

USER MANUAL HANDLING COMPONENTS Rotary Units DAP-1 / DAPI-1

BA-100010 english, Edition 01/2007

Table of contents

1.	Important information	3
1.1.	Operational discharge	3
1.2.	Declaration of EU conformance (to Directive on Machines, Appendix II A)	3
1.3.	Product description and application	3
1.4.	Dangers	3
1.5.	Additional information	4
1.6.	Validity of the User Manual	4
2.	Technical data	5
2.1.	Special accessories	6
2.2.	Performance diagram *	7
2.3.	Pressure-torque diagram	8
2.4.	Dimensioned diagrams DAP-1	9
2.5.	Dimensioned diagrams DAPI-1	10
2.6.	Load calculation	11
2.7.	Sample calculation	15
2.8.	Formulas for calculating moments of inertia	16
3.	Commissioning	17
3.1.	Installation position	17
3.2.	Mounting	18
3.3.	Mounting moving bodies on the rotating axis	19
3.4.	Compressed air input	24
3.5.	Setting the angle of rotation ϕ (see Fig.4-1)	25
3.6.	Setting the shock-absorbers (see Fig.4-1)	25
3.7.	Setting and connecting the inductive proximity switches	26
3.8.	Maintenance	27
4.	Spare parts list DAP-1	28
4.1.	Spare parts list DAPI-1	29

4.2.	Spare parts list DAP-1 / DAPI-1	30
5.	Environmental Compatibility	32
6.	List of figures	33

1. Important information

1.1. Operational discharge

This user manual describes the mechanical construction, the load limit, the assembly, the support and the spare parts of the rotary units DAP-1 / DAPI-1.

It is an integrated component of the operating instructions of amplifier and the operator software.

1.2. Declaration of EU conformance (to Directive on Machines, Appendix II A)

Regulations and standards taken into account:

Directive on Machines 89/392/EEC, 91/368/EEC

Manufacturer: Montech AG, Gewerbestrasse 12 CH–4552 Derendingen Tel. +41 32 681 55 00, Fax +41 32 682 19 77

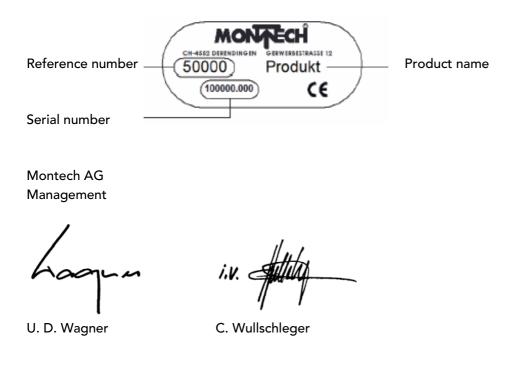
1.3. Product description and application

Rotary drives DAP-1/DAPI-1 are used where ever regularly rotating movements forwards and backwards have to be performed. Under all circumstances the performance limits quoted in the technical data have to be taken into account. With freely rotating masses particular attention must be paid to the mass moment of inertia.

1.4. Dangers

The actuation of freely rotating masses with rotary drives DAP-1/DAPI-1 is only permissible when it is safeguarded by Moving, Isolating Protective Devices in accordance with EN 292-2, para 4.2.2.3. The present operating instructions are intended to ensure that the DAP-1/ DAPI-1 rotary drives are installed expertly and safely. It is a must, to comply with maximum load.

During work on the device, it must be ensured that the compressed air cannot be switched on by unauthorized persons!


1.5. Additional information

The aim of the present User Manual is to enable users to employ rotary drive DAP-1 / DAPI-1. correctly and safely. Should further information be required in relation to your particular application, please contact the manufacturer.

When reordering User Manuals, it is essential to quote the reference number, the product name and serial number.

This document can be obtained from our homepage www.montech.com.

Fig. 1-1: Nameplatte

1.6. Validity of the User Manual

Our products are continually updated to reflect the latest state of the art and practical experience. In line with product developments, our User Manuals are continually updated. Every User Manual has an order number (e.g. BA-100010) and an edition number (e.g. 01/2007). The

order number and the addition number are shown on the title page.

