OMRON

Machine Automation Controller NJ-series

Ethernet Connection Guide

(TCP/IP)

OMRON Corporation

FQ-CR-Series Code Reader

Network

Connection

Guide

. P532-E1-01
always in control

Table of Contents

1. Related ManUAIS ... 1
2. Terms and DefiNitionuueeiiiiiiiiii e 2
3. REMAIKS oo e 3
A, OVEIVIBW eeeiiiiie ettt ettt e e e oo ettt e e e e e e e s s bbb b e e e e e e e e s e e aannbbeeeaaaaeas 5
5. Applicable Devices and Support SOftware........ccccceveeeeeiiiiiiieeneee e 5
5.1. APPlICADIE DEVICES ... uuueeiiriiiii e 5
5.2. Device Configuration ... 6
6. Ethernet SettingS.....coii i 7
6.1. Ethernet Communications SettingS...........uvuuruueiemmiimiiiiiiiennens 7
6.2. Example of Checking CONNECLIONuvvuuiiiiiiiiiiiiiiinanns 8
7. COoNNECLION ProCEAUIEuiiiiiiiiiii ettt 9
7.1. WOTK FIOW ..o 9
7.2. Setting Up the Code Reader..........ccccevvvvviiv 10
7.3. Setting Up the COoNtroller..........oooiiiiiiiiiiiiie e 16
7.4. Connection Status CheCK..........cooviiiiiiiiiie e 21
8. Initialization Methodcoooiiiiiiii e 25
8.1. CONLIONET <. 25
8.2. Code Reader.........coooviiiiii 25
9. PrOJECT FIl@ e 26
9.1. OVEIVIBW ..ttt e e st e e e e s e et eeeeaaaeas 26
9.2. Destination Device COmMMaNd..............uuvuvvveriiiiiiieiiniiiirreernerri. 30
9.3. Error Detection ProCESSINGccvvvriiiiieeiiiiiiiiieee e 33
9.4. VariabIesooooii 36
9.5. Program (ST [anQUAQE)..........uuuurrrrrumrumrirnniinniieerinerenrnnnnnnreren. 41
9.6. TIMING CRAItS ... 58
9.7. EFTOr PrOCESS .. .vvviiiiiiiiiiiiiiiit it 64
O o LA =T o] T o 1S3 (0] R 68

1. Related Manuals

Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all
Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for
each device which is used in the system.

Cat. No. Model Manual name
W500 NJI50L-[[NJ-series CPU Unit Hardware User's Manual
W501 NJI50L-[I[I0 NJ-series CPU Unit Software User's Manual
W506 NJSO1-[]00 NJ-series CPU Unit Built-in EtherNet/IP Port User's Manual
W504 SYSMAC-SE2[][I[] | Sysmac Studio Version 1 Operation Manual
W502 NJI50L-[I[0 NJ-series Instructions Reference Manual
7315 FQ-CR1 series Fixed Mount Multi Code Reader User's Manual
2316 FQ-CR2 series Fixed Mount 2D Code Reader User's Manual

2. Terms and Definition

2. Terms and Definition

Terms Explanation and Definition

IP address Ethernet uses an IP address to perform communications.

The IP address (Internet Protocol Address) is an address that is used to
identify a node (host computer or controller, etc.) on the Ethernet.

IP addresses must be set and managed so they do not overlap.

Socket A socket is an interface that allows you to directly use TCP or UDP
functions from the user program.

The NJ-series Machine Automation Controller performs socket
communications by using the socket service instructions provided as
standard features.

To use the socket services, connections with a destination node must be
established and terminated. In this document, establishment processing
is called "socket open" or "TCP open" and termination processing is
called "socket close" or "close".

The socket services enable data exchange with destination nodes.

Active and Passive Open processing is executed for each node to establish a connection.
The open method depends on whether the node is opened as a server or
client.

In this document, the method used to open a node as a server is called
"passive open" and the method used to open a node as a client is called
"active open" or "open processing (active)".

Keep-alive function | When the keep-alive function is used with TCP/IP socket services, the
keep-alive communications frame is used to check the status of the
connection with the destination node (either a server or client) if there are
no communications during the specified time interval.

Checks are executed at a certain interval, and if there is no response to
any of them then the connection is terminated.

Linger function This is an option for the TCP socket that enables immediate open
processing using the same port number without waiting until the port
number opens after RST data is sent when the TCP socket closes.

If the linger option is not specified, FIN data will be sent when a TCP
socket is closed, and then approximately 1 minute will be required to
confirm the transmission and perform other closing management with the
destination node. Therefore, it may not be possible to immediately use
TCP sockets with the same port number.

3. Remarks

3. Remarks

1)

)

®3)

4

®)

Understand the specifications of devices which are used in the system. Allow some
margin for ratings and performance. Provide safety measures, such as installing safety
circuit in order to ensure safety and minimize risks for abnormal occurrence.

To ensure system safety, always read and heed the information provided in all Safety
Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for
each device used in the system.

The users are encouraged to confirm the standards and regulations that the system must
conform to.

It is prohibited to copy, to reproduce, and to distribute a part of or whole part of this
document without the permission of OMRON Corporation.

This document provides the latest information as of March 2013. The information on this
manual is subject to change for improvement without notice.

About Intellectual Property Right and Trademarks

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

Company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

The following notation is used in this document.

Indicates a potentially hazardous situation which, if not avoided,

A WARNING could result in death or serious injury. Additionally, there may be
severa property damage.

Caution Indicates a potentially hazardous situation which, if not avoided,
may result in minor or moderate injury, or property damage.

The filled circle symbal indicates operations that you must do,
The specific operation is shown in the circle and explained in fext.
This example shows a general precaution for something that you must do.

@ Precautions for Safe Use

3. Remarks

Indicates precautions on what to do and what not to do to ensure using the product safely.

El Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and

performance.

’% Additional Information

Provides useful information.
Additional information to increase understanding or make operation easier.

I

5.

4. Overview

Overview

This document describes the procedure for connecting the Code Reader (FQ-CR series) of
OMRON Corporation (hereinafter referred to as OMRON) to the NJ-series Machine
Automation Controller (hereinafter referred to as Controller) through Ethernet, and provides
the procedure for checking their connection.

Refer to the Ethernet communications settings of the prepared project file to understand the
setting method and key points to connect the devices via Ethernet.

This project file is used to check the Ethernet connection by sending/receiving the message of
VERGET /S (Acquire Software Version) to/from the destination device.

Obtain the latest "Sysmac Studio project file" from OMRON beforehand.

Name File name Version
Sysmac Studio project file | OMRON_FQCR_ETN(TCP)_EV1 | Ver.1.00
(extension: SMC) 00.SMC

Applicable Devices and Support Software

I 5.1. Applicable Devices

The following devices can be connected.

Manufacturer | Name Model Version
OMRON NJ series CPU Unit NJIS0L-[IMM -
OMRON Code Reader FQ-CR10({10[

FQ-CR15[](I

FQ-CR20(](0(

FQ-CR25(]10I

=\

Additional Information

As applicable devices above, the devices listed in Section 5.2. are actually used in this
document to check the connection. When using devices not listed in Section 5.2, check the
connection by referring to the procedure in this document.

Additional Information

This document describes the procedure to establish the network connection. It does not
provide information about operation, installation nor wiring method of each device.

For details on the above products (other than communication connection procedures), refer
to the manuals for the corresponding products or contact your OMRON representative.

5. Applicable Devices and Support Software

I 5.2. Device Configuration

The hardware components to reproduce the connection procedure of this document are as

follows.

Personal computer NJ501-1500

(Sysmac Studio,
TouchFinder for PC
software installed,
OS:Windows7)

(Built-in EtherNet/IP port) Switching Hub

]

W4S1-05C

FQ-CR20100N-M

24 VDC power supply

o

. USB cable FQ Ethernet /O cable
L cable FQ-WDII[
o = LAN cable FQ-WNI
Manufacturer Name Model Version
OMRON NJ series CPU Unit NJ501-1500
(Built-in EtherNet/IP port)
OMRON Power Supply Unit NJ-PA3001
OMRON Switching Hub W4S1-05C
OMRON Sysmac Studio SYSMAC-SE2[]II] Ver.1.00
OMRON Sysmac Studio project file OMRON_FQCR_ETN(TC | Ver.1.00
P) EV100.SMC
- Personal computer
(OS:Windows7)
- USB cable
(USB 2.0 type B connector)
- LAN cable (Ethernet STP
(Shielded twisted-pair) cable of
category 5 or higher)
OMRON Code Reader FQ-CR20100N-M
OMRON I/O cable FOQ-WDI][[]
OMRON FQ Ethernet cable FQ-WNIIIN
OMRON Touch Finder for PC Ver.1.20

IE' Precautions for Correct Use

Obtain the latest Sysmac Studio project file from OMRON in advance.
(To obtain the file, contact your OMRON representative.)

’% Additional Information

It may not be possible to reproduce the same operation with different devices and versions.
Check the configuration, model and version. If they are different from your configuration.
Contact your OMRON representative.

’g Additional Information

In this document, a USB is used to connect with the Controller. For information on how to
install a USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection of the
Sysmac Studio Version 1 Operation Manual (Cat.No. W504).

6. Ethernet Settings

6. Ethernet Settings

This section describes the specifications such as communication parameters and variables
that are set in this document.

’% Additional Information

This document and project file can be used to perform operations using the settings and
command described in this section. Modifications are necessary to perform communications

using different settings.

I 6.1. Ethernet Communications Settings

The settings required for Ethernet communications are shown below.

6.1.1.
Reader

Communications Settings between Personal

Computer and Code

This document explains the procedure for setting the Code Reader using the personal
computer with the setting example shown in the table below.

Personal computer used for setting

Code Reader

IP address 10.5.5.101 10.5.5.100 (Default)
Subnet mask 255.255.255.0 255.255.255.0 (Default)
Gateway - Blank (Default)

*In this document, the gateway setting is unnecessary because the connection is made in

the same segment.

6.1.2.

Communications Settings between the Controller and Code Reader

This document explains the procedure for connecting the Controller and Code Reader using

the setting example shown in the table below.

Controller Code Reader
IP address 192.168.250.1 192.168.250.2
Subnet mask 255.255.255.0 255.255.255.0 (Default)
Gateway - 0.0.0.0 (Default)
Auto - OFF
Port number (Set with the program) 9876 (Fixed)

*In this document, the gateway setting is unnecessary because the connection is made in

the same segment.

I 6.2. Example of Checking Connection

6. Ethernet Settings

This document shows an example of a Structured Text (ST) program in which the Controller
executes socket open, send/receive, and socket close processing on the Code Reader.

The message of VERGET /S (Acquire Software Version) is sent and received between the
Controller and Code Reader. The following figure outlines the operation.

Local_
SrcData

Local_
RecvData

Controller

Project file

ST Programming

. g

communication
function

Socket open

Ethernet

Code reader

» >
< <
Specifying Ethernet Sending/receiving Ethernet
communications command
VERGET /S (Acquire Software VERGET /S (Acquire Software
Version) Vversion)
T |
Send data
Variable K
Send data > >
setting area
Receive data
Receive data |
setting area
g < <
Socket close
> >
« >

Connection Procedure

7. Connection Procedure

This section describes how to connect the Controller on the Ethernet network.
This document explains the procedures for setting the Controller and Code Reader from the
factory default setting. For the initialization, refer to Section 8 Initialization Method.

I 7.1. Work Flow

Take the following steps to connect the controllers via Ethernet.

“ 7.2 Setting up the Code Reader

!

7.2.1 Parameter Setting

!

7.3 Setting up the Controller

|

7.4.1 Starting the Sysmac Studio and
Importing the Project File

|
7.3.2 Checking the Parameters and
Building
|

7.3.3 Going Online and Transferring
the Project Data

!

7.4 Connection Status Check

!

7.4.1 Executing the Project File and
Checking the Receive Data

Precautions for Correct Use

Set up the Code Reader.

Set the parameters of the Code Reader.

Set up the Controller.

Start the Sysmac Studio Automation Software, and
import the Sysmac Studio project file.

Check the set parameters, execute the program
check on the project data and build the program.

Connect online with the Sysmac Studio and transfer
the project data to the Controller.

Execute the project file that was transferred and
confirm that Ethernet communications are normally
performed.

Execute the project file and check if the correct data
are written to the variables of the Controller.

Obtain the latest Sysmac Studio project file from OMRON in advance.
(To obtain the file, contact your OMRON representative.)

7. Connection Procedure

I 7.2. Setting Up the Code Reader

Set up the Code Reader.

IE' Precautions for Correct Use

Use a personal computer to set the parameters of the Code Reader.
Note that the settings of the personal computer may need to be changed.

7.2.1. Parameter Setting

Set the parameters of the Code Reader.

PC tool for FQ (TouchFinder for PC) is used to set the parameters. Install the software in the
personal computer beforehand.

Set the IP address of the personal computer to 10.5.5.101.

