI profiling and tracking 27

ii Tridion R5

Content Delivery Reference Guide

5.3 Publishing to ASP.NET ... 27

Chapter 6 ..Senders and Receivers 29

6.1 Senders ... 30

6.2 Receivers ... 30

6.3 Local Copy, FTP and SFTP Senders and Receivers 31

6.4 HTTP(S) Senders and Receivers .. 33

6.4.a Troubleshooting transport over HTTP(S) to IIS 33

6.4.b Importing a certificate for HTTPS uploads 36

6.4.c HTTPS with IIS ... 36

6.4.d HTTPS with a Java Web/Application Server 37

6.5 Developing custom Senders and Receivers 39

Chapter 7 Transport Service configuration 41

7.1 Configuring the Transport Service ... 42

7.1.a WorkFolder .. 43

7.1.b Logging .. 43

7.1.c Senders .. 43

7.1.d Poller .. 44

Chapter 8 Deployer configuration ... 47

8.1 Configuring the Deployer ... 48

8.2 WorkFolder .. 50

8.3 Logging ... 50

8.4 Processors ... 51

8.4.a Developing custom processors 51

8.5 Module .. 52

8.5.a Developing custom Deployer modules 53

8.5.b Modifying the behavior of default modules 55

8.5.c Testing custom modules .. 56

8.6 Transformer ... 57

8.7 ReceiverBindings .. 58

8.8 Receivers ... 58

Chapter 9 Broker configuration .. 61

9.1 Configuring the Content Broker ... 62

9.2 Logging ... 63

9.3 Object caching ... 64

9.3.a ObjectCache .. 64

9.3.b Policy ... 65

9.3.c Features .. 65

Content Delivery Reference Guide

iii

9.3.d CacheBindings ... 66

9.3.e RemoteSynchronization ... 67

9.3.f Cache Channel Service .. 67

9.4 Storage configuration .. 68

9.5 Bindings .. 70

9.6 Publications .. 71

Chapter 10 Using metadata ... 73

10.1 Mandatory metadata ... 74

10.1.a Mandatory link metadata ... 74

10.1.b Mandatory Component Metadata 74

10.1.c Mandatory Page Metadata .. 75

10.1.d Mandatory Component Presentation Metadata 76

10.1.e Mandatory binary metadata ... 77

10.2 Custom metadata .. 77

10.2.a Custom metadata examples ... 78

10.2.b Custom metadata fields with multiple values 79

10.3 Metadata storage .. 79

10.3.a File system storage ... 79

10.3.b Configuring the storage options 80

10.3.c Database storage .. 80

10.3.d Storing custom metadata in SQL databases 81

10.4 Metadata examples ... 82

10.4.a ASP example .. 82

10.4.b JSP example .. 83

10.5 Filters .. 84

10.5.a Accessing a single Component Presentation 84

10.5.b Search filter ... 85

10.5.c Generating Presentation Filters 86

10.5.d Result modifiers ... 86

10.6 Querying custom metadata .. 87

10.6.a Queries against SQL databases 87

Chapter 11 Tamino ... 89

11.1 Configuration .. 89

11.2 Using Tamino ... 90

11.2.a Schemas ... 90

11.2.b Component Templates .. 91

11.2.c Components ... 91

11.2.d Updating a Component in Tamino 92

11.2.e Unpublishing from Tamino ... 92

iv Tridion R5

Content Delivery Reference Guide

11.2.f Dynamic Content .. 92

11.2.g Schema mapping .. 92

11.2.h XSLT transformation of W3C schemas 93

11.2.i ReferenceCounting .. 93

11.3 Querying Tamino .. 93

11.3.a Generating links from an XSLT using the Linking API 95

11.3.b Component link resolution with XSLT 96

11.4 TaminoFilter ... 97

11.4.a Using TaminoFilter to query Tamino 97

11.4.b Merging Queries ... 97

Part II—Linking

Chapter 11 Linking .. 101

11.1 Link validation and resolution ... 102

11.2 Page links .. 103

11.3 Binary links .. 104

11.4 Component links ... 105

11.4.a Components that link to the same Component 105

11.4.b Components that link to a different Component 106

11.4.c Creating Component links in templates 106

11.4.d Creating Component Link objects in a Page Template 107

11.4.e Resolving Component links .. 107

Chapter 12 Linking configuration .. 111

12.1 Linking configuration file .. 112

12.1.a Logging ... 112

12.1.b Publications ... 113

12.2 Linking and Content Broker configuration 113

12.2.a Linking bindings ... 114

Part III—Web and Application Server Integration

Chapter 13 Web and Application Server Integration 117

13.1 Web and Application Server Integration (WAI) 118

13.1.a Profiling and personalization 118

13.1.b Dynamic content assembly .. 118

Content Delivery Reference Guide

v

Chapter 14 Profiling and personalization .. 119

14.1 Setting up Profiling .. 120

14.2 Tracking Keys ... 121

14.2.a Creating Categories and Keywords 122

14.2.b Using Categories and Keywords as Schema list field values ..
123

14.2.c Tracking Categories in Component Templates 125

14.3 Tracking .. 126

14.4 Configuring the WAI for profiling 126

14.4.a Global logging settings .. 127

14.4.b Presentations ... 128

14.4.c Timeframes .. 131

14.4.d Excluding Pages, Components or Paths from being tracked ..
131

14.5 Personalizing content ... 133

14.5.a Creating Target Groups ... 133

14.5.b Associating Target Groups with Component Presentations
136

Chapter 15 Dynamic content assembly .. 139

15.1 Using Dynamic Component Presentations 140

15.2 Creating Component Templates for dynamic content assembly
141

15.2.a Output format .. 142

15.2.b Publishing Dynamic Component Presentations 143

15.2.c Publishing Pages that include Dynamic Component Presenta-
tions ... 143

15.3 Configuring the Content Broker for Dynamic Component assembly
144

15.4 Assembling Dynamic Component Presentations 144

15.4.a ComponentPresentationAssembler 144

15.4.b ComponentPresentation.getContent() 145

15.5 Assembling Dynamic JSP Component Presentations 145

15.5.a Using the JSPProcessor ... 146

15.5.b Using the ComponentPresentationAssembler in JSP 146

15.5.c Using DynamicComponentLink 147

15.6 Assembling Dynamic ASP Component Presentations 149

15.6.a Executing VBScript or JScript Dynamic Component Presenta-
tions ... 149

15.6.b Using the ComponentPresentationAssembler in ASP 150

15.6.c Using DynamicComponentLink 150

15.7 Dynamic Assembly XML ... 152

vi Tridion R5

Content Delivery Reference Guide

Appendices

Appendix A Example: An SMTP Custom Sender... 157

Appendix B Example: Custom POP3 Receiver.. 159

Appendix C Sample Transport Service configuration file 163

Appendix D Sample Deployer configuration file ... 164

Appendix E Sample Broker configuration file... 166

Appendix F Broker bindings for MS SQL, Oracle, Tamino and DB2 databases... 171

Appendix G WAI-Specific bindings... 173

Appendix H System classpath... 174

Appendix I Third-party libraries .. 175

Appendix J Configuring the Java Virtual Machine for COM services................. 177

vii

Preface

About this guide

This guide is written for template designers and system administrators that
configure and use the Tridion Content Distributor, Tridion Linking, and Tridion Web
and Application Server Integration (WAI). This guide explains how to configure and
use the Content Distributor, Linking, and WAI. The following software and
hardware knowledge is assumed:

• JSP or ASP

• Web and Application Servers

• Tridion R5

• XML

How to use this guide

This guide briefly introduces the different Content Delivery Products and is then
divided into the following parts:

Part I Content Distributor

This part describes Content Distributor functionality and describes how to
configure and use Publication Targets, the Transport Service, Content Deployer and
the Content Broker. In addition, this part describes how to configure
Sender-Receiver pairs, and how to use filters and queries.

Part II Linking

This part describes Tridion Linking functionality and describes how to configure
Linking for use with the Content Distributor.

Part III Web and Application Server Integration

This part describes the WAI and how to configure the WAI to track and personalize
content, and how to create and assemble Dynamic content.

viii Tridion R5

Content Delivery Reference Guide

Related documents

This guide is one document from the documentation set for Tridion products. The
full documentation set consists of the following documents:

• The Tridion 5.1 SP3 Installation Guide explains how to install Tridion 5.1 SP3
products included in this release. It is intended for system administrators.

• The Tridion 5.1 SP3 Upgrade Guide explains how to upgrade and configure
Tridion 5.1 SP3 products included in this release. It is intended for system
administrators.

• The Administration Guide explains how to perform general administrative
tasks for the Content Manager. It is intended for system administrators.

• The Content Manager User Manual explains which tasks an end user can
perform using this product, and what it means to perform those tasks.

• The Content Manager Publication Management Guide explains how to
manage Publications within the Content Manager.

• The Content Manager Programmer’s Reference Guide explains how to
configure the product in detail and how to extend its functionality through
scripting and programming. It is intended for software developers.

• The WebDAV User Manual explains which tasks an end user can perform
using the Tridion WebDAV Connector.

• The Business Connector Guide explains how to use the Tridion Business
Connector.

• The Tridion Release Notes document lists what has changed from previous
versions of the Content Manager and the Content Delivery products. It also
describes any open and closed issues.

Conventions

This section describes the typographical conventions used in this document.

• Code is formatted with the Courier New font, Set Properties for example

• Filenames, directory structures and URLs are formatted using Courier Bold
font, www.tridion.com for example

• Book names are italicized, R5 Administration Guide, for example

• Cross-references, within the Guide, are italicized and contain the name of
the referenced section, table, or figure

Content Delivery Reference Guide

ix

Version history

This version history list outlines the changes to the Content Delivery Reference
Guide since it was last released.

Product
Release
number

Document
number

Changes

5.1 SP2 1.0 This guide comprises the former Content
Distributor Guide, Linking Guide, and Web and
Application Server Integration Guide.

Most chapters have been rewritten for this
release.

This book now describes Publication Target
configuration as it relates to publishing to the
Content Distributor.

5.1 SP3 1.1 Minor changes only. Rerelease.

5.1 SP4 1.2 Fixed faulty code samples in
"ComponentPresentation.getContent()" on
page 145

More information about HTTP(s) transport
(including troubleshooting) added in "HTTP(S)
Senders and Receivers" on page 33

Added configuration info for the
LocalCopySender in "Local Copy, FTP and
SFTP Senders and Receivers" on page 31

Explanation of a new feature, configuring the
COM-called JVM from the registry, explained in
"Configuring the Java Virtual Machine for
COM services" on page 177

Minor changes such as typos

x Tridion R5

Content Delivery Reference Guide

1

Chapter 1 Content Delivery

Tridion Content Delivery products enable you to publish and distribute content to
Web and Application servers. This guide describes the following Tridion Content
Delivery products:

• Transport Service — The Transport Service is installed as part of a Content
Manager installation. The Transport Service contains Senders that send
published content to the Content Distributor.

• Content Distributor — The Content Distributor is a Java-based engine
designed to deliver Content Manager content to Web and Application
Servers. The Content Distributor contains two modules:

Content Deployer — The Content Deployer receives and analyzes content
from the Transport Service.

Content Broker — The Content Broker stores and accesses content on a
storage medium such as a file system or a database.

• Linking — Linking resolves and validates Component, Binary and Page links
on a published Web site.

• Web and Application Server Integration (WAI) — The WAI allows you to
track, profile, and personalize content shown to your Web site visitors, and
to dynamically assemble content.

Figure 1-1 Content Delivery architecture

2 Tridion R5

Chapter 1 Content Delivery

3

Chapter 2 Content Delivery
product licenses

Tridion products are licensed. Your license agreement with Tridion determines what
products and functionality you can use and access. Tridion Customer Support
provides you with the license files your require.

For each product, the license may be in one or more files. The following Content
Delivery products and features are licensed:

• Transport Service — enables you to publish. By default, includes local file
publishing.

HTTP(S) — enables you to publish to HTTP(S)

FTP — enables you to publish to FTP

SFTP — enables you to publish to SFTP

• Content Deployer — enables you to deploy content remotely or to a
database

• Content Broker — enables you to store content to a database

• Linking — enables you to use Linking to resolve and validate links on
published content

• WAI — enables you to use WAI functionality to profile and track visitor
behavior, and to dynamically assemble content

Content Delivery licenses include the following restrictions:

• CPU limit — delimits the number of logical processors in the system

• Node-lock — the computer for which the license applies using the host name
of the computer. You must obtain a different license file for each computer
on which products are installed. License files are machine specific.

• Time — (Optional) a time limit on your license

4 Tridion R5

Chapter 2 Content Delivery product licenses

2.1 Installing a license file

You must obtain the following license files from Tridion Customer support:

• a Transport Service license file

• Content Delivery license(s)

Note If features are not licensed, attempts to access or exceed limits of
licensed products and features results in the inability to access the
requested feature and error or information messages.

2.1.a Transport Service license file

You require a Transport Service license file on your Content Manager server in
order to publish. By default, this license fie includes local file publishing only. If you
wish to publish to HTTP(S), SFTP, or FTP, ensure that you are licensed to publish to
the desired protocol.

You must install this license file to publish.

Prerequisites To obtain the Transport Service license file, contact Tridion Customer Support.

To install the Transport Service license file:

1 Do one of the following:

• If the name of the license file is cd_licenses.xml, copy the
license file cd_licenses.xml to c:\Program
Files\Tridion\config or the location of your Content Manager
installation. (This is the same location as the
cd_transport_conf.xml file.)

• If the name of the license file is not cd_licenses.xml, you must
change the name in the cd_transport_conf.xml file after the
closing Senders element and before the last close tag. For
example:

<License Location="c:\Tridion\cd_transport_license.xml"/>
</TransportService>

2 Restart your Transport Service for licensing to take effect.

Note If a LicenseNotFoundException occurs, ensure that the
Transport Service configuration file contains a valid license
location.

Content Delivery Reference Guide

5

C
h
a
p
te

r 2
 C

o
n
te

n
t D

e
liv

e
ry

 p
ro

d
u
ct lice

n
se

s

2.1.b Content Delivery product license files

The following Content Delivery products may be licensed:

• Deployer

• Broker

• Linking

• WAI

To install the Content Distributor license file:

1 Do one of the following:

• If the name of the license file is cd_licenses.xml, copy the
license file cd_licenses.xml to c:\Program Files\Tridion\config
or the location of your Content Distributor product installation. This
is the same location as the related configuration files:

cd_deploy_conf.xml

cd_broker_conf.xml

cd_linking_conf.xml

cd_wai_conf.xml

• You must change the name and/or directory in the related
configuration file before the last closing tag in that file if any of the
following conditions apply:

The name of the license file is not cd_licenses.xml,

You wish to install the license file in a different location

You have separate license files for different products

...

</Receivers>

<License
Location="c:\Tridion\cd_deploy_license.xml"/>

</Deployer>

2 Restart your system for licensing to take effect.

Note If a LicenseNotFoundException occurs, ensure that the
relevant configuration files contain a valid license location.

6 Tridion R5

Chapter 2 Content Delivery product licenses

Part I

Content
Distributor

9

Chapter 3 Content Distributor

The Content Distributor is a Java-based engine designed to deliver Tridion Content
Manager content to Web servers and Application servers. To publish content from
the Content Manager to the Content Distributor, the following process occurs:

Figure 3-1 Content Distributor architecture

1 Content is published from the Content Manager to one or more
Publication Targets. The Content Manager publisher resolves and renders
content using Component Templates and Page Templates.

2 The Content Manager publisher creates a Transport Package. The
Transport Package contains the rendered content, metadata, and
deployment information.

3 The Transport Service uses Senders to send the Transport Package to
Content Distributor Receivers using the Publication Target protocol to
which content was published. Tridion Sender-Receiver pairs support the
following protocols:

• Local Copy

• (S)FTP

• HTTP(S)

4 In the Content Distributor, the Content Deployer unpackages the
Transport Package, analyzes content, and reads the instructions about
the publish action. By default, the Content Deployer sends the content to
the Content Broker.

5 The Content Broker determines where the Pages and metadata
associated with the published content are to be stored and stores the
content in the content storage medium (a file system, a SQL database,
such as MS-SQL, or Oracle, or an XML database, such as Tamino.)

10 Tridion R5

Chapter

This part describes how to configure and use the following Content Distributor
settings and functionality:

• Content Manager Publication Targets — The Publishing Target include the
following publishing parameters:

The target language and code page settings of published content.

The protocol details used for the publish action. When you create a
Publication Target, you select a Protocol Schema that defines the values
required for this configuration. You then fill in the appropriate values in
the Publication Target.

The priority of the Publish action (Low, Normal, or High).

See also Chapter 4 "Content Manager Publication Targets" on page 11.

• Transport Service, Deployer, and Broker configuration:

The Transport Service delegates the transport of published content (in
Transport Packages) to a protocol-specific Sender. All Sender-related
configuration information is specified in a transport service configuration
file. See Chapter 7 "Transport Service configuration" on page 41.

The Deployer receives Transport Packages, and contains Processors that
deploy or undeploy special types of content using modules that carry out
the instructions. Content Deployer modules delegate the content to
handlers within the Content Broker. The Receivers, Processors and
Modules are specified in the Deployer configuration file. See Chapter 8
"Deployer configuration" on page 47.

The Content Broker contains handlers that determine where different
types of content are stored. Based on the interface that a handler talks
to, content can be stored in a SQL database (MS SQL, Oracle, DB2), a file
system, or a Tamino database. See Chapter 9 "Broker configuration" on
page 61.

• Senders and Receivers — Sender and Receiver pairs are used to publish
content using a specific protocol, which is determined by the Publication
Target to which content is published.

Senders are configured in the Transport Service configuration file.

Receivers are configured in the Deployer configuration file.

In addition to Tridion supported Senders and Receivers, you can define
custom Senders and Receivers.

See Chapter 6 "Senders and Receivers" on page 29.

• Using metadata — Metadata is the descriptive information associated with
every Component Presentation, Binary, Component, and Page published to
the Content Distributor. Filters allow you to use this metadata to select a
subset of Components and to query user-defined metadata.

See Chapter 10 "Using metadata" on page 73.

11

Chapter 4 Content Manager
Publication Targets

A Publication Target defines the information required to publish content using
different protocols and the target language to which content is published.

The publisher retrieves information about the location and other publishing
settings from the Publication Target. This information is used by the Transport
Service Sender to transport the Transport Package to the Deployer.

The Publication Target specifies the following publishing parameters:

• The target language and code page settings of published content.

• A minimum approval status of published content. For example, if the
minimum approval status is "Approved", then only items that have reached
this approval status through a Workflow Process can be published

• The protocol details used for the publish action. The values required for this
configuration are determined by a Protocol Schema, which defines the type
of information that a specific protocol requires for a successful publishing
action.

This chapter describes:

• Publishing content

• Publishing protocols

• Configuring Publication Targets

• Publication Target Code Page values

12 Tridion R5

Chapter 4 Content Manager Publication Targets

4.1 Publishing content

A user publishes content to a Target Type. A Target Type has the following
characteristics:

• It is associated with one or more Publishing Target(s)

• It is used to grant users or groups permissions to publish to that Target Type

The Content Manager uses an internal publisher to render and package content
and uses an internal Transport Service to deliver this content to the Content
Distributor. Figure 4-1 depicts the stages involved in a publish action.

Figure 4-1 Publishing

See also Refer to the relevant chapters for more detailed information about configuring the
Transport Service, the Content Deployer, and the Content Broker.

1 The Publisher initiates the distribution of content by resolving, rendering,
and packaging items:

• Resolving determines which items need to be rendered

• Rendering assembles the output

• Packaging puts all of the rendered output and publishing metadata
into a Transport Package

2 The Transport Service sends the rendered content and metadata to the
Content Distributor. The Transport Service invokes Senders that are
responsible for sending content using the protocol information provided
by the Publication Target.

3 A Receiver accepts the package. The Content Distributor then deploys
and brokers content.

4 The Content Deployer receives and analyzes the Transport Package and
sends content to the Content Broker.

5 The Content Broker stores content in a storage medium (such as a file
system or database).

Content Delivery Reference Guide

13

C
h
a
p
te

r 4
 C

o
n
te

n
t M

a
n
a
g
e
r P

u
b
lica

tio
n
 Ta

rg
e
ts

4.2 Publishing protocols

Tridion allows you to publish content using the following protocols:

• Local File System places content on the file system (local or network).

• FTP uses FTP to send a Transport package to a deployment platform.

• SFTP uses SFTP to send a Transport package to a deployment platform.

• HTTP(S) uses HTTP (and optionally SSL) to send a Transport Package to a
deployment platform.

Sender and Receiver pairs are used to publish content using a specific protocol.
The protocol used is configured in the Publication Target to which content is
published.

Although Local File System, FTP, and SFTP all use different Senders, they use the
same Receiver (FileReceiver). The FileReceiver monitors a specific location for
Transport Packages. HTTP(S) uses a dedicated Receiver to receive Transport
Packages sent using the HTTP(S) protocol.

Publication Target specifies destination information for one or more protocols. The
Content Manager publisher creates a Transport Package. The Transport Package
contains:

• files (binaries, content, and/or Pages)

• XML instructions about the delivery (timing and location)

The Transport Service uses the Transport Packages protocol information to
delegate the transport of the package to a protocol-specific Sender (such as HTTP)
on the Content Manager. All Sender-related configuration information is specified
in a Transport Service configuration file (cd_transport_conf.xml). Receiver
information is configured in the Content Deployer configuration file
(cd_deployer_conf.xml).

For more information about Senders and Receivers, see Chapter 6 "Senders and
Receivers" on page 29.

This section describes:

• Local File System, FTP and SFTP protocols

• HTTP(S) protocol

4.2.a Local File System, FTP and SFTP protocols

Local File System, FTP, and SFTP Senders are configured in the Management
System interface as Publication Target Destinations.

A file Receiver polls the specified upload directory at predefined intervals. When a
new Transport Package is detected, the file Receiver extracts the package to the
specified WorkFolder. You must configure the FileReceiver to monitor the folder to
which the files are delivered in the Content Deployer configuration file.

14 Tridion R5

Chapter 4 Content Manager Publication Targets

The Publication Target configuration includes the protocol information required to
publish to these protocols. Table 4-1 outlines the values that are used.

Local file copy security considerations

The Transport Service and the Deployer service need to be able to read and write
files for the configured locations to which the Transport Package is sent and
retrieved. In a network scenario, the relevant service must run under a user
account that has read/write permissions for the file receiver location.

By default, the Transport Service and Deployer service run under the LocalSystem
user. This LocalSystem user cannot write to other machines.

Table 4-1 Local File System, FTP, and SFTP Protocols

Protocol and
description

Schema fields

Local

Places content on the local
file system.

Location — the Folder to which the Local Copy Sender
copies the Transport Package. (This Folder is monitored by
the FileReceiver which retrieves and Transport Package).

SFTP

Uses SFTP to send a
Transport package to a
deployment platform.

FTPHost — IP address or host of the FTP server

FTPPort — Port number of the FTP server

FTPUsername — Username to authenticate against the
FTP server

FTPPassword — Password to authenticate against the
FTP server

Location — the Folder to which the SFTP Sender copies
the Transport Package. (This Folder is monitored by the
Content Deployer which retrieves and Transport Package).

SSHHost — IP address or host of the SSH server

SSHPort — Port number of the SSH server

SSHUsername — Username to authenticate against the
SSH server

SSHPassword — Password to authenticate against the
SSH server

FTP

Uses FTP to send a
Transport package to a
deployment platform.

Host — IP address or host of the FTP server

Port — Port number of the FTP server

UserName — Username to authenticate against the FTP
server

Password — Password to authenticate against the FTP
server

Location — the Folder to which the SFTP Sender copies
the Transport Package. (This Folder is monitored by the
Content Deployer which retrieves and Transport Package).

Content Delivery Reference Guide

15

C
h
a
p
te

r 4
 C

o
n
te

n
t M

a
n
a
g
e
r P

u
b
lica

tio
n
 Ta

rg
e
ts

4.2.b HTTP(S) protocol

HTTP(S) transports Transport Package content to a Content Delivery system using
HTTP. This transfer is encoded using a multipart mimeupload request. HTTPS
Transport can be encrypted.

The same Sender defines both HTTP and HTTPs transport. To specify one or the
other, simply change the protocol scheme of the Publication Target. That is, when
creating the Publication target, specify the URL as:

• http:// if you intend to use HTTP

• https:// if you intend to use HTTPs

The Publication Target configuration includes the protocol information required to
publish to HTTPS:

• UserName — User name used to connect to HTTP(S) server

• Password — Password used to connect to HTTP(S) server

• URL — URL HTTPS server and file upload location

4.2.c Creating a Protocol Schema

Protocol Schemas define the protocol information that is needed to transport
content to the delivery system. Publication Targets specify which protocol(s) are
used for transport and the associated information as defined by the protocol
schema(s) for the selected protocol(s).

For example, an FTP Sender requires Host, Port, Username, Password, and
Location information to publish content. A protocol schema called FTP is used to
specify these fields (figure 4-2). When the protocol schema is used in a Publication
Target, the values of these fields can be added (figure 4-3).

Figure 4-2 FTP Protocol Schema fields

16 Tridion R5

Chapter 4 Content Manager Publication Targets

Figure 4-3 A Protocol Schema used in a Publication Target

When you install the Content Manager, the following default protocol schemas are
installed:

• Local file system

• FTP

• SFTP

• HTTP(S)

Note It is not possible to copy/paste a protocol schema directly into the
Protocol Schema node. You must create the item through the GUI.

Prerequisites A User with system administration privileges can create a protocol schema.

To create a Protocol Schema:

1 In CM Explorer, navigate to System Administration>Publishing
Management>Protocol Schemas.

2 Select Protocol Schemas and click the Add Schema button on the
toolbar. The New Schema window appears.

Figure 4-4 New Schema.

Content Delivery Reference Guide

17

C
h
a
p
te

r 4
 C

o
n
te

n
t M

a
n
a
g
e
r P

u
b
lica

tio
n
 Ta

rg
e
ts

Results The Protocol Schema you have created can now be used to define destination
details for a Publication Target.

4.3 Configuring Publication Targets

This section describes:

• Creating a Target Type

• Creating a Publication Target

4.3.a Creating a Target Type

A Target Type specifies a user-friendly name for one or more Publication Targets
and specifies permission settings for the target(s). The Content Manager uses
Target Types to identify one or more Publication Targets. When a user publishes
from the Content Manager, the user publishes to a Target Type. Content is then
published to the Publication Targets associated with these Target Types.

For example, your organization may have two different Target Types:

• A Target Type called Staging to which authors can publish content.

• A Target Type called Live to which editors can publish content.

In this example, the Target Types are associated with Publication Target types. The
Staging Target Type may publish to a local file system, while the Live Target Type
may publish to an HTTP server that is accessible by external visitors.

3 On the General tab, fill in the following fields:

• Name — A unique name for this Schema.

• Description — A description of this Protocol Schema.

• Root element name — The Sender protocol name, such as FTP,
or HTTPS.

4 On the Design tab, add fields by clicking the Add button. For each added
field specify the following field parameters:

• XML Name — The definition of the parameter you want to pass to
your Sender, such as Host, Port, or Username, for example. This
name is case sensitive.

• Description — A brief description of the parameter specified.

• Type (either Text or Number) — You must specify Number if you
are defining a port number.

• If necessary, define parameters for the type

5 Repeat step 5 for each field you need to add.

6 Click the Save & Close button on the toolbar.

To create a Protocol Schema: (Continued)

18 Tridion R5

Chapter 4 Content Manager Publication Targets

You can create Target Types in the Tridion Content Manager (CM) Explorer.

Results For Users to be able to publish to this Target Type you must now complete the
following actions:

• Add this Target Type to one or more Publication Targets. After it is added to
a Publication Target, Users can select the name of a Target Type from a list.
For more information, refer to 4.3.b "Creating a Publication Target" on page
19.

• Modify the security settings of the Target Type by editing the Target Type.

Edit a Target Type to change the Name and/or Description of the Target Type and
to give Users permission to publish to the Target Type.

Results You can now add this Target Type to one or more Publication Targets. After it is
added to a Publication Target, Users can select the name of a Target Type from a
list when publishing items.

To create a Target Type:

1 In CM Explorer, navigate to System Administration>Publishing
Management>Target Types.

2 Click the Add Target Type button on the toolbar.

3 In the New Target Type window that appears, fill in the following fields:

• Name — The name of the Target Type (For example, Live)

• Description — A Description of the Target Type (For example,
"Staging" or "Live")

4 Click the Save & Close button on the toolbar.

To edit a Target Type:

1 In CM Explorer, navigate to System Administration>Publishing
Management>Target Types.

2 In the list view, select the Target Type you want to edit and click the
Open button on the toolbar.

3 To edit information on the General tab, modify field values as required.

4 To grant or remove permission to publish to the Target, select the
Security tab.

On the Security tab, select the Show All check-box and select the Users
or Groups that should have permission to publish to this Target Type. In
the Permissions field, select the Use Target Type check-box.

5 Click Save & Close on the toolbar.

Content Delivery Reference Guide

19

C
h
a
p
te

r 4
 C

o
n
te

n
t M

a
n
a
g
e
r P

u
b
lica

tio
n
 Ta

rg
e
ts

4.3.b Creating a Publication Target

Create a Publication Target to specify information about a publish action (such as
the location and protocol of a publishing action).

When an item is published to a Target Type associated with this Publication Target,
the Publication Target information is passed on to the Transport Service. This
information is used by the Content Distributor when the publishing action takes
place.

Prerequisites Before you can create a Publication Target and configure its settings, you may
need to create Protocol Schemas and Target Types if they do not already exist.

Users with system administration privileges can create Publication Targets.

To create a Publication Target:

1 In CM Explorer, navigate to System Administration>Publishing
Management>Publication Targets.

2 Click the Add Publication Target button on the toolbar. A New
Publication Target window opens.

Figure 4-5 Publication Target — General tab

3 On the General tab fill in the following fields:

• Name: A unique name for this Publication Target.

• Description: A description of the Publication Target.

• Target Language: The script language for generating script code

• Default Code Page: The code page used for the published
content. (See also: "Publication Target Code Page values" on page
21)

20 Tridion R5

Chapter 4 Content Manager Publication Targets

Results Specified Publications can now publish to the Publication Target. When a User
performs a publish action in a Publication, the User can select the Target Type for
which they have permission. This Target Type publishes to the associated
Publication Target(s).

Note You may need to change the Default Code Page for Pages
that contain other character types (such as Japanese).
Usually the setting for languages is UTF-8. Templates may
override this code page setting.

• Minimum Approval Status: The minimum Workflow Approval
Status required for an item in Workflow for the item to be
published. If the Workflow version of an item does not have the
required status, the latest checked-in version is rendered instead.

• Priority: The priority to which publish actions to this Publication
Target will have. High, Medium or Low.

4 In the Destinations area, you can add one or more destinations to which
the Transport Package will be sent. Each destination has a protocol. After
you select a protocol, you can specify the relevant protocol information.

Click the Add button and fill in the following fields:

• Name: the name of the destination location

• Protocol: protocol information for this destination. The selected
protocol is based on existing Protocol Schemas. Fill in protocol
information. "Publishing protocols" on page 13 provides a
description of the information required for each protocol.

5 Select the Publication tab and fill in the following fields:

• To select Publications that can Publish to this Publication Target,
select Publications from the list of Available Publications and click
the Add button.

• To add Target Types to this Publication Target, select Available
Target and click the Add button.

Figure 4-6 Publication Target — Publication tab

6 Click the Save & Close button on the toolbar.

To create a Publication Target: (Continued)

Content Delivery Reference Guide

21

C
h
a
p
te

r 4
 C

o
n
te

n
t M

a
n
a
g
e
r P

u
b
lica

tio
n
 Ta

rg
e
ts

4.4 Publication Target Code Page values

Component Presentations and Pages that are sent to the Content Manager
Publisher as part of a Transport Package are sent with their "code page" values.
These values are set by the Publication Target "Default Code Page" value.

When these Component Presentations and Pages are retrieved by the Content
Distributor, these character encodings need to be translated to Java character set
names. This is done using a mapping file that is located in the Content Broker jar
file.

