
www.allitebooks.com

http://www.allitebooks.org

L

COMPUTER	GAME	DEVELOPMENT	/	DESIGN

IGHTBOWN

Designing	the	User	Experience	of	Game

Development	Tools

“David	is	guided	by	his	belief	that	he	can	contribute	to	raising	the	bar	for	all	of	us:	that
we	can	all	speak	the	same	language,	understand	the	same	concepts,	and	use	the	same
techniques,	so	that	we	can	all	make	better	games.	What	you	are	reading	now	is	the	result
of	David	Lightbown’s	first	big	mission	on	that	very	long	quest.”

DESI

www.allitebooks.com

http://www.allitebooks.org

Designing

—Mike	Acton,	Engine	Director,	Insomniac	Games

“User	experience	is	the	preeminent	design	challenge	of	our	time	and	David	has	GNIN

captured	and	refined	these	concepts	to	help	us	produce	beautifully	designed	workflows
that	are	a	pleasure	to	use.	His	acclaimed	lectures,	now	demonstrated	and	elaborated	in
this	book,	are	brilliant	and	very	appropriate	to	our	industry.”

G	THE	U

the	User

—Jason	Parks,	Owner,	Continuity	AI;	Former	Technical	Artist	for	SCEA,	THQ,	and
Volition

SER

“David	Lightbown’s	book	shines	a	light	on	a	dark	corner	of	the	games,	but	it’s	a	corner	on
the	path	we	take	every	day	in	game	development.	All	developers	owe	EX

it	to	their	future	selves	to	learn	to	apply	the	process	presented	in	this	book	to	PER

IEN

Experience

their	tools.”

—Corey	Johnson,	Unity	Technologies

C

“If	you	build	games	tools	and	are	not	familiar	with	user-centered	design,	then	E	O

you	should	read	this	book.	…	provides	a	comprehensive	introduction	to	F

user-centered	design	with	easy-to-understand	explanations	and	plenty	of	GAME

of	Game

real-world	examples	that	demonstrate	the	principles	and	best	practices	you	need	to	know
to	start	building	better	tools	today.”

D

—Tom	Hoferek,	Principal	User	Experience	Designer,	Autodesk	EVEL

Designing	the	User	Experience	of	Game	Development	Tools	explains

OPMEN

Development

how	to	improve	the	user	experience	of	game	development	tools.	The	first	part	of	the	book
details	the	logic	behind	why	the	user	experience	of	game	tools	must	be	improved.	The
second	part	introduces	the	concept	of	user-centered	design,	T

a	process	that	revolves	around	understanding	people’s	goals,	watching	them	TO

www.allitebooks.com

http://www.allitebooks.org

work,	learning	the	context	in	which	they	work,	and	understanding	how

OLS

Tools

they	think.

Ideal	for	anyone	who	makes,	uses,	or	benefits	from	game	development	tools,	the	book
presents	complex	concepts	in	a	manner	that	is	accessible	to	those	new	to	user	experience
design.

K23310

ISBN:	978-1-4822-4019-1

90000

D	A	V	I	D	L	I	G	H	T	B	O	W	N

9	781482	240191

Designing

the	User

Experience

of	Game

Development

Tools

Designing

the	User

Experience

of	Game

Development

Tools

D	A	V	I	D	L	I	G	H	T	B	O	W	N

Boca	Raton	London	New	York

CRC	Press	is	an	imprint	of	the

Taylor	&	Francis	Group,	an	informa	business

CRC	Press

Taylor	&	Francis	Group

6000	Broken	Sound	Parkway	NW,	Suite	300

Boca	Raton,	FL	33487-2742

©	2015	by	Taylor	&	Francis	Group,	LLC

www.allitebooks.com

http://www.allitebooks.org

CRC	Press	is	an	imprint	of	Taylor	&	Francis	Group,	an	Informa	business	No	claim	to
original	U.S.	Government	works

Version	Date:	20140919

International	Standard	Book	Number-13:	978-1-4822-4021-4	(eBook	-	PDF)

This	book	contains	information	obtained	from	authentic	and	highly	regarded	sources.
Reasonable	efforts	have	been	made	to	publish	reliable	data	and	information,	but	the	author
and	publisher	cannot	assume	responsibility	for	the	validity	of	all	materials	or	the
consequences	of	their	use.	The	authors	and	publishers	have	attempted	to	trace	the
copyright	holders	of	all	material	reproduced	in	this	publication	and	apologize	to	copyright
holders	if	permission	to	publish	in	this	form	has	not	been	obtained.	If	any	copyright
material	has	not	been	acknowledged	please	write	and	let	us	know	so	we	may	rectify	in	any
future	reprint.

Except	as	permitted	under	U.S.	Copyright	Law,	no	part	of	this	book	may	be	reprinted,
reproduced,	transmit-ted,	or	utilized	in	any	form	by	any	electronic,	mechanical,	or	other
means,	now	known	or	hereafter	invented,	including	photocopying,	microfilming,	and
recording,	or	in	any	information	storage	or	retrieval	system,	without	written	permission
from	the	publishers.

For	permission	to	photocopy	or	use	material	electronically	from	this	work,	please	access
www.copyright.

com	(http://www.copyright.com/)	or	contact	the	Copyright	Clearance	Center,	Inc.	(CCC),
222	Rosewood	Drive,	Danvers,	MA	01923,	978-750-8400.	CCC	is	a	not-for-profit
organization	that	provides	licenses	and	registration	for	a	variety	of	users.	For
organizations	that	have	been	granted	a	photocopy	license	by	the	CCC,	a	separate	system
of	payment	has	been	arranged.

Trademark	Notice:	Product	or	corporate	names	may	be	trademarks	or	registered
trademarks,	and	are	used	only	for	identification	and	explanation	without	intent	to	infringe.

Visit	the	Taylor	&	Francis	Web	site	at

http://www.taylorandfrancis.com

and	the	CRC	Press	Web	site	at

http://www.crcpress.com

Dedication

When	I	was	young,	I	tried	to	convince	my	parents	to	buy	a	video	game

console.	Instead,	they	bought	a	computer.

As	a	result,	I	played	video	games	at	my	friends’	houses	and	in	arcades.

On	days	when	I	wanted	to	play	games	at	home,	my	only	option	was	to

try	re-	creating	the	games	on	our	computer.	To	my	surprise,	I	found	that	I	enjoyed	creating
games	as	much	as	I	did	playing	them.	If	my	parents

had	bought	a	console,	I	might	never	have	discovered	my	passion	for

www.allitebooks.com

http://www.allitebooks.org

game	development.

My	parents	sacrificed	their	time	and	energy	(and	at	times,	their	sanity)	to	teach	me	focus,
patience,	and	the	rewards	that	come	from	challenging

yourself.	Oh,	the	fact	that	they	sent	me	to	a	great	school	didn’t	hurt	either.

They	provided	me	with	the	tools—intellectual	as	well	as	electronic—so

that	I	could	have	one	of	the	greatest	gifts	anyone	could	ever	ask	for:	a	job	that	I	look
forward	to	every	day,	where	I	have	the	privilege	of	making	tools	to	help	people	turn	their
ideas	into	reality.

Thanks,	Mom	and	Dad.	I	love	you!