Connect the Ethernet cable

1 connector, which is located at
the bottom of the Code Reader,
to the Switching Hub using the Ethernet
FQ Ethernet Cable. cable connector
Connect the I/O cable to the I/O /O Cable Connector
cable connector, and then turn
ON the 24 VDC power supply.
2 Start TouchFinder for PC (PC E|E
tool for FQ) on the personal &
. . TouchFinder for
computer which is connected to e
the SWItChmg Hub. ' Local Area Connection Status | 28 |
—_— b
*Set the IP address of the e
personal Computer to MNetwork Connection Details:
10.5.5.101. Use the following Property Value -
procedure to check the IP Connection-specfic DN...
address of the persona| Description Intel(R) 82579LM Gigabit Network Cor
Physical Address 18-03-73-AE-EF-2E
computer. DHCP Enabled
IPvd Address
(1) Execute Network and IPv4 Subnet Mask
Sharing Center from IPv4 Address =
IPv4 Subnet Mask
Control Pgnel. IPvd Default Gateway
(2) Double-click Local Area Py DNS Server
Connection on the Network IPv4 WINS Server
and Sharing Center Eakiloslol‘;‘erﬁ-r;:cllacilp o ;reE»sD 2cB2:c X 3.c392:4673% 11
. nk4ocal |Pv ress CHIS oA 3030246730
W!ndOW. . IPw6 Default Gateway
(3) Click the Details Button on IPvE DNS Servers fec0.0.0ffF1%1 b
the Local Area Connection Fec0:0:0FffF 2% il
Status Dialog Box. « | o r

(4) Check that the IP address is
set to 10.5.5.101.

10

7. Connection Procedure

3 The start screen of Touch Finder
for PC is displayed.

(B teuchrinder for

*Select a language at the first
startup. In the following
example, English is selected.

1.20 2011702718

4 Click the B icon located at
the right bottom of the Touch
Finder for PC Window.

5 Click Sensor Settings on the
pop-up screen.

I:!{ TF settings

6 Click Network on the Sensor

setfings Menu sensor settings

Information

Error history

startup settinos

word sefttinas

in Run

Netwaork

11

7. Connection Procedure

Click Ethernet on the Network

Menu. Network

Ethernet

Turn OFF the auto setting of the = yaare:
Ethernet.

Click Auto on the Ethernet
Menu.

Click OFF on the Auto Menu.
duto

SENSOr sets
automatic

12

7. Connection Procedure

9 Set the fixed IP address.

Ethernet

Click IP Address on the

Click each octet on the IP suhnet mask
Address Screen. A numeric
keypad is displayed. Click the
numeric keypad and enter each
octet of the IP address.

Click OK. nter the sensor’s P address

Set the IP address to
192.168.250.2.

Cance |

Click OK. This completes the IP . 8
address setting. of TouchTinder for PG

P hddress

Enter Lhe sensor’s IP address

13

7. Connection Procedure

10 Confirm the settings are made
as follows and click OK.

Auto: OFF
IP address: 192.168.250.2
Subnet mask: 255.255.255.0

If the dialog box on the right is
displayed, click OK. This |F addr
of the L&H.

If the dialog box on the right is Ethernet

displayed, click OK.

B the configuration
tings will take effect
after a reboot

Click Back twice to return to the
screen in step 4.

14

7. Connection Procedure

Save the data.
11
Click Test on the Setup Screen.

Click Save data.

Click Yes on the Save data
Dialog Box.

Continuous test

save data

- data and touch

12 Cycle the power supply to the
Code Reader.

*The parameters that were
changed after cycling the
power supply are reflected.

15

7. Connection Procedure

I 7.3. Setting Up the Controller
Set up the Controller.

7.3.1. Starting the Sysmac Studio and Importing the Project File
Start the Sysmac Studio Automation Software, and import the Sysmac Studio project file.
The software and USB driver must be installed beforehand. Connect a USB cable to the
personal computer and to the Controller, and turn ON the power supply to the Controller.

1 Start the Sysmac Studio.
Click the Import Button.

*If a confirmation dialog for an
access right is displayed at
start, select to start.

2 The Import File Dialog Box is B ot e =r=)
; ' Josonst
displayed. Select & . —

ire v Newfolder B o+ (@
OMRON_FQCR_ETN(TCP)_EV o Frvoritas = | = omRroN_FQCR_ETN(TCR) EV100_2.5me | -
100.SMC (Sysmac Studio I Downicads
project file) and click the Open :::::Iam 5
Button. 53 Libranes |
S
*Obtain the Sysmac Studio B v
project file from OMRON. R — -
File pame: OMROM FQCR ETH(TCP) EVI00 2ame ~ [-‘mlﬂnc Studio project files ("5 v]
|E Qpen iI | Cancel]

3 OMRON_FQCR_ETN(TCP)_EV
100 project is displayed.
The left pane is called Multiview
Explorer, the right pane is called
Toolbox and the middle pane is

called Edit Pane. Multiview Edit Pane Toolbox
il Explorer

16

7.3.2.

7. Connection Procedure

Checking the Parameters and Building

Check the set parameters, execute the program check on the project data and build the

program.

1 Double-click Built-in

EtherNet/IP Port Settings
under Configurations and
Setup - Controller Setup in the
Multiview Explorer.

The Built-in EtherNet/IP Port
Settings Tab Page is displayed
in the Edit Pane.

Select the TCP/IP Setting
Button, select the Fixed Setting
Option in the IP Address Field,
and check that the following
settings are made.
IP address: 192.168.250.1
Subnet mask: 255.255.255.0
Default gateway:_._._.

Check that the Keep Alive

settings are set as follows.
Keep Alive: Do not use
Linger option: Do not specify

3 Double-click the Task Settings

under Configurations and
Setup in the Multiview Explorer.

¥ Configurations and Setup

&5 EtherCAT
p = CPU/Expansion Racks
«* IO Map
¥ 3 Controller Setup
ff Operation Settings

» it Motion Control Setup
w IP Address
O Fixed setting
[IEN A 102 . 168 . 250 . _ 1
Tl B 255, 255,255, _ 0
Default gateway [T

@ Obtain from BOOTP server.
@ Fix at the IP address obtained from BOOTP server.

¥ DNS
DNS O Do not use @ Use

Priority DNS server
Secondary DNS server
Domain name [

¥ Host Name - IP Address

Host Name IP Address

+

¥ Keep Alive
Keep Alive @ Use O Do not use

Keep Alive menitoring time [JSSNEGT] soc

Linger option & Do not specify @ Specfy
¥ IP Router Table

Destination IP Address | Destination Mask IP Address

» i Motion Control Setup
¢ Cam Data Settings
* Event Settings

I TaskSettings

ke Lata lrace >etn

17

7. Connection Procedure

4 The Task Settings Tab Page is
displayed in the Edit Pane.
Select the Program
Assignment Settings Button
and check that ProgramO is set
under PrimaryTask.

igurations and Setup

E),.

7 E

¥ I PrimaryTask

B 1]
N +

1 ProgramO

5 Select Check All Programs
from the Project Menu.

Project Contreller Simulation Tec
Check All Programs F7
Check Selected Programs Shift+F7

Build Controller F&
Rebuild Controller

6 The Build Tab Page is displayed
in the Edit Pane.
Check that “0 Errors” and “0
Warnings” are displayed.

[Build Tab Page N
1Y H
Desrriziion I

Program | Location

7 Select Rebuild Controller from
the Project Menu.

A screen is displayed indicating
the conversion is being
performed.

8 Check that “0 Errors” and “0
Warnings” are displayed in the
Build Tab Page.

Project Contreller Simulation Tec
Check All Programs F?
Check Selected Programs Shift+F7

Build Controller F&
Rebuild Controller
Shift+F8

Location

Cescription |

Program |

18

7. Connection Procedure

7.3.3. Going Online and Transferring the Project Data
Connect online with the Sysmac Studio and transfer the project data to the Controller.

/A WARNING

Always confirm safety at the destination node before you transfer a user pro-
gram, configuration data, setup data, device variables, or values in memory
used for CJ-series Units from the Sysmac Studio.

The devices or machines may perform unexpected operation regardless of
the operating mode of the CPU Unit.

@ Additional Information

For details on the online connections to a Controller, refer to Section 5 Going Online with a
Controller in the Sysmac Studio Version 1.0 Operation Manual (Cat. No. W504).

1 Select Communications Setup
from the Controller Menu.

Controller Simulation Tecls Help
Communications Setup..

Change Device

Cnline Ctrl+W
Ctrl+5hift+W

2 The Communications Setup
Dialog Box is displayed.
Select the Direct Connection via
USB Option from Connection

Type.

Click the OK Button.

W liemote 1P Address
Seiret a method tn eanneet with the Controller tn use every time you ga anline.

USE Communications Test Ethernct Communications Test

3 Select Online from the
Controller Menu.

A confirmation dialog box is
displayed. Click the Yes Button.

*The displayed dialog depends
on the status of the Controller
used. Select the Yes Button to
proceed with the processing.

*The displayed serial ID differs
depending on the device.

Controller Simulation Tools Help
Communications Setup...

Change Device

Cnline Ctrl+W
Ctrl+5hift+W

e

The CPU Unit has no name.
Do you want to write the project name [new_NJ501_0] to the CPU Unit name? (Y/N)

| v | 5

19

7. Connection Procedure

Senal ID not matched.

Project
Name: [new_NJ501_0]
Serial ID: [L701-08111-0104]

Controller:
Name: [new_NJ501_0]
Serial ID: [RO1-07X11-0550]

Do you want to continue the connection processing? (Y/N)

| ¥ | THo

Do you want tn change the Senal I in the project tn the contmller's Senal TN? (Y/N)
(It will be used at the ID check of next online connection.)

e |THo |

4 When an online connection is

established, a yellow bar is B £:0amming —
displayed on the top of the Ecit IR
Pane.

5 Select Synchronization from Controller Simulation Tools Help

the Controller Menu.

e ——

Ctrl+W
Cffline Ctrl+5hift+W
Synchronization Ctrl+M

6 The Synchronization Dialog Box
is displayed. S,
Check that the data to transfer
(NJ501 in the right figure) is
selected. Then, click the

Compuder: Dala Name Computer: Update DeContioller: Update Da - Controllen Data Name Compare

Legend: | Synchenized

Transfer to Controller Button.

7 A confirmation dialog is

ratine is stopped.

disp'ayed. Cl|ck the Yes Button. | The kb d R ot Then, EXherCAT sives swill be reset nd foeed refreshing wil

A screen stating "Synchronizing"

is displayed.

A confirmation dlalog is Confirm that there is no problem if the controller operation is started.
. . The operating mode will be changed to RUN mode.

displayed. Click the Yes Button. Do you want to continue?(Y/N)

20

7. Connection Procedure

o] Check that the synchronized
data is displayed with the color
specified by “Synchronized” and
that a message is displayed
stating "The synchronization
process successfully finished".
If there is no problem, click the
Close Button.

*If the synchronization fails,
check the wiring and repeat the
procedure described in this
section.

I 7.4. Connection Status Check

Execute the project file that was transferred and confirm that Ethernet communications are
normally performed.

M Precautions for Correct Use

Please confirm that the LAN cable has been connected before proceeding to the following
steps.
If it is not connected, turn OFF the power to the devices, and then connect the LAN cable.

21

7. Connection Procedure

7.4.1. Executing the Project File and Checking the Receive Data
Execute the project file and check if the correct data are written to the variables of the

Controller.

1 Checkhat RUN mode s
displayed on the Controller OMNLIME 192.168.250.1
Status Pane of the Sysmac ERR/ALM RUN mode
Studio.

Controller Simulation Tools Help
If PROGRAM mode is shown,
select Mode - RUN Mode from

Crl+W
the Controller Menu. Cfline CorleShift+ W
Synchronization Crl+M
Mode *

A confirmation dialog box is
displayed. Click the Yes Button.

. Sysmac Studio

Make sure a Controller startup will cause no problem.
Do you want to change to RUN Mode? (Y/N)

“Yes " No

2 Check the Monitor Button and
Stop Monitoring Button on the
toolbar of the Sysmac Studio to
see if the Controller is in monitor Monitor
status. ﬂ Stop Monitoring
Check that the Monitor Button is
selected and grayed out and that
the Stop Monitoring Button is l
selectable (monitor status) as

Controller Simulation Tools Help

. . . Ctrl+W
shown in the right figure. _ _
))) Cifline Cirl+5hift+W
*If the Controller is not in monitor —
. Synchronization Cirl+M
status, select Monitor from the
Mode]

Controller Menu of the Sysmac
Studio. Maniter

22

7. Connection Procedure

3 Select Watch Tab Page from the

Wiew Insert Project Contreller Simulatic

View Menu. Qutput Tab Page Alt+3
Watch Tab Page Alt=4
Cross Reference Tab Page Alt+5
Build Tab Page Alt+6
Search and Replace Results Tab Page Alt=7
| Simulation Pane Alt=8
¢ Zoom k
4 The Watch Tab Page is N\ Configuraions and Setup
i i X i T2k Settings Eh
displayed in the lower section of |
the Edlt Pane. ¥ b PrimaryTask
5 Check that the variables shown
on the right are displayed in the ProgramO.Input_Start — Start input
Name Columns. .
ProgramO.Output_ErrCode —» Error codes
*To add a variable, click Input Program.Cutput_SkiCmdsErroriD
Name... Program0.COutput_sktCloseErrorlD TCP
*Program0 of the Name is Program.Cutput_MErCode — _ onnection
omitted from the following Program0.Output_EtnTcpSta status
descriptions. Program{.ETMN_SendMessageset_instance.Send_Data
ProgramQ.Output_RecvMess \
Program0.Local_Status \
— X —
/ Y !
Program execution status Receive data Send data
6 Click TRUE on the Modify NE IOnline valuel Modify
Column of Input_Start Program.Input_Start =00 TRUE FALSE
The Online value of Input_Start i
changes to True. Name [Online valuel Modify
The program is operated and S CEECENLLIIIL B = —
Ethernet communications are
performed with the destination
device.
7 When the communications end IOnline valuel Modify

normally, each error code

changes to 0.