Figure 4-7 Default Code Page: System Default

If you do not use the System Default settings for the Default Code Page, you must
make the following changes to your Page Templates and Component Templates to
ensure that web browsers correctly interpret content rendered by these templates.

Note Add the code described in table 4-1 to Page Templates before any
<html> tags. For Dynamic JSP Component Templates, add the code to
the top of the Component Template.

If necessary, you can override mappings or add mappings. For more information,
see "Overriding mappings for code page values" on page 22.

Table 4-1 Additions to Page Templates and Component Templates when the
default code page value is not System Default

Item type Example1

1.These examples are for UTF-8. Modify the values according to the encoding that
you intend to use.

ASP Page
Template

<% Response.CodePage="65001"

Response.ContentType="text/html; charset=UTF-8" %>

ASP.NET Page
Template

<% Response.ContentType="text/html; charset=UTF-8" %>

See also "ASP.NET IIS configuration" on page 22 (below).

JSP Page
Template

<%@ page contentType="text/html; charset=UTF-8" %>

Dynamic ASP
Page Template

<% Response.ContentType="text/html; charset=UTF-8" %>

Dynamic JSP Page
Template and
dynamic
Component
Template

<%@ page contentType="text/html; charset=UTF-8" %>

Important: For dynamic JSP, this line must be added to both
the Page Template and the dynamic Component Template.

22 Tridion R5

Chapter 4 Content Manager Publication Targets

ASP.NET IIS configuration

For ASP.NET, in addition to the template changes indicated in table 4-1, you also
need to configure IIS with a file encoding value for these ASP.NET pages. The
relevant web.config file should contain the following minimum content:

<configuration>
<system.web>
<globalization fileEncoding="utf-8"/>

</system.web>
</configuration>

4.4.a Overriding mappings for code page values

Note This section applies to 5.1 SP3 and higher.

Component Presentations and Pages that are sent to the Content Manager
Publisher as part of a Transport Package are sent with their "code page" values.
These values are set by the Publication Target "Default Code Page" value.

When these Component Presentations and Pages are retrieved by the Content
Distributor, these character encodings need to be translated to Java character set
names. This is done using a mapping file that is located in the Content Broker jar
file.

If the existing mappings are not sufficient for your requirements, you can override
mappings or add additional mappings.

To override mappings or add mappings, you create a file
(codepage_encoding.properties) in which you specify name=value pairs, where:

• name is the codepage number

• value is the java character set name

For example, to map to Microsoft code page 1200 (which represents UTF-16) to
the Java equivalent (which is the character set UTF-16) you add the following line
to the properties file:

1200=UTF-16

Important:

This is an example only, and is for UTF-8. Change the values according to the
encoding that you intend to use.

Important:

Before you override any mappings, ensure that you have specified correct HTTP
character set header in your templates. For more information, refer to
"Publication Target Code Page values" on page 21.

Content Delivery Reference Guide

23

C
h
a
p
te

r 4
 C

o
n
te

n
t M

a
n
a
g
e
r P

u
b
lica

tio
n
 Ta

rg
e
ts

Note This mapping is for illustration purposes only. This mapping is already
part of default mappings that are shipped with the Tridion Content
Broker.

To override or add additional mappings:

1 Create or open the following Java properties file:

codepage_encoding.properties

2 Put this file on the classpath of the Deployer or Broker. (For example, in
the same location as the configuration files.)

3 In this file, add name=value pair mappings with the following syntax:

• Separate all items with "="

• Start a new line for each new mapping.

• Add comments with lines starting with "#".

24 Tridion R5

Chapter 4 Content Manager Publication Targets

25

Chapter 5 Configuring ASP.NET
support for the Content
Distributor

This section is for system administrators that have installed ASP.NET support as
part of the Content Delivery product installation.

If you selected .NET support as part of your installation the installer has copied to
the required .NET wrappers to the bin directory of your selected installation
directory. By default, this location is:

C:\Program Files\Tridion\bin

To configure .NET support you must have fully functional COM support. COM
support requires the following:

• a correct setup of the Java libraries

• valid configuration files

• installed and running services

This chapter describes:

• Configuring assemblies

• Configuring assemblies for a web application

• Configuring assemblies for a standalone application

• Configuring WAI profiling and tracking

• Publishing to ASP.NET

5.1 Configuring assemblies

The following assemblies are installed in the bin folder of your installation directory
(default location is C:\Program Files\Tridion\bin):

• Tridion.ContentDelivery.Broker.dll

• Tridion.ContentDelivery.Broker.Interop.dll

• Tridion.ContentDelivery.Linking.dll

26 Tridion R5

Chapter 5 Configuring ASP.NET support for the Content Distributor

• Tridion.ContentDelivery.Linking.Interop.dll

• Tridion.ContentDelivery.WAI.dll

• Tridion.ContentDelivery.WAI.Interop.dll

• Tridion.ContentDelivery.WAI.Interop.ASP.dll

Figure 5-1 depicts the dependencies between .NET assemblies and their COM
counterparts.

Figure 5-1 Dependencies between .NET assemblies and COM counterparts

5.1.a Configuring assemblies for a web application

To configure assemblies for a web application, you can do one of the following:

• add the assemblies to the bin folder of your Website (recommended)

• register the DLLs in the Global Assembly Cache

Note Consult the Microsoft Development Network Library online at
http://msdn.microsoft.com/library/default.asp to learn about
other ways of loading assemblies.

5.1.b Configuring assemblies for a standalone application

To configure assemblies for a standalone application, do one of the following:

• reference the individual DLLs

• copy the DLLs to the project folder

• add the DLLs to the global assembly cache

Content Delivery Reference Guide

27

C
h
a
p
te

r 5
 C

o
n
fig

u
rin

g
 A

S
P.N

E
T
 su

p
p
o
rt fo

r th
e
 C

o
n
te

n
t D

istrib
u
to

r

5.2 Configuring WAI profiling and tracking

The Web and Application Integration (WAI) uses a .NET web module. At the
beginning of a request, the module handles the authentication and persistence of
users. At the end of a request, the module invokes tracking of the visited content.

5.3 Publishing to ASP.NET

As of 5.1 SP3, it is possible to publish content to ASP.NET. This is performed using
an intermediate deployment language.

ASP.NET output uses:

• a Publication Target that specifies the intermediate language format (Tridion
Content Deployer Language — TCDL) as an output format

• the Content Deployer ASP. NET configuration, which transforms the
intermediate language format to ASP. NET

Note The addition of this functionality has no impact on your installation.
This section is intended to outline how you can implement this
functionality.

Unlike other output formats, the Content Manager does not transform the content
to the published format. Instead, the Content Manager transports the content in
TCDL. The Content Deployer then transforms this format into ASP. NET.

To configure profiling and tracking for use with .NET:

1 Create a web.config configuration file in the root of your web site. If a
web.config file already exists, you can use the existing file.

2 Configure the WAI HTTPModule:
Tridion.ContentDelivery.WAI.WAIModule.

The web.config should appear as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<!-- Other configuration such as session persistence and
authentication -->
<httpModules>
<add
type="Tridion.ContentDelivery.WAI.WAIModule,
Tridion.ContentDelivery.WAI"
name="TridionWAIHttpModule" />

</httpModules>
<!-- Other configuration such as session persistence and
authentication -->

</system.web>
</configuration>

28 Tridion R5

Chapter 5 Configuring ASP.NET support for the Content Distributor

In the Deployer configuration file (cd_deployer_conf.xml), the optional
Transformer element can be used if you want to publish content to ASP.NET. Add
the Transformer element as a sub-element to the PageDeploy module. The
Transformer element specifies the following Class attribute:

Class="com.tridion.transformer.ASPDotNETTransformer"

The following example depicts this element used for PageDeploy:

<Processor Action="Deploy" Class="com.tridion.deployer.Processor">
<Module Type="PageDeploy"
Class="com.tridion.deployer.modules.PageDeploy">
<Transformer Class="com.tridion.transformer.ASPDotNETTransformer" />

</Module>
<Module Type="SchemaDeploy"
Class="com.tridion.deployer.modules.SchemaDeploy"/>

<Module Type="ComponentPresentationDeploy"
Class="com.tridion.deployer.modules.ComponentPresentationDeploy">

</Module>
<Module Type="BinaryDeploy"
Class="com.tridion.deployer.modules.BinaryDeploy"/>

<Module Type="ComponentDeploy"
Class="com.tridion.deployer.modules.ComponentDeploy"/>

<Module Type="TemplateDeploy"
Class="com.tridion.deployer.modules.TemplateDeploy"/>

</Processor>

When publishing to ASP.NET, the following conditions apply:

• The Deployer is configured to use the ASPDotNETTransformer

• The Publication Target to which content is published specifies the TCDL
(Tridion Content Deployer Language) as the output language

• The Page Template file extension is .aspx

• The ASP.NET libraries are installed on the presentation server

ASP.NET output requires:

• a Publication Target that specifies the intermediate language format (Tridion
Content Deployer Language — TCDL) as an output format

• the Content Deployer ASP.NET configuration, which transforms the
intermediate language format to ASP.NET

• a web.config file in the root of the web site to which you want to deploy
Page. This file requires the following lines:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation defaultLanguage="c#" debug="false" />

</system.web>
</configuration>

Unlike other output formats, the Content Manager does not transform the content
to the published format. Instead, the Content Manager transports the content in
TCDL. The Content Deployer then transforms this format into ASP.NET.

Important: If you want to publish to ASP.NET using a Code Page Value that is not
the default value, see also 4.4 "Publication Target Code Page values" on page 21.

29

Chapter 6 Senders and Receivers

Sender and Receiver pairs are used to publish content using a specific protocol.
The Publication Target protocol determines how content is published. The
Transport Service receives destination information using Publication Target
information and the relevant Sender is created. You configure Senders in the
Transport Service configuration file.

Using the specified configuration, the Sender then sends the Transport Package to
a Receiver that is invoked by the Content Distributor.

Tridion supports the following Sender-Receiver pairs:

• Local file

• FTP

• SFTP

• HTTP(S)

Figure 6-1 Sender and Receivers.

This chapter describes:

• Senders

• Receivers

• Local Copy, FTP and SFTP Senders and Receivers

• HTTP(S) Senders and Receivers

• Developing custom Senders and Receivers

30 Tridion R5

Chapter 6 Senders and Receivers

6.1 Senders

Configure Senders in the Transport Service configuration file:
cd_transport_conf.xml.

The Senders element defines the Sender types you intend to use. Senders are
configured in the Management System interface as Publication Target Destinations.

Specify a Sender by providing a 'Type' that matches the root element name of a
Content Manager Protocol Schema. The 'Class' attribute specifies the Java class
that implements the functionality for a Sender.

For example:

<Sender Type="FTP" Class="com.tridion.transport.FTPSender"/>

The following are the available Sender types, and the classes responsible for
implementing the respective protocols:

• Local — com.tridion.transport.LocalCopySender

• FTP — com.tridion.transport.FTPSender

• SFTP —com.tridion.transport.SFTPSender

• HTTP(S) — com.tridion.transport.HTTPsSender

For more information about configuring Senders, refer to "Transport Service
configuration" on page 41.

6.2 Receivers

Configure Receivers in the Content Deployer configuration file:
cd_deployer_conf.xml.

The ReceiverBindings element defines the types of Receivers that the Deployer
can use. The ReceiverBindings element can have the following attributes:

• The Type attribute identifies the Receiver. For example, "HTTPSReceiver"

• The Class attribute defines the implementation used for receiving the
Transport Packages. For example, com.tridion.transport.HTTPSReceiver

The Receivers element specifies which Receiver instances the Deployer starts. The
element names for these Receivers must match the Type attribute defined in the
ReceiverBindings section.

For example

<ReceiverBindings>
<Receiver Type="FileReceiver"
Class="com.tridion.transport.FileReceiver"/>

</ReceiverBindings>

Important:

The value for Sender Type in the sender configuration and the value of the
Protocol Schema name must be identical including case.

Content Delivery Reference Guide

31

C
h
a
p
te

r 6
 S

e
n
d
e
rs a

n
d
 R

e
ce

iv
e
rs

The following Receiver classes are available:

• Local Copy — com.tridion.transport.FileReceiver

• FTP — com.tridion.transport.FileReceiver

• SFTP — com.tridion.transport.FileReceiver

• HTTP(S) — com.tridion.transport.HTTPSReceiver

For more information about configuring Receivers, refer to "Deployer
configuration" on page 47.

6.3 Local Copy, FTP and SFTP Senders and Receivers

The Transport Service configuration on the management system configures the
following Senders to send a Transport Package to a specified location:

• LocalCopy — a location on the file system

• FTP — a location on an FTP server. The FTP Sender uses the ftp.jar library to
transfer content to the Deployer.

• SFTP — a location on an SFTP server. The SFTP Sender uses the sftp.jar
library to transfer content to the Deployer.

Senders are configured as Publication Target Destinations (figure 6-2).

Figure 6-2 A Publication Target using FTP

The file Receiver polls the specified upload directory (the Location value of the
Publication Target) at predefined intervals. When a new Transport Package is
detected, the file Receiver extracts the package to the specified WorkFolder.

32 Tridion R5

Chapter 6 Senders and Receivers

In the Content Deployer configuration file, you configure the file Receiver to
monitor the folder to which the files are delivered using the following attributes:

• Location — specifies folder that the Receiver should monitor.

• Interval — specifies the frequency (in seconds) with which the Receiver
checks the location for new files.

<FileReceiver Location="C:\Tridion\incoming" Interval="1"/>

If the Deployer is not running when the Transport Packages are uploaded to the file
system, they are processed when the Deployer is restarted.

The Deployer must run as an independent process:

• On Windows-based systems, start the Tridion Content Deployer service

• On UNIX-based systems, add a script file to the boot procedure that starts
the process. For example:

#!/bin/sh

java -cp
./classes:./lib/cd_core.jar:./lib/cd_transport.jar:./lib/cd_deploy
er.jar:./lib/xalan.jar:./lib/xercesImpl.jar:./lib/xmlParserAPIs.ja
r:./lib/jndi.jar:./lib/ezlicrun.jar com.tridion.deployer.Deployer

Local copy Sender and Receiver example

The Local Copy Sender configured in cd_transport_conf.xml:

<Sender Type="LocalCopy"
Class="com.tridion.transport.LocalCopySender"/>

The FileReceiver configuration in cd_deployer_conf.xml:

<FileReceiver Location="C:\Program Files\Tridion\FileReceiver"
Interval="1"/>

FTP Sender and Receiver example

The FTP Sender configured in cd_transport_conf.xml:

<Sender Type="FTP" Class="com.tridion.transport.FTPSender"/>

The FTP FileReceiver configured in cd_deployer_conf.xml:

<FileReceiver Location="C:\Tridion\incoming" Interval="1"/>

SFTP Sender and Receiver example

The SFTP Sender configured in cd_transport_conf.xml:

<Sender Type="SFTP" Class="com.tridion.transport.SFTPSender"/>

The SFTP FileReceiver configured in cd_deployer_conf.xml:

<FileReceiver Location="C:\Tridion\incoming" Interval="1"/>

Content Delivery Reference Guide

33

C
h
a
p
te

r 6
 S

e
n
d
e
rs a

n
d
 R

e
ce

iv
e
rs

6.4 HTTP(S) Senders and Receivers

HTTP(S) transports Transport Package content to a content delivery system using
an HTTP POST request.

HTTPS Transport can be encrypted. Although the transport method is called HTTPS,
the use of SSL and of username/password is optional. This document does not
describe how to configure the Web server to use SSL certificates.

The URL of the HTTPS transport method depends on the delivery system
configuration. For example:

• ASP — https://www.visitorsWeb.com/upload/httpupload.asp

• J2EE — https://www.visitorsWeb.com/httpupload

The same Sender defines both HTTP and HTTPs transport. In order to specify one
or the other, simply change the URL in the Publication Target. That is, when
creating the Publication target, specify the URL as:

• http:// if you intend to use HTTP

• https:// if you intend to use HTTPs

The remainder of the URL must be the address of a correctly configured Web
server, which contains the corresponding HTTPs Receiver.

To create an HTTPS transport Sender, add the following line to the Transport
Service configuration file:

<Sender Type="HTTPS" Class="com.tridion.transport.HTTPSSender"/>

You must also specify an HTTP(S) Receiver in the Deployer configuration file:

<Receiver Type="HTTPSReceiver"
Class="com.tridion.transport.HTTPSReceiver"/>

For information about the necessary jar files to enable HTTPS, refer to Appendix I
"Third-party libraries" on page 175.

6.4.a Troubleshooting transport over HTTP(S) to IIS

When you transport large Transport Packages over HTTP or HTTPS to an IIS server,
the transport may fail due to one or both of the following reasons:

• The receiving IIS server refuses to accept the Transport Package because
the Transport Package is too large. You can find out if this is the case by
checking the IIS log file. It should contain a 403 HTTP error code.

• The ASP page that receives the Transport Package times out because the
Transport Package is too large. This will be reported as a failed transport in
the Transport Log file (see "Logging" on page 43 to locate this log file).

Configuring IIS

To prevent 403 HTTP errors from IIS, you can configure IIS so that it accepts
larger pieces of data offered through the HTTP POST command (the command
used by Transport Packages). By default, IIS sets a size limit of 200 Kilobytes on

34 Tridion R5

Chapter 6 Senders and Receivers

such data. In IIS 6.0, you can increase this maximum size by editing the
AspMaxRequestEntityAllowed property in the IIS Metabase XML file. Refer to the
MSDN Library at http://msdn.microsoft.com/library/ for more details.

Changing the timeout limit of the ASP page

To prevent the ASP page from timing out, you can configure the Web site to allow
ASP scripts to wait longer for incoming data.

To change the timeout settings for ASP scripts:

1 On the machine to which you are transporting, acess the Windows
Control Panel, access Administrative Tools, then access the Internet
Services Manager.

The Internet Services Manager displays the Web sites running on the
machine.

2 Right-click the Web site that contains the ASP page and select
Properties from the context menu. A Properties window opens for this
Web site.

Figure 6-3 Web site properties in Internet Services Manager

3 Click the Home Directory tab and click Configuration in the
Application Settings area. The Application Configuration window
opens. Select the App Options tab.

Content Delivery Reference Guide

35

C
h
a
p
te

r 6
 S

e
n
d
e
rs a

n
d
 R

e
ce

iv
e
rs

Note If your Web site contains other ASP pages that should keep the
original timeout value, you can set the timeout on a Web folder level
from the Internet Services Manager, or even set it in the source code
of the specific ASP page. Refer to the MSDN Library for details.

Limiting Transport Package size

Regardless of how you configure the Web site, it is always possible that a Transport
Package will be too big to transport. It is best to find this out before you actually
start sending the Transport Package, because attempting this transport will slow
down the Web site.

So rather than waiting for the HTTP 403 error to return or for the ASP page to time
out, it is better to catch these large Transport Packages at the source.

You can detect large Transport Packages by setting an element in the Content
Deployer configuration file called HTTPSReceiver. This element, which is
commented out by default, has an attribute MaxSize. By uncommenting it and
setting the value of this attribute to a certain value, any Transport Package larger
than this size will automatically fail to transport, and such failure will be logged.

For more information about configuring the Content Deployer, see "Configuring the
Deployer" on page 48.

Figure 6-4 App Options tab in Application Configuration

4 Set the value (in seconds) for the ASP Script timeout. The default
value is 90 seconds. Increase the value to allow the ASP page to wait
longer.

5 Click OK to close the Application Configuration window. Then click
OK close the Web site Properties window.

6 Close the Internet Services Manager.

To change the timeout settings for ASP scripts:

36 Tridion R5

Chapter 6 Senders and Receivers

6.4.b Importing a certificate for HTTPS uploads

The Transport Service can only perform HTTPS uploads (necessary for HTTPS
transport) if it can find a certificate that permits it to access the destination. If no
such certificate is available, transport will fail.

6.4.c HTTPS with IIS

The HTTPS transport method for IIS uses an ASP page to handle incoming
packages.

Your installation CD-ROM contains the following files in the
Content Delivery/windows/httpupload directory:

• A single ASP page called httpupload.asp

Create a separate Web site within the IIS management console and add this
page to the root of this site.

• The ASP page uses a COM module that handles the upload of files:
cd_upload.dll.

Copy this file to the machine running the IIS server and register this module
using the following command line:

regsvr32 cd_upload.dll

The ASP upload page sends incoming packages to a running Deployer through
DCOM. The Deployer service must be running on the same machine as IIS.

You can test the installation by requesting the ASP Page using a Web browser. The
following content should be returned to the browser:

TCDFileUpload.FileUpload.1.1 error '80004005'
TCDFileUpload::SaveToDisk(): no data to save (due to 'GET' instead of

To make a certificate available to the Transport Service:

1 Find the Transport Service log file. The location and name of this file are
configured in the Transport Service configuration file
(cd_transport_conf.xml). By default, the log path and file is
c:\Program Files\Tridion\log\cd_transport.log.

2 If you cannot find the log file at the configured location, you may have to
start the Transport Services (under Services in the Windows Control
Panel). As soon as the service starts, it creates a log file in the
configured location.

3 Open the log file in a text editor. At the top of the file is a list of the
system properties. Search for a property called java.home. The value of
this property is the location of your Java Runtime Environment.

4 Import the certificate from the destination into the lib\security
subdirectory of the Java home location you found.

To perform this import, you can use either a command-line tool called
keytool, or the GUI-based Policy Tool. Both are shipped with the Java
SDK. The following URLs explain how to use these tools:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html

Content Delivery Reference Guide

37

C
h
a
p
te

r 6
 S

e
n
d
e
rs a

n
d
 R

e
ce

iv
e
rs

'POST', maybe?)
/httpupload.asp, line 9

The URL that you use to get this message can be used as the value of the HTTPS
protocol URL field in your Content Manager Publication Target.

6.4.d HTTPS with a Java Web/Application Server

When you use HTTP upload in a Java Web environment, you do not need to run the
Deployer as a separate process, it will run in the context of the Java
Web/application server.

To use HTTP upload, use the Web Archive (WAR) (cd_upload.war), which is
delivered in the Content Distributor/java/httpupload folder of your installation
CD-ROM. This file contains the required libraries and configuration needed to
handle incoming file requests and is deployed using the deployment tools in your
Web/application server.

The HTTP upload servlet connects with a running Deployer instance within the
application server (the Deployer is started if necessary).

The JAR and configuration files used by the Deployer must therefore be available
to the httpupload Web application. The JAR files should be placed in the library
folder of the Web application and a cd_deployer_conf.xml file should be placed on
the CLASSPATH of the Web application (e.g. in the “classes” folder). Please refer to
the documentation of your application server for more information.

After you deploy the WAR file, a configured servlet called httpupload is installed
relative to the location of the root of the Web server. You can test the installation
by opening the URL of this servlet in a Browser. The following content should be
returned to the browser:

Tridion HTTP Upload and Responder Servlet

The URL that you use to get this message can be used as the value of the HTTPS
protocol URL field in your Content Manager Publication Target. If the Deployer is
not running when the Transport Packages are uploaded to the HTTPS Server, it will
automatically be started by the servlet.

38 Tridion R5

Chapter 6 Senders and Receivers

Tomcat example

The following Tomcat example specifies the JAR files that you need to copy over.

This section describes how to configure HTTP(s) using the Apache Tomcat
application server.

To configure HTTP(S) using the Apache Tomcat application server:

1 Copy cd_upload.war to Tomcat’s Webapps directory so that it is deployed.
This will create a Web-app under the folder cd_upload.

2 Copy the following JAR files from the Content Distributor/java/lib
folder on the CD into the cd_upload/WEB-INF/lib folder:

• cd_broker.jar

• cd_core.jar

• cd_deployer.jar

• cd_transport.jar

• ezlicrun.jar

• xalan.jar

• xercesImpl.jar

• xmlParserAPIs.jar

3 Create a folder called “classes” under the WEB-INF folder and copy the
cd_deployer_conf.xml, cd_broker.conf.xml and cd_licenses.xml files
to the root of this folder.

4 Ensure the configuration files are configured appropriately by ensuring
that the following configuration elements are present in the
cd_deployer_conf.xml configuration file:

<ReceiverBindings>
<Receiver Type="HTTPSReceiver"
Class="com.tridion.transport.HTTPSReceiver"/>

</ReceiverBindings>
<Receivers>
<HTTPSReceiver MaxSize="10000000"/>

</Receivers>

5 If any third party libraries are required for deployment (e.g. jdbc drivers
if your are deploying to a database) these should also be placed under
WEB-INF/lib.

6 Restart the cd_upload Web application.

7 The directory cd_upload is created from the cd_upload.war file, and is
accessible using http://localhost:8080/cd_upload/. To access the
httpupload servlet, use the URL
http://localhost:8080/cd_upload/httpupload

8 Configure your Publication target, in the Content Manager, to publish to
HTTP. Enter the following URL in the Publication target:
http://localhost:8080/cd_upload/httpupload.

Content Delivery Reference Guide

39

C
h
a
p
te

r 6
 S

e
n
d
e
rs a

n
d
 R

e
ce

iv
e
rs

6.5 Developing custom Senders and Receivers

This section describes how to create custom Sender and Receiver modules and, as
an example, describes how to create an SMTP Sender and a POP Receiver.

The custom Sender will retrieve the values defined by the Protocol Schema using
its configure() method.

The custom Receiver will receive the configuration values in its configure()
method. The custom Receiver is loaded and initialized when the Deployer starts.

For examples of a custom Sender and Receiver, refer to:

• Appendix A "Example: An SMTP Custom Sender" on page 157

• Appendix B "Example: Custom POP3 Receiver" on page 159

To create a custom Sender:

1 Create a subclass of com.tridion.transport.Sender that implements
the send() method.

2 Compile the class.

3 Add the class to the transport service configuration file
(cd_transport_conf.xml):

<Senders>
<Sender Type="Type" Class="com.tridion.examples.TypeSender"/>

</Senders>

4 Create a Protocol Schema for the Sender.

5 Use the Protocol Schema in a Publication Target to define the values.

To create a custom Receiver

1 Create a subclass to com.tridion.transport.Receiver that implements the
listen() method.

2 Compile the class.

3 Add the custom Receiver to the Deployer configuration file
(cd_deployer_conf.xml). For example, for a POP3 Receiver:

<ReceiverBindings>
<Receiver Type="Type"

Class="com.tridion.examples.TypeReceiver">
</ReceiverBindings>
<Receivers>
<TypeReceiver MyParameter="Myvalue"/>

</Receivers>

40 Tridion R5

Chapter 6 Senders and Receivers

41

Chapter 7 Transport Service
configuration

The Transport Service resides on the Content Manager server. When content is
published from the Content Manager, the Content Manager publisher prepares the
content using the published content and resolves and renders the content.

The publisher packages the content into a Transport Package and delivers this
package to the Transport Service. This Transport Package contains files (binary and
Pages). The protocol information is based on the Publication Targets to which the
content was published and the configuration of the transport service.

The Transport Service then uses the Transport Packages protocol information to
delegate the transport of the package to a protocol-specific Sender (such as HTTP)
on the Content Manager. All Sender-related configuration information is specified
in a Transport Service configuration file.

Using the specified configuration, the Sender then sends the Transport Package to
a Receiver that is invoked by the Content Distributor.

Figure 7-1 Transport Service

The following protocols are supported by Tridion Sender-Receiver pairs:

• Local Copy

• FTP

• SFTP

• HTTP(S)

The Content Distributor system allows you to publish your content to multiple
targets using multiple protocols. This allows you, for example, to publish your
content over HTTP to your live server, while simultaneously transferring a backup
of the content to a remote location using FTP.

42 Tridion R5

Chapter 7 Transport Service configuration

7.1 Configuring the Transport Service

The Transport Service configuration specifies the configuration values that the
publisher requires to initiate and handle a publish action. Using the transport
configuration file, you can configure the following:

• WorkFolder — The location where the Sender looks for the Transport
Package.

• Logging — The behaviour and location of one or more logging streams.

• Senders — The Sender types that you intend to use.

• Pollers — The interval and number of attempts made to poll the Receiver to
determine if content has successfully been transported to the Receiver or
not.

Configure the Transport Service using the configuration file
cd_transport_conf.xml. The configuration of this file is validated against the
schema cd_transport_conf.xsd.

The following example of the transport service configuration file uses the local
Sender:

<?xml version="1.0" encoding="UTF-8"?>
<TransportService>
<WorkFolder Location="C:\tridion\work"/>

<Logging>
<Logger Level="error">
<FileLogger Location="C:\tridion\log\cd_transport.log"/>

</Logger>
</Logging>
<Senders>
<Sender Type="Local" Class="com.tridion.transport.LocalCopySender"/>

</Senders>
</TransportService>

The following sections provide more detailed describes of the different elements
and attributes that you can configure within the configuration file.

See also Appendix C "Sample Transport Service configuration file" on page 163 provides a
sample Transport Service configuration file.

Note You can also configure the Java Virtual Machine that the Tridion
Transport Service starts. See Appendix J, "Configuring the Java Virtual
Machine for COM services" for details.

Important:

For Local File Copy, the User account that runs the transport service must has
permission to write to the machine on which the Deployer runs. Either ensure that the
folder the Transport Package is copied to is on the Transport Service machine, or
create a user that is domain aware to run the Transport Service and grant this user
permission on the Deployer machine.

Content Delivery Reference Guide

43

C
h
a
p
te

r 7
 Tra

n
sp

o
rt S

e
rv

ice
 co

n
fig

u
ra

tio
n

7.1.a WorkFolder

The WorkFolder element specifies where the Sender looks for the Transport
Package. The Transport Package is a zipped archive of the published content, and
is created, and placed in the Work folder by the publisher.

7.1.b Logging

The Logging element specifies the behavior and location of one or more logging
streams. Level attribute specifies the amount of information being logged. The
logging levels are:

• info — Information messages.

• warning — Potential error conditions.

• error —Errors that prevent the software from functioning correctly.

• fatal — Unrecoverable errors.

The FileLogger logs to the log file specified by the Location attribute:

<FileLogger Level="info" Location="C:\tridion\log\cd_transport.log"/>

You can also print log messages to a console using the ConsoleLogger element.

7.1.c Senders

The Senders element defines the Sender types you intend to use. Senders are
configured in the Management System interface as Publication Target Destinations.

Specify custom Senders by providing a 'Type' that matches the root element name
of a Management System Protocol Schema. The 'Class' attribute specifies the Java
class that implements the functionality for a Sender.

For example:

<Sender Type="FTP" Class="com.tridion.transport.FTPSender"/>

Make sure the class is registered on the system CLASSPATH environment variable.

The following are the available Sender types, and the classes responsible for
implementing the respective protocols:

• Local — com.tridion.transport.LocalCopySender

• FTP — com.tridion.transport.FTPSender

• SFTP —com.tridion.transport.SFTPSender

• HTTP(S) — com.tridion.transport.HTTPSSender

For more information about Senders and Receivers, refer to Chapter 6 "Senders
and Receivers" on page 29.

44 Tridion R5

Chapter 7 Transport Service configuration

7.1.d Poller

The Poller element is an optional sub-element of the Sender element. The default
Sender configuration polls every 4 seconds for one hour after a publish action
(with no poller configured). You are not required to modify the default
configuration.

When published content is transported to the Receiver on the Content Distributor,
the Sender creates a poller:

• If the Receiver receives and deploys content correctly, it creates a
responder. The responder takes the transaction ID of the transported
content and writes a file called TransactionID.xml to the content deployer’s
working directory. TransactionID is an alpha-numeric identification of the
transported content. The poller looks for the TransactionID.xml file over
the predefined transport protocol, FTP, SFTP, or HTTP(S) by polling the
responder for this file.

• If the deployment or transport fail, the poller reports the failure to the
transport service, which reports the failure to the Content Manager.

Figure 7-2 Poller and Responder

If you want to change how frequently a poller polls or the polling interval, you can
configure two name-value pairs on the poller element:

• MaxAttempts — The maximum number of times to poll for a certain
transaction. "-1" is no maximum, or poll indefinitely.

• Interval — The time interval at which to poll in milliseconds.

If you use Tridion’s built-in Local Copy Sender, you can also specify an alternative
polling location in the Location attribute. If omitted, the location defaults to the
deployment path.

Table 7-1 provides example polling configurations for FTP, HTTP(S) and Local Copy.

