
X-Analysis 8

Application Modernization

and Rebuilding

Concepts Guide

Authors: Richard Downey and Stuart Milligan
Databorough Limited

May 2009

Preface
Developing tools and services for analyzing and reengineering applications for more
than twenty years, has given Databorough a unique perspective on the large and
complex world of legacy applications running on System i, iSeries and AS/400.

In 2005, IBM and Databorough published an IBM Redbook “Modernizing and
Improving the Maintainability of RPG Applications Using X-Analysis Version 5.6”. This
concepts guide you are reading now expands on the white paper ‘Modernizing RPG/
COBOL/2E System i applications using X-Analysis 8’, incorporating new concepts and
methods for design recovery and rebuilding of monolithic RPG/COBOL/2E
applications into modern application architectures. Contact info@databorough.com for
a copy of the white paper, the Redbook and trial software.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 2 of 53

We will show in this paper how automated
component generation from recovered designs can
dramatically reduce the costs and risks of an
application rewrite and without inheriting the
legacy code’s redundancy and complexity.

http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html
http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html
http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html
http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html
mailto:info@databorough.com
mailto:info@databorough.com

Table of Contents
..Executive Summary 4

..Introduction 7
...Why Design Recovery is difficult 8

..Analysis, Documentation, & Application Subdivision 10

...Understanding Design & Function More Easily
 10

..Producing Static Documentation Automatically
 15

...Dividing Systems into Application Areas 17
...Recovering an Application Design 18

..Recovering the Data Model
 20

...Recovering the User Interface
 20

...Recovering Business Rule Logic
 22

...UML Diagramming
 27

..Using Design Recovery for Rebuilding 32
..Database Modernization - using the Data Model assets 32

..Rebuilding the View
 38

...Rebuilding the Controller
 38

..Reusing Business Rules
 38

...Rebuilding Example 40

..Identify what you want to work with
 40

..Application Areas
 41

..Rebuild the Application
 43

...Completing the Modernization Process 48

...Surrounding Application Framework
 49

...Look & Feel & UI Standards
 49

..Summary 52
..Additional Resources & Information 53

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 3 of 53

Executive Summary
The knowledge and information contained in an organization’s business software is
vitally important and extremely valuable but often this information covering the
operation, metrics, and design of the software is tantalizingly out of reach. Without this
knowledge, maintenance and changes to the system are not as efficient or effective as
they could be, and the risk of failure or problems increases exponentially the larger the
enhancement required. This could lead to a paralysis where changes can’t be made due
to a lack of confidence in the outcome.

As many of the systems and software we are discussing here have had a long life and been
marketed under various names it is worth making two orientation points:

For consistency throughout this document we will refer to System i as meaning the family of
computers that grew out of IBM’s System/38 over the last twenty one years namely the AS/
400 , iSeries and latterly the System i and IBM i on Power.

Similarly when we refer to the RPG language we will generally mean COBOL, RPG and 2E
(When we refer to 2E we mean the CA product and the various incarnations of the Synon
software that preceded it).

Accurate and current information about an entire system can greatly improve the
productivity of your IT staff, and reduce maintenance costs by eliminating the need to
research, catalog and assemble the information manually for each service request, or
modernization project.

Existing System i applications whether they are COBOL, RPG or 2E have some fairly
consistent and distinct characteristics that mark them out as costly and potentially high-
risk:

1. Applications tend to be large and complex

2. Little or no documentation

3. Original Designers and Developers are no longer available

4. They have been developed over many years

5. Monolithic Programming Model

6. Written in obsolete languages

Points 1 through 3 can largely be managed more effectively by investing in a product like
X-Analysis to both recover the design of the application, and provide highly productive
analysis tooling to compensate for the complexity of the application and the absence of
the original development team.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 4 of 53

Inconsistent programming standards and designs, significant amounts of redundant and
duplicated code, and an increasingly costly demand for globally diminishing legacy
development skills, are the results of points 4, 5 and 6.

This concepts guide will illustrate how X-Analysis carries out the Design Recovery
process and how it can be used to build re-engineered applications from that Recovered
Design.

To fully understand and apreciate the problem domain just think for a minute of two
approaches to the above problems namely screen-scraping and code conversion.

Simply screen scraping the user interface with a GUI or web emulation product does not
improve the situation, the application may appear slightly more ‘modern’ but the
cosmetic changes still leave it with all the same maintenance and enhancement issues
and it may be not much easier to use for new users.

The other common approach is code conversion i.e. line by line, syntax conversion of a
legacy application, this will typically just transfer the same problems from one
environment/language to another. Indeed, it will often produce source code that is less
maintainable, effectively canceling out the benefit of using modern technologies and
architectures in the first place. Syntax conversions are still being done by some
companies and are often promoted by vendors of proprietary development tools for
obvious reasons. This approach has never to our knowledge produced an optimum
long-term result, despite many attempts over the last two decades.

Removing problems 4 through 6 and thus achieving sustainable and effective
application modernization can only really be achieved with an application rewrite or
rebuild – which is well recognized of course but usually rejected as not feasible on cost
and risk grounds.

We will show in this paper how Design Recovery and automated component generation
can dramatically reduce the costs and risks of an application rewrite and without
inheriting the legacy code’s redundancy and complexity.

Whatever the approach to modernization, design recovery is the first step. With this
understanding, developers can quickly identify the business rules and reusable designs,
embedded in core business processes and restructure code, remove dead code, and
create reusable components that can be enabled as services within a service-oriented
architecture (SOA), or any modern application architecture. This is true, even for
companies adopting code generators technologies, as their development environment.

The objective, therefore is a true modernization exercise to extract the essence or design
of the legacy application and reuse these designs as appropriate in rebuilding the
application, using modern languages, development tools, and techniques, tapping into
more widely available skills and resources.

X-Analysis provides analysts, developers, architects and operations teams with detailed
analysis and interactive diagrammatic constructs that enable rich understanding of
existing applications, whether they were developed yesterday, or 30 years ago. Some

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 5 of 53

companies may have a desire to keep a significant amount of design logic from the
existing application design and move that to the modernized version of the application.
For those situations, X-Analysis provides design extraction functionality, for
automatically creating JEE* & RPG industry standard modern components and
constructs as exports from the recovered designs themselves. A legacy application
component can be rewritten using a combination of the JSF, EGL, Facelets, and
persistence frameworks such as Hibernate, all generated by top-down automation from
the recovered X-Analysis model. Because each customer situation is potentially different,
the X-Analysis suite is available in different editions that suit the appropriate
development stage or budget constraints of each company.

