PT22 Advanced Composite Video Interface: Decoder

User Manual

Revision 0.5 30th June 2014

PT22 User Manual Revision 0.5

Page 1 of 28

Revision History

Date	Revisions	Version
21-02-2013	First Draft.	0.1
30-06-2014	Document re-written.	0.5

Contents

Revision History	2
Contents	3
Tables	3
Figures	
1. Introduction	
2. PT22 Module description	5
3. Signal Interconnections	6
4. aČVi Overview	9
5. Technical Overview	11
aCVi_decoder.v	11
aCVi_Rx_Register_control.v	11
aCVi_Demod.v	12
aCVi_DemodLPF.v	13
aCVi_SPG.v	14
aCVi_Comb_filter.v	16
aCVi_measure.v	16
aCVi_Procamp.v	17
aCVi_data.v.	
aCVi_Chargen.v	19
6. Register interface	23
7. Register descriptions	
8. PGĂ amplifier control	

Tables

Table 1 PT22 Altera FPGA resource requirements	
Table 2 PT22 Verilog file structure	
Table 3 PT22 Input/Output signals	7
Table 4 SC10 Line and subcarrier frequencies	
Table 5 Data transfer instructions: Receiver > Transmitter	
Table 6 aCVi Control words Transmitter > Receiver	
Table 7 Character generator map	
Table 8 Register description	

Figures

Figure 1 PT22 Block symbol	6
Figure 2 aCVi Spectrum.	10
Figure 3 PT22 Block diagram	
Figure 4 Chroma demodulator low pass filter	
Figure 5 Sync filter frequency response.	
Figure 6 Phase detector low pass filter response	
Figure 7 External VCO schematic	
Figure 8 aCVi Data format	17
Figure 9 Character overlay address map.	
Figure 10 Character mapping	
Figure 11 PT22 Register timing	
Figure 12 AD8337 PGA gain response	
Figure 13 PWM analogue control.	

1. Introduction

PT22 is a decoder IP (intellectual property) core compatible with the aCVi Advanced Composite Video Interface.

aCVi is a method to transmit HD video over existing RG-59/UTP coaxial/twisted-pair cable networks or allow the use of less expensive RG-59/UTP coaxial/twisted-pair cable in long distance installations. Details on the interface may be found here: http://www.singmai.com/acvi/aCVi_technology.htm.

The decoder IP accepts digital aCVi encoded video at 10 bit resolution, which it decodes to a 20 bit YCbCr (BT601 format) output with separate horizontal and vertical synchronizing pulses and 74.25MHz clock. PT22 supports 720p/50Hz, 720p/60Hz, 1080p/25Hz, 1080p/30Hz, 1080p/50Hz and 1080p/60Hz but may also be readily adapted to other standards and also non-standard video formats such as VESA formats.

Control and status registers are written to and read from using a conventional 8 bit wide microprocessor interface.

The intellectual property block is provided as RTL compliant Verilog-2001 source code for FPGAs from all vendors or for ASICs.

Typical resource usage for an Altera FPGA is shown in Table 1.

Logic Cells	Memory Bits	M9K blocks	9x9 Multipliers	18x18 multipliers
10375	349952	44	0	8

Table 1 PT22 Altera FPGA resource requirements

An approximate equivalent for ASIC resource usage is 11623 LCs (including multipliers) x 14 = 162722 2 input NAND gate equivalent. The memory is single port ROM and RAM.

2. PT22 Module description

The PT22 aCVi decoder IP core comprises 14 Verilog modules in a hierarchical structure, (see Table 2).

aCVi_decoder.v								
aCVI_ Rx_Register_ control.v	aCVi_ Demod.v	aCVI_ DemodLPF. v	aCVi_ SPG.v	aCVi_ data.v	aCVi_ Comb_ filter.v	Chargen.v	aCVi_ Proca mp.v	aCVi_ Measure. v
	Rx_SinCos _ ROM.v					Char_Disp_ RAM.v Char_Disp_ ROM.v CG_ROM.v		

Table 2 PT22 Verilog file structure

The top level file is aCVi_decoder.v which, in turn, calls nine of the other modules. aCVi_Demod.v calls a third level file, Rx_SinCos_ROM.v. Chargen.v (the character overlay) call three other modules.

3. Signal Interconnections

The PT22 signal interconnect diagram is shown in Figure 1.

Figure 1 PT22 Block symbol.

The signal descriptions are shown in Table 3, below.

	Inputs
Signal	Description
Clk74	74.25MHz clock input from VCO. All outputs are valid on the rising edge of this clock. Rising edges of Clk74 and Clk148 should be coincident.
Clk148	148.5MHz clock from VCO Rising edges of Clk74 and Clk148 should be coincident.
Reg_Clk	Clock used for writing to the control registers only. If 'Clk74' is continuous and stable Reg_clk may be connected to this input.
RESETn	Asynchronous active low reset signal. Asserting this input sets all the control registers to their default value and resets all registers.
ORNG	Over-range input from the ADC.
aCVi_in[9:0]	Input aCVI encoded data from ADC. Data should be valid on the rising edge of Clk74. This input should be offset binary.
A[8:0]	Address bus input used to select the control

Si	ngMai Electronics
	0
	register/character generator location to be written
	to/read from.
Din[7:0]	Control data input bus.
aCVi_Rx_CSn	Control chip select input, active low. Used in
	combination with the WRn input to control writing to the
	control registers.
aCVi_CG_CSn	Character overlayl chip select input, active low. Used in
	combination with the WRn input to control writing to the
	character overlay memory.
aCVi_Rx_WRn	Active low write enable input. Used in combination with
	the CSn input to control writing to the control registers
	and character overlay.
O'ma al	Outputs
Signal	Description
aCVi_Rx_Register_out[70]	Control output data bus. Outputs the control/status
	register data selected by the A[7:0] bus. (Note: the
	character overlay is write only)
aCVi_Yout[9:0]	Y (luma) output from the encoder. The output is straight
	binary, blanking level is 64_{10} and peak level 960_{10} . The
	data output is valid at the rising edge of Clk74.
aCVi_Cbout[9:0]	aCVi_Yout[9] is the MSB. Cb (B-Y chroma) output from the encoder. The output is
	offset binary, blanking level is 512_{10} . The data output is
	valid at the rising edge of Clk74 when aCVi_Cmux is
	high (37.125MHz data rate: 4:2:2 format).
	aCVi_Cbout[9] is the MSB.
aCVi_Crout[9:0]	Cr (R-Y chroma) output from the encoder. The output is
	offset binary, blanking level is 512_{10} . The data output is
	valid at the rising edge of Clk74 when aCVi_Cmux is
	high (37.125MHz data rate: 4:2:2 format).
	aČVi_Crout[9] is the MSB.
aCVi_Cmux	Data valid output for Cb and Cr outputs. Cb and Cr data
	is valid on the rising edge of Clk74 when aCVi_Cmux is
	high (4:2:2 data format).
aCVi_Hout	Horizontal sync output from decoder (active low).
aCVi_Vout	Vertical sync output from decoder (active low).
aCVi_Fout	Frame sync output from decoder (low for field 1). Only
	valid during interlaced video formats.
aCVi_HBlank	Horizontal blanking output from decoder.
aCVi_VBlank	Vertical blanking output from decoder.
Gain_control	Pulse width modulated output for the control of the
	analogue input stage voltage controlled amplifier (AGC).
VCO_PWM	Pulse width modulated output for the control of external
	voltage controlled oscillator frequency (VCO control
	voltage).
aCVi_test[1:0]	Test outputs. Do not connect.