Sender

Poller

Receiver

Responder

Content Manager: cd_transport_conf.xml

sends

polls

Content Deployer

Content Delivery Reference Guide

45

C
h
a
p
te

r 7
 Tra

n
sp

o
rt S

e
rv

ice
 co

n
fig

u
ra

tio
n

Table 7-1 Pollers for FTP and HTTPs

Protocol Example

FTP <Senders>
<Sender Type="FTP"
Class="com.Tridion.transport.FTPSender">
<Poller>
<Param Name="MaxAttempts" Value="10"/>
<Param Name="Interval" Value="5000"/>

</Poller>
</Sender>

<Senders>

HTTP(S)) <Senders>
<Sender Type="HTTP"
Class="com.Tridion.transport.HTTPSender">
<Poller>
<Param Name="MaxAttempts" Value="10"/>
<Param Name="Interval" Value="5000"/>

</Poller>
</Sender>

<Senders>

LocalCopya

a.The Location attribute of the Poller element is optional.

<Senders>
<Sender Type="Local"
Class="com.Tridion.transport.LocalCopySender">
<Poller Location="c:\MyPollingLocation\">
<Param Name="MaxAttempts" Value="10"/>
<Param Name="Interval" Value="5000"/>

</Poller>
</Sender>

<Senders>

46 Tridion R5

Chapter 7 Transport Service configuration

47

Chapter 8 Deployer configuration

The Deployer handles Transport Packages and is responsible for the Receiver’s
configuration.

Figure 8-1 Content Deployer

The Receiver accepts the Transport Package from the Sender, but does nothing
with the package except pass it to the Deployer.

Processors in the Deployer deploy or undeploy special types of content using
modules that carry out the instructions. Content Deployer modules delegate the
content to handlers within the Content Broker. The Processors and Modules are
defined in the Deployer configuration file.

48 Tridion R5

Chapter 8 Deployer configuration

8.1 Configuring the Deployer

The Deployer configuration specifies all configuration values required to retrieve
and process Transport Packages received from the Transport Service. Using the
Deployer configuration file, cd_deploy_conf.xml, you can configure the following
elements:

• WorkFolder — Identifies the location in which temporary files are stored
(Uncompressed Transport Packages, Transaction information, Temporary
processor files)

• Logging — The behaviour and location of one or more logging streams

• Processors — The actions that the Deployer can perform.

• Transformer — Enables you to publish content to ASP.NET

• Receiver Bindings — The types of Receivers that the Deployer can use.

• Receivers — Specifies which Receiver instances the Deployer starts.

The configuration of this file is validated against cd_deploy_conf.xsd.

The following example describes the configuration of the deployer for the
following:

• WorkFolder location — C:\Tridion\work

Cleanup — set to True, all files are deleted when the Transport Package
processing is complete.

• Logging level — error

FileLogger — log file and path specified

• Processor actions, and their related classes — actions such as Deploy for
Pages, Components, and so on.

Content Delivery Reference Guide

49

C
h
a
p
te

r 8
 D

e
p
lo

y
e
r co

n
fig

u
ra

tio
n

• Receiver bindings — Type of Receiver and the class responsible for
receiving on that protocol.

• Receivers — Receiver configuration.

<?xml version="1.0" encoding="UTF-8"?>

<Deployer>

<WorkFolder Location="C:\Tridion\work" Cleanup="true"/>

<Logging>

<Logger Level="error">

<FileLogger Location="C:\Tridion\log\cd_deployer.log"/>

</Logger>

</Logging>

<Processors>

<Processor Action="Deploy" Class="com.tridion.deployer.Processor">

<Module Type="PageDeploy"
Class="com.tridion.deployer.modules.PageDeploy"/>

<Module Type="BinaryDeploy"
Class="com.tridion.deployer.modules.BinaryDeploy"/>

<Module Type="ComponentDeploy"
Class="com.tridion.deployer.modules.ComponentDeploy"/>

<Module Type="TemplateDeploy"
Class="com.tridion.deployer.modules.TemplateDeploy"/>

<Module Type="SchemaDeploy"
Class="com.tridion.deployer.modules.SchemaDeploy"/>

<Module Type="ComponentPresentationDeploy"
Class="com.tridion.deployer.modules.ComponentPresentationDeploy"/>

</Processor>

<Processor Action="Undeploy"
Class="com.tridion.deployer.Processor">

<Module Type="PageUndeploy"
Class="com.tridion.deployer.modules.PageUndeploy"/>

<Module Type="ComponentPresentationUndeploy"
Class="com.tridion.deployer.modules.PageUndeploy"/>

</Processor>

</Processors>

<ReceiverBindings>

<Receiver Type="HTTPSReceiver"
Class="com.tridion.transport.HTTPSReceiver"/>

<Receiver Type="FileReceiver"
Class="com.tridion.transport.FileReceiver"/>

</ReceiverBindings>

<Receivers>

<FileReceiver Location="C:\Tridion\incoming" Interval="1"/>

<!--<HTTPSReceiver MaxSize="10000000"/>-->

</Receivers>

</Deployer>

50 Tridion R5

Chapter 8 Deployer configuration

See also Appendix D "Sample Deployer configuration file" on page 164 provides a more
detailed sample Deployer configuration file.

Note You can also configure the Java Virtual Machine that the Tridion
Content Deployer service starts. See Appendix J, "Configuring the
Java Virtual Machine for COM services" for details.

The following sections describe the different deployer elements and attributes that
you can configure:

• WorkFolder

• Logging

• Processors

• Receiver Bindings

• Receivers

8.2 WorkFolder

The WorkFolder stores temporary files, including:

• Uncompressed Transport Packages

• Transaction information

• Temporary processor files

You can empty the WorkFolder when the Transport Package is finished processing
by setting the Cleanup attribute to "true". For example:

<WorkFolder Location="C:\Tridion\work" Cleanup="true"/>

If you do not want to empty the folder, set clean up to "false".

8.3 Logging

The Logging element specifies the behavior and location of one or more logging
streams. The Level attribute specifies the type of information that is logged:

• Info — Information messages

• Warning — Potential error conditions

• Error — Errors that prevent the software from functioning correctly

• Fatal — Unrecoverable errors

The Location attribute determines the location of the log file:

<FileLogger Location="c:\Tridion\log\cd_deployer.log"/>

You can also print log messages to a console using the ConsoleLogger element.

Content Delivery Reference Guide

51

C
h
a
p
te

r 8
 D

e
p
lo

y
e
r co

n
fig

u
ra

tio
n

8.4 Processors

The Processors element defines the actions that the Deployer can perform. The
behavior of the deployer is defined by:

• the type of Processors

• the specified modules

• custom Deployer behavior.

The Processors element can have the following attributes:

• Action — Determines how the Deployer triggers the Processor to process
an incoming Transport Package.

• Class — Defines the Processor class that is used to process the action.

The default Processor is:

<Processor Action="Deploy" Class="com.tridion.deployer.Processor">

You should not have to change the configuration of this file. However, if you have
written your own custom Processor, you can add it within the Processors element.
The Deployer will call the Processor elements in the order in which they appear in
the configuration file.

8.4.a Developing custom processors

To develop a custom processor, you must write a Processor object that extends
com.tridion.deployer.Processor. The new object you create will override the
default methods and will provide methods that are required by the custom
implementation.

For example, if you override process(TransportPackage data), a custom
processor can perform different or additional actions than the standard processor
on incoming Transport Packages.

To add extra processors to the calling chain, you must modify
cd_deployer_conf.xml. Add extra processor elements under the Processors
element with an action attribute that matches the action for which the processor
is registered.

Example In the following example, for the Deploy action, the Processors configuration first
uses the standard Tridion Deployment processor and then uses a custom Processor
class (mypackage.MyProcessor):

52 Tridion R5

Chapter 8 Deployer configuration

<Processors>

<Processor Action="Deploy" Class="com.tridion.deployer.Processor">

<Module Type="PageDeploy"
Class="com.tridion.deployer.modules.PageDeploy"/>

<Module Type="BinaryDeploy"
Class="com.tridion.deployer.modules.BinaryDeploy"/>

<Module Type="ComponentDeploy"
Class="com.tridion.deployer.modules.ComponentDeploy"/>

</Processor>

<Processor Action="Deploy" Class="mypackage.MyProcessor">

<!—custom configuration for this processor can go here -->

</Processor>

</Processors>

The Processors are called in the order in which they included in the xml file. In this
example, the process() method is called on com.tridion.deployer.Processor
first, and then is called on mypackage.MyProcessor.

If a ProcessingException is thrown by the process() method, all further
processing is aborted, and other Processors in the chain are not called.

8.5 Module

The Module element defines modules that are used to delegate content to handlers
in the Content Broker. The Module is triggered by a Processor to process incoming
instructions. The Module element can have the following attributes:

• The Type attribute must be unique and serves as a symbolic identifier. For
example, "PageDeploy"

• The Class attribute defines the implementation used for any type of module.
For example, "com.tridion.deployer.modules.PageDeploy"

Table 8-1 describes the default Deployer modules.

Table 8-1 Actions & modules. (Sheet 1 of 2)

Action Module

PageDeploy com.tridion.Deployer.modules.PageDeploy

BinaryDeploy com.tridion.Deployer.modules.BinaryDeploy

ComponentDeploy com.tridion.Deployer.modules.ComponentDeploy

TemplateDeploy com.tridion.Deployer.modules.TemplateDeploy

SchemaDeploy com.tridion.Deployer.modules.SchemaDeploy

Content Delivery Reference Guide

53

C
h
a
p
te

r 8
 D

e
p
lo

y
e
r co

n
fig

u
ra

tio
n

8.5.a Developing custom Deployer modules

You can customize and extend the Deployer by writing custom Deployer modules
in Java. These modules can extend the default modules to implement any desired
functionality using the Transport Package data-structures.

A custom module is essentially a Java class that is loaded and called by the
Deployer whenever a Transport Package is being processed.

For example, some application servers need to flush their caches whenever new
content is deployed. The following class demonstrates this:

ComponentPresentation
Deploy

com.tridion.Deployer.modules.Component
PresentationDeploy

PageUndeploy com.tridion.Deployer.modules.Page
Undeploy

ComponentPresentation
Undeploy

com.tridion.Deployer.modules.Component
PresentationUndeploy

Table 8-1 Actions & modules. (Sheet 2 of 2)

Action Module

54 Tridion R5

Chapter 8 Deployer configuration

package com.tridion.examples;

import com.tridion.transport.transportpackage.*;

import com.tridion.configuration.*;

import com.tridion.deployer.ProcessingException;

import com.tridion.deployer.Processor;

import com.tridion.deployer.Module;

import com.perfectsoftware.AppServer.*;

public class CacheFlusher extends Module {

//imaginary appserver API

AppManager server = CachingAppServer.getManagerInstance();

public CacheFlusher(Configuration config, Processor processor)
throws ConfigurationException {

super(config, processor);

}

// This method is called once for each TransportPackage that is

// deployed.

public void process(TransportPackage data) throws
ProcessingException {

try {

server.flush(config.getStringValue("AppInstance"));

} catch (ConfigurationException e) {

log.error("Could not get custom configuration", e);

}

}

}

Content Delivery Reference Guide

55

C
h
a
p
te

r 8
 D

e
p
lo

y
e
r co

n
fig

u
ra

tio
n

Once this class is compiled and available to the Deployer it can be configured in
the cd_deployer_conf.xml with the following elements:

<Processor Action="Deploy" Class="com.tridion.Deployer.Processor">

<Module Type="PageDeploy"
Class="com.tridion.Deployer.modules.PageDeploy"/>

<Module Type="BinaryDeploy"
Class="com.tridion.Deployer.modules.BinaryDeploy"/>

<Module Type="ComponentDeploy"
Class="com.tridion.Deployer.modules.ComponentDeploy"/>

<Module Type="TemplateDeploy"
Class="com.tridion.Deployer.modules.TemplateDeploy"/>

<Module Type="SchemaDeploy"
Class="com.tridion.Deployer.modules.SchemaDeploy"/>

<Module Type="ComponentPresentationDeploy"
Class="com.tridion.Deployer.modules.ComponentPresentationDeploy"/>

<Module Type="CacheFlusher"
Class="com.tridion.examples.CacheFlusher">

<AppInstance>default</AppInstance>

</Module>

</Processor>

The custom module is configured as the last module for the Processor that handles
a deployment action. As a result, it is called after all other modules have finished
processing. It is possible to use custom configuration for a module by adding XML
elements to the Module configuration. This configuration information is passed to
the custom Module constructor.

8.5.b Modifying the behavior of default modules

The default modules behavior can be modified using inheritance. In the following
example, a number of custom keywords are added to the Component metadata.

56 Tridion R5

Chapter 8 Deployer configuration

package com.tridion.examples;

import com.tridion.deployer.Processor;

import com.tridion.deployer.ProcessingException;

import com.tridion.configuration.*;

import com.tridion.transport.transportpackage.*;

public class ExtendedComponentDeploy extends
com.tridion.deployer.modules.ComponentDeploy {

public ExtendedComponentDeploy(Configuration config, Processor
processor) throws ConfigurationException {

super(config, processor);

}

protected void processComponent(Component component) throws
ProcessingException {

Category category = component.getCategory("Custom");

if (category == null) {

//create a new Category if it does not exist yet

category = new Category("Custom");

}

// Add a keyword

category.addKeyWord("Custom Keyword");

// Add or update the category

component.addCategory(category);

super.processComponent(component);

}

}

This extended module is used by the Deployer, if it is configured in the
cd_deployer_conf.xml configuration file.

<Module Type="ComponentDeploy"
Class="com.tridion.examples.ExtendedComponentDeploy"/>

8.5.c Testing custom modules

To test any custom modules you can intercept Transport Packages by using the FTP
transport method while the Deployer is not active.

You can copy these packages to a separate location on the file system and into the
folder that is monitored by a running Deployer that has the custom module
configured in its Processors configuration section.

Content Delivery Reference Guide

57

C
h
a
p
te

r 8
 D

e
p
lo

y
e
r co

n
fig

u
ra

tio
n

8.6 Transformer

The optional Transformer element can be used if you want to publish content to
ASP.NET.

Unlike other Output formats, the Content Manager does not transform the content
to the published format. Instead, the Content Manager transports the content in
an intermediate format called TCDL. The Content Deployer then transforms this
format in to ASP.NET.

Use the optional Transformer element can be used if you want to publish content
to ASP.NET. Add the Transformer element as a sub-element to the PageDeploy
module. The Transformer element specifies the following Class attribute:

Class="com.tridion.transformer.ASPDotNETTransformer"

The following example depicts this element used for PageDeploy:

<Processor Action="Deploy" Class="com.tridion.deployer.Processor">

<Module Type="PageDeploy"
Class="com.tridion.deployer.modules.PageDeploy">

<Transformer Class="com.tridion.transformer.ASPDotNETTransformer"
/>

</Module>

<Module Type="SchemaDeploy"
Class="com.tridion.deployer.modules.SchemaDeploy"/>

<Module Type="ComponentPresentationDeploy"
Class="com.tridion.deployer.modules.ComponentPresentationDeploy">

</Module>

<Module Type="BinaryDeploy"
Class="com.tridion.deployer.modules.BinaryDeploy"/>

<Module Type="ComponentDeploy"
Class="com.tridion.deployer.modules.ComponentDeploy"/>

<Module Type="TemplateDeploy"
Class="com.tridion.deployer.modules.TemplateDeploy"/>

</Processor>

When publishing to ASP.NET, the following conditions apply:

• The Deployer is configured to use the ASPDotNETTransformer

• The Publication Target to which content is published specifies the TCDL
(Tridion Content Deployer Language) as the output language

• The Page Template file extension is .aspx

• The ASP.NET libraries are installed on the presentation server

58 Tridion R5

Chapter 8 Deployer configuration

8.7 ReceiverBindings

The ReceiverBindings element defines the types of Receivers that the Deployer
can use. The ReceiverBindings element can have the following attributes:

• Type — identifies the Receiver

For example, "HTTPSReceiver"

• Class — defines the implementation used for receiving the Transport
Packages

For example, com.tridion.transport.HTTPSReceiver

8.8 Receivers

The Receivers element specifies which Receiver instances the Deployer starts. The
element names for these Receivers must match the Type attribute defined in the
ReceiverBindings section.

Depending upon the protocol that you use, you must configure your Web or
Application server to handle the incoming Transport Packages. This section
describes the setup required for the various supported protocols:

• Local Copy

• FTP

• SFTP

• HTTP(s)

Tridion supplies several protocol-specific Sender-Receiver pairs with the Content
Distributor installation:

• Local Copy — The LocalCopy Sender transfers the Transport Package to a
corresponding File Receiver on the Deployment server.

• FTP — The FTP Sender uses File Transfer Protocol to transfer the Transport
Packages to a corresponding File Receiver on the Deployment server.

• SFTP — The SFTP Sender uses Secure File Transfer Protocol to transfer the
Transport Packages to a corresponding File Receiver on the Deployment
server.

• HTTP(S) — The HTTP(S) Sender allows you to use HTTP, or HTTPs to encrypt
the content of your Transport Package, for transport to a corresponding
HTTP(S) Receiver on the Deployment server.

Content Delivery Reference Guide

59

C
h
a
p
te

r 8
 D

e
p
lo

y
e
r co

n
fig

u
ra

tio
n

The Transport Service configuration and Deployer configuration must include the
Sender-Receiver pair that your organization wants to use.

See also For more information about Senders and Receivers, refer to Chapter 6 "Senders
and Receivers" on page 29.

Table 8-2 Protocols and their Receivers.

Protocol Class name Description

Local
Copy

com.tridion.transport.FileReceiver Receives packages copied
over to the local file system.

FTP com.tridion.transport.FileReceiver Receives packages that an
FTP server places on the file
system.

SFTP com.tridion.transport.FileReceiver Receives packages that an
SFTP server places on the
file system.

HTTP(S) com.tridion.transport.HTTPSReceiver Receives HTTP(S) packages.

60 Tridion R5

Chapter 8 Deployer configuration

61

Chapter 9 Broker configuration

The handlers within the Content Broker determine where different types of content
are stored. The Content Distributor supports the following storage media:

• MS SQL

• Oracle

• Tamino

• IBM DB2

• File system

The handlers also keep track of what uses what using reference counting.
Reference counting ensures that unused content is undeployed.

Based on the interface that a handler talks to, content can be stored in a SQL
database (MS SQL, Oracle, DB2), a file system, or a Tamino database. The
interfaces have specific methods and classes. Broker bindings bind a symbolic
name (such as FTP Sender) to an implementation class of an interface. It is
possible to use these different storage media next to each other for different types
of content.

Figure 9-1 Content Broker

The Content Broker can also perform filters on the stored content. Filters use
Component metadata to select a subset of Components, or Component
Presentations, based on a set of criteria, such as IDs or priorities. You can use
filters to, for example, personalize content or to return content based on search
results. For more information on metadata and filters, see Chapter 10 "Using
metadata" on page 73.

62 Tridion R5

Chapter 9 Broker configuration

9.1 Configuring the Content Broker

The configuration file for the Content Broker defines the following:

• Global settings apply to all areas of Content Broker functionality and include
the following:

Logging settings specify the behavior and location of logging.

Object Caching settings

Storage configuration settings

Database settings

Bindings settings

• Publications settings

Directory settings

Publication-specific settings

The following example describes the configuration of the Broker:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration Version="5.1">
<Global>
<Logging>
<Logger>
<FileLogger Level="info" Location="./cd_broker.log"/>
</Logger>
</Logging>
<Storage>
<Database Type="sql" Username="USERNAME" Password="PASSWORD"

Url="jdbc:oracle:thin:@DATABASE_HOST:PORT:SID"
Driver="oracle.jdbc.driver.OracleDriver">

<Pool Type="jdbc" Size="10"/>
</Database>
</Storage>
<Bindings>
<Binding Name="LinkInfo"

Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
<Binding Name="PageMeta"

Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
<Binding Name="ComponentMeta"

Class="com.tridion.broker.components.meta.OracleComponentMetaHome"
/>

<Binding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>

<Binding Name="Reference"
Class="com.tridion.broker.references.SQLReferenceHome"/>

<Binding Name="XSLT" Class="com.tridion.broker.xslt.FSXSLTHome"/>
<Binding Name="Schema"

Class="com.tridion.broker.schemas.FSSchemaHome"/>
<Binding Name="ASPComponentPresentation"

Class="com.tridion.broker.componentpresentations.FSASPComponent
PresentationHome"/>

<Binding Name="JSPComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSJSPComponent
PresentationHome"/>

Content Delivery Reference Guide

63

C
h
a
p
te

r 9
 B

ro
k
e
r co

n
fig

u
ra

tio
n

<Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.OracleXMLComponen
tPresentationHome"/>

<Binding Name="TextComponentPresentation"
Class="com.tridion.broker.componentpresentations.OracleTextCompone
ntPresentationHome"/>

<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQLComponent
PresentationMetaHome"/>

</Bindings>
</Global>
<Publications DefaultRootLocation="c:/inetpub/wwwroot">
<Publication Id="1" DataRoot="c:/inetpub/wwwroot/pub1"
DocumentRoot="c:/inetpub/data/pub1">
</Publication>
</Publications>
</Configuration>

See also Appendix E "Sample Broker configuration file" on page 166 provides a sample
Deployer configuration file.

Note You can also configure the Java Virtual Machine that the Tridion
Content Broker service starts. See Appendix J, "Configuring the Java
Virtual Machine for COM services" for details.

The following sections describe the different broker elements and attributes that
you can configure:

• Logging

• Object caching

• Storage configuration

• Bindings

• Publications

9.2 Logging

The Logging element specifies the behavior and location of one or more logging
streams. The Level attribute specifies the amount of information being logged.
The logging levels are:

• info — Information messages.

• warning — Potential error conditions.

• error —Errors that prevent the software from functioning correctly.

• fatal — Unrecoverable errors.

The FileLogger logs to the log file specified by the Location attribute:

<FileLogger Level="info" Location="C:\tridion\log\cd_broker.log"/>

You can also print log messages to a console using the ConsoleLogger element.

An administrator should make sure that the account used by Tridion Linking has
rights to write to the log file, and create directories if needed.

64 Tridion R5

Chapter 9 Broker configuration

9.3 Object caching

Object caching is an optional setting that allows you to store the most commonly
used, or resource intensive objects in a cache. The cache keeps these objects
available for the applications that request them, rather than reinitializing them
each time they are requested.

The object caching mechanism allows you to specify the objects to cache. The
object cache supports multiple Java Virtual Machine (JVM) instances using Remote
Method Invocation (RMI). This allows for inter-JVM communication.

You can configure the following elements in the cd_broker_conf.xml:

• ObjectCache — Determines whether caching will occur.

• Policy — Determines what policy the cache will use to determine what
objects stay in the cache and what objects are removed from the cache
when it is full.

Example structure

<ObjectCache Enabled="true">

<Policy Type="LRU" Class="com.tridion.cache.LRUPolicy">
<Param Name="Size" Value="64"/>
</Policy>

<Features>
<Feature Type="DependencyTracker"
Class="com.tridion.cache.DependencyTracker"/>
</Features>

<CacheBindings>
<CacheBinding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.CachedBinaryMetaHome"/>
</CacheBindings>

<RemoteSynchronization Host="localhost" Port="3333" Queuesize="20"/>

</ObjectCache>

9.3.a ObjectCache

The ObjectCache element is an optional element of the Global element of the
Broker configuration files.

If this element is not present, no caching is performed.

<Global>
<Logging>
<Logger>
<FileLogger Level="info" Location="./cd_broker.log"/>
</Logger>
</Logging>
<ObjectCache Enabled="true">

Content Delivery Reference Guide

65

C
h
a
p
te

r 9
 B

ro
k
e
r co

n
fig

u
ra

tio
n

The ObjectCache has an Enabled attribute:

• If Enabled="true", object caching is performed using the ObjectCache
elements.

• If Enabled="false", object caching is not performed and any ObjectCache
elements are ignored.

9.3.b Policy

The Policy element determines what policy the cache uses to determine what
objects stay in the cache and what objects are removed from the cache when it is
full.

The Policy element has the following mandatory attributes:

• Type — The Least Recently Used (LRU) policy governs how objects are
cached. When the cache reaches its maximum size, the least recently used
objects are removed from the cache.

• Class — The Class attribute must specify the fully qualified class name of a
class that extends com.tridion.cache.Policy and implements the
CacheProcessor interface. The only policy class currently supported is
com.tridion.cache.LRUPolicy

The Policy element also has an optional Param element that supplies additional
policy specification configuration values. The Param element contains the following
attributes:

• Name — The name of the configuration parameter

• Value — The value of the configuration parameter

For example, the LRUPolicy has one Param called Size and a Value attribute that
represents the maximum number of objects that the cache can contain.

<Policy Type="LRU" Class="com.tridion.cache.LRUPolicy">
<Param Name="Size" Value="64"/>
</Policy>

9.3.c Features

The Features element specifies classes that add additional functionality to the
cache.

The Features element is optional within the ObjectCache element. It may contain
zero or more Feature elements.

For example:

<Features>
<Feature Type="DependencyTracker"
Class="com.tridion.cache.DependencyTracker"/>
</Features>

The Features element can also contain a Param element that can be used to supply
additional feature-specific name-value pairs. The name and value attributes must
be called Name and Value, but can contain any values required.

66 Tridion R5

Chapter 9 Broker configuration

9.3.d CacheBindings

The optional CacheBindings element specifies whether objects that are managed
from a specific home object are cached. CacheBindings may contain zero or more
CacheBinding elements.

CacheBinding elements must contain the following attributes:

• Name — The binding name of the home object add caching to. This must
match the Name attribute used in the Bindings section of the configuration
file.

• Class — The fully qualified class name of the cached home object.

The following example depicts a CacheBinding for binary metadata:

<CacheBindings>
<CacheBinding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.CachedBinaryMetaHome"/>
</CacheBindings>

Table 9-1 describes the Home object classes that implement caching.

Table 9-1 CacheBinding attributes

Type Name attribute value Class attribute value

Linking LinkInfo com.tridion.broker.linking.
CachedLinkInfoHome

Content
Distributor

ComponentPresentation componentpresentations.Cached
ComponentPresentationHome

ComponentPresentationMeta componentpresentations.meta.
CachedComponentPresentation
MetaHome

PageMeta pages.meta.CachedPageMetaHome

XSLT xslt.CachedXSLTHome

WAI CustomerCharacteristic personalization.Cached
CustomerCharacteristicHome

TrackingKey personalization.Cached
TrackingKeyHome

Timeframe timeframes.CachedTimeframe
Home

TrackedComponentLink tracking.componentlinks.
CachedTrackedComponentLink
Home

TrackedComponent tracking.components.Cached
TrackedComponentHome

TrackedPage tracking.pages.CachedTracked
PageHome

User user.CachedUserHome

Content Delivery Reference Guide

67

C
h
a
p
te

r 9
 B

ro
k
e
r co

n
fig

u
ra

tio
n

9.3.e RemoteSynchronization

The optional RemoteSycnhronization element specifies a remote Cache Channel
Service. The remote Cache Channel Service is used to send messages between
caches that are running on separate virtual machines. (For example, if the Broker
and the Deployer run on separate virtual machines.)

The Cache Channel Service must be running and listening on the configured host
and port for remote synchronization to function.

If this element is omitted, the cache does not use any inter-virtual machine cache
communication.

You must use the RemoteSynchronization element in conjunction with the Cache
Channel service in order for objects to be updated or removed from the Broker’s
object cache when they are published or unpublished using the Deployer.

If the RemoteSynchronization element is present, the cache subscribes to an
event channel (see "Cache Channel Service" on page 67).

The RemoteSynchronization element can contain the following attributes:

• Host — The hostname of the machine running the remote cache channel
service. If Host is omitted, localhost is assumed as the hostname.

• Port — The port number the remote cache channel service listens on. If this
is omitted, the default RMI port, 1099, is assumed.

• Queuesize — The size of this cache's event queue. If this is omitted then a
maximum size of 128 events is assumed.

<RemoteSynchronization Host="localhost" Port="3333" Queuesize="20"/>

9.3.f Cache Channel Service

The remote Cache Channel Service is run as a separate application. For example,
as a Windows service or as a standalone application.

This section describes:

• Installing the Cache Channel service on Windows

• Installing the Cache Channel service on Unix

To install the Cache Channel Service on Windows platforms:

1 Copy the cd_cacheservice.exe from your installation CD to the server.

2 Type the following command in the Command Prompt:

cd_cacheservice.exe -install

this installs the CacheChannelService as a Windows service on the
localhost, listening on the default RMI port, 1099.

68 Tridion R5

Chapter 9 Broker configuration

The service can be removed by entering the following at the command prompt:

cd_cacheservice.exe -remove

This also removes the Windows registry entries for the service.

Note You can also configure the Java Virtual Machine that the Tridion Cache
Service starts. See Appendix J, "Configuring the Java Virtual Machine
for COM services" for details.

To install the cache channel service on Unix:

#!/bin/sh
java -cp ./lib/cd_core.jar com.tridion.cache.CacheChannelService

You can configure this service using a single command line parameter of the form
hostname:port

• hostname — the name of the host on which this cache channel service should
run

• port — (optional) the port number on which this cache channel service
should run

If this part of the parameter is excluded the default RMI port of 1099 is used. If no
command line argument is passed then the service will run on the localhost,
listening on port 1099.

9.4 Storage configuration

The following databases are supported:

• Microsoft SQL server

• Oracle

• Tamino

• IBM DB2

The Broker configuration file for storage defines the following:

• Logging — Log level, log location, and so on.

• Bindings — The Java classes used for each area of database functionality,
such as User, Linking, and so on.

3 An additional option is to provide the host and port when installing the
service using the -host= parameter as follows:

cd_cacheservice.exe -install -host=127.0.0.1:3030

which installs the Cache Channel Service as a Windows service on the
localhost, listening on port 3030. If this value is set, it is automatically
stored in the Windows registry using the following key:

HKEY_CLASSES_ROOT\AppID\{7337B68B-39E0-47FD-8E4D-17907B4C54C8
}

with the value: Host

To install the Cache Channel Service on Windows platforms:

Content Delivery Reference Guide

69

C
h
a
p
te

r 9
 B

ro
k
e
r co

n
fig

u
ra

tio
n

Database elements configure settings for a specific database. Multiple Database
elements can be used. Each Database element has a type, and only one element
can be specified for a certain type. Because of this, you can specify a maximum of
two Database elements.

The following attributes can be specified:

• Type — The type of the database, this is sql for MS-SQL, Oracle, and DB2,
or tamino if you are using Tamino.

• Username — The user to be used for database interaction.

• Password — The password to be used for database interaction.

• Url — The url the driver should connect to.

• Driver — The fully qualified classname for the driver to be used.

Database connection pooling

For Database elements of type SQL, you can specify pooling with a Pool element.

This element has the following attributes:

• Type — The type is either of the following:

jdbc — a more configurable connection pool manager. If additional
connections are attempted, the connection is queued.

For Pool Type="jdbc", include the following attributes: Size,
MonitorInterval, IdleTimeout, and CheckOutTimeout.

tridion — only allows you to specify the size of the pool. If additional
connections are attempted, an exception is raised.

For the Pool Type="tridion", include the Size attribute only.

• Size — The size of the pool, that is, the number of connections permissible
in the pool. This setting is not used by the jdbc or jdbc2 connection pool
types.

• MonitorInterval — Number of seconds between checks on the pool.

• IdleTimeout — Number of seconds a connection can remain idle before it is
closed.

• CheckOutTimeout — Number of seconds a connection can remain checked
out before it is returned to the pool.

The following is an example of the connection pooling configuration:

<Database Type="sql" Username="USERNAME" Password="PASSWORD"
Url="jdbc:oracle:thin:@DATABASE_HOST:PORT:SID"
Driver="oracle.jdbc.driver.OracleDriver">
<Pool Type="jdbc" Size="10" MonitorInterval="60" IdleTimeout="120"
CheckoutTimeout="120" />
</Database>

Important:

If the type of database is sql, use all of the attributes or specify the JNDIName.

If the type of database is tamino, specify all attributes with the exception of
Driver.

70 Tridion R5

Chapter 9 Broker configuration

9.5 Bindings

The Bindings element contains mappings from symbolic names to classes in the
form of Binding elements. A Binding element has the following attributes:

• Name — The symbolic name for an item that needs to be stored.