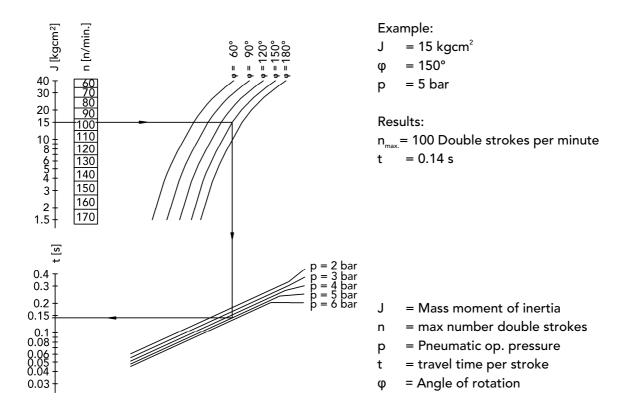
2. Technical data

			DAP-1	DAPI-1	
Range of adjustment of angle of rotation		[°]	0-180	0-180	
Piston diameter		[mm]	20	20	
Permissible moment of inertia		[kgcm²]	40	40	
Permissible shaft loading	1)	[Nm]	5	5	
Permissible axial load tension/compression		[N]	90/120	90/120	
Weight		[kg]	0.54	0.64	
Operating pressure		[bar]	2-6		
Operating medium			oiled or unoiled air, filtere drew point <6°C	ed to 5 μm	
Damping in endpositions			Hydraulic shock absorber	S	
Repeatability	2)	[°]	≤0.01		
Check of end positions	3)		Induct. proximity switch		
Pneumatic connection			Hose-ø 4 mm		
Speed regulation			adjustable exhaust thrott push-on union Ø4mm dia		
Ambient temperature		[°C]	10-50		
Rel. humidity			< 95% (non condensing)		
Air purity		normal workshop atmosphere			
Warranty			2 years from the date of delivery		
Maintenance			oil the greasing felt		
Installation position			arbitrary		
Material			aluminium, steel, bronze, plastic		

1) Variation of end positions during 100 successive strokes

2) Load acting about the longitudinal axis of the rotating shaft

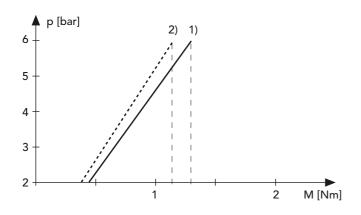
3) See special accessories


2.1. Special accessories

- Inductive proximity switch PNP, 6.5mm dia. with LED, proof against short circuit and wrong polarity, with a switching clearance of 2mm and a cable 2m long, Ref.No. 508842; plug-in Ref.No. 508843.
- Angle adapter WA to the cultivation of grip arms with internal air feed, right-angled to the axis of rotation (inclusive gasket kit) Article No. 43711. (See Fig. 3-4: Gripper axis perpendicular to the axis of rotation)
- Linear adapter LA for feed eccentrically arranged consumer Article No 44390. (See Fig. 3-5: Gripper axis outside the axis of rotation)
- The push-button actuator converts a pneumatic signal into an electronic. Employment for frequent change in pressure trick and/or lagging Article No 41886.
- Adjustable exhaust throttle with push-on union for hose 2.7/4 mm dia.: Article No. 505023 (for throttling loads connected to rotary unit DAPI-1

2.2. Performance diagram *

Fig. 2-1: Performance diagram


*Scope:

- Centre of gravity of the rotating mass located in the axis of rotation, which may be in any position.
- Centre of gravity of the rotating mass outside the axis of rotation, with the axis vertical.

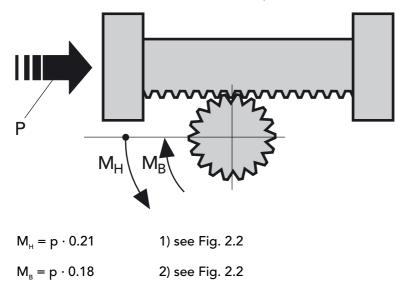
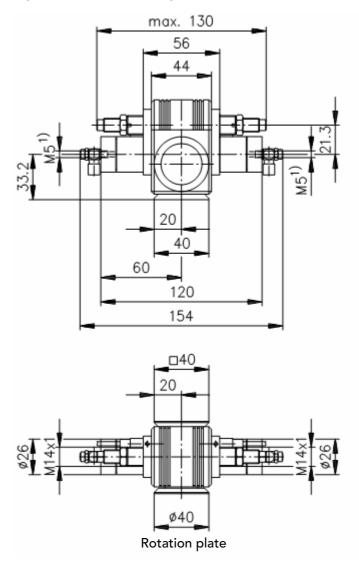
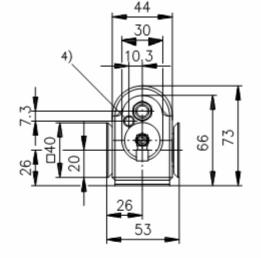

2.3. Pressure-torque diagram

Fig. 2-2: Pressure-torque diagram

- p = Pneumatic operating pressure.
- $M_{_{_{H}}} = \frac{Holding torque; corresponds to that which can be externally applied to the stationary pinion shaft, without it moving.$
- $M_{_B} = \frac{M_{_B}}{M_{_B}}$ Moving torque; corresponds to that made available by the pneumatic drive at the rotating pinion shaft.

