
ToolboxSearch — an R package for working with
Toolbox corpora
User Manual

Taras Zakharko
taras.zakharko@uzh.ch

July 10, 2012

e latest version of this package can be found at https://bitbucket.org/tzakharko/toolboxsearch.

is document uses examples from the Chintang Language Corpus for illustrative purposes. e corpus data is not
distributed with this soware or the document. Reference: Bickel, B., S. Stoll, M. Gaenszle, N. K. Rai, E.
Lieven, G. Banjade, T. N. Bhatta, N. Paudyal, J. Pettigrew, I. P. Rai, M. Rai, 2012. Audiovisual
corpus of the Chintang language, including a longitudinal corpus of language acquisition by six
children, paradigm sets, grammar sketches, ethnographic descriptions, and photographs, http://www.
spw.uzh.ch/clrp/. DOBES Archive, http://www.mpi.nl/DOBES.

Contents

1 About ToolboxSear 2

1.1 is document . 3

2 Notes on the anatomy of a Toolbox file 4

2.1 ToolboxSearch import algorithm . 5

3 Loading, viewing and partitioning the corpus 6

3.1 Installation and loading . 6

3.2 Toolbox format descriptor . 7

3.3 Importing Toolbox files . 9

1

mailto:taras.zakharko@uzh.ch
https://bitbucket.org/tzakharko/toolboxsearch
http://www.spw.uzh.ch/clrp/
http://www.spw.uzh.ch/clrp/
http://www.mpi.nl/DOBES

3.4 Viewing and partitioning the corpus . 11

3.5 Index objects . 15

3.6 Doing statistics . 18

3.7 Saving Toolbox files . 19

4 Corpus sear 20

4.1 An introduction to the query language . 20

4.2 Using corpus index objects to combine query results 30

A ery language reference 31

B Tips and tris 33

1 About ToolboxSear

ToolboxSearch is a new R package created for linguists whoworkwith language corpora in Toolbox
file format. e package contains utilities for loading and searching Shuebox/Toolbox corpora
within R. Here are the key features of the package at one glance:

powerful sear facility
e flexible corpus query language of ToolboxSearch makes it easy to extract parts of the
corpora in accordance to a specific search paern. e paerns are specified in a simple,
readable and reusable way, e.g. the following R code, which will find all glossed uerances
within the corpus that are uered by adult speakers and contain at least one word whose
gloss includes a demonstrative marker immediately followed by a locative marker:
corpus %%
" @record
{

$ age == ' adu l t ' AND
CONTAINS @word
{
CONTAINS
[
@morpheme { $mgl =∼ 'DEM' }
@morpheme { $mgl =∼ ' LOC ' }

]
}

} "

e results of search queries can be converted into R data frames for subsequent statistical
analysis. ey can be also saved as a Toolbox file for editing or inspection.

2

"smart" import of Toolbox files
Toolbox/Shuebox uses plain text files to store corpora as sequences of interlinearly-glossed
uerances. e vertical alignment of items (e.g. words and their glosses) is represented via
string offsets, maintained by correct number of spaces. Unfortunately, the spacing within
Toolbox files in real-word corpora is very oen inconsistent due to unexpected behavior of
Toolbox itself and usage of external editing tools which do not preserve the original spac-
ing (such as a text editor). is makes it a difficult task to properly reconstruct the gloss
structure. ToolboxSearch goes to great lengths to deal with this problem. Its import routines
use adaptive parsing techniques, where each record in the file is repeatedly parsed using a
number of different algorithms and seings, until it can be imported successfully. In addi-
tion, the package offers an alternative import algorithm which aempts to reconstruct the
gloss structure based onmorpheme hyphenation. Because of these advanced import features,
ToolboxSearch is able to correctly parse Toolbox files where many other tools (e.g. ELAN at
the moment of writing of this document) would produce erroneous results.

e import routines also maintains a detailed error log for all records in a Toolbox file which
could not be parsed successfully. ese logs can be then used to detect and "repair" errors
within the corpus.

export of Toolbox files
ToolboxSearch is able to save the results of the R session back to a Toolbox-formated file.
e wrien file is 100% correctly formaed Toolbox and can be imported by ELAN and other
tools.

performance
e performance-critical parts of the package (i.e. much of the file import and search facility)
is wrien in the C programming language. is makes ToolboxSearch very fast for most
operations.

1.1 is document

is document is a user manual which will guide you through all the important features of Tool-
boxSearch. In the next section, we will review the Toolbox file format and point some common
problems which arise when trying to import Toolbox to R. e remaining part of the manual ex-
plains how to load and search your corpora using ToolboxSearch.

e corpus examples from this manual are from the Chintang Language Corpus:

Bickel, B., S. Stoll, M. Gaenszle, N. K. Rai, E. Lieven, G. Banjade, T. N. Bhatta, N. Paudyal,
J. Pettigrew, I. P. Rai, M. Rai, 2012. Audiovisual corpus of the Chintang language, including
a longitudinal corpus of language acquisition by six children, paradigm sets, grammar sketches,
ethnographic descriptions, and photographs, http://www.spw.uzh.ch/clrp/. DOBES Archive, http://www.
mpi.nl/DOBES.

3

http://www.spw.uzh.ch/clrp/
http://www.mpi.nl/DOBES
http://www.mpi.nl/DOBES

e manual assumes that the reader already has some basic familiarity with R and its command
shell.

2 Notes on the anatomy of a Toolbox file

Toolbox is a popular soware tool for interlinear glossing of language corpora and corresponding
electronic dictionary creation. A Toolbox corpus is a sequence of records, which usually correspond
to sentences or clauses. Within each record, Toolbox stores a number of parallel annotation tiers,
such as transcribedwords, morpheme glosses, speaker name, translation etc. e records are stored
in a plain text file.

\ref CLLDCh2R06S02. 0001
\ELANBegin 00:00:00.824
\ELANEnd 00:00:06.198
\EUDICOp XYZ
\tx ne cohaʔ
\gw ne cohaʔ
\mph ne ci -u -hãʔ
\mgl EXCLA.interj eat -3P.gm -PRSV.IMP
\lg C C -C -C
\eng Take it and eat.
\dt 19/Mar/2010

e above example shows an excerpt from a Chintang Corpus Toolbox file which represents a
single record. Each line of text represents an annotation tier, the first item in the line (\xxx) is the
symbolic name of the tier. e first tier (\ref is the record marker, which signals the start of a new
record.

Annotation tiers can be arranged into different annotation levels. In the above example, there are
three such levels — we will call them record level, word level and the morpheme level, respectively.
e record level includes annotations which concern the whole record, such as the video timestamp
(\ELANBegin and \ELANEnd), the speaker code (\EUDICOp), the transcribed text and its translation (\tx,
\eng) and the date of last edit (\dt). eword level includes the grammatical words annotations — in
this case it consists only of theword form \gw. Finally, themorpheme level consists of themorpheme
annotations: the transcription \mph, the gloss \mgl and the source language of the lexeme (e.g. for
code switching studies) \lg.

e Toolbox file format correctly stores the vertical alignment between the elements (i.e. the fact
that morphemes ci, -u, -hãʔ comprise the word cohaʔ). Consider the alignment of the tiers \gw, \mph
and \mgl from the above example (with tier markers stripped and spaces visualized):

ne�����������cohaʔ
ne�����������ci��-u�����-hãʔ
EXCLA.interj�eat�-3P.gm�-PRSV.IMP

4

Here, we can see that Toolbox automatically inserts spaces between tokens of different tiers such
that corresponding elements occupy the same character starting position in their respective line
(e.g. the word cohaʔ and its first morpheme ci).

Unfortunately, this is not the complete story. Consider this example (taken from another record of
the Chintang Corpus):

baŋge����wandaʔ������khaiʔma������din
baŋge����wanda��������khat��-ma�����din
a.place.n�tomorrow.adv�go.vi�-INF.gm�day.n

At first, it appears that the tokens are not aligned properly. For instance the morpheme khat is
not properly aligned with its gloss go or the word khaiʔma it belongs to. In fact, the alignment here
is proper. e solution of the riddle lies in the (unfortunate) way Toolbox works with character
encoding. Many corpora (including Chintang Corpus) use Unicode UTF-8 to encode the data. UTF-
8 is a variable-byte encoding, which means that some characters (like 'n') are encoded as one byte
of memory and some other characters (like 'ŋ', 'ʔ') as two or more. Unfortunately, for the purposes
of alignment, Toolbox considers token length to be in bytes, and not in characters. Because of this,
it computes the length of the word baŋge as 6, even when it has 5 characters only! We can easily
see that counting multibyte character 'ŋ' twice results in the correct alignment:

baŊŊge����wandaʔʔ������khaiʔʔma������din
baŊŊge����wanda��������khat��-ma�����din
a.place.n�tomorrow.adv�go.vi�-INF.gm�day.n

is is still not the end of the story, because Toolbox ignores some characters (like accents) com-
pletely when computing the length of the elements. is happens because these elements do not
occupy horizontal space when displayed, but rather, are combined with the neighbor characters.