• Class — The class implementing the interface that is expected for a certain
symbolic name.

The following default bindings use the File system only. These bindings can be
overridden for different storage types.

<Binding Name="ASPComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSASPComponent
PresentationHome"/>
<Binding Name="Binary" Class="com.tridion.broker.binaries.FSBinaryHome"/>
<Binding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.XMLFileBinaryMetaHome"/>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.XMLFileComponentMeta
Home"/>
<Binding Name="ComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSTextComponent
PresentationHome"/>
<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.XMLFile
ComponentPresentationMetaHome"/>
<Binding Name="JSPComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSJSPComponent
PresentationHome"/>
<Binding Name="LinkInfo"
Class="com.tridion.broker.linking.FSCSVLinkInfoHome"/>
<Binding Name="Page" Class="com.tridion.broker.pages.FSPageHome"/>
<Binding Name="PageMeta"
Class="com.tridion.broker.pages.meta.XMLFilePageMetaHome"/>
<Binding Name="Reference"
Class="com.tridion.broker.references.FileReferenceHome"/>
<Binding Name="Schema" Class="com.tridion.broker.schemas.FSSchemaHome"/>
<Binding Name="Template" Class="com.tridion.broker.xslt.FSXSLTHome"/>
<Binding Name="TextComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSTextComponent
PresentationHome"/>
<Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSXMLComponent
PresentationHome"/>
<Binding Name="XSLT" Class="com.tridion.broker.xslt.FSXSLTHome"/>

For information about database specific bindings, see Appendix F "Broker bindings
for MS SQL, Oracle, Tamino and DB2 databases" on page 171.

For information about WAI bindings, see Appendix G "WAI-Specific bindings" on
page 173. For more information about the Tridion Web and Application Server
Integration, refer to Part "Web and Application Server Integration" on page 117.

Content Delivery Reference Guide

71

C
h
a
p
te

r 9
 B

ro
k
e
r co

n
fig

u
ra

tio
n

9.6 Publications

The Publications element specifies the default setting for all Publications. This
information can be overridden in Publication elements.

The Publications element includes the following:

• DefaultRootLocation — A directory for both pages and binaries. By
default, this folder is also used to find the meta-data.

• Publication — Publication specific settings. The ID indicates the id of the
publication. This should be a number. The following optional attributes
override storage settings:

DataRoot — The directory in which meta-data should be stored and
retrieved on the file system.

DocumentRoot — The base-directory in which pages and binaries are
located.

72 Tridion R5

Chapter 9 Broker configuration

73

Chapter 10 Using metadata

Metadata is descriptive information that is associated with every Component
Presentation, Binary, Component, Page, and link published to the Content
Distributor.

Metadata is deployed by the following systems:

• Publisher — Collects the metadata.

• Transport System — Creates and transports the Transport Package, which
includes metadata, to your delivery system.

• Content Deployer — Unpacks the Transport Package and passes the
metadata to the Content Broker.

• Content Broker — Stores the metadata in the specified storage medium, and
makes it accessible to scripted calls.

Metadata is published to the Content Distributor in two forms:

• Mandatory

• Custom

This chapter describes:

• Mandatory metadata

• Custom metadata

• Metadata storage

• Metadata examples

• Filters

• Querying custom metadata

74 Tridion R5

Chapter 10 Using metadata

10.1 Mandatory metadata

Mandatory metadata is always published. The Content Distributor relies on the fact
that the mandatory metadata exists. The mandatory metadata is stored separately
from Pages, Component Presentations, and binaries.

This section describes the following types of mandatory metadata:

• Mandatory link metadata

• Mandatory Component Metadata

• Mandatory Page Metadata

• Mandatory Component Presentation Metadata

• Mandatory binary metadata

10.1.a Mandatory link metadata

When Component Presentations are published, on Pages, the following metadata is
also published:

• List of pages that contain a given Component Presentation — used by
Component Linking

• List of Component Presentations that are on a given page — used by
tracking & profiling (WAI)

Component example

<component-link id="4592">
<page component-template-id="4588" id="4593" position="0"
template-priority="200" url="/SG/kevin/simpleMETA.jsp"/>
</component-link>

Page example

<page-link id="4593" url="/SG/kevin/simpleMETA.jsp">
<component id="4592" position="0" template-id="4588"
template-priority="200"/>
</page-link>

10.1.b Mandatory Component Metadata

When a Component is published, the following metadata is also published:

• Item information

ID

Author (login name, such as tridion\egilmore)

Title

Underlying Component schema

Minor Version

Major Version

Content Delivery Reference Guide

75

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

Publication ID

Owning Publication ID

• Date and time information

Creation

Modification

Initial publication

Last publish

• Categorization information:

Categories and Keywords — used for profiling and personalization, and
searching. These elements are always published. but can be empty if you
have not yet assigned Categories and Keywords to a Tridion R5 item,
such as a Page, or a Component.

Component metadata example

The following is an example of Component Metadata, published to the file system:

<?xml version="1.0" encoding="UTF-8"?>
<component-meta id="12">
<title>Tridion offers benchmark comparison of Internet strategies</title>
<owning-publication id="20"/>
<version major="2" minor="1"/>
<schema id="99"/>
<created timestamp="2003-07-13T23:58:00"/>
<modified timestamp="2003-07-14T22:58:00"/>
<first-published timestamp="2003-07-15T22:58:00"/>
<last-published timestamp="2003-07-17T22:58:00"/>
<categories>
<category name=”News”>
<keyword>internet</keyword>
<keyword>company</keyword>
</category>
</categories>
</component>

10.1.c Mandatory Page Metadata

When a page is published, the following metadata is published:

• Item information

ID

Title

Page template used for publishing the page

Minor Version

Major Version

Publication ID

Owning Publication ID

76 Tridion R5

Chapter 10 Using metadata

• Date / time

Creation

Modification

Initial Publication

Last published

• Location information:

Complete file system path of Page

Complete URL of Page (appended after document root URL)

• Categorization information:

Categories and Keywords — used for profiling and personalization, and
searching. These elements are always published. but can be empty if you
have not yet assigned Categories and Keywords to a Tridion R5 item,
such as a Page, or a Component.

Page metadata example

The following is an example of Page Metadata, published to the file system:

<?xml version="1.0" encoding="UTF-8"?>
<page id="12">
<title>Home page</title>
<owning-publication id="1"/>
<version major="2" minor="1"/>
<created timestamp="2003-07-13T23:58:00"/>
<modified timestamp="2003-07-14T22:58:00"/>
<initial-publication timestamp="2003-07-15T22:58:00"/>
<last-publication timestamp="2003-07-17T22:58:00"/>
<categories/>
<path>c:\visitorsWeb\docs\news\index.jsp</path>
<url-path>/news/index.jsp</url-path>
<template id="4594"/>
</page>

10.1.d Mandatory Component Presentation Metadata

When Component Presentations are published, the following mandatory metadata
is published:

• Template used for Component Presentation

ID of template

Priority of template

Output format of template

• Component Information

Id of Component (which is used to retrieve Component metadata)

The metadata described above is used by the Linking module, but is also available
through the TOM. This make it possible for Template designers to access
component metadata on the Content Distributor, for example:

Content Delivery Reference Guide

77

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

Component Presentation metadata example

The following is an example of published Component Presentation Metadata,
published to the file system:

<?xml version="1.0" encoding="UTF-8"?>
<component-presentation>
<component id="13"/>
<component-template id="43" priority="200" output-format="text/html"/>
</component-presentation>

10.1.e Mandatory binary metadata

When Binaries are published, the following mandatory metadata is published:

• Binary meta ID

• Path

• Description

• Type

• URL-Path

Binary metadata example

<?xml version="1.0" encoding="UTF-8"?>
<binary-meta id="tcd:pub[20]/component[4613]">
<path>c:\visitorsWeb\docs\images\img_0395s_tcm20-4613.jpg</path>
<description/>
<type>image/jpeg</type>
<url-path>/images/img_0395s_tcm20-4613.jpg</url-path>
</binary-meta>

10.2 Custom metadata

Custom metadata is defined using metadata schemas on the Content Manager.
This information is highly customizable and can be used in a wide variety of ways.

Note Currently, Custom metadata is published for Components, only.

The Content Broker makes it possible to define queries on custom Component
metadata.

Custom Component metadata example

The following is an example of Custom Component Metadata, published to the file
system:

<?xml version="1.0" encoding="UTF-8"?>
<component-meta id="12">
<title>Tridion offers benchmark comparison of Internet strategies</title>
<owning-publication id="20"/>
<version major="2" minor="1"/>
<schema id="99"/>
<created timestamp="2003-07-13T23:58:00"/>

78 Tridion R5

Chapter 10 Using metadata

<modified timestamp="2003-07-14T22:58:00"/>
<first-published timestamp="2003-07-15T22:58:00"/>
<last-published timestamp="2003-07-17T22:58:00"/>
<categories>
<category name=”News”>
<keyword>internet</keyword>
<keyword>company</keyword>
</category>
</categories>
<custom-meta>
<meta>
<embeddate type="dateTime">2003-06-05T12:08:00</embeddate>
<text type="normalizedString">some meta text</text>
<number type="decimal">123456789</number>
<exlink>http://www.msn.com</exlink></meta>
</custom-meta>
</component-meta>

Note The type attribute is added to the Custom metadata only when you
are using the File System as your storage medium.

10.2.a Custom metadata examples

The following is a fragment of XML metadata from a Component. It contains some
basic metadata about the Component and an additional embedded schema,
containing more useful information about the Component.

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
<author>Niels</author>
<some-embedded-schema>
<country><!--also embedded-->
<code>nl</code>
<language>dutch</language>
<fullname>The Netherlands</fullname>
</country>
<city>Amsterdam</city>
</some-embedded-schema>
</metadata>

Truncating metadata

Truncation removes all nested elements, and only stores the top-level elements.
The example above, is stored as:

author=Niels

Flattening metadata

Flattening removes the hierarchy, and all elements are stored as though they are
on the same level. For example:

author=Niels
code=nl
language=dutch
fullname=The Netherlands
city=Amsterdam

Content Delivery Reference Guide

79

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

Prefixing metadata

Prefixing maintains the hierarchy by prefixing each element name, with the parent
element name. For example:

author=Niels
some-embedded-schema.country.code=nl
some-embedded-schema.country.language=dutch
some-embedded-schema.country.fullname=The Netherlands
some-embedded-schema.city=Amsterdam

10.2.b Custom metadata fields with multiple values

It is possible to have multiple values in a Custom Metadata field, but these multiple
values are not stored separately in SQL, they are concatenated.

For example:

<EmbedField>
<TextField>First Value</TextField>
<TextField>Second Value</TextField>
</EmbedField>

is transformed to:

"TextField"="First Value, Second Value"

10.3 Metadata storage

The Content Distributor can store the content in a variety of storage media. The
following types are supported:

• File System — directory structure

• SQL — MS-SQL 2000, IBM’s DB2, and Oracle

• Tamino — Hierarchical XML database

10.3.a File system storage

Metadata is stored in the owning Publication’s folder of the data folder, such as
\data\Pub1, where 1 is the ID of the owning Publication. Inside this folder, folders
are created to hold different types of metadata.

• The folder name for Pages is: <datadir>/pagemeta/

• The folder name for LinkInfo is: <datadir>/linkinfo/

• The folder name for Binaries is: <datadir>/binarymeta

• The folder name for Components is: <datadir>/componentmeta/.

• The folder name for Component Presentations is:
<datadir>/componentpresentationmeta/.

80 Tridion R5

Chapter 10 Using metadata

where <datadir> is the data folder of the Publication, such as
c:\visitorsWeb\data\pub1, which is the data folder for a Publication, with ID of
1.

10.3.b Configuring the storage options

To configure the storage option which best suits your implementation, you must
add the following lines to the Bindings section of your cd_broker_conf.xml:

<Bindings>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.MsSqlComponentMetaHome">
<Param Name="CustomMetaProcessor"
Value="com.tridion.broker.components.meta.YourChoiceOfProcessorHere" />
</Binding>
</Bindings>

Depending on your choice of metadata storage format, change the value of the
YourChoiceOfParameterHere to one of the following values:

• Truncating — TruncatingCustomMetaProcessor

• Flattening — FlatteningCustomMetaProcessor

• Prefixing — PrefixingCustomMetaProcessor

Note While metadata can be retrieved from a file system, it is not possible
to perform queries on it. Queries are only possible on a database,
such as MS-SQL, Oracle, DB2, or Tamino.

For more information about configuring bindings for the Content Broker, refer to
9.5 "Bindings" on page 70.

10.3.c Database storage

SQL is used to store the metadata and link information, using either MS SQL or
Oracle. The Data Repository is not physically separated for different Publications,
which means each table that holds metadata or link information can be used by
multiple Publications.

Table 10-1 describes the table structure for metadata.

Table 10-1 SQL table columns for Component Metadata.

Column name Type Value

ITEM_REFERENCE_ID number NOT NULL

PUBLICATION_ID number NOT NULL

MAJOR_VERSION number NULL

MINOR_VERSION number NULL

OWNING_PUBLICATION_ID number NULL

ITEM_TYPE number NOT NULL

TITLE string NOT NULL

CREATION_DATE datetime NULL

Content Delivery Reference Guide

81

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

Component Presentations

Metadata describing Component Presentations is structured differently, because it
is not a defined entity on the Management System. Only during preview or
publishing is a Component Presentation created by combining a Component
Template with a Component.

Linking information

Linking to Pages is performed based on the availability of metadata of the Pages. If
Page metadata is present, the Page Link is resolved.

Component Links do not use the standard metadata of Components. Instead, this
functionality uses LinkInfo to determine a target Component Presentation. If a
suitable target Component Presentation is found, the Page ID is used to generate a
Page Link.

10.3.d Storing custom metadata in SQL databases

Custom metadata can be as complex as the designer wants it to be. However, this
complexity can present issues on storage. To address this the metadata is altered
in the following, configurable, ways:

• Truncating — Removes all metadata beyond a certain level

• Flattening — Puts all metadata on the same level

• Prefixing — Prefixes all nested metadata with the name of the preceding
element.

See "Custom metadata examples" on page 78 for examples.

The Custom metadata is stored as name-value pairs. For example:

<name>SenanGilmore</name> is stored as:

name=SenanGilmore

INITIAL_PUBLICATION_DATE datetime NULL

LAST_PUBLISHED_DATE datetime NULL

TRUSTEE string NOT NULL

MODIFICATION_DATE datetime NULL

FILENAME string NULL

SCHEMA_ID number NULL

PAGE_TEMPLATE_ID number NULL

URL string NULL

Caution:

This pertains to SQL databases only (MS-SQL, Oracle and DB2). Both Tamino and
File System storage media preserve the hierarchy of the information.

Table 10-1 SQL table columns for Component Metadata.

Column name Type Value

82 Tridion R5

Chapter 10 Using metadata

Table 10-2 describes the table structure for custom metadata:

10.4 Metadata examples

The following examples show the retrieval of metadata for a Component from ASP
and from JSP.

10.4.a ASP example

The following example shows the retrieval of all metadata for a Component from
ASP:

<%
Option Explicit

Dim ComponentMetaFactory, ComponentMeta, CustomMeta, TheValue

'Create a ComponentMetaFactory object
Set ComponentMetaFactory =
Server.CreateObject("cd_broker.ComponentMetaFactory")

'Retrieve a ComponentMeta object from the factory
Set ComponentMeta = ComponentMetaFactory.GetComponentMeta("tcm:0-180-1",
"tcm:1-2116")

'Check if the ComponentMeta could be retrieved
If(NOT ComponentMeta Is Nothing) Then
'Print out the ComponentMeta properties
Response.Write "
Id: " & ComponentMeta.Id
Response.Write "
Title: " & ComponentMeta.Title
Response.Write "
ModificationDate: " & ComponentMeta.ModificationDate
Response.Write "
InitialPublicationDate: " &
ComponentMeta.InitialPublicationDate
Response.Write "
LastPublicationDate: " &
ComponentMeta.LastPublicationDate
Response.Write "
CreationDate: " & ComponentMeta.CreationDate
Response.Write "
SchemaId: " & ComponentMeta.SchemaId
Response.Write "
MinorVersion: " & ComponentMeta.MinorVersion

Table 10-2 SQL table columns for Custom Metadata.

Column name Type Value

PUBLICATION_ID number NOT NULL

ITEM_ID number NOT NULL

ITEM_TYPE number NOT NULL

KEY_NAME string NOT NULL

KEY_TYPE number NOT NULL

KEY_DATE_VALUE datetime NULL

KEY_STRING_VALUE string NULL

KEY_FLOAT_VALUE number (float) NULL

Content Delivery Reference Guide

83

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

Response.Write "
MajorVersion: " & ComponentMeta.MajorVersion
Response.Write "
PublicationId: " & ComponentMeta.PublicationId

'Retrieve the CustomMeta from the ComponentMeta
Set CustomMeta = ComponentMeta.CustomMeta

'Check if the CustomMeta could be retrieved
If(NOT CustomMeta Is Nothing) Then
'Get the value for field "test1"
TheValue = CustomMeta.GetValue("test1")
Response.Write "CustomMetaValue for key ""test1"": " & TheValue
End If
End If

'Release the COM objects
Set CustomMeta = Nothing
Set ComponentMeta = Nothing
Set ComponentMetaFactory = Nothing
%>

10.4.b JSP example

The following example shows the retrieval of all metadata for a Component from
JSP:

<%@ page import="com.tridion.meta.ComponentMeta,
com.tridion.meta.ComponentMetaFactory,
com.tridion.meta.CustomMeta" %>
<%
//Create a ComponentMetaFactory object
ComponentMetaFactory componentMetaFactory = new
ComponentMetaFactory("tcm:0-180-1");

//Retrieve a ComponentMeta object from the factory
ComponentMeta componentMeta = componentMetaFactory.getMeta("tcm:1-2116");

//Check if the ComponentMeta could be retrieved
if (componentMeta != null) {
//Print out the ComponentMeta properties
out.println("
Id: " + componentMeta.getId());
out.println("
Title: " + componentMeta.getTitle());
out.println("
ModificationDate: " +
componentMeta.getModificationDate());
out.println("
InitialPublicationDate: " +
componentMeta.getInitialPublicationDate());
out.println("
LastPublicationDate: " +
componentMeta.getLastPublicationDate());
out.println("
CreationDate: " + componentMeta.getCreationDate());
out.println("
SchemaId: " + componentMeta.getSchemaId());
out.println("
MinorVersion: " + componentMeta.getMinorVersion());
out.println("
MajorVersion: " + componentMeta.getMajorVersion());
out.println("
PublicationId: " + componentMeta.getPublicationId());

//Retrieve the CustomMeta from the ComponentMeta
CustomMeta customMeta = componentMeta.getCustomMeta();

84 Tridion R5

Chapter 10 Using metadata

//Check if the CustomMeta could be retrieved
if (customMeta != null) {
//Get the value for field "test1"
Object theValue = customMeta.getValue("test1");
out.println("CustomMetaValue for key \"test1\": " + theValue);
}
}
%>

10.5 Filters

Filters provide a way to select a subset of Components. To query custom metadata
from your Content Delivery database you create queries in your templates.

Figure 10-1 Queries and filters

You can use filters to select a subset of Components. All filters result in a list of
Component IDs (either using numbers, or by objects that encapsulate the IDs
together with other information).

You can filter using information about Components, rather than using actual
content.

You can use the following types of filters for Dynamic assembly:

• Search Filter — A search filter is based on the filter mechanism, but provides
the possibility to extend the filter information with user dependant criteria.

• Related Items Filter — A filter that lists items related to a specific
component, based on keywords.

• Most Visited Components Filters — Filters that show a list of most visited
Components based on Tracking information. For more information about
using the Web and Application Integration to track visitor behavior, refer to
Chapter 14 "Profiling and personalization" on page 119.

This chapter describes:

• Accessing a single Component Presentation

10.5.a Accessing a single Component Presentation

You can access a single Component Presentation in one of the following ways:

• Supplying a Component ID in combination with a template ID

• Supplying the id that results in the Component with the highest priority

Content Delivery Reference Guide

85

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

• Supplying the Component id together with a priority, which returns the first
match

All these possibilities are shown in the following example:

First create a ComponentPresentationFactory for the correct Publication:

ComponentPresentationFactory factory = new
ComponentPresentationFactory(12);

or using a TCM:URI:

ComponentPresentationFactory factory = new
ComponentPresentationFactory("tcm:0-12-1");

The factory can then be used to get a ComponentPresentation:

ComponentPresentation ps = factory.getComponentPresentation(123,55);
ComponentPresentation ps1 =
factory.getComponentPresentationWithHighestPriority(123);

or

ComponentPresentation ps = factory.getComponentPresentation("tcm:12-123",
"tcm:12-55-32");

If a URI is available for the ComponentPresentation, the following code can be
used:

ComponentPresentation ps1 =
factory.getComponentPresentationWithHighestPriority(new
TCMURI("tcm:12-123").getItemId());
}

10.5.b Search filter

Search needs input from users to build Dynamic filters. It is a normal filter, but
takes Strings as parameters.

The mapping of parameter names to search names can be explicit (the Template
Designer takes form parameters and uses names that the filter understands) or
implicit (the form parameter names are chosen in such a way that translation is
not required).

Note Search filters should be specified in the Page Template.

A Search filter searches the Component metadata of available Component
Presentations for matches based on certain criteria. A standard Component filter is
available in the Content Distributor API. A Component filter filters on the following
criteria:

• Keywords

• Schema

• Publication date

Filters always return the Component IDs as an array. This array can then be used
to call a renderer, which renders all Components based on extra criteria.

86 Tridion R5

Chapter 10 Using metadata

The following example shows a search filter, which performs a search for
components based on a schema with an ID greater than 1, in the “news“ category,
containing the keyword “financial”, and prints the number of results, and the
results themselves.

int publicationID=1;
//where 1 is the publication id

SearchFilter filt = new SearchFilter(publicationURI);

Query q = new Query();
q.addCriteria(ComponentMetaHome.FIELD_SCHEMA,">", 1);
q.addOperator(QueryOperator.OR);
q.addCriteria(ComponentMetaHome.FIELD_CATEGORY,"=","news");
q.addOperator(QueryOperator.AND);
q.addCriteria(ComponentMetaHome.FIELD_KEYWORD,"=", "financial");

String[] results = filt.match(q.toString(), "title=desc", 20);

out.println("
There are " + results.length + " results<pre>");

// go through the results
for (int i = 0; i < results.length; i++) {
// get the component metadata
ComponentMetaFactory factory = new ComponentMetaFactory(publicationURI);
ComponentMeta meta = factory.getMeta(results[i]);
out.println("getSchemaURI: "+meta.getSchemaURI());
out.println("getTitleURI: "+meta.getTitle());
}

10.5.c Generating Presentation Filters

You can call Content Distributor functionality from either Page Templates or
Component Templates. However, it is recommended to only do this from
Component Templates, so that the standard page layout used for Pages that do not
use filters is maintained. This chapter focuses on using Component Templates for
this purpose.

Certain Component Presentations on the Deployment Server need to be assembled
on a Page by the Content Distributor when requested. To do so, you use a
Placeholder that exists on the Management System and can be added to a Page.
When published, the Placeholder is transformed into scripted code that assembles
Component Presentations at runtime.

Placeholders are conceptual, rather than a predefined entity on the Management
System. Template Designers build Placeholders by using:

• A Schema that specifies fields used as input for a Filter.

• A Component that fills in properties for a Filter.

• A Component Template that uses properties of the Component to generate
the code for a Filter on the Content Distributor.

10.5.d Result modifiers

It is possible to specify a maximum number of results from a filter.

Content Delivery Reference Guide

87

C
h
a
p
te

r 1
0
 U

sin
g
 m

e
ta

d
a
ta

You can also sort the results of a filter:

• Direction (ascending or descending)

• Field to sort on (for example the title in Component metadata)

10.6 Querying custom metadata

To query custom metadata from your Content Delivery database, you must create
queries in your templates. These queries can be added to your search filters,
thereby extending the possibilities of your searches.

Custom metadata can have the following values:

• String — used for Text and links. tcm:URI are used for links, except for
external links.

• Number — Used for all numbers.

• Date — Used for all dates.

No other values are supported.

10.6.a Queries against SQL databases

This section describes how to query custom metadata stored in MS-SQL, Oracle
and DB2.

Everything entered after your query is appended to the following query:

"SELECT PUBLICATION_ID, ITEM_ID FROM CUSTOM_META WHERE PUBLICATION_ID=?
AND ITEM_TYPE=? AND " + nativeQuery;

the nativeQuery is replaced by your query values. If your values are:

KEY_NAME='city' and KEY_STRING_VALUE='Woerden'

The resulting query is:

"SELECT PUBLICATION_ID, ITEM_ID FROM CUSTOM_META WHERE PUBLICATION_ID=?
AND ITEM_TYPE=? AND KEY_NAME='city' and KEY_STRING_VALUE='Woerden' "

The question marks are filled in by the system. The publication id is the id of the
publication used during the construction of your SearchFilter object in JSP. In ASP
you must supply the Publication id in the method call.

Note The ITEM_TYPE is always 16 (Component).

You can also use KEY_DATE_VALUE and KEY_FLOAT_VALUE.

88 Tridion R5

Chapter 10 Using metadata

89

Chapter 11 Tamino

This chapter describes how to configure and use the Software AG Tamino XML
database with the Content Distributor.

For more information about Tamino, see the Tamino documentation provided with
the Tamino installation set.

11.1 Configuration

This section describes the configuration required to use the Content Distributor
with Tamino.

You must specify a Tamino database in the Broker configuration file
(cd_broker_conf.xml), with the following credentials:

• username

• password

• database URL

For example:

<Configuration>
 <Global>
. . .
<Storage>
<Database Type="tamino" Username="cd_broker" Password="cd_broker"
Url="http://localhost/tamino/cd_broker"/>
</Storage>
</Global>
. . .
</Configuration>

The following Tamino specific storage classes must be added to the Broker
configuration Bindings section:

<Binding Name="PageMeta"
Class="com.tridion.broker.pages.meta.TaminoPageMetaHome"/>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.TaminoComponentMetaHome"/>
<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.TaminoComponentPres
entationMetaHome"/>

90 Tridion R5

Chapter 11 Tamino

<Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.TaminoXMLComponentPresen
tationHome"/>
<Binding Name="Schema"
Class="com.tridion.broker.schemas.TaminoSchemaHome"/>

11.2 Using Tamino

To Publish Components to Tamino the following items are required in the Content
Manager:

• Schema defining the Components to store in Tamino

• Component Template producing XML Documents or XML Fragments

• Components to be inserted into Tamino

After creating these items correctly configuring the Content Broker, Publishing to
Tamino is the same as Publishing any other type of Component Presentation.

11.2.a Schemas

For all Component types you want to query in Tamino, you must have schemas
with a defined root element. These root elements are matched with Tamino
'doctypes'.

Note To create a nested XML structure in Tamino, you must use embedded
schemas.

If Component Template-generated XML is used, there are no restrictions on
schemas.

Table 11-1 Tamino bindings and their purpose.

Binding Class purpose

PageMeta Stores Page metadata in Tamino

ComponentMeta Stores Component metadata in Tamino

ComponentPresentationMeta Stores ComponentPresentation metadata in Tamino

XMLComponentPresentation Determines if a Component Presentation is generated
by a Component Template or if the unprocessed XML
is available. If the unprocessed XML is available it will
be inserted into Tamino in its natural form that can be
queried by Tamino.

Schema Converts a CMS/W3C Schema into a Tamino Schema
that allows unprocessed XML to be inserted and
queried.

Caution:

There is no check in the Management System to ensure that root element names
are unique. It is the responsibility of site designers to ensure uniqueness. If
multiple Schemas have the same root element, then an error is raised during the
deployment process. As a result, much of the Published content is not stored by
Tamino.

Content Delivery Reference Guide

91

C
h
a
p
te

r 1
1
 Ta

m
in

o

11.2.b Component Templates

You can publish two types of XML content to Tamino. In both cases the Template
Designer must ensure that the output format of the Component Template is set to
XML. The Component Template must be linked to the Schemas of the Components
published to Tamino.

The two XML Component publishing scenarios are described below:

• Unprocessed XML — When a template designer leaves the Component
Template blank, the XML structure for the rendered Component is published
with the same structure as it is stored on the Management System.

• Component Template Rendered XML — When a Template Designer fills in the
Management System Template part of a Component Template, they can
generate XML in the same way they would generate HTML/JSP/ASP code.

11.2.c Components

The ino:docname attribute assigns URIs to Components or Component
Presentations. Tamino checks for Component updates or inserts.

The Components that are mapped to a Content Manager schema can be accessed
using their URI as ino:docname, for example tcm:2-67-16. Component
Presentations can be accessed using their URI within the tcd: namespace, for
example tcd:/pub[2]/componentpresentation[76,67].

All Component Presentations are stored with the Component Presentation doctype.
Depending on the type of Component Template used, the body of the
ComponentPresentation element contains the ComponentPresentation XML
content. If a Schema that matches the content was published, the
ComponentPresentation element contains a reference to the XML content in its
own doctype.

The following example is a Component Presentation including content:

<component-presentation component-id="76" ino:id="4" template-id="67">
<sample>
<element>body</element>
<sample>
<component-presentation />

The following example shows the reference to content:

<component-presentation component-id="67" ino:id="1"
reference="tcm:2-67-16" template-id="66"/>

Caution:

If the XML generated by the Component Template is not valid XML or
depends on namespaces for element name uniqueness it is not accepted
by Tamino and an error occurs during the deployment process.

92 Tridion R5

Chapter 11 Tamino

11.2.d Updating a Component in Tamino

Any changes to a Component or ComponentPresentation are updated in Tamino, if
they are republished, and if the content can still be mapped to the schema in
Tamino.

11.2.e Unpublishing from Tamino

ComponentPresentations are always removed if they are unpublished.
Components are removed from Tamino if there are no ComponentPresentations
referring to them.

11.2.f Dynamic Content

The following example shows usage of a single XSLT rendering a component on a
page, based on a URL query variable.

<%
 { //Define separate scope to prevent variable name clashes
 //Assumes a publication Id variable is set in the page header
 ComponentPresentationFactory factory =
 new ComponentPresentationFactory(publicationId);

// the cId parameter comes from the Dynamically generated link to
// the page that contains this code.

 int componentId = Integer.parseInt(request.getParameter("cId");

 //This value is hardcoded when this code is generated by the
 //component template
 int templateId = '12';
 XMLComponentPresentation cp =
 factory.getComponentPresentation(componentId, templateId);

// do the actual XSLT transformation
 out.print(XSLTProcessor.getString(cp, PageID));
 }
%>

11.2.g Schema mapping

There are two scenarios for mapping schemas.

• Open schema with a <ComponentPresentation> root element — This
scenario is used for ComponentPresentations that are generated by a
Component Template and for "raw" XMLComponentPresentations that have
no defined root element.

• One-to-one mapping of a Tridion R5 schema to a Tamino Schema.

Content Delivery Reference Guide

93

C
h
a
p
te

r 1
1
 Ta

m
in

o

11.2.h XSLT transformation of W3C schemas

The Tamino 3 Schema is capable of dealing with W3C schema with some
limitations and needs some additional information for storage purposes. The W3C
schema and the Tamino 3 Schema are both XML, and so can be transformed by
XSLT.

The stylesheet does the following:

• Strip additional info

• Remove tags and attributes not supported by Tamino

• Convert non-supported XSD datatypes to supported ones

• Add standard indexing to all elements.

11.2.i ReferenceCounting

A single component is kept in the database for multiple ComponentPresentations.
The Component will not be removed before all ComponentPresentations that refer
to this component are unpublished. Once all Components that use a schema are
unpublished the Schema will also be 'undefined' (removed) in Tamino.