TCP connection status

(Output_EtnTcpSta) changes to

_CLOSED.

*In the case of error end, the
error code for an error is stored.
For details on error codes, refer
to 9.7 Error Process.

ProgramQ.Input_Start

T U | FALSE |
0000

Frogram{.Cutput_ErrCode

Frogram{.Cutput_SkiCmcdsErrorlD 0000
Program{.0utput_sktCloseErrorlD 0000
Program{.Output_MErCode 0000 0000

ProgramQ.Cutput_EtnTcpSta _CLOSED

23

7. Connection Procedure

The Online value of

Local_Status.Done, which Programo.Local_status
indicates the execution status of False TRUE FALSE

the program, changes to True. In True TRUE FALSE
False TRUE FALSE

the case of error end,

Local_Status.Error changes to

True.

*When Input_Start changes to
FALSE, each Local_Status
variable also changes to False.
For details, refer to 9.6 Timing
Charts.

The response data received from MName i Online value

Program{.Input_Start

the destination device is stored

Program{.ETM_SendMessageSet_instance.5end_Data WERGET /SER

in Output_RecvMess. Program0.0Output_Recviiess 1.31 2011/08/013ROKSR P
(ETN_SendMessageSet_instanc
e.Send_Data is a send <Response format>
command.) Software Date
Specify variables you want to Version
see in the Watch Tab Page as Ie A N A ~
shown in the right figure and | 1‘ . ‘ 3‘ 1‘ | 2| 0‘ 1‘ l‘ / ‘ O| 8| / ‘ 0‘ 1‘ CR |
check them. | |
Space Delimiter

*The response data differ E

depending on the device used. |
Delimiter
*Refer to 9.2. Destination Device
Command for details on the
command.

24

8. Initialization Method

8. Initialization Method

This document explains the setting procedure from the factory default setting.
If the device settings have been changed from the factory default setting, some settings may
not be applicable as described in this procedure.

I 8.1. Controller

To initialize the settings of the Controller, select Clear All Memory from the Controller Menu of
the Sysmac Studio.

= =

~ Clear All Memory

This function initializes the target area of destination Controller,
Confirm the area to initialize first, and press the OK button.

CPU Unit Name: new NI501 0
Model: NJS01-1500

Area: User Program
User-defined Valiables
Controller Configurations and Setup
Security Information
Settings of Operation Authority(initialization at the next onling)

B Clear event log

I 8.2. Code Reader

For information on how to initialize the Code Reader, refer to Initializing the Sensor and Touch
Finder under 7-9 Functions Related to the System in the user's manual for each Code Reader.

25

Q.

9. Project File

Project File

This section describes the details of the project file used in this document.

I 9.1. Overview

=\

This section explains the specifications and functions of the project file used to check the
connection between the Code Reader (FQ-CR series) (hereinafter referred to as destination
device) and the Controller (built-in EtherNet/IP port) (hereinafter referred to as Controller).

The project file is a Sysmac Studio project file.

The following data has already been set in this project file.

«Communications settings of the Controller and task settings of program

A program and function blocks to perform socket communications

*Variable tables and data type definitions of the variables used in ST programs

In this project file, the socket service functions of the Controller are used to perform VERGET
/S (Acquire Software Version) for the destination device and to detect whether the processing
ends normally or in an error.

The normal end of this project file indicates that the TCP socket communications end
normally.

The error end indicates that the TCP socket communications ends in error and a destination
device error occurs (judged on the response data from the destination device).

This project file does not use keep-alive or linger functions of the TCP socket options. Use
them in your application when necessary.

Additional Information

OMRON has confirmed that normal communications can be performed using this project file
under the OMRON evaluation conditions including the test system configuration, version of
each product, and product Lot, No. of each device which was used for evaluation.

OMRON does not guarantee the normal operation under the disturbance such as electrical
noise and the performance variation of the device.

Additional Information

With Sysmac Studio, a data type + "#" are prefixed to decimal data and a data type + "#" +
"16" + "#" are prefixed to hexadecimal data when it is necessary to distinguish between
decimal and hexadecimal data. (e.g., INT#1000 decimal -> INT#16#03E8 hexadecimal. For
DINT, a data type + "#" are unnecessary.

26

9. Project File

9.1.1. Communications Data Flow
The following figure shows the data flow from issuing a command with TCP socket

communications from the Controller to the destination device to receiving the response

data from the destination device. This project file executes a series of processing from the

TCP open to the close processing continuously. Receive processing is performed
repeatedly when the response data is divided and multiple receive data are sent.

TCP open processing

|

Command send
processing

|

Response receive
processing

!

Close processing

The Controller issues a TCP open request to the
destination device and a TCP connection is
established.

The send message set with the ST program is sent
from the Controller to the destination device.

The response data, which was received by the
Controller from the destination device, is stored in
specified internal memory.

The Controller issues a close request to the
destination device, and the TCP connection is
terminated.

*The response data is not sent after receiving a command or the response data is sent

immediately after a connection is established depending on the destination device and

command. With this project file, "Send/receive processing required/not required

setting" can be set for the "General-purpose Ethernet communications sequence

setting function block". If "Send only" is set, the response receive processing is not

performed. If "Receive only" is set, the command send processing is not performed.

27

9.1.2.

9. Project File

TCP Socket Communications with Socket Service Instructions

This section outlines TCP socket communications performed by using the TCP socket
service function blocks (hereinafter referred to as socket service instructions) and

send/receive process of the message.

’g Additional Information

For details, refer to Communications Instructions under Section 2 Instruction Descriptions of
NJ-series Instructions Reference Manual (Cat. No. W502).

o TCP Socket Services with Socket Service Instructions
In this project file, socket communications are performed by using the following 5 types of

standard instructions.

Name Function blocks | Description

Connect TCP SktTCPConnec | Connects the TCP port of the destination device

Socket t using an active open.

TCP Socket SktTCPSend Sends data from a specified TCP socket.

Send

TCP Socket SktTCPRcv Reads data received from a specified TCP socket.

Receive

Close TCP/UDP | SktClose Closes a specified TCP socket.

Socket

Read TCP SktGetTCPStat | Reads the status of a specified TCP socket.

Socket Status us In this project file, this instruction is used to check if
receive processing is completed during receive
processing and to check the closing status during
close processing.

*The socket obtained by the Connect TCP socket instruction (SktTCPConnect:
SktTCPConnect_instance) is used as an input parameter for another socket service
instruction. The data type of Socket is structure _sSOCKET. The specifications are as

follows.
Variable Meaning Description Data type Valid range Default
Socket Socket Socket _SSOCKET - -
Handle Handle Handle for data UDINT Dependson | -
communications data type
SrcAdr Local Local address *1 _SSOCKET_ADD | - -
address RESS
PortNo | Port Port number UINT 1 to 65535
number
IpAdr IP address | IP address or host name | STRING Depends on
*2 data type
DstAdr Destination | Destination address *1 _SSOCKET_ADD | - -
address RESS
PortNo | Port Port number UINT 1 to 65535
number
IpAdr IP address | IP address or host name | STRING Depends on
*2 data type

*1: The address indicates an IP address and a port number.
*2: A DNS or Hosts setting is required to use a host name.

28

eSend/receive message

9. Project File

Send message *% *% *% *% *% *% *% *% *% *% *%
Destination
Header Command data Terminator ;
Controller device
s
>
« L
<
Rece|ve message *% *% *% *% *% *% *% *% *% *% *%
(Response)
Header Response data Terminator
Receive message kk k% kk kk kk kk k% kk k% k%
(Error response)
Header Response data (Error code) Terminator

eCommunications sequence

TCP communications are performed between the destination device (server) and

Controller (client) in the following procedure.

Controller

(Client)

y
_\ Connection requested
Active open

Destination|
device

(Server)

I Passive open l
q
>

Connection

(Connection

established

Data send Send data

Il

| establishmed

Acknowledgement (ACK)

A\ 4

y

rocessing J
<

A 4

D

A
Next data Data receive
send processin request
< Send data Data send
l request
Acknowledgement (ACK) R

A4
Data receive
processing

!

Close requested

| 1.

y
Next data
send request

Close processing §

Close

H

29

I 9.2. Destination Device Command

9. Project File

This section explains the destination device command used in this project file.

9.2.1. Overview of the Command

This project file uses VERGET /S (Acquire Software Version) command to perform

Ethernet communications with the destination device.

Command Description
VERGET /S Acquire software version
i -

This command acquires the version information of the Sensor software.

<Command Format=

Command Farameter
e A
il i] r]
VIE|IR|GI|E|T 1S |CR
I I
Space Delimiter
(0ee20)

<Response Format=
When the Command 15 Processed Mormally

Software version Date
A i
- ~ -)
1 . 2 0 2 o1 0 /1 CH
| |
Space Dalimiter
[0=20})
O|K|CR
I
Delimiter

@ Additional Information

For details, refer to Controlling the Sensor from an External Device (Procedure for
No-protocol Command/Response Communications) in 8-2 Outputting/Controlling with

Ethernet in the user's manual for each Code Reader.

30

9.2.2.

Command Settings

9. Project File

This section explains the details on the settings for VERGET /S (Acquire Software Version)

command.

eSend data (Command) settings
Set the send data in SendMessageSet_instance function block.

<Specifications of the destination device>
*Data is stored in ASCII code.

Variable Description (data type) Set value

Send_Header Send Header (STRINGI5]) “’ (None)

Send_Addr Send address (STRINGI5]) " (None)

Send_Command | Send data (STRING[256]) "VERGET /S"
Addition of send check

Send_Check “’ (None)

(STRINGI[5])

Send_Terminate

Send terminator (STRINGI5])

'$R' ([CR]:#16#0D)

Description

Variable (data type) Data Description
CONCAT(Send_Header,
Send message Send_Addr, Used as Send_data of_
Send_Data Send_Command, SktTCPSend instruction

(STRINGJ[256]) Send_Check,

Send_Terminate)

(SktTCPSend_instance).

eReceive data (response) that is stored
After a data check is performed on the receive data using the ReceiveCheck_instance
function block, the receive data is stored as output receive data.

<Specifications of the destination device>

*Data is stored in ASCII code.

Variable Description (data type) Storage area
Receive data)
Recv_Data Receive buffer
(STRING[256])
Receive data Receive data storage area
Recv Buff)
- (STRING[256]) (stores the receive buffer data)

31

eSend/receive message

Send message

(Normal operation)

Receive
message
1

Receive
message
2

(Error operation)

Receive
message

9. Project File

56 | 45 52 | 47 45 | 54 20 | 2F 53 . OD

V' B R | 'G EL T ENT 'S'" | [CR]

31 . 2E 33 1 31 20 + 32 30 + 31 31 | 2F 30 : 38
o 3 A 0o 1 08
2F | 30 31 : 0D

l/l i IOI 511 i[CR]

4F @ 4B 0D

0" | K | [CR]

45 | 52 0D

'E' ¢ 'R | [CR]

32

9. Project File

I 9.3. Error Detection Processing

This section explains the error detection processing of this project file.

9.3.1.

Error Detection in the Project File
This project file detects and handles errors of the following items (1) to (4). For information
on error codes, refer to 9.7.1. Error Code List.

Controller

Destination device

Ethernet cable

~— - ey ")
, 2 g

1)(2)) 3)

(1) Communications errors in TCP socket communications using socket service instructions

Errors occurred in a program during TCP socket communications such as Unit error,
command format error and parameter error are detected as communications errors. The
error is detected with the socket service instruction argument ErrorID.

(2)Timeout errors during communication with the destination device

When open processing, send processing, receive processing, or close processing is not
normally performed and cannot be completed within the monitoring time, it is detected as a
timeout error. The error is detected with the time monitoring function in the project file. For
information on the time monitoring function by using the timer in the project file, refer to
9.3.2. Time Monitoring Function.

(3)Errors in the destination device (Destination device error)

The destination device error includes a command error, parameter error, and execution
failure in the destination device. The error is detected with the response data which is sent
from the destination device. With this project file, the destination device error is detected
with the error code, which is returned from the destination device when an error occurs. For
information on the send/receive messages, refer to 9.2. Destination Device Command.

(Receive message for error process)

45 1 52 0D
e | R [CR]

(4)TCP connection status errors when ending the processing

With this project file, the close processing is always performed at the end of the whole
processing regardless of whether each processing from the open processing to the receive
processing ends normally or in an error. The TCP connection status variable TcpStatus of
the SktGetTCPStatus instruction is used to detect whether the close processing ends
normally. When the close processing is operated abnormally, the next open processing
may not be performed normally. For information on the corrective actions for TCP
connection status errors, refer to 9.7.2 TCP Connection Status Errors and Corrective
Actions.

33

9. Project File

Time Monitoring Function
This section explains the time monitoring function of this project file.
You can change the monitoring time settings by changing the variables of the
ParameterSet function block.

eTime monitoring function using the timer in the project file

To prepare against errors that may prevent the execution of the processing from ending,
the timer in this project file is used to abort the processing (timeout). The timeout value for
each processing from the open processing to the close processing is 5 seconds (default).