Contents

Praise	for	Designing	the	User	Experience	of	Game

Development	Tools,	xi

Foreword,	xiii

Introduction,	xvii

THE	BIG	GREEN	BUTTON	xvii

MY	STORY	xviii

WHO	SHOULD	READ	THIS	BOOK?	xx

COMPANION	WEBSITE	AND	TWITTER	ACCOUNT	xxii

BEFORE	WE	BEGIN	…	xxii

About	the	Author,	xxv

Chapter	1	◾	Welcome	to	Designing	the	User	Experience

of	Game	Development	Tools

1

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?	1

WHAT	IS	THIS	BOOK	ABOUT?	1

DEFINING	USER	EXPERIENCE	2

THE	VALUE	OF	IMPROVING	THE	USER	EXPERIENCE	OF

OUR	TOOLS	7

PARALLELS	BETWEEN	USER	EXPERIENCE	AND	GAME

DESIGN	10

HOW	DO	PEOPLE	BENEFIT	FROM	AN	IMPROVED	USER

EXPERIENCE?	12

FINDING	THE	RIGHT	BALANCE	13

www.allitebooks.com

http://www.allitebooks.org

WRAPPING	UP	14

vii

viii	◾	Contents
Chapter	2	◾	The	User-	Centered	Design	Process
15

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?	15

WHAT	IS	THE	USER-	CENTERED	DESIGN	PROCESS?	15

THE	PHASES	OF	THE	USER-	CENTERED	DESIGN	PROCESS	16

THE	POWER	OF	PRE-	VISUALIZATION	19

GETTING	TO	A	BETTER	USER	EXPERIENCE	FASTER	22

INTEGRATING	THE	USER-	CENTERED	DESIGN	PROCESS

INTO	AGILE	24

WHO	HAS	THE	TIME	TO	DO	ALL	OF	THIS?	25

WRAPPING	UP	26

Chapter	3	◾	What	Does	It	Mean	to	Be	“User-	Centered”?

27

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?	27

START	WITH	THE	USERS	27

FOCUS	ON	THE	RIGHT	USERS	30

FEATURES	VERSUS	GOALS	32

DO	ONE	THING	REALLY	WELL	34

CHOOSE	THE	RIGHT	FEATURES	36

WRAPPING	UP	38

Chapter	4	◾	Analysis	39
WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?	39

THE	IMPORTANCE	OF	WATCHING	USERS	WORK	39

INTRODUCTION	TO	HUMAN–	COMPUTER	INTERACTION	43

UNDERSTANDING	THE	MENTAL	MODEL	54

INTERVIEW	STAKEHOLDERS	57

PERFORM	CONTEXTUAL	ANALYSES	58

CREATE	TASK	FLOWS	61

DISCOVER	THE	USERS’	MENTAL	MODEL	62

www.allitebooks.com

http://www.allitebooks.org

ESTABLISH	MEASUREMENTS	65

ADVANCED	TECHNIQUES	67

WRAPPING	UP	69

Contents	◾	ix
Chapter	5	◾	Design	71
WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?	71

HOW	THE	BRAIN	AND	THE	EYES	WORK	TOGETHER	72

VISUAL	LANGUAGE	73

INTERACTION	PATTERNS	77

HIERARCHY	80

CONSTRAINTS	83

NATURAL	MAPPING	85

REPRESENTATION	87

FEEDBACK	91

FEED-	FORWARD	95

GROUPING	97

CHUNKING	102

EXCISE	104

PROGRESSIVE	DISCLOSURE	112

WRAPPING	UP	116

Chapter	6	◾	Evaluation	117
WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?	117

HOW	DO	WE	EVALUATE	THE	DESIGN?

117

CHOOSING	BETWEEN	CODE	OR	PRE-	VISUALIZATION

117

PRE-	VISUALIZE	THE	INTERFACE

119

PERFORM	A	HEURISTIC	EVALUATION

121

DO	USER	TESTS

126

www.allitebooks.com

http://www.allitebooks.org

WRAPPING	UP	130

Chapter	7	◾	Back	to	Analysis
131

DÉJÀ	VU	131

COMPARING	MEASUREMENTS	132

Chapter	8	◾	Real-	World	User-	Centered	Design

135

INTRODUCTION	135

THE	PROCESS	IN	ACTION

136

CALCULATING	THE	RETURN	ON	INVESTMENT	144

x	◾	Contents
CONCLUSION,	147

SUMMARY	147

CLOSING	WORD	148

THANKS,	151

WORKS	CITED	&	RECOMMENDED	READING,	153

TRADEMARKS,	155

Praise	for	Designing	the

User	Experience	of	Game

Development	Tools

“As	a	technical	artist,	I’ve	been	espousing	the	benefits	of	tools	for	artists	and	production
pipelines	for	more	than	a	decade.	But	honestly,	they’ve	been

bare-	bones,	just-	get-	the-	job-	done	kind	of	quality.	It’s	about	time	we	attach	some
professionalism	to	the	design	of	our	tools	as	well.	User	experience	is	the	preeminent
design	challenge	of	our	time	and	David	has	captured	and

refined	these	concepts	to	help	us	produce	beautifully	designed	workflows	that	are	a
pleasure	to	use.	His	acclaimed	lectures,	now	demonstrated	and	elaborated	in	this	book,	are
brilliant	and	very	appropriate	to	our	industry.

My	toolsets	going	forward	are	going	to	incorporate	as	many	of	these	con-

cepts	as	I	can	squeeze	into	them.”

—Jason	Parks

Owner,	Continuity	AI	(former	Technical	Artist

for	SCEA,	THQ,	and	Volition)

www.allitebooks.com

http://www.allitebooks.org

“Lightbown	tackles	some	complicated	cognitive	and	scientific	concepts,	but	does	so	in	a
completely	conversational	manner	that	is	not	only	approach-able,	but	fun	and	interesting
to	read.	His	examples	are	worth	sharing,	and	putting	them	into	action	has	definitely	made
me	a	better	designer.”

—Jim	Brown

Epic	Games

xi

xii	◾	Praise	for	Designing	the	User	Experience	of	Game	Development	Tools
“David	Lightbown’s	book	shines	a	light	on	a	dark	corner	of	the	games,	but	it’s	a	corner	on
the	path	we	take	every	day	in	game	development.	All	developers	owe	it	to	their	future
selves	to	learn	to	apply	the	process	presented	in	this	book	to	their	tools.”

—Corey	Johnson

Unity	Technologies

“If	you	build	games	tools	and	are	not	familiar	with	User-	Centered	Design,	then	you
should	read	this	book.	David	explains	why	the	user	experience

of	the	tools	you	make	is	important	to	your	users	and	how	it	has	a	positive	impact	on	your
bottom	line.	He	provides	a	comprehensive	introduction	to

User-	Centered	Design	with	easy-	to-	understand	explanations	and	plenty

of	real-	world	examples	that	demonstrate	the	principles	and	best	practices	you	need	to
know	to	start	building	better	tools	today.”

—Tom	Hoferek

Principal	User	Experience	Designer,	Autodesk

“Through	honest	insight	and	real-	world	pragmatism,	David	has	provided

a	wonderful	entry	point	to	the	practice	of	User-	Centered	Design	while

highlighting	its	practical	application	to	game	development	tools.	David

not	only	delivers	the	concepts	and	techniques	that	can	be	used	to	improve	the	user
experience	of	game	development	tools,	he	also	outlines—in	clear	and	measurable	terms—
the	return	on	investment	for	doing	so.	A	must

read	for	anyone	who’s	serious	about	improving	the	efficiency,	creativity,	and	productivity
of	the	content	creators	on	their	team.”

—Liam	Grieg

Senior	UX	Designer,	Atlassian

“All	too	often,	in-	house	software	tools	are	neglected	children,	with	baffling	interfaces	and
steep	learning	curves,	which	translates	into	countless	hours	of	lost	productivity.	In	this
easy-	to-	read,	comprehensive	guide,	David	Lightbown	applies	classic	principles	of	User-
Centered	Design	to	the	tool-building	process,	so	that	developers	can	help	users	unlock	the
power	of

www.allitebooks.com

http://www.allitebooks.org

their	applications,	and	help	stakeholders	manage	and	measure	their	suc-

cess.	A	must-	read,	even	if	you’re	not	in	the	games	industry.”