11.3 Querying Tamino

This section lists several examples of querying Tamino using JSP, or ASP. The
following examples are used:

• Querying Tamino in JSP

• Querying Tamino in ASP

• Retrieving a single component in JSP

• Retrieving a single component in ASP

Querying Tamino in JSP

<%@page import="com.tridion.dcp.filters.*,
com.tridion.dcp.filters.query.*, com.tridion.web.*, com.tridion.util.*"%>
<%
{
 TaminoFilter filter = new TaminoFilter("tcm:0-2-1");
 XSLTProcessor processor = new XSLTProcessor();
 String query = "/TaminoFilter[@ino:docname='tcm:2-67-16']";
 XMLQueryResult placeholder = filter.matchTamino(query, 1);
 XMLQueryResult result = filter.matchTamino("/Article", placeholder,
10);

 out.print(processor.getString(result, "tcm:0-2-1", "tcm:2-66-32"));
}
%>

Querying Tamino in ASP

<%

94 Tridion R5

Chapter 11 Tamino

Set objFilter = Server.CreateObject("cd_broker.TaminoFilter")
Set objProcessor = Server.CreateObject("cd_broker.XSLTProcessor")

'Process form input, build Tamino query
componentId = Request.QueryString("componentURI")
strQuery = "/Article[@ino:docname='" & componentId & "']"

'Set query and display parameters
Set result = objFilter.MatchTamino("tcm:0-2-1", strQuery, 1)
Response.Write (objProcessor.GetStringFromQueryResult(result,
"tcm:0-2-1", "tcm:2-61-32"))

Set objProcessor = Nothing
Set objFilter = Nothing
%>

Retrieving a single component in JSP

<%@page import="com.tridion.dcp.filters.*,
com.tridion.dcp.filters.query.*, com.tridion.web.*"%>
<%
{
String componentId = request.getParameter("componentURI");

if(componentId != null) {
TaminoFilter filter = new TaminoFilter("tcm:0-2-1");
XSLTProcessor processor = new XSLTProcessor();
String query = "/Article[@ino:docname='" + componentId + "']";
XMLQueryResult result = filter.matchTamino(query, 1);
out.print(processor.getString(result, "tcm:0-2-1", "tcm:2-61-32"));
}
}
%>

Retrieving a single component in ASP

<%
Set objFilter = Server.CreateObject("cd_broker.TaminoFilter")
Set objProcessor = Server.CreateObject("cd_broker.XSLTProcessor")

'Process form input, build Tamino query
componentId = Request.QueryString("componentURI")
query = "/TaminoFilter[@ino:docname='tcm:2-67-16']"
'Set query and display parameters

Set placeholder = objFilter.MatchTamino("tcm:0-2-1", query, 1)
Set result = objFilter.MatchTamino("tcm:0-2-1", "/Article", 10,
placeholder)

Response.Write (objProcessor.GetStringFromQueryResult(result,
"tcm:0-2-1", "tcm:2-66-32"))

Set objProcessor = Nothing
Set objFilter = Nothing
%>

Content Delivery Reference Guide

95

C
h
a
p
te

r 1
1
 Ta

m
in

o

11.3.a Generating links from an XSLT using the Linking API

The following example shows Tamino Filter data fields used to generate
Placeholder code and linking to detail page.

<TaminoFilter ino:id="1">
<Query>/Article</Query>
<MaxResults>10</MaxResults>
<Detail href="tcm:2-62" title="Article Detail" type="simple"/>
<TemplateId>tcm:2-66-32</TemplateId>
<TCMMetadata/>
</TaminoFilter>

The following example shows the use of the Linking API from within XSLT:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/"
xmlns:lxslt="http://xml.apache.org/xslt"
xmlns:tcd="http://www.tridion.com/tcd"
extension-element-prefixes="tcd">

<xsl:output method="html" encoding="UTF-8"/>

<xsl:param name="publicationURI" />
<xsl:param name="pageURI" />
<xsl:param name="componentTemplateURI" />

<lxslt:component prefix="tcd">
<lxslt:script lang="javaclass" src="xalan://com.tridion" />
</lxslt:component>

<xsl:template match="xql:result">
<xsl:apply-templates select="Article"/>
</xsl:template>

<xsl:template match="Article">
<h1><xsl:value-of select="Title"/></h1>
<i><xsl:copy-of select="Intro"/></i>
<xsl:call-template name="ComponentLink">
<xsl:with-param name="componentURI" select="@ino:docname"/>
<xsl:with-param name="linkText" select="'Read More'"/>
<xsl:with-param name="target" select="../TaminoFilter/Detail/@href"/>
</xsl:call-template>
</xsl:template>

<xsl:template name="ComponentLink">
<xsl:param name="componentURI"/>
<xsl:param name="linkText"/>
<xsl:param name="target"/>

<xsl:variable name="componentLinkInstance"
select="tcd:linking.ComponentLink.new($publicationURI)"/>
<xsl:variable name="query" select="concat('componentURI=',
$componentURI)"/>
<xsl:variable name="link" select="tcd:getLink($componentLinkInstance,
$pageURI, $target, $componentTemplateURI, '', $linkText, false, true)"/>

96 Tridion R5

Chapter 11 Tamino

<xsl:value-of select="tcd:setParameters($link, $query)"/>

<xsl:value-of select="$link" disable-output-escaping="yes"/>

</xsl:template>

</xsl:stylesheet>

11.3.b Component link resolution with XSLT

Considering the following XML fragments:

<article>
<title>XSLT is a powerful but complex monster</title>
<author xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"
xlink:href="tcm:6-74" xlink:title="David Buddha"/>
...
</article>

<author>
<first_name>Hans</first_name>
<last_name>Speijer</last_name>
<email>david@buddha.com</email>
</author>

The following stylesheet fragment shows an example of link resolution in XSLT:

<xsl:template match="article">
<h1><xsl:value-of select="title"/></h1>
<i>by <xsl:apply-templates select="document(author/@href)"/></i>
</xsl:template>

<xsl:template match="author">
<xsl:value-of select="first_name"/> <xsl:value-of select="last_name"/>
<xsl:template/>

Content Delivery Reference Guide

97

C
h
a
p
te

r 1
1
 Ta

m
in

o

11.4 TaminoFilter

The TaminoFilter allows you to execute XPath Queries on content stored in the
Tamino Database. Queries on Tamino using the TaminoFilter result in
XMLQueryResult objects. These objects can be supplied to the XSLTProcessor, or
again to the TaminoFilter to filter merge the result with the result of a new query.

11.4.a Using TaminoFilter to query Tamino

Creating a TaminoFilter and Executing a Query in ASP

<%
Dim TaminoFilter, XSLTProcessor, XMLQueryResult
Set TaminoFilter = Server.CreateObject("cd_broker.TaminoFilter")
Set XMLQueryResult = TaminoFilter.MatchTamino("tcm:0-1-1", "/*[Author
~='David'", 10)
%>

Creating a TaminoFilter and Executing a Query in JSP

<%@page import="com.tridion.dcp.filters.*,
com.tridion.dcp.filters.query.*, com.tridion.web.*" %>
<%
TaminoFilter filter = new TaminoFilter("tcm:0-1-1");
XMLQueryResult result = filter.matchTamino("/*[Author ~='David'",
10);
%>

11.4.b Merging Queries

ASP Sample Executing and merging multiple queries

<%
Dim TaminoFilter, XSLTProcessor, XMLQueryResult, XMLQueryResult2
Set TaminoFilter = Server.CreateObject("cd_broker.TaminoFilter")
Set XMLQueryResult = TaminoFilter.MatchTamino("tcm:0-1-1", "/*[Author
~='David'", 10)
Set XMLQueryResult2 = TaminoFilter.MatchTamino("tcm:0-1-1",
"/*[Author ~='Adrian'", 10, XMLQueryResult)
%>

JSP Sample Executing and merging multiple queries

<%@page import="com.tridion.dcp.filters.*,
com.tridion.dcp.filters.query.*, com.tridion.web.*" %>
<%
TaminoFilter filter = new TaminoFilter("tcm:0-1-1");
XMLQueryResult result = filter.matchTamino("/*[Author ~='David'",
10);
XMLQueryResult result2 = filter.matchTamino("/*[Author ~='Adrian'",
result, 10);
%>

98 Tridion R5

Chapter 11 Tamino

Part II

Linking

101

Chapter 11 Linking

The Content Manager allows you to create links between Content Manager items.
These links are references to another item within the Content Manager:

• Page links are links between Pages. Template designers typically create
these links in Page Templates to create navigation in a published site

• Binary links are links from Pages or Components to Multimedia Components
(such as Word documents, PDFs, and images). These links are often created
in Components as Multimedia Component link fields, or in Component
format areas as Multimedia Component links.

• Component links are links to a Component. These links can be created in a
Component as Component link fields or as Component links in Component
format areas, or as, for example, a "Read more" link that is generated by a
Component Template.

When Pages that contain links are published to the Content Distributor, code is
generated and inserted into published Pages. On a published Page, Linking uses
this code to determine how valid or invalid links are presented.

Tridion Linking validates and resolves hyperlinks when a visitor views a Page. At
request time, Linking looks for the metadata of the requested resource. This
metadata will only exist if the related Page, Component, or Binary is published.

Linking information is stored by the Content Broker. This information includes the
data that Linking needs to resolve and validate links between Components,
Component Presentations, and Pages:

• Page metadata — Used to find the URI of a certain Page

• Binary metadata — Used to find the URI of a certain binary

• Link info — Describes the relationship between Pages and Component
Presentations that are assigned to them

You can store link information and metadata on a file system or in a SQL database
(MS SQL, DB2, and Oracle).

If this metadata is found, Linking creates a hypertext reference (HREF) in the
published Page. If no metadata is found for the item that is linked to, either no link
is generated, or text with no linking information is displayed.

The resulting behavior of text with invalid links depends on the code that was
generated when Pages were published. For example, if a link is in running text, you
may want to display the text but not as a hyperlink. If a link is a "Read more" link,
you may not want the link to appear at all.

102 Tridion R5

Chapter

Figure 11-1 Linking configuration

Note: Linking validates links to Tridion content only. Links to external sites are not
validated.

11.1 Link validation and resolution

This chapter describes how the Linking module validates and generates the
following types of links:

• Page links

• Component links

• Binary links

Content Delivery Reference Guide

103

C
h
a
p
te

r

Figure 11-2 Hyperlinks in a published site

11.2 Page links

Page links are links to other Tridion Pages.

Template designers create Page links within a template. Usually Page links are
created within a Page Template to create navigation structures. In the Content
Manager, a Page Template may, for example, contain a script that looks for the
index page within the current structure group.

When the Page is published, code is generated that instructs the Content
Distributor to create the link to the Page with the associated URI.

When a visitor accesses a Page with the link, Linking reads relevant metadata from
the datastore and looks for the link. If the Page to which the link points is found, a
link is created. If the Page to which the link points is not found, no link is
generated.

The following example depicts the code that is generated on a Page before the
viewed and which Tridion Linking uses to resolve the Page link:

Example The page link shown below creates a link to a page with tcm:203-1528-64 in JSP.

String linkAsStr =
pageLink.getLinkAsString("tcm:203-1528-64","anchor","onmouseover=""this.
style.color='red'"" onmouseout=""this.style.color='blue'""","This is a
Page Link",true,"");

Example The page link shown below creates a link to a page with tcm:203-1528-64 in ASP.

104 Tridion R5

Chapter

dim pLinkAsStr
pLinkAsStr =
pLink.GetLinkAsString("tcm:203-1528-64","anchor","onmouseover=""this.sty
le.color='red'"" onmouseout=""this.style.color='blue'""","Page link
text",True,"")

11.3 Binary links

Binary links link to binary files such as images, pdfs, Word documents, etc. In the
Content Manager, these binary files are Multimedia Components.

You can use the BinaryLink class to link to a binary based on a Tridion URI.

Binary links are created in the Content Manager in the following ways:

• Multimedia Component links added to Components in format areas or in
Multimedia Component Link fields

• Links to binary files created in templates

The default Template Building Block contains code that will generate linking code
to binary files. Published Pages that refer to this linking code contain scripting that
is used by Linking to ensure that the link is resolved and valid.

When a Page is published that contains binary links, code is generated that
instructs the Content Distributor to create a link to the binary file with the
associated URI.

When a visitor accesses a Page with the link, Linking reads the binary metadata in
the datastore. If the binary to which the link points is found, a link is created. If
the binary to which the link points is not found, no link is generated.

The following examples depict the code that is generated on a Page before it is
viewed and which Tridion Linking uses to resolve the binary link:

JSP

Example binaryLink.getLinkAsString("tcm:203-1488","","Binary link
text","attribs",true);

ASP

Example <%
Dim BinaryLink
set BinaryLink = Server.CreateObject("cd_link.BinaryLink")

%>
<%= BinaryLink.GetLinkAsString("tcm:0-1-1", "tcm:1-43", "", "linkText",
"", true) %>

Content Delivery Reference Guide

105

C
h
a
p
te

r

11.4 Component links

Component Links are links to:

• the same Component

• a different Component

11.4.a Components that link to the same Component

A Component may appear more than once in a site. For example, an article may be
presented in two different ways:

• It may appear on a summary page with just the title of the Component, a
short summary, and a Read more link

• It may also appear on a full article page in which the full content of the
Component is displayed.

While the content for this content is derived from the same Component, in each of
these cases, the Component is combined with a different Component Template. In
this situation, you want to link from the summary to the full article.

Typically, "Read more" links are generated by Component Templates and are not
part of the original Component. The priority of the Component Template ensures
that the "Read more" link directs visitors to the Page which contains the full article.
In this example, the summary article Component Template would be assigned a
priority of Low, while the full article Component Template would be assigned a
priority of High. Linking determines what Component Presentation to link to using
the priority of the Component Template.

Figure 11-3 Component Presentation with a link the same Component

For more information about how linking uses Component Template priorities and
the directory hierarchy to determine which Component to link to, refer to
"Resolving Component links" on page 107.

106 Tridion R5

Chapter

11.4.b Components that link to a different Component

A Component link can link to different Components if, for example, links are
generated by the Page Template or Component Template based on Components
that are stored in the same folder, or if a Component actually contains links to
other Components in format areas or in Component Link fields.

You can design a schema that will enable authors to link to other Components or
Multimedia Components within the Content Manager. A Schema can include:

• Component Link fields — In a Component these fields can store links to
other Components

• Multimedia Link fields — In a Component these fields can store links to
Multimedia Components (binaries)

• Format areas — In a Component, text can be formatted to hyperlink to
Components or to Multimedia Components

Figure 11-4 Component link to a different Component

For more information about how linking uses Component Template priorities and
the directory hierarchy to determine which Component to link to, refer to
"Resolving Component links" on page 107.

11.4.c Creating Component links in templates

Use the following Linking API references for examples of how to create Component
Links:

• Linking_JSP_51SP4.zip — The Java API for linking

• Linking_ASP_51SP4.chm — The COM API for linking

• ContentDelivery_NET_51SP4.chm — The .NET API for Content Delivery
products

You can create a Component link from a template using the getLinkAsString
method in the ComponentLink class.

When identifying a link using the URI of the Component in a template, use the
following syntax:

getLinkAsString(String pageURI, String ComponentURI, String
templateURI, String linkAttr, String linkText, boolean textOnFail)

Content Delivery Reference Guide

107

C
h
a
p
te

r

JSP

Example The Component link shown below creates a link from Page tcm:0-203-1,
Component tcm:203-1489, with Component Template tcm:0-957-32.

ComponentLink componentLink = new ComponentLink("tcm:0-203-1");
String linkString =
ComponentLink.getLinkAsString("tcm:0-203-1","tcm:203-1489","tcm:0-957-32",
"","Component link text",true);

ASP

Example The Component link shown below creates a link from Page tcm:0-203-1,
Component tcm:203-1489, with Component Template tcm:0-957-32.

dim ComponentLink
set ComponentLink = createObject("cd_link.ComponentLink")
dim cLinkAsStr
cLinkAsStr = ComponentLink.GetLinkAsString("tcm:0-203-1","tcm:203-1489", _
 "tcm:0-957-32","","Component link text",True,1)

11.4.d Creating Component Link objects in a Page Template

The Default Component Template always creates a new ComponentLink object
when it encounters a Link (for instance originating from a text-area).

If many Component Links exist on a Page, you should create a Component Link
object in the Page Template. You can then reuse this object for every Component
Link that needs to be created.

11.4.e Resolving Component links

Linking resolves Component Links to the same Component, the link is created
based on Component Template priorities and the directory hierarchy of the
published site.

Component Template priorities

Linking resolves Component Links to the same or a different Component using the
priority of the Component Template and then the directory hierarchy on which the
Components are used in Pages. A Component will always link to a Component that
is rendered with a Component Template of the highest possible priority.

You set the priority on the Component Templates in the Content Manager. The
priority system allows Linking to determine which published Component
Presentation the link will lead to. If the Component is used on more than one Page,
Linking will generate a link to the Component Presentation that is rendered with a
Template of the highest priority. It is possible to assign the following priorities to a
Component Template:

• Never link

• Low

• Medium

• High

108 Tridion R5

Chapter

A link will only be generated to a Component that uses a Component Template
with a higher priority i.e. low to high or medium but not medium to low or high to
medium or low.

For example, if you would like a summary Component to link to the same
Component as a full article, you would assign a Component Template the priority
of "Low" or "Never Link" for the summary article and a priority of "High" for the full
Component.

Note A Component Link will never link to a Component that is rendered
using the same Component Template. This prevents Pages from
having links to exactly the same Component Presentation.

Directory hierarchy

If the Component is published more than once using Component Templates of
equivalent priority, the "closest" Component with the highest priority in the
directory hierarchy is used. Linking is designed to look first in nested directories
and if no link is found then it look in parent directories. The following section
describes the directory hierarchy that linking uses.

The hierarchy is determined by the distance between the Page with the link and
the location of the referred item within the directory. Linking assigns nested links
(links that move down into a directory) a low value (for example one (1)) and
parent links (links that move up in the directory) a high value of (for example
100). Linking selects the item with the lowest possible value.

When selecting the Page, binary or Component to link to, Linking checks for an
applicable item in the following order (the numbers in the diagram refer to the
numbers in the explanation):

If more than one possible candidate exists, Linking creates an HREF to the most
recently published Page.

1 Same Page as the link. (Value
0). If the Component is found
on the same Page and uses a
different Component Template,
a link will be created to the
Component Template on the
same Page.

2 A Page in the same directory.
(Value 0)

3 A Page in a child directory.
(Value 1)

4 A Page in the parent directory.
(Value 100)

5 A Page in a sibling directory.
(Value 101)

6 A Page in the grandparent
directory. (Value 200)

7 A Page in the sibling of the
parent directory. (Value 201)

Content Delivery Reference Guide

109

C
h
a
p
te

r

In the following example (figure 11-5), the Component is published on two
different Pages using a Component Template with the priority "High". To determine
which Component to create link to, Linking looks at the value of each of the
Directories. The Page published in directory A has a value of 100. The Page
published in directory D has a value of 1. Therefore, Linking creates a link to the
Component published on the Page in Directory D.

Figure 11-5 Component links resolved using Template priority and directory
hierarchy

110 Tridion R5

Chapter

111

Chapter 12 Linking configuration

The following configuration values influence the way in which linking generates and
uses links:

• Linking uses configuration details that are configured in the Linking
configuration file: cd_link_conf.xml. Use this configuration file to configure
logging settings as well as optional Publication specific settings that are used
to resolve links.

• The Broker configuration file (cd_broker_conf.xml) contains bindings that
are used to write and retrieve metadata including the following classes:

LinkInfo — Used to store metadata that is used to resolve Page and
Component links. This class controls how linking metadata is stored. By
default, Linking uses comma separated values on the file system.

ComponentPresentationMeta — Used to store Dynamic Component
Presentations

PageMeta — Used to store Page metadata

BinaryMeta — Used to store binary metadata

• Within Tridion Component Templates, Page Templates and Template Building
Blocks, a number of methods can be used to create and render links. The
default templates use the following methods:

Function DisplayPublishedComponentLink(ByVal linkedComponent,
ByVal linkText, ByVal targetLanguageId)

Sub ResolveComponentLinks(ByVal domdoc)

Note You can also configure the Java Virtual Machine that the Tridion
Dynamic Linking service starts. See Appendix J, "Configuring the Java
Virtual Machine for COM services" for details.

This chapter describes:

• Linking configuration file

• Linking and Content Broker configuration

112 Tridion R5

Chapter 12 Linking configuration

12.1 Linking configuration file

The Linking module is configured using Linking configuration file
(cd_link_conf.xml) to determine the following information:

• Logging settings — determine the behavior and location or one or more
logging streams

• Publication settings — a container in which you can configure linking settings
for specific Publications.

The configuration file is validated against the cd_lnk_conf.xsd schema.

The following example depicts a sample linking configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration Version="5.1">
<Global>
<Logging>
<Logger Level="info">
<FileLogger Level="info" Location="D:\Tridion\logs\cd_link.log"/>
<!--<ConsoleLogger Level="info" Trace="on"/>-->
</Logger>
</Logging>
</Global>
<Publications>
<Publication Id="1">
<Host Domain="localhost" Port="80" Protocol="http" Path=""/>
<Linking ComponentAnchors="false"/>
</Publication>
<Publication Id="2">
<Host Domain="www.myWebsite.com" Port="80" Protocol="http" Path=""/>
<Linking ComponentAnchors="true"/>
</Publication>
</Publications>
</Configuration>

12.1.a Logging

The Logging element specifies the behavior and location of one or more logging
streams. The Level attribute specifies the amount of information being logged.
The logging levels are:

• info — Information messages.

• warning — Potential error conditions.

• error — Errors that prevent the software from functioning correctly.

• fatal — Unrecoverable errors.

The FileLogger logs to the log file specified by the Location attribute:

<FileLogger Level="info" Location="C:\tridion\log\cd_link.log"/>

You can also print log messages to a console using the ConsoleLogger element.

An administrator should make sure that the account used by Tridion Linking has
rights to write to the log file, and create directories if needed.

Content Delivery Reference Guide

113

C
h
a
p
te

r 1
2
 L

in
k
in

g
 co

n
fig

u
ra

tio
n

12.1.b Publications

The Publications element is a container for the Publication element.

It is possible to specify the following attributes for each Publication using a
Publication sub-element:

• Domain — The domain of the Web site. The default domain is localhost.

• Port — The port of the Web site. The default port is 80.

• Path — The path of the virtual directory of your Web site. The default path is /

• Protocol — The protocol used for the Web site. The default protocol is HTTP.

For the Publication element, you can also specify the following attributes about
how links are generated using the Linking sub-element:

• ComponentAnchors — Indicates if anchors should be added to Component
links so that the browser jumps to the position of the targeted Component
Presentation. The value can be either true or false.

• AddComponentLinkInfo — Indicates if additional information should be
added to the QueryString of a Component Link URL. The value can be either
true or false.

If this value is true, then a string that contains the Component ID and the
Page ID are added as CGI key/value pairs in the following form:
ComponentId=x&SourcePageId=y

Note If you are using the Tridion WAI Integration, you should set this
value to true since the WAI uses this information for
ComponentLinkTracking.

12.2 Linking and Content Broker configuration

Linking uses the following information that is provided by the Content Broker
configuration file:

• The directory for all Publications in which pages, binaries and meta-data is
published (this is the DefaultRootLocation element)

• Publication specific settings

DataRoot — The directory in which meta-data should be stored and
retrieved on the file system.

DocumentRoot — The base-directory in which pages and binaries are
located.

For more information about the Content Broker configuration file, refer to "Broker
configuration" on page 61.

The metadata used by Tridion Linking can be stored in the following locations:

• File System

• SQL Databases

114 Tridion R5

Chapter 12 Linking configuration

12.2.a Linking bindings

Linking bindings determine how metadata used by Linking is stored. These
bindings are configured in the Content Broker configuration file
(cd_broker_conf.xml).

The following bindings are used:

• LinkInfo — information that describes the relationship between Pages and
Component Presentations. This is used for Component links.

• PageMeta — metadata about Pages. This data is used for Page links.

• BinaryMeta — metadata about binaries. This data is used for Binary links.

These bindings can be bound to an implementation class that handles the storage
of the specific kind of information. The bindings can store metadata on the file
system or in a SQL database.

For more information about configuring Content Broker bindings, refer to
"Bindings" on page 70.

Table 12-1 describes the linking bindings that are used for the following storage
options:

• File system — The default directory is data/pubx.

• SQL database — MS SQL, DB2, and Oracle

Table 12-1 Linking bindings

Symbolic
name

Class Description

File system

LinkInfo com.tridion.Broker.linking.
FSCSVLinkInfoHome

Reads and writes link
metadata to CSV files.

LinkInfo com.tridion.Broker.linking.
FSXMLLinkInfoHome

Reads and writes link
metadata to XML files.

PageMeta com.tridion.Broker.pages.
meta.XMLFilePageMetaHome

Reads and write Page
metadata to XML files.

BinaryMeta com.tridion.Broker.binaries.
meta.XMLFileBinaryMetaHome

Reads and write binary
metadata to XML files.

SQL database

LinkInfo com.tridion.Broker.linking.
SQLLinkInfoHome

Reads and writes link
metadata to an SQL
database.

PageMeta com.tridion.Broker.pages.meta.
SQLPageMetaHome

Reads and writes Page
metadata to an SQL
database.

BinaryMeta com.tridion.Broker.binaries.
meta.SQLBinaryMetaHome

Reads and writes binary
metadata to an SQL
database.

Part III

Web and
Application

Server
Integration

117

Chapter 13 Web and Application
Server Integration

The Tridion Web and Application Server Integration (WAI) provides the following
functionality:

• Profiling and personalization

• Dynamic content assembly

The WAI is installed on top of the Content Broker. The Broker accesses the
metadata and Dynamic Component Presentations. The Broker framework is also
used to store visitor profiles.

Figure 13-1 WAI architecture

118 Tridion R5

Chapter

13.1 Web and Application Server Integration (WAI)

The Tridion WAI provides further functionality for your published content:

• The ability to profile your visitors and personalize content

• The ability to present Dynamic content to visitors

13.1.a Profiling and personalization

In conjunction with explicit profile information that you may be gathering for your
visitors (such as information gathered from Web forms), you can also track the
types of content that a visitor accesses, and the specific Pages, Components, and
links that a visitor uses.

The WAI uses cookies to identify your visitors. Once a visitor is identified, the
visitor’s browsing behavior can be tracked and added to their visitor profile on your
database. It is possible to create profiles based on two types of visitor behavior:

• Tracking Keys provide information about the type of content that the visitor
shows interest in

• Tracking provides information about the Pages, Components, and Links that
a visitor was served within specified time periods.

Using information about your visitors, you can then define Target Groups. Target
Groups are basically categories of visitors. For example, you could define a Target
Group that included Women between the age of 30 and 50 who have shown
interest in Graphic Design Software by defining a Target Group that identifies this
type of visitor.

You can associate Target Groups with Component Presentations on a Page. When a
known visitor enters the Page, you can ensure that the visitor is only shown the
Component Presentations that apply to their personal profile.

13.1.b Dynamic content assembly

The WAI allows you to publish Components and Component Templates
(Component Presentations) separately from Pages. These Component
Presentations are not embedded in Pages, but are instead, published to a Broker
content repository. These Component Presentations are called Dynamic
Component Presentations.

These Component Presentations can be accessed in two ways:

• If the Component Presentation is added to a Page, the published Page
includes code that points to the Component Presentation. The Component
Presentation is rendered on the Page when the visitor views the Page.

• If the Component Presentation is only published to the Content Broker, you
can use queries or filters in the Content Distributor to retrieve this content.

Unlike Component Presentations that are embedded on a Page, Dynamic
Component Presentations are republished separately. This means that if a
Dynamic Component Presentation is added to a Page, you only need to republish
the Component Presentation rather than the entire Page to update content.

119

Chapter 14 Profiling and
personalization

The WAI enables you to profile your web site visitors:

• Tracking Keys — Tracking Keys identify the type of content a visitor is has
viewed. Tracking Key values are increased or decreased based on the
content on the Pages that a visitor accesses.

• Tracking — Tracking information tracks the Pages and Components that a
visitor requested. Tracking information is time period specific and can be
used to obtain web site statistics for specific time periods. You can track:

Pages requested by a visitor

Components viewed by a visitor

Component Links that have been followed by a visitor

Tracking Keys and Tracking identify individual visitors using cookies. When a visitor
accesses your site, the WAI Page object is created, which checks if the visitor has
a cookie:

• if not, a cookie is generated, which maps to a newly created record for the
visitor

• if so, the visitor is identified using the cookie

The Tracking Key and Tracking information that you gather is stored on a SQL (MS
SQL, DB2, Oracle) database. Depending on what you have implemented (Tracking
Keys and/or Tracking), the following information is stored in the Content Broker
database:

• Users — Information about your visitor. The User Id is used to identify each
visitor for Customer Characteristics, Tracking Keys, Page visits, Component
visits, and Component link visits.

• Customer Characteristics — This is information that you may be gathering
using a Web form or other direct visitor input. This information is not
automatically gathered by Tridion, but needs to be implemented by WAI API
calls on the Content Delivery server.

• Tracking Keys — Values of the Tracked Keywords. Depending upon your
configuration, values for Keywords are incremented or decremented
depending on what a visitor accesses on your site.

• Tracking — Pages, Components, and Component Links that a visitor
requests within a timeframe.

120 Tridion R5

Chapter 14 Profiling and personalization

• Timeframes — Timeframes are used by Tracking (not by Tracking Keys). For
example, timeframes can be used to identify what the peak web site use is
after you change your home page.

You can personalize the content that a visitor is shown on your web site using the
Tracking Key and Customer Characteristic information that you have gathered. You
can create Target Groups that identify types of visitors.

When you define a Target Group, you identify the Customer Characteristics and
Tracking Key information that corresponds with visitor profiles. You then associate
Target Groups with Component Presentations on Pages. When these Pages are
published and a known visitor visits the Page, the visitor is shown only the
Component Presentations that match their profile.

This chapter describes:

• Setting up Profiling

• Tracking Keys

• Tracking

• Configuring the WAI for profiling

• Personalizing content

14.1 Setting up Profiling

On a published Page, code on the Page activates Tracking Key collection and/or a
track dispatcher that gathers information about served Pages, Components, and
Component Links. This code also creates a WAI Page object handles the
identification and persistence of visitors using cookies.

To generate this code, you add a call to Page Templates that enables Tracking Keys
and Tracking. You activate tracking using the following call:

[% Call ActivateTracking(True) %]

When a Page is published, this call is transformed into the code that activates
Tracking Keys and Tracking if configured.

This chapter describes how to perform the following tasks to set up Tracking Keys:

• Create Categories and Keywords for your content

• Configure Tracking Key elements in the WAI configuration file
(cd_wai_conf.xml). The following elements contain values that are used by
Tracking Key collection: Global, Presentations, Host, Personalization,
Keys

• Create Schemas for the content for which you want to collect Tracking Key
information, and use a Category to define a list field in this Schema

• Create Content based on the Schemas and use a Keyword in a list field

• Create Component Templates that use the Schema as a Linked Schema and
identify the Category as a Tracked Category

Content Delivery Reference Guide

121

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

This chapter describes how to perform the following task to set up Tracking:

• Configure the Tracking related elements in the WAI configuration file
(cd_wai_conf.xml). The following elements contain values that are used by
Tracking: Global, Presentations, Host, Tracking, Timeframe,
Components, Pages, ComponentLinks, Exclude, and
CustomerCharacteristics.

14.2 Tracking Keys

Tracking Key information provides specific information about the types of content
visitors access. Tracking Keys can be used to track Keywords that are associated
with specific content on your web site.

You identify the types of content a visitor accesses by assigning Tracking Keys to
content. These Tracking Keys are based on Content Manager Categories and
Keywords. You assign Content Manager Categories to content (Components) and
layout (Component Templates) in the Content Manager.

For example, if a section of your Web site has a section that contains software
reviews, you may want to create Categories and Keywords that resemble the types
of content contained in the reviews.

You could create a Category called "Software" and then create the following
associated Keywords:

• Graphics and publishing

• Internet applications

• Music and video

• Operating systems

• Utilities

When the Category is used to identify list field values in a Schema, Authors can
select a predefined Keyword to fill in a field about that content. If Tracking Keys
are enabled for the published content, the values of the Tracking Key is
incremented in the database that stores visitor information. You can then track the
types of software reviews that the visitor is most interested in.

For example, one or more Components use the Keyword called "Graphics and
publishing". A visitor enters your web site and goes to a Page that contains
Components that use the "Graphics and publishing" Keyword.