From even the most poorly structured application, the X-Analysis can recover the design
logic. Whereas, for more structured applications (e.g. Synon generated applications), X-
Analysis can directly extract the details of the existing model, providing an excellent base
for efficient and effective design recovery and reengineering to JEE.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 6 of 53

* Jargon Explained:

JEE – Java Extended Edition previously known as J2EE

JSF- JavaServer Faces a web application framework which
uses a component-based approach to simplify development of
user interfaces for JEE applications.

EGL – Enterprise Generation Language a new high level
platform independent language from IBM which produces
code which can be compiled into Java or COBOL.

Introduction
As we have seen gathering knowledge about System i applications is not a
straightforward task for today’s generation of business analysts and developers. To
illustrate that point and to fully understand the problem domain we will look at Why
Design Recovery is difficult by working through the problems that X-Analysis solves in
building its repository of design recovery information.

In situations where developers are not familiar with a system or its documentation is
inadequate, the system’s source code becomes the only reliable source of information.
Unfortunately, source code has much more detail than is needed just to understand the
system, also it disperses or obscures high-level constructs that would ease the system’s
understanding. X-Analysis aids system understanding by identifying recurring program
features, classifying the system modules based on their purpose and usage patterns, and
analyzing dependencies across the modules. This analysis provides detailed design
information about the entire system, accessible to non RPG/COBOL/2E experts, and be
easily updated to incorporate ongoing changes in the base system.

Whatever the business needs driving companies to modernize their applications, most
want to ensure that the business logic and functional design which are core assets to the
company, are preserved to varying degrees.

Design Recovery of an application can be broken down into a few logical steps or stages
that represent a generic adaptable approach to any application modernization project:

Analysis, Documentation, Application Subdivision – This type of analysis represents the
most common use of the X-Analysis tool across the world. On top of very powerful
cross-referencing functionality, graphical, narratives or a combination of both, are used
to abstract and describe the system in a simple and intuitive way, even for non-RPG/
COBOL/2E experts. The legacy application can be completely documented using
modern diagramming standards such as UML, Entity Relationship Diagrams, System
Flow Diagrams, and Structure Charts etc. Furthermore, the legacy system can be
automatically subdivided into application areas so that effective system overview &
interface diagrams can be generated. The complete application documentation can then
be output to a variety of third party design tools such as Rational, MS Visio, MS Word,
etc. – indeed any tool capable of importing XML or DDL is supported.

Recovering an Application design – This advanced level of analysis extracts model
information from the existing application. X-Analysis uses its own analysis repository,
plus pattern searching algorithms, to derive relational data models, extract business
rules, build UML Activity/Use/Case Diagrams, and logical screen flows. Only relevant
designs need be used as a base specification for new developers to rewrite the
application. The structured, repository-based format of these extracted designs, make it
possible, to programmatically reuse them for rebuilding the core of a new application.
This can be done with purpose-built tools, with X-Modernize or a combination of both.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 7 of 53

Redeveloping Using a Recovered Application Design – This starts with database
modernization using the recovered data model. The designs for the view, controller, and
business rule logic are also extracted and reused in modern frameworks such as
Hibernate, and with new JSF/Facelets and Java bean components. This option makes it
possible to programmatically re-factor the existing application into modern, consumable
assets and artifacts for developers to use for a system rebuild. The objective is to produce
clean, well structured, industry standard code rather than messy syntax conversions
with unmaintainable code.

Why Design Recovery is difficult
From the point of view of the user of X-Analysis this process of building the cross-
reference repository and deriving the models happens automagically! i.e. Its just
there and happens typically as part of the installation process - though it can be
triggered again later on if required. However it is worth taking some time to
understand this process and to see what happens, how the model is constructed and
the relationships inferred.

If you think of a typical System i application it is likely to consist of a mix of RPG
programs, DDS files and members for display files, database files and logical views,
newer systems may have these interspersed with SQL scripts but the sum of
knowledge in that system, how it works and interacts amongst its various elements
is contained within those source files and compiled objects - the issue is retrieving
that knowledge efficiently.

To understand and fully appreciate the problems X-Analysis solves just consider the
process you would have to undertake yourself if you wanted to discover how a
system operates or make changes to it. As a simple example for part of your
application you have a customer details screen with no dedicated place for an email
address and mobile phone numbers, the system has adapted itself to the internet age
as many System i apps have done by making use of ‘extra’ and ‘notes’ ad-hoc fields.
The system has coped but it has been time consuming to retrieve these details when
required for marketing purposes. But there is now a budget to correct this and start
to look at modernising the application and making the functionality available to
more areas of the business.

You would probably first start by looking at the program and display files that
handle the display and maintenance of the customer information, from that you
would discover the database tables/files involved.

At this point from a simplistic point of view you have the necessary information to
make the changes and they are probably not that difficult - add new fields for email

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 8 of 53

and mobile phone to the database tables or rename the existing ones then modify the
program and display files accordingly… but you’re probably thinking what about
the rest of the system? What else uses that table? Is the display file used anywhere
else? So the change has more aspects than would first appear these are just a few of
the questions we have to answer:

 Scope and impact of the change - how many programs and tables are effected?
 Database changes - do we add new fields or just rename the fields and

preserve the status quo? Do we know those fields were only used for email
and mobile phone data?

 Database integrity - Fields destined for ad-hoc data like ‘extra information’
and ‘notes’ are unlikely to have any validation or to be even required so if
migrating the existing values to new fields we can’t simply copy it over some
cleansing will be required.

The process of gaining the knowledge to answer these questions may not be all that
straightforward, particularly if the systems are complex or the people trying to
answer them are new to the application, system or platform.

To assess the scope and impact of the change you need to find out which programs
use the files/tables affected , this can be very laborious :

 Go through all source files in PDM,
 option 25 to search
 then F13 to repeat
 press enter
 type in your search term
 review results …

… and thats just the first enquiry! Depending on the complexity and history of your
systems you may have doubts that you were looking at all of the source or the latest
version.

Looking into Database integrity may well throw up items like this screen shot.
Where we have a number of
different formats of email
address and some extraneous
text , similarly on the phone
number list there is text and a
variety of layouts. Finally we
have the inevitable result of
using ad-hoc fields with no validation or on screen guidance - transposed data
mobile in email and vice versa.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 9 of 53

Hopefully this section raised awareness of the problems around changing and
modernizing System i applications, the issues with finding out the necessary
information and how seemingly straightforward issues can be time consuming and
problematic. X-Analysis is designed and optimized to make the design recovery
process as straightforward as possible as the rest of this concepts guide will
illustrate.