[Time monitoring function using the timer in the project file]

Processing | Monitoring Variable | Timeout time
name (Default)
Open Time from the start of the open processing to | TopenTi | After 5 seconds
processing | the end me (UINT#500)
Send Time from the start of the send processing to TfsTime After 5 seconds
processing | the end (UINT#500)
Time from the start of the receive processing
: to the end
Er?)%ee“s/;n g *Whe'n r(_eceiye proces;ing is repeateq, the timer | TfrTime ,(A\Jtlt-:';erS#ZS((:)c))nds
monitoring timer monitors each receive
processing separately.
Time from the start of the close processing to
Close the end L i)
processing *The time monitoring timer confirms the normal TcloseTi | After 5 seconds
TCP connection status after the close me (UINT#500)
processing and detects that the processing is
completed.

eTime monitoring function of the Controller (socket service)

The Controller has a time monitor function as a socket service. This function monitors the
time taken to receive data that are sent separately. TrTime=UINT#3 (300 ms) (default) is
stored in the TimeOut parameter of the SktTCPRcv socket service instruction when receive
processing is performed. For the receive waiting time for the next response after the
receive processing ends once, TrTime variable is also set for the receive waiting time
monitoring timer with this project file. If the next response is not received from the
destination device within this time, it is detected that the receive processing ends.

’% Additional Information

For information on the time monitoring function of the socket service, refer to

Communications Instructions - SkKtTCPRcv in Section 2 Instruction Descriptions of the
NJ-series Instructions Reference Manual (Cat. No. W502).

34

9. Project File

eResend/time monitoring functions of the Controller (TCP/IP)

When a communication problem occurs, TCP/IP automatically resends the data and
monitors the processing time if there is no error in the Controller. If the processing ends in
an error, this project file performs the close processing and stops the TCP/IP resend/time
monitoring function. If a TCP connection status error occurs during close processing, the
TCP/IP resend/time monitoring function of the Controller may be operating. For information
on the status and corrective actions, refer to 9.7.2. TCP Connection Error Status and
Corrective Actions.

35

I 9.4. Variables

9. Project File

The table below lists the variables used in this project file.

9.4.1. List of Variables

The variables necessary to execute this project file are listed below.

elnput variable

The following table shows the variable used to operate this project file.

Name Data type

Description

Input_Start BOOL

This project file is started by turning OFF (FALSE) and then ON
(TRUE). After checking the normal end output or error end output,
turn ON and then OFF.

eQutput variables

The following table lists the variables that contain the execution results of this project file.

Name Data type

Description

Output_RecvMess STRING[256]

Stores the receive data (response). (256-byte area is secured.)

Output_ErrCode WORD

Stores the error result (flag) for a communications error or
timeout error detected during open processing, send
processing, receive processing or close processing.

16#0000 is stored for a normal end.

Output_SktCmdsErr | WORD
orlD

Stores each socket service instruction's error code for a
communications error or timeout error detected during open
processing, send processing or receive processing.

16#0000 is stored for a normal end.

Output_SkTcloseErr | WORD
orlD

Stores the SktTcpClose instruction's error code for a
communications error or timeout error detected during close
processing rather than an error detected during open
processing, send processing or receive processing.

16#0000 is stored for a normal end.

Output_EtnTcpSta _eCONNECTI
ON_STATE

Stores the TCP connection status when a communications
error or timeout error is detected during close processing.

_CLOSED is stored for a normal end.

Output_MErrCode DWORD

Stores the error code for an FCS calculation error or a
destination device error detected after the receive processing.
16#00000000 is stored for a normal end.

36

9. Project File

einternal variables
The following table lists the variables used only for operations of this project file.

Name Data type Description
Local_Status sStatus Program execution status
(STRUCT)
Busy BOOL TRUE while executing this project file.
FALSE while not executing this project file.
Done BOOL TRUE for a normal end of this project file.
FALSE when Input_Start changes to FALSE.
Error BOOL TRUE for an error end of this project file.
FALSE when Input_Start changes to FALSE.
Local_State DINT Status processing humber
Local_ErrCode uErrorFlgs Sets an error code.
(UNION)
Local_ErrCode. | WORD Expresses an error code in WORD.
WordData

Local_ErrCode. | ARRAY[0..1 | «Communications error

BoolData 5] OF BoolData[0]: Send processing: Error (TRUE)/Normal (FALSE)

BOOL BoolData[1]: Receive processing: Error (TRUE)/Normal (FALSE)
BoolData[2]: Open processing: Error (TRUE)/Normal (FALSE)
BoolData[3]: Close processing: Error (TRUE)/Normal (FALSE)
BoolData[4]: Processing number error: Error (TRUE)/Normal (FALSE)

*Timeout error

BoolData[8]: Send processing: Error (TRUE)/Normal (FALSE)

BoolData[9]: Receive processing: Error (TRUE)/Normal (FALSE)

BoolData[10]: Open processing: Error (TRUE)/Normal (FALSE)

BoolData[11]: Close processing: Error (TRUE)/Normal (FALSE)
*Others

BoolData[5]: Send/receive required/not required detection error:
Error (TRUE)/Normal (FALSE)
BoolData[12]: Destination device error:
Error (TRUE)/Normal (FALSE)
BoolData[6..7],[13..14]: Reserved
BoolData[15]: Error

Local_ExecFlgs sControl Socket service instruction execution flag
(STRUCT)
Send BOOL Send processing instruction Executed (TRUE)/Not executed (FLASE)
Recv BOOL Receive processing instruction Executed (TRUE)/Not executed
(FLASE)
Open BOOL Open processing instruction Executed (TRUE)/Not executed (FLASE)
Close BOOL Close processing instruction Executed (TRUE)/Not executed (FLASE)
Status BOOL TCP status instruction Executed (TRUE)/Not executed (FLASE)
Local_SrcDataByte | UINT Sets the number of send data bytes.

37

9. Project File

Name Data type Description
Local_SrcData ARRAY[0..2 | An area that stores the data sent by the SktTCPSend instruction
000] OF (SktTCPSend_instance). (256-byte area is secured.)
BYTE
Local_RecvData 'S‘EOF]{'%T:[O--Z Stores the data (response) received by the SktTCPRcv instruction
BOOL (SktTCPRcv_instance). (256-byte area is secured.)
Local_ReceiveMes | STRING[25 | Stores the STRING data (response) received by Local_RecvData.
sage 6] (256-character area is secured.)
Local_RecvCheckF | BOOL Destination device error detection instruction execution flag
lg Executed (TRUE)/Not executed (FLASE)
Local_lInitialSetting | BOOL Initialization processing normal setting flag
OK
Local_TONFlIgs sTimerCont | Timer enable flag
rol
(STRUCT)
Tfs BOOL Send processing time monitoring timer instruction
Enabled (TRUE)/Disabled (FALSE)
Tir BOOL Receive processing time monitoring timer instruction
Enabled (TRUE)/Disabled (FALSE)
Topen BOOL Open processing time monitoring timer instruction
Enabled (TRUE)/Disabled (FALSE)
Tclose BOOL Close processing time monitoring timer instruction
Enabled (TRUE)/Disabled (FALSE)
Tr BOOL Next response receive waiting time monitoring timer instruction
Enabled (TRUE)/Disabled (FALSE)
Local_ComType sControl Sets the send/receive processing required/not required setting.
(STRUCT)
Send BOOL Send processing Required (TRUE)/Not required (FALSE).
*When send processing is required and receive processing is not
required:
This program skips receive processing without waiting for receive
data during send processing, and shifts to close processing. This is
specified when no response data is sent for the sent command.
Recv BOOL Receive processing Required (TRUE)/Not required (FALSE).
*When send processing is required and receive processing is required:
This program waits for the receive data after the send processing.
After checking that data is received, this program shifts to the receive
processing. This is specified when response data is sent for the sent
command.
Error BOOL Send/receive processing required/not required setting error flag
(Set this flag when a setting error occurs.)

38

9. Project File

e\ariables used to initialize socket service instructions

Name Data type Description

NULL_SOCKET _SSOCKET Socket service instruction initialization data (Retain/Constant:
Enabled)

Default value (Handle := 0, SrcAdr := (PortNo := 0, IpAdr :="),
DstAdr := (PortNo := 0, IpAdr :="))

(Used for all socket service instructions.)

NULL_ARRAYOFB | ARRAY[0..0] | Send socket service instruction initialization data array
YTE_1 OF BYTE (Retain/Constant: Enabled)

Default value [0] (Used for SktTCPSend instruction.)
NULL_ARRAYOFB | ARRAYI[0..0] | Receive socket service instruction initialization data array
YTE_2 OF BYTE (Retain/Constant: Enabled)

Default value [0] (Used for SktTCPRcv instruction.)

9.4.2. List of Variables Used in Function Block/Function
The internal variables used to execute the function blocks in the program are listed below.
The internal variable is called the “instance”. The name of the function block to use is
specified as the data type of the variable.

e|nstances of user-defined function blocks

Variable name Data type Description
ETN_ParameterSet_ins | ParameterSet Ethernet setting (Destination IP address, etc.)
tance Monitoring time of each processing from the open

processing to the close processing

ETN_SendMessageSet | SendMessageSet | Sets the send/receive processing required/not required

_instance setting and sets a send message.
ETN_ReceiveCheck _in | ReceiveCheck Stores receive data and detects whether the operation
stance ended normally or ended in error.

*For information on the user-defined function blocks, refer to 9.5.3 Detailed Description of
Function Blocks.

elnstances of timers used in the program

Variable name Data type Description
Topen_TON_instance TON Counts the time taken to perform the open processing.
Tfs_TON_instance TON Counts the time taken to perform the send processing.
Tfr_TON_instance TON Counts the time taken to perform the receive processing.
Tclose_TON_instance TON Counts the time taken to perform the close processing.
Tr_TON_instance TON Counts the time waiting for the next response.

39

9.4.3. List of System Variables
The variable necessary to execute the project file is shown below.

e System variable (External variable)

9. Project File

Name

Data type

Description

_EIP_EtnOnlineSta

BOOL

Communication function status of the Controller:

TRUE: Can be used. FALSE: Cannot be used.

’% Additional Information

For information on system variables and communications instructions, refer to
Communications Instructions in Section 2 Instruction Descriptions of the NJ-series
Instructions Reference Manual (Cat. No. W502).

40

I 9.5. Program (ST language)

9. Project File

9.5.1.

Functional Components of ST Program

This program is written in the ST language. The functional components are as follows.

Major classification

Minor classification

Description

1. Communications
processing

1.1. Starting communications
processing

1.2. Clearing the communications
processing status flags

1.3 Communications processing in
progress status

The communications processing is started.

2. Initialization
processing

2.1. Initializing the processing time
monitoring timer

2.2. Initializing the socket service
instructions

2.3. Initializing the socket service
instruction execution flags

2.4. Initializing the processing time
monitoring timer enable flags

2.5. Initializing the error code
storage areas

2.6. Setting each processing
monitoring time and Ethernet
related parameters

2.7. Setting the send/receive
processing required/not required
setting and send data

2.8. Converting send data from a
string to a BYTE array

2.9. Initializing the receive data
storage areas

2.10. Initialization setting end
processing

The Ethernet parameters are set and the
error code storage area is initialized.

The send/receive required/not required
setting, send data and receive data are set.

3. Open processing

3.1. Determining the open

processing status and setting the

execution flag

3.2. Enabling the open processing
time monitoring timer

3.3. Executing the open instruction
(TCP.Active open processing)

The TCP open (Active) processing is
executed.

After starting the communication processing
and executing initialization settings, the
processing is executed unconditionally.

4. Send processing

4.1. Determining the send

processing status and setting the

execution flag

4.2. Enabling the send processing
time monitoring timer

4.3. Executing the send instruction

The processing is executed when the send
processing required/not required setting is
set to Required and the open processing
ended normally.

5. Receive
processing

5.1 Determining the receive

processing status and setting the

execution flag

5.2 Enabling the receive waiting
time monitoring timer

5.3 Enabling the receive processing
time monitoring timer

5.4 Executing the receive instruction

5.5 Executing the get TCP status
instruction

5.6 Executing the destination device
error detection instruction

The processing is executed when the
receive processing required/not required
setting is set to Required and the send
processing ended normally.

If multiple receive data arrive, the receive
processing is repeated.

The receive data is stored and checked.

41

9. Project File

Major classification

Minor classification

Description

6. Close processing

6.1. Determining the close
processing status and setting the
execution flag

6.2. Enabling the close processing
time monitoring timer

6.3. Executing the close instruction

6.4. Executing the get TCP status
instruction

The close processing is executed.

The processing is executed in the following

cases.

*When the receive processing not required
setting is set and the sent processing ends
normally

*When the receive processing ends

normally

eImmediately after an error end of open
processing, send processing or receive
processing

7. Processing
number error
process

7. Processing number error process

The error process is executed when a
non-existent processing number is
detected.

42

9. Project File

9.5.2. Detailed Description of Main Program
The main program is shown below.
The communications settings, send data (command) setting and receive data (response
data) check that must be changed according to the destination device are performed in the
function blocks (ETN_ParameterSet, ETN_SendMessageSet, and ETN_ReceiveCheck).
For information on how to change these values, refer to 9.5.3 Detailed Description of
Function Blocks.