—AJ	Kandy

Co-	Founder/	Director	of	Design,	Peterson/	Kandy

Foreword

David	and	I	first	met	just	after	the	Game	Developers	Conference	in	2012.

The	interface	designer	on	my	team	had	just	given	a	presentation	on	our

experience	and	approach	to	usability	for	our	internal	development	tools.

I	think	what	sparked	that	first	conversation	was	David’s	initial	surprise	that	there	was
someone	else,	anyone	else,	out	there	in	our	space	that	really	did	care	about	these	issues.
Game	development,	especially	in	the	console	space	that	I’m	most	familiar	with,	is	often
very	player-	focused.	We	want	to	do	what	makes	for	the	best	player	experience.	As	an
industry	and	a	culture	we	have	a	very	long,	fruitful	history	in	that	area.	Much	more	rarely
do	we	take	that	same	expertise	and	focus	it	inward.	How	do	we	take	the	lessons	of	games
and	apply	them	to	making	games?

Over	the	last	ten	years	or	so,	there	has	though	been	a	growing	real-

ization	among	developers,	especially	on	larger	teams,	that	the	cost	and

complexity	of	making	games	is	itself	inhibiting	our	collective	ability	to	develop	the	best
experience	for	the	player.	In	just	the	previous	generation	of	AAA	game	development	it
was	quite	clear	to	everyone	that	these

secondary	knock-	on	effects	were	actually	not	just	significant,	but	possibly	the	most
significant	predictor	of	quality.	The	phrase	“iteration	time”	was	heard	everywhere.	We	had
collectively	realized	that	in	making	games,	like	most	creative	endeavors,	you	get	it	wrong
the	first	time.	And	the	second	time.	And	the	third.	But	you	learn	something	important	in
each	iteration	and	the	more	iterations	you	can	do,	the	better	at	it	you	become.	This	is	no
surprise	to	anyone	on	an	individual	scale.	The	real	change	was	that	no	one	could	escape
this	universal	truth	any	longer.	Brute	force	works	well	to	a	point	and	that	point	has	passed.

Many	different	“solutions”	to	that	problem	have	appeared	since	then.

In	particular,	it’s	hard	not	to	recognize	the	introduction	of	Agile	methodologies	in
particular	into	the	game	industry	as	a	process	response	to

this	very	problem—as	much	as	its	adherents	will	insist	it’s	not	a	process.

xiii

xiv	◾	Foreword
While	these	methods	from	other	industries	brought	along	with	them	a	lot

of	baggage	of	dubious	value,	they	did	help	to	crystalize	one	important	idea	into
development	culture:	you	cannot	know	everything	in	advance.	This

is	not	to	say	you	cannot	know	anything	in	advance,	which	in	my	experi-

ence	is	clearly	what	some	Agile	adherents	have	chosen	to	believe—and	is

clearly	stupid.	But	the	very	idea	that	you	cannot	plan	for	everything	in	a	creative	project,
not	just	that	you	should	not,	was	both	compelling	and

self-	evident	in	retrospect.	We	had	never	been	able	to	plan	everything.	We	just	pretended
we	could.

Then	in	the	last	five	years	or	so,	everywhere	things	were	happening	at

about	the	same	time,	which	would	help	mature	the	concept	of	“iteration”

into	one	of	“usability.”	People	were	no	longer	asking	whether	they	should	iterate	more	but
rather	how	to	make	those	iterations	more	valuable.

Usability	as	a	discipline	and	usability	research	outside	the	game	industry	(as	well	as
within	the	game	industry,	but	still	largely	focused	on	the	player	experience)	had	helped	to
define	what	we	meant	by	iteration.	How	does	one	improve	or	increase	iterations	not	just
by	making	long	processes	shorter,	but	by	making	things	better	or	differently	altogether?
Where	does	a	user	and	her	expectations	fit	into	all	of	this?	The	discipline	of	usability
research	was	growing	all	around	us	to	answer	these	kinds	of	questions.	In	particular,	the
meteoric	rise	of	webapps	and	mobile	development	(games	or

otherwise)	and	the	unprecedented	success	of	the	iPhone	in	particular

brought	usability	design	into	the	limelight.	And	then	came	Gamification:	the	much
maligned,	and	in	my	view,	both	largely	misunderstood	and

completely	misapplied,	idea	that	you	could	take	the	lessons	learned	from	games	and	apply
them	to	other	things.	Like	making	games.

It	was	as	both	David	and	I	were	preparing	for	GDC	2013	that	I	think

we	found	where	all	of	this	would	lead	us.	I	was	preparing	my	presentation

“Usability	Is	Not	Random”	based	on	my	theory	that	usability	could	be	for-malized	in
terms	of	information	and	information	theory.	We	can	describe

our	interactions	with	our	tools	as	a	form	of	communication,	which	we

could	measure	and	analyze.	I	could	use	this	model	to	help	improve	and

guide	my	approach	to	developing	tools	with	my	team,	in	my	day	job	as

engine	director	at	Insomniac	Games.

David,	however,	was	driven	by	something	even	larger.	That	same	year,

we	were	both	part	of	a	Google	Hangout	panel	together.	We	discussed	what

drove	us	and	what	was	most	important	to	us.	It	became	clear	that	what

David	wanted	was	not	just	to	figure	out	how	much	he	could	improve	the

usability	of	a	specific	tool	or	set	of	development	tools	or	even	for	a	specific	Foreword	◾
xv

team,	but	that	he	wanted	to	improve	usability	everywhere	in	our	industry.

David	is	guided	by	his	belief	that	he	can	contribute	to	raising	the	bar	for	all	of	us:	that	we
can	all	speak	the	same	language,	understand	the	same	concepts,	and	use	the	same
techniques,	so	that	we	can	all	make	better	games.

What	you	are	reading	now	is	the	result	of	David	Lightbown’s	first	big

mission	on	that	very	long	quest.	The	rest	is	a	co-	op	campaign,	and	he	has	brought	along
these	weapons	to	get	us	started.

Mike	Acton

Engine	Director

Insomniac	Games

June	20,	2014

Introduction

Even	though	they	had	been	trying	for	over	an	hour,	the	two	men	could

not	get	the	machine	to	perform	its	greatest	trick:	print	a	double-	sided	page.	They	were
almost	ready	to	give	up.	“We’re	S.O.L.,”	one	of	them

said,	finally.	Fortunately,	the	interaction	analyst	was	watching,	and	she	got	it	all	on
videotape.

THE	BIG	GREEN	BUTTON

In	1983,	Xerox	introduced	their	most	technologically	advanced	pho-

tocopier,	the	Xerox	8200.	It	had	many	innovative	features	for	the	time:

double-	sided	printing	and	automatically	collating	pages,	to	name	a	few.

However,	customer	service	representatives	started	reporting	that	cus-

tomers	complained	the	machine	was	“too	complicated.”	Ironically,	Xerox

advertised	the	machine	as	being	simple	to	use—“All	you	have	to	do	is

push	the	green	button.”

Xerox	was	also	one	of	the	first	companies	to	hire	social	anthropologists	and	psychologists
to	help	with	product	development.	This	is	how—a	few

years	before	the	Xerox	8200	was	introduced—a	doctoral	student	with	a

background	in	interaction	analysis	started	working	at	Xerox.	Her	name

was	Lucy	Suchman.