Analysis, Documentation, & Application
Subdivision
X-Analysis builds a very detailed repository over an entire application. The repository
maintains all information about application objects, their relationships and all necessary
information to obtain detailed information from each object across the entire system. 20
years of ongoing development, over thousands of
AS/400/iSeries/System-i applications written in all
variants of RPGII/400/IV, COBOL, 2E and CL, has
produced an unmatched capability to extract
everything about an application from object right
down to individual variables. The repository is built
automatically using a single command, and initially
collects all object related information, but then parses
every source member in the specified system and
every source line mapping the contextual information of each variable in the system. A
certain amount of logical abstraction processing then takes place while building the
repository to account for some of the idiosyncrasies typical in an RPG application. This
includes constructs such as variable program calls, file overrides, prefixing and renaming
in RPG. The repository thus represents a map of how the entire application functions
right down to individual variables.

Understanding Design & Function More Easily

For efficient familiarization of an application’s structure and general function, an
abstraction above the source code combined with object-to-object relational information
is required. A few simple but rich types of color-coded, graphical diagrams can reveal
the data flow and architecture of individual objects or parts of an entire system. This is
combined with automatically derived descriptions in the form of Pseudo narratives
either in the diagrams or while browsing source code. The drill-down, go-anywhere-
from-anywhere, interactive nature of these interfaces in the X-Analysis client provides a
unique approach to information assimilation, allowing an analyst to gather information
at high level or very detailed in an efficient and intuitive manner. The application
abstraction is raised one level above implementation. This instantly removes complexity
caused by the idiosyncrasies of different language versions and coding practices, typical
in large legacy applications developed over many years.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 10 of 53

It’s important to note that for 2E
systems X-Analysis looks directly
at the 2E model and dervives its
information from there ie not
from the generated 2E code thus
preserving the investment in the
model.

Here is a brief description of some of these diagrammatic constructs and views:

Structure Chart Diagram - A Structure Chart Diagram (SCD) Display gives a graphic
representation of how the control passes from one program to another program within
the application. This follows the call structure down the complete stack. The diagram
also reveals data input objects and also automatically derives a summarized description
of each of the object in the diagram. Color-coding also reveals important functional
aspects such as updates, prints, and displays, which help the user to zone in on
commonly, sought after details.

Figure 1 - Structure Chart Diagram for a Program

Data Flow Diagram - A Data Flow Diagram (DFD) is a graphical representation of a
program/object where used, showing the files and programs accessed by the subject
object. It is also color-coded and shows both flow of data at a high object level, and
contextual information about the specific variables/parameters passed between objects.

Figure 2 - Data Flow Diagram for a Program

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 11 of 53

Program Structure Chart - A Program Structure Chart graphically displays the sequence
of calls in the program. The call could be to execute a Subroutine / Program / Module /
Service Program. For details, refer to X-Analysis User Manual.

Figure 3 - Program Structure Chart for a Program

Overview Structure Chart - The Overview Structure Chart gives a snapshot of an
application. It displays all the entry points to the application, and then the structure chart
for each of these entry points.

Figure 4 - Overview Structure Chart for complete application

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 12 of 53

Area Flow Diagram - The Area Flow Diagram is a very useful interactive diagram that
shows the linkages between files and programs within an application area, by clicking on
a program we can see the files and programs it references , if we click on a file we see the
programs that use it. The screen shot below shows the programs that use the Purchases
file , the programs and files are colour coded to show whether they are Input/Output/
Update or called or calling program.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 13 of 53

In this example we’ve clicked on a program and can see the files it uses as Input and also
the program that calls it.

RPG as Pseudo Code- With a single click, RPG can be viewed as a form of structured
English or Pseudo code. Mnemonics’ are substituted with file/field/variable texts and
constants or literals.

Figure 5 - RPG to Pseudo Code with a Single Click

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 14 of 53

2E as Pseudo Code- 2E action diagrams can also be displayed as pseudo-code. The
information returned contains both the 2E variable names and contexts alongside the
RPG/COBOL mnemonic:

Producing Static Documentation Automatically

Interactive analysis via a graphical client is generally the most intuitive manner in which
to analyze a system, but there is often a requirement for various types of static
information in the form of structured documentation. Examples of this are project
documentation, auditing information, testing instructions, and customer support
documentation (such as with ISV supplied business software). X-Analysis produces a
number of these outputs including:

Data Flow Chart in MS Visio - Any interactive diagram produced by X-Analysis 8 in the
client, can be automatically exported to MS Visio. . In addition to this, an RPG/COBOL
program or 2E action diagram can be produced as a data flow chart interactively while
browsing the source from within X-Analysis. If the RPG program is in Pseudo Code
mode, the Data Flow Chart will use the narratives from the Pseudo code. This enables
non-system i technologists and analysts to assimilate information at a detailed level of
the application without any dependency on RPG, COBOL or 2E experts.

Figure 6- DFD Exported to MS Visio

Lists and Results sets – Any source, object, or impact-analysis result list can be directly
exported to formatted MS Excel or Word from the client.

MS Word Project Documentation Wizard – With the use of a simple wizard, documents
that might take weeks to produce manually, allow the user to select any of the graphical
diagrams, lists, flowcharts, annotation and business rules summaries generated

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 15 of 53

interactively by the client interface, can be collated into a single document with contents
and index. This can be done for a single object, an application area (explained in the next
section), a list of objects, or an entire system. Any of these documents can then be edited
and distributed as required.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 16 of 53

Dividing Systems into Application Areas
Entire legacy applications are often too large to effectively comprehend or effect
wholesale change. For this reason it is often necessary or helpful to sub-divide a system
into application areas. The reasons and specifications for these may change with time
too. X-Analysis provides facilities for subdividing an application area into groups of
objects that meet user defined selection criteria. These criteria might be based on function
or even generic name. X-Analysis then uses the sophisticated cross-reference information
and Data Model relationships to include, automatically all related elements such as
programs, displays, or files in the application area.

Application areas filters can then be used through the X-Analysis Solution Sets to view,
document or reengineer as opposed to individual objects.

Figure 7 - Application Area Diagram for System Overviews

The Application Area diagram in X-Analysis is interactive and by clicking on different
parts of your system you can see the relationships between either all parts or just the
area you’ve clicked on and the areas it relates to.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 17 of 53

Recovering an Application Design
The concept of reusing existing code or logic is not a new one. The challenge has always
been to identify, isolate, and reuse only those designs that are relevant in the new context
in which they are desirable. The sheer volume of code, its complexity, and the general
lack of resources to understand legacy languages, specifically RPG, represents a tragic
potential waste of valuable business assets. In many cases, these expensive and well-
established legacy designs have little chance of even having their relevance assessed, let
alone being reused. The Design Recovery Solution Set of X-Analysis addresses this
problem more directly, by isolating, indexing, and documenting those design elements
that could be relevant in a modern version of the application being assessed.