[Main program:Program0]

1. Communications processing
(f ==
MName: MJ-series general-purpose Ethernet communication program
Function: General-purpose Ethernet communications main program
Ethernet Unit: NJ501 (Built-in EtherMet/IP port)
Remarks:
Version information: August 1, 2011 V1.00 New release
(C)Copyright OMRON Corporation 2011 All Rights Reserved.

(* 1. Communications processing
Variable description: Communications processing for control
Input start flag Input_Start
Communications processing status flag list: Local_Status<STRUCT >
|-Communications processing in progress flag (Busy) :Local_Status.Busy
|-Communications processing normal end flag (Done) :Local_Status.Done
|-Communications processing error end flag (Error):Local_Status.Error
Status processing number :local_State
10:Initial processing
11:0pen processing
12:5end processing
13:Receive processing
14:Close processing
99:Processing number error processing *)

(* 1.1. Starting communications processing
Start communications processing by turning OM the input start flag
when communications processing status flags have been cleared. *)
IF Input_Start AND
MNOT(Local_Status.Busy OR Local_Status.Done OR Local_Status.Error) THEN
Local_5tatus.Busy:=TRUE:
Local_State:=10; //To 10: Initial processing
END_IF;

(* 1.2. Clearing the communications processing status flags
Clear communications processing status flags by turning OFF the input
start flag while communications processing is not in progress. *)

IF MOT(Local_Status.Busy) AND NOT{Input_Start) THEN
Local_Status.Done:=FALSE;
Local_Status.Errorn=FALSE;

END_IF;

(* 1.3. Communications processing in progress status

Execute processing according to the status processing number (Local_State)*)
IF Local_Status.Busy THEN

CASE Local_State OF

43

2.

10:

Initialization processing

(* 2. Initialization processing

-Initialize the whole communications and set parameters
-5et send data and initialize the receive data storage areas ™)

(* 2.1. Initializing the processing time monitoring timer *)
Topen_TOM_instance (In:=FALSE,PT:=TIME#0ms);
Tfs_TOM_instance (Im:=FALSE PT:=TIME#0ms);
Tr_TOMN_instance (In:=FALSEPT:=TIME#0ms);
Tfr_TOM_instance (In:=FALSEPT:=TIME#0ms);
Tclose_TOM_instance(In:=FALSE PT:=TIME#0ms):

(* 2.2. Initializing the socket service instructions *)
SktTCPConnect_instance(
Executer=FALSE SrcTepPort:=UINT#0,DstTcpPort:=UINT#0,DstAdr=");
SktTCPSend_instance(
Execute:=FALSE Socket:=NULL_SOCKET, Size:=UINT#{,
SendDat:=NULL_ARRAYOFBYTE_1[0]):
SktTCPRov_instance(
Execute:=FALSE, Socket:=NULL_SOCKET, Size:=UINT#0, TimeOQut:=UINT#{,
RewDat:=NULL_ARRAYOFBYTE_Z[0]):
SkTclose_instance(
Execute:=FALSE Socket:=NULL_SOCKET);
SktGetTCPStatus_instance(
Execute:=FALSE Socket:=NULL_SOCKET);

(* 2.3. Initializing socket service instruction execution flags
Variable description: Socket service instruction execution flag
(For Execute parameter)
Socket service instruction execution flag list
:Local_ExecFlgs<STRUCT =)
|-Send instruction execution flag (SktTCPSend)
| ‘Local_ExecFlgs.Send
|-Receive instruction execution flag (SkiTCPRecv)
| :Local_ExecFlgs.Recv
|-Open instruction execution flag (SkiTCPConnect)
| ‘Local_ExecFlgs.Open
|-Close instruction execution flag (SkTclose)
| :Local_ExecFlgs.Close
|-Get TCP status instruction execution flag (SkiGetTCPStatus)
:Local_ExecFlgs.5tatus *)
Local_ExecFlgs.Send:=FALSE:
Local_ExecFlgs.Recvi=FALSE;
Local_ExecFlgs.Open:=FALSE:
Local_ExecFlgs.Close:=FALSE;
Local_ExecFlgs.Status:=FALSE:

(* 2.4. Initializing the processing time monitoring timer enable flags

Variable description: Processing time monitoring timer enable flags
(For In parameters)
Processing time monitoring timer enable flag list
| : Local_TONFIgs<STRUCT>
|-Send processing time monitering timer enable flag (Tfs_TON)
| :Local_TONFlgs.Tfs
|-Receive processing time monitoring timer enable flag (Tfr_TON)
| :Local_TONFIgs.Tfr
|-Open processing time monitoring time enable flag (Topen_TON)
| :Local_TOMFlgs.Topen (Tclose_TOMN)
|-Close processing time monitoring timer enable flag
| :Local_TONFlgs.Tclose
|-Receive waiting time monitoring timer enable flag (Tr_TOMN)
(Mext message waiting time): Local_ TONFIgs.Tr *)

Local_TOMflgs.Tfr:=FALSE

Local_TONflgs.Topem:=FALSE

Local_TONflgs.Tclose:=FALSE;

Local_TONflgs.Tr=FALSE;

(* 2.5. Initializing the error code storage areas *)
Local_ErrCode.WordData:=WORD#16#0000;
Output_ErrCode:=WORD#16#FFFF;
Output_MErrCode:=DWORD#16#FFFFFFFF:
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Output_SkTcloseErrorlD:=WORD#16#FFFF;

9. Project File

44

(* 2.6. Setting each processing monitoring time and
Ethernet related parameters *}
ETM_ParameterSet_instance(
Execute:=TRUE);

(* 2.7. Setting the send/receive processing required/
not reguired setting and send data *)
ETM_SendMessageSet_instance(
Execute:=TRUE):
{* Detect the send/receive processing required/not required setting error ¥)
{* <Memo on vanable>

Local_ComType.Send: Send processing required/not required flag

Local_ComType.Recw:

Receive processing required/not reguired flag

Local_ComType.Error:

Send/receive processing required/not required setting error *)
Local_ComType.Send:=TestABIt(ETN_SendMessageSet_instance.ComType. 0);
Local_ComType.Recw:=TestABIt(ETN_SendMessageSet_instance.ComType 1)
Local_ComType.Erron=MNOT(Local_ComType.Send COR Local_ComType.Recv);
IF Local_ComType.Error THEM

Output_ErrCode:=WORD#16#0020;
Local_InitialSettingOK:=FALSE;
ELSE
Local_InitialSettingOK:=TRUE;
END_IF;

(* 2.8. Converting send data from a string to a BYTE array *}
Local_SrcDataByte:=
StringTeAry(ETN_SendMessageSet_instance.5end_Data,Local_SrcData[0]):

(* 2.9. Initializing the receive data storage areas)
Clearstring(Local_ReceiveMessage):
ClearString(Output_RecvMess):
Local_RecvCHMo:=0;

Local_RecvDatalength:=0;
Local_ReceiveSize=UINT#256;

(* 2.10. Initialization setting end processing *)
IF Local_InitialSettingOK THEN

Local_State:=11; /{To 11:0pen processing
ELSE

Local_Status.Busy:=FALSE;

Local_Status.Error:=TRUE;

Local_State:=0; /{To O:Communication not in progress status
EMD_IF;

9. Project File

45

3. Open processing
11
(* 3. Open processing
-Connect the destination TCP port using an active open. *)
(* «<Memo on variable>
Local_ExecFlgs.Open: Open instruction execution flag
Local_TONFIgs.Topen:
Open processing time menitering timer enable flag *)

(* 3.1. Determining the open processing status and

setting the execution flag *)
(* 3.1.1. Timeout processing *)

IF Topen_TOMN_instance. THEN
Local_ErrCode.BoolData[10]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Open:=FALSE;
Local_TONflgs.Topen:=FALSE:

Local_State:=14: //To 14: Close processing

(* 3.1.2. Nermal end processing ™)

ELSIF SktTCPConnect_instance.Done THEN
Local_ErrCode.BoolData[2]:= FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Open:=FALSE;

Local_TONflgs.Topen:=FALSE;
(* «<Memo on variable>
Local_ComType.Send: Send processing required/not required flag
Local_ComType.Recv:
Receive processing required/not required flag *)
IF Lecal_ComType.Send THEN

Local_State:=12; /{To 12: Send processing
ELSIF Local_ComType.Recv THEN

Local_State:=13; /{To 13: Receive processing
END_IF;

(* 3.1.3. Error end processing *)

ELSIF SktTCPConnect_instance.Error THEN
Local_ErrCode.BoolData[2]:=TRUE:
Output_SktCmdsErrorlD:=5ktTCPConnect_instance.ErrorlD;
Local_ExecFlgs.Open:=FALSE;
Local_TONflgs.Topen:=FALSE;

Local_State:=14; /{To 14: Close processing

(* 3.1.4. Setting the open instruction execution flag and
setting the timer enable flag *)
ELSE
Local_ExecFlgs.Open:=TRUE;
Local_TOMNflgs.Topen:=TRUE:
END_IF:

(* 3.2. Enabling the open processing time monitoring timer *)
Topen_TON_instance(
In:=Local_TONflgs.Topen,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance. TopenTime)):

(* 3.3. Executing the open instruction (TCP.Active open processing)
When the built-in Ethernet can be used
{when _EIP_EtnOnline5ta is ON), execute the open instruction *)
SktTCPConnect_instance(
Execute:=Local_ExecFlgs.0Open AND _EIP_EtnOnlineSta,
SrcTepPort:=ETMN_ParameterSet_instance.SrcPort,
DstTepPort:=ETN_ParameterSet_instance.DstPort,
DstAdr=ETMN_ParameterSet_instance.DstIPAddr);

9. Project File

46

4. Send processing
12:
(* 4. Send processing
-5end data from the specified TCP port. *)
(* <Memo on vanable:
Local_ExecFlgs.5end: Send instruction execution flag
Local_TONFIgs.Tfs
:Send processing time monitoring timer enable flag *)

(* 4.1. Determining the send processing status
and setting the execution flag *)

(* 4.1.1. Timeout processing *)

[F Tfs_TOM_instance.} THEN
Local_ErrCode.BoolData[8]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Send:=FALSE:

Local_TOMflgs. Tfs:=FALSE;
Local_State:=14; /fTo 14: Close processing

(*4.1.2. Nermal end processing ™)

ELSIF SktTCPSend_instance.Done THEN
Local_ErrCode.BoolData[0l:=FALSE;
Output_SktCmdsErrorlD:=WORD#16+#0000;
Local_ExecFlgs.Send:=FALSE:

Local_TOMflgs. Tfs:=FALSE;
(* «Memo on variable>
> Local_ComType.Recv:
Receive processing required/not required flag *)
Local_State:=5EL{Local_ComType.Recv,14,13);
/{To 13: Receive processing
/{To 14: Close processing

(*4.1.3. Error end processing *)

ELSIF SktTCPSend_instance.Error THEMN
Local_ErrCode.BoolData[0]:=TRUE;
Cutput_SktCmdsErrorlD:=

SkiTCPSend_instance.ErrorlDy;
Local_ExecFlgs.Send:=FALSE:
Local_TOMflgs. Tfs:=FALSE;
Local_State:=14; /{To 14: Close processing

(* 4.1.4, Setting the send instruction execution flag/
setting the timer enable flag ™)
ELSE
Local_ExecFlgs.Send:=TRUE;
Local_TOMNflgs.Tfs:=TRUE:
END_IF;

(* 4.2. Enabling the send processing time monitoring timer *)
Tfs_TOMN_instance(

In:=Local_TONflgs.Tfs,

PT:=MULTIME(TIME#10ms, ETM_ParameterSet_instance. TfsTime));

(* 4.3. Executing the send instruction
When the built-in Ethernet can be used
{(when _EIP_EtnOnlineSta is ON), execute the send instruction *)
SktTCPSend_instance(
Execute:=Local_ExecFlgs.5end AND _EIP_EtnOnlinebta,
Size:=Local_SrcDataByte,
Socket:=SktTCPConnect_instance.5ocket,
SendDat:=Local_SrcData[0]):

9. Project File

a7

9. Project File

5. Receive processing
13:
(* 5. Receive processing
-Read data from the receive buffer of the specified TCP socket.
("«<Memao on variable >
Local_ExecFlgs.Recw: Receive instruction execution flag
Local_ExecFlgs.Status: Get TCP status instruction execution flag
Local_TONFlgs.Tfr:
Receive processing time monitoring timer execution flag
Local_TONFIgs.Tr:
Receive waiting time maonitoring timer execution flag
(Mext message waiting time} *)

(* 5.1. Determining the receive processing status and
setting the execution flag *)

(* 5.1.1. Receive end processing *}
IF Tr_TON_instance.QQ THEN
Local_ExecFlgs.Status:=FALSE;
Local_TOMflgs. Tfr=FALSE:
Local_TOMflgs. Tr=FALSE;

(* Convert receive data from a BYTE array to a string. *)
Local_ReceiveMessage:=
AryToString(Local_RecvDatal0].Local_RecvDatalength);

(* Setting the destination device error judgment instruction
execution flag *)
Local_RecvCheckFlg:=TRUE:

Local_State:=14: //To 14: Close processing

(* 5.1.2. Timeout processing *)

ELSIF Tfr_TOM_instance.Q THEN
Local_ErrCode.BoolData[Sl:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Recw:=FALSE;