Unfortunately, the above rules do not appear to be absolute. Occasionally, Toolbox will count
characters and not bytes, and/or accents as proper characters. Sometimes the behavior changes
from one record to another (e.g. first record byte-aligned and the next one is character-aligned). To
make the maer even worse, many existing Toolbox files are in even worse shape. Sometimes, the
authors of the corpus will edit the toolbox file in a normal text editor (and destroying the carefully
arranged spaces in the process); also, some intermediate tools used to process the Toolbox files may
affect the spaces or even convert them to tabulator characters.

In conclusion, the format of the Toolbox file is very fragile and great care should be taken when
trying to parse it.

2.1 ToolboxSear import algorithm

ToolboxSearch goes to great lengths in order to ensure that Toolbox file import into R will be easy-
to-setup, quick and error-prone. Currently, it implements two different import algorithms which

5

can be used in different scenarios.

e first and default algorithm is position tracking, which assumes that the vertical alignment of the
tokens is correctly encoded via spaces. However, it remain flexible in regards to what 'correctly'
actually means. e tokens might be aligned according to their byte length or their character
length, with accents taken into consideration or ignored. e algorithm will try each of these
possibilities for each record in the file separately. is way, the import will be successful even
when the convention should change from one record to another. If the algorithm is still unable to
parse the record, it will be ignored and a corresponding message will be logged. is algorithms
works rather well for many corpora and requires no additional setup from the user.

If the spacing in the Toolbox file has been damaged beyond automatic repair (via manual edits or
third-party tools), the second algorithm may be used. It is based on sequence tracking. e idea
of the algorithm is to make an assumption that proper sequences in the interlinear gloss follow a
specific paern. emajority of corpora use hyphens along with morpheme tokens: aaa- to encode
prefixes and -aaa to encode suffixes. Sometimes, = will be used to represent clitics. If a corpus uses
some sort of morpheme hyphenation, it can be assumed that each proper word sequence has the
form x-x-x-x-x etc., i.e. all morphemes which have hyphenation between them belong to the same
word.

Following this idea, the algorithm will try to collect 'connected' morphemes into words. us,
the algorithm does not rely on spacing at all, but it only works for hyphenated corpora. If the
corpus has multiple morpheme tiers, it is enough if only one of them is hyphenated (although
more then one may be), the rest of the tokens will be assigned to the structure based on one-to-one
correspondence.

Both above algorithms can fail to parse a record which is too badly damaged. In this case, the
record is skipped, and a detailed error message is generated. e rest of the file is still loaded.
e user may choose to inspect the error log aerwards and edit the damaged records. is way,
ToolboxSearch may be used as a validation tool for Toolbox corpora - which is important when
you are using other tools (like ELAN) to work with your corpora.

3 Loading, viewing and partitioning the corpus

3.1 Installation and loading

Before the package can be used in R, it must be installed. Download the appropriate binary version
for your operating system and install it using the R menu option Package Installer. Linux users can
install the package from source by downloading the source code and executing

R CMD install toolboxsearch

6

from the command line.

Please note that you will need R 2.14 or higher version to use ToolboxSearch.

Aer the package has been installed, loading it is as easy as any other R package. Simply type
l i b r a r y (Too lboxSearch)

in the R command line.

3.2 Toolbox format descriptor

To successfully load a Toolbox file, the parser needs some basic information about the file structure.
In particular, you must specify the names of relevant (to-be-imported) annotation tiers and their
relationship between each other. In ToolboxSearch, this information is stored within a Toolbox
format descriptor. Consider an example Toolbox record from the Chintang Corpus:

\ref CLLDCh2R06S02. 0001
\ELANBegin 00:00:00.824
\ELANEnd 00:00:06.198
\EUDICOp XYZ
\tx ne cohaʔ
\gw ne cohaʔ
\mph ne ci -u -hãʔ
\mgl EXCLA.interj eat -3P.gm -PRSV.IMP
\lg C C -C -C
\eng Take it and eat.
\dt 19/Mar/2010

Let us assume that we are only interested in information about speaker (tiers \EUDICOp, \age), trans-
lation (\eng) and the interlinear gloss (tiers \gw, \mph, \mgl, \lg). e corresponding format descriptor
is declared as:
fmt ← t oo l boxForma t (

r e co r d =c (r e f , EUDICOp , age , eng) ,
word=gw ,
morpheme=c (mph , mgl , l g)

)
fmt

Toolbox format d e s c r i p t o r with 3 l e v e l s
r e c o r d marker \ r e f
@record : \ r e f \ EUDICOp \ age \ eng
@word : \ gw
@morpheme : \mph \ mgl \ l g

e descriptor is set up in hierarchical levels (record, word, morpheme). Each level comprises of one or
more annotation tiers. e names of the levels are arbitrary chosen by the user (we can also use

7

clause, sentence etc. instead record and mor, m, etc. instead morpheme). e first defined tier of the first
level has a special meaning - it is treated as a record marker.

A step by step definition of a Toolbox format descriptor is as follows:

1. Decide which annotation tiers from the file you want to import

2. Divide these tiers into logical hierarchical levels and pick the names for these levels (the
record marker must always belong to the outer-most level!). On practice, you will never
need to set up more then three levels.

3. Define the R structure for the descriptor using the toolboxFormat() function. e levels are set up
as arguments to this function as level = content pairs. Here, level is the name of the level and content

is a vector (or a single value) of names of annotation tiers. You don't have to use quotation
marks (although you can). e levels are declared in a hierarchical order, meaning that the
first level will be the record-level one and the last level the morpheme one. e recordmarker
should be the first declared tier of the uppermost level.

Note that you don't have to import the complete interlinear gloss. It is possible to import only
some outer-level data, e.g.:
fmt ← t oo l boxForma t (

r e co r d =c (r e f , eng)
)
fmt

Toolbox format d e s c r i p t o r with 1 l e v e l
r e c o r d marker \ r e f
@record : \ r e f \ eng

or only word data:
fmt ← t oo l boxForma t (

r e co r d = r e f ,
word=gw

)
fmt

Toolbox format d e s c r i p t o r with 2 l e v e l s
r e c o r d marker \ r e f
@record : \ r e f
@word : \ gw

By seing up the descriptor appropriately, you make sure that the data is imported into R in a
shape you need. e following descriptor would load morpheme glosses as non-tokenized outer-
level string (akin to translation):
fmt ← t oo l boxForma t (

r e co r d =c (r e f , mgl)
)
fmt

8

Toolbox format d e s c r i p t o r with 1 l e v e l
r e c o r d marker \ r e f
@record : \ r e f \ mgl

3.3 Importing Toolbox files

Importing Toolbox files with ToolboxSearch is very easy.
fmt ← t oo l boxForma t (

r e co r d =c (r e f , EUDICOp , age , eng) ,
word=gw ,
morpheme=c (mph , mgl , l g)

)
c rp ← readToo lbox (" d t a / Budhohang_d . tx t " , fmt)
c rp

Corpus with 91 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Budhohang_d . 0 1
\ gw he parmeswora s a b a i ̃ c a i n e ke t h i pp e dhani
\mph he ś paramevara sab ̃ c a i n e ke t h i pp e dhani
\ mgl ADDR Lord a l l PTCL FILLER d e i t y (g r a n d f a t h e r) owner
\ l g N N N N C−RL C−RL N

−−−−−−−−−−@2
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

−−−−−−−−−−@3
\ r e f Budhohang_d . 0 3
\ gw ambira l e g u r a ŋ ha na s a b a i kuro
\mph ambira l e g u r a ŋ ha na sab kura
\ mgl a _p l a c e a _p l a c e k ing PTCL a l l t h i ng
\ l g C−RL C−RL C−RL C N N

is code imports the Toolbox file Budhohang_d.txt from the folder dta. e corpus data from the file
is stored in the variable crp. Typing the name of this variable in the R command line will show you
the first few records from the corpus.