When	the	Xerox	executives	learned	what	customers	were	saying	about

the	machine,	Lucy	was	asked	to	help	figure	out	why.	She	requested	that

one	of	the	machines	be	installed	at	the	Palo	Alto	Research	Center	so	she	could	watch
people	using	it.*

Two	of	the	participants	were	specifically	chosen	by	Lucy	from	the	inter-

nal	staff.	She	put	them	in	front	of	the	machine,	in	a	room	equipped	with

*	The	Xerox	Palo	Alto	Research	Center,	more	commonly	known	as	Xerox	PARC,	would
play	a	huge	role	in	driving	the	field	of	human–	computer	interaction	forward.	Michael	A.
Hiltzik’s	Dealers	of	Lightning	offers	a	fantastic	history	of	Xerox	PARC,	the	people
involved	in	its	rise	and	fall,	and	all	of	the	companies	that	they	would	go	on	to	influence,
including	Adobe,	Microsoft,	Pixar,	and	Apple.

xvii

xviii	◾	Introduction
a	microphone	and	a	camera,	and	gave	them	a	series	of	tasks	to	perform.

One	of	these	tasks	was	to	test	a	major	selling	point	of	the	machine:	duplex	print,	or
printing	double-	sided.

After	an	hour	and	a	half	of	filling	up	the	room	with	paper	from	failed

attempts,	the	two	men	concluded	that	they	could	not	figure	it	out.	One

of	them	expressed	their	frustration	with	a	quote	captured	on	the	now-

famous	video	recording:	“We’re	S.O.L.”

The	video	was	presented	to	the	Xerox	executive	as	part	of	Lucy’s	report.

After	watching	the	video,	one	of	the	executives	exclaimed	that	the	reason	the	two	men
could	not	figure	out	how	to	print	double-	sided	was	that	they	are	not	smart	enough.	“You
must	have	got	these	guys	off	the	loading	dock!”

That’s	when	Lucy	revealed	that	the	two	men	she	had	chosen	were	actu-

ally	two	of	the	most	gifted	computer	scientists	working	at	Xerox:	Ron

Kaplan,	a	brilliant	computational	linguist,	and	Allen	Newel,	one	of	the

founding	fathers	of	artificial	intelligence.

This	was	one	of	the	first	documented	accounts	of	applying	user	research

to	improve	an	office	productivity	tool.*	It	would	be	many	years	before

these	techniques	would	be	applied	to	tools	development	in	the	video

games	industry.

MY	STORY

License	to	Compute

When	I	was	a	teenager,	one	of	my	first	full-	time	jobs	was	working	technical	support	for
an	Internet	service	provider.	In	the	early	days	of	the	Internet,	everyone	who	worked	in
technical	support	could	do	a	bit	of	UNIX	shell

scripting	and	knew	how	to	configure	TCP/	IP	for	every	imaginable	operat-

ing	system.

All	day	long,	we	would	answer	calls	from	people	who	did	not	know	as

much	about	computers	as	we	did,	and	we	found	it	frustrating.	To	blow	off	steam,	we
would	make	fun	of	the	customers	when	we	got	off	the	phone.

One	of	the	more	infamous	stories	was	that	of	a	customer	who	was	wor-

ried	that	they	had	“deleted	the	Internet,”	because	they	had	accidentally	dragged	the
Internet	Explorer	icon	into	the	trash.	After	getting	off	a	particularly	difficult	call,	I
remember	saying	to	my	colleagues	that	people	should	have	to	pass	an	exam	to	use	a
computer.

*	The	full	version	of	this	story	can	be	found	in	Lucy	Suchman’s	book	Human–	Machine
Reconfigurations.

Introduction	◾	xix
I	realize	now	what	a	foolish	statement	that	was.	The	problem	is	not	the

user.	It	is	the	user	experience.

My	Best	and	Worst	Days	in	Game	Development

Years	later,	I	was	fortunate	enough	to	get	my	first	job	in	the	games	industry.	In	that	time,	I
have	held	a	variety	of	roles,	such	as	modeler,	technical	artist,	and	technical	director.

Some	of	my	best	days	working	as	a	technical	director	were	when	I	would

watch	how	a	change	to	a	tool	or	pipeline	could	make	an	artist,	animator,	or	level	designer
more	productive.	It	always	made	me	feel	good	when	they	would	say,	“That	tool	you
worked	on	really	saved	me	a	lot	of	time,	and	I	was	able	to	focus	on	creating!”	Nothing
makes	me	happier	than	enabling

content	creators	to	do	what	they	do	best.

By	contrast,	some	of	my	worst	days	were	when	I	would	walk	by	some-

one’s	desk	and	watch	them	jump	through	multiple	frustrating	and	ineffi-

cient	hoops,	just	to	make	a	tiny	bit	of	progress.	Even	if	they	didn’t	get	much	done,	at	least
they	could	feel	that	they	accomplished	something.

Seeing	content	creators	limited	in	their	ability	to	express	themselves	for	reasons	beyond
their	control	is	extremely	frustrating	to	watch.

At	that	time,	I	had	a	limited	set	of	options	at	my	disposal,	such	as	writing	scripts	to
accelerate	productivity,	mentoring	and	coaching,	trying	to	find	ways	to	streamline	the
pipeline,	and	so	on.	However,	I	always	felt	that	there	was	more	that	I	could	do	to	improve
the	tools.	Without	a	doubt,	my	experience	in	the	games	industry	gave	me	an	advantage
when	it	came	to

tools	development,	but	no	one	can	get	it	right	every	time.	I	needed	to	find	a	more
consistent	and	measurable	way.

This	desire	to	help	the	content	creators—whose	work	I	admired	so	much—

led	me	down	a	path	that	would	change	my	career	in	the	games	industry.

Discovering	the	Inmates

One	of	my	work	colleagues	at	the	time,	who	knew	that	I	was	looking	for

ways	to	make	content	creators	more	productive,	handed	me	a	copy	of

The	Inmates	Are	Running	the	Asylum.	This	book—written	by	Alan	Cooper,	the	creator	of
Visual	Basic—had	been	circulating	in	web	and	desktop	software	development	studios	but
had	not	yet	made	its	way	into	game	devel-

opment.	When	I	read	it,	I	was	amazed	at	how	perfectly	it	captured	the

software	development	culture	that	I	had	been	a	part	of	across	many	different	game
development	teams.

xx	◾	Introduction
This	book	also	introduced	me	to	the	field	of	user	experience	design.

From	the	first	day	that	I	started	working	in	game	development,	I	had

thoughts	and	opinions	on	how	to	design	game	development	tools	that

would	make	the	users	more	productive,	but	I	was	never	able	to	pinpoint	a	system	or
methodology	to	do	it	consistently.	This	book	opened	the	door	to	a	world	that	I	never	even
knew	existed.

After	finishing	that	book,	I	started	to	seek	out	any	other	books	on	user	experience	design
that	I	could	get	my	hands	on:	Don	Norman’s	The	Design	of	Everyday	Things,	Steve
Krug’s	Don’t	Make	Me	Think!	,	Dan	Saffer’s	Designing	for	Interaction,	and	Jeff	Gothelf’s
Lean	UX,	to	name	just	a	few.

It	wasn’t	long	before	I	came	to	the	realization	that	the	concepts	pre-

sented	in	these	books	had	never	been	formally	applied	to	tools	develop-

ment	in	the	games	industry.	The	untapped	potential	for	improvement

was	huge.

The	Main	Message

I	created	a	presentation	about	the	impact	that	these	concepts	could	have	on	tools
development	in	the	games	industry,	and	I	started	showing	it

around	to	various	game	development	studios.	That	presentation	was

essentially	my	job	interview.	This	resulted	in	a	full-	time	position	focusing	on	improving
the	user	experience	of	game	development	pipelines	and

tools	at	Ubisoft	Montreal.

I	would	go	on	to	give	that	presentation	at	least	a	dozen	more	times,

most	notably	at	the	Montreal	International	Game	Summit	(MIGS)	and

the	Game	Developers	Conference	(GDC),	where	the	feedback	from	the

attendees	put	it	among	the	most	highly	rated	presentations	of	both	conferences.	A	featured
article	on	Gamasutra	followed.