Table 3 PT22 Input/Output signals

The Verilog instantiation of PT22 is shown below:

// Instantiate aCVi decoder (PT22)

aCVi_decoder aCVi_decoder_inst (

.Clk74(Clk74_sig) , .Clk148(Clk148_sig) , .Reg_clk(Reg_clk_sig) , .RESETn(RESETn_sig) , // input Clk74_sig // input Clk148_sig // input Reg_clk_sig // input RESETn_sig

.ORNG(ORNG_sig) ,	// input ORNG_sig
.aCVi_in(aCVi_in_sig) ,	// input [9:0] aCVi_in_sig
.A(A_sig) ,	// input [8:0] A_sig
.Din(Din_sig) ,	// input [7:0] Din_sig
.aCVi_Rx_CSn(aCVi_Rx_CSn_sig) ,	// input aCVi_Rx_CSn_sig
.aCVi_CG_CSn(aCVi_CG_CSn_sig) ,	// input aCVi_CG_CSn_sig
.aCVi_Rx_WRn(aCVi_Rx_WRn_sig) ,	// input aCVi_Rx_WRn_sig
.aCVi_Rx_Register_out(aCVi_Rx_Register_out_sig) ,	// output [7:0] aCVi_Rx_Register_out_sig
.aCVi_Yout(aCVi_Yout_sig) ,	// output [9:0] aCVi_Yout_sig
.aCVi_CbCrout(aCVi_CbCrout_sig) ,	// output [9:0] aCVi_CbCrout_sig
.aCVi_Cmux(aCVi_Cmux_sig) ,	// output aCVi_Cmux_sig
.aCVi_Hout(aCVi_Hout_sig),	// output aCVi_Hout_sig
.aCVi_Vout(aCVi_Vout_sig) ,	// output aCVi_Vout_sig
.aCVi_Fout(aCVi_Fout_sig) ,	// output aCVi_Fout_sig
.aCVi_HBlank(aCVi_HBlank_sig) ,	// output aCVi_HBlank_sig
.aCVi_VBlank(aCVi_VBlank_sig) ,	// output aCVi_VBlank_sig
.Data_out(Data_out_sig) ,	// output Data_out_sig
.Gain_control(Gain_control_sig) ,	// output Gain_control_sig
.VCO_PWM(VCO_PWM_sig) ,	// output VCO_PWM_sig
.aCVi_test(aCVi_test_sig)	// output [1:0] aCVi_test_sig

);

4. aCVi Overview

The following is a brief overview of the aCVi interface.

The basic concept of the aCVi interface is to build on the proven and reliable transport method of NTSC, (the advantages of PAL – v.v. multi-path reception – is not relevant to a cable system so NTSC is used as the model). NTSC transmissions are capable of more than 1km across RG-59 cable but the bandwidth is limited to 5MHz. NTSC also has chroma/luma crosstalk issues that are difficult to resolve at the receiver end.

Because the cable system is a closed system, it is only necessary for the transmitter and receiver to 'understand' each other and we can modify the basic NTSC method to suit HD transmissions.

The first thing to overcome is the bandwidth restrictions of the cable. HD 720p/60Hz transmission requires a luma bandwidth of 30MHz according to the SMPTE-296M. Because we have only a single coaxial cable for the transport we have chosen to transmit luma and colour difference signals, (as opposed to component red, green blue), as the colour difference signals, because of the visual perception of the eye being less acute to colour, can be sent at half or less of the luma bandwidth: i.e. 7.5Hz each.

As we are transmitting video for a complete system, from camera to DVR or monitor, we should take into account system bandwidth limitations such as the Kell factor and the camera Bayer colour filter. The luma bandwidth may be set to either 30MHz (default) or 12MHz. The chroma bandwidth is set to 7.5MHz which produces no visible degradation of the image.

To further reduce the bandwidth of the transmission the colour difference signals are modulated onto a carrier in quadrature so they effectively use the same bandwidth. However, to minimise the signal recovery problems of NTSC, (and as we have no backward compatibility issues), the upper sideband of the chroma and the luma baseband do not overlap; for 720p/60Hz transmission the carrier is ~24.7Hz.

The effective bandwidth of the complete signal is therefore approximately 9.3MHz (chroma upper sideband + filter roll off) + 24.7MHz or about 34MHz, setting a minimum sampling frequency of 2 x 34MHz or 68MHz. For convenience we choose 74.25MHz as a sampling frequency as this is related to the 720p/60 SMPTE standard; (see Figure 12).

For 300m of RG-59 cable we can expect 18dB loss at this frequency (6.2dB/100m @ 50MHz). However the synchronizing signals are at a much lower frequency where the loss is only about 1-2dB so reliable rastering of the received signal should always be assured.

To simplify the high frequency compensation of the transmission pre-emphasis is used. The degree of pre-emphasis is programmable to allow for different cable lengths. The maximum pre-emphasis is set at 40dB and the frequency response is set to approximate the cable characteristics.

A further improvement in the SNR is achieved through transmitting a peak to peak video level of 1.5V which maintains compatibility with any legacy SD equipment on the network and also allows common low-power 5V drivers to be used.

Figure 2 aCVi Spectrum.

At extreme distances the bandwidth will start to further fall off. The chroma signal will be the first affected by this being the highest frequency component. However automatic colour control in the receiver can maintain the colour saturation over a further ~9dB signal attenuation. The luma bandwidth will be 'gracefully' reduced as the distance is increased.

Because of the similarity in the transmission method to NTSC both the transmitter and receiver can easily be made to accommodate conventional NTSC/PAL transmissions.

ACVi also allows for the bidirectional transfer of data between receiver and transmitter. One byte of data is transmitted in each direction per frame (i.e. 50 or 60 bytes/second data rate depending on the video frame rate). The data rate is deliberately kept low to reduce the effects of cable attenuation. Data is sent using two dedicated lines in the vertical blanking interval.

5. Technical Overview

A simplified block diagram of the PT22 aCVi decoder is shown in Figure 2.

Figure 3 PT22 Block diagram

The aCVi input from the ADC is a straight binary, 10-bit input sampled at 74.25MHz.

Analogue clamping prior to the ADC ensure the most negative value of the input signal (the sync tips) are clamped to the negative reference of the ADC (code value 0).

The following is a brief description of each Verilog module.

aCVi_decoder.v

This is the top level module for the PT22. It provides the interconnection between all the other modules.

aCVi_Rx_Register_control.v

A conventional 8 bit microprocessor style control is used to write and read to the PT22 control registers. Details of the interface may be found in Chapter 5 and the register descriptions may be found in Chapter 6.

aCVi_Demod.v

A free-running subcarrier frequency is generated using a 32 bit ratio counter clocked from the input 74.25MHz clock.

ratio = $\frac{\text{phase change per line}}{\text{pixels per line}} = \frac{F_{sc}}{74.25 \text{ MHz}} = \frac{\Delta \theta_{sc}}{360^{\circ}} = \frac{\text{subcarrier seed}}{2^{32}}$

The free-running frequency of the subcarrier is depends on the colour standard; (see table 5).

Format	Pixels/line	Line frequency	F _{sc} /F _H ratio	Subcarrier	Seed value
720p/60	1650	45.00kHz	549.5	24.7275MHz	55417954 _H
720p/50	1980	37.50kHz	659.5	24.73125MHz	5544C8A9 _H
720p/30	3300	22.50kHz	1097.5	24.69375MHz	5523AF52 _H
720p/25	3960	18.75kHz	1317.5	24.703125MHz	552BF5A8 _H
1080p/30	2200	33.75kHz	731.5	24.688125MHz	551EB851 _H
1080p/25	2640	28.125kHz	879.5	24.7359375MHz	5548EBD4 _H
1080p/24	2750	27.00kHz	915.5	24.7185MHz	553987BA _H
1080i/30	2200	33.75kHz	731.5	24.688125MHz	551EB851 _H
1080i/25	2640	28.125kHz	879.5	24.7359375MHz	5548EBD4 _H

Table 4 SC10 Line and subcarrier frequencies

The top 11 bits of this ratio counter (the phase word) are used by the demodulator to generate the sine and cosine waveforms.