As already mentioned, ToolboxSearch uses a flexible import algorithm (see page⁇), which can be
tweaked by providing additional parameters to the readToolbox() function. In the default mode, the
function will use position tracking mode, which assumes that vertical alignment of the tokens can
be reconstructed from the spacing. If the spacing is broken, but the file is glossed using hyphens
as morpheme connectors, you can tell readToolbox() to load the file using the sequence tracking mode:
crp ← readToo lbox (" d t a / Budhohang_d . tx t " , fmt , morpheme= ' sequence ')
c rp

9

Corpus with 91 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Budhohang_d . 0 1
\ gw he parmeswora s a b a i ̃ c a i n e ke t h i pp e dhani
\mph he ś paramevara sab ̃ c a i n e ke t h i pp e dhani
\ mgl ADDR Lord a l l PTCL FILLER d e i t y (g r a n d f a t h e r) owner
\ l g N N N N C−RL C−RL N

−−−−−−−−−−@2
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

−−−−−−−−−−@3
\ r e f Budhohang_d . 0 3
\ gw ambira l e g u r a ŋ ha na s a b a i kuro
\mph ambira l e g u r a ŋ ha na sab kura
\ mgl a _p l a c e a _p l a c e k ing PTCL a l l t h i ng
\ l g C−RL C−RL C−RL C N N

is mode is activated by passing an additional parameter to the function. e parameter must
have the same name as the level for which the sequence tracking should be activated — in our (and
probably virtual any other) case —morpheme level. In the sequence tracking mode, ToolboxSearch
assumes that - and = are morpheme connectors. If your corpus uses different connector symbols,
you can specify them explicitly (e.g. if the connector is &):
crp ← readToo lbox (" s ome . t x t " , fmt ,

morpheme= l i s t (mode= " sequence " , conn=c ("&")))

Oen, it is required to load more then one Toolbox file at once. ToolboxSearch is very convenient
in regards to this. e first argument of readToolbox() function will accept a vector of file names. Each
of these files will be imported and the results are collapsed to a single corpus object. e following
code imports all files from the folder dta.
crp ← readToo lbox (d i r (' d t a ' , f u l l . n am e s =T) , fmt)
c rp

Corpus with 1118 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Budhohang_d . 0 1
\ gw he parmeswora s a b a i ̃ c a i n e ke t h i pp e dhani
\mph he ś paramevara sab ̃ c a i n e ke t h i pp e dhani
\ mgl ADDR Lord a l l PTCL FILLER d e i t y (g r a n d f a t h e r) owner
\ l g N N N N C−RL C−RL N

−−−−−−−−−−@2
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

10

−−−−−−−−−−@3
\ r e f Budhohang_d . 0 3
\ gw ambira l e g u r a ŋ ha na s a b a i kuro
\mph ambira l e g u r a ŋ ha na sab kura
\ mgl a _p l a c e a _p l a c e k ing PTCL a l l t h i ng
\ l g C−RL C−RL C−RL C N N

is is equivalent to importing the files separately and then collapsing them using the concat.corpus ()

function:
c r p . 1 ← readToo lbox (' d t a / f i l e _ 1 . t x t ' , fmt)
c r p . 2 ← readToo lbox (' d t a / f i l e _ 2 . t x t ' , fmt)
. . .
c r p . n ← readToo lbox (' d t a / f i l e _ n . t x t ' , fmt)
c rp ← c o n c a t . c o r p u s (c r p . 1 , c r p . 2 , . . . , c r p . n)

e import algorithm generates a status report for each record it encounters within the file. If a
record could not be parsed, an error message will appear in the report. e report can be accessed
via parse.log () :
head (p a r s e . l o g (c rp))

Budhohang_d . 0 1
" ok (s e t t i n g s : s k i p _ i n v i s i b l e s =1 , u s e _by t e s = 1) "

Budhohang_d . 0 2
" ok (s e t t i n g s : s k i p _ i n v i s i b l e s =0 , u s e _by t e s = 0) "

Budhohang_d . 0 3
" ok (s e t t i n g s : s k i p _ i n v i s i b l e s =0 , u s e _by t e s = 1) "

Budhohang_d . 0 4
" ok (s e t t i n g s : s k i p _ i n v i s i b l e s =1 , u s e _by t e s = 0) "

Budhohang_d . 0 5
" ok (s e t t i n g s : s k i p _ i n v i s i b l e s =1 , u s e _by t e s = 0) "

Budhohang_d . 0 6
" ok (s e t t i n g s : s k i p _ i n v i s i b l e s =1 , u s e _by t e s = 0) "

e parse log can be used to detect glossing errors, for instance, cases when the number of mor-
pheme glosses does not match the number of morphemes.

3.4 Viewing and partitioning the corpus

In the previous section we have loaded a Toolbox corpus consisting of multiple files and stored it in
a variable named crp. In this section we will see how we can show and extract parts of the corpus.

Simply typing the variable into R command line will display the first few records of the corpus data
(similarly as to how R displays values of other variables):
crp

Corpus with 795 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Budhohang_d . 0 1
\ gw he parmeswora s a b a i ̃ c a i n e ke t h i pp e dhani
\mph he ś paramevara sab ̃ c a i n e ke t h i pp e dhani

11

\ mgl ADDR Lord a l l PTCL FILLER d e i t y (g r a n d f a t h e r) owner
\ l g N N N N C−RL C−RL N

−−−−−−−−−−@2
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

−−−−−−−−−−@3
\ r e f Budhohang_d . 0 3
\ gw ambira l e g u r a ŋ ha na s a b a i kuro
\mph ambira l e g u r a ŋ ha na sab kura
\ mgl a _p l a c e a _p l a c e k ing PTCL a l l t h i ng
\ l g C−RL C−RL C−RL C N N

e function length.corpus () will show us information about number of distinct (non-empty) elements
at a particular level in the corpus. Note that if a record is not glossed, its number of morphemes is
0!
l e n g t h . c o r p u s (crp , " r e c o r d ")

[1] 795

l e n g t h . c o r p u s (crp , " word ")

[1] 3549

l e n g t h . c o r p u s (crp , " morpheme ")

[1] 5174

We can also tell R to show us a particular set of records using the print () function, with the second
argument being the number of the record we want to see:
p r i n t (crp , 2)

Corpus with 795 e n t r i e s (r e c o r d) showing 2 :

−−−−−−−−−−@2
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

p r i n t (crp , 5)

Corpus with 795 e n t r i e s (r e c o r d) showing 5 :

−−−−−−−−−−@5
\ r e f Budhohang_d . 0 5
\ gw j a t t i g o ̃ c a i n e ke caura sko dhani
\mph j a t t i g o ̃ c a i n e ke c au r a s −ko dhani
\ mgl as . much . as PTCL FILLER every . d i r e c t i o n −GEN owner
\ l g C/N N C−RL C−RL −C N

12

We can also specify a sequence (the notation a:b in R means a sequence of numbers from a to b) or
an arbitrary vector of record indices:
p r i n t (crp , 5 : 8)

Corpus with 795 e n t r i e s (r e c o r d) showing 5−8:

−−−−−−−−−−@5
\ r e f Budhohang_d . 0 5
\ gw j a t t i g o ̃ c a i n e ke caura sko dhani
\mph j a t t i g o ̃ c a i n e ke c au r a s −ko dhani
\ mgl as . much . as PTCL FILLER every . d i r e c t i o n −GEN owner
\ l g C/N N C−RL C−RL −C N

−−−−−−−−−−@6
\ r e f Budhohang_d . 0 6
\ gw s a b a i ̃ c a i n e ke bh an ed ekh i l a i j a t t i g o
\mph sab ̃ c a i n e ke bhanedekhi − l a i j a t t i g o
\ mgl a l l PTCL FILLER FILLER −DAT as . much . as
\ l g N N C−RL C−RL −N C/N

−−−−−−−−−−@7
\ r e f Budhohang_d . 0 7
\ gw ̃ c a i n e ke ̃ nau ŋ s i e wa ga r e r a ̃ c a i n e ke bhandekh in l a i
\mph ̃ c a i n e ke ̃ nau ŋ s i wa ga r e r a ̃ c a i n e ke bhandekh i l e
\ mgl PTCL FILLER nine horn ch i cken having . done PTCL FILLER FILLER
\ l g N C−RL N C C N N C−RL C−RL