No	long	after,	I	was	approached	to	turn	the	presentation	into	a	book,

which	you	now	hold	in	your	hands.	The	main	message	of	the	presentation

and	of	this	book	remains	the	same:	the	games	industry	needs	to	make	the

user	experience	of	tools	a	priority.

WHO	SHOULD	READ	THIS	BOOK?

This	book	is	for	anyone	who	makes,	uses,	or	benefits	from	game	develop-

ment	tools.	However,	anyone	involved	in	the	production	of	video	games	in	general	should
be	aware	of	the	message	in	this	book,	because	it	is	my	belief	that	investing	in	better	tools
can	help	us	make	better	games.

Introduction	◾	xxi
The	People	Who	Make	the	Tools,	or	“Developers”

Some	tools	developers	have	a	reputation	for	not	caring	about	the	user

experience	of	game	development	tools.	This	is	largely	unfair:	most	tools	developers	want
to	improve	the	user	experience	but	are	not	given	the	time,	lack	the	techniques,	or	do	not
know	where	to	begin.	This	books	aims	to

address	those	issues	and	empower	tools	developers	to	make	positive	steps	toward
improving	the	user	experience	of	their	tools.

Technical	directors	and	technical	artists	are	often	in	one	of	the	best

positions	to	initiate	change,	since	they	act	as	a	bridge	between	the	users	and	the
developers.	Many	of	them	are	also	tools	developers	in	their	own

right.	This	book	will	give	them	the	knowledge	to	make	the	most	of	that

position	and	improve	the	process	with	which	our	tools	are	developed.

The	People	Who	Use	the	Tools,	or	“Users”

The	term	content	creators	is	sometimes	used	to	describe	anyone	who	uses	the	tools	to
create	content	that	will	appear	in	the	game,	though	most

people	simply	know	them	as	“the	users.”	This	can	include	modelers,	ani-

mators,	level	designers,	game	designers,	audio	engineers,	special	effects	artists,	and	so	on.
This	book	can	help	them	improve	communication	with

those	responsible	for	making	the	tools	and	assist	in	identifying	common

issues,	as	well	as	proposing	how	they	can	be	improved.

The	People	Who	Benefit	from	the	Tools,	or	“Stakeholders”

The	people	who	benefit	from	the	content	produced	by	the	tools	are	some-

times	called	stakeholders.	These	people	may	never	use	or	even	see	the	tools	we	that
discuss	in	this	book.	Despite	this,	they	can	be	the	most	important	players,	since	they—
sometimes	indirectly—mandate	the	creation	of	the

tools.	Creative	directors,	producers,	and	managers	are	a	few	examples	of	people	who
belong	to	this	group.	As	they	are	responsible	for	setting	the	requirements	for	the	game	and

providing	the	resources	to	create	it,	it	is	of	the	utmost	importance	that	they	understand	that
improving	the	user

experience	can	reduce	risk,	as	well	as	save	time	and	money.

A	Note	for	User	Experience	Designers

If	you	are	a	user	experience	designer	coming	from	another	industry,	you

will	be	familiar	with	many	of	the	concepts	in	this	book.	You	will	notice	that	some
concepts	and	techniques	have	been	simplified	in	an	effort	to	be	easier	to	understand	for
people	new	to	user	experience	design.

xxii	◾	Introduction
However,	this	book	also	includes	a	lot	of	information	specific	to	game

tools	development.	The	games	industry	faces	unique	challenges	in	regard

to	improving	the	user	experience	of	their	tools.	It	is	those	chal	enges	that	make	the	work
even	more	interesting	for	user	experience	designers:	there	is	a	lot	of	work	to	do	but	also	a
ton	of	untapped	potential,	waiting	to

be	unlocked.

It	Can	Take	Years	to	Become	an	Expert	in	User	Experience

Although	this	book	strives	to	be	as	thorough	as	possible	at	presenting	ways	in	which	the
user	experience	can	be	improved,	it	cannot	turn	you	into	a

user	experience	expert	overnight.	If	your	goal	is	to	become	an	expert,	it	will	take	time	and
dedication—and	by	reading	this	book,	you	are	taking

your	first	big	step.

For	the	Gamers

When	I	visit	my	local	game	store,	I	make	a	point	of	listening	to	people	in	the	store	talk
about	games.	It	reminds	me	that	the	content	we	create	with	our	tools	is	ultimately	for	the
gamers.	Hearing	people	get	excited	about	upcoming	games	and	talking	about	their
experiences	can	remind	us	why

we	love	making	games	in	the	first	place.

COMPANION	WEBSITE	AND	TWITTER	ACCOUNT

Although	the	content	of	this	book	is	static,	there	are	a	few	resources

available	to	make	it	dynamic	and	interactive.	The	companion	website,

www.UXofGameTools.com,	contains	the	latest	information	and	revisions

for	this	book,	as	well	as	contact	information.	You	can	also	follow	the	offi-cial	Twitter
account	@UXofGameTools	to	see	the	latest	updates	and	read	a	curated	list	of	articles
related	to	user	experience.

Your	questions	and	comments	are	all	welcome,	so	please	feel	free	to

contact	me	via	e-mail	at	UXofGameTools@gmail.com	or	through	the

Twitter	account.

BEFORE	WE	BEGIN	…

The	concepts	and	techniques	in	this	book	reflect	my	approach	to	improv-

ing	the	user	experience	of	game	development	tools,	and	it	is	by	no	means	the	only	way.
Just	as	I	have	borrowed	ideas	on	user	experience	design	from	other	sources	and	tailored
them	to	fit	game	tools	development,	you	should	take	what	works	best	for	you	and	your
situation.

Introduction	◾	xxiii
In	addition,	this	is	not	an	academic	text,	so	some	concepts	have	been

simplified	for	those	who	are	learning	about	user	experience	for	the	first	time.	Wherever
possible,	I	have	added	resources	in	the	footnotes	for	people	who	want	more	details.

Some	of	the	ideas	in	this	book	may	be	very	new	and	different	if	you	have	been	developing
game	tools	for	a	long	time.	Keep	in	mind	that	the	goal	is	not	to	completely	change	the	way
we	work,	but	to	enhance	it.	The	material	presented	here	is	to	complement	our	existing
skills,	in	an	effort	to	make	us	better	game	developers.

At	the	end	of	the	day,	as	long	as	the	users,	stakeholders,	and	developers	work	together	to
make	better	tools,	there	is	no	right	or	wrong	way.

Now,	let’s	jump	in!

About	the	Author

After	spending	most	of	his	formative	years	in	his	parents’	basement	try-

ing	to	clone	8-bit	console	games	on	an	Apple	IIgs,	David	Lightbown	got	a	job	in	the
games	industry.	Since	then,	he	has	dedicated	the	majority	of	his	career	to	working	on
content	creation	tools	and	pipelines.

In	addition	to	contributing	to	a	variety	of	games	as	a	technical	director,	David	has
delivered	presentations	at	the	Game	Developers	Conference,

Montreal	International	Game	Summit,	and	SIGGRAPH,	in	various	cities

within	Canada,	the	United	States,	and	Europe.

He	has	also	collaborated	with	Autodesk	to	create	product	reviews,

training	manuals,	tutorial	videos,	and	masterclasses.	In	2010,	he	received	the	Autodesk
Master	Award	for	his	contributions	to	the	3D	community.

The	award	also	included	a	sweet	leather	jacket.

David	current	holds	the	title	of	technical	director	at	Ubisoft	Montreal.

xxv

C	h	a	p	t	e	r	1

Welcome	to	Designing

the	User	Experience	of

Game	Development	Tools

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?

•	What	is	this	book	about?

•	What	is	a	user	experience?

•	What	is	the	value	of	improving	the	user	experience?

•	What	are	the	parallels	between	user	experience	and	games

development?