For the demodulation to correctly operate the generated subcarrier must be frequency and phase locked to the aCVi video subcarrier which is done by measuring the amplitude of the demodulated and low pass filtered V output during the colour burst. If the frequency and phase of the free-running subcarrier and the colour burst are the same then this error will be zero. The reference for the BLO is the demodulated and filtered V output from the demodulator low pass filter. 32 samples of this waveform are taken during the burst pulse; the burst gate pulse from the SPG is used for this purpose.

The seed word is thus modified using the phase error signal until the input colour burst and the ratio counter are phase locked.

The aCVi chroma signal is originally generated as follows:

$$chroma = U\sin(\omega t) + V\cos(\omega t)$$

When the burst lock loop (BLO) is in lock, the frequency and phase will be the same as when the signal was being modulated. Thus, multiplying the aCVi composite video by the sine and cosine of the same frequency and phase gives the following:

$$U' = [U\sin(\omega t) + V\cos(\omega t)] \times \sin(\omega t)$$

$$U' = U\sin^2(\omega t) + V\sin(\omega t)\cos(\omega t)$$

$$U' = U\left[\frac{1 - \cos(2 \times \omega t)}{2}\right] + \frac{V}{2} \times 2\sin(\omega t)\cos(\omega t)$$

$$U' = \frac{U}{2} - \frac{U\cos(2 \times \omega t)}{2} + \frac{V\sin(2 \times \omega t)}{2}$$

...and for the V component:

$$V' = [U\sin(\omega t) + V\cos(\omega t)] \times \cos(\omega t)$$
$$V' = U\sin(\omega t)\cos(\omega t) + V\cos^{2}(\omega t)$$
$$V' = \frac{U}{2} \times 2\sin(\omega t)\cos(\omega t) + V\left[\frac{1 + \cos(2 \times \omega t)}{2}\right]$$
$$V' = \frac{U\sin(2 \times \omega t)}{2} + \frac{V}{2} + \frac{V\cos(2 \times \omega t)}{2}$$

The lower 9 bits of the 11-bit phase output from the BLO, (burst locked oscillator), are used to address a sine and cosine lookup table. These 9 bits comprise the phase angle, at subcarrier frequency, within a single quadrant and the top two bits are the quadrant – this method save memory by only requiring a single quadrant to be stored in the LUT. The output of the Sin/Cos LUT is a 24 bit word; 12 bits cosine and 12 bits sine. The quadrant signs are used to manipulate the sine and cosine data such as to construct a full waveform.

The reconstructed sine and cosine waveforms are then multiplied by the input 74.25MHz freerunning composite video. The output of the sine channel is the demodulated U signal and the cosine is the demodulated V output. One over-range bit caters for at the output to allow for twice subcarrier frequency components, (removed by the subsequent low pass filter).

aCVi_DemodLPF.v

The output of the demodulator also comprises twice subcarrier frequencies. The output is therefore low pass filtered using a 63 tap filter, the response for which is shown in Figure 4. The output of the filter is the clean 'simple' demodulated U and V.

Figure 4 Chroma demodulator low pass filter.

aCVi_SPG.v

The luma output from the comb filter (with the subcarrier removed) is further low pass filtered to reduce noise. The response of this filter, an 11 tap FIR, is shown in Figure 5.

A fixed offset is subtracted from the low pass filtered luma video such that the midpoint of the sync pulse is at value 0. Values 1-44 from the horizontal counter address a look up table whose output coefficients form a FIR low pass filter to further reduce noise from the composite video. The coefficients are multiplied by the offset video and accumulated across the 44 samples, being updated once per horizontal line. The frequency response of the sync filter is shown in Figure 6.

Figure 6 Phase detector low pass filter response

When the midpoint of the falling edge of the horizontal pulse is coincident with the centre tap of the FIR filter the accumulated result will be zero. When they are not coincident an error will be generated.

This error is filtered using a recursive filter (integrator) and proportional and integral terms are added to create an error word which is converted to a PWM signal to control and external voltage controlled oscillator (VCO). (See Figure 7).

The horizontal pixel counter is used by the SPG, (sync pulse generator), to provide the horizontal timing pulses required by the decoder, including the black level clamp pulse to the analogue front end and the burst gate pulse for the demodulator.

The vertical field pulses are recovered by using a digital integrator on the sliced composite video.

Figure 7 External VCO schematic

aCVi_Comb_filter.v

The upper luma frequencies and the lower sideband of the chroma overlap. Although there is very little luma energy in this region for most applications it is still better to completely separate them. This can separated because the chroma information has a known line based phase relationship whereas the HF luma and cross colour does not. The comb filter provides this filtering operation.

A line comb filter is used which has an aperture of 3 lines: (1/4*0H + 1/2*1H + 1/4*2H) (1 line spacing). For the comb filter to operate correctly the phase relationship of the colour component must be maintained. If not the HF luma will not be cancelled and can even be reinforced. It is therefore necessary to detect when the comb filter fails and switch to another mode. Normally this failure mode is detected using luminance differences across the comb taps but there are instances where the same luminance value can occur but there are different chroma values which still cause the comb to fail. The SC10 comb adaptation detects value differences in luma, U and V comb taps thereby detecting all comb failure instances.

The output of the comb filter is combed U and V without high frequency luma.

The combed chroma signal is then frequency shifted back to the subcarrier frequency and subtracted from the low pass filtered aCVi video.

The sine and cosine waveforms from the demodulator are delayed to compensate for the low pass filter delay; the waveforms are then multiplied by the combed U and V outputs and then added together to reconstruct a chrominance signal centred on the aCVi referenced subcarrier frequency. This chrominance signal is then subtracted from the delayed low pass filtered luma video which provides a clean luma signal with no residual chroma.

aCVi_measure.v

The aCVi decoder makes a number of measurements of the video signal to aid in it automatic adaption and to provide control of the transmitter pre-emphasis and luma and chroma automatic gain controls.

The luminance measurements are performed on the low pass filtered video from the sync filter.

The back porch value and the most negative video amplitude values are used to calculate the sync pulse amplitude which in turn is used to control the gain of the analogue programmable gain amplifier.

The back porch value is also used to subtract an offset from the output luma value (remove the syncs).

aCVi_Procamp.v

The low pass filtered luma is conditioned by the processing amplifier. First the black level offset is subtracted from the luma signal to set the black level at zero. The luma is then amplified to provide a 960 code (10 bit) output for a 100% colour bar input. The luma output is valid on the rising edge of the 74MHz clock.

The low pass filtered chroma outputs are amplified separately to provide a nominal 700mV output for a 100% colour bar input. These outputs are then multiplexed into a Cb/Cr output. The output is valid on the rising edge of the 74MHz clock and the Cmux output (37MHz) is used to de-multiplex the video (Cmux=0 = Cb, Cmux=1 = Cr).

The SPG also provides Vout (vertical), Fout (frame ID for interlaced video) and Hout (horizontal) synchronizing pulses.

aCVi_data.v

The aCVi interface allows for the bi-directional transmission of control data between the transmitter and receiver. The data is transferred during to two dedicated lines of the vertical blanking interval, one for transmitter to receiver transmission, the other for receiver to transmitter.

One byte of data is sent for each line, allowing a maximum of 60 bytes to be transferred each second, (for a 60Hz frame rate).

The format of the data transfer is shown in Figure 17.

Figure 8 aCVi Data format.