−−−−−−−−−−@8
\ r e f Budhohang_d . 0 8
\ gw haniko ̃ c a i n e ke udhau l i sewa ̃ c a i n e ke bhandekh in l a i
\mph hani −ko ̃ c a i n e ke udhau l i sewa ̃ c a i n e ke bhandekh i l e
\ mgl 2p −GEN PTCL FILLER descend ing . t ime s e r v i c e PTCL FILLER FILLER
\ l g C −C N C−RL N C/B N C−RL C−RL

p r i n t (crp , c (2 , 5 , 8))

Corpus with 795 e n t r i e s (r e c o r d) showing 2 , 5 , 8 :

−−−−−−−−−−@2
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

−−−−−−−−−−@5
\ r e f Budhohang_d . 0 5
\ gw j a t t i g o ̃ c a i n e ke caura sko dhani
\mph j a t t i g o ̃ c a i n e ke c au r a s −ko dhani
\ mgl as . much . as PTCL FILLER every . d i r e c t i o n −GEN owner
\ l g C/N N C−RL C−RL −C N

−−−−−−−−−−@8
\ r e f Budhohang_d . 0 8
\ gw haniko ̃ c a i n e ke udhau l i sewa ̃ c a i n e ke bhandekh in l a i
\mph hani −ko ̃ c a i n e ke udhau l i sewa ̃ c a i n e ke bhandekh i l e
\ mgl 2p −GEN PTCL FILLER descend ing . t ime s e r v i c e PTCL FILLER FILLER
\ l g C −C N C−RL N C/B N C−RL C−RL

13

Oen we are only interested in a particular part of the corpus. We can use corpus partitioning
(or slicing) to extract a subset of the corpus data. In ToolboxSearch, this works just like vector
indexing:
c r p . p a r t ← c rp [2]
c r p . p a r t

Corpus with 1 e n t r i e s (r e c o r d) showing 1 :

−−−−−−−−−−@1
\ r e f Budhohang_d . 0 2
\ gw warimi kumdami s i r i m i
\mph warimi kumdami s i r i m i
\ mgl a_samet a_samet a_samet
\ l g C−RL C−RL C−RL

e partition index works the same way as the second argument of print () . e main difference is
that print () will only print the respective records, while corpus partitioning will copy the data from
the original corpus and create a 'new' corpus object.

It is also possible to extract a different level of the corpus. For this, you need to specify the level
explicitly. e following examples show how to extract first 5 word entries from the corpus:
crp [1 : 5 , " word "]

Corpus with 5 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw he
\mph he
\ mgl ADDR
\ l g N

−−−−−−−−−−@2
\gw parmeswora
\mph śparamevara
\ mgl Lord
\ l g N

−−−−−−−−−−@3
\gw s a b a i
\mph sab
\ mgl a l l
\ l g N

or first few morphemes in even positions:
crp [c (2 , 4 , 6 , 8) , " word "]

Corpus with 4 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw parmeswora
\mph śparamevara
\ mgl Lord
\ l g N

−−−−−−−−−−@2

14

\ gw ̃ c a i n e
\mph ̃ c a i n e
\ mgl PTCL
\ l g N

−−−−−−−−−−@3
\gw th i pp e
\mph th i pp e
\ mgl d e i t y (g r a n d f a t h e r)
\ l g C−RL

You can also omit the partition index. en, all elements will be extracted. is is a quick way
to split the corpus into words or morphemes (e.g. if if you are interested in compiling the lists of
morphemes):
crp [l e v e l = "morpheme "]

Corpus with 5174 e n t r i e s (morpheme) showing 1−3:

−−−−−−−−−−@1
\mph he
\ mgl ADDR
\ l g N

−−−−−−−−−−@2
\mph śparamevara
\ mgl Lord
\ l g N

−−−−−−−−−−@3
\mph sab
\ mgl a l l
\ l g N

is is equivalent to:
crp [1 : l e n g t h . c o r p u s (crp , " morpheme ") , " morpheme "]

3.5 Index objects

Another way to do corpus partitioning is to use the special data objects provided by ToolboxSearch,
the corpus index objects. e objects store the “coordinates” of a corpus partition, without doing the
actual partitioning. Index objects will be an invaluable tool whenwe learn to use the ToolboxSearch
corpus search functionality.

e function index.corpus () is used to create a index object. It takes the same arguments as the actual
corpus partitioning:
i ndex1 ← i n d e x . c o r p u s (1 : 3 , " word ")
index1

Corpus subset@word : 1−3 (3 e l emen t s)

15

i ndex2 ← i n d e x . c o r p u s (c (2 , 4) , " morpheme ")
index2

Corpus subset@morpheme : 2 , 4 (2 e l emen t s)

Here, index1 selects the first three words of a corpus and index2 selects the second and the forth mor-
phemes of a corpus. To perform the actual corpus partitioning and get the corresponding corpus
subset, you can simply use the index object as a partition index:
crp [index1]

Corpus with 3 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw he
\mph he
\ mgl ADDR
\ l g N

−−−−−−−−−−@2
\gw parmeswora
\mph śparamevara
\ mgl Lord
\ l g N

−−−−−−−−−−@3
\gw s a b a i
\mph sab
\ mgl a l l
\ l g N

crp [index2]

Corpus with 2 e n t r i e s (morpheme) showing 1−2:

−−−−−−−−−−@1
\mph śparamevara
\ mgl Lord
\ l g N

−−−−−−−−−−@2
\mph ̃ c a i n e
\ mgl PTCL
\ l g N

Hence, a command like
crp [1 : 3 , " word "]

is equivalent to
i ndex1 ← i n d e x . c o r p u s (1 : 3 , " word ")
c rp [index]

A very powerful feature of index objects is their ability to be combined using set operations. In
combination with the corpus search functionality, this allows you to quickly combine different

16

search paerns (as explained in next section of the manual). Index objects support union, inter-
section or difference operations — they are also very easy to use, because they work just like the
regular arithmetics operations:
i ndex1 ← i n d e x . c o r p u s (1 : 3 , " word ")
index2 ← i n d e x . c o r p u s (2 : 4 , " word ")
union
i ndex1 + index2

Corpus subset@word : 1−2 , 2−3 , 3−4 (6 e l emen t s)

intersection
i ndex1 * index2

Corpus subset@word : 2−3 (2 e l emen t s)

difference
i ndex1 − i ndex2

Corpus subset@word : 1 (1 e l emen t s)

Sometimes it is necessary to select all but the indexed elements. To create a complement of an
index in respect to a particular corpus, you can simply subtracts the index from the corpus:
crp − i ndex1

Corpus subset@word : 4−3549 (3 5 4 6 e l emen t s)

c rp [c rp − i ndex1]

Corpus with 3546 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw ̃ c a i n e
\mph ̃ c a i n e
\ mgl PTCL
\ l g N

−−−−−−−−−−@2
\gw ke
\mph ke
\ mgl FILLER
\ l g C−RL

−−−−−−−−−−@3
\gw th i pp e
\mph th i pp e
\ mgl d e i t y (g r a n d f a t h e r)
\ l g C−RL

corpus ← c rp

17

3.6 Doing statistics

e main goal of ToolboxSearch is to allow the user to quickly extract the interesting data for
further processing. ToolboxSearch uses its own internal data format to store corpus data. How-
ever, a ToolboxSearch corpus can be quickly converted into an R data frame to do some statistics.
Converting a corpus to the data frame is straightforward:
head (a s . d a t a . f r am e (c rp))

r e c o r d . i d word . i d morpheme . i d r e f gw mph mgl
1 1 1 1 appa_ka t h a_ t a l k . 0 0 1 a j i k a l i a j j o l i t h e s ed ay s
2 1 2 2 appa_ka t h a_ t a l k . 0 0 1 appa a− 1sPOSS−
3 1 2 3 appa_ka t h a_ t a l k . 0 0 1 appa pa f a t h e r
4 1 3 4 appa_ka t h a_ t a l k . 0 0 1 manchi manchi not
5 2 4 5 appa_ka t h a_ t a l k . 0 0 7 t a i t a i even
6 2 5 6 appa_ka t h a_ t a l k . 0 0 7 ŋ ya ŋ ya ADD

Each annotation tier is stored as a column. Each row corresponds to the lowest level element (mor-
pheme). e values of higher-level tiers are replicated accordingly. For instance, in this case the
word appa consists of two morphemes, a- and pa. us, appa will be duplicated. e .id columns
of the data frame indicate the element the current row (morpheme) belongs to. For instance, we
can see that the first records spans morphemes 1−4 and words 1−3, while the second word spans
morphemes 2 and 3.