If the visitor does not have a cookie, the WAI generates a cookie, creates a new
record for the user and increments the "Graphics and publishing" keyword in the
database. If the visitor has a cookie, the WAI uses the cookie to identify the visitor
and increments the "Graphics and publishing" keyword in the database.

See Figure 14-1 "Setting up Tracking Keys" on page 122, which depicts the
relationships between items that you use to set up Tracking Keys on content.

122 Tridion R5

Chapter 14 Profiling and personalization

Figure 14-1 Setting up Tracking Keys

This section describes the items and settings required to implement Tracking Keys:

• Creating Categories and Keywords

• Using Categories and Keywords as Schema list field values

• Tracking Categories in Component Templates

See also For information about configuring the WAI configuration file for use with Tracking
Keys, refer to "Configuring the WAI for profiling" on page 126.

14.2.a Creating Categories and Keywords

Categories and Keywords are used as Tracking Keys. You can create Categories
and Keywords to create general classification and related values:

• A Category is a general classification in which a list of Keywords can be
created.

• A Keyword is a value in a Category.

Create Categories and Keywords that are relevant to the type of content that you
would like to see tracked within your Web site.

Creating a Category

Categories and Keywords are managed for a Publication. If the Publication is a
parent in a BluePrint, the Categories and Keywords are shared to any child
Publications, in which they can be localized and edited.

The following items can use Categories and Keywords:

• Schema list fields where a Category determines the Keywords that can be
selected from a list field in a Component

• Component as list values where a Schema uses a Category to define a list
field's values

• Component Templates where a Category is used as trackable metadata

Content Delivery Reference Guide

123

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

Prerequisites To create a Category, you must have Category Management rights.

Results A Category is created. Keywords can now be created within this Category.

Creating a Keyword

Create a Keyword to add a value to a Category.

Prerequisites To add a Keyword to a Category, you must have Category Management rights and
write permissions for the Category.

Results The Category in which the Keyword is created is updated to include the new
Keyword.

14.2.b Using Categories and Keywords as Schema list field values

To apply a tracking key to a Component, you can use a Category within a Schema
list field. When users create Components based on this Schema, they can select
one of the Category’s Keywords as a value for this list field.

To create a Category:

1 In CM Explorer, select the Publication in which you want to create a
Category.

2 Double click on the Category node in the navigation tree. Click the Add
Category button the toolbar. An Add Category window appears.

3 On the General tab, fill in the following fields:

• Name: this is the name of the Category as it will appear in
selectable lists in the Content Manager

• XML Name: this is the XML name.

Note The XML Name field can only contain letters without
accents (A-Z, a-z), digits (0-9), underscores “_”
and/or hyphens “-”. The first character must be a
letter or an underscore character.

4 If you have Permission Management rights, you can modify the security
settings for this Category.

5 Click Save & Close on the toolbar.

To add Keywords to a Category:

1 In CM Explorer, select the Publication in which you want to add Keywords
to a Category.

2 In the list view, select a Category.

3 Right-click and select New>Keyword.

4 Type a value in the New Keyword window.

5 Do one of the following:

• To continue to add Keywords, click the Save & New button on the
toolbar.

• To complete adding Keywords, click the Save & Close button on
the toolbar.

124 Tridion R5

Chapter 14 Profiling and personalization

Using the previous example, if you wanted to track reviews using the
"Software" Category, you could create a list field in a Schema, and use the
predefined Category to add the Software Keywords as possible values to the
Schema.

Figure 14-2 Schema list field and field values defined by a Category

When a user creates a Component based on this Schema, the user can select a
Category list value (a Keyword) to define the value.

Figure 14-3 Component that uses a Keyword as a field value

Content Delivery Reference Guide

125

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

14.2.c Tracking Categories in Component Templates

To track Categories for Components, design a Component Template that will
enable the tracking mechanism:

• For the Component Template output, select either ASP or JSP

ASP VBScript

ASP JScript

JScript Scripting

• Add Schemas that use Categories and Keywords as list values as Linked
Schemas for this Component Template

Figure 14-4 Linked Schema

• Add one or more Category to the Component Template as a "Tracked
Category"

Figure 14-5 Tracked Categories

When a Page that uses this Component Template is published, code is generated in
the published Page. When visitors access the Page on which this code is generated,
the any Keyword used in the Component associated with Tracked Category is
tracked and its value increases.

126 Tridion R5

Chapter 14 Profiling and personalization

14.3 Tracking

Tracking gathers information about the Pages and Components that a visitor was
actually served. Tracking information is time period specific and can be used to
obtain web site statistics for specific time periods. You can track:

• Pages: statistics for Pages requested.

• Components: Components on the Page

• Component Links: Provides information about the specific link that a visitor
looked for.

Unlike Tracking Keys, Tracking does not gather information about content, but
instead, can be used to gather information about which Pages, Components,
and/or Component Links a visitor actually viewed.

Tracking is configured in the WAI configuration file (cd_wai_conf.xml).

You can retrieve this data from the database using the JSP API. (Note: For ASP and
ASP.NET you must go directly to the database to retrieve this information.)

See also To configure the WAI for Tracking, refer to "Configuring the WAI for profiling" in the
next section.

14.4 Configuring the WAI for profiling

The WAI configuration file (cd_wai_conf.xml) configures profiling for both Tracking
Keys and Tracking. The configuration of this file is validated against the schema
cd_wai_conf.xsd. You can configure the following settings:

• Global — configuration details that apply to all functionality

Logging — specifies the behavior and location of one or more logging
streams

• Presentations

Presentation — A Presentation element identifies that parts of your
web site for which you would like to gather Tracking Key information or
for which you would like to perform Tracking. The Path element
determines what hosts are used for a Presentation and how the
functionality for those hosts should behave. For each Presentation, you
can specify the following:

Host — identifies a host that should be part of the Presentation

Personalization — configures tracking and profiling information

Tracking — properties for tracking

Timeframe — properties for timeframes used in tracking

Components — enables the tracking of Component visits

Pages — enables the tracking of Page requests

ComponentLinks — enables tracking of Component Links

Keys — enables Tracking Keys

Exclude — exclude Pages, Components, and Paths from being tracked

CustomerCharacteristics — configures whether or not values should be
trimmed

Content Delivery Reference Guide

127

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

Example <?xml version="1.0" encoding="UTF-8"?>
<Configuration Version="5.0">
<Global>
<Logging>
<Logger Level="error">
<FileLogger Level="info" Location="C:\Tridion\log\cd_wai.log"/>
</Logger>
</Logging>
</Global>
<Presentations>
<Presentation Id="1">
<Host Domain="www.visitorsWeb.com" Port="80" Protocol="http"
Path="/"/>
<Host Domain="localhost" Port="80" Protocol="http" Path="/"/>
<Personalization Enabled="true" Persistence="cookies">
<Cookie Name="TCMR5_1234567" Expires="39000"/>
<Tracking>
<Timeframe Type="hourly" Multiplier="1" Autofill="true"/>
<Pages Enabled="true"/>
<Components Enabled="true" Max="10" Averaging="true"/>
<ComponentLinks Enabled="true"/>
<Keys Enabled="true" Increment="50" Decrement="1" Averaging="false"
ComponentLinks="true"/>
<Exclude>
<Pages>1;2;4-100;125</Pages>
<Components/>
<Paths/>
</Exclude>
</Tracking>
<CustomerCharacteristics PreserveWhitespace="true"/>
</Personalization>
</Presentation>
</Presentations>
</Configuration>

14.4.a Global logging settings

The Global element specifies configuration logging configuration details that apply
to all WAI functionality. The Global sub-element, Logging, specifies the behavior
and location of one or more logging streams. The Level attribute specifies the
amount of information being logged. The logging levels are:

• info — Information messages.

• warning — Potential error conditions.

• error —Errors that prevent the software from functioning correctly.

• fatal — Unrecoverable errors.

The FileLogger logs to the log file specified by the Location attribute:

<FileLogger Level="info" Location="C:\tridion\log\cd_wai.log"/>

If the directory structure specified by the location does not exist, it will be created
automatically. Ensure that the account used by the WAI has rights to write to the
file log and to create directories.

128 Tridion R5

Chapter 14 Profiling and personalization

14.4.b Presentations

The Presentations element defines a set, subset, or superset of directories in
which you would like to profile your visitors.

A Presentation specifies a directory in which profiling is implemented. You can
specify multiple Presentation elements. You can add a Presentation element for
each set of directories in which you want to specify tracking parameters, and
assign an Id attribute for that Presentation.

The Id has no relationship with Content Manager items or Ids. For example:
<Presentation Id="1">

For each Presentation element, you can specify the following subelements:

Table 14-1 Presentation subelements

Element Description

Host The Host element identifies a host that should be part of the
Presentation. It is possible to have multiple Host elements for
one Presentation. Each Host element has the following
attributes:

• Domain — The domain of the Web site. The default domain is
localhost.

• Port — The port of the Web site. The default port is 80.

• Path — The path of the virtual directory or a subset of your
Web site. The default path is /.

• Protocol — The protocol used for the Web site. The default
protocol is http.

<Host Domain="www.visitorsWeb.com" Port="80" Protocol="http" Path="/"/>

Personalization The Personalization element enables profiling. This applies to
both Tracking Keys and to Tracking. The Personalization
element has the following attributes:

• Enabled — Turns the tracking on or off, where true is on and
false is off.

• Persistence — This should be set to Cookies. This will
ensure that a cookie is created when a visitor goes to your
site. The WAI will generate a cookie.

<Personalization Enabled="true" Persistence="Cookies">

Cookie The Cookie element specifies properties for cookies and has the
following attributes:

• Name — Name of the cookie

• Expires — The expiration time of the cookie measured in
seconds.

A cookie with a unique value identifies each visitor. These
cookies are generated by the WAI on the Content Delivery
server. When a visitor visits your site for the first time, the code
on the Page invokes the WAI that checks if the visitor has a
cookie for the site. If the visitor has no cookie, the WAI
generates a user record that is persisted to the user record with
a cookie.

<Cookie Name="TDS1234567" Expires="39000"/>

Content Delivery Reference Guide

129

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

Timeframe The Timeframe element determines the time increment during
which items are tracked for Tracking. This Timeframe element
has the following attributes:

• Type — The type of timeframe: hourly, daily, weekly, or
monthly.

• Multiplier — Influences the timeframe type by adding a
multiplier. For example, if the Timeframe type is hourly and
the Multiplier is 2, the period over which visitor behavior is
tracked is two hours.

• Autofill — Indicates if missing timeframes should be
created or not. Timeframes can be missing if the server has
been offline for a certain period of time.

The tracking mechanisms are based on counters, which are
increased by each request for the tracked item. The usage of a
counter requires granularity to make the tracking information
useful.

See "Timeframes" on page 131 for more detailed information
about the Timeframe element.

<Timeframe Type="hourly" Multiplier="2" Autofill="false"/>

Page The Page element enables you to track Page requests, where
true is enabled and false is disabled.

<Page Enabled="true"/>

Component The Components element enables the tracking of Component
visits. The Components element has the following attributes:

• Enabled — true is enabled and false is disabled. If this
value is enabled, Components are tracked.

• Max — The maximum number of Components that are
allowed to be on a Page for the Components to be tracked.

• Averaging — true is enabled and false is disabled. If
Averaging is enabled, a Component Tracking key is increased
by an average based on the number of Components on the
Page. For example, if 4 Components exist on the Page, the
tracking is increased by 1/4.

<Components Enabled="true" Max="5" Averaging="true"/>

ComponentLinks The ComponentLinks element enables tracking of Component
Links.

To enable tracking in Component Links, set the Enabled attribute
to true.

Note: You must also set the AddComponentLinkInfo attribute of
the Linking element in the linking configuration file
(cd_link_conf.xml) to true.

<ComponentLinks Enabled="true"/>

Table 14-1 Presentation subelements (Continued)

Element Description

130 Tridion R5

Chapter 14 Profiling and personalization

Keys The Keys element contains Tracking Key attributes that allow you
to determine how your Tracking Keys are generated:

• Enabled — This element enables Tracking Keys to be
incremented or decremented in the database

• Increment — This is the amount that a Tracking Key is
increased

• Decrement — This is the amount that a Tracking Key is
decremented when another Tracking Key is incremented

• Averaging — If you have multiple Tracking Keys on a Page,
the increment value is increased by the average value of the
number of Tracking Keys on the Page

• ComponentLinks — Uses the Component Link information to
only increment the Tracking Keys for that specific
Component

<Keys Enabled="true" Increment="50" Decrements="1" Averaging="false"
ComponentLinks="true"/>

Exclude The Exclude element allows you to exclude Pages, Components,
and Paths from Tracking Keys or Tracking. To do so, identify the
following subelements:

• Pages — Exclude Pages by Id

• Components — Exclude Components by Id

• Paths — Exclude paths by identifying the path

For more detailed information about Exclude options, refer to
"Excluding Pages, Components or Paths from being tracked"
on page 131.

<Exclude>

<Pages>1;2;4-100;125</Pages>

<Components>7</Components>

<Paths>**/news/*;/jobs/**</Paths>

</Exclude>

Customer
Characteristics

If you gather information from your customers using web forms,
you can use the CustomerCharacteristics element to
determine if submitted values should be trimmed. Trimming
refers to the removal of leading or trailing spaces, tabs, or
returns that a visitor may have entered into a web form and that
you may not want to preserve in your database.

If the PreserveWhiteSpace attribute is set to true, the value
will not be trimmed, if the element is set to false, the values
are trimmed.

<CustomerCharacteristics PreserverWhitespace="true"/>

Table 14-1 Presentation subelements (Continued)

Element Description

Content Delivery Reference Guide

131

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

14.4.c Timeframes

Timeframe types are related to the calendar. That is, a monthly timeframe always
starts at the first of the month, and ends on the last day of the month. Table 14-2
lists the available timeframes:

If the system starts on a date other than the first of the month, and the specified
timeframe is monthly, a new timeframe is started for that specific month, but the
start date, for example, the 12th, is included. See figure 14-6 for more
information:

Figure 14-6 Tracking and timeframes

The end date for the timeframe is also included.

You can also use a multiplier in combination with the timeframe. This makes it
possible to track every two or four hours for example. The multiplier must be a
number between 1 and the maximum amount of logical multipliers of that
timeframe. That is, if the timeframe is hourly, this multiplier is a number between
1 and 24.

Note Decimal multipliers are not allowed.

After a timeframe has expired, the active tracking record is archived and a new
record is created to store information for the new timeframe.

If you change the timeframe configuration, you must restart the server. The
system checks for new timeframes after every reboot. If the timeframe
configuration is different from the last stored record, the system backs up the
previous tracking record and begins a new record.

14.4.d Excluding Pages, Components or Paths from being tracked

To exclude Pages or Components by ID, you can specify ranges using hyphens (-)
and entries semi-colons (;).

Table 14-2 Timeframes

Timeframe Start End

Monthly 1st day of the month Last day of the month

Weekly Monday Sunday

Daily 0:00 hours 23:59 hours

Hourly 1 minute of the hour 60th minute of the hour

132 Tridion R5

Chapter 14 Profiling and personalization

You can exclude one or more paths from the tracking framework using patterns.
These patterns can be a combination of strings and special wildcard indicators,
such as '**', '*' and "?". Use a semi-colon to separate the paths.

The name to be matched is split up in path segments. A path segment is the name
of a directory or file, bounded by /.

For example, abc/def/ghi/xyz.java is made up of the segments abc, def, ghi
and xyz.java.

The segments of both the actual path name, and the specified exclusion pattern,
are compared. If the pattern matches the existing path, the path, or files
contained there, depending on what exclusion is specified, is excluded from
tracking.

The following are some exclusion rules:

• When ** is used for a path segment in the pattern, then it matches zero or
more path segments of the name.

• If an exclusion pattern starts with a /, the string to compare against must
also start with a /.

• If an exclusion pattern does not start with a /, the string to compare against
must not start with a /.

• When a name path segment is matched against a pattern path segment, the
following special characters can be used:

* matches zero or more characters

? matches one character.

Table 14-3 lists some exclusion pattern examples:

Table 14-3 Examples of Exclusion patterns.

Pattern Matches

**/*.jsp All .jsp files in a directory tree.

test/a??.jsp All files which start with an a, two more characters
and then .jsp, in a directory called test.

** Everything in a directory tree.

/test//XYZ* All files, or directories, that start with XYZ and reside
in a parent directory called test

Content Delivery Reference Guide

133

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

14.5 Personalizing content

You can personalize the content that visitors are shown based on profiling
information that you have about your visitors.

Personalized content is based on Target Groups. A Target Group defines visitor
groups based on Tracking Key information that you have obtained from your visitor
and possibly Customer Characteristics that you have obtained directly from a
visitor through a web form.

Note Tridion products do not explicitly enable you to gather Customer
Characteristics. Customer Characteristics usually consist of name
value pairs. The WAI API enables you to use Customer Characteristics
that you have gathered about specific visitors in conjunction with
Tracking Keys in order to personalize web content. You can store
Customer Characteristics on a Content Broker SQL database.
Customer Characteristics are associated with a specific user ID.

To personalize content, you need to perform the following tasks:

• Define Target Groups in the Content Manager

• Associate Target Groups with Component Presentations on a Page

If you perform these tasks, known visitors will shown content based on the
information that you gathered about them.

14.5.a Creating Target Groups

You create Target Groups in the Tridion Content Manager. When you add a Target
Group, you specify the Customer Characteristics and/or Tracking Key values
obtained from Customer Characteristics and Tracking Keys information. In
addition, you can include Target Groups in another Target Group.

For example, a site features software reviews. You would like to show visitors that
have indicated that they have interest in Graphic Design software a summary of
new Mac OS graphic design products when then access your Review page. To do
so, you can create a Target Group with the following definition:

• Customer Characteristics: You base these characteristics on information that
you have obtaining information directly from your visitors through a Web
form:

Profession = Graphic Designer

Operating System = Mac OS

• Tracking Keys:

Graphics and Publishing > 5

Mac OS > 5

In this case, you have created a Target Group that applies to Graphic Designers
that work on Mac Operating Systems, and that have accessed Graphics and
Publishing articles and Mac OS articles more than five times.

To create a Target Group, you must have Customer Management rights within the
Publication in which you are creating a Target Group.

When you add a Target Group, you create a Target Group definition that identifies:

134 Tridion R5

Chapter 14 Profiling and personalization

• Customer Characteristics

• Tracking Keys

• Target Group

Results You have created a Target Group. To apply these Target Group conditions to Pages,
you must associate applicable Component Presentations on a Page with this Target
Group.

Defining Customer Characteristics

In a Target Group, you can specify visitor characteristics that you will use to
determine whether content is displayed to a visitor.

To create a Target Group:

1 In CM Explorer, navigate to the Publication and Folder in which you want
to create a Target Group.

2 On the toolbar, click the Add Target Group button. A New Target Group
window appears.

3 On the General tab, fill in the following fields:

• Name — the name of the Target Group used in Tridion R5

• Description — a description of the Target Group

4 On the Definition tab, you can add Characteristics, Tracking Keys, and
Target Groups:

• To add a Characteristic, click the Characteristics subtab, type a
value in the first field, select an operator, and type an operand.
Click Include or Exclude. (See also "Defining Customer
Characteristics" on page 134)

• To add a Tracking Key, click the Tracking Keys subtab, select a
Category, select a Keyword, select an operator, and type a value.
Click Include or Exclude. (See also "Defining Tracking Keys" on
page 135)

• To add a Target Group, click the Target Group subtab and select a
previously created Target Group.

5 Click the Save & Close button on the tool bar.

Table 14-1 Characteristic operands.

Operand Use Example

= the tracked numeric characteristic is the same as the
specified value

Year of birth =
1968

< the tracked numeric value is less than the specific
value

Age > 35

> the tracked numeric value is greater than the
specified value

Age < 18

<> the tracked numeric value does not equal the
specified value

Income <> 10000

equals the tracked alpha-numeric value is the same as the
specified value

Profession equals
Technical Writer

Content Delivery Reference Guide

135

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

You can choose to include or exclude each of the values specified as a
characteristic. For example, you can exclude all visitors for whom the profession
equals Technical Writer and include all visitors for whom the value of Profession
equals Software Developer.

Figure 14-7 Characteristics

Defining Tracking Keys

When you specify a Tracking Key for a Target Group, you identify the whether or
not a visitor should view Component Presentations based on their past visiting
behavior when a visitors interest in a specific topic is shown by their visiting
behavior. In this case, you have obtained the visitor behavior using Tracking Keys
and have already associated published content with Categories and Keywords.

For example, the visitor has accessed a Page that contains Component
Presentations that have the keyword value Graphic Design more than 5 times, the
visitor will then be shown Component Presentations that are about Graphic Design.

contains the tracked alpha-numeric value contains the
specified value

Interests contain
New Releases

starts with the tracked alpha-numeric value starts with the
specified value

Family Name starts
with F

ends with the tracked alpha-numeric value ends with the
specified value

Last Version used
ends with SP3

Table 14-1 Characteristic operands.

Operand Use Example

136 Tridion R5

Chapter 14 Profiling and personalization

When you specify a Tracking Key condition, you identify the Category, associated
Keyword, operand, and value. The table below depicts the types of operands that
can be used for Tracking Keys.

Figure 14-8 Tracking Keys

14.5.b Associating Target Groups with Component Presentations

After you have created a Target Group, you can specify the Target Group within a
Component Presentation on a Page.

Table 14-2 Operands

Operand Use Example

= the tracked Category and Keyword has been
accessed the exact number of times specified

Software Operating
Systems = 3

< the tracked Category and Keyword has been
accessed less times than the number specified

Windows < 3

> the tracked Category and Keyword has been
accessed more than the number specified

Mac OS > 3

<> the tracked Category and Keyword does not equal
the number specified

Linux <> 3

To specify a Target Group for a Component Presentation:

1 In CM Explorer, create or edit a Page.

2 On the Component Presentation tab, select the Component
Presentation for which you want to set Target Groups.

Content Delivery Reference Guide

137

C
h
a
p
te

r 1
4
 P

ro
filin

g
 a

n
d
 p

e
rso

n
a
liza

tio
n

Results When the Page is published, the conditions applied by the Target Groups will make
applicable content available to the visitors that fulfill these conditions.

3 Click the Target Group tab.

4 To set a Component Presentation as viewable by a specific Target Group,
select the Target Groups for the specified Component Presentation.

5 To exclude a Component Presentation as viewable by a specific Target
Group, select Target Groups to exclude.

6 To make this Component Presentation viewable by all Target Groups,
select Everyone.

7 Save and Close the Page.

To specify a Target Group for a Component Presentation: (Continued)

138 Tridion R5

Chapter 14 Profiling and personalization

139

Chapter 15 Dynamic content
assembly

You can use the Tridion Web and Application Server Integration (WAI) to
Dynamically assemble published content.

Dynamic assembly is possible when you use Dynamic Component Templates.
When you use Dynamic Component Templates, Component Presentations are
published separately from Pages.

You can use Dynamic Component Presentations (the combination of a Component
and a Dynamic Component Template) to publish content in the following ways:

• Dynamic Component Presentations can be added to a Page and the Page can
be published. The Dynamic Component Presentation is published separately
from the Page. The rendered Page includes a line of code that is executed by
the Content Distributor, which then retrieves the associated Component
Presentation.

• Dynamic Component Presentations can be published completely separately
from Pages and can then be retrieved using queries or filters.

This chapter describes:

• Using Dynamic Component Presentations

• Creating Component Templates for dynamic content assembly

• Publishing Pages that include Dynamic Component Presentations

• Configuring the Content Broker for Dynamic Component assembly

• Assembling Dynamic Component Presentations

• Assembling Dynamic JSP Component Presentations

• Assembling Dynamic ASP Component Presentations

• Dynamic Assembly XML

140 Tridion R5

Chapter 15 Dynamic content assembly

15.1 Using Dynamic Component Presentations

By default, the Content Manager allows you to create Pages and to add Component
Presentations to Pages. These Component Presentations are the combination of
content (Components) and content format (Component Templates). Published
Pages that contain these Component Presentations include the content directly on
the Page. To update any modified Components, you must republish the entire Page
including any unchanged Component Presentations.

Figure 15-1 Content published directly on a Page

If a Page is published that contains Dynamic Component Presentations, when the
Page is published Component Presentations are published to a separate content
repository on the Content Broker. The Page is published and code is generated
within the Page that identifies the location of the Dynamic content. When a visitor
views the Page, the generated code in the Page retrieves the Component
Presentation from the content repository.

If a published Dynamic Component Presentation is modified and republished, only
the Dynamic Component Presentation is republished, rather than the entire Page.

Figure 15-2 Publishing Pages that have Dynamic Component Presentations

Content Delivery Reference Guide

141

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

To publish Dynamic Component Presentations separately, you can publish a
Component that is based on an allowed Schema for a Dynamic Component
Template or publish a Dynamic Component Template:

• If you publish a Component that is based on a Schema associated with a
Dynamic Component Template, a Dynamic Component Presentation that
combines the Component and Component Template is published

Figure 15-3 Publishing a Component to create Dynamic content

• If you publish a Dynamic Component Template, Components that are based
on Schemas associated with the template are published as Dynamic
Component Presentations that combine the Dynamic Component Template
and the Component

Figure 15-4 Publishing a Component Template to create Dynamic
content

The Dynamic Component Presentation is published to the content repository.

15.2 Creating Component Templates for dynamic content assembly

You create Component Templates used for dynamic content assembly in the
Content Manager.

The following Component Template settings used for dynamic assembly are
described in this section:

• Output format

• Publishing as Dynamic content

142 Tridion R5

Chapter 15 Dynamic content assembly

Figure 15-5 Component Template settings used for Dynamic assembly

15.2.a Output format

When you create a Component Template that can be used to create Dynamic
Component Presentations, you can select a number of output formats. Some
output formats have a functional impact throughout the Content Delivery system,
whereas other output formats allow developers to take appropriate actions based
on the type of output.

The high level distinction enables the WAI to process dynamic Component
Presentations for that specific type:

• Text based — assembled as raw text without further processing. This
content is neither rendered nor processed but is Dynamically embedded in
the Page at request time.

• ASP — executed by the Windows Scripting Host in an ASP scripting context

• JSP — executed as a small JSP pages in the web container.

• XML — if available, an XSLT transformation is applied

Text based output includes HTML (fragments and documents), plain text, and
other. ASP includes ASP VB Script and JScript. JSP contains JSP scripting code.
XML includes documents and fragments. The following output formats are
available:

• HTML (fragment or document)

• Plain text

• Other

• ASP (VB Script or JScript)

• JSP Scripting

• XML (fragment or document)

Content Delivery Reference Guide

143

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

15.2.b Publishing Dynamic Component Presentations

To produce Dynamic Component Presentations, you must select the following
option in your Component Template:

Component Presentations based on this Component Template will be:

Published as a Dynamic Component

Figure 15-6 Component Template Published as Dynamic Component

This setting ensures that Components that are published using this Component
Template are published as Dynamic Component Presentations. These Dynamic
Component Presentations are published to a content repository in the Content
Broker database.

If you select the option "Allow on Page using Dynamic assembly", Component
Presentations can be added to a Page but are still published as Dynamic
Component Presentations to the Broker’s content repository.

When the Page is published, a line of code is added to the Page that points to the
Component Presentation. This statement is executed when a visitor views the
Page. The Component Presentation is then retrieved from the Content Broker
database.

If you do not select "Allow on Page using Dynamic assembly" you cannot use the
Component Template on a Page, however can still publish the Component
Presentation to the Broker repository. To publish Components using this type of
Dynamic Component Template you can either:

• Publish a Component based on an associated Schema for this Component
Template (see figure 15-3)

• Publish the Component Template to publish all Components based on the
associated Schema for this Component Template (see figure 15-4)

15.2.c Publishing Pages that include Dynamic Component
Presentations

Pages that include Dynamic Component Presentations should be published to
Publication Targets for which the Target Language is ASP, ASP.NET, or JSP since
dynamic assembly requires server side scripting.

144 Tridion R5

Chapter 15 Dynamic content assembly

15.3 Configuring the Content Broker for Dynamic Component
assembly

You configure the location to which the Dynamic Component Presentations are
published in the Content Broker configuration file (cd_broker_conf.xml).

The Broker bindings determine where these files are stored for each type (ASP,
JSP, XML, Text based). Broker bindings are described in "Bindings" on page 70.

When storing dynamic Component Presentations on the file systems, the location
of the different types of Dynamic Component Presentation output can be specified
on a Publication level. For more information, refer to the same configuration file
(cd_broker_conf_sample.xml on the installation CD-ROM.

Note You can also configure the Java Virtual Machine that the Tridion Web
and Application Server Integration service starts. See Appendix J,
"Configuring the Java Virtual Machine for COM services" for details.

15.4 Assembling Dynamic Component Presentations

The WAI has a public API that you can use to assemble Dynamic content.

For information on the WAI API, refer to the following API references:

• WAI_ASP_51SP4.chm — ASP API reference file

• WAI_JSP_51SP4.zip — HTML JavaDoc delivered with your installation set

• ContentDelivery_NET_51SP4.chm — .NET API reference file

The following sections provide examples of how to assemble Dynamic Component
Presentations:

• ComponentPresentationAssembler

• ComponentPresentation.getContent()

15.4.a ComponentPresentationAssembler

The ComponentPresentationAssembler class assembles Dynamic Component
Presentations on JSP or ASP Pages.

This class performs the following actions:

• Reads the metadata of the Component Presentations OR

• If the content is HTML, no processing is required since the content is
processed by the HTML itself and the ComponentPresentationAssembler
outputs the content directly.

• If the content is XML, ASP, or JSP, the ComponentPresentationAssembler
delegates the content to processors:

XML with an XSLT is processed by the XSLT processor

ASP is processed by the ASP Processor

JSP is processed by the JSP Processor

Content Delivery Reference Guide

145

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

For more information about invoke the ComponentPresentationAssembler refer to:

• "Using the ComponentPresentationAssembler in JSP" on page 146

• "Using the ComponentPresentationAssembler in ASP" on page 150

15.4.b ComponentPresentation.getContent()

You can use ComponentPresentation.getContent() to retrieve the raw content of
the Component Presentation. You can retrieve a Component Presentation instance
using the Component Presentation factory. This factory has multiple methods to
create Dynamic Component Presentations.

ASP

<%
Dim ComponentPresentationFactory, ComponentPresentation
Set ComponentPresentationFactory =
Server.CreateObject("cd_broker.ComponentPresentationFactory")
Set ComponentPresentation =
ComponentPresentationFactory.GetComponentPresentation("tcm:1-234",
"tcm:1-345:32");
Response.Write ComponentPresentation.Content
%>

JSP

<%@ page import="com.tridion.dcp.*" %>
<% ComponentPresentationFactory cpf = new
ComponentPresentationFactory("tcm:0-1-1"); // Publication URI
ComponentPresentation componentPresentation =
cpf.getComponentPresentation("tcm:1-234", "tcm:1-345:32");
// Component URI and Component Template URI
out.println(componentPresentation.getContent());
%>

15.5 Assembling Dynamic JSP Component Presentations

You can include Dynamic JSP Component Presentations if you use a JSP Web and
Application server:

• Using the JSPProcessor

• Using the ComponentPresentationAssembler in JSP

• Using DynamicComponentLink

These Component Presentations should be published inside of the document root
of your Web site.

This section describes:

• Using the JSPProcessor

• Using the ComponentPresentationAssembler in JSP

• Using DynamicComponentLink

146 Tridion R5

Chapter 15 Dynamic content assembly

15.5.a Using the JSPProcessor

The JSPProcessor executes JSP Dynamic Component Presentations by performing
a server side include. This processor is located in the package
com.tridion.web.jsp.

Note The assembled JSP Dynamic Component Presentations are written
directly to the output stream and the JSPProcessor returns nothing.

Passing a JSPPage instance in the constructor creates a JSPProcessor instance.