Local_ExecFlgs.Status:=FALSE;
Local_TOMNflgs. Tfr=FALSE
Local_States=14; /To 14: Close processing

(* 5.1.3. Nermal end processing *)
ELSIF SktTCPRcv_instance.Done THEN
Local_RecvDatalength
:=Local_RecvDatalength+SktTCPRev_instance RovSize;
Local_RecvCHMo:=Local_RecvDatalength;

Local_ExecFlgs.Recw:=FALSE;
Local_TOMflgs. Tfr=FALSE
Local_TONflgs.Tr:=TRUE // Ta 5.1.5. Receive data read processing

(* 5.1.4, Error end processing *)
ELSIF SktTCPRov_instance.Error THEM;
Local_ErrCode.BoolData[1]1:=TEUE;
Output_SktCmdsErrorlD:=
SktTCPRov_instance.ErrorlD;

Local_ExecFlgs.Recw:=FALSE;
Local_TOMNflgs. Tfr=FALSE

Local_States=14; /To 14: Close processing
SendDat:=Local_brcData|U]):

48

9. Project File

(* 5.1.5. Receive data read processing *}
ELSIF SktGetTCPStatus_instance.Done
QR SktGetTCPStatus_instance.Error THEMN
Local_ExecFlgs.Status:=FALSE;

{* When there is data to read:
Continues the receive processing *)
IF SktGetTCPStatus_instance.DatRevFlag THEN
Local_ExecFlgs.Recw:=TRUE:
Local_TONflgs.Tfn=TRUE
Local_TOMNflgs. Tr=FALSE
END_IF:
{* When there is no data to read:
-If no data is received, re-execute the get TCP status
at the next cycle without performing any processing.
-If data has already been received, monitor the response
receive waiting time. If there is no mere response and
a timeout occurs, read the data that has already been
received and end the receive processing. ¥}

(* 5.1.6. Setting the get TCP status instruction execution flag/
setting the timer execution flag *)
ELSE
Local_ExecFlgs.Status:=TRUE;
Local_TONflgs.Tfr=TRUE;

{* Initialize destination device
error detection instruction execution flag *)

Local_RecvCheckFlg:=FALSE;
END_IF;

(* 5.2. Enabling the receive waiting time monitoring timer
{next response warting time) *)
Tr_TOMN_instance(
In:=Local_TONflgs.Tr,
PT:=MULTIME(TIME#100ms,ETN_ParameterSet_instance.TrTime));

(* 5.3. Enabling the receive processing time monitoring timer *)
Tfr_TON_instance(
In:=Local_TONflgs.Tfr,
PT:=MULTIME({TIME#10ms,ETN_ParameterSet_instance. TfrTime));

(* 5.4, Executing the receive instruction
When the built-in Ethernet can be used
(when _EIP_EtnOnlineSta i1s ON), execute the receive instruction *}
SktTCPRev_instance(
Exscute:=Local_ExecFlgs.Recy AND _EIP_EtnOnlineS5ta,
Socket:=SktTCPConnect_instance.5ocket,
TimeQut:=ETN_ParameterSet_instance. TrTime,
Size:=Local_ReceivaSize,
RcovDat:=Local_RecvData[local_RecwCHMol);

(* 5.5. Executing the get TCP status instruction
When the built-in Ethernet can be used (when _EIP_EtnOnlineS5ta
15 ON), execute the get TCP status instruction *)
SktGetTCPStatus_instance(
Exscute:=Local_ExecFlgs.5tatus AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.Socket);

(* 5.6. Executing the destination device error detection instruction *)
ETM_ReceiveCheck_instance(
Exscute:=Local_RecvCheckFlg.
Recv_Buff:=Local_ReceiveMessage,
Recv_Data:=0utput_RecvMess,
tLength:=Local_RecvDatalength,
ErrorlD:=Local_ErrCode.WordData,
ErrorlDEx=0utput_MErrCode):
49

9. Project File

6. Close processing
14:
(* 6. Close processing
-Close the specified socket *)
(* «Memo on variable>
Local_ExecFlgs.Close: Close instruction execution flag
Local_ExecFlgs.5taus: Get TCP status instruction execution flag
Local_TONFIgs.Tclose:
Close processing time monitoring timer execution flag *)

(* 6.1. Determining the close processing status and
setting the execution flag *)

(*6.1.1. Timeout processing *)

IF Tclose_TOM_instance.Q THEN
Local_ErrCode.BoolData[11]:=TRUE;
Output_SkTcloseErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs. Tclose:=FALSE;
Local_ExecFlgs.Status:=FALSE;
Output_EtnTepStai=SktGetTCPStatus_instance. TcpStatus;
Local_ErrCode.BoolData[15]:=TRUE:
Output_ErrCode:=Local_ErrCode WordData;
Local_Status.Busy:=FALSE;
Local_Status.Error:=TRUE;

Local_State:=0; /{0:Communication not in progress status

(* 6.1.2. Normal end processing *}
ELSIF SkTclose_instance.Done THEN
Local_ExecFlgs.Status:=TRUE;
IF SktGetTCPStatus_instance.Done
OR SktGetTCP5tatus_instance.Error THEM
Local_ExecFlgs.Status:=FALSE

IF SktGetTCPStatus_instance. TcpStatus = _CLOSED THEN
Local_TONflgs.Tclose:=FALSE;
Output_SkTcloseErrorlD:=WORD#16+#0000;
Output_EtnTcpSta:=SktGetTCPStatus_instance. TepStatus;
Local_ExecFlgs.Close:=FALSE;

(* Determining results of the whole communication processing *)
Local_Status.Busy:=FALSE;

{* Communication processing nermal end *)

IF Local_ErrCodeWordData = WORD#16#0000 THEN
Local_Status.Done:=TRUE;
Local_ErrCode.BoolData[15]:=FALSE;

(* Communication processing error end *)
ELSE

Local_Status.Error:=TRUE;

Local_ErrCode.BoolData[15]:=TRUE;
END_IF;
Output_ErrCode:=Local_ErrCode.WordData;

Local_State:=0; //0:Communication not in progress status

END_IF:
END_IF:

(* 6.1.3. Error end procassing *)

ELSIF SkTclose_instance.Error THEN
Local_ErrCode.BoolData[3]:=TRUE;
Output_SkTcloseErrorlD:=5kTclose_instance.ErrorlD:;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs.Tclose:=FALSE;
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode WaordData;
Local_Status.Busy:=FALSE;
Local_Status.Error:=TRUE;

Local_State:=0; //0:Communication not in progress status

50

(* 6.1.4, Setting the close instruction execution flag/
setting the timer enable flag *}
ELSE
Local_ExecFlgs.Close:=TRUE:
Local_TONflgs.Tclose:=TRUE;

END_IF;

(* 6.2. Enabling the close processing time maonitoring timer *)
Tclose _TOM _instance(
In:= Local_TONflgs.Tclose,
PT:=MULTIME(TIME#10ms,ETN_FarameterSet_instance. TcloseTime));

(* 6.3. Executing the close instruction
When the built-in Ethernet can be used
(when _EIP_EtnOnlineSta is OM), execute the close instruction *)
SkTclose_instance(
Execute:=Local_ExecFlgs.Close AND _EIP_EtnOnlineSts,
Socket:=SktTCPConnect_instance.5ocket);

(* 6.4. Executing the get TCP status instruction
When the built-in Ethernet cans|be used
(when _EIP_EtnOnline5ta is ON), execute the get TCP instruction *)
SktGetTCP5tatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

7. Processing number error process
98:
(* 7. Processing number error process
-Error processing for when a non-existent processing number is set *)

Output_ErrCode:=WORD#16#0010;
Local_Status.Busy:=FALSE;
Local_Status.Erron=TREUE;

Local_State:;=0; //To 0: Communication not in progress status)
ELSE
Local_State;=99; //To 99: Processing number error process
EMD_CASE;
END_IF;

9. Project File

51

9. Project File

9.5.3. Detailed Description of Function Blocks
The function blocks used in this project file are shown below.
Data that need to be changed depending on the destination device are set in the red

frames on the function blocks below.

eDescription of ParameterSet function block

Instruction Meaning FB/FUN Graphl_c ST expression
expression
General-purpose ETN_ParameterSet_instance
Ethernet (Execute, TfsTime, TrTime, TfrTime, ,
ParameterSet Communications FB None TopenTime, TcloseTime, SrcPort,
Parameter setting DstIPAddr, DstPort);
«In-out variable table (arguments)
eInput
Name Data type | Meaning Description Valid range | Unit | Default
The function block is executed
when this parameter changes Dependson |)
Execute | BOOL | Bxecute | ¢00 OFF (FALSE) to ON data type
(TRUE). (Always: TRUE)
*Output
Name Data type Meaning Description Valid range | Unit | Default
Open Sets the monitoring time of the Depends
TopenTime | UINT monitoring | open processing in increments on data - -
time of 10 ms. type
Send Sets the monitoring time of the Depends
TfsTime UINT monitoring | send processing in increments on data - -
time of 10 ms. type
VIT/Zic;elve Sets the waiting time for the Depends
TrTime UINT o receive data in increments of on data - -
monitoring
X 100 ms. type
time
Receive Sets the monitoring time of the Depends
TfrTime UINT processing | receive processing in on data - -
time increments of 10 ms. type
Close Sets the monitoring time of the Depends
TcloseTime | UINT monitoring | close processing in increments on data - -
time of 10 ms. type
Local port Depends
SrcPort UINT number Sets the local port. on data - -
type
N Depends
DstIPAddr STRING | Destination Sets the destination IP address. | on data - -
[256] IP address
type
Destination Depends
DstPort UINT port ?L?rtr?btgre destination port on the . i i
number . destination
device
Busy BOOL Executing
Done BOOL Normal
end
Error BOOL Errorend | Notused i i i
Error (Not used in this project.)
ErrorlD WORD . .
information
ErrorlDEx | DWORD | EMO"
information

s[nternal variable table: None

52

9. Project File

*Program

Mame : MNJ-series general-purpose Ethernet communications
Parameter setting function block
Function: Processing monitoring time settings and
Ethernet-related parameter settings
Applicable device:
Manufacturer: OMRON Corporation
Device: Code Reader
Series/Model: FQ-CR series
Remarks:
Version informaticn: December 14, 2011 Mew release
(C)Copyright OMRON Corporation 2011 All Rights Reserved.

== ¥
(* Variable description: Argument, Return value
Argument: Name Data type Description
-Input: Execute BOOL Execution flag
-Output: TopenTime UINT Open processing monitoring time
TfsTime UINT Send processing monitoring time
TrTime UINT Receive wait processing monitoring time
TfrTime UINT Receive processing menitoring time
TcloseTime UINT Close processing monitoring time
SrcPort UINT Local port No
DstIPAddr UINT Destination IP address
DstPort UINT Destination port No
Busy BOOL Mot used
Done BOOL Mot used
Error BOOL MNot used
ErrorlD WQORD MNot used
ErrorlDEx DWORD MNot used

-In-out:None
Return value: None

"}
IF Execute THEN

(* Ethernet-related parameter settings *)

SrcPort:= UINT#0; // Local port No
DstlPAddr:= "192.168.250.2"; // Destination IP address
DstPort:= UINT#9876:; // Destination port No

(* Processing maonitoring time setting:
Maximum time from start to end of processing. *)

TopenTime := UINT#500;

// Open processing monitoring time setting: Setting unit 10ms<500->5s>
TfsTime:= UINT#500;

// Send processing monitoring time setting: Setting unit 10ms<500->5s5>
TfrTime:= UINT#500;

// Receive processing monitoring time: Setting unit 10ms<500->5s>
TeloseTime:=UINT#500;

// Close processing monitoring time: Setting unit 10ms<500->5s>

(* Maximum waiting time of packet interval when a response, which is
divided into multiple packets, is received. (Response instruction)
Also, maximum waiting time for next response
(Receive waiting time monitoring timer) *}

TrTime:= UINT#3;

// Receive waiting monitoring fime: Setting unit 100ms<3->300ms>

END_IF;
RETURM:

53

eDescription of SendMessageSet function block

9. Project File

Instruction Meaning FB/FUN Graphl_c ST expression
expression
General-purpose
ETN_SendMessageSet_instance
SendMessageSet Ethernet_ i FB None - B
communications (Execute, Send_Data, ComType);
seguence setting
«In-out variable table (arguments)
*Input
Name Data type Meaning Description Valid range | Unit | Default
The function block is
executed when this Depends
Execute BOOL Execute parameter changes from on data - -
OFF (FALSE) to ON type
(TRUE). (Always: TRUE)
*QOutput
Name Data type Meaning Description Valid range | Unit | Default
. Depends
Send_Data STRING[Send data Sets a c_omr_nand th_at is sent to on data))
256] the destination device. type
Sets whether send/receive
Send/receive processing are required.))
ComType BYTE type 1:Send only, 2: Receive only, lto3
3: Send and receive
Busy BOOL Executing
Done BOOL Normal end
Error BOOL Error end Not used
ErroriD WORD Error . (Not used in this project.)
information
ErrorlDEx | DWORD | EMOT
information

s[nternal variable table

Name Data type Meaning Description Valid range | Unit | Default
Depends
Send_He STRING[5] send Header of send message on data - -
ader header
type
Send Ad Destination Depends
ar STRING[5] device Destination device address | on data - -
address type
Depends
Send_Co Command sent to the
mmand STRING[256] Send data destination device ;)yr;)gata))
Depends
Send_Ch STRINGI[5] Send check | Check code of the send on data))
eck code message
type
Depends
Send_Ter Send .
minate STRING[5] terminator Send message terminator ;)yr;)gata - -

54

9. Project File

*Program

Mame :NJ-sernies general-purpose Ethernet
communications sequence setting function
Function: Send/receive processing reguired/not required setting and
send data setting
Applicable devices
Manufacturer: OMRON Corporation

Device : Code Reader
Series/Model: FQ-CR series
Remarks

Version information: December 14, 2011 New release
(C)Copyright OMROM Corporation 2011 All Rights Reserved.