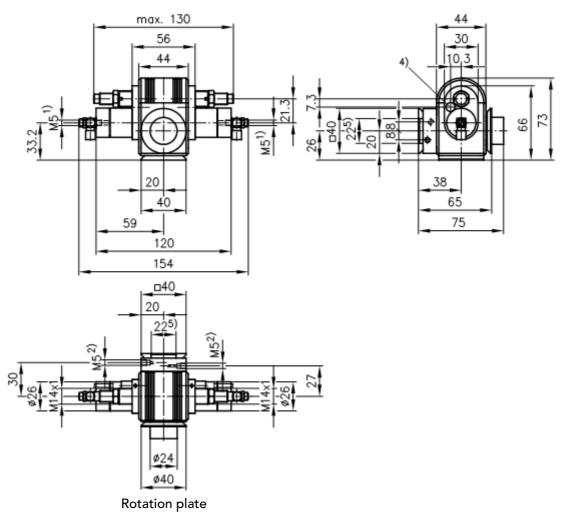

Fig. 2-3: DAP left-hand / right-Hand end position



2.4. Dimensioned diagrams DAP-1

Fig. 2-4: Dimensioned diagram DAP-1

1) Compressed air feed of the rotary drive

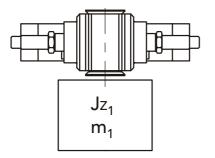

4) Admission for inductive proximity switches

Designation	Article No.
DAP-1	44821

2.5. Dimensioned diagrams DAPI-1

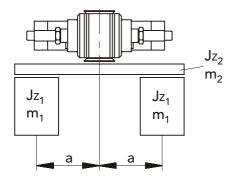
Fig. 2-5: Dimensioned diagram DAPI-1

- 1) Compressed air feed of the rotary drive
- 2) Compressed air feed for consumers at turning wave
- 4) Admission for inductive proximity switches
- 5) dovetail width


Designation	Article No.
DAPI-1	44905

2.6. Load calculation

Examination of the individual case


Fig. 2-6: Situation of the attachment parts

Situation of the axis of rotation					
vertical	horizontal	bevelled			
$J_{Ges} = J_{z1}$					
$M_1 < m_{zul}$	M_1 to check	M ₁ to check F _{1 zul} to check F _{2 zul} to check			

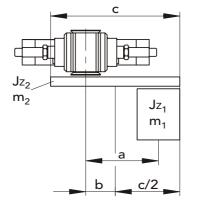


Fig. 2-7: Situation of the attachment parts

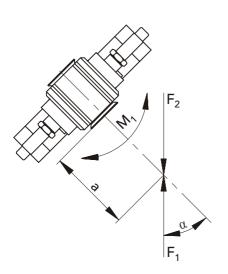
Situation of the axis of rotation							
vertical	horizontal	bevelled					
$J_{_{Ges}} = 2 \cdot (J_{_{z1}} + m_{_1} \cdot a^2) + J_{_{z2}}$	$J_{Ges} = 2 \cdot (J_{z1} + m_1 \cdot a^2) + J_{z2}$						
$\sum m_{1}m_{2} < m_{zul}$	M₁ to check	M ₁ to check F _{1 zul} to check F _{2 zul} to check					


Fig. 2-8: Situation of the attachment parts

Situation of the axis of rotation

vertical	horizontal	bevelled
$J_{Ges} = J_{z1} + m_1 \cdot a^2 + J_{z2} + m_2 \cdot b^2$	trial	trial
$m_1 + m_2 < m_{zul}$	M ₁ to check M _H to check M _B to check	$\begin{array}{lll} M_{1} & \mbox{to check} \\ F_{1zul} & \mbox{to check} \\ F_{2zul} & \mbox{to check} \\ M_{H} & \mbox{to check} \\ M_{B} & \mbox{to check} \end{array}$

Fig. 2-9: Situation of the attachment parts


Situation of the axis of rotation

vertical	horizontal	bevelled
$J_{Ges} = J_{z1} + m_1 \cdot a^2$ + $J_{z2} + m_2 \cdot b^2$ + $J_{z3} + m_3 \cdot d^2$	trial	trial
∑m₁m₂ < mzul	M ₁ to check M _H to check M _B to check	$\begin{array}{lll} M_{1} & \text{to check} \\ F_{1_{zul}} & \text{to check} \\ F_{2_{zul}} & \text{to check} \\ M_{H} & \text{to check} \\ M_{B} & \text{to check} \end{array}$

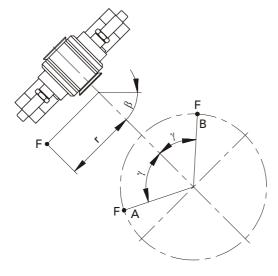
2.7. Sample calculation

Fig. 2-10: Sample calculation examination of the individual case

Examine the forces F_1 and $\mathsf{F}_2,$ as well as the Moment M_1

$$F_{1zul} = \frac{F_{zul}}{\cos \alpha}$$

 $M_1 = F_{1vorh} \cdot sin\alpha \cdot a < M_{1zul}$

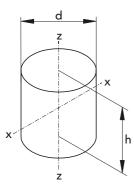

$$F_{2zul} = \frac{F_{zul}}{\cos \alpha}$$

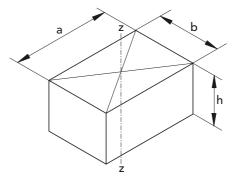
 $M_1 = F_{2vorh} \cdot sin\alpha \cdot a < M_{1zul}$

Examine the movement and retaining moment $M_{_{\rm B}}$ and $M_{_{\rm H}}$ in the end positions A and/or. B.