The format is the same regardless of the direction of transfer.

The first 8 bits are the framing byte which is a unique code signifying the beginning of data. The receiving device must monitor the pre-defined vertical blanking line for this framing byte which is a unique code.

The next four bits are a control word which defines the function of the following data byte. The control words between transmitter and receiver and receiver and transmitter are different. (See Tables 6 and 7).

C3	C2	C1	C 0	Dec	Function
0	0	0	0	0	
0	0	0	1	1	Pre-emphasis value for transmitter (auto cable equalization)
0	0	1	0	2	
0	0	1	1	3	Select video Pattern:
					\$00 – Video
					\$01 – 75% colour bars
					\$02 – 30MHz luma frequency sweep
					\$03 – 2T/30T pulse bar
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	12	
1	1	0	1	13	
1	1	1	0	14	
1	1	1	1	15	Interface test

Table 5 Data transfer instructions: Receiver > Transmitter

C3	C2	C1	C0	Dec	Function
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	12	
1	1	0	1	13	
1	1	1	0	14	
1	1	1	1	15	Interface test

Table 6 aCVi Control words Transmitter > Receiver

The next three bits must be a 010 sequence (to ensure the uniqueness of the framing byte). The next 9 bits are the data for that control function. This is an 8-bit byte with any value between 0 and 255. The data byte is separated into 'nibbles' each of 4 bits, separated by a '0', again to ensure the uniqueness of the framing byte.

The last two bits are parity bits, one for the control word and one for the data word. The parity bits are both even parity.

The total length of the data sequence is 27 bits. Each symbol (bit) is $32 \times 1/74.25$ MHz long = 430ns. The low bit rate ensures that the data is received over long cable lengths even if the pre-emphasis is incorrectly set, (the symbol length equates to a 2.23MHz data rate, which is attenuated <2dB/100m of cable).

The total data sequence length is just under 12µs and it should be positioned centrally in the active video period, although the exact position is not important.

The pre-defined video lines used for the transfer of data are the same for all standards. Data is transmitted between transmitter to receiver on Line 7 and between receiver and transmitter on line 8.

The process to send data is the same for transmitter and receiver. First the control word must be written to the register \$48. Next the data word is written to register \$49. Once this is written the two words are signaled for transfer on the next video frame. A status bit, write busy, is set during this time. Further data transfers should not be initiated until this bit is reset.

aCVi_Chargen.v

The PT22 has a character generator built in that allows the display of error or information messages. The display is a centrally located 20 character x 8 line display (20 character x 7 line display for 720p formats); each character is 48x64 pixels in height. The address map of the display is shown in Figure 9.

\$00	\$01	\$ 02	\$0 3	\$04	\$05	\$06	\$ 07	\$08	\$ 09	\$0A	\$0B	\$0C	\$0D	\$0E	\$0F	\$10	\$ 11	\$ 12	\$ 13
\$20	\$ 21	\$ 22	\$ 23	\$24	\$ 25	\$ 26	\$ 27	\$28	\$29	\$2A	\$2B	\$2C	\$2D	\$2E	\$2F	\$30	\$ 31	\$ 32	\$ 33
\$40	\$41	\$42	\$4 3	\$44	\$ 45	\$46	\$47	\$48	\$49	\$4A	\$4B	\$4C	\$4D	\$4E	\$4F	\$50	\$ 51	\$ 52	\$ 53
\$60	\$ 61	\$ 62	\$ 63	\$ 64	\$ 65	\$ 66	\$ 67	\$ 68	\$69	\$ 6A	\$6B	\$6C	\$6D	\$6E	\$6F	\$70	\$ 71	\$72	\$ 73
\$80	\$81	\$ 82	\$ 83	\$84	\$ 85	\$ 86	\$ 87	\$ 88	\$89	\$8A	\$8B	\$8C	\$8D	\$8E	\$8F	\$90	\$ 91	\$92	\$ 93
\$A0	\$A1	\$A2	\$ A3	\$A4	\$A5	\$ A6	SA7	\$A8	\$A9	SAA	\$AB	SAC	\$AD	\$AE	SAF	\$B0	\$B1	\$B2	\$B3
\$C0	\$C1	\$C2	\$C3	\$C4	\$C5	\$C6	\$C7	\$C8	\$C9	\$CA	\$CB	\$CC	\$CD	\$CE	\$CF	\$D0	\$D1	\$D2	\$D3
\$E0	\$E1	\$E2	\$E3	SE4	\$E5	\$E6	\$E7	\$E8	\$E9	\$EA	\$EB	\$EC	\$ED	\$EE	\$EF	\$F0	SF1	\$F2	\$F3

Figure 9 Character overlay address map.

The characters are displayed as yellow on a dimmed monochrome background to aid visibility. Over 100 pre-programmed characters and symbols may be chosen from; (see Table 7).

The character display may be enabled or disabled using bit 7 of the Control 1 register.

Hex Code		Hex Code		Hex Code		Hex Code	
\$00	[1]	\$10	F	\$20	\cup	\$30	l
\$01		\$11	G	\$21		\$31	m
\$02	1	\$12		\$22	X	\$32	n
\$03	2	\$13	Ι	\$23	Y	\$33	0
\$04	3	\$14	J	\$24	Ζ	\$34	Þ

		Sing	gMai I	Electroni	ics		
Hex Code		Hex Code		Hex Code		Hex Code	
\$05	4	\$15	K	\$25	a	\$35	q
\$06	5	\$16		\$26	b	\$36	r
\$07	6	\$17	Μ	\$27	C	\$37	S
\$08	7	\$18	N	\$28	d	\$38	t
\$09	8	\$19		\$29	е	\$39	u
\$0A	9	\$1A	Ρ	\$2A	f	\$3A	$\mathbf{\nabla}$
\$0B	A	\$1B	Q	\$2B	9	\$3B	Ψ
\$0C	Ξ	\$1C	R	\$2C	h	\$3C	Х
\$0D	C	\$1D	S	\$2D	i	\$3D	J
\$0E		\$1E		\$2E	J	\$3E	Ν
\$0F		\$1F	U	\$2F	Χ	\$3F ^[Note 2]	
\$40	2	\$50	←	\$60		\$70	[3]
\$41		\$51		\$61		\$71	[3]
\$42	/	\$52	D	\$62		\$72	[3]
\$43	2	\$53	#	\$63		\$73	[3]
\$44	?	\$54	0	\$64		\$74	[3]
\$45		\$55	*	\$65		\$75	[3]
\$46	+	\$56	>	\$66	>	\$76	[3]
\$47		\$57	<	\$67	\leq	\$77	[3]
\$48	%	\$58	С	\$68		\$78	[3]
\$49	8.	\$59		\$69		\$79	[3]
\$4A		\$5A		\$6A		\$7A	[3]
\$4B	ቆ	\$5B		\$6B		\$7B	[3]
\$4C	\$	\$5C		\$6C		\$7C	[3]
\$4D	Î	\$5D		\$6D		\$7D	[3]

		Sin	gMai I	Electroni	CS		
Hex Code		Hex Code		Hex Code		Hex Code	
\$4E	Ţ	\$5E		\$6E	X	\$7E	[3]
\$4F	+	\$5F		\$6F	Î	\$7F	[3]
Note 1	Value '0 backgro		thing. All	other values a	utomatica	ally turn on the	•
Note 2	Value '\$	3F' is a space	e. i.e. it di	splays backgro	ound only	v, but no chara	cter.
Note 3	No chara	acter.					

Table 7 Character generator map.

The sync pulse generator detects the embedded TRS signals in the BT656 stream and generates horizontal and vertical addresses for the character memory. Each horizontal row of characters is 64 bytes long, of which the first 60 are displayed. There are 32 rows of characters for 625 line formats and 30 rows for 525 line formats.