As an illustration, the following code plots the frequency distribution of words in respect to their
length in morphemes:
d f ← a s . d a t a . f r am e (c rp)
t ab ← t a b l e (s app l y (s p l i t (d f $morpheme.id , d f $ word . i d) , l e ng t h))
t a b ← t a b / sum (t ab) * 100
b a r p l o t (tab , y l a b = '% o f t o t a l words ' , x l a b = ' morphemes per word ' , c o l = ' cyan3 ')

18

1 2 3 4 5 6 7 8

morphemes per word

%
 o

f t
ot

al
 w

or
ds

0
10

20
30

40
50

60
70

3.7 Saving Toolbox files

An important function of ToolboxSearch is to export a corpus from R to Toolbox again. You can
use it, for example, to save some interesting examples you have compiled from the corpus using
the search facility. Saving Toolbox files is very simple:
create a corpus partition
s u b . c r p ← c rp [. . .]
wr i t eToo lbox (" my_examp le s . t x t " , s u b . c r p)

19

is function produces correctly formaed Toolbox files which can be further edited in Toolbox or
imported to a third party tool (e.g. ELAN).

4 Corpus sear

e most powerful component of ToolboxSearch is its flexible search facility, which allows the
linguist to extract elements from the corpus in according to a given paern. e paern is specified
in a query language. is language has been specifically designed to be easy to learn, easy to
write and easy to read. e distinguished feature of the query language is the ability to search
for elements which contain particular sequences of subelements (such as words which contain a
particular sequence of morphemes).

is section of the manual will introduce the query language and its elements.

4.1 An introduction to the query language

e query language allows the user to search for elements (e.g. records, words or morphemes)
in the corpus which match a specific paern. A search paern combines a set of constrains, in-
cluding constrains in regards to the annotation (e.g. 'find all morphemes with a particular gloss'),
simple containment relations (e.g. 'find all words which contain a certain morpheme') or sequence
containment relation (e.g. 'find all words which contain a particular morpheme sequence'). e fol-
lowing is a simple query which matches all records where the english translation (the annotation
tier \eng) contains a substring 'beer':

@record{$eng ='̃beer'}

is example illustrates some basic principles of the query language. A declaration in form of
@L{ ... } is an element paern. An element paern matches a class of elements on a particular
level L according to some conditions. e conditions are listed within the curvy brackets. In this
example, we have one condition, which is $eng =~ 'plum'. is tells ToolboxSearch to constrain the
list of resulting record-level elements to ones whose \eng annotation tier includes a substring 'beer'
(which would find results like 'He had a beer' but also 'Beeri was the father of the prophet Hosea').
e operation '=~' here means 'match the regular expression'.

In ToolboxSearch, using the query language to search the corpus is very easy. e query is simply
wrien as a string within R and the search is carried out using the %% operator:
r i ← c rp %% " @record { $ eng =∼ ' beer ' } "
r i

Corpus subse t@record : 1 22 , 1 49 , 4 62 , 4 70 , 472 (5 e l emen t s)

e search returns a corpus index object as a result (see page ⁇). is index object contains the

20

indices of the elements which match the query. It can be used to extract these elements using
corpus partitioning:
crp [r i]

Corpus with 5 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Burhahang_02 . 0 8
\ eng (He i s) o f f e r i n g the l o c a l bee r and y e a s t .
\ gw khamawa maciya ̃ s o l o iwa ŋʔ samami ga r i k ana
\mph khamawa maciya ̃ s o l o iwa ŋʔ samami g a r e r a
\ mgl l o c a l . b ee r . and . l i q u o r y e a s t c a l a b a s h m a t e r i a l s hav ing . done
\ l g C−RL C−RL C−RL C−RL N

−−−−−−−−−−@2
\ r e f Burhahang_02 . 4 2
\ eng (He i s) o f f e r i n g the l o c a l beer , yeas t , c a l a b a s h .
\ gw ̃khamauwa maciwa ̃ s o l o iwa ŋʔ samami ga r i k ana
\mph ̃khamauwa maciya ̃ s o l o iwa ŋʔ samami g a r e r a
\ mgl l o c a l . b ee r . and . l i q u o r l o c a l . b ee r . and . l i q u o r c a l a b a s h m a t e r i a l s hav ing . done
\ l g C−RL C−RL C−RL C−RL N

−−−−−−−−−−@3
\ r e f arkha_hengma . 0 3
\ eng R i c e bee r i s needed
\ gw khaca caha l i n o
\mph khaca caha l i s −no
\ mgl g r a i n . mash need be . needed −IND . NPST
\ l g C N C/N −C

We are not limited to searches at the record level. In fact, we can search at any level defined in the
corpus. Here, we look for words which end in 'ka':
r i ← c rp %% "@word { $gw =∼ ' ka $ ' } "
c rp [r i]

Corpus with 32 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw ŋ l ak a
\mph ŋ l a k a
\ mgl up s i d e . down
\ l g C−RL

−−−−−−−−−−@2
\gw ŋheka
\mph ŋheka
\ mgl up s i d e . down
\ l g C−RL

−−−−−−−−−−@3
\gw ŋ l ak a
\mph ŋ l a k a
\ mgl up s i d e . down
\ l g C−RL

As you can see, ToolboxSearch will automatically extract the correct element from the corpus: the
resulting subcorpus becomes a list of word instead of a list of records.

21

A powerful feature of the query language is its compositionality. For instance, we can combine
different search conditions. e following example will find all records which include substrings
'beer' and 'give' in the translation:
crp [c rp %% " @record { $ eng =∼ ' beer ' AND $eng =∼ ' need ' } "]

Corpus with 1 e n t r i e s (r e c o r d) showing 1 :

−−−−−−−−−−@1
\ r e f arkha_hengma . 0 3
\ eng R i c e bee r i s needed
\ gw khaca caha l i n o
\mph khaca caha l i s −no
\ mgl g r a i n . mash need be . needed −IND . NPST
\ l g C N C/N −C

e conditions are combined with the help of logical operations AND, OR and NOT. You can also use
brackets to enforce precedence. e usage of the logical operators closely follows the rules of the
usual predicate logic. For example, to find records with 'beer' and either 'need' or 'offer' in the
translation:
crp [c rp %% " @record { $ eng =∼ ' beer ' AND ($ eng =∼ ' need ' OR $ eng =∼ ' o f f e r ') } "]

Corpus with 3 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Burhahang_02 . 0 8
\ eng (He i s) o f f e r i n g the l o c a l bee r and y e a s t .
\ gw khamawa maciya ̃ s o l o iwa ŋʔ samami ga r i k ana
\mph khamawa maciya ̃ s o l o iwa ŋʔ samami g a r e r a
\ mgl l o c a l . b ee r . and . l i q u o r y e a s t c a l a b a s h m a t e r i a l s hav ing . done
\ l g C−RL C−RL C−RL C−RL N

−−−−−−−−−−@2
\ r e f Burhahang_02 . 4 2
\ eng (He i s) o f f e r i n g the l o c a l beer , yeas t , c a l a b a s h .
\ gw ̃khamauwa maciwa ̃ s o l o iwa ŋʔ samami ga r i k ana
\mph ̃khamauwa maciya ̃ s o l o iwa ŋʔ samami g a r e r a
\ mgl l o c a l . b ee r . and . l i q u o r l o c a l . b ee r . and . l i q u o r c a l a b a s h m a t e r i a l s hav ing . done
\ l g C−RL C−RL C−RL C−RL N

−−−−−−−−−−@3
\ r e f arkha_hengma . 0 3
\ eng R i c e bee r i s needed
\ gw khaca caha l i n o
\mph khaca caha l i s −no
\ mgl g r a i n . mash need be . needed −IND . NPST
\ l g C N C/N −C

To find records with 'beer' but not 'need' in the translation:
crp [c rp %% " @record { $ eng =∼ ' beer ' AND NOT $eng =∼ ' need ' } "]

Corpus with 4 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Burhahang_02 . 0 8
\ eng (He i s) o f f e r i n g the l o c a l bee r and y e a s t .