 $M_{\text{ vorh }} = F \cdot r \cdot \cos \beta \cdot \sin \gamma$

In the formula the larger of the two occurring angles γ is to be used.




		DAP-1
m _{zul}	[kg]	9
F _{zul}	[N]	90
M _{1 zul}	[Nm]	5

2.8. Formulas for calculating moments of inertia

Fig. 2-11: Formulas for calculating moments of inertia

 $m = \frac{1}{4} \cdot \rho \cdot \pi \cdot d^2 \cdot h$

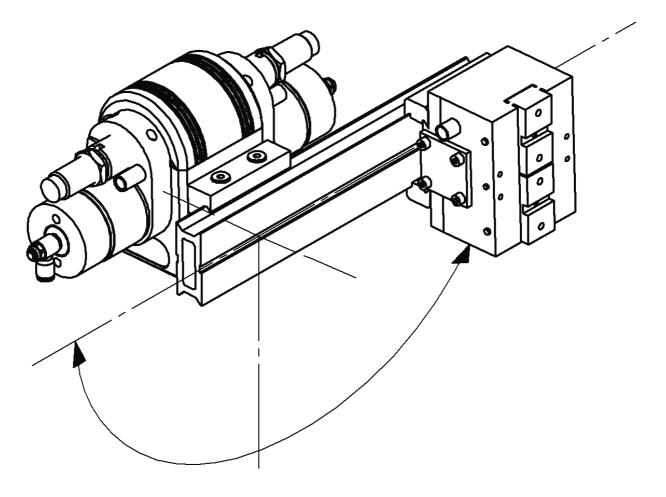
$$J_z = \frac{1}{8} \cdot m \cdot d^2$$

- $J_x = \frac{1}{16} \cdot m \cdot \left(d^2 + \frac{4}{3}h^2\right)$
- J_z Moment of inertia with axis of rotation z z
- J_{x} Moment of inertia with axis of rotation x x
- m Mass
- ρ Density
- a Length
- b Width
- d Diameter
- h Height

 $m = \rho \cdot a \cdot b \cdot h$

$$J_z = \frac{1}{12} \cdot m \cdot \left(a^2 + b^2\right)$$

[kgcm²] [kgcm²] [kg] [kg/cm³] [cm] [cm] [cm]

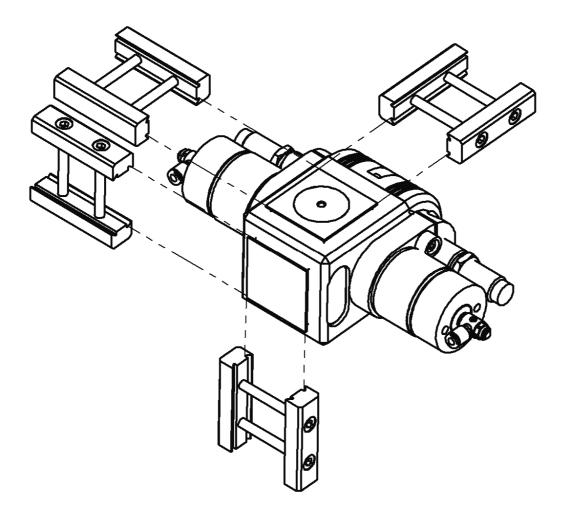


3. Commissioning

3.1. Installation position

In principle, the rotary units may be mounted in any position. But it should be borne in mind that when the axis of rotation is not vertical and the centre of gravity of the mass is eccentric with respect to the axis of rotation, additional variable torques are likely to occur. They may be either in the direction of rotation or in the opposite direction. The result is that the permissible mass moment of inertia has to be reduced from 40kgcm² and that the time (t) shown in the performance diagram (Fig.2-1) becomes longer owing to the speed being reduced.