The addressing of the character is shown graphically in Figure 10.

The character display is linearly memory mapped. Each horizontal row has 64 addressable characters of which only 60, (address 0-59), are displayed. Address lines A[5..0] are used to select the horizontal character.

Each column from the top to the bottom of the image is contiguous, so the first (top) row starts at address 0 and finishes at address 63 (with addresses 60-63 not displayed). The second row starts at address 64 and ends at address 127 with addresses 124-127 not displayed. Address lines A[10..6] select one of the 32 rows, (30 for 525 lines standards). 625 line standards have 576 active (displayed) lines. However 32 rows of characters, (each character being 16 lines high), occupy 512 lines leaving 64 lines or 4 rows that cannot be written to. The characters are arranged so that there are 2 rows at the top and bottom of the screen that cannot be written to.

Figure 10 Character mapping

The output of the character memory selects one of 128 characters; each character is 12 pixels wide (74ns/pixel) by 16 lines high. 112 of the characters are pre-programmed, see Table 3. 16 of the characters are programmable by the user.

6. Register interface

Figure 9 shows the timing diagram for the register interface; it is a conventional microprocessor interface. Each register is selected via an 8 bit address bus. Writes to unused register locations are ignored.

To write to the selected register the aCVi_Rx_CSn (chip select) input must be asserted low. Whilst this is low the aCVi_Rx_WRn must be taken low. An internal write enable pulse is created at the next rising edge of the Reg_Clk clock and writing occurs at the next clock edge following that enable.

For the write to occur reliably the address (A[7:0]) and data (Din[7:0]) must be stable and valid during the aCVi_Rx_WRn pulse. The minimum width of the aCVi_Rx_WRn pulse is 2 Reg_clk periods or 74ns for a 27MHz clock.

The address input also selects the register data that is presented on the aCVi_Rx_Register_out[7:0] bus. This output is independent of the other control signals or the Reg_Clk clock.

Figure 11 PT22 Register timing

7. Register descriptions

Table 7 lists all of the control and status registers. All of the registers are 8 bit; unused register bits read back as zeros.

Please note that some registers can be set to values that are illegal and will produce invalid outputs.

Asserting the RESETn input sets the PT22 registers to their default values.

Register	Register Name	R/W	Bit		Description
Offset			Value		
			Со	ntrol Regist	ers
\$00	Control 1	R/W		aCVi Rx c	ontrol (Output format)
			7	Set to '1' to	o enable the status character overlay, else '0' to
			6:0		e overlay (default).
			6:2	Not used	Output format
			1-0	Value	Output format
				00	Not used Y + CbCr (20 bit) + H/V/F (74.25MHz clock)
				01	P + CDCI (20 DII) + H/V/F (74.25WHZ CIOCK) Default.
			-	10	Not used.
			-	11	Not used.
\$01	Control 2	R/W		aCVi Rx c	ontrol (standard)
			7		deo pattern is displayed, if '1' the video input is
				selected (d	
			6		, the aCVi output free-runs (video black) at the ideo standard. If set to '0' the output is locked to the pinput.
			5	Not used	
			4		ult) the video standard is manually selected using bits he standard is automatically detected from input sync
			3:0	Value	Standard
				0000	720p/60 (Default)
				0001	720p/50
				0010	
				0011	
				1000	1080p/30
				1001	1080p/25
				1010	
				1011	
				1100	
\$02	Control 3	R/W		aCVi Rx c	ontrol
			7:6	Not used	
			5		utomatic colour control (colour gain control) level t if = '1' (default), else manual adjustment (Register 41).
			4	Selects the (='0' – defa	e luma low pass filter to be 12MHz (='1') or 30MHz ault).
			3	manual ad	utomatic black level adjustment if = '1' (default), else ljustment (Register \$40 and \$41).
			2	manual ad	utomatic luma gain adjustment if = '1' (default), else ljustment (Register \$04).
			1:0	Bit value	Function
				00	VCO control word from phase detector (HPLL closed - default)
				01	VCO control set to minimum
				10	VCO control set to maximum
.				11	VCO control set to 50% (Freerun mode)
\$04	PGA_control	R/W	7:0	end progra	gister intended for the control of the analogue front ammable gain amplifier. This register is not used matic luma gain control is enabled.
		•		SPG	
\$10	Sync_slice_offs	R/W	7:0	Value add	ed to the negative video peak value for slicing the
		1	-		