The following example shows how you can directly invoke the JSPProcessor from a
published Page:

Example <%@ page import="com.tridion.web.jsp.*" %>
<%
JSPPage waiPage = new JSPPage(pageContext, "tcm:0-1-1");
JSPProcessor jspProcessor = new JSPProcessor(waiPage);
%>

The JSPPage instance that is used in the constructor is passed to the Dynamic
Component Presentations. The following code shows how you can access the
JSPPage instance from within a JSP dynamic Component Presentation that is being
assembled:

Example <%
JSPPage waiPage = (JSPPage)request.getAttribute("JSPPage");
out.println(waiPage.getPresentation().getId());
%>

Because the JSPPage is available, the Page and Publication ID can be requested
from this object. These variables can be used for other functionality such as
Linking.

Parameters

Since the web container executes the JSP Dynamic Component Presentation as a
normal JSP Page, the following objects are also available:

• javax.servlet.http.HttpServletRequest request

• javax.servlet.http.HttpServletResponse response

• javax.servlet.jsp.PageContext pageContext

• javax.servlet.ServletOutputStream out

15.5.b Using the ComponentPresentationAssembler in JSP

You can use the ComponentPresentationAssembler to Dynamically add content of
Dynamic Component Presentations to the content of your Page. The
ComponentPresentationAssembler invokes handlers for JSP or XML/XSLT content.

The following example illustrates how to use the Component Presentation
Assembler from a JSP Page:

Example <%@ page import="com.tridion.web.jsp.JSPPage,
com.tridion.web.jsp.ComponentPresentationAssembler"%>
<%
JSPPage waiPage = new JSPPage(pageContext, "tcm:28-834-64");

Content Delivery Reference Guide

147

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

ComponentPresentationAssembler cpAssembler = new
ComponentPresentationAssembler(waiPage);
out.println(cpAssembler.getContent("tcm:28-780","tcm:28-821-32"));
%>

15.5.c Using DynamicComponentLink

The DynamicComponentLink validates links to Dynamic Component Presentations
on Pages. The DynamicComponentLink validates links by making sure that the Page
that is able to assemble Dynamic Component Presentations and the Dynamic
Component Presentation are available in the Content Broker.

When DynamicComponentLink resolves a Link, the following parameters are added
to the Query String:

• Component — The ID of the Component

• ComponentTemplate — The ID of the Component Template

DynamicComponentLink requires custom implementation.

The following examples shows:

• JSP Source Page — This Page invokes the DynamicComponentLink

• Target Page — This Page assembles a Dynamic Component Presentation
based on the parameters in the query string

• Output — This shows the result

Source Page

Example <%@page import="com.tridion.linking.DynamicComponentLink,
com.tridion.linking.Link"%>
<%!
final static String PUBLICATION_URI="tcm:0-2-1";
final static String COMPONENT_URI="tcm:2-34";
final static String COMPONENT_TEMPLATE_URI="tcm:0-0-0";
final static String PAGE_URI="tcm:2-328-64"; //this uri should point
to the DynamicComponentLinkDestination.jsp page.
final static String LINK_TEXT="This is a Dynamic component link!";
%>
<html>
<head>
<title>Dynamic Component Link Source Page</title>
</head>
<body>
Dynamic Component Link to componentpresentation
(componentId=<%=COMPONENT_URI%>,
componentTemplateId=<%=COMPONENT_TEMPLATE_URI%>) on page
<%=PAGE_URI%> in publication <%=PUBLICATION_URI%>:
<%
DynamicComponentLink dcl = new DynamicComponentLink(PUBLICATION_URI);
Link link = dcl.getLink(PAGE_URI, COMPONENT_URI,
COMPONENT_TEMPLATE_URI, "bla", LINK_TEXT, true);
out.println(link.toString());
%>
</body>
</html>

148 Tridion R5

Chapter 15 Dynamic content assembly

TargetPage

Example <%@ page import="com.tridion.web.jsp.ComponentPresentationAssembler,
com.tridion.web.jsp.JSPPage"%><%!

//Constants:
final static String PUBLICATION_URI="tcm:0-42-1";
final static String PAGE_URI="tcm:42-3456-64";

%><%

//Get parameters from Request:
String componentURI = request.getParameter("Component");
String componentTemplateURI =
request.getParameter("ComponentTemplate");

%><html>
<head>
<title>Dynamic Component Link Destination Page</title>
</head>
<body>
Assembled Component:
<%

JSPPage waiPage = new JSPPage(pageContext, PAGE_URI);
ComponentPresentationAssembler cpa = new
ComponentPresentationAssembler(waiPage);
out.println(cpa.getContent(componentURI, componentTemplateURI));

%>
</body>
</html>

Output

The Source Page outputs the following:

Example LinkText

Assembled Component:

Example <html>
<head>
<title>Dynamic Component Link Destination Page</title>
</head>
<body>
Assembled Component:
This is the content of the component presentation!
</body>
</html>

Content Delivery Reference Guide

149

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

15.6 Assembling Dynamic ASP Component Presentations

You can include Dynamic Component Presentations using JSP. This section
describes:

• Executing VBScript or JScript Dynamic Component Presentations

• Using the ComponentPresentationAssembler in ASP

• Using DynamicComponentLink

15.6.a Executing VBScript or JScript Dynamic Component
Presentations

The ASPProcessor executes VBScript and JScript Dynamic Component
Presentations using IIS and ASP. After constructing the Component Presentations,
the Run, or Execute, method is called to execute the ASP Dynamic Component
Presentation. This is shown in the sample below:

Example <%
Dim ASPPage, ASPProcessor
Set ASPPage = Server.CreateObject("cd_wai.ASPPage")
Call ASPPage.Init("tcm:1-345-64")
Set ASPProcessor =
Server.CreateObject("cd_wai.ASPProcessor")
Call ASPProcessor.Run(ASPPage, "tcm:1-234",
"tcm:1-456-32")
%>

Parameters

An ASP Dynamic Component Presentation is executed in a similar way as a normal
ASP Page, therefore the following objects are available:

• IRequest Request

• IResponse Response

• IServerObject Server

• IApplicationObject Application

• ISession Session

150 Tridion R5

Chapter 15 Dynamic content assembly

15.6.b Using the ComponentPresentationAssembler in ASP

The ComponentPresentationAssembler allows you to Dynamically add content of
Dynamic Component Presentations to the content of your Page. The
ComponentPresentationAssembler invokes handlers for specific types of content,
like ASP or XML/XSLT content.

The following example illustrates how to use the Component Presentation
Assembler from an ASP Page:

Example <%
Dim cpAssembler
Set cpAssembler =
Server.CreateObject("cd_wai.ComponentPresentationAssembler")
Response.Write(cpAssembler.getContent("tcm:22-225","tcm:22-227-32"))
Set cpAssembler = Nothing
%>

15.6.c Using DynamicComponentLink

The DynamicComponentLink validates links to Dynamic Component Presentations
on Pages. The DynamicComponentLink validates links by making sure that the Page
that is able to assemble Dynamic Component Presentations and the Dynamic
Component Presentation are available in the Content Broker.

When DynamicComponentLink resolves a Link, the following parameters are added
to the Query String:

• Component — The ID of the Component

• ComponentTemplate — The ID of the Component Template

DynamicComponentLink requires custom implementation.

The following examples shows:

• ASP Source Page — This Page invokes the DynamicComponentLink

• Target Page — This Page assembles a Dynamic Component Presentation
based on the parameters in the query string

• Output — This shows the result

SourcePage

Example <%
const PUBLICATION_ID=2
const COMPONENT_ID=34
const COMPONENT_TEMPLATE_ID=316
const PAGE_ID=328
const LINK_TEXT="This is a Dynamic component link!"

Dim DynamicComponentLink, Link
%>
<html>
<head>
<title>Dynamic Component Link Source Page</title>
</head>
<body>

Content Delivery Reference Guide

151

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

Dynamic Component Link to componentpresentation
(componentId=<%=COMPONENT_ID%>,
componentTemplateId=<%=COMPONENT_TEMPLATE_ID%>) on page <%=PAGE_ID%>
in publication <%=PUBLICATION_ID%>:
<%
Set DynamicComponentLink =
Server.CreateObject("cd_wai.DynamicComponentLink")
Set Link = DynamicComponentLink.GetLink(PUBLICATION_ID, PAGE_ID,
COMPONENT_ID, COMPONENT_TEMPLATE_ID, LINK_TEXT, True, "")
Response.Write link.ToString()
%>
</body>
</html>

TargetPage

Example <%
const PUBLICATION_ID=2

Dim ComponentPresentationAssembler, componentId, componentTemplateId
//Get parameters from Request:
componentURI = CLNG(Request("Component"))
componentTemplateURI = CLNG(Request("ComponentTemplate"))

%>
<html>
<head>
<title>Dynamic Component Link Destination Page</title>
</head>
<body>
Assembled Component:
<%
Set ComponentPresentationAssembler =
Server.CreateObject("cd_wai.ComponentPresentationAssembler")
Response.Write(ComponentPresentationAssembler.GetContent
(componentId, componentTemplateId, PUBLICATION_ID))
%>
</body>
</html>

Output

The Source Page outputs the following:

Example LinkText

Assembled Component:

Example <html>
<head>
<title>Dynamic Component Link Destination Page</title>
</head>
<body>
Assembled Component:
This is the content of the component presentation!
</body>
</html>

152 Tridion R5

Chapter 15 Dynamic content assembly

15.7 Dynamic Assembly XML

If you select XML Document, you can also add a Dynamic Template (XSLT) to the
Component Template. XML Dynamic Component Presentations are processed at
assembly time using the XSLT supplied in the Dynamic Template of the Component
Template.

This section describes how to use XSLTs on your XML output in the WAI.

XSLT can only be applied when the XSLT (Dynamic Template) for a Component
Presentation is available in the Content Broker.

XSLT can be applied using an XSLTProcessor. This XSLTProcessor takes a
Component and a Component Template as a parameter. The Component is used to
locate the content, and the Template is used to locate the Dynamic template. The
content is generally returned as a String.

The usage of the XSLTProcessor is shown below:

ASP

The ASP XSLTDynamic Component PresentationProcessor returns a string
representation of the result of the transformation.

<%
Dim XSLTProcessor
Set XSLTProcessor = Server.CreateObject("cd_wai.Dynamic Component
PresentationXSLTProcessor")
Response.Write XSLTProcessor. GetStringFromXMLComponentPresentation
("tcm:2-34", "tcm:2-45-32")
%>

JSP

The JSP XSLT Dynamic Component Presentation Processor returns a string
representation of the result of the transformation.

<%@ page import="com.tridion.web.XSLTProcessor" %>
<%
XSLTProcessor xslt = new XSLTProcessor();
out.println(xslt.getString("tcm:2-34", "tcm:2-45-32"));
%>

Parameters

The following parameters are passed to the stylesheet:

• publicationId

• pageId

• componentId

• componentTemplateId

• publicationURI

• pageURI

• componentURI

• componentTemplateURI

Content Delivery Reference Guide

153

C
h
a
p
te

r 1
5
 D

y
n
a
m

ic co
n
te

n
t a

sse
m

b
ly

The following sample indicates how to access these parameters from XSL:

<xsl:stylesheet>
<xsl:param name="publicationId" select="-1" />

<xsl:template match="/">
The publicationId was: <xsl:value-of select="$publicationId" />
</xsl:template>
</xsl:stylesheet>

Generating links from an XSLT using the Linking API

The following example shows using the Linking API from within XSLT:

Note This example is specific to the XML Dynamic Component Presentations
stored in the Tamino XML database. With minor modifications it can
also be used for raw XML Dynamic Component Presentations.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/"
xmlns:lxslt="http://xml.apache.org/xslt"
xmlns:tcd="http://www.tridion.com/tcd"
extension-element-prefixes="tcd">
<xsl:output method="html" encoding="UTF-8"/>
<xsl:param name="publicationURI" />
<xsl:param name="pageURI" />
<xsl:param name="componentTemplateURI" />
<lxslt:component prefix="tcd">
<lxslt:script lang="javaclass" src="xalan://com.tridion" />
</lxslt:component>

<xsl:template match="/">
<xsl:apply-templates select="Article"/>
</xsl:template>

<xsl:template match="Article">
<h1><xsl:value-of select="Title"/></h1>
<i><xsl:copy-of select="Intro"/></i>
<xsl:call-template name="ComponentLink">
<xsl:with-param name="componentURI"
select="@ino:docname"/>
<xsl:with-param name="linkText" select="'Read More'"/>
<xsl:with-param name="target"
select="../TaminoFilter/Detail/@href"/>
</xsl:call-template>
</xsl:template>

<xsl:template name="ComponentLink">
<xsl:param name="componentURI"/>
<xsl:param name="linkText"/>
<xsl:param name="target"/>
<xsl:variable name="componentLinkInstance"
select="tcd:linking.ComponentLink.new($publicationURI)"/>
<xsl:variable name="query"
select="concat('componentURI=',$componentURI)"/>
<xsl:variable name="link"
select="tcd:getLink($componentLinkInstance, $pageURI, $target,

154 Tridion R5

Chapter 15 Dynamic content assembly

$componentTemplateURI, '', $linkText, false, true)"/>
<xsl:value-of select="tcd:setParameters($link, $query)"/>
<xsl:value-of select="$link"
disable-output-escaping="yes"/>

</xsl:template>
</xsl:stylesheet>

Appendices

Content Delivery Reference Guide

157

Appendix A Example: An SMTP Custom Sender

The following SMTP custom class defines the SMTP Sender:

package com.tridion.examples;

import com.tridion.transport.transportpackage.TransportPackage;
import com.tridion.configuration.*;
import com.tridion.logging.*;
import com.tridion.util.ZipUtils;
import java.io.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class SMTPSender extends Sender {

 public final static String SMTPSERVER_CONFIG = "SMTPServer";
 public final static String USERNAME_CONFIG = "UserName";
 public final static String PASSWORD_CONFIG = "Password";
 public final static String TO_EMAIL_CONFIG = "EmailAddress";

 public final static String FROM_EMAIL = "transport@tridion.com";
 public final static String FROM_NAME = "Tridion Transport Service STMP
 Sender";
 public final static String SUBJECT = "Transport Package";

 private String host;
 private String userName;
 private String password;
 private String email;
 private static Logger log = LogFactory.getDefaultLogger();

 public SMTPSender(Configuration config) throws
 ConfigurationException {
 super(config);
 configure(config);
}
 public void configure(Configuration configuration) throws
 ConfigurationException {
 host = configuration.getStringValue(SMTPSERVER_CONFIG, "localhost");
 userName = configuration.getStringValue(USERNAME_CONFIG, "anonymous");
 password = configuration.getStringValue(PASSWORD_CONFIG,
 "transport@tridion.com");
 email = configuration.getStringValue(TO_EMAIL_CONFIG,
 "Webmaster@localhost.com");
}

 public void send(TransportPackage data) throws TransportException {
 try {
 log.debug("Zipping " + data.getLocation() + " to " + workingFolder);
 File zipFile = ZipUtils.createArchive(data.getLocation(),
 workingFolder.getFolder());

 Properties props = System.getProperties();
 props.put("mail.smtp.host", host);

158 Tridion R5

Content Delivery Reference Guide

 Session session = Session.getDefaultInstance(props, null);

 MimeMessage msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress(FROM_EMAIL, FROM_NAME));
 InternetAddress[] to = {new InternetAddress(email)};
 msg.setRecipients(Message.RecipientType.TO, to);
 msg.setSubject(SUBJECT);

 MimeBodyPart mbp = new MimeBodyPart();
 FileDataSource fds = new FileDataSource(zipFile);
 mbp.setDataHandler(new DataHandler(fds));
 mbp.setFileName(zipFile.getName());

 Multipart mp = new MimeMultipart();
 mp.addBodyPart(mbp);

 msg.setContent(mp);
 msg.setSentDate(new Date());

 javax.mail.Transport.send(msg);

 catch (MessagingException me) {
 throw new TransportException("Could not complete SMTP transport :",
 me);
 } catch (IOException ioe) {
 throw new TransportException("Could not complete SMTP transport :",
ioe);
 }
}

This custom class can then be used to configure the SMTP Sender in the transport
configuration file (cd_transport_conf.xml).

For example, if you created an SMTP custom class, you can then add the class to
the configuration file as follows:

<Senders>
 <Sender Type="SMTP" Class="com.tridion.examples.SMTPSender"/>
</Senders>

Create a protocol Schema for the type SMTP that contains the following fields:

• SMTPServer

• UserName

• Password

• EmailAddress

If content is published to the SMTP destination specified in a Publication Target,
the Transport Service retrieves the values for the SMTP Sender from the
Publication Target.

Content Delivery Reference Guide

159

Appendix B Example: Custom POP3 Receiver

The following POP3 custom class defines the POP3 Receiver:

package com.tridion.examples;

import com.tridion.configuration.*;
import com.tridion.logging.*;
import com.tridion.transport.transportpackage.TransportPackage;
import com.tridion.util.ZipUtils;
import java.io.*;
import java.util.*;
import javax.mail.*;

public class POP3Receiver extends Receiver {
private static final String INTERVAL_CONFIG = "Interval";
private static final String USERNAME_CONFIG = "User";
private static final String PASSWORD_CONFIG = "Password";
private static final String FOLDER_CONFIG = "Folder";
private static final String SERVER_CONFIG = "Server";
private String password;
private String server;
private String userName;
private String folder;
private float interval;

int lastMessageCount = 0;

private List packageQueue = Collections.synchronizedList(new
LinkedList());
private static Logger log = LogFactory.getDefaultLogger();

public POP3Receiver(Configuration config) throws ConfigurationException {
configure(config);
try {
Properties props = System.getProperties();

// Get a Session object
Session session = Session.getDefaultInstance(props, null);

// session.setDebug(true);
// Get a Store object

Store store = session.getStore("pop3");
// Connect
store.connect(server, userName, password);
// Open a Folder Folder folder = store.getFolder(folder);
if (folder == null || !folder.exists()) {
throw new ConfigurationException("Invalid folder for POP3Receiver");
}
folder.open(Folder.READ_WRITE);
lastMessageCount = folder.getMessageCount();
POP3Monitor monitor = new POP3Monitor(this, folder);
new Thread(monitor).start();
log.info("POP3Receiver " + this + " started monitoring");
} catch (MessagingException me) {

160 Tridion R5

Content Delivery Reference Guide

throw new ConfigurationException("Could not connect to mailserver: " +
me.getMessage());
} catch (Throwable t) {
throw new ConfigurationException(t.getMessage());
}
public void configure(Configuration configuration)
throws ConfigurationException {
interval = configuration.getFloatValue(INTERVAL_CONFIG, (float)0.5);
userName = configuration.getStringValue(USERNAME_CONFIG, "transport");
password = configuration.getStringValue(PASSWORD_CONFIG, "transport");
server = configuration.getStringValue(SERVER_CONFIG, "localhost");
folder = configuration.getStringValue(FOLDER_CONFIG, "Inbox");
}
public TransportPackage listen() throws TransportException {
TransportPackage result = null;
try {
while (packageQueue.isEmpty()) {
//sleep for half the timer interval
Thread.sleep((long)(interval * 1000 / 2));
}
Object item = packageQueue.remove(0);
if (item instanceof Throwable) {
throw new TransportException("Error happened while waiting for incoming
package ",
(Throwable)item);
}
if (item instanceof TransportPackage) {
result = (TransportPackage)item;
}

}

catch (InterruptedException ie) {

}
return result;
}
void handleIncomingMessage(Message msg) {
File packageFile = null;
try {
// Unpack file to workFolder.
Object messageContent = msg.getContent();
if (messageContent instanceof Multipart) {
Multipart mp = (Multipart)messageContent;
int count = mp.getCount();
for (int i = 0; i < count; i++) {
Part part = mp.getBodyPart(i);
log.info("Receiving " + part.toString());
Object partContent = part.getContent();
if (partContent instanceof InputStream) {
InputStream is =(InputStream)partContent;
packageFile = new File(workingFolder.getFolder(), part.getFileName());
FileOutputStream fos = new FileOutputStream(packageFile);
byte[] buffer = new byte[1024];
int read = 0;
for (; read != -1; read = is.read(buffer)) {
log.info("Read bytes from attachment:" + read);
fos.write(buffer, 0, read);

Content Delivery Reference Guide

161

}
fos.close();
is.close();
log.info("Copied attachment into file: " + packageFile);

}
}
//mark the message as deleted
msg.setFlag(Flags.Flag.DELETED, true);
msg.setFlag(Flags.Flag.SEEN, true);
try {
msg.getFolder().expunge();
} catch (MessagingException e) {
//not all providers support expunging...
}}
ZipUtils.unzip(packageFile, workingFolder.getFolder());
// Create package messageContent.
int namePos = packageFile.getName().indexOf(".zip");
String packageName = packageFile.getName().substring(0, namePos);
TransportPackage data = new TransportPackage(
new File(workingFolder.getFolder(), packageName));
// Remove zip archive.
packageFile.delete();
// Insert into queue.
packageQueue.add(data);
} catch (IOException ioe) {
log.error("POP3Receiver:handleIncommingMessage got exception: " +
ioe.getMessage());
packageQueue.add(ioe);
} catch (MessagingException me) {
log.error("POP3Receiver:handleIncommingMessage got exception: " +
me.getMessage());
packageQueue.add(me);
}}class POP3Monitor implements Runnable {
Folder folder = null;
POP3Receiver Receiver = null;
POP3Monitor(POP3Receiver Receiver, Folder folder) {
this.folder = folder;
this.Receiver = Receiver;
}// The Monitor runs in it's own thread to receive messages independent of
// the Deployer processing loop
public void run() {
while (true) {
try {
int newMessageCount = folder.getMessageCount();
if (newMessageCount > 0) {
Message[] msgs = folder.getMessages();
for (int i = 0; i < msgs.length; i++) {
Flags f = msgs[i].getFlags();
if (!f.contains(Flags.Flag.SEEN)) {
Receiver.handleIncomingMessage(msgs[i]);
}
}
}
Thread.sleep(POP_CHECK_INTERVAL);
} catch (InterruptedException e) {
} catch (MessagingException e) {
log.error("Could not get message", e);

162 Tridion R5

Content Delivery Reference Guide

}
}
}
}
}

Add the custom Receiver to the Deployer configuration file
(cd_deployer_conf.xml):

<ReceiverBindings>
<Receiver Type="POP3Receiver" Class="com.tridion.examples.POP3Receiver">
</ReceiverBindings>
<Receivers>
<TypeReceiver User="transport" Password="transport" Folder="Inbox"
Server="pop.vistorsWeb.com" Interval="1" />
</Receivers>

Content Delivery Reference Guide

163

Appendix C Sample Transport Service
configuration file

<?xml version="1.0" encoding="UTF-8"?>
<!-- The Tridion Content Distributor Transport Service configuration specifies all
 configuration values required to initiate and handle a publishing action. -->
<TransportService>
<!-- The WorkFolder element defines the location where temporary files are stored. -->
<WorkFolder Location="./transactions"/>
<!-- The Logging section specifies the behaviour and location of one or more loggers. -->
<Logging>
<!-- Defines the default logger. The Level attribute specifies the amount of information to
log.
Legal logging levels:
info - Information messages.
warning - Potential error conditions.
error - Errors that prevent the software from functioning correctly.
fatal - Unrecoverable errors. -->
<Logger Level="error">
<!-- A FileLogger logs to a log file specified by the 'Location' attribute. -->
<FileLogger Level="error" Location="./log/cd_transport.log"/>
<!-- Enable this Logger to print log messages to a console. -->
<!-- <ConsoleLogger Level="error" Trace="on"/> -->
</Logger>
</Logging>
<!-- The Senders section defines the installed Sender types. Senders are configured in
the Management System interface as Publication Target Destinations. -->
<Senders>
<!-- Install custom Senders by providing a 'Type' that matches the root
element name of a Management System Protocol Schema. The 'Class'
attribute specifies the Java class that implements the functionality
for a Sender. Make sure the class is registered on the system
CLASSPATH environment variable. -->
<Sender Type="Local" Class="com.tridion.transport.LocalCopySender"/>
<Sender Type="HTTP" Class="com.tridion.transport.HTTPSSender"/>
<Sender Type="HTTPS" Class="com.tridion.transport.HTTPSSender"/>
<Sender Type="FTP" Class="com.tridion.transport.FTPSender"/>
<Sender Type="SFTP" Class="com.tridion.transport.SFTPSender"/>
</Senders>
</TransportService>

164 Tridion R5

Content Delivery Reference Guide

Appendix D Sample Deployer configuration
file

<?xml version="1.0" encoding="UTF-8"?>
<!-- The Tridion Content Distributor Deployer configuration specifies all
 configuration values required to receive and deploy content to a delivery system. -->
<Deployer>
<!-- The WorkFolder element defines the location where temporary files are
 stored. Set 'Cleanup' to 'false' if TransportPackages should be
 archived or used for development purposes. -->
 <WorkFolder Location="C:\Tridion\work" Cleanup="true"/>
 <!-- The Logging section specifies the behaviour and location of one or more loggers. -->
 <Logging>
 <!-- Defines the default logger. The Level attribute specifies the amount of information to
log.
 Legal logging levels:
 info Information messages.
 warning Potential error conditions.
 error Errors that prevent the software from functioning correctly.
 fatal Unrecoverable errors. -->
 <Logger Level="error">
 <!-- A FileLogger logs to a log file specified by the 'Location' attribute. -->
 <FileLogger Level="error" Location="./log/cd_deployer.log"/>
 <!-- Enable this Logger to print log messages to a console. -->
 <!-- <ConsoleLogger Level="error" Trace="on"/> -->
 </Logger>
 </Logging>
 <!-- The Processors section defines what actions the Deployer is able to
 performed. The behavior of the Deployer is defined by the type of
 Processors the type and sequence of modules. The Processors section is
 where custom Deployer behavior can be configured. -->
 <Processors>
 <!-- A Processor is triggered by the Deployer to process an incoming
 TransportPackage based on the 'Action' command in the
 ProcessorInstructions. The default Processor triggers modules
 sequentially as they are defined in a Processor section. The 'Class'
 attribute defines the Processor class that will be used for processing an action. -->
 <Processor Action="Deploy" Class="com.tridion.deployer.Processor">
 <!-- A Module is triggered by a Processor to process incoming instructions.
 The 'Type' attribute needs to be unique within a Processor and serves
 as a symbolic identifier. The 'Class' attribute defines the
 implementation used for any type of Module. Replace or add modules to
 implement custom Deployer behavior. -->
 <Module Type="SchemaDeploy" Class="com.tridion.deployer.modules.SchemaDeploy"/>
 <Module Type="PageDeploy" Class="com.tridion.deployer.modules.PageDeploy"/>
 <Module Type="BinaryDeploy" Class="com.tridion.deployer.modules.BinaryDeploy"/>
 <Module Type="ComponentDeploy" Class="com.tridion.deployer.modules.ComponentDeploy"/>
 <Module Type="TemplateDeploy" Class="com.tridion.deployer.modules.TemplateDeploy"/>
 <Module Type="ComponentPresentationDeploy"
Class="com.tridion.deployer.modules.ComponentPresentationDeploy"/>
 </Processor>
 <Processor Action="Undeploy" Class="com.tridion.deployer.Processor">
 <Module Type="PageUndeploy" Class="com.tridion.deployer.modules.PageUndeploy"/>
 <Module Type="ComponentPresentationUndeploy"
Class="com.tridion.deployer.modules.ComponentPresentationUndeploy"/>

Content Delivery Reference Guide

165

 </Processor>
 </Processors>
 <!-- The ReceiverBindings section define the types of Receivers that can be used by the
Deployer. -->
 <ReceiverBindings>
 <!-- A Receiver can by identified by the 'Type' attribute. The 'Class'
 attribute defines the implementation used for receiving TransportPackages. -->
 <Receiver Type="HTTPSReceiver" Class="com.tridion.transport.HTTPSReceiver"/>
 <Receiver Type="FileReceiver" Class="com.tridion.transport.FileReceiver"/>
 </ReceiverBindings>
 <!-- The Receivers section specifies Receiver instances that will be started by the
Deployer. -->
 <Receivers>
 <!-- Element names for Receivers that are configured in this section must
 match the 'Type' attribute as defined in the ReceiverBindings section. -->
 <FileReceiver Location="C:\Tridion\incoming" Interval="1"/>
 <!-- Enable this Receiver to handle the HTTP transport method. Change the
 'MaxSize' attribute to limit the maximum size of accepted TransportPackages. -->
 <!--<HTTPSReceiver MaxSize="10000000"/>-->
 </Receivers>
</Deployer>

166 Tridion R5

Content Delivery Reference Guide

Appendix E Sample Broker configuration file

<?xml version="1.0" encoding="UTF-8"?>
<!-- The Tridion Content Broker configuration specifies all configuration values to enable
data storage. -->
<Configuration Version="5.1">
 <!-- The Global section specifies configuration details that apply to all functionality. -->
 <Global>
 <!-- The Logging section specifies the behaviour and location of one or more loggers. -->
 <Logging>
 <!-- Defines the default logger. The Level attribute specifies the amount of information
to log.
 Legal logging levels:
 info Information messages.
 warning Potential error conditions.
 error Errors that prevent the software from functioning correctly.
 fatal Unrecoverable errors. -->
 <Logger Level="error">
 <!-- A FileLogger logs to a log file specified by the 'Location' attribute. -->
 <FileLogger Level="error" Location="./log/cd_broker.log"/>
 <!-- Enable this Logger to print log messages to a console. -->
 <!-- <ConsoleLogger Level="error" Trace="on"/> -->
 </Logger>
 </Logging>
 <Storage>
 <!-- Database elements configure settings for a specific database. Multiple
 Database elements can be used. Each Database element has a type,
 either sql or tamino. Only one element can be specified for a certain
 type. Because of this, you can specify a maximum of two Database elements.
 The following attributes can be specified:
 Type The type of the database, this can be sql or tamino.
 Username The user name used to connect to the database.
 Password The password used to connect to the database.
 Url The url the driver should use.
 Driver The fully qualified classname of the driver to use.
 JNDIName The JNDI name of a Datasource to use (optional, other attributes are then
ignored).