Fig. 3-1: installation position



3.2. Mounting

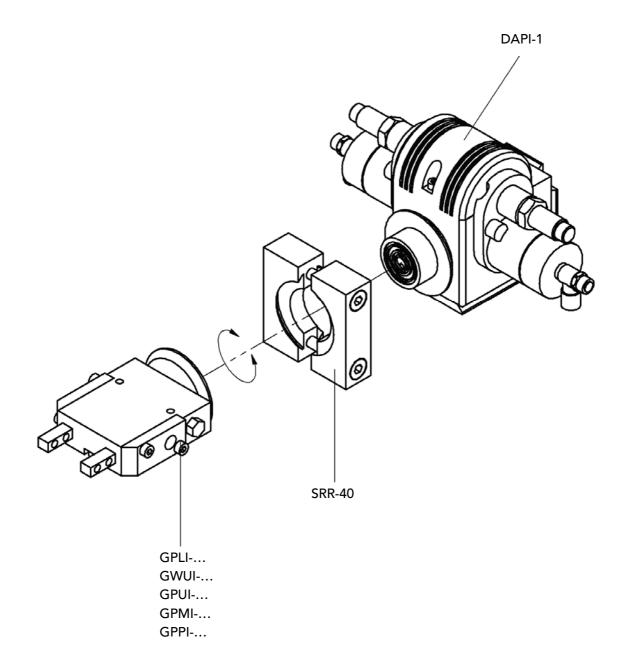
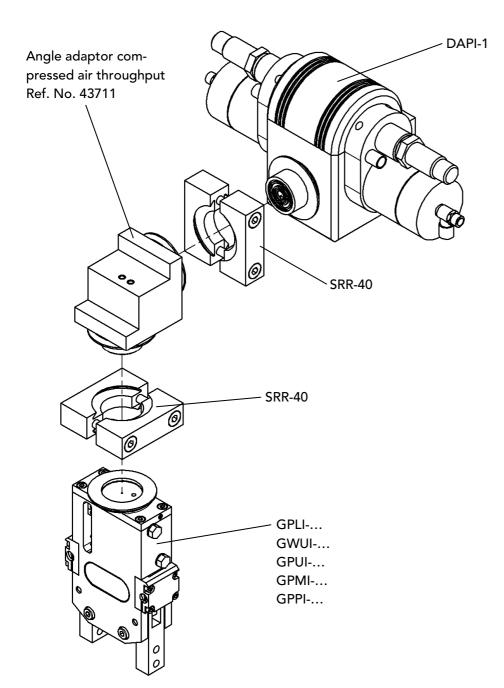
The rotary units DAP-1 and DAPI-1 may be mounted in any position on any QUICK-SET dovetail. With the MONTECH Quick-Set components mounting structures can be constructed quickly and easily. Any correction to the position of the rotary unit (displacement of the axis) determines which of the 3 methods of mounting is most suitable.

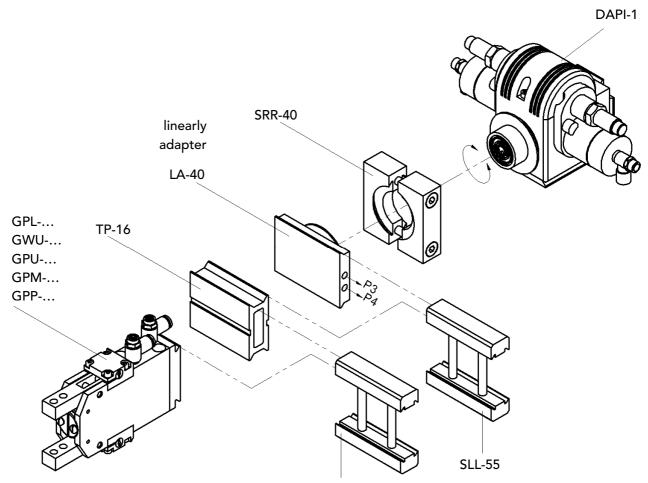
Fig. 3-2: mounting position

3.3. Mounting moving bodies on the rotating axis

With internal supply of compressed air (Fig.3-1 ... Fig.3-3)

Fig. 3-3: Gripper axis = axis of rotation



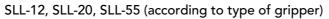
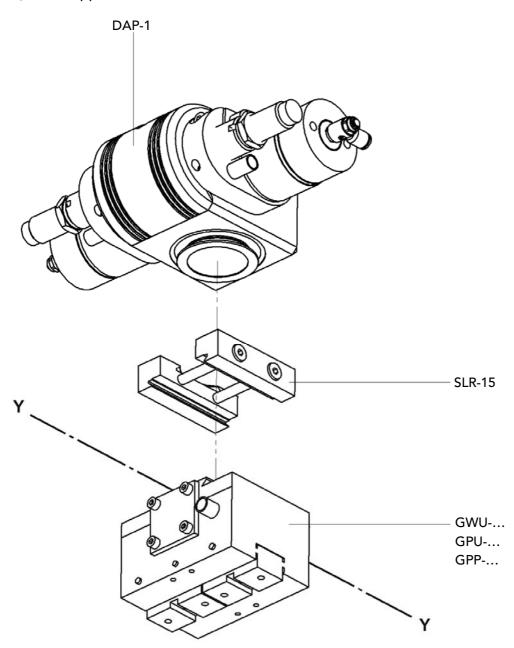