\$19 F3 \$1A F3 \$1B F3 \$1C H 1 1 \$1D H \$1E H \$1F H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 H \$25 B \$24 H \$25 H \$26 V \$31 V \$32 V \$33 V \$33 V \$34 V \$35 V \$36 V <th>Sc_1 Sc_2 Sc_3 Sc_4 Icount_length_ Icout_start_1 Iout_start_1 Iout_end_1 IBLank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_</th> <th>R/W R/W R/W</th> <th>7:0 7:0 7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0</th> <th>sync pulses. Default value = 156_{10} Subcarrier seed value. 32 bit value = ({FSc_1[7:0], FSc_2[7:0], FSc_3[7:0], FSc_4[7:0]}). Default value = $6655D9BA_H$ = 1693677375_{10}; Seed value for 58.559489MHz (720p/60Hz). Horizontal pixel counter length. Should be set to the (number of pixels/line – 1) for the selected standard. 12 bit word = ({Hcount_length_2[3:0], Hcount_length_1[7:0]}). Default value = 1649_{10} (720p/60Hz). Start position of horizontal sync output. 12 bit word = ({Hout_start_2[3:0], Hout_start_1[7:0]}). Default value = 104_{10} (720p/60Hz). 1 LSB = $1/74.25$MHz. End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0], Hout_end_1[7:0]}). Default value = 164_{10} (720p/60Hz). 1 LSB = $1/74.25$MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0], BP_gate_start_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25$MHz. End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0], BP_gate_end_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25$MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0], BP_gate_end_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25$MHz. Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0], HBlank_start_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25$MHz.</th>	Sc_1 Sc_2 Sc_3 Sc_4 Icount_length_ Icout_start_1 Iout_start_1 Iout_end_1 IBLank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W R/W	7:0 7:0 7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0	sync pulses. Default value = 156_{10} Subcarrier seed value. 32 bit value = ({FSc_1[7:0], FSc_2[7:0], FSc_3[7:0], FSc_4[7:0]}). Default value = $6655D9BA_H$ = 1693677375_{10} ; Seed value for 58.559489MHz (720p/60Hz). Horizontal pixel counter length. Should be set to the (number of pixels/line – 1) for the selected standard. 12 bit word = ({Hcount_length_2[3:0], Hcount_length_1[7:0]}). Default value = 1649_{10} (720p/60Hz). Start position of horizontal sync output. 12 bit word = ({Hout_start_2[3:0], Hout_start_1[7:0]}). Default value = 104_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0], Hout_end_1[7:0]}). Default value = 164_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0], BP_gate_start_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0], BP_gate_end_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0], BP_gate_end_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0], HBlank_start_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.
\$18 F3 \$19 F3 \$1A F3 \$1B F3 \$1C H \$1D H \$20 H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 B \$25 B \$24 B \$25 B \$24 H \$25 H \$26 H \$27 Y \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V <	Sc_1 Sc_2 Sc_3 Sc_4 Icount_length_ Icout_start_1 Iout_start_1 Iout_end_1 IBLank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W	7:0 7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	Subcarrier seed value. 32 bit value = ({FSc_1[7:0], FSc_2[7:0], FSc_3[7:0], FSc_4[7:0]}). Default value = 6655D9BA _H = 1693677375 ₁₀ ; Seed value for 58.559489MHz (720p/60Hz). Horizontal pixel counter length. Should be set to the (number of pixels/line – 1) for the selected standard. 12 bit word = ({Hcount_length_2[3:0],Hcount_length_1[7:0]}). Default value = 1649 ₁₀ (720p/60Hz). Start position of horizontal sync output. 12 bit word = ({Hout_start_2[3:0],Hout_start_1[7:0]}). Default value = 104 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 164 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value = 190 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value = 190 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value = 223 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz.
\$19 F3 \$1A F3 \$1B F3 \$1C H \$1D H \$1C H \$1C H \$1C H \$1C H \$1C H \$1D H \$1E H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 B \$25 B \$24 B \$25 B \$24 B \$25 B \$24 H \$25 H \$26 H \$27 Y \$30 Y \$31 Y \$32 Y \$33 Y \$34 Y \$35 Y \$36 Y \$38 S </td <td>Sc_2 Sc_3 Sc_4 Icount_length_ Icount_start_1 Iout_start_1 Iout_end_1 IBLank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_</td> <td>R/W R/W R/W</td> <td>7:0 7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0</td> <td>$eq:start_startt$</td>	Sc_2 Sc_3 Sc_4 Icount_length_ Icount_start_1 Iout_start_1 Iout_end_1 IBLank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W	7:0 7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	$eq:start_startt$
\$1A F3 \$1B F3 \$1C H \$1C H \$1C H \$1C H \$1D H \$1D H \$1E H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 H \$25 H \$26 V \$27 Y \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$38 S	Sc_3 Sc_4 Icount_length_ Icount_length_ Iout_start_1 Iout_start_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 ISP_gate_start_1 ISP_gate_start_1 IBLank_start_1 IBLank_start_2 IBLank_end_1 IBLank_end_2 /count_length_ /count_length_	R/W	7:0 7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	Default value = $6655D9BA_{H} = 1693677375_{10}$; Seed value for 58.559489MHz (720p/60Hz). Horizontal pixel counter length. Should be set to the (number of pixels/line – 1) for the selected standard. 12 bit word = ({Hcount_length_2[3:0],Hcount_length_1[7:0]}). Default value = 1649_{10} (720p/60Hz). Start position of horizontal sync output. 12 bit word = ({Hout_start_2[3:0],Hout_start_1[7:0]}). Default value = 104_{10} (720p/60Hz). 1 LSB = $1/74.25MHz$. End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 164_{10} (720p/60Hz). 1 LSB = $1/74.25MHz$. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25MHz$. End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25MHz$. Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value = 1536_{10} (720p/60Hz). 1 LSB = $1/74.25MHz$.
\$1B F \$1C H \$1C H \$1D H \$1D H \$1E H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 H \$25 B \$24 H \$25 B \$24 H \$25 H \$26 H \$27 H \$28 H \$29 H \$20 H \$21 H \$22 B \$24 B \$25 H \$20 H \$21 Y \$22 Y \$33 Y \$33 Y \$33 Y \$34 Y \$35 Y \$36 Y <t< td=""><td>Sc_4 Icount_length_ Icount_length_ Icount_length_ Iout_start_1 Iout_start_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 IBP_gate_start_1 IBP_gate_end_1 IBlank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_</td><td>R/W R/W R/W</td><td>7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0</td><td>Horizontal pixel counter length. Should be set to the (number of pixels/line – 1) for the selected standard. 12 bit word =({Hcount_length_2[3:0],Hcount_length_1[7:0]}). Default value =164910 (720p/60Hz).Start position of horizontal sync output. 12 bit word =({Hout_start_2[3:0],Hout_start_1[7:0]}). Default value = 10410(720p/60Hz). 1 LSB = 1/74.25MHz.End position of horizontal sync output. 12 bit word =({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 16410(720p/60Hz). 1 LSB = 1/74.25MHz.Start position of burst gate sample pulse. 12 bit word =({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value =19010 (720p/60Hz). 1 LSB = 1/74.25MHz.End position of burst gate sample pulse. 12 bit word =({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value =22310 (720p/60Hz). 1 LSB = 1/74.25MHz.Start position of horizontal blanking pulse. 12 bit word =({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value =123610 (720p/60Hz). 1 LSB = 1/74.25MHz.</td></t<>	Sc_4 Icount_length_ Icount_length_ Icount_length_ Iout_start_1 Iout_start_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 IBP_gate_start_1 IBP_gate_end_1 IBlank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W	7:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	Horizontal pixel counter length. Should be set to the (number of pixels/line – 1) for the selected standard. 12 bit word =({Hcount_length_2[3:0],Hcount_length_1[7:0]}). Default value =164910 (720p/60Hz).Start position of horizontal sync output. 12 bit word =({Hout_start_2[3:0],Hout_start_1[7:0]}). Default value = 10410(720p/60Hz). 1 LSB = 1/74.25MHz.End position of horizontal sync output. 12 bit word =({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 16410(720p/60Hz). 1 LSB = 1/74.25MHz.Start position of burst gate sample pulse. 12 bit word =({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value =19010 (720p/60Hz). 1 LSB = 1/74.25MHz.End position of burst gate sample pulse. 12 bit word =({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value =22310 (720p/60Hz). 1 LSB = 1/74.25MHz.Start position of horizontal blanking pulse. 12 bit word =({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value =123610 (720p/60Hz). 1 LSB = 1/74.25MHz.
\$1C H \$1D H \$1E H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 H \$25 H \$26 H \$27 Y \$28 H \$29 H \$20 H \$21 Y \$22 Y \$33 Y \$33 Y \$33 Y \$34 Y \$35 Y \$36 Y \$37 Y \$38 S	Icount_length_ Icount_length_ Icount_start_1 Iout_start_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 IBP_gate_start_1 IBP_gate_end_1 IBlank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W	7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	pixels/line – 1) for the selected standard. 12 bit word = ({Hcount_length_2[3:0],Hcount_length_1[7:0]}). Default value = 1649 ₁₀ (720p/60Hz). Start position of horizontal sync output. 12 bit word = ({Hout_start_2[3:0],Hout_start_1[7:0]}). Default value = 104 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 164 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value = 190 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value = 223 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz. Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value = 1536 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz.