Modern applications are implemented with distributed architecture. A popular standard
used for this architecture is MVC or Model-View Controller. Figure 8 below shows a
typical legacy and MVC architecture side by side. MVC allows for independent
implementation and development of each layer, and facilitates OO techniques and code
reusability rarely used in legacy applications. All these characteristics of a modern
application radically improve the maintainability and agile nature. Legacy applications
do have these same elements, but they tend to be embedded in and mixed up in large
monolithic programs, with vast amounts of redundancy and duplication throughout.
Implementing an RPG application using
MVC requires that the business logic be
separate from the user interface and
controller logic. This can be implemented
using 5250 and pure RPG (see box right), but
its more likely and common implementation
is using a web interface for the view, with
the controller logic written in a modern
language that supports web interfaces such
as Java, EGL or C#. The optimum modernization result is to reduce dependency on
legacy languages as much as is possible, if not altogether. To achieve this recovered
design assets are reused as input to redevelop the appropriate layer.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 18 of 53

Historically some sites have built or
modified their systems to separate the
presentation layer from the business logic
often called n-tier or 3 tier applications
these systems worked but delivered very
little ‘bang for the buck’ as most of the
improvements were hidden.

Figure 8 – Legacy versus modern architecture

Figure 9 - Modernized Code Architecture

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 19 of 53

Recovering the Data Model

The relational model of an enterprise application is an extremely powerful piece of
information and potentially valuable asset to the organization. Unlike 2E systems for
almost all RPG or COBOL applications running on System i, there is no explicit data
model or schema defined. By the term model, we are referring to the foreign key or
relational model, not just the physical model of the database. The relational model or
architecture of the database can be reused in a number of scenarios including:

 Understanding application architecture

 Data quality analysis – referential integrity testing

 Automated test data extraction, scrambling and aging

 Building BI applications or Data warehouses

X-Analysis has the unique capability of automatically deriving the explicit system data
model from a legacy RPG, COBOL or 2E application. Let us have a look at this and the
model reuse capability in a bit more detail.

Deriving the Legacy Data Model – X-Analysis accomplishes this by analyzing the data
structures of the physical and logical files, but it then programmatically traces these
through all programs that use them to verify the existence of any cross-file relationships
or foreign keys. These derived relationships can also be verified by the product by
performing an integrity check on the actual data. This ensures that the data of the
dependent file makes a reference, to data records from the owning file. In this way, the
automated reverse engineering can fully extract the data model from even the most
complex legacy system.

Test Data for Modernization & Maintenance Projects – Creating and managing test data
can be a labor-intensive and costly task. As a result of this, many companies resort to
creating copies of entire production systems. This approach in itself can produce its own
set of problems, such as excessive storage demands, longer test cycles, and often a lack
of current data for testing. The relational data model is used to extract automatically,
records related to those specifically selected for testing. In this way smaller, accurate test
subsets can be extracted quickly and respectively, with additional functionality for
scrambling sensitive production data and aging the dates in the database forwards or
backwards after testing.

Recovering the User Interface

The screens of a legacy application are a classic example where the design is useful in a
modernization context, and the code is not. All modern IDE’s provide powerful UI
development tools. Modern UI standards and preferences for style and technology also
vary from project to project. The sheer number of screens in a legacy application

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 20 of 53

presents a logistical problem in recreating them manually, even with the cleverest
developers and best tooling. X-Analysis lets you see what the legacy screen looked like
without having to run the application which is a great time saver for people who
haven’t been involved with the original application:

Figure 10 - Screen Design Layout in X-Analysis

Screen designs of legacy applications are not just about look and feel, there are attributes,
and logic embedded which from a design point of view is relevant, no matter what
technology being used to implement them. These are:

Formats/Layouts – Some screens may benefit from amalgamation or redesign, but table
edits, and non-transaction type screens will largely remain the same, if not identical in
layout.

Actions – whether from sub-file options, command keys, or default enter actions, these
often represent an important part of the usefulness of an application design. The
mechanisms used to offer or invokes these calls may change, but where they go logically
and what parameters they pass will largely remain consistent.

Fields/Files/Attributes – What fields are on what screens, and where the data comes from
is a requirement in any system development. Attributes of a field can also help
determine what type of controls might be used in a modern UI. For example, a Boolean
type might be implemented with a check box, a date with a date prompt. Again, these
are simple enough to edit in modern IDE’s, but the volume associated with any large
legacy application modernization can make this work prohibitive.

Data Model Mapping – Validations and prompting mechanisms that ensure referential
integrity in legacy applications can also be vital to extract. This is both to implement
referential integrity and to provide design information for building modern prompt or
selection controls such as drop downs or lists.

Naturally, it will be desirable to redesign some UI’s completely. For those programs and
screens where this is not the case, the design, and mapping information can be used
directly in the new version of the application, even though the UI code has been
discarded.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 21 of 53

X-Analysis extracts User Interface design information as described above and stores it as
meta-data in the X-Analysis repository. This is used as reference documentation for
rebuilding UI’s manually, or for programmatically regenerating new View and
Controller artifacts in the chosen new technology. X-Analysis currently generates a JSF/
Facelets UI version as described in the section Rebuilding the View section below. The
design meta-data can also naturally be used to generate new interfaces using any
technology such as EGL, Ajax, RCP, C#, VB or even RPG.

Recovering Business Rule Logic

Once the system UI, data access & data model has been recovered & the application has
been rebuilt or rewritten from this design, it is then necessary to extract the logic that
gives the application its particular characteristics. The generic term for such logic is
Business Rules. The challenge is to extract or “harvest” these rules from the legacy code.

Traditionally Business analysts or consultants find the rules for a new application by
organizing workshops and interviews then manually writing use cases to describe the
rules as text. However, for a legacy application all the rules are already there prescribed
in the application code - you just have be able to retrieve it.

The problem is that in the vast majority of legacy RPG and COBOL programs, the
business rule logic is mixed in with screen handling, database I/O, and flow control. So
harvesting these business rules from legacy applications requires knowledge of the
application and the language used to implement it, both of which are steadily
diminishing resource. Once harvested these rules need to be narrated and indexed, thus
providing critical information for any analysts, architect or developer charged with
rebuilding a legacy application. The task of harvesting business rules is therefore a
highly skilled, labor-intensive, and costly exercise for any organization.

X-Analysis accomplishes this task by automatically scanning the RPG and COBOL
programs and 2E model programmatically. It then separates out rule code from the body
of the application and identifies, indexes, narrates, and stores business rule logic code
into a structured, usable repository. In the final part of the process, it supplies
appropriate text narratives to describe these harvested rules.