22

\ gw khamawa maciya ̃ s o l o iwa ŋʔ samami ga r i k ana
\mph khamawa maciya ̃ s o l o iwa ŋʔ samami g a r e r a
\ mgl l o c a l . b ee r . and . l i q u o r y e a s t c a l a b a s h m a t e r i a l s hav ing . done
\ l g C−RL C−RL C−RL C−RL N

−−−−−−−−−−@2
\ r e f Burhahang_02 . 4 2
\ eng (He i s) o f f e r i n g the l o c a l beer , yeas t , c a l a b a s h .
\ gw ̃khamauwa maciwa ̃ s o l o iwa ŋʔ samami ga r i k ana
\mph ̃khamauwa maciya ̃ s o l o iwa ŋʔ samami g a r e r a
\ mgl l o c a l . b ee r . and . l i q u o r l o c a l . b ee r . and . l i q u o r c a l a b a s h m a t e r i a l s hav ing . done
\ l g C−RL C−RL C−RL C−RL N

−−−−−−−−−−@3
\ r e f arkha_hengma . 1 4
\ eng Pu t t i n g two t h i r d water o f the r i c e bee r
\ gw khacakko h i c c i bhaga l e k i cuwa t ima k ina
\mph khaca −ko h i c c e bhag −a l e k i cuwa t i s −ma kina
\ mgl g r a i n . mash −GEN two pa r t −NTVZ approx ima t e l y water put . i n t o −INF SEQ
\ l g C −C C N −C C C C −C C

And, find all words which either end in or start with 'ka'.
crp [c rp %% "@word { $gw =∼ ' ka $ ' OR $gw =∼ '∧ka ' } "]

Corpus with 63 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw ŋ l ak a
\mph ŋ l a k a
\ mgl up s i d e . down
\ l g C−RL

−−−−−−−−−−@2
\gw ŋheka
\mph ŋheka
\ mgl up s i d e . down
\ l g C−RL

−−−−−−−−−−@3
\gw ŋ l ak a
\mph ŋ l a k a
\ mgl up s i d e . down
\ l g C−RL

e above examples feature a particular type of search condition: annotation condition. It has the
form $T op 'val', where T is a name of an annotation tier, op is a comparison operator and 'val' is
a substring. e dollar sign tells ToolboxSearch that we want to match an annotation. e current
version of ToolboxSearch can only do string-based match (so you can't do something like $age > 5
yet).

Another type of search condition is the containment condition. It tells ToolboxSearch to find all
elements which contain specific elements (which in turn, are matched using their own paern).
Here, for example, we will find all records which contain words ending in 'ka':
crp [c rp %% " @record { CONTAINS @word { $gw =∼ ' ka $ ' } } "]

23

Corpus with 29 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Burhahang_01 . 3 8
\ eng Le t i t not be ups i d e down . may i t be we l l .
\ gw ŋ l a k a ŋ heka l ima ʔ maha
\mph ŋ l a k a ŋ heka l i s −ma ʔ maha
\ mgl up s i d e . down ups i d e . down be −INF no
\ l g C−RL C−RL C −C C

−−−−−−−−−−@2
\ r e f Burhahang_02 . 6 6
\ eng I t i s s ay ing t h a t l e t i t not be ups i d e down and f a l l down .
\ gw ŋ l a k a ŋ heka ʔʔ yuimahaima l ima ʔ maha bhanikana
\mph ŋ l a k a ŋ heka ŋ yu −ma −h a t t −ma l i s −ma ʔ maha bhonikana
\ mgl up s i d e . down ups i d e . down be −INF −TEL −INF be −INF no having . s a i d
\ l g C−RL C−RL C −C −C −C C −C C C−RL

−−−−−−−−−−@3
\ r e f c h i n t ang_ s ah i d . 0 2 3
\ eng A f t e r t h a t they l e t me f r e e .
\ gw u t i pa ch i akka ̃ c a i ̃ u l edehe
\mph u t t i pa ch i akka ̃ c a i u− l e t −e −̃he
\ mgl t h a t . much l a t e r . on 1 s SPEC . TOP 3A− l e t . f r e e −PST −ePST
\ l g C N C N C− C −C −C

Of course, containment conditions can be also combined with each other and other relations. Con-
sider:
crp [c rp %% " @record
{

$ eng =∼ ' go ' AND
CONTAINS @word { $gw =∼ ' ka $ ' OR $gw =∼ '∧ka ' }

} "]

Corpus with 6 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f c h i n t ang_ s ah i d . 1 8 3
\ eng Goodness g r a c i ou s , i n the year 36 they caught him and . . .
\ gw a t t e r i k a ho c h a t t i s ʔ s a l b e na u l abe k ina
\mph a t t e r i k a ho c h a t t i s s a l −ʔpe na u− l a b −e k ina
\ mgl EXCLA be t h i r t y . s i x year −LOC PTCL 3 nsS /A− c a t ch −PST SEQ
\ l g C N N N −C C C− C −C C

−−−−−−−−−−@2
\ r e f c h i n t ang_ s ah i d . 2 3 8
\ eng We a l s o don ' t go .
\ gw ŋkanaa ŋya ŋɨŋkhacekean
\mph ŋkanaa ŋya khat −ce −kV ŋ −a −ɨŋn
\ mgl 1 pe ADD go −ns −NPST −e −NEG
\ l g C C C −C −C −C −C

−−−−−−−−−−@3
\ r e f c h i n t ang_ s ah i d . 2 5 5
\ eng When I go (t h e r e) t h e s e days . . .
\ gw a a j i k a l i na akka ʔʔ̃ kha iyaa garda na
\mph ah a j j o l i na akka khat ŋ−a ʔ −̃a garda na
\ mgl FILLER th e s eday s PTCL 1 s go −1sS / P −1sNPST doing PTCL
\ l g C C/N C C C −C −C N C

24

Or:
crp [c rp %% " @record
{
CONTAINS @word { $gw =∼ ' ka $ ' }
OR
CONTAINS @word { $gw =∼ '∧ba ' }

} "]

Corpus with 187 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Budhohang_d . 0 4
\ gw s i r j a n a gu r j ana ̃ c a i n e ke bhane ̃ baphaima punne
\mph s i r j a n a g u r j a n i ̃ c a i n e ke bhane ̃ baphaima punne
\ mgl c r e a t i o n c r e a t i o n PTCL FILLER FILLER DEM ch a r i t y
\ l g C/N−RL C−RL N C−RL C−RL C−RL N

−−−−−−−−−−@2
\ r e f Budhohang_d . 1 1
\ gw s a b a i ̃baphaima ʔ̃ p i n a an i kha
\mph sab ̃ baphaima p i t −na ʔ −̃a − i kha
\ mgl a l l DEM g iv e −1>2 −1sNPST −p FOC
\ l g N C−RL C −C −C −C C

−−−−−−−−−−@3
\ r e f Budhohang_d . 1 4
\ gw s a b a i j i u d an a bardana s a r an ap i c h a na
\mph sab ā j i u dn ā bardn s a r an ap i c h a na
\ mgl a l l g i f t . o f . body b l e s s i n g p r o t e c t i o n PTCL
\ l g N N N C−RL C

We can also nest containment relation to even further levels. e following will find all records
which contain at least one word which contains a locative marker:
crp [c rp %% " @record
{
CONTAINS @word
{
CONTAINS @morpheme { $mgl =∼ ' LOC ' }

}
} "]

Corpus with 110 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f Budhohang_d . 2 0
\ gw ba ʔ thembeko b i n t i na ʔ̃ nummaa
\mph ba them −ʔpe −ko b i n t i na numd −ma ʔ −̃a
\ mgl DEM. PROX what −LOC −GEN r e qu e s t PTCL do −1sS / P −1sNPST
\ l g C C −C −C N C C −C −C

−−−−−−−−−−@2
\ r e f Budhohang_d . 2 2
\ gw ̃ha ʔ bagobe ̃ c a i n e ke haniko ̃ c a i ke bh and ekh i l a i
\mph ̃ha bago −ʔpe ̃ c a i n e ke han i −ko ̃ c a i ke bhandekh i l e
\ mgl FILLER DEM −LOC PTCL FILLER 2p −GEN SPEC . TOP FILLER FILLER
\ l g C/N C −C N C−RL C −C N C−RL C−RL