—=== ¥)
(* Variable description: Argument, Return value
Argument: Name Data type Description

-Input: Execute BOOL Execution flag

-Output: SendData STRING[256] Send data
ComType BYTE Send/receive processing

required/not required setting

Busy BOOL Mot used
Done BOOL Not used
Error BOOL Not used
ErrorlD WORD Not used
ErrorlDEx DWORD Not used

-In-out: None
Return value: None

")
IF Execute THEMN

(* Send/receive processing required/not required setting *)
ComType:= BYTE#16#03; // 1: Send only, 2: Receive only. 3: 5end and receive

(* Send data setting®)

Send_Header="; [Header

Send_Addr="; // Address

Send_Command:= VERGET /S [/ Destination device command: Read version
Send_Check:=": Jf SUM calculation

Send_Terminate:= "$R" ff Terminator: CR(0x0D)

(* Concatenate the send data. ®)
Send_Data:=
CONCAT(Send_Header,Send_Addr.Send_Command.Send_Check. Send_Terminate):
END_IF;

RETURN:

55

eDescription of ReceiveCheck function block

9. Project File

Instruction Meaning FB/FUN Graph[c ST expression
expression
General-purpose . .
ETN_ReceiveCheck_instance
Ethernet
ReceiveCheck Communications FB None (Execute, Recv_Data, Recv_Buff,
Receive Error, ErrorlD, ErrorlDEX);
processing
«In-out variable table (arguments)
Input
Name Data type | Meaning Description Valid range | Unit | Default
The function block is executed
Execute BOOL Execute when this parameter changes (?r(\3 %Z?;) - -
from OFF (FALSE) to ON tvoe
(TRUE). yp
Receive Depends
tLength UINT data Byte length of receive buffer data | on data - -
length type
*|n-out
Name Data type Meaning Description Valid range | Unit | Default
. Receive data storage Depends
Recv_Data | STRING[256] Receive data result on data - -
type
Depends
Recv_Buff | STRING[256] Receive buffer | Receive buffer data on data - -
type
Error code:
Error Destination device
ErrorlD WORD information error=16#1000) i i
FCS error=16#2000
Error code: FCS
ErrorlDEx | DWORD Error receive - -] -
information result/destination
device error code
*Output
Name Data type | Meaning Description Valid range | Unit | Default
Busy BOOL Executing Not used]]]
Done BOOL No(;mal (Not used in this project.)
en
Error BOOL Error end | Error end - - -
eInternal variable table
Name Data type Meaning Description Valid range | Unit | Default
Receive_ | STRINGI5] Receive FCS | FCS receive result of the Depends
Check receive data on data - -
type
Calc_Che | STRING[5] Receive FCS | FCS calculation result of Depends
ck calculation the receive data on data - -
value type

56

*Program

9. Project File

Mame: MNJ-series general-purpose Ethernet communications
receive processing function block
Function: Receive data storage and receive processing result determination
Applicable device:
Manufacturer: OMRON Corporation

Device : Code Reader
Series/Maodel: FQ-CR series
Remarks:

Version information: December 14, 2011 New release
(CYCopyright OMRON Ceorporation 2011 All Rights Reserved.

(* Variable description: Argument, Return value

Argument: Name Data type Description
-Input: Execute BOOL Execution flag
tLength UINT Receive data length
-Output: Busy BOOL Mot used
Done BOOL Mot used
Error BOOL Errar flag

-In-out: Recv_Data STRING[256] Receive data storage area
Recv Buff STRING[256] Receive buffer
ErroriD WORD Error code
ErrorlDEx DWORD FCS receive result
destination device error code
Return value: None

*}
IF Execute THEN
(* Detection of CheckSUM: Not required *)

(* Storing receive buffer data in the receive data storage area *)
Recv_Data:= Recv Buff;

(*Detecting the destination device error *)
{* Normal: Two characters from the header must not be 'ER'. ™)
IF FIND{LEFT{Recv_Buff.2),'ER") <= UINT#1 THEN
Error:= FALSE; /[Error flag reset
ErrorlD:= WORD#16#0000; //f Error code clear
ErrorIDEx:= DWORD#16#00000000; // Destination device error code clear

{* Error: When the header contains 'ER'. ®)

ELSE
Error:= TRUE; // Error flag set
ErrorlD:= WORD#16#1000; // Error code set

(* Storing the destination device error code *}
(* Converting 4th and 5th characters from the left of the string
from ASCII code to Hexadecimal. ¥)
ErrarlDEx:= STRING_TO_DWORD (LEFT{Recv_Buff.2)):
END _IF;

END_IF;
RETURMN:

57

9. Project File

I 9.6. Timing Charts

The timing charts of the ST program are shown below.

Execute & setting

Input_Start _l

1
Local_Status. |
BoolData[0](Busy)

-

1
Send data —;

j 1BH*xxx

!
Control data :;)(Tem
|

[}
Common parameter j 165
[}

F~

H 1
Receive data j(1670000

]
Output_sktCmds .
ErroriD j(16#0000

Local_Status.
BoolData[1](Done) !
or Local_Status. /
BoolData[2](Error) ' :

If Input_Start changes from True (ON) to False (OFF) during execution, a normal end or an
error end is output for one period after the processing is completed.

(1) Normal status (2) Error status
Input_Start f f
/ /
Local_Status.
BoolData[0](Busy) v \
Local_Status. [] Output for 1 period !
BoolData[1](Done) . 1
- - ’I— —:‘. -
Local_Status. !
BoolData[1](Error) X Py —-
| . 1
Output for 1 period ! 1
Output_SktCmdErrorID v P P

16#0000 _(
OUtpUt_M ErrCode 16#0000 ﬁe#****x

58

eOpen processing
Input_Start ~ r-----------------------

SktTCPConnect
_instance.Execute

|

Topen_TON
_instance.Q

SktTCPConnect
_instance.Busy

~

|

[,

[}
|
(4
SK{TCPConnect 10 47----3 A
]

_instance.Busy - ;-- Lo
]

SktTCPConnect
_instance.Done

SktTCPConnect
_instance.Error

SktTCPConnect
_instance.ErrorlD j(16#0000

Local_ErrCode.b[2]
Open processing error

Output_sktCmds

ErroriD 16#0000

SktTCPSend PSP
_instance.BUSY - - - - - oo oo !

(Normal end)

Input_Start Fommsssmsmsssmmm-------

SktTCPConnect
_instance.Execute
]
Topen_TON
_instance.Q L
]
]

—1_

SktTCPConnect
_instance.Busy

r

]

]

T

:

SktTCPConnect | :
_instance.Busy Stopped - - .: ________ :. ________

: 1

- !

1

1

1

SktTCPConnect

]

I

]

!

]

I

H]

_instance —+————— . oo

v

SktTCPConnect : ! T
_instance.Error —t—--- [

I

]
SktTCPConnect L
]
_instance.ErrorID _;(16#0000)
[}

Local_ErrCode.b[10]
Timeout r

16#0000 16#0400

Output_ErrCode

SktClose Yo
_instance.BUSY - - --coooo- |

(Timeout)

9. Project File

Input_Start R ittt

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect ,
_instance.Busy _,\/—(V‘_n—

SktTCPConnect
_instance.Busy -

SktTCPConnect
_instance.Done

SktTCPConnect
_instance.Error

:L4

SktTCPConnect —i T
_instance.ErrorlD _MES#OOOOX 16#*:

*k

Local_ErrCode.b[2]

Open processing error

Output_SktCmds

ErrorlD 16#0000 X1

1 6# x>

SktClose | S

_instance.Busy - ___________)

(Error end)

59

9. Project File

eSend processing

SktTCPConnect

. 1
_instance.Done -1

SktTCPSend
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Done

SktTCPSend
_instance.Error

SktTCPSend
_instance.ErrorlD

Local_ErrCode.b[8]
Timeout

Output_sktCmds
ErrorlD

SktTCPRcv
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPSend
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Error

SktTCPSend
_instance.ErrorlD

Local_ErrCode.b[8]
Timeout

Output_ErrCode

SktClose
_instance.Busy

r=a
1

r=y

SktTCPConnect

_instance.Done -1 +
]]

SktTCPSend |
_instance.Execute _]—]—

' Tfs_TON

_instance.Q
S
[}

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Done

|

‘.____

SktTCPSend
_instance.Error

SktTCPSend
_instance.ErrorID

(o7 kel

|
|
]
]
|
|
|
|
I {

S(Le#oooo)(

16#0000

Local_ErrCode.b[8]
Timeout

I R O B

Output_sktCmds

16#0000

16#0000 ErrorlD

X : T
[}

(Normal end)

__________ SktClose
! _instance.Busy

(Error end)

(]
1

-t
!

—_—,— oo
|
' : Y'I
I 1 [}
_ reee--- J Loooo
! |
. ¢ '
~_ X16#0000
|
| A —
v
16#0000) 16#0100
)
v

(Timeout)

9. Project File

eReceive processing

SktTCPSend

SKETCPSend +- _instance.Done - ____________

. 1
_instance.Done -t g oo SktGetTCPStatus
! _instance.DatRcvFla —\—

SktGetTCPStatus | N

_instance.DatRcvFla) ‘ SktTCPRcv
| _instance.Execute I_l Ii

SKITCPRev \'4
h 1

_instance.Execute
SK{TCPRcv Receive waiting time
_instance.Busy

Tr_TON_instance.Q

Tfr_TON_instance.Q
Tr_TON_instance.Q

]
1
]
; 1
SktTCPRcv SktTCPRcv !
_instance.Busy _]‘\I (VI_, |_ _instance.Busy - - - _______ R
' N !
SKITCPRey MM ----- M _ SKITCPROV —— e
_instance.Busy - - Hi D e L —instance.RevDat L
SKITCPReY g ' SKTCPRev i—l
instance.Done
_instance.RcvDat 16:#0000)(lp#**** X16#**** -
SktTCPRcv ! SktTCPRcv

_instance.Error

_instance.Error

[}
1
[}
T
1
v SktTCPRcv

1
]
]
1
. X
1
SKITCPRcv —X, instance.ErrorlD 16#0000 X 16#0000

_instance.ErrorlD :X 1640000 - !
Local_ErrCode.b[9] |
Local_ErrCode.b[9] Timeout :
Timeout Outout skicmd '
D 16#0000 |
Output_sktCmds 1670000 :

ErrorlD SktClose |
_instance.BUSYy - - - - oo ocoooo :

(Repeat) (Normal end)

SktTCPSend -,
_instance.Done i po-ooooooooo_______.
]
SktGetTCPStatus _'—\—
_instance.DatRcvFla
1
]

SktTCPRcv
_instance.Execute _,—‘7
Tfr_TON_instance.Q
Tr_TON_instance.Q

SktTCPRcv
_instance.Busy ~ .
v, \
SKITCPRev [t r----~ 2

. oy
_instance.Busy - -4- -t o
]

SktTCPRcv
_instance.RcvDat

16#0000

_instance.Done

—dmmmm|=q--F-=-

SktTCPRcv
_instance.Error

]
SKITCPRcv —
_instance.ErrorlD 3(16#0000)(

]
T
i
]
SktTCPRcv :
T
1
]
]

T

I

Local_ErrCode.b[9]
Timeout

Output_sktCmds

ErrorlD 16#0000 9(164>

|
SktClose | 2,
_instance.BuUSYy - - - - - - - __ :

(Error end)

61

SktTCPSend o
_instance.Done -+ o oo ooo oo

]

SktGetTCPStatus !
_instance. _I—‘—

|
SKITCPRev |

_instance.Execute

Tfr_TON
_instance.Q

]

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.Busy Stopped

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Done

|
SK{TCPRcv ! ! Y-
_instance.Error

SktTCPRcv
_instance.ErrorlD

Local_ErrCode.b[9]
Timeout

Output_sktCmds
ErroriD

SkiClose | A
_instance.Busy

(Timeout: Receive error)

SktTCPSend
_instance.Done

D

SktGetTCPStatus
_instance.DatRcvFla

SktTCPRcv
_instance.Execute

Tfr_TON_instance.Q
Tr_TON_instance.Q

Receive waiting time

4-+---

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.RcvDat

1 EH**F*

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorID

]
:

16#0000 16#0000

Local_ErrCode.b[12]
Destination device error

[}

L}

|
1640000 1 16#*

Output_MErrCode

SktClose Y-
_instance.Busy

(Destination device error)

SktTCPSend
_instance.Done

SktGetTCPStatus
instance.