Fig. 3-4: Gripper axis perpendicular to the axis of rotation

Fig. 3-5: Gripper axis outside the axis of rotation

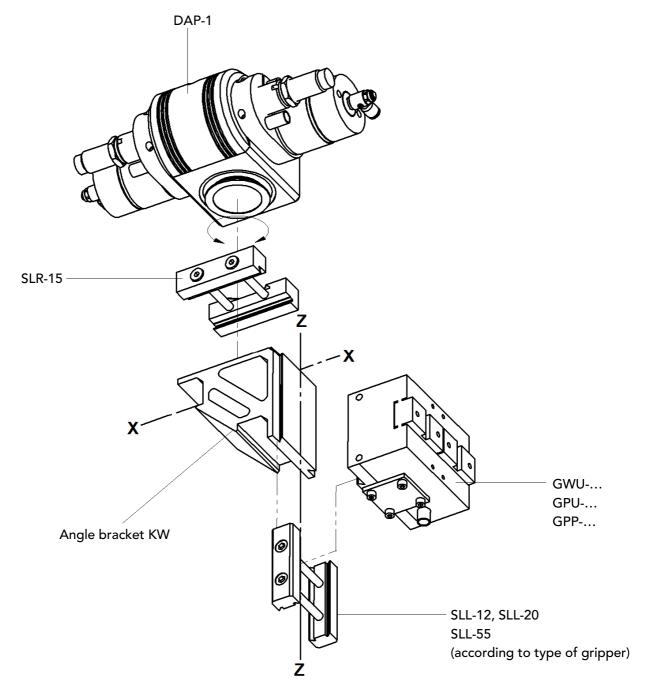


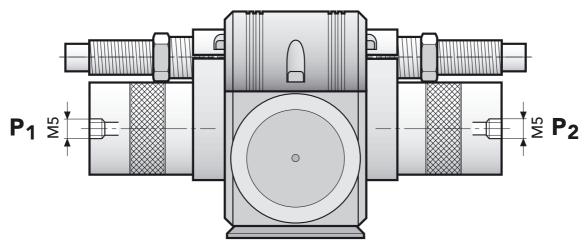
The loads (e.g. grippers) are fed through the holes P3 and P4.

With external compressed air supply (Fig.3-6, Fig.3-7)

Fig. 3-6: Gripper axis located close to the axis of rotation.

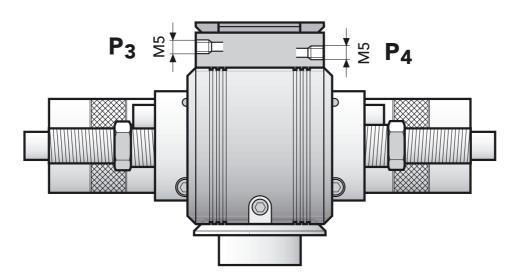
The gripper axis can be displaced in the y-y axis by about \pm 5mm from the axis of rotation.




Fig. 3-7: The gripper axis is perpendicular to the axis of rotation.

The angle bracket KW can be displaced in the x-x axis by about \pm 8mm. Depending on the type of gripper, the gripper can be displaced in the z-z axis by about \pm 8mm (GPP-2) to \pm 29mm (GPS-1).

3.4. Compressed air input


Fig. 3-8: compressed air input DAP-1 / DAPI-1

P1 ... Rotation clockwise

P2 ... Rotation counterclockwise

Fig. 3-9: compressed air input DAPI-1 for loads on the rotating shaft

P3 / P4 Compressed air input for loads on the rotating shaft (Fig. 3-4 \dots 3-6)

3.5. Setting the angle of rotation ϕ (see Fig.4-1)

The angle of rotation has to be set using a very low speed of rotation. The nonreturn throttle valves (440) therefore should be opened by only 3 - 4 turns.

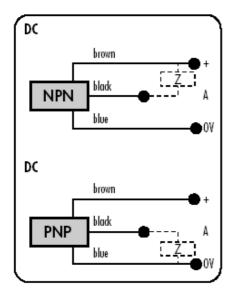
- Release the two chhd screws (270a).
- On turning one or both stop sleeves (120) the angle of rotation varies (1 turn = appr. 8°). The stop sleeves (120) may only be adjusted when unloaded.
- Tighten the chhd screws (270a) by 2Nm.
- When the stop sleeves (120) are turned back fully, a maximum angle of Rotation of 180 is obtained.

3.6. Setting the shock-absorbers (see Fig.4-1)

The speed of travel, the mass moment of inertia, the operating pressure and, in certain cases, the position of the axis of rotation, influence the amount of energy to be absorbed by the shockabsorbers. The optimum setting of the shockabsorbers, i.e. that which results in the shortest travel time for given variables, is obtained as follows:

- Mount the rotary unit in the desired position.
- From the fully closed position open the non-return throttle valves (440) about 3 4 turns.
- Release the lock-nut of the shock-absorber.
- Screw the shock-absorber (220) into the stop bush (120) until the set angle of rotation ø begins to decrease.
- Increase the speed of travel by opening the non-return throttle valve (440) until the rotating
 mass moves into the appropriate end position apparently with constant speed, without causing
 any impact. If this point is not attained, even with the throttle fully open, i.e. if a reduction in
 speed is apparent just before the end position is reached, the shock-absorber must be slowly
 turned back until the end position is approached without any apparent speed reduction. In
 rooms with fluctuating ambient temperature this setting must be carried out at the highest
 temperature that occurs.
- Tighten the lock-nut of the shock-absorber.