−−−−−−−−−−@3
\ r e f Budhohang_d . 2 3

25

\ gw bago ̃ha ŋ nawagi ʔ sewabe ̃ c a i
\mph bago ̃ha ā nuwgi sewa −ʔpe ̃ c a i
\ mgl DEM FILLER f i r s t . f r u i t s s e r v i c e −LOC SPEC . TOP
\ l g C C/N N C/B −C N

e last type of condition featured by ToolboxSearch is the sequence paern condition. Sequences
woks very similar to regular expressions: they match a particular sequence of elements. Let us
suppose that we are interested in finding all records which contains a sequence of a word starting
with 'ba' immediately followed by a word starting with 'ma'. is is easy with sequence conditions:
crp [c rp %% " @record
{
CONTAINS [@word { $gw=∼ '∧ba ' } @word { $gw=∼ '∧ma ' }]

} "]

Corpus with 1 e n t r i e s (r e c o r d) showing 1 :

−−−−−−−−−−@1
\ r e f c h i n t ang_ s ah i d . 0 5 9
\ eng . . . t he o f f s p r i n g s o f my g r and f a t h e r ' s younges t son do not l i v e here .
\ gw a th i pp a kanchako sakha s an t anc e ʔ b a i ʔ manchi
\mph a− t h i ppa kancha −ko sakha san tan −ce ʔ b a i manchi
\ mgl 2− g r a nd f a t h e r younges t . one . male −GEN l i n e a g e o f f s p r i n g −ns DEM. PROX not
\ l g C− C N −C C N −C C C

As you can see, sequence conditions look very similar to containment conditions. e only dif-
ference is that the sequence is wrien within square brackets. e sequence paern consists of
element paerns. Two consecutive element within a sequence mean that the respective elements
must occur immediately aer each other in order for the match to be successful. It is also possible
to match an arbitrary element (similar to how . works for regular expressions) by using the special
paern ANY. For instance, if we require exactly one word to intervene in our last paern:
crp [c rp %% " @record
{
CONTAINS [@word { $gw=∼ '∧ba ' } ANY @word { $gw=∼ '∧ma ' }]

} "]

Corpus with 2 e n t r i e s (r e c o r d) showing 1−2:

−−−−−−−−−−@1
\ r e f c h i n t ang_ s ah i d . 0 2 7
\ eng That ' s i t , t h e r e i s not much (to t e l l) .
\ gw u t i t a n i baddhe na manchi n i
\mph u t t i t a n i baddhe na manchi n i
\ mgl t h a t . much PTCL PTCL very PTCL not PTCL
\ l g C/N C C C C C C

−−−−−−−−−−@2
\ r e f c h i n t ang_ s ah i d . 2 1 7
\ eng No , not a l o t .
\ gw a baddhe na ʔ maha
\mph ̃a baddhe na ʔ maha
\ mgl no very PTCL no
\ l g C/N C C C

26

It is also possible to specify element repetition by puing a : b before an element in a sequence
paern (a, b are numbers). A repetition will match a sequence of at least a and at most b elements
which confirm to the element paern.
crp [c rp %% " @record
{
CONTAINS [@word { $gw=∼ '∧ba ' } 1 : 3 ANY @word { $gw=∼ '∧ma ' }]

} "]

Corpus with 6 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f c h i n t ang_ s ah i d . 0 2 7
\ eng That ' s i t , t h e r e i s not much (to t e l l) .
\ gw u t i t a n i baddhe na manchi n i
\mph u t t i t a n i baddhe na manchi n i
\ mgl t h a t . much PTCL PTCL very PTCL not PTCL
\ l g C/N C C C C C C

−−−−−−−−−−@2
\ r e f c h i n t ang_ s ah i d . 1 2 4
\ eng How o ld was your f a t h e r when they k i l l e d him?
\ gw an i k a t i ba r sako ̃ huda buwa la i maro
\mph an i k a t i b a r s a −ko ̃ huda buwa − l a i mar −yo
\ mgl and how . many year −GEN be f a t h e r −DAT k i l l −PST
\ l g N C/N C/N −N N N −N N −N

−−−−−−−−−−@3
\ r e f c h i n t ang_ s ah i d . 1 5 2
\ eng Someone who ' s been born here . . .
\ gw ba ʔ b a i t a janma ŋ l i s a g o ʔ mami
\mph ba ʔ b a i t a janma l i s −a ŋ − −ko ʔ mami
\ mgl PRO DEM. PROX PTCL be . born be −PST −1sA −NMLZ man
\ l g C C C N C −C −C −C C

If a = b, we can omit the semicolon, e.g.:
crp [c rp %% " @record
{
CONTAINS [@word { $gw=∼ '∧ba ' } 3 ANY @word { $gw=∼ '∧ma ' }]

} "]

Corpus with 3 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f c h i n t ang_ s ah i d . 1 5 2
\ eng Someone who ' s been born here . . .
\ gw ba ʔ b a i t a janma ŋ l i s a g o ʔ mami
\mph ba ʔ b a i t a janma l i s −a ŋ − −ko ʔ mami
\ mgl PRO DEM. PROX PTCL be . born be −PST −1sA −NMLZ man
\ l g C C C N C −C −C −C C

−−−−−−−−−−@2
\ r e f c h i n t ang_ s ah i d . 2 3 2
\ eng Are t h e r e any (r e l a t i v e s o f yours) near ŋBa lakha ?
\ gw an i ŋba l akha t i r a cha k i ʔmanchi
\mph an i ŋba l akha t i r a cha k i manchi
\ mgl and a_p l a c e s i d e be or not
\ l g N N N N N C

27

−−−−−−−−−−@3
\ r e f budhohang_wal . 0 4 8
\ gw ʔbagobe banchur i b i n c hu r i numma chakma ʔ maha kha
\mph bago −ʔpe banchur i b i n c hu r i numd −ma chakma ʔ maha kha
\ mgl DEM −LOC . gm o b s t a c l e . n o b s t a c l e . n do . v t −INF . gm con s c i e n c e . n no . i n t e r j PTCL . gm
\ l g C −C C−RL C−RL C −C C−RL C C

Finally, a special repetition index ∗ means 'arbitrary number of times'. An a repetition a : ∗ will
match at least a items (with no upper bounds). Using ∗ alone is equivalent to 0 : ∗ (match zero or
more items). e following query will find the records where a 'ba…' word precedes a 'ma…' word,
with an arbitrary number of words between them:
crp [c rp %% " @record
{
CONTAINS [@word { $gw=∼ '∧ba ' } * ANY @word { $gw=∼ '∧ma ' }]

} "]

Corpus with 10 e n t r i e s (r e c o r d) showing 1−3:

−−−−−−−−−−@1
\ r e f c h i n t ang_ s ah i d . 0 2 7
\ eng That ' s i t , t h e r e i s not much (to t e l l) .
\ gw u t i t a n i baddhe na manchi n i
\mph u t t i t a n i baddhe na manchi n i
\ mgl t h a t . much PTCL PTCL very PTCL not PTCL
\ l g C/N C C C C C C

−−−−−−−−−−@2
\ r e f c h i n t ang_ s ah i d . 0 5 9
\ eng . . . t he o f f s p r i n g s o f my g r and f a t h e r ' s younges t son do not l i v e here .
\ gw a th i pp a kanchako sakha s an t anc e ʔ b a i ʔ manchi
\mph a− t h i ppa kancha −ko sakha san tan −ce ʔ b a i manchi
\ mgl 2− g r a nd f a t h e r younges t . one . male −GEN l i n e a g e o f f s p r i n g −ns DEM. PROX not
\ l g C− C N −C C N −C C C

−−−−−−−−−−@3
\ r e f c h i n t ang_ s ah i d . 1 2 4
\ eng How o ld was your f a t h e r when they k i l l e d him?
\ gw an i k a t i ba r sako ̃ huda buwa la i maro
\mph an i k a t i b a r s a −ko ̃ huda buwa − l a i mar −yo
\ mgl and how . many year −GEN be f a t h e r −DAT k i l l −PST
\ l g N C/N C/N −N N N −N N −N

So far, the sequence paernswe examined are not anchored, whichmeans that theywill bematched
independent of their position within the enclosing element. e symbol # allows us to anchor the
sequence paern on the boundary of the enclosing element. For instance, to find all words which
end with a locative morpheme:
crp [c rp %% "@word
{
CONTAINS [@morpheme { $mgl=∼ ' LOC ' } #]

} "]