Once the rules are derived they can be viewed in summary form:

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 22 of 53

Or inline in the code from where they are derived:

Note that the description of the business rules is automatically generated it is NOT lifted
from existing comments. All the lines in purple with !BRC* have been derived by X-
Analysis in the example above the comment simply stated ‘Telephone number’ the
derived rule comment looks at how the field is used and validated. NB these Business
rules comments are not added back to the rpg source but retained in the X-Analysis
repository. This business rule repository can then either be used programmatically to
generate new code, enhance the built-in documentation, cross referencing, where-used
and annotation capabilities, it may be used by new developers as the necessary input for
re-specification exercises, whether for new applications or for modifications to the
current system.

Once we have derived business rules we can now view the code in multiple ways
normal source view - the same as PDM in effect with color coding for the type of
statement;

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 23 of 53

We can view the embedded rules ie. what is really going on in the code as discovered by
X-Analysis:

As preparation for moving these rules elsewhere or
isolating the rules as psuedocode we can select
Extracted Rules ;

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 24 of 53

The Extracted rules view shows us the code that will be restructured ready for rebuilding;

Notice how the error code MOVE ‘YSU0003’ MSGID that was grayed out has been
replaced with ERROR Y2U0003

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 25 of 53

Note that the restructured code view grays out the code that won’t be carried over ie the
code that is platform specific. From this view we can press a button to view the
restructured code side by side with the original code;

We can view the migrated logic which is the essence of the original code as expressed in a
language independent psuedo code.

Notice how the RPG SETLL code has been replaced with a VALIDATE statement to carry
out the read against the table on the contract number key.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 26 of 53

The final view is the generated code view where we see the code generated to execute the
instructions in the psuedo code here it is in Java;

Note that whilst this is Java code and thus conceptually far removed from RPG we can by
means of naming and comments link this code back to the original system yet it is brand
new Java code.

We’ll return to Application rebuilding and code generation later in this document.

UML Diagramming

The objective of UML diagrams in this context is to help sketch application designs and to make
such sketches portable and reusable in other IDE’s such as Rational, Borland, MyEclipse, etc. The
three diagrams automatically generated by X-Analysis are:

Activity Diagram – Activity diagrams illustrate the dynamic nature of a system by
modeling the flow of control from activity to activity. An activity represents an operation
on some class in the system that results in a change in the state of the system. Typically,
activity diagrams are used to model workflow or business processes and internal
operation. X-Analysis produces these automatically either from a single program with
multiple screens, or a group of programs. Each activity in the diagram represents a

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 27 of 53

usable screen format in the RPG program. A user can also view the extracted Business
Rules, relevant to that particular activity/format directly from within the diagram.

Figure 11 – Activity Diagram for a Program

Use Case Diagram – Use Case Diagrams model the functionality of system using actors
and use cases. Use cases are services or functions provided by the system to its users.
Auto-generated from X-Analysis, this can be used as an alternative view to the Activity
Diagram, and also has drill-down capabilities for viewing extracted Business Rules.

Figure 12 – Use Case Diagram for a Program

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 28 of 53

Class Diagram – Class diagrams are the backbone of all object-oriented methods,
including UML. They describe the static structure of a system. Classes represent an
abstraction of entities with common characteristics. Associations represent the
relationships between classes. An extracted class in a class diagram corresponds to the
individual screen formats and all of the specific attributes of that particular format. X-
Analysis deduces the links between these classes using a combination of the derived
data model, and call or action information extracted from each program.

Figure 13 – Class Diagram for a Program

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 29 of 53

Figure 14 – Activity Diagram

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 30 of 53

Producing any of these diagrams from within X-Analysis is as simple as right-clicking on
an object and selecting the appropriate option from the menu:

Figure 15 – Producing Diagrams in X-Analysis

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 31 of 53

Using Design Recovery for Rebuilding
Whilst Design Recovery is very valuable for documentation and application support
purposes the real benefits come when the recovered design can be used to modernize or
re-develop a system. Reusing existing designs programmatically can provide a dramatic
productivity gain in rebuilding an application. While legacy application designs in their
entirety might not suit a modern application implementation, design components are
often suitable, as long they can be re-used at a sufficiently high level without introducing
complexity to the redeveloped application. Therefore, being able to select and enhance,
or ignore these at a granular level, removes the inheritance of irrelevant or legacy-specific
code constructs, and allows direct access to elements that might have otherwise been
deemed unusable in their current form.

NB: This is an important point so worth stressing - this lets us bring across what is useful
leaving behind what isn’t relevant and cuts down on duplication

Another important factor in this scenario is the ability to choose an implementation
technology or language that suits the technology constraints or resources specific to a
region or organization. The next sections cover how we can use the recovered application
design in different ways to effect varying levels of modernization and re-development
up to and including a rebuilt system.

Database Modernization - using the Data
Model assets
Whilst it has always been possible to access System i data in a relational database like fashion
there was originally no way of defining your database in the traditional relational database form
with a schema or model. This has meant that most System i applications don’t have an explicitly
defined relational database schema or model.

The data model for a legacy application as deduced by X-Analysis can be used to modernize the
database and database access as well as providing valuable information for analysis and
documentation. Once you have a modernized database you gain a number of advantages:

 Easier access to your data for reporting via Business Intelligence (BI) tools when they use the
newly derived Data Model.

 Ability to use modern Object Relational Mapping (ORM) software such as Hibernate for
rapid application development in Java and other modern languages.

 Because the database is defined in purely SQL terms rather than in a proprietary file format it
becomes portable i.e. it is now an option to consider moving the database to another
platform.

 Openness and Standards compliance using Industry standard SQL means that many different
tools and applications on multiple platforms can easily access and use your modernized
database

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 32 of 53

 Improved performance as IBM’s data retrieval efforts have been concentrated on SQL access
rather than file based access for many years now

 Reduced dependency on System i specific skills such as DDS, which may led to cost savings
and reduced risk.

 Data Integrity - Journaling is available for SQL access just as it has always been for file-based
access. Constraints and referential integrity can be implemented directly at the database level
where they are unavoidable rather than at the program level. Databases triggers allow code
to be run before or after records are added, updated or deleted providing an easy way of
enforcing compliance, audits, validations and applying business rules.

We’ve now looked at some of the advantages of Database Modernization but how is it actually
achieved and how can X-Analysis help the process along?

As previously mentioned historically System i applications have used Data Description
Specifications (DDS) to define physical files and associated logical files or access paths.
Whilst the files created can of course be accessed using SQL syntax from programs or via
JDBC/ODBC the actual definitions bear no relation to SQL. What the process of X-
Analysis database modernization does is to replace the DDS definitions with SQL create
scripts that build tables and indexes. As we have seen X-Analysis has a complete cross-
reference of all files and fields and their relationships and can build the table creation
scripts together with the required indexes to optimize the system, your existing programs
all still work after this process and without any re-compilation or alteration.

By using X-Analysis to do this automatically, no existing programs need be recompiled
or impacted in any way. With the data copying facilities built in to the tool, the transition
can be seamless. From this point onwards legacy programs can continue to use native I/
O techniques, or be automatically reengineered using Databorough’s X-Ternalize, to use
externalized SQL I/O.