SktTCPRcv
_instance.Execute

Tfr_TON_instance.Q

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.Busy Stopped

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorlD

Local_ErrCode.b[9]
Timeout

Output_sktCmds
ErrorlD

SktClose
_instance.Busy

9. Project File

B
]
v
1 r |
|—|I —
]
I [
' |
]]
]
! T
| !]
| !]
P N |
1 ! |
1 :]
| 16#0000 | J
! : :
1 !]
1 !]
S W R
1 ! |
| ! -
1 ! [
I W 4 Lo
\ [
\ |
Xi6#0000
]
]

(Timeout: No receive data)

62

eClose processing

SktTCPRcv
_instance.Done, etc. -

.-
1
|

SkiClose T
_instance.Execute _,—li

SktTCPRcv - '

_instance.Done, etc. -

9. Project File

frm == mmmmmmmmmmmeee oo

Tclose_TON 1 : h
_instance.Q : t SktClose _,—\—
SktClose : _instance.Execute
;]
i Y
Instance. Busy RN Tclose_ TON |
SkiClose R T _instance.Q X
_instance.Busy Stopped __ 1* f_l_&_ _____________ !
SktClose 1 T—l . SktClose m
_instance.Done " _instance.Busy 3 I
[N
SktClose | SkiClose f4.----1 M
1

_instance.Error

SktClose—Y,
_instance.ErrorID: X_16#0000

_instance.Busy Stopped - - _:_ H

SktClose

_instance.Done

]
|
SktGetTCPStatus 5
_instance.Execute vi SkiClose |
SkiGetTCPStatus ,'T_ ! instance Error ! M
_instance.Busy \ - ' X
A\ 4 SktClose L
SktGetTCPStatus . 16#0000(! 16#****
_instance.Done I _instance.ErrorlD j((XI
-1 1
SkiGetTCPStatus “ Local_ErrCode.b([3] '
_instance. TepSta =XXXXXX X _:CLOSED Close processing error :
e ETCre) i =
; Timeout ;
Local_ErrCode.b[11] 1 1
. | |
Timeout : Output_skETcIolsS T6#0000) 167
Output_skTclose L rror
ErrorlD 16#0000 | #
v Output_Stat.b[0] ----------+ \
Output_Stat.b[0] ---=--=---=----+ (Busy) o
(Busy) e

(Normal end)

(Error end)

SKktTCPRcv ¢ -y
_instance.Done, efC. 1 oo occccmoccocoamoao.
Sl e e |

FB_Rcv.Done, etc.

SktClose

SktClose _'—\— _instance.Execute
_instance.Execute '
| Tclose_TON ' l—l
Tclose_TON | n _instance.Q —I |
B | 1
—instance.Q — ; SkiClose | !
.) l: ;|
SktClose Lo : _instance.Busy ! 3 N
. ’
_instance.Busy _| ' R SkiClose 1 r--- b
! ' . _instance.BuUSY - 4-4 ool __
SktClose ! \) 1 '
_instance.Busy Stopped - _ 4. ______ | R, Looooo SkiClose | 1
! ' ' _instance.Done —1 :
SkiClose | ' I ' i
_instance.Done _n—:, ________ :_ _____) SktClose \ |_|
:) v _instance.Error :
SkiClose : e SkiClose —! |
i]
_instance.Error |—:’ [S _instance.ErrorlD ;(16#000p
|]
SkiClose i SkiGetTCPStatus '
_instance.ErrorlD j(1640000 instance. TepSta __XXXXXX X # CLOSED
] - Y [
1 1
LocaI_Err(_:ode.b[S] ' Local_ErrCode.b[3] I—l
Close processing error : Close processing error |
' 1
Local_ErrCode.b[11] '—l Local_ErrCode.b[11] '
Timeout | Timeout L
1 1
Err | Output_skTclose
Output_ErCode 1670000 1640800 Errorip _16#0000 | 16#FFFF
! v
Output_Stat.b[0] ----------
Output_Stat.b[0] ----------F v (Bus[yi s

(Busy) L

(Timeout)

(Status error)

I 9.7. Error Process

9. Project File

9.7.1. Error Code List

The error codes for this ST program are shown below.

o TCP connection status error [Output_EtnTcpSta]
If the TCP connection status does not enter the normal status (_ CLOSED) within a time

after the close processing, a TCP connection status code is set in the Output_EtnTcpSta

variable. (If the close processing ends in error, check this also.)

Error code enumerator
[eCONNECTION_STATE]

Description

CLOSED Connection closed. (Normal status)
LISTEN Waiting for connection
SYN SENT SYN sent in active status.

_SYN RECEIVED

SYN sent and received.

_ESTABLISHED

Already established.

CLOSE WAIT FIN received and waiting for completion.
_FlN WAIT1 Completed and FIN sent.
_CLOSING Completed and exchanged FIN. Awaiting ACK.
_LAST ACK FIN received and completed. Awaiting ACK.
_FIN WAIT2 Completed and ACK received. Awaiting FIN.
_TIME WAIT After closing, pauses twice the maximum segment life (2MSL).

64

9. Project File

eError code [Output_SktCmdsErrorID], [Output_SkTcloseErroriD]
If an error occurs in the open processing, send processing or receive processing, the error
code is stored in the Output_SktCmdsErrorID variable and then the close processing is

executed.

If an error occurs in the close processing, the error code is stored in the
Output_SkTcloseErrorID variable and the processing ends. The main error codes are

shown below.

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend

instruction), R: Receive processing (SktTCPRcyv instruction), C: Close processing (SktClose

instruction).

Target processing is indicated by o.

Error code

©)

S

R

C

Description

16#0000

o

o

o

o

Normal end

16#0400

o

o

o

An input parameter for an instruction exceeded the valid range for
an input variable.

16#0407

The results of instruction processing exceeded the data area range
of the output parameter.

16#2000

An instruction was executed when there was a setting error in the
local IP address.

16#2002

Address resolution failed for a destination node with the domain
name that was specified in the instruction.

16#2003

The status was not suitable for execution of the instruction.
*SktTCPConnect Instruction
The TCP port that is specified with the SrcTcpPort input variable
is already open.
The destination node that is specified with DstAdr input variable
does not exist.
The destination node that is specified with DstAdr and
DstTcpPort input variables are not waiting for a connection.
*SktTCPRcv Instruction
The specified socket is receiving data.
The specified socket is not connected.
*SktTCPSend Instruction
The specified socket is sending data.
The specified socket is not connected.

16#2006

A timeout occurred for a socket service instruction.

16#2007

The handle that is specified for the socket service instruction is not
correct.

16#2008

The maximum resources that you can use for socket service
instructions at the same time was exceeded.

164#FFFF

Processing ends without completing the executing of an
instruction.

’% Additional Information

For details, refer to Appendix A-1 Error Codes Related to Instructions, A-2 Error Code
Descriptions and A-3 Error Code Details in the NJ-series Instructions Reference Manual (Cat.

No. W502).

’g Additional Information

For details on socket service errors and countermeasures, refer to 9-7 Precautions in Using
Socket Services of Chapter 9 Socket Service in the NJ-series CPU Unit Built-in EtherNet/IP
Port User's Manual (Cat. No. W506).

65

9. Project File

eError flag (Error end/timeout) [Output_ErrCode]
If an error end or a timeout occurs for the open processing, send processing, receive
processing or close processing, the error flag will be set in the Output_ErrCode variable
and the error code will be stored in the Output_SktCmdsErrorID variable or the
Output_SkTcloseErrorID variable.
(If an error end or a timeout occurs for the close processing, check also the
Output_EtnTcpSta variable for the TCP connection status error.)

(O: Open processing (SkKtTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing (SktClose
instruction). Target processing is indicated by o.

ErrorFlag | O | S | R | C | Description
16#0000 o | o | o] o | Normalend
16#0001 o Send processing ended in error.
16#0002 o Receive processing ended in error.
16#0004 o Open processing ended in error.
16#0008 o | Close processing ended in error.
16#0100 o Send processing did not end in time.
16#0200 o Receive processing did not end in time.
(Including when an arrival of the response cannot be checked.)
16#0400 o Open processing did not end in time.
16#0800 o | Close processing did not end in time.
16#0010 Processing number error
16#0020 Send/receive required/not required detection error
16#1000 Destination device error
16#2000 Destination device FCS (checksum) error
16#8000 o | o | o | o | Erroroccurs

*The error flags detected for each processing are added and the addition result is stored in
the error flag.

eDestination device error code
If there is an error in the data received from the destination device, the error code is stored
in the Output_MErrCode variable.

Error code Description
16#00000000 Normal end

“ER” The response from the destination device is illegal
16#FFFFFFFF | Not executed

’g Additional Information
For details and corrective actions for the destination device errors, refer to Command Format
under Controlling the Sensor from an External Device (Procedure for No-protocol
Command/Response Communications) in 8-2 Outputting/Controlling with Ethernet of the
user's manual for each Code Reader.

66

9. Project File

9.7.2. TCP Connection Status Errors and Corrective Actions
This section describes the situation in which the TCP connection status errors occur and
explains the corrective actions.

e Affects of the TCP connection errors

After a TCP connection status error occurs, if no corrective action is taken or the error is
not noticed and this project file is executed again, then the destination node specified with
destination address input variable (DstAdr) and destination TCP port number input variable
(DstTcpPort) may not be waiting for a connection. Hereinafter this error is referred to as an
open processing error. This may be affected by the TCP connection status error that
occurred when the previous communication processing ended. (For error details, refer to
9.7.1 Error Code List.)

e Situation in which the TCP connection status error occurs
Both a TCP connection status error after the close processing and an open processing
error that occurs when the next communications processing is performed can be caused
by the fact that the close processing is not completed at the destination device. Although,
all processing (until the close processing) of the project file ended in the Controller, the
close processing completion notification is not received from the destination device (It is
not confirmed that the close processing is completed at the destination device).

eCorrective action
The close processing may not be completed at the destination device. Check if the
communications port of the destination device is closed. If not closed or not possible to
check, reset the communications port of the destination device. The communications port
of the destination device can be reset by executing restart operation from the software or
by cycling the power supply. For details, refer to the manual for each destination device.

IE' Precautions for Correct Use

Make sure the destination device is disconnected from other device before resetting the
communications port of the destination device.

eState of the Controller at a TCP connection status error
When a TCP connection status error occurs, the processing of this project file is completed.
However, the resend/time monitoring function of the Controller (TCP/IP function), which is
described in 9.3.2. Time Monitoring Function, may be operating. This resend processing
stops in the following cases. Therefore, you do not have to stop it.
*When the open processing request is made again by restarting the project file
*When a communications problem such as cable disconnection is cleared during resend
processing
*When the resend processing is completed with the TCP/IP time monitoring (timeout)
function

*When the Controller is restarted or the power supply is turned OFF
67

10. Revision History

10. Revision History

Revision Date of revision Revision reason and revision page
code
01 Mar. 26, 2013 First edition

68

69

OMRON Corporation Industrial Automation Company
Tokyo, JAPAN
Contact: www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69-2132 JD Hoofddorp One Commerce Drive Schaumburg,

The Netherlands IL 60173-5302 U.S.A.

Tel: (31)2356-81-300/Fax: (31)2356-81-388 Tel: (1) 847-843-7900/Fax: (1) 847-843-7787
OMRON ASIA PACIFIC PTE. LTD. OMRON (CHINA) CO., LTD.

No. 438A Alexandra Road # 05-05/08 (Lobby 2), Room 2211, Bank of China Tower,

Alexandra Technopark, 200 Yin Cheng Zhong Road,

Singapore 119967 PuDong New Area, Shanghai, 200120, China

Tel: (65) 6835-3011/Fax: (65) 6835-2711 Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2013 All Rights Reserved.

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. P532-E1-01

0911(-)

	1. Related Manuals
	2. Terms and Definition
	3. Remarks
	4. Overview
	5. Applicable Devices and Support Software
	5.1. Applicable Devices
	5.2. Device Configuration

	6. Ethernet Settings
	6.1. Ethernet Communications Settings
	6.1.1. Communications Settings between Personal Computer and Code Reader
	6.1.2. Communications Settings between the Controller and Code Reader

	6.2. Example of Checking Connection

	7. Connection Procedure
	7.1. Work Flow
	7.2. Setting Up the Code Reader
	7.2.1. Parameter Setting

	7.3. Setting Up the Controller
	7.3.1. Starting the Sysmac Studio and Importing the Project File
	7.3.2. Checking the Parameters and Building
	7.3.3. Going Online and Transferring the Project Data

	7.4. Connection Status Check
	7.4.1. Executing the Project File and Checking the Receive Data

	8. Initialization Method
	8.1. Controller
	8.2. Code Reader

	9. Project File
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications with Socket Service Instructions

	9.2. Destination Device Command
	9.2.1. Overview of the Command
	9.2.2. Command Settings

	9.3. Error Detection Processing
	9.3.1. Error Detection in the Project File
	9.3.2. Time Monitoring Function

	9.4. Variables
	9.4.1. List of Variables
	9.4.2. List of Variables Used in Function Block/Function
	9.4.3. List of System Variables

	9.5. Program (ST language)
	9.5.1. Functional Components of ST Program
	9.5.2. Detailed Description of Main Program
	9.5.3. Detailed Description of Function Blocks

	9.6. Timing Charts
	9.7. Error Process
	9.7.1. Error Code List
	9.7.2. TCP Connection Status Errors and Corrective Actions

	10. Revision History