Corpus with 78 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw ʔbagobe

28

\mph bago −ʔpe
\ mgl DEM −LOC
\ l g C −C

−−−−−−−−−−@2
\gw ʔsewabe
\mph sewa −ʔpe
\ mgl s e r v i c e −LOC
\ l g C/B −C

−−−−−−−−−−@3
\gw ʔ p a t i b e
\mph p a t i −ʔpe
\ mgl inn −LOC
\ l g C/N −C

Here, #] means 'match the boundary'. It can be also used in the beginning of the sequence. e
following example picks the words which start with a demonstrative marker:
crp [c rp %% "@word
{
CONTAINS [# @morpheme { $mgl=∼ 'DEM' }]

} "]

Corpus with 160 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw ̃baphaima
\mph ̃baphaima
\ mgl DEM
\ l g C−RL

−−−−−−−−−−@2
\gw ̃baphaima
\mph ̃baphaima
\ mgl DEM
\ l g C−RL

−−−−−−−−−−@3
\gw ba
\mph ba
\ mgl DEM. PROX
\ l g C

Of course, both anchors can be combined. Here, we find all words which start with a DEM marker
and end with a LOC marker:
crp [c rp %% "@word
{
CONTAINS
[#

@morpheme { $mgl=∼ 'DEM' }
* ANY
@morpheme { $mgl=∼ ' LOC ' }

]
} "]

Corpus with 15 e n t r i e s (word) showing 1−3:

29

−−−−−−−−−−@1
\gw ʔbagobe
\mph bago −ʔpe
\ mgl DEM −LOC
\ l g C −C

−−−−−−−−−−@2
\gw ŋʔhugoi
\mph hun −ko −ʔ i
\ mgl DEM −GEN −LOC
\ l g C −C −C

−−−−−−−−−−@3
\gw ŋʔhugoi
\mph hun −ko −ʔ i
\ mgl DEM −GEN −LOC
\ l g C −C −C

For a detailed reference of the query language, see Appendix⁇.

4.2 Using corpus index objects to combine query results

As already mentioned, corpus query in ToolboxSearch return a corpus index object (see page ⁇).
Because the index objects can be easily combined via set operations, we can use them to carry out
complex searches by combining results of simple queries. Consider the following example:
find all records with a demonstrative
i . d em ← crp %% " @record { CONTAINS @morpheme { $mgl =∼ 'DEM ' } } "
find all records which contain at least one
i . v ← c rp %% " @record { CONTAINS @morpheme { $mgl =∼ ' \ \ . (v i | v t | v2) $ ' } } "
find all records which contain more then one verb stem
i . c omp l e x ← crp %% " @record {
CONTAINS
[
@morpheme { $mgl =∼ ' \ \ . (v i | v t | v2) $ ' }
* ANY
@morpheme { $mgl =∼ ' \ \ . (v i | v t | v2) $ ' }

] } "
pick only demonstratives within simple sentences
r i = (i . d em − i . c omp l e x) * i . v
c rp [r i]

Corpus with 2 e n t r i e s (r e c o r d) showing 1−2:

−−−−−−−−−−@1
\ r e f budhohang_wal . 0 4 8
\ gw ʔbagobe banchur i b i n c hu r i numma chakma ʔ maha kha
\mph bago −ʔpe banchur i b i n c hu r i numd −ma chakma ʔ maha kha
\ mgl DEM −LOC . gm o b s t a c l e . n o b s t a c l e . n do . v t −INF . gm con s c i e n c e . n no . i n t e r j PTCL . gm
\ l g C −C C−RL C−RL C −C C−RL C C

−−−−−−−−−−@2
\ r e f budhohang_wal . 0 8 2
\ gw ̃ha ʔ bagobe s a b a i kuro sima lapma ʔ maha
\mph ̃ha bago −ʔpe sab kura sima l a p t −ma ʔ maha
\ mgl FILLER . i n t e r j DEM −LOC . gm a l l . adv th i ng . n dea th . n c a t ch . v t −INF . gm no . i n t e r j
\ l g C/N C −C N N C C −C C

30

Our goal is to find all records with demonstrative, but only simple clauses (one verb stem per
record). Doing this as one single query is complicated, so we can divide the query into a number
of simpler ones. Here, i.dem is the result of the query which searches for a DEM marker. e i.v and
i.complex are simple and complex records, respective. e $mgl =~ '\\.(vi|vt|v2)$' condition matches
the end of the gloss (which is an inline part of speech tag) agains possible verb annotations. Finally,
we combine the queries by omiing all complex records from the DEM-records and limiting the
result to the records which are also simple.

Remember that we can also store the results of such queries in a Toolbox file for later processing:
wr i t eToo lbox (c rp [r i] , ' s imp l e _d em . t x t ')

A ery language reference

is appendix is the reference to the ToolboxSearch query language. e query language is de-
scribed in form of simple rewriting grammar rules. Language symbols delimited by an underscore
denote non-terminals. A quotation mark before a symbol means that the occurrence of the symbol
is optional in the rule.

A core element of the query language is the element paern. A valid element paern is also a valid
query.

ELEM ::= @level
ELEM ::= @level{_CONDITIONS_}

Here, level is the level of the element and _CONDITIONS_ is the list of conditions which the matched
element must satisfy. e condition part can be omied, in this case the element paern will match
any element of the respective level.

CONDITIONS ::= _CONDITION_
CONDITIONS ::= (_CONDITIONS_)
CONDITIONS ::= NOT _CONDITIONS_
CONDITIONS ::= _CONDITIONS_ AND _CONDITIONS_
CONDITIONS ::= _CONDITIONS_ OR _CONDITIONS_

A condition can be one of: annotation condition, containment condition or sequence paern con-
dition.

CONDITION ::= _ANN_COND_
CONDITION ::= _CONTAINS_COND_
CONDITION ::= _CONTAINS_SEQUENCE_COND_

31

Annotation condition match contents of an annotation tier.

_ANN_COND_ ::= $name _OP_ 'val'
_OP ::= ==
_OP ::= ==
_OP ::= =~
_OP ::= !~

Here, name is the name of an annotation tier and val is a string value which the contents of the
annotation will be matched against. e match operator _OP_ is one of:

== exact match

! = inequality

= match regular expression (case-insensitive)

! = do not match regular expression (case-insensitive)

For regular expression syntax, see R help on ?regex.

A containment condition matches a sub-element.

_ANN_COND_ ::= CONTAINS _ELEM_

Here, the nested _ELEM_ describes the element which must be contained in the enclosed element.

Finally, a sequence paern condition matches a sequence of sub-elements.

_CONTAINS_SEQUENCE_COND_ ::= CONTAINS [?#_SEQ_PATTERN_?#]

e anchor character # tells ToolboxSearch to match the boundary of the enclosing element (start,
end, or both). Otherwise, the sequence is matched anywhere within the enclosing element.

_SEQ_PATTERN_ ::= _SEQ_ITEM_ ?_SEQ_PATTERN_
_SEQ_ITEM_ ::= ?_REP_ ANY
_SEQ_ITEM_ ::= ?_REP_ _ELEM_

A sequence paern is a list of sequence items. Each sequence item can match a particular ele-
ment paern or any element (via special word ANY). Each sequence item is optionally prefixed by a
repetition index.

32

REP ::= num : num
REP ::= num
REP ::= *
REP ::= num : *

Here, num is a non-negative integer number. A repetition index in form a : b will match at least a
and at most b items, awill match exactly a items, a : ∗will match a or more items and ∗will match
zero or more items.

B Tips and tris

is section contains small practical examples of how ToolboxSearch can be used.

Find all words with exactly one morpheme

crp [c rp %% "@word { CONTAINS [# ANY #] } "]

Corpus with 2486 e n t r i e s (word) showing 1−3:

−−−−−−−−−−@1
\gw he
\mph he
\ mgl ADDR
\ l g N

−−−−−−−−−−@2
\gw parmeswora
\mph śparamevara
\ mgl Lord
\ l g N

−−−−−−−−−−@3
\gw s a b a i
\mph sab
\ mgl a l l
\ l g N

To compile a list of such unique words we must do some R magic:
words ← a s . d a t a . f r am e (c rp [c rp %% "@word { CONTAINS [# ANY #] } "])
words ← unique (words $gw)
head (words)

[1] " he " " parmeswora " " s a b a i " " ̃ c a i n e " " ke "
[6] " t h i pp e "

l e ng t h (words)

[1] 715

33