•	How	do	people	benefit	from	improving	the	user	experience?

•	What	happens	when	the	needs	of	one	group	are	prioritized	over

another?

WHAT	IS	THIS	BOOK	ABOUT?

The	goal	of	this	book	is	to	present	concepts	and	techniques	that	can	be

used	to	improve	the	user	experience	of	game	development	tools.	This	book	focuses	on
User-	Centered	Design,	a	process	that	revolves	around	understanding	people’s	goals,
watching	them	work,	learning	the	context	in

which	they	work,	and	understanding	how	they	think.	We	will	learn	how

each	phase	of	the	process	can	contribute	to	improving	the	user	experience.

1

2	◾	Designing	the	User	Experience	of	Game	Development	Tools
Finally,	we	will	see	how	this	process	can	be	applied	to	a	real-	world	game	development
tool.

Before	we	learn	about	how	to	improve	the	user	experience,	it	would	be

reasonable	to	begin	by	describing	the	term	user	experience.

DEFINING	USER	EXPERIENCE

If	you	do	a	web	search	or	read	books	about	user	experience	design,	you

will	notice	that	there	are	many	different	ways	to	describe	what	a	user	experience	is.	One
popular	description	comes	from	Elizabeth	Sanders,	who

suggests	that	tools	need	to	be	“useful,	usable,	and	desirable.”*	How	are	these	three
objectives	prioritized?

The	User	Experience	Pyramid

You	may	have	heard	about	Maslow’s	hierarchy	of	human	needs,	which	is

often	depicted	as	a	pyramid.	Essentially,	it	states	that	physiological	needs—

such	as	food	and	shelter—must	be	fulfilled	before	more	complex	needs	are	met—such	as
creativity	and	confidence	(see	the	left	side	of	Figure	1.1).†

www.allitebooks.com

http://www.allitebooks.org

The	same	goes	for	the	user	experience.	The	basic	needs	and	expecta-

tions	of	a	person	using	a	tool	must	be	met	before	considering	functionality	that	is	more
advanced.	In	this	case,	a	tool	should	be	useful	before	it	can	be	usable,	and	a	tool	should	be
usable	before	making	it	desirable	(see	the	right	side	of	Figure	1.1).

In	other	words,	a	tool	may	have	a	nice-	looking	user	interface	(desirable),	but	if	it	is
difficult	to	use	(not	usable)	and	does	not	fulfill	the	user’s	needs	(not	useful),	it	can	result	in
a	bad	user	experience.

Self-actualization

Desirable

Esteem

Love/Belonging

Usable

Safety

Physiological

Useful

FIGURE	1.1	Maslow’s	hierarchy	of	human	needs	(left).	The	user	experience	pyramid
(right).

*	This	was	originally	proposed	in	an	article	for	the	Design	Management	Journal,	entitled
“Converging	Perspectives.”	It	can	be	found	here:	http://onlinelibrary.wiley.com/
doi/10.1111/j.1948-7169.1992.

tb00604.x/	abstract.

†	You	can	read	more	about	Maslow’s	hierarchy	of	human	needs	here:	http://en.wikipedia.

org/	wiki/	Maslow’s_hierarchy_of_needs.

Welcome	to	Designing	the	User	Experience	of	Game	Development	Tools	◾	3
Unfortunately,	some	game	development	tools	only	provide	the	base

level	of	the	pyramid:	they	are	useful.	That	also	means	that	they	are	neither	usable	nor
desirable.	In	the	case	of	in-	house	tools,	people	use	them	because	they	have	no	other
choice.	To	learn	how	we	can	make	tools	that

people	want	to	use,	we	can	start	by	understanding	the	three	levels.

Useful

At	the	core	of	a	good	user	experience	is	something	that	fulfills	a	need.

If	a	game	development	tool	does	not	fulfill	a	need,	why	does	it	exist

in	the	first	place?	Ideally,	these	needs	should	come	from	the	users	and

the	stakeholders.

To	explain	this	further,	we	will	use	the	analogy	of	a	vehicle.	As	this	is	a	book	about	game

development	tools,	we	will	use	a	Warthog	from	the

Halo	franchise.	A	Warthog	fulfills	a	Spartan’s	need	to	get	from	point	A	to	point	B	in	a
short	amount	of	time.	It	is	faster—and	in	the	case	of	enemy	fire,	often	safer—than
running.	If	we	were	to	design	a	Warthog	that	simply	fulfilled	the	need	to	get	from	point	A
to	point	B,	it	might	resemble	a	frame	with	wheels,	a	turret,	and	an	engine	(see	Figure	1.2).

How	do	we	make	a	tool	that	is	considered	useful?	We	start	by	identify-

ing	the	right	people	to	design	for	and	the	context	in	which	they	work	and	by	understanding
their	goals.	We	will	talk	more	about	this	in	Chapters	3

and	4.

This	Warthog	gets	us	from	point	A	to	point	B,	but	it	has	a	major	issue:

we	are	sitting	on	a	metal	platform	with	wheels.	We	have	no	protection,	we	are	not
comfortable,	and	it	is	not	easy	to	use:	the	only	way	to	drive	is	to	reach	our	hands	into	the
engine	and	connect	the	wires.	There	is	no	visible	way	to	control	the	turret.	Surely,	there
must	be	a	better	way!	That	brings	us	to	the	next	level	in	the	pyramid:	making	tools	that	are
more	usable.

Useful

FIGURE	1.2	A	user	experience	that	is	useful.

4	◾	Designing	the	User	Experience	of	Game	Development	Tools
Usable

FIGURE	1.3	A	user	experience	that	is	usable.

Usable

Much	like	user	experience,	there	are	many	definitions	of	usability.	The

vast	majority	of	these	definitions	include	questions	such	as	“How	efficient	is	it	to	use?”,
“How	easy	is	it	to	learn?”,	“How	well	is	the	user	protected	from	making	mistakes?”,	and
“How	satisfying	is	it	to	use?”	There	are	many	ways	to	measure	improvements	to	usability,
but	in	this	book,	we	will	focus	on	two:	efficiency	and	learnability.

To	continue	with	our	example	of	the	Warthog,	what	would	be	the	defi-

nition	of	making	it	more	usable?	We	could	add	pedals	and	a	seat	that	is

adjustable	so	the	driver	can	sit	comfortably	and	reach	the	pedals	with	their	feet.	This
would	make	it	convenient	to	accelerate	and	decelerate,	without	having	to	reach	into	the
engine	and	connect	any	wires.	To	make	it	easier	to	learn	how	to	drive	and	shoot	the	turret,
we	could	add	standard	controls	that	any	Spartan	who	has	received	basic	training	is
familiar	with:	a	pistol	grip	and	a	steering	wheel	(see	Figure	1.3).

How	do	we	improve	usability?	There	are	a	variety	of	techniques,	based	on	human	factors,
interaction	design,	cognitive	psychology,	and	information	architecture—just	to	name	a
few—that	we	will	learn	about	in	Chapter	5.

What	else	could	be	done	to	improve	our	Warthog?	This	question	brings

us	to	the	third	level	of	the	pyramid:	desirability.	This	is	often	dismissed	as	simply	making
the	interface	look	“cool,”	but	there	is	much	more	to	it	than	that.

Desirable

Desirability	is	often	the	last	step	that	we	consider	when	designing	game	development
tools.	Typically,	the	perception	is	that	desirability	is	not	important	or	does	not	contribute
enough	to	the	user	experience	to	make

it	worth	the	cost.

However,	the	fact	is	that	a	tool	with	an	aesthetic	and	appealing	design

not	only	contributes	to	user	satisfaction,	but	it	also	confirms	to	the	user	Welcome	to
Designing	the	User	Experience	of	Game	Development	Tools	◾	5
Desirable

FIGURE	1.4	A	user	experience	that	is	desirable.

that	the	designers	have	taken	the	time	to	create	a	high-	quality,	professional	tool.	This
gives	the	user	more	confidence	in	the	abilities	of	the	tool.