\$1D H \$1E H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 B \$25 B \$24 B \$25 B \$24 H \$25 B \$24 H \$25 B \$24 H \$25 H \$26 H \$27 H \$28 H \$29 H \$20 H \$21 Y \$22 Y \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$38 S	Icount_length_ Iout_start_1 Iout_start_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 Iout_end_1 IBP_gate_start_1 IBP_gate_end_1 IBlank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W	7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	$\label{eq:constraint} \begin{array}{l} (\{\text{Hcount_length_2[3:0],Hcount_length_1[7:0]}\}). \ Default value = 1649_{10}\ (720p/60Hz). \\ \\ \text{Start position of horizontal sync output. 12 bit word = (\{\text{Hout_start_2[3:0],Hout_start_1[7:0]}\}). \ Default value = 104_{10}\ (720p/60Hz). 1\ LSB = 1/74.25MHz. \\ \\ \text{End position of horizontal sync output. 12 bit word = (\{\text{Hout_end_2[3:0],Hout_end_1[7:0]}\}). \ Default value = 164_{10}\ (720p/60Hz). 1\ LSB = 1/74.25MHz. \\ \\ \\ \text{Start position of burst gate sample pulse. 12 bit word = (\{BP_gate_start_2[3:0],BP_gate_start_1[7:0]\}). \ Default value = 190_{10}\ (720p/60Hz). 1\ LSB = 1/74.25MHz. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
\$1E H \$1F H \$1F H \$20 H \$21 H \$22 B \$23 B \$24 B \$25 H \$26 H \$27 Y \$28 Y \$31 Y \$32 Y \$33 Y \$34 Y \$35 Y \$36 Y \$38 S	Hout_start_1 Hout_start_1 Hout_end_1 Hout_end_1 BP_gate_start_1 BP_gate_start_1 BP_gate_end_1 BP_gate_end_1 HBlank_start_2 HBlank_end_1 HBlank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W R/W R/W R/W R/W R/W	3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	Start position of horizontal sync output. 12 bit word = ({Hout_start_2[3:0],Hout_start_1[7:0]}). Default value = 104_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 164_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value = 1536_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.
\$20 H \$21 H \$22 B \$23 B \$24 B \$25 B \$24 H \$25 H \$26 V \$27 V \$30 V \$31 V \$32 V \$33 V \$34 V \$36 V \$37 V \$38 S	Hout_end_1 Hout_end_1 BP_gate_start_1 BP_gate_start_1 BP_gate_end_1 BP_gate_end_1 HBlank_start_1 HBlank_start_2 HBlank_end_1 HBlank_end_2 /count_length_	R/W R/W R/W R/W R/W R/W R/W R/W R/W	7:0 3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	$\begin{array}{l} (720p/60Hz). \ 1 \ LSB = 1/74.25 \ MHz. \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
\$21 H \$22 B \$23 B \$24 B \$25 B \$26 H \$27 H \$28 V \$30 V \$31 V \$33 V \$33 V \$34 V \$36 V \$37 V \$38 S	Hout_end_1 BP_gate_start_1 BP_gate_start_1 BP_gate_end_1 BP_gate_end_1 HBlank_start_1 HBlank_start_2 HBlank_end_1 HBlank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W R/W R/W R/W R/W	3:0 7:0 3:0 7:0 3:0 7:0 3:0 7:0	End position of horizontal sync output. 12 bit word = ({Hout_end_2[3:0],Hout_end_1[7:0]}). Default value = 164_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. Start position of burst gate sample pulse. 12 bit word = ({BP_gate_start_2[3:0],BP_gate_start_1[7:0]}). Default value = 190_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. End position of burst gate sample pulse. 12 bit word = ({BP_gate_end_2[3:0],BP_gate_end_1[7:0]}). Default value = 223_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz. Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value = 1536_{10} (720p/60Hz). 1 LSB = $1/74.25$ MHz.
\$22 B \$23 B \$24 B \$25 B \$24 B \$25 B \$24 B \$25 B \$24 B \$25 B \$25 B \$26 H \$28 H \$20 H \$22 V \$21 H \$22 V \$30 V \$31 V \$33 V \$33 V \$34 V \$35 V \$36 V \$38 S	BP_gate_start_1 BP_gate_start_1 BP_gate_end_1 BP_gate_end_1 Blank_start_1 Blank_start_2 Blank_end_1 Blank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W R/W R/W R/W	7:0 3:0 7:0 3:0 7:0 3:0 7:0	$\begin{array}{l} (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \end{array}$
\$23 B \$24 B \$25 B \$28 H \$28 H \$20 H \$20 H \$20 H \$22 V \$25 S \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 S	3P_gate_start_1 3P_gate_end_1 3P_gate_end_1 4Blank_start_1 4Blank_start_2 4Blank_end_1 4Blank_end_2 7count_length_ 7count_length_	R/W R/W R/W R/W R/W R/W	3:0 7:0 3:0 7:0 3:0 7:0	$ \begin{array}{l} (\{BP_gate_start_2[3:0],BP_gate_start_1[7:0]\}). \ Default \ value = 190_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \end{array} \\ \hline \\ End \ position \ of \ burst \ gate \ sample \ pulse. \ 12 \ bit \ word = (\{BP_gate_end_2[3:0],BP_gate_end_1[7:0]\}). \ Default \ value = 223_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \end{array} \\ \hline \\ \\ \hline \\ \\ Start \ position \ of \ horizontal \ blanking \ pulse. \ 12 \ bit \ word = (\{HBlank_start_2[3:0],HBlank_start_1[7:0]\}). \ Default \ value = 1536_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \end{array}$
\$24 B \$25 B \$2A H \$2B H \$2C H \$2C H \$2D H \$2E V \$2F V \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 S	BP_gate_end_1 BP_gate_end_1 Blank_start_1 Blank_start_2 Blank_end_1 Blank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W R/W	7:0 3:0 7:0 3:0 7:0	$\begin{array}{l} 190_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25 \ MHz. \end{array}$ End position of burst gate sample pulse. 12 bit word = $(\{BP_gate_end_2[3:0], BP_gate_end_1[7:0]\}). \ Default \ value = 223_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25 \ MHz. \end{array}$ Start position of horizontal blanking pulse. 12 bit word = $(\{HBlank_start_2[3:0], HBlank_start_1[7:0]\}). \ Default \ value = 1536_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25 \ MHz. \end{array}$
\$25 B \$2A H \$2B H \$2C H \$2C H \$2D H \$2E V \$2E V \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 S	BP_gate_end_1 IBlank_start_1 IBlank_start_2 IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W	3:0 7:0 3:0 7:0	$\begin{array}{l} (\{BP_gate_end_2[3:0],BP_gate_end_1[7:0]\}). \ Default \ value = \\ 223_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \\ \hline \\ Start \ position \ of \ horizontal \ blanking \ pulse. \ 12 \ bit \ word = \\ (\{HBlank_start_2[3:0],HBlank_start_1[7:0]\}). \ Default \ value = \\ 1536_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \\ \end{array}$
\$2A H \$2B H \$2C H \$2C H \$2D H \$2E V. \$2E V. \$2F V. \$30 V \$31 V. \$32 V. \$33 V. \$34 V \$36 V \$37 V \$38 S	HBlank_start_1 HBlank_start_2 HBlank_end_1 HBlank_end_2 /count_length_ /count_length_	R/W R/W R/W R/W	7:0 3:0 7:0	$\begin{array}{l} 223_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \end{array}$ Start position of horizontal blanking pulse. 12 bit word = ({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value = 1536_{10} \ (720p/60Hz). \ 1 \ LSB = 1/74.25MHz. \end{array}
\$2B H \$2C H \$2D H \$2E V \$2F V \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$38 \$	HBlank_start_2 HBlank_end_1 HBlank_end_2 /count_length_ /count_length_	R/W R/W R/W	3:0 7:0	({HBlank_start_2[3:0],HBlank_start_1[7:0]}). Default value = 1536 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz.
\$2C H \$2D H \$2E V 1 \$2F V \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$38 \$	IBlank_end_1 IBlank_end_2 /count_length_ /count_length_	R/W R/W	7:0	1536 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz.
\$2D H \$2E V \$2F V \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 \$	IBlank_end_2 /count_length_ /count_length_	R/W		
\$2E V \$2F V \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 \$	/count_length_ /count_length_		3:0	End position of horizontal blanking pulse. 12 bit word =
1 \$2F Vi \$30 Vi \$31 Vi \$32 Vi \$33 Vi \$34 Vi \$35 Vi \$36 Vi \$37 Vi \$38 S	/count_length_	R/W		({HBlank_end_2[3:0],HBlank_end_1[7:0]}). Default value = 1536 ₁₀ (720p/60Hz). 1 LSB = 1/74.25MHz.
2 \$30 V \$31 V \$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 S	-		7:0	Vertical pixel counter length. Should be set to the (number of lines/frame $- 1$) for the selected standard. 11 bit word =
\$31 V \$32 V \$33 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 \$		R/W	2:0	$({Vcount_length}_2[2:0], Vcount_length}_1[7:0])$. Default value = 749 ₁₀ (720p/60Hz).
\$32 V \$33 V \$34 V \$35 V \$36 V \$37 V \$38 S	/out_start_1	R/W	7:0	Start position of vertical sync output. 11 bit word =
\$33 V \$34 V \$35 V \$36 V \$37 V \$38 S	/out_start_1	R/W	2:0	({Vout_start_2[2:0],Vout_start_1[7:0]}). Default value = 0 ₁₀ (720p/60Hz). 1 LSB = 1 line.
\$34 V \$35 V \$36 V \$37 V \$38 \$\$	/out_end_1	R/W	7:0	End position of vertical sync output. 11 bit word =
\$35 V \$36 V \$37 V \$38 S	/out_end_1	R/W	2:0	({Vout_end_2[2:0],Vout_end_1[7:0]}). Default value = 5 ₁₀ (720p/60Hz). 1 LSB = 1 line.
\$36 V \$37 V \$38 S	/Blank_start_1	R/W	7:0	Start position of vertical blanking output. 11 bit word =
\$37 V \$38 S	/Blank_start_1	R/W	2:0	({VBlank_start_2[2:0],VBlank_start_1[7:0]}). Default value = 745 ₁₀ (720p/60Hz). 1 LSB = 1 line.
\$38 S	/Blank_end_1	R/W	7:0	End position of vertical blanking output. 11 bit word =
	/Blank_end_1	R/W	2:0	({VBlank_end_2[2:0],VBlank_end_1[7:0]}). Default value = 20 ₁₀ (720p/60Hz). 1 LSB = 1 line.
\$39 S	SVBlank_start_1	R/W	7:0	Start position of short vertical blanking output (burst blanking).
	SVBlank_start_1	R/W	2:0	11 bit word = ({SVBlank_start_2[2:0],SVBlank_start_1[7:0]}). Default value = 744_{10} (720p/60Hz). 1 LSB = 1 line.
	SVBlank_end_1	R/W	7:0	End position of short vertical blanking output (burst blanking).
\$3B S	SVBlank_end_1	R/W	2:0	11 bit word = ({SVBlank_end_2[2:0],SVBlank_end_1[7:0]}). Default value = 3 ₁₀ (720p/60Hz). 1 LSB = 1 line.
				Procamp
	Sub_Luma_valu e_1	R/W	7:0	Value subtracted from luma output (to remove synchronizing pulses), if in manual. 10 bit word =
\$41 S		R/W	1:0	({Sub_Luma_value_2[1:0],Sub_Luma_value_1[7:0]}). Default value = 460 ₁₀ .
	/gain_value_1	R/W	7:0	Luma gain control. 10 bit word =
	/gain_value_2	R/W	1:0	({Ygain_value_2[1:0],Ygain_value_1[7:0]}). Default value = 746 ₁₀ .
\$44 U	Jgain_value_1	R/W	7:0	Chroma (B-Y) gain control. 10 bit word =
	Jgain_value_2	R/W	1:0	({Ugain_value_2[1:0],Ugain_value_1[7:0]}). Default value = 512 ₁₀ .
\$46 V	/gain_value_1	R/W	7:0	Chroma (R-Y) gain control. 10 bit word =
	/gain_value_2	R/W	1:0	({Ugain_value_2[1:0],Ugain_value_1[7:0]}). Default value = 512 ₁₀ .
+ -	ACC	R/W	7:0	ACC gain control value for demodulator (default = 64_{10}).
\$49 A	lemod value	R/W	7:0	ACC gain control value for remodulator (default = 64_{10}).
re	lemod_value ACC emod_value		Status	and Measurement