X-Analysis can also generate an entire set of CRUD1 RPG stateless I/O modules to be
used as web services for any web or SOA type development.

For IBM’s take on the relative merits of DDS and SQL and the advantages of an SQL
created database over one created with DDS see the IBM Redbook “Modernizing IBM
eServer iSeries Application Data Access - A Roadmap Cornerstone” which is an
excellent reference on this subject.

Modern Data I/O & Persistence – Modern Object Oriented (OO) type development does
not mean that relational databases need be abandoned. Indeed, it would be a fairly
unwise strategy for a company to throw away its database and the information stored in
it, for the sake of OO development. Java is an Object Oriented or OO language. System i
databases are relational. Though Java Database Connectivity or, JDBC provides an easy
method for accessing relational databases, it is basically a low level API providing only a

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 33 of 53

1 CRUD Create, Read, Update, Delete - a tongue in cheek acronym coined to cover the key table
operations any system has have.

http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm?href=01-1.htm#wp457511
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm?href=01-1.htm#wp457511
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm?href=01-1.htm#wp457511
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm?href=01-1.htm#wp457511

thin layer of abstraction. Thus complex I/O and data requirements typical of System i
applications quickly become very complicated to develop and maintain. JDBC is
sufficient for small and medium projects, but is not that well suited for enterprise level
applications. Therefore what is required is an Object Relational Mapping (ORM)
framework that can act as a mediator between an OO design and a relational database.

The most widely used ORM framework for Java is Hibernate. Hibernate
(www.hibernate.org) is a free open source Java package originated and backed by JBoss
and Red Hat that makes it easier for Java developers to work with relational databases
as it handles what’s known as the persistence layer i.e. the bit that actually reads and
writes data to the database. Hibernate has been downloaded at least 3 million times and
has gained widespread usage so there are now plenty of books and resources available
for it. Hibernate allows Java developers to treat the database as a set of objects like any
other object they use, thus dramatically simplifying the code they need to write. For
large complicated databases, typical of system i applications, this is naturally a big
advantage. It is this, which makes Hibernate one of the most popular persistence
frameworks used for enterprise Java applications today.

As a framework Hibernate naturally requires set up and configuration, and the more
information that can be supplied in the configuration, the
more effectively it can be utilized in development and
production. Though DDL Schemas can be imported
directly into Hibernate, DDL that describes only the tables
and fields of the physical database is only part of the ORM
requirement. Relational or foreign key information is
obviously the next critical requirement for the Hibernate
ORM to work effectively. As explained earlier, the entire
legacy relational model derived by X-Analysis can be
exported as DDL. This DDL can then be imported directly into Hibernate, thus
producing an instant Object relational Map or ORM of the entire legacy application
database.

To illustrate Hibernate and X-Analysis lets look at generating ORM objects with X-
Analysis this is accessed by a straight forward right click menu;

Hibernate is a very good
fit for 2E applications as it
is flexible enough to work
well with the mnemonic
naming without having to
use the file/table names as
with pure JDBC.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 34 of 53

http://www.hibernate.org
http://www.hibernate.org

Choose the files you’d like to generate ORM objects for ;

X-Analysis generates hibernate mappings , configurations and hibernate java beans -
everything required to access those tables from Java;

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 35 of 53

Generated hibernate xml mappings and hibernate java beans;

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 36 of 53

Hibernate mapping for purchases table;

Modern Business Intelligence, Inquiries & Reports – There are many choices when it
comes to BI or reporting tools. Almost all of these automatically allow import of the
database definition, some provide for the relational or foreign key model of a database,
some even try and infer this from the physical implementation of the data base fields
and file definitions themselves. The problem with using the file and field names on a
System i database, is that they do not match, and they have complex key structures as
opposed to UID or sequence keys. The benefits of having an explicitly defined relational
and physical model of the database in any of these tools are significant. Almost all
reports use some form of file joining information for displaying code descriptions or
related information such as list prices on an order for example. Drill-down applications
use join or foreign key information to build the navigation links into the reports or
queries. The DDL export of the relational and physical model derived by X-Analysis
provides a distinct productivity advantage to anyone building reports or BI Applications
with any of these tools. It is also possible to populate and build an entire BI application
from the data model. The application design is stored as meta-data, and then can be
generated into reporting tools such as DB2 Web-Query.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 37 of 53

Rebuilding the View

In the section, “Recovering Screen Designs” above we described how useful screen
design information is extracted into Function Definitions in the X-Analysis repository.
These function definitions are effectively input specifications for generating new UI’s or
Views. The Modernization Tool Set of X-Analysis actually uses the Function Definitions
to automatically, generate JSF/Facelets and Java bean source for each recovered screen
design. The generated source code is structured, annotated, simple, industry standard,
and ready for maintenance with any Java IDE. Layouts and styles are implemented
using CSS, and certain field types implemented with appropriate HTML controls such
as date prompts, drop downs, check boxes with corresponding Java Scripting or logic in
the Java Bean.

EGL versions are also available for view/controller generation, with future generation
options for PHP, C#, and XAML, becoming available from Databorough and other
Business Partners.

Actions from the Function definitions translate effectively into links on the generated
JSF/Facelets, and these can be implemented with tab, buttons, or any appropriate UI
standard demanded by a project. The required logic to invoke these actions is placed in
the appropriate methods of the generated Java Bean as described below.

Rebuilding the Controller

The Java bean that drives the JSF/Facelet has standard methods for Data I/O,
navigational actions, and for using any residual services that might remain on the legacy
server in RPG, COBOL or 2E. This JSF bean has standardized exit points and a set of
standard parameters making maintenance and development more efficient and
consistent.

A separate call bean is implemented for each transaction group or legacy service
program. This call bean provides a standard interface to these reengineered legacy RPG
services, and therefore greatly simplifies the controller or JSF bean as it is often referred
to. In the case of a set multiple JSF’s that make up a transaction, the call bean also acts as
a persistence manager for the transaction.

Reusing Business Rules

The optimum design objective is to move as much of the business rule logic into the Java
as possible, thus reducing the dependency on legacy languages. The monolithic
architecture of legacy applications produces significant amounts of redundant and
duplicate validation and field or calculation logic type business rules. These need to be
re-factored if the maintainability of the application maintenance is to be improved – a
primary objective of modernization in the first place. Examples of this refactoring
process are:

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 38 of 53

 Centralizing commonly used referential validation rules into the data persistence
framework.

 Date formatting logic can be centralized into reusable classes.

 Centralizing commonly used field logic, such as, global tax calculations into
reusable classes.