3.7. Setting and connecting the inductive proximity switches


The inductive proximity switches may not be set until the angle of rotation has been determined and no longer changes.

The proximity switches used must possess a switching distance (Sn) of 1 - 2mm, be designed for flush mounting and have a casing 6.5mm in diameter.

Setting procedure (see Fig.4-1)

- Move the rotating shaft into the set end position.
- Insert the proximity switch in the clamping socket (150) and place it in the hole in the casing (10) so that the end face of the sleeve (150) is about 0.3mm from the cube (70). When the proximity switch has been connected electrically, the LED will light up.
- Secure the sleeve (150) and proximity switch by lightly tightening the setscrew (300).

Fig. 3-10: Setting and connecting the inductive proximity switches

3.8. Maintenance

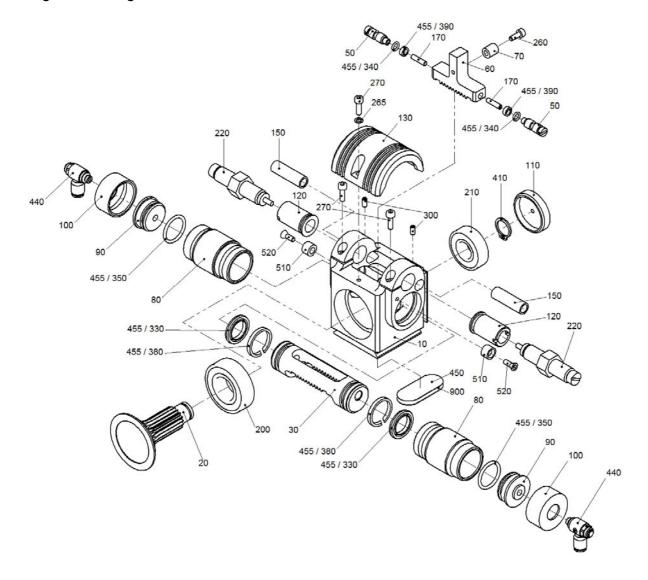
Inspecting the shock-absorbers

All standard equipment from MONTECH contain shock-absorbers of first-class quality. Nevertheless the failure of a shock-absorber cannot be entirely ruled out.

We therefore recommend that during operation attention should be paid to the rotating masses; to ensure that they do not move into their end position with a sharp impact. Where this does happen, the affected shock-absorber must be immediately readjusted in accordance with "Setting the shock absorbers". If a satisfactory result is not obtained, the shock-absorber will have to be

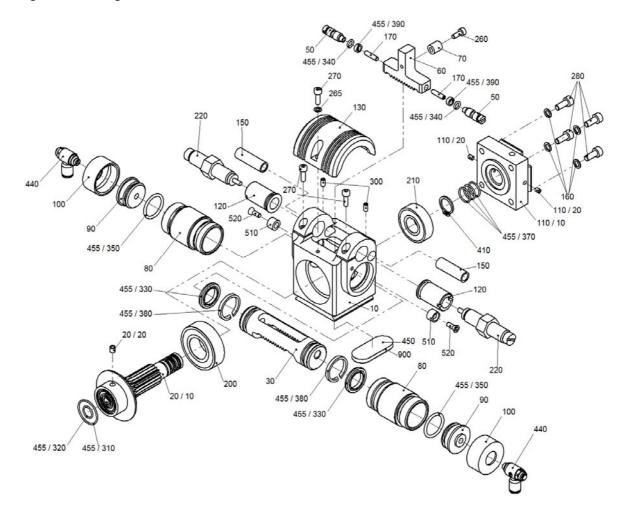
replaced.

Note: Defective shock-absorbers appreciably shorten the useful life of the rotary units. Accuracy and repeatability of the end positions are then no longer assured.


DAP-1 / DAPI-1 is generally maintenance-free up to 10 Mio. We recommend the following preventative maintenance to ensure optimum performance of the unit:

- Periodic cleaning of the unit, particularly the mechanical guide.
- Inspection of the seals, possible replacement
- Lubricate with Paraliq P460 (Montech article no. 504721), particularly the mechanical guide