Let’s	return	to	our	example	of	the	Warthog.	Features	like	tinted	win-

dows,	shining	chrome,	and	a	new	paint	job	may	seem	unnecessary,	but

consider	this:	if	the	windows	are	cracked,	the	labels	on	the	controls	are	peeling	off,	and	the
body	is	covered	in	rust	and	falling	apart,	how	confident	would	you	be	that	this	Warthog
will	protect	you	in	battle?	You	might	ask	yourself,	“What	else	is	wrong	with	the	vehicle
that	I	can’t	see?	Is	this	going	to	keep	me	safe	on	the	battlefield?”	(see	Figure	1.4).

Usability	and	desirability	are	often	intertwined.	We	will	see	this	when

we	learn	about	the	design	techniques	of	hierarchy	in	Chapter	5,	or	heuristics	such	as
aesthetic	and	minimalist	design	in	Chapter	6.

Missing	Levels

Now,	imagine	if	the	Warthog	was	missing	only	the	“usable”	level	of	the

pyramid.	It	has	wheels,	an	engine,	and	an	armored	shell,	but	you	have	to	crouch	down
inside	and	fiddle	with	the	wires	to	control	the	engine	and

steer.	Furthermore,	you	would	be	sitting	on	a	metal	plate	instead	of	in	a	seat,	without	a
seatbelt.	It	might	look	nice,	but	it	would	not	be	very	safe	or	convenient	(see	the	left	side	of
Figure	1.5).

Alternatively,	you	could	have	a	Warthog	that	is	missing	just	the	“useful”

level:	it	has	a	nice	seat	with	a	seatbelt,	a	steering	wheel,	pedals,	and	an	armored	shell,	but
it	has	no	engine	or	wheels.	It	may	look	great	and	have	all	of	the	controls	you	need	on	the
inside,	but	it	is	not	going	to	get	you	from	point	A	to	point	B,	which	is	why	you	wanted	to
use	it	in	the	first	place	(see	the	right	side	of	Figure	1.5).

FIGURE	1.5	User	experiences	that	are	neither	usable	(left)	nor	useful	(right).

6	◾	Designing	the	User	Experience	of	Game	Development	Tools

Being	“More	Human”

Definitions	from	Cooper	and	Norman

Another	common	description	of	a	good	user	experience	is	software	that

resembles	an	interaction	with	a	human	and	not	a	machine.

In	The	Inmates	Are	Running	the	Asylum,	Alan	Cooper	proposes	that	we	should	be
“purposefully	designing	our	software-	based	products	to	be

more	human	and	forgiving.”	An	example	of	this	would	be	a	good	friend,

who	would	do	the	following:

•	Remember	what	you	like

•	Do	their	best	to	help	you

•	Clearly	explain	themselves

•	Take	responsibility

•	Be	forgiving	if	something	goes	wrong

•	Be	flexible	when	trying	to	assist	you

The	artificial	intelligence	Cortana	from	the	Halo	series	and	the	virtual	assistant	Siri	from
Apple	are	good	examples	of	machines	that	appear	to

possess	these	qualities.

What	is	the	opposite	of	that?	A	frustrating	person.	Don	Norman

echoes	this	in	his	book	The	Design	of	Everyday	Things	with	examples	on	how	to	make
something	difficult	to	use	on	purpose:	“Be	inconsistent,”	“Be	impolite.”	Everyone	has	had
to	deal	with	someone	like	this	in	their	life	at	one	point	or	another.	A	frustrating	person
does	the	following:

•	Forgets	what	you	like

•	Will	not	help	you

•	Does	not	communicate	clearly

•	Does	not	take	responsibility

•	Is	not	forgiving	if	something	goes	wrong

•	Is	not	flexible	in	helping	you

The	evil	artificial	intelligence	SHODAN	from	System	Shock	would	be	an	extreme
example	of	this,	or	even	GLaDOS	from	the	game	Portal.

How	many	tools	can	you	think	of	that	resemble	a	good	friend?	Now,

how	many	can	you	think	of	that	resemble	a	frustrating	person?

Welcome	to	Designing	the	User	Experience	of	Game	Development	Tools	◾	7
Comparing	the	User	Experience	of	Normal	Mapping	Tools

CrazyBump	(Figure	1.6)	is	an	excellent	example	of	a	content	creation	tool	that	feels	“more
human.”	It	uses	simple	language	that	a	human	might	use

(“Intensity”	and	“Very	Large	Detail”).	It	communicates	clearly	by	using

previews	to	show	you	what	will	happen	if	you	choose	a	specific	option.	It	tries	to	help	you
by	choosing	the	best	option	automatically.	This	makes	the	tool	less	intimidating	and
encourages	users	to	make	it	part	of	their	pipeline.	Most	importantly,	it	also	means	people
are	more	likely	to	recommend	it	to	their	friends	and	coworkers.

Another	example	of	this	is	the	Unity	engine:	when	you	assign	a	texture

that	has	characteristics	of	a	normal	map	but	you	forget	to	flag	it	as	such,	the	engine
automatically	detects	this	and	offers	to	flag	it	as	a	normal	map.

This	is	a	great	example	of	software	acting	like	a	good	friend	by	doing	its	best	to	help	you
(see	the	left	side	of	Figure	1.7,	at	the	bottom).

We	can	compare	this	to	the	NVIDIA	Normal	Map	Filter	on	the	right

side	of	Figure	1.7.	It	resembles	an	interaction	with	a	frustrating	person.	It	is	unclear	what
the	options	do,	just	like	someone	who	does	not	communicate	clearly,	the	3D	View	forgets
the	last	angle	that	you	set	it	to	after	you	close	and	reopen	the	window,	and	so	on.

THE	VALUE	OF	IMPROVING	THE	USER	EXPERIENCE

OF	OUR	TOOLS

In	2010,	Jim	Brown	of	Epic	Games	presented	a	talk	at	the	Game	Developers	Conference
titled	“Tools:	Making	a	Better	Game.”	In	this	presentation,

he	stated	that	even	a	small	increase	in	efficiency	could	result	in	a	significant	savings	of
time	and	money,	when	you	look	at	the	big	picture.	Some

improvements	may	not	seem	like	a	lot	on	their	own,	but	they	can	add	up

to	hundreds	of	thousands	of	dollars	and	many	man-	months	if	you	design

it	for	the	right	people.

To	illustrate	this,	let	us	assume	that	we	take	the	time	to	improve	the	efficiency	of	a	tool
and	make	it	easier	to	learn.	Those	improvements	result	in	a	savings	of	20	minutes	per	8-
hour	day.	This	may	not	seem	like	a	lot	on	its	own.	However,	we	have	to	consider	how
many	people	are	using	that	tool,

and	how	often.	If	that	tool	is	used	by	20	users	per	8-hour	day,	20	minutes	per	day	can	save
the	following:

•	7	hours	per	day

•	32	hours	per	week

•	1,800	hours	per	year

8	◾	Designing	the	User	Experience	of	Game	Development	Tools
lark.

yan	C

face.	©	R

nterp	i

razyBume	CTh

6

E	1.RU

FIG

Welcome	to	Designing	the	User	Experience	of	Game	Development	Tools	◾	9
IA	IDV

e	N

left).	Th

ap	(

al	m

orm

o	a	n	right).

ial	t

ater	learly	(

t	a	m

onver	unicated	c

o	c	m

asy	t	om

t	e	ot	c

re	n

aking	i	hat	a

y	m

ou	b	ptions	t

elp	y	f	o

o	h	ber	o

est	t	um

ts	b	ing	n

oes	i	helmwvernspector	dn	o

nity	I	as	a

e	UTh	ilter	h

7

ap	F

E	1.R	al	M

U

orm

FIG

N

10	◾	Designing	the	User	Experience	of	Game	Development	Tools	Now,	when	budgeting
the	staff	for	a	game	development	team,	you	also

have	to	consider	salary,	floor	space,	equipment,	software,	and	many	other	details.	As	of
this	writing,	the	typical	cost	per	man-	month	on	the	East	Coast	of	North	America	is	about
$10,000.	This	means	that	if	we	save	20

users	20	minutes	per	day,	after	a	year	we	can	save	the	following:

•	100	man-	months

•	$100,000

If	we	invest	$40,000	to	make	these	changes,	the	return	on	investment

is	$60,000.	In	the	second	year,	if	the	improvements	are	still	saving	us

20	minutes	per	day,	we	get	a	full	$100,000.	Over	three	years,	if	20	users	are	still	saving	20
minutes	per	8-hour	day,	the	total	return	on	investment	is	$260,000.	All	for	an	initial
$40,000	investment.