SingMai	Electronics
---------	-------------

Register Offset	Register Name	R/W	Bit Value	Description
\$50	Negative_peak_ value_1	R	7:0	Measured negative peak value of the filtered luma video (sync tip value). 10 bit value =
\$51	Negative_peak_ value_2	R	1:0	({Negative_peak_value_1[7:0],Negative_peak_value_2[1:0]}).
\$52	Video_BP_value _1	R	7:0	Measured back porch value of the filtered luma video (black level). 10 bit value =
\$53	Video_BP_value _2	R	1:0	({Video_BP_value_1[7:0],Video_BP_value_2[1:0]}).
\$54	Burst_amplitude	R	7:0	Measured peak U burst amplitude value.
\$55	Video_Field_Rat e	R	6:0	Measured input video field rate (field/second).
\$56	Overflow	R	0	If this bit high it indicates the video input (ADC) has overflowed (video gain too high).
\$5F	Version No.	R	7:0	SC10 version number.
			Data	Insertion control
\$60	Data_Instruction	R/W	3:0	Instruction word to be transmitted between receiver and transmitter.
\$61	Data_Word	R/W	7:0	Data word to be transmitted between receiver and transmitter.
\$62	Tx_status	R	7:1	Not used
			0	When the data word is written for transmission (register \$4D) this bit will be set to '1'. When the data has been transmitted (the next occurring line 8) the flag will be reset to '0'. New data should not be written for transmission while this flag is high.
\$63	Rx_Data_instruc tion	R	3:0	Received data instruction.
\$64	Rx_Data_word	R	7:0	Received data word.
\$65	Rx_status	R	7:6	Not used.
			5	Calculated instruction word parity.
			4	Received instruction word parity.
			3:2	Not used.
			1	Calculated data word parity.
			0	Received data word parity.

Table 8 Register description

8. PGA amplifier control

For more flexibility the analogue front end can utilize a programmable gain amplifier, allowing automatic gain control to compensate automatically for cable length.

The evaluation board uses an Analog Devices AD8337 voltage controlled amplifier for this purpose. The control voltage/gain response for the AD8337 is shown in Figure 6.

Figure 12 AD8337 PGA gain response

As the AD8337 is power from a single supply (+5V) the 0mV gain point is at 2.5V. To provide a control voltage the PT22 has an 8-bit register (PGA_control) which can be used to control a pulse width modulator. Example Verilog code for a PWM as used on the evaluation boards is shown below.

```
// PWM control of PGA
// Generate 100kHz
       always @ (posedge XTAL_clk or negedge RESETn) begin
         if (!RESETn) begin
         Counter_100k <= 5'd0;
         end else if (Counter_100k[4:0] == 5'd26) begin
                Counter_100k <= 5'd0;
                end else begin
         Counter_100k <= Counter_100k + 5'd1;
         end
end
// PWM counter
       always @ (posedge XTAL_clk or negedge RESETn) begin
         if (!RESETn) begin
         PWM_counter <= 8'd0;
         end else if (Counter_100k[4:0] == 5'd26) begin
                PWM_counter <= PWM_counter + 8'd1;
                end else begin
         PWM_counter <= PWM_counter;
         end
```

end

end

```
always @ (posedge XTAL_clk or negedge RESETn) begin
         if (IRESETn) begin
         PWM_latch <= 1'b0;
end else if (Counter_100k[4:0] == 5'd26) begin
                   if (PWM_counter == 8'd0) begin
                          PWM latch <= 1'b1:
                          end else if (PWM_counter == PGA_gain[7:0]) begin
                          PWM_latch <= 1'b0;
                          end else begin
                          PWM_latch <= PWM_latch;
                          end
                 end else begin
                 PWM_latch <= PWM_latch;
                 end
// (Note: PWM Gain control is inverted on DP17
```

assign Gain = !PWM_latch;

The output (Gain) is a PWM signal whose width is controlled by the PGA_control register. This output may then be low pass filtered to produce an analogue control voltage.

Figure 13 PWM analogue control.

Figure 7 shows the circuit used on the DP17 evaluation module. The PWM gain signal is first buffered to move it from the digital powered circuit to the cleaner analogue power. That output is low pass filtered (R8, C17) to produce an analogue output. This is then buffered by U7, the output of which drives the AD8337 control voltage input.