 For Database elements of type sql, you can specify the pooling that
 should be used with a Pool element. This element has the following
 attributes:
 Type The type should be either jdbc or tridion.
 Size Maximum number of connections to open.
 MonitorInterval Number of seconds between checks on the pool.
 IdleTimeout Number of seconds a connection can be idle before it is closed.
 CheckoutTimeout Number of seconds a connection can be checked out before it is
returned to pool. -->
 <!-- For MS SQL Server, the following structure should be used: -->
 <!-- <Database Type="sql" Username="USERNAME" Password="PASSWORD"
 Url="jdbc:microsoft:sqlserver://DATABASE_HOST:PORT"
 Driver="com.microsoft.jdbc.sqlserver.SQLServerDriver">
 <Pool Type="jdbc" Size="10"/>
 </Database> -->
 <!-- For DB2, the following structure should be used: -->
 <!-- <Database Type="sql" Username="USERNAME" Password="PASSWORD"
 Url="jdbc:db2://DATABASE_HOST:PORT/DATABASE_NAME"

Content Delivery Reference Guide

167

 Driver="COM.ibm.db2.jdbc.net.DB2Driver">
 <Pool Type="jdbc" Size="10"/>
 </Database> -->
 <!-- For Oracle, the following structure should be used: -->
 <!-- <Database Type="sql" Username="USERNAME" Password="PASSWORD"
 Url="jdbc:oracle:thin:@DATABASE_HOST:PORT:SID"
 Driver="oracle.jdbc.driver.OracleDriver">
 <Pool Type="jdbc" Size="10"/>
 </Database> -->
 <!-- For a JNDI datasource, the following structure should be used: -->
 <!-- <Database Type="sql" JNDIName="java:comp/env/jdbc/DATA_SOURCE_NAME"/> -->
 <!-- For Tamino, the following structure should be used: -->
 <!-- <Database Type="tamino" Username="USERNAME" Password="PASSWORD"
 Url="http://HOST_NAME/HOST_PATH/DATABASE_NAME" /> -->
 <Database Type="sql" Username="USERNAME" Password="PASSWORD"
Url="jdbc:oracle:thin:@DATABASE_HOST:PORT:SID" Driver="oracle.jdbc.driver.OracleDriver">
 <Pool Type="jdbc" Size="10"/>
 </Database>
 </Storage>
 <!-- The Bindings element contains mappings from symbolic names to classes in the form of
Binding elements.
 A Binding element has two attributes:
 Name The symbolic name for an item that needs to be stored.
 Class The class implementing the interface that is expected for a certain symbolic name.
 By default, the following bindings are loaded: -->
 <!--
 <Binding Name="LinkInfo" Class="com.tridion.broker.linking.FSCSVLinkInfoHome"/>
 <Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.XMLFileComponentMetaHome"/>
 <Binding Name="PageMeta" Class="com.tridion.broker.pages.meta.XMLFilePageMetaHome"/>
 <Binding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.XMLFileBinaryMetaHome"/>
 <Binding Name="Schema" Class="com.tridion.broker.schemas.FSSchemaHome"/>
 <Binding Name="Template" Class="com.tridion.broker.xslt.FSXSLTHome"/>
 <Binding Name="XSLT" Class="com.tridion.broker.xslt.FSXSLTHome"/>
 <Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.XMLFileComponentPresentationMetaHome"/
>
 <Binding Name="TextComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSTextComponentPresentationHome"/>
 <Binding Name="ASPComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSASPComponentPresentationHome"/>
 <Binding Name="JSPComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSJSPComponentPresentationHome"/>
 <Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.FSXMLComponentPresentationHome"/>
 <Binding Name="Reference" Class="com.tridion.broker.references.FileReferenceHome"/>
 -->
 <!-- The default bindings (which use the file system) can be overridden for
 different storage types. Note that a storage specific implementation class are
 delivered for all bindings.
 Below combinations of Bindings are given for the default supported. -->
 <!-- MS SQL Server:
 <Binding Name="LinkInfo" Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
 <Binding Name="PageMeta" Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
 <Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.MsSqlComponentMetaHome"/>
 <Binding Name="BinaryMeta" Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>

168 Tridion R5

Content Delivery Reference Guide

 <Binding Name="Reference" Class="com.tridion.broker.references.SQLReferenceHome"/>
 <Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQLComponentPresentationMetaHome"/>
 <Binding Name="TextComponentPresentation"
Class="com.tridion.broker.componentpresentations.MsSqlTextComponentPresentationHome"/>
 <Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.MsSqlXMLComponentPresentationHome"/>
 -->
 <!-- DB2:
 <Binding Name="LinkInfo" Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
 <Binding Name="PageMeta" Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
 <Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.DB2ComponentMetaHome"/>
 <Binding Name="BinaryMeta" Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>
 <Binding Name="Reference" Class="com.tridion.broker.references.SQLReferenceHome"/>
 <Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQLComponentPresentationMetaHome"/>
 <Binding Name="TextComponentPresentation"
Class="com.tridion.broker.componentpresentations.DB2TextComponentPresentationHome"/>
 <Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.DB2XMLComponentPresentationHome"/>
 -->
 <!-- Oracle:
 <Binding Name="LinkInfo" Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
 <Binding Name="PageMeta" Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
 <Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.OracleComponentMetaHome"/>
 <Binding Name="BinaryMeta" Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>
 <Binding Name="Reference" Class="com.tridion.broker.references.SQLReferenceHome"/>
 <Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQLComponentPresentationMetaHome"/>
 <Binding Name="TextComponentPresentation"
Class="com.tridion.broker.componentpresentations.OracleTextComponentPresentationHome"/>
 <Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.OracleXMLComponentPresentationHome"/>
 -->
 <!-- Tamino:
 <Binding Name="PageMeta" Class="com.tridion.broker.pages.meta.TaminoPageMetaHome"/>
 <Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.TaminoComponentMetaHome"/>
 <Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.TaminoComponentPresentationMetaHome"/>
 <Binding Name="Schema" Class="com.tridion.broker.schemas.TaminoSchemaHome"/>
 <Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.TaminoXMLComponentPresentationHome"/>
 -->
 <!-- When the WAI is installed with Profiling and Tracking are enabled, the
 following bindings should be added: -->
 <!-- MS SQL Server:
 <Binding Name="User" Class="com.tridion.user.MsSqlUserHome"/>
 <Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
 <Binding Name="TrackingKey" Class="com.tridion.personalization.SQLTrackingKeyHome"/>
 <Binding Name="Timeframe" Class="com.tridion.timeframes.MsSqlTimeframeHome"/>
 <Binding Name="TrackedPage" Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
 <Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>

Content Delivery Reference Guide

169

 <Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>
 -->
 <!-- DB2:
 <Binding Name="User" Class="com.tridion.user.DB2UserHome"/>
 <Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
 <Binding Name="TrackingKey" Class="com.tridion.personalization.SQLTrackingKeyHome"/>
 <Binding Name="Timeframe" Class="com.tridion.timeframes.DB2TimeframeHome"/>
 <Binding Name="TrackedPage" Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
 <Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>
 <Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>
 -->
 <!-- Oracle:
 <Binding Name="User" Class="com.tridion.user.OracleUserHome"/>
 <Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
 <Binding Name="TrackingKey" Class="com.tridion.personalization.SQLTrackingKeyHome"/>
 <Binding Name="Timeframe" Class="com.tridion.timeframes.OracleTimeframeHome"/>
 <Binding Name="TrackedPage" Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
 <Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>
 <Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>
 -->
 <Bindings>
 <Binding Name="User" Class="com.tridion.user.MsSqlUserHome"/>
 <Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
 <Binding Name="TrackingKey" Class="com.tridion.personalization.SQLTrackingKeyHome"/>
 <Binding Name="Timeframe" Class="com.tridion.timeframes.MsSqlTimeframeHome"/>
 <Binding Name="TrackedPage" Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
 <Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>
 <Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>
 <Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.XMLFileComponentMetaHome"/>
 <Binding Name="PageMeta" Class="com.tridion.broker.pages.meta.XMLFilePageMetaHome"/>
 <Binding Name="XSLT" Class="com.tridion.broker.xslt.FSXSLTHome"/>
 <Binding Name="LinkInfo" Class="com.tridion.broker.linking.FSCSVLinkInfoHome"/>
 </Bindings>
 </Global>
 <!-- The Publications element specifies the default setting for all
 Publications. This information can be overridden in Publication elements.

 The DefaultRootLocation specifies a directory for both pages and
 binaries. By default, this folder is also used to find the meta-data.
 Note that any directory information defined in this Publications
 or lower Publication elements override configuration information
 defined by the Linking configuration. -->
 <Publications DefaultRootLocation="c:/inetpub/wwwroot">
 <!-- The publication element allows you to specify Publication specific
 settings. This element is optional.
 The Id attribute indicates the id of the publication. This should be a number.

170 Tridion R5

Content Delivery Reference Guide

 A publication can optionally contain a Dcp element.
 The following optional attributes override storage settings:
 DataRoot The directory in which meta-data should be stored and
 retrieved on the filesystem. If this is set it
 will override any value set in the Publications
 element's DefaultRootLocation.
 DocumentRoot The base-directory in which pages and binaries are located. -->
 <Publication Id="1" DataRoot="c:/inetpub/wwwroot/pub1"
DocumentRoot="c:/inetpub/data/pub1">
 <!-- The Dcp element contains one or more file type specific locations to store
 files of that type. -->
 <Dcp>
 <!-- The Jsp element allows you to specify settings for JSP pages.
 The required Location attribute overrides storage settings:
 Location The directory in which JSP pages should be stored
 and retrieved on the filesystem. This overrides
 any values set in the Publications element's
 DefaultRootLocation and the Publication element's DataRoot. -->
 <Jsp Location="c:/AbsoluteLocation(1)"/>
 <!-- The Asp element allows you to specify settings for ASP pages.
 The required Location attribute overrides storage settings:
 Location The directory in which ASP pages should be stored
 and retrieved on the filesystem. This overrides
 any values set in the Publications element's
 DefaultRootLocation and the Publication element's DataRoot. -->
 <Asp Location="c:/AbsoluteLocation(1)"/>
 <!-- The Xml element allows you to specify settings for XML files.
 The required Location attribute overrides storage settings:
 Location The directory in which XML files should be stored
 and retrieved on the filesystem. This overrides
 any values set in the Publications element's
 DefaultRootLocation and the Publication element's DataRoot. -->
 <Xml Location="c:/AbsoluteLocation(1)"/>
 <!-- The Txt element allows you to specify settings for text files.
 The required Location attribute overrides storage settings:
 Location The directory in which test files should be stored
 and retrieved on the filesystem. This overrides
 any values set in the Publications element's
 DefaultRootLocation and the Publication element's DataRoot. -->
 <Txt Location="c:/AbsoluteLocation(1)"/>
 </Dcp>
 </Publication>
 </Publications>
</Configuration>

Content Delivery Reference Guide

171

Appendix F Broker bindings for MS SQL,
Oracle, Tamino and DB2
databases

MS SQL

<Binding Name="LinkInfo"
Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
<Binding Name="PageMeta"
Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.MsSqlComponent
MetaHome"/>
<Binding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>
<Binding Name="Reference"
Class="com.tridion.broker.references.SQLReferenceHome"/>
<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQL
ComponentPresentationMetaHome" />

Oracle

<Binding Name="LinkInfo"
Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
<Binding Name="PageMeta"
Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.OracleComponent
MetaHome"/>
<Binding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>
<Binding Name="Reference"
Class="com.tridion.broker.references.SQLReferenceHome"/>
<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQL
ComponentPresentationMetaHome" />

Tamino

<Binding Name="PageMeta"
Class="com.tridion.broker.pages.meta.TaminoPageMetaHome"/>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.TaminoComponentMetaHome"/>
<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.TaminoComponent
PresentationMetaHome"/>
<Binding Name="XMLComponentPresentation"
Class="com.tridion.broker.componentpresentations.TaminoXMLComponent
PresentationHome"/>

Refer to Chapter 11 "Tamino" on page 89 for more information about configuring
and using the Tamino XML database with the Content Distributor.

172 Tridion R5

Content Delivery Reference Guide

DB2

<Binding Name="LinkInfo"
Class="com.tridion.broker.linking.SQLLinkInfoHome"/>
<Binding Name="PageMeta"
Class="com.tridion.broker.pages.meta.SQLPageMetaHome"/>
<Binding Name="ComponentMeta"
Class="com.tridion.broker.components.meta.DB2ComponentMetaHome"/>
<Binding Name="BinaryMeta"
Class="com.tridion.broker.binaries.meta.SQLBinaryMetaHome"/>
<Binding Name="Reference"
Class="com.tridion.broker.references.SQLReferenceHome"/>
<Binding Name="ComponentPresentationMeta"
Class="com.tridion.broker.componentpresentations.meta.SQLComponent
PresentationMetaHome" />

Content Delivery Reference Guide

173

Appendix G WAI-Specific bindings

If the Web and Application Server Integration (WAI) is installed, and Profiling and
Tracking is enabled, the following bindings must be added:

MS SQL

<Binding Name="User" Class="com.tridion.user.MsSqlUserHome"/>
<Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
<Binding Name="TrackingKey"
Class="com.tridion.personalization.SQLTrackingKeyHome"/>
<Binding Name="Timeframe"
Class="com.tridion.timeframes.MsSqlTimeframeHome"/>
<Binding Name="TrackedPage"
Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
<Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>
<Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>

Oracle

<Binding Name="User" Class="com.tridion.user.OracleUserHome"/>
<Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
<Binding Name="TrackingKey"
Class="com.tridion.personalization.SQLTrackingKeyHome"/>
<Binding Name="Timeframe"
Class="com.tridion.timeframes.OracleTimeframeHome"/>
<Binding Name="TrackedPage"
Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
<Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>
<Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>

DB2

<Binding Name="User" Class="com.tridion.user.DB2UserHome"/>
<Binding Name="CustomerCharacteristic"
Class="com.tridion.personalization.SQLCustomerCharacteristicHome"/>
<Binding Name="TrackingKey"
Class="com.tridion.personalization.SQLTrackingKeyHome"/>
<Binding Name="Timeframe"
Class="com.tridion.timeframes.DB2TimeframeHome"/>
<Binding Name="TrackedPage"
Class="com.tridion.tracking.pages.SQLTrackedPageHome"/>
<Binding Name="TrackedComponent"
Class="com.tridion.tracking.components.SQLTrackedComponentHome"/>
<Binding Name="TrackedComponentLink"
Class="com.tridion.tracking.componentlinks.SQLTrackedComponentLinkHome"/>

174 Tridion R5

Content Delivery Reference Guide

Appendix H System classpath

On Windows systems, the Java Virtual Machine (JVM) uses the system classpath to
locate libraries and other resources (such as configuration files).

In previous versions of the Tridion Content Distributor, you were required to
specify a system classpath to be used by the Transport Service, Content Deployer,
Content Broker, Cache Service, WAI, and Linking. This involved specifying the
CLASSPATH environment variable, and rebooting your system for changes to take
effect.

The Content Distributor is now installed by default to C:\Program Files\Tridion.
As a result, the length of the required environment variable for the classpath now
exceeds the 1024 byte limit that Windows imposes on any environment variable.

Content Distributor 5.1 SP4 now dynamically builds this CLASSPATH. The CLASSPATH
is generated based on the following:

• When you start your service, the Tridion Home is identified as follows:

If there is a registry entry for TRIDION_HOME for this specific service or for
all Tridion Content Delivery Services, the value of that entry is Tridion
Home.

If no such registry entry exists, Tridion Home is set to the value of the
environment variable TRIDION_HOME, which by default is set to
C:\Program Files\Tridion.

• If both the registry entry and the environment variable are not set, the
parent directory of the folder in which cd_*.exe is located is identified as
Tridion Home. Where * is transport, deployer, broker, cacheservice,
wai, or linking.

• Once Tridion Home is determined, the system then adds
%TRIDION_HOME%Config to the CLASSPATH. The config directory contains the
XML configuration files for the various products (e.g.
cd_transport_conf.xml and cd_license.xml).

• The system iterates through the *.jar and *.zip files in the
%TRIDION_HOME%Lib directory and adds them to the CLASSPATH.

The system then adds the generated classpath to the system classpath.

Content Delivery Reference Guide

175

Appendix I Third-party libraries

The Content Distributor uses the following third-party libraries:

Senders & Receivers

Senders and Receivers use the following third-party libraries.

• The FTP Sender-Receiver pair uses the following:

ftp.jar — implements FTP functionality.

• The SFTP Sender-Receiver pair uses the following:

sftp.jar — implements SFTP functionality.

• The HTTP(s) Sender-Receiver pair uses the following:

cos.jar — O’Reilly servlet utility library (com.oreilly.servlet).

jsse.jar — Sun library which implements the Java Secure Sockets
Extension (JSSE).

This library is dependent on:

jnet.jar — SUN library containing socket factories

jcert.jar — SUN library for handling certificates

XML

The following third-party libraries are used for XML formatting and interpretation:

• xalan.jar — XSLT processor from the Apache Software Foundation. See
www.apache.org for more information.

• xercesImpl.jar — XML Parser from the Apache Software Foundation. See
www.apache.org for more information.

• xmlParserAPIs.jar — Jar file containing all the standard APIs implemented
by the Xerces parser. See www.apache.org for more information.

• jdom.jar — open source library for Java-optimized XML data manipulations
from jdom.org.

Database

The following third-party libraries are used for database connectivity:

• TaminoAPI4J.jar — Java API to Software AG Tamino XML database.

• classes12.zip — Oracle driver classes for JDBC.

• db2java.zip — DB2 driver classes for JDBC.

• jdbc2_0-stdext.jar — javax.sql standard extension for SQL.

• jdbcpool-0.99.jar — JDBC connection pool by James Cooper of
www.bitmechanic.com

• msbase.jar — MS SQL driver classes for JDBC.

• mssqlserver.jar — MS SQL driver classes for JDBC.

• msutil.jar — MS SQL driver classes for JDBC.

176 Tridion R5

Content Delivery Reference Guide

Miscellaneous

The following third-party libraries are used:

• log4j.jar — Logging library from Apache Software Foundation. See
www.apache.org for more information. This is only used for Tamino.

• ezlicrun.jar — This file must be present to use any licensed products.

• jndi.jar — Used to map objects to contexts.

• jakarta-oro.jar — Processes regular expressions.

Differences between JRE 1.3 and JRE 1.4

JRE 1.3 does not contain some classes that are included in JRE 1.4.

If you use JRE 1.3, you need to ensure that the following jar files are installed:

• jsse.jar — Sun library which implements the Java Secure Sockets
Extension (JSSE). This library is dependent on:

jnet.jar — SUN library containing socket factories

jcert.jar — SUN library for handling certificates

Note These files are only required if you are using the HTTPS sender.

Content Delivery Reference Guide

177

Appendix J Configuring the Java Virtual
Machine for COM services

The Content Delivery COM services use a Java Virtual Machine (JVM). By default,
these services start the JVM using system defaults. However, you might want to
change these system defaults for one specific Content Delivery COM service, or
perhaps for all services at the same time.

This appendix explains how you can modify the JVM call from any or all COM
services by editing the Windows Registry. This appendix assumes that you are
familiar with regedit or that you know how to manipulate the registry in some
other way.

Content Delivery COM services that access a Java Virtual Machine

The following COM services access a Java Virtual Machine:

• Tridion Cache Service

• Tridion Content Broker

• Tridion Content Distributor Deployer

• Tridion Content Distributor Transport Service

• Tridion Dynamic Linking

• Tridion Web and Application Server Integration (WAI)

Important:

The functionality described in this Appendix is available only in version 5.1 SP4 and
higher of Tridion R5.

To configure the Java Virtual Machine for one or all COM services:

1 Start a registry editor, regedit for example, on the Content Delivery
server.

2 Navigate to the existing Tridion registry subkey:

HKEY_LOCAL_MACHINE\SOFTWARE\Tridion\

3 In the HKEY_LOCAL_MACHINE\SOFTWARE\Tridion subkey, create a
subkey called Content Delivery.

178 Tridion R5

Content Delivery Reference Guide

When you now start a Content Delivery COM service, Tridion Content Delivery will
do the following:

• It looks for registry subkeys called

HKEY_LOCAL_MACHINE\SOFTWARE\Tridion\Content Delivery\General

and

HKEY_LOCAL_MACHINE\SOFTWARE\Tridion\Content Delivery\<service>

where <service> is the name of the service.

• It applies the settings it finds in both subkeys. If it finds the same entry in
both subkeys, it always applies the entry found in the service-specific
subkey.

Note The jvmargX keys are seen as one group. This means that, for
example, one service-specific registry entry jvmarg1 overrides all the
jvmarg1, jvmarg2, and jvmarg3 entries found in the General subkey.

What follows is an explanation of the various entries and their meanings.

4 In the HKEY_LOCAL_MACHINE\SOFTWARE\Tridion\Content Delivery
subkey, you can create subkeys for the various Content Delivery COM
services with the following names:

• Tridion Cache Service

• Tridion Content Broker

• Tridion Content Distributor Deployer

• Tridion Content Distributor Transport Service

• Tridion Dynamic Linking

• Tridion Web and Application Server Integration

You can also add a subkey called General.

Note All of these subkeys are optional. You can add one, three or
all of them.

5 You can now add one, more or all of the following entries to each of
these subkeys:

• TRIDION_HOME

• JREVersion

• jvmarg1

• jvmarg2

• jvmarg3, etc

These entries are explained below.

6 Close the registry editor.

7 Stop and start all Content Delivery COM services affected by these
settings.

To configure the Java Virtual Machine for one or all COM services:

Content Delivery Reference Guide

179

JVM configuration entries

For each or for all of the services listed above, you can modify the following
settings:

• The Tridion home directory (registry entry: TRIDION_HOME)

Each COM service needs to know where to find certain Tridion files to include
in its classpath. See Appendix H, "System classpath" for details.

If you specify a value for TRIDION_HOME for one or all services, the affected
COM services will use that value as their starting point for finding files.

This is useful if you have Tridon Content Manager and Tridion Content
Delivery installed on the same machine, and want to place the Content
Delivery-related files in a different directory than the Content Manager.

• The JRE version (registry entry: JREVersion)

Note Setting this entry is only relevant if you have multiple versions of the
Java Runtime Environment (JRE) installed.

By default, Tridion Content Delivery sets the JRE version to whatever it finds
as the value of the following registry subkey:

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment\
CurrentVersion

If you specify a registry value for the JRE for one or all services, then that
version will be used instead of the default one. The version must, of course,
be installed on the Content Delivery server. To see which versions of the JRE
are installed, look at the subkeys found in the following registry subkey:

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment\

Set the JREVersion entry to the name of one of the subkeys (that is, a valid
version number such as "1.3.1_13" or "1.4"). If you fill in a version that is
not installed, you cannot start the affected COM services after you stop
them.

• Java Virtual Machine startup arguments (registry entries: jvmarg1,
jvmarg2, etc)

By default, Tridion Content Delivery starts up the Java Virtual Machine (JVM)
with its own default parameters.

To add one parameter to one or to all COM services, create a registry entry
jvmarg1 in the appropriate subkey. To add two parameters, create two
registry entries, jvmarg1 and jvmarg2, and so on. Give each registry entry
the value of a JVM parameter, including an initial dash (-). For example, to
set the maximum amount of memory to 256 MB, add a jvmarg1 registry
entry and give it the value -Xmx256M.

Please note the following:

The jvmargX registry entry are seen as one. That is, if your General
subkey contains a jvmarg1 entry and a jvmarg2 entry, while your
Tridion Content Broker subkey contains only a jvmarg1 entry, the
COM service will be started with only one custom parameter (the
service-specific jvmarg1).

If you supply a jvmargX registry entry that sets the classpath (that is,
with a value that starts with -Djava.class.path or with -cp, the service
will not work, because your classpath will override the default one set by
the COM service itself.

180 Tridion R5

Content Delivery Reference Guide

Index

B

binary
mandatory metadata 77

Binary links 104

bindings
Broker 70

Broker 61
bindings 70
cachebindings 66
configuring 62
configuring metadata storage 80
features 65
Linking 113
logging 63
object cache 64
object caching 64
policy 65
publications 71
remote synchronization 67
storage 68

C

cache channel service
object caching 67

cachebindings
object caching 66

Component
mandatory metadata 74

Component links 105
Component Template priorities 107
created in templates 106
directory hierarchy 108
objects in a Page Template 107
resolving 107
to a different Component 106
to the same Component 105

Component Presentation
mandatory metadata 76

Component Presentations
accessing through filters 84

Component Template priorities 107

Component Templates
Tamino 91

Components
Tamino 91

configuring
Broker 62
Deployer 48
Linking 111
Tamino 89
Transport Service 41

Content Delivery
product overview 1

Content Distributor 9
third-party libraries 175

creating
Protocol Schema 15
Protocol Schemas 16
Publication Target 19
Target Type 17
Target Types 18

custom metadata 77
multiple values 79
querying 87

custom modules 53
Deployer 53

custom processors 51

D

default modules
modifying 55

Deployer 47
configuring 48
custom modules 53
custom processors 51
logging 50
modifying default modules 55
modules 52
processors 51
receiver bindings 58
receivers 58
transformer 57
workfolder 50

Dynamic Component Presentations 140
ASP 149
assembling 144
JSP 145
publishing 143

Dynamic Component Templates
output formats 142

Dynamic content assembly 139
Component Templates 141
configuring the Content Broker 144
XML 152

E

editing 18
Target Types 18

examples
metadata 82

F

features
Broker 65
object caching 65

filters 84
accessing Component Presentations 84
metadata 84
presentation filters 86
result modifiers 86
search 85

FTP 13

H

HTTP(S) 15
receivers 33
senders 33
with Java Web and Application server 37

HTTPS
with IIS 36

I

installing
license 5
Transport Service license file 4

L

libraries
third-party 175

license
installing 5

licenses 3

link metadata 74

Linking 101
Binary links 104
Broker 113
Component links 105
configuring 111
logging 112
Page links 103
publication 113
validation and resolution 102

Local File System 13

Logging
Transport Service 43

logging
Broker 63
Deployer 50
Linking 112

M

metadata 73
binary 77
Component 74
Component Presentation 76
configuring storage 80
custom 77, 78
database storage 80
examples 82
file system storage 79
filters 84
mandatory 74
mandatory link 74
Page 75
storage 79
storage in SQL databases 81

modules
Deployer 52

O

object cache
Broker 64

object caching
Broker 64
cache channel service 67
cachebindings 66
features 65
policy 65
remote synchronization 67

P

Page
mandatory metadata 75

Page links 103

policy
Broker 65

poller
Transport Service 44

presentation filters 86

processors
custom 51
Deployer 51

Protocol Schema
creating 15

Protocol Schemas
creating 16

protocols 13
FTP 13
HTTP(S) 15
Local File System 13

publication
Linking 113

Publication Target
creating 19

Publication Targets 11, 17
Target Type 17

publications
Broker 71

publishing 9

Q

queries
against SQL databases 87

querying
custom metadata 87

R

receiver bindings
Deployer 58

receivers 29, 30
custom 39
Deployer 58
FTP 31
HTTP(S) 33
Local Copy 31
SFTP 31

remote synchronization
object caching 67

S

schemas
Tamino 90

search filters 85

senders 29, 30
custom 39
FTP 31
HTTP(S) 33
Local Copy 31
SFTP 31
Transport Service 43

SFTP 13

SQL
queries 87

SQL databases
custom metadata 81

storage
Broker 68
metadata 79, 80

T

Tamino 89
Component Templates 91
Components 91
configuring 89
Dynamic Content 92
filter 97
querying 93
reference counting 93
Schema mapping 92
schemas 90
unpublishing 92
updating Components 92
using 90
XSLT 93

Target Type
creating 17

Target Types 18
creating 18

transformer
Deployer 57

Transport Service 41
configuring 41
installing license file 4
Logging 43
poller 44
senders 43
Workfolder 43

U

updating
Components in Tamino 92

using
Tamino 90

W

Workfolder
Transport Service 43

workfolder
Deployer 50

	Chapter 1 Content Delivery
	Chapter 2 Content Delivery product licenses
	2.1 Installing a license file
	2.1.a Transport Service license file
	2.1.b Content Delivery product license files

	Content Distributor
	Chapter 3 Content Distributor
	Chapter 4 Content Manager Publication Targets
	4.1 Publishing content
	4.2 Publishing protocols
	4.2.a Local File System, FTP and SFTP protocols
	4.2.b HTTP(S) protocol
	4.2.c Creating a Protocol Schema

	4.3 Configuring Publication Targets
	4.3.a Creating a Target Type
	4.3.b Creating a Publication Target

	4.4 Publication Target Code Page values
	4.4.a Overriding mappings for code page values

	Chapter 5 Configuring ASP.NET support for the Content Distributor
	5.1 Configuring assemblies
	5.1.a Configuring assemblies for a web application
	5.1.b Configuring assemblies for a standalone application

	5.2 Configuring WAI profiling and tracking
	5.3 Publishing to ASP.NET

	Chapter 6 Senders and Receivers
	6.1 Senders
	6.2 Receivers
	6.3 Local Copy, FTP and SFTP Senders and Receivers
	6.4 HTTP(S) Senders and Receivers
	6.4.a Troubleshooting transport over HTTP(S) to IIS
	6.4.b Importing a certificate for HTTPS uploads
	6.4.c HTTPS with IIS
	6.4.d HTTPS with a Java Web/Application Server

	6.5 Developing custom Senders and Receivers

	Chapter 7 Transport Service configuration
	7.1 Configuring the Transport Service
	7.1.a WorkFolder
	7.1.b Logging
	7.1.c Senders
	7.1.d Poller

	Chapter 8 Deployer configuration
	8.1 Configuring the Deployer
	8.2 WorkFolder
	8.3 Logging
	8.4 Processors
	8.4.a Developing custom processors

	8.5 Module
	8.5.a Developing custom Deployer modules
	8.5.b Modifying the behavior of default modules
	8.5.c Testing custom modules

	8.6 Transformer
	8.7 ReceiverBindings
	8.8 Receivers

	Chapter 9 Broker configuration
	9.1 Configuring the Content Broker
	9.2 Logging
	9.3 Object caching
	9.3.a ObjectCache
	9.3.b Policy
	9.3.c Features
	9.3.d CacheBindings
	9.3.e RemoteSynchronization
	9.3.f Cache Channel Service

	9.4 Storage configuration
	9.5 Bindings
	9.6 Publications

	Chapter 10 Using metadata
	10.1 Mandatory metadata
	10.1.a Mandatory link metadata
	10.1.b Mandatory Component Metadata
	10.1.c Mandatory Page Metadata
	10.1.d Mandatory Component Presentation Metadata
	10.1.e Mandatory binary metadata

	10.2 Custom metadata
	10.2.a Custom metadata examples
	10.2.b Custom metadata fields with multiple values

	10.3 Metadata storage
	10.3.a File system storage
	10.3.b Configuring the storage options
	10.3.c Database storage
	10.3.d Storing custom metadata in SQL databases

	10.4 Metadata examples
	10.4.a ASP example
	10.4.b JSP example

	10.5 Filters
	10.5.a Accessing a single Component Presentation
	10.5.b Search filter
	10.5.c Generating Presentation Filters
	10.5.d Result modifiers

	10.6 Querying custom metadata
	10.6.a Queries against SQL databases

	Chapter 11 Tamino
	11.1 Configuration
	11.2 Using Tamino
	11.2.a Schemas
	11.2.b Component Templates
	11.2.c Components
	11.2.d Updating a Component in Tamino
	11.2.e Unpublishing from Tamino
	11.2.f Dynamic Content
	11.2.g Schema mapping
	11.2.h XSLT transformation of W3C schemas
	11.2.i ReferenceCounting

	11.3 Querying Tamino
	11.3.a Generating links from an XSLT using the Linking API
	11.3.b Component link resolution with XSLT

	11.4 TaminoFilter
	11.4.a Using TaminoFilter to query Tamino
	11.4.b Merging Queries

	Linking
	Chapter 11 Linking
	11.1 Link validation and resolution
	11.2 Page links
	11.3 Binary links
	11.4 Component links
	11.4.a Components that link to the same Component
	11.4.b Components that link to a different Component
	11.4.c Creating Component links in templates
	11.4.d Creating Component Link objects in a Page Template
	11.4.e Resolving Component links

	Chapter 12 Linking configuration
	12.1 Linking configuration file
	12.1.a Logging
	12.1.b Publications

	12.2 Linking and Content Broker configuration
	12.2.a Linking bindings

	Web and Application Server Integration
	Chapter 13 Web and Application Server Integration
	13.1 Web and Application Server Integration (WAI)
	13.1.a Profiling and personalization
	13.1.b Dynamic content assembly

	Chapter 14 Profiling and personalization
	14.1 Setting up Profiling
	14.2 Tracking Keys
	14.2.a Creating Categories and Keywords
	14.2.b Using Categories and Keywords as Schema list field values
	14.2.c Tracking Categories in Component Templates

	14.3 Tracking
	14.4 Configuring the WAI for profiling
	14.4.a Global logging settings
	14.4.b Presentations
	14.4.c Timeframes
	14.4.d Excluding Pages, Components or Paths from being tracked

	14.5 Personalizing content
	14.5.a Creating Target Groups
	14.5.b Associating Target Groups with Component Presentations

	Chapter 15 Dynamic content assembly
	15.1 Using Dynamic Component Presentations
	15.2 Creating Component Templates for dynamic content assembly
	15.2.a Output format
	15.2.b Publishing Dynamic Component Presentations
	15.2.c Publishing Pages that include Dynamic Component Presentations

	15.3 Configuring the Content Broker for Dynamic Component assembly
	15.4 Assembling Dynamic Component Presentations
	15.4.a ComponentPresentationAssembler
	15.4.b ComponentPresentation.getContent()

	15.5 Assembling Dynamic JSP Component Presentations
	15.5.a Using the JSPProcessor
	15.5.b Using the ComponentPresentationAssembler in JSP
	15.5.c Using DynamicComponentLink

	15.6 Assembling Dynamic ASP Component Presentations
	15.6.a Executing VBScript or JScript Dynamic Component Presentations
	15.6.b Using the ComponentPresentationAssembler in ASP
	15.6.c Using DynamicComponentLink

	15.7 Dynamic Assembly XML

	Appendices
	Appendix A Example: An SMTP Custom Sender
	Appendix B Example: Custom POP3 Receiver
	Appendix C Sample Transport Service configuration file
	Appendix D Sample Deployer configuration file
	Appendix E Sample Broker configuration file
	Appendix F Broker bindings for MS SQL, Oracle, Tamino and DB2 databases
	Appendix G WAI-Specific bindings
	Appendix H System classpath
	Appendix I Third-party libraries
	Appendix J Configuring the Java Virtual Machine for COM services