This means that code duplication & redundancy can be almost completely avoided in
the modern application. Typically, the only logic recreated in UI specific classes or beans
will be context specific calculations field logic such as calculating the value of the order
line being captured, along with conditional display or navigation logic for some UI’s
These new beans/classes should therefore be fairly simple and easy to maintain by
comparison to their legacy counterparts.

X-Analysis provides powerful features as described earlier for narrating, annotating,
and carrying out where-used analysis on Business Rules as described in the “Recovering
Business Rule Logic” section of this document. These functions combined with the
ability to interactively select those rules from the legacy application for reuse in the
modern version, dramatically speed up the refactoring process. Rules selected by the
user are then placed automatically into the Java bean, with the Pseudo code narrative
describing the rule included as annotations in the bean.

The fact that we can easily verfiy that business rules from the legacy system have been
built into the new system provides a high degree of confidence in the new system and is
important from a compliance and audit standpoint.

Each legacy program can also be reengineered into a standardized RPG service program
as a stored procedure for handling legacy batch services that need not be touched, either
temporarily or indefinitely. A Java call bean is created automatically by X-Analysis in this
instance, and acts as a wrapper class to this stored procedure, thus greatly simplifying
access to legacy services for Java developers. Conversion to EGL is another option
available for residual RPG based service logic.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 39 of 53

Rebuilding Example
To illustrate how quickly you can begin the rebuilding process lets have a look at a
typical iSeries application and rebuild part of it. The key steps are:

1. Identify the parts of the green screen that you want to work with

2. Use X-Analysis Application Areas to break out this part of the system

3. Rebuild the Application Area into your chosen architecture

4. Run the rebuilt application

5. Refine the rebuilt application , tailor to your requirements

Identify what you want to work with

Here’s some screens from our application first the work with customers

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 40 of 53

We can view Orders

And maintain or change a customer record with F4 prompting

These screens are fairly typical of thousands of System i applications which exist today.

Application Areas

Having identified that the Work with customers area is what we are interested in the
next thing to do is to identify which programs , displays and files are required to make
that area work. This would not be a straightforward task if you didn’t have good
knowledge of the system.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 41 of 53

Fortunately X-Analysis makes this process esasy for us by allowing us to easily set up
multiple application areas which we can base on a program or programs and specify that
we want to include all referenced files and programs:

Once we have our application we can view the objects or programs it contains:

This is a very powerful technique and allows rapid prototyping and development
without having to develop the whole system in one go. The application areas you create
can be integrated together into a larger structure and displayed using the application area
diagram.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 42 of 53

Rebuild the Application

Working with the application area that we have just created we can build a web
application directly

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 43 of 53

We can choose the programs to include , the application architecture we want to use Java
or EGL (PHP and .Net under development), whether to include Business Rule logic or
not and the type of data access mechanism we wish to use JDBC or ORM (Hibernate).

When we press OK here a new Java Web application is generated for us.

As we can see in the screen shot to the left the application that is generated comes
complete with the necessary script files to build it for different application servers eg.
Apache Tomcat and WebSphere.

The code is structured in a logical manner with hibernate beans or data beans according
to whether we chose the ORM option or not.

Similarly if we opened up the classes and the JSF pages produced we would see that they
have names which can clearly tie them back to the original application even though this
is brand new code.

Once this application is built we can deploy it to the application server of our choice and
start to use the application.

You can either go straight to a browser and navigate to a page , but an easier way is to use
the built in integration with X-Analysis.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 44 of 53

If we go back to the X-Analysis view of our application area and bring up the programs ,
if we select WWCUSTS and right click we have options to allow us to display the
corresponding JSF page as can be seen in this screen shot:

When we click on the Execute JSF we get the rebuilt work with Customers page :

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 45 of 53

Following the screen flow we had earlier on the green screen side here’s the Work with
Customers screen.

The pages that have been generated are fully functional however you will probably want
to alter the appearance to match your standard pages and perhaps add links and so on to
integrate the pages with other systems. The pages all use Cascading Style Sheets (CSS) to
control their look and feel and positioning so changes are easy to make.

Regardless of your opinion on the aesthetics of the generated screens you will agree that
the basic pages are not bad for zero coding and just a few clicks!!

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 46 of 53

Following the screen flow we had earlier on the green screen side here’s the Work with
Orders screen.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 47 of 53

And finally the customer maintenance page with a drop down selected.

Completing the Modernization Process
Some mention should at least be made on some of the tasks remaining to complete the
application rebuild. Rather than explain how to do these in detail in this white paper, the
most relevant points have been summarized below. There will be a subsequent white
paper from Databorough that will elaborate on these points. There is no shortage of
articles and books on these aspects generally available to modern software architects.
Some useful articles listed in the “Additional Resources & Information” section below,
cover some of these subjects.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 48 of 53

Surrounding Application Framework

In most cases, it will be desirable to replace some of the System i application constructs
with JEE or other equivalents.

 File Overrides

 LDA type constructs

 Soft Security

 Commitment Control

Look & Feel & UI Standards

Green screen applications have always been optimized for rapid data entry with such
helpful features as tabbing between fields and Field exit field completion, it is perfectly
possible to make a web application work well for data entry but it requires effort and as
was often the case with windows applications it isn’t always done well - as an example
it is common to come across web applications where the tab order is not correctly set
and tabbing can take you to images or almost anywhere but the field you were hoping
for!

The task of designing new interfaces for the modernized applications should not be
underestimated you can’t simply rely on the ‘cool’ factor of the web and the colorful and
sophisticated look and feel that style sheets enable do not guarantee a usable interface.

To illustrate some of the issues consider the case of an updatable sub-file grid that a user
might enter a series of transactions into which there happen to be some transaction code
fields included. As a global UI standard, the decision might be to replace code fields with
drop-down combo boxes using the descriptor rather than the code itself. This might look
good but cause big problems in performance (both from preparation of the page and also
the sheer size of the page being transmitted) when populating the drop downs
individually for each row in the grid, before the user even starts to enter data. It might
also be a lot slower for the user to drop down a list of 300 codes and select the required
one with a mouse for each row, as opposed to entering a two or three digit well known
code into it - this would also be very frustrating for existing users and as we know new
systems can fail because of user resistance.

When we analyze this scenario we see that in the green screen application we have a
system which can be operated quickly by the users using only the keyboard and is very
responsive - though it would appear intimidating and strange to new users used only to
Windows or web applications - the challenge is to build a new interface which is
accessible, intuitive and easy to use for new users whilst allowing the existing users to
apply their knowledge of the system to get around it quickly and with good
performance and responsiveness.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 49 of 53

Taking the example mentioned earlier where we wish to produce a new application
where a user enters transactions involving entering codes, in the green screen world this
would typically just be an input field with possibly and F4 prompt option to show the
allowable values. As alluded to above in the web world the first thought is often to
convert this type of construct to a drop down combo box like this example from the IBM
Power site:

This can be cumbersome if there are many
values and unless you have only a few codes
beginning with each number or letter (in
most browsers once the focus is on a drop
down box typing a letter or number will
position the cursor at the first matching
entry in the list) keyboard navigation is
limited and can involve a lot of scrolling.