4. Spare parts list DAP-1


Fig. 4-1: Drawing DAP-1

4.1. Spare parts list DAPI-1

Fig. 4-2: Drawing DAPI-1

4.2. Spare parts list DAP-1 / DAPI-1

ltem	Designation	Art. No.		Material	
		DAP-1	DAPI-1		
10	Housing	45797	45798	Aluminium	
20*	Pinion shaft	44828	55214	Steel	
30*	Toothed piston	56110	56110	Steel	
50	Guide pin	56114	56114	Steel	
60*	Rack bar	44825	44825	Steel	
70	Damper	45179	45179	Steel	
80	Cylindrical tube	48707	48707	Steel	
90	Cover	44829	44829	Aluminium	
100	Skirted nut	44830	44830	Aluminium	
110	Cover	44832	-	POM	
110	Cover	-	48377	Aluminium	
120	Stop sleev	44831	44831	Steel	
130	Hood	45811	45811	ABS	
150*	Clamping sleeve	42009	42009	POM	
160	Ripped washer	-	502364	Steel	
170	Set screw	501890	501890	Steel	
200	Grooved ball bearing	501379	501379	Steel	
210	Grooved ball bearing	503582	503582	Steel	
220*	Shock-absorber	501566	501566	Steel	
260	Machine screw	501603	501603	Steel	
265	Ripped washer	502363	502363	Steel	
270	Machine screw	501604	501604	Steel	
280	Machine screw	-	501619	Steel	
300	Set screw	501886	501886	Steel	
410	Circlip	502449	502449	Steel	
440	Non-return throttle valve	505023	505023	Brass	
450	Type plate	41620	41620	Various	
* Are spare parts and on stock.					

* Are spare parts and on stock.

ltem	Designation	Art. No.		Material	
		DAP-1	DAPI-1		
455*	Seal kit	510008	510009	Various	
455/310	O-ring	-	503577	NBR	
455/320	O-ring	-	500040	NBR	
455/330	Piston gasket	504972	504972	NBR	
455/340	O-ring	505190	505190	NBR	
455/350	O-ring	505274	505274	NBR	
455/370	O-ring	-	503576	NBR	
455/380	Guide-ring	46489	46489	POM	
455/390	Guide-ring	56113	56113	POM	
510	Support	48709	48709	POM	
520	Screw	48718	48718	Steel	
900	Type plate plaque	48508	48508	PU	
* Are spare parts and on stock.					

5. Environmental Compatibility

Materials used

- Aluminium
- Steel
- Acrylnitrite-Butadiene rubber (NBR)
- POM Polyoxymethylene (Polyacetal)
- Paraffinic mineral oil, synthetic hydrocarbon oil
- Polyurehtane (PU)
- Acrylnitril-Butadien-Styrol (ABS)

Surface finish

- Anodized aluminium
- Blackened steel

Shaping processes

- Machining of Al, steel, POM, PTFE
- Moulding NBR gaskets
- Application of polyurethane foam
- Injection moulding of acrylnitril-butadiene-styrene (ABS)

Emissions while in operation

None

When the equipment is operated with oiled air we recommend returning the exhaust to atmosphere through an oil filter or separator.

Disposal

Rotary units which are no longer fit for service should not be disposed of as complete units, but stripped down to their components, which can then be recycled according to the material they contain. The materials used for the components is shown in the list of spare parts. Materials which cannot be recycled shmould be disposed of appropriately.

6. List of figures

⊦ıg.	1-1: Nameplatte	4
Fig.	2-1: Performance diagram	7
Fig.	2-2: Pressure-torque diagram	8
Fig.	2-3: DAP left-hand / right-Hand end position	8
Fig.	2-4: Dimensioned diagram DAP-1	9
Fig.	2-5: Dimensioned diagram DAPI-1 1	0
Fig.	2-6: Situation of the attachment parts 1	1
Fig.	2-7: Situation of the attachment parts 1	2
Fig.	2-8: Situation of the attachment parts 1	3
Fig.	2-9: Situation of the attachment parts 1	4
Fig.	2-10: Sample calculation examination of the individual case	5
Fig.	2-11: Formulas for calculating moments of inertia1	6
Fig.	3-1: installation position	7
-	3-1: installation position	
Fig.		8
Fig. Fig.	3-2: mounting position 1	8 9
Fig. Fig. Fig.	3-2: mounting position	8 9 20
Fig. Fig. Fig. Fig.	3-2: mounting position	8 9 20
Fig. Fig. Fig. Fig. Fig.	3-2: mounting position	8 9 20 21 22
Fig. Fig. Fig. Fig. Fig. Fig.	 3-2: mounting position	8 9 20 21 22 23
Fig. Fig. Fig. Fig. Fig. Fig. Fig.	3-2: mounting position 1 3-3: Gripper axis = axis of rotation 1 3-4: Gripper axis perpendicular to the axis of rotation 2 3-5: Gripper axis outside the axis of rotation 2 3-6: Gripper axis located close to the axis of rotation 2 3-7: The gripper axis is perpendicular to the axis of rotation 2	8 9 20 21 22 23 24
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	 3-2: mounting position	8 9 20 21 22 23 24 24
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	 3-2: mounting position	8 9 20 21 22 23 24 24 24

MONTECH AG Gewerbestrasse 12, CH-4552 Derendingen Fon +41 32 681 55 00, Fax +41 32 682 19 77 info@montech.com, www.montech.com