This example looks quite cumbersome, but
imagine if it had several hundred options
and you had to repeat the same process
many times on each page! So how can we
improve the usability and provide help for
new users at the same time? Most web
applications that have been developed from
older applications use technologies dating
from the birth of the web (Web 1.0) and are
analogous to main-frame technologies i.e.
the browser is a dumb terminal you enter
data then press enter, then get feedback on
errors etc. Web 2.0 technologies which I shall
address shortly are similar in principle to
Mini computers like the iSeries the terminal

or browser can communicate in real-time with the computer as the data is being entered
providing instant feedback .

For the purposes of this paper when addressing Web 2.0 we are referring to AJAX -
Asynchronous JavaScript and XML. Ajax is a term that was coined in 2005 as a tipping
point was reached where most web browsers in use had a lowest common denominator
set of capabilities across CSS, JavaScript, XML and XHTML which enabled
implementation of rich web applications that communicate with a server in the

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 50 of 53

background without stopping the page displaying. Google Maps and Google Suggest
are good examples of Ajax in action and helped popularize the concept, Google Maps
uses Ajax to prefetch the map images around the area your looking at which allows fast
scrolling, Google Suggest populates a list of search terms based on the letters you’ve
typed.

Ajax allows us to design a flexible system which can support both new and existing
users. For new users or anyone needing a reminder of keystroke we can have a help icon
or question mark beside the field if clicked a windows will appear allowing the user to
choose the appropriate code , depending on the complexity of your codes you may wish
to add a wizard or step by step facility which asks questions that narrow the range of
codes. For the experienced users you have several choices including;

 Let the user enter a code and validate it when they leave the field

 Let the user type in one or more characters of the code and then show a dynamic
list for them to choose from based on the character(s) they have entered.

The best choice is likely to be to combine the two approaches with a variable delay on
the dynamic list so we don’t waste system time generating lists when the user knows
the whole code, only prompting when it looks like it would be useful.

Ajax has become widely used since 2005 and a number of frameworks exist to make
their use easier and in some cases automatically for example JSON - JavaScript Object
Notation and GWT - Google Web Toolkit.

Practical usability and look and feel designs go hand in hand, and require knowledge
and information about modern UI controls and legacy UI patterns, which can also be
extracted as part of the X-Analysis documentation facilities.

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 51 of 53

Summary
Comprehensive, accurate, and current documentation of a legacy application improves
quality, productivity and reduces risk, for any maintenance, modernization or rebuild IT
project. The risk associated with maintaining large complex legacy application, with a
rapidly diminishing set of legacy skills, can be largely mitigated by access to such
documentation.

Understanding and mapping the relevance of existing designs, and quantifying the scope
and metrics of an application, is the first step in ANY modernization project, even if the
application is to be replaced. Design constructs such as the data model can be used for
support, development, and testing tasks such as test data extraction. Source change
management can be vastly improved by powerful cross-referencing functionality.

Legacy design constructs can be used passively in the form of information they represent,
and programmatically to radically accelerate application rebuilds; a requirement for
achieving true long-term application modernization. A combination of both allows
optimum use of internal and external resources and existing design assets.

X-Analysis delivers against all of these concepts. 20+ years of development effort, ensures
that virtually any legacy application can be automatically reverse engineered onto a high-
level design.

Richard Downey and Stuart Milligan

©Databorough May 2009

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 52 of 53

Additional Resources & Information
These are the few relevant references used in this white paper. More information is
available from the authors of this white paper upon request.

World Leader in discovery, analysis and modernization tools for System i

http://www.databorough.com

Modernizing and Improving the Maintainability of RPG Applications Using X-Analysis Version
5.6 – IBM Redbook

http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html

Architecture and Design Recovery - Johannes Kepler University

http://www.alexander-egyed.com/research/software_architecture_and_design_recovery.html

Crafting an Application Architecture with Java Frameworks - by Don Denoncourt

http://systeminetwork.com/article/crafting-application-architecture-java-frameworks

Hibernate Your JDBC - by Don Denoncourt

http://systeminetwork.com/article/hibernate-your-jdbc

Encore's Extreme Makeover from the Inside Out - by Richard Shaler

http://systeminetwork.com/article/encores-extreme-makeover-inside-out

A Field Guide to Encore's System i Software – by Richard Shaler

http://systeminetwork.com/article/field-guide-encores-system-i-software

Asset modernization: Discover and transform legacy assets for reuse – IBM Rational

http://www-306.ibm.com/software/info/developer/solutions/em/systems/i/assets/
index.jsp

Modernizing IBM eServer iSeries Application Data Access - A Roadmap Cornerstone – IBM
Redbook

http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/
wwhelp.htm

Eating the IT Elephant - Moving from Greenfield Development to Brownfield - by Richard
Hopkins and Kevin Jenkins IBM Press

http://eatingtheitelephant.com/home.html

X-Analysis 8 Application Modernization and Rebuilding Concepts Guide

© Databorough Limited 2009 Page 53 of 53

http://www.databorough.com
http://www.databorough.com
http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html
http://www.redbooks.ibm.com/redpieces/abstracts/redp4046.html
http://www.alexander-egyed.com/research/software_architecture_and_design_recovery.html
http://www.alexander-egyed.com/research/software_architecture_and_design_recovery.html
http://systeminetwork.com/article/crafting-application-architecture-java-frameworks
http://systeminetwork.com/article/crafting-application-architecture-java-frameworks
http://systeminetwork.com/article/hibernate-your-jdbc
http://systeminetwork.com/article/hibernate-your-jdbc
http://systeminetwork.com/article/encores-extreme-makeover-inside-out
http://systeminetwork.com/article/encores-extreme-makeover-inside-out
http://systeminetwork.com/article/field-guide-encores-system-i-software
http://systeminetwork.com/article/field-guide-encores-system-i-software
http://www-306.ibm.com/software/info/developer/solutions/em/systems/i/assets/index.jsp
http://www-306.ibm.com/software/info/developer/solutions/em/systems/i/assets/index.jsp
http://www-306.ibm.com/software/info/developer/solutions/em/systems/i/assets/index.jsp
http://www-306.ibm.com/software/info/developer/solutions/em/systems/i/assets/index.jsp
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246393/wwhelp/wwhimpl/java/html/wwhelp.htm
http://eatingtheitelephant.com/home.html
http://eatingtheitelephant.com/home.html