There	will	always	be	a	difference	between	these	predictions	and	the

actual	results.	However,	even	if	the	real	numbers	are	half	of	what	we	predicted,	we	still
come	out	ahead	in	the	end.	The	bottom	line	is	that	investing	in	the	user	experience	of	our
tools	has	the	potential	to	save	us	time	and	money.

PARALLELS	BETWEEN	USER	EXPERIENCE	AND	GAME	DESIGN

Some	people	may	be	surprised	to	learn	that	there	are	many	similari-

ties	between	the	techniques	used	to	make	games	and	those	used	in	user

experience	design.	We	are	very	fortunate	that	this	is	the	case,	because	it	can	make	the
adoption	of	these	techniques	for	game	development	tools

less	intimidating	compared	to	other	industries,	such	as	banking,	sales,

or	manufacturing.

Personas	and	Characters

In	Chapter	4,	you	will	learn	about	personas:	profiles	of	people	that	represent	the	average
user.	In	situations	where	there	are	a	large	number	of	users	for	a	given	tool,	these	can	be
very	useful	for	making	design	decisions	and	giving	everyone	a	shared	vision	of	who	will
use	the	tools.

Though	some	people	find	the	concept	of	using	archetypes	of	people	to

help	us	make	design	decisions	strange,	think	about	this:	we	create	characters	in	our	games
and	consider	how	they	think	and	what	their	goals	are	when

Welcome	to	Designing	the	User	Experience	of	Game	Development	Tools	◾	11
writing	their	dialogue,	creating	the	environments	they	live	in,	and	so	on.

This	has	worked	well	for	the	creation	of	our	games,	so	why	not	our	tools?

Scenario	Storyboards	and	Cinematic	Storyboards

When	creating	game	development	tools,	we	often	fixate	on	features	without	knowing	how
and	when	those	features	will	be	used.	Scenario	storyboards

help	to	remind	us	of	the	context	in	which	a	tool	is	used.	This	can	be	an	extremely
important	and	powerful	concept	in	user	experience	design.	We

will	learn	more	about	this	in	Chapter	4.

While	it	may	seem	odd	to	some	people	that	we	would	create	something

like	this	for	game	development	tools,	keep	in	mind	that	we	use	story-

boards	for	cinematics	and	complex	gameplay	moments	too.	We	use	them

to	plan	and	estimate	risk,	as	opposed	to	going	straight	into	implementing	everything	at	full
quality,	which	can	be	expensive	and	risky.	There	is	no	reason	our	tools	cannot	benefit

from	this	technique	as	well.

Pre-	Visualization	and	Gameplay	Videos

Pre-	visualizations,	which	we	will	learn	more	about	in	Chapter	6,	come	in	all	shapes	and
sizes	with	various	levels	of	quality:	sketches,	paper	prototypes,	interactive	prototypes,	and
so	on.	Regardless	of	the	form,	the	goal	is	the	same:	simulate	the	user	experience	so	we	can
get	feedback	from	the	user	early,	to	ensure	we	are	going	in	the	right	direction.	All	too
often,	the	first	time	the	user	has	a	sense	of	how	a	tool	works	is	when	it	is	already	done,
and	that	is	often	one	of	the	main	reasons	why	a	tool	can	have	a	bad	user	experience.

By	comparison,	gameplay	videos	have	a	similar	goal:	creating	a	video	that	simulates	what
the	gameplay	looks	like	in	an	effort	to	get	feedback	early.

It	may	even	be	semi-	interactive:	there	can	be	several	small	videos	used	as

“branch-	points”	to	show	the	outcome	of	different	situations.	As	with	pre-visualization,	the
visual	fidelity	of	this	video	can	vary,	but	the	purpose	remains	the	same:	find	out	if	we	are
going	in	the	right	direction.	If	we	do	this	for	our	gameplay,	why	would	we	not	apply	the
same	concept	to	our	tools?

Analytics	and	Metrics

Analytics	may	be	more	familiar	to	web	and	mobile	app	developers,	but

they	can	benefit	game	tools	developers	as	well.	Capturing	statistics—such	as	who	is	using
certain	features,	when	they	use	them,	and	how	often—can

12	◾	Designing	the	User	Experience	of	Game	Development	Tools	be	an	incredibly
powerful	technique	for	improving	the	user	experience	of	your	tool.

As	we	will	discuss	in	Chapter	4,	analytics	are	useful	when	you	have

a	very	large	number	of	users	and	need	help	determining	where	to	start.

However,	the	results	of	analytics	should	not	be	the	only	source	of	information	used	to
make	design	decisions.	They	should	be	used	as	a	starting

point	before	meeting	your	users	face-	to-	face.	Nothing	helps	you	to	understand	how
people	use	the	tools	like	watching	them	work.

When	a	game	is	not	running	at	the	desired	frame-	rate,	game	developers

capture	metrics	for	the	processor,	graphics,	and	memory	and	then	analyze	them	to	identify
what	needs	to	be	optimized.	If	you	have	done	this	before,	you	may	be	familiar	with	the
tools	provided	by	Microsoft	and	Sony,	or	the	profiler	tools	in	Unity,	just	to	name	a	few.	As
with	analytics,	metrics	can	be	a	starting	point	as	well.	If	a	specific	effect	is	causing	the
frame-	rate	to	slow	down,	it	does	not	necessarily	mean	that	we	cut	it	immediately.	We

prioritize	based	on	how	slow	it	is,	take	a	closer	look	at	why,	and	then	see	how	it	can	be
optimized.

If	this	technique	is	useful	for	figuring	out	what	to	optimize,	we	can

certainly	benefit	from	analytics	to	help	us	improve	the	user	experience	of	our	tools.

HOW	DO	PEOPLE	BENEFIT	FROM	AN	IMPROVED

USER	EXPERIENCE?

Users

If	20	users	save	100	man-	months,	that	theoretically	translates	to	an	extra	five	months	per
person.	Think	about	how	much	more	polish	one	person

could	do	in	five	months.	In	addition,	saving	time	can	help	with	something	else	that	is	all
too	common	in	game	development:	overtime.	It	would	be

great	if	saving	time	resulted	in	users	being	able	to	work	five	days	a	week	and	go	home
before	6:00	to	have	time	to	themselves,	or	to	see	their	family,	while	still	being	able	to
deliver	a	game	with	a	high	level	of	quality.

Stakeholders

For	the	people	who	mandate	the	tools,	improving	the	user	experience	to

save	time	and	money	is	a	business	decision.	If	we	can	create	content	for	our	games	more
efficiently,	and	ramp	up	new	team	members	faster,	then

we	can	allocate	resources	more	effectively	to	make	a	better	game.

Welcome	to	Designing	the	User	Experience	of	Game	Development	Tools	◾	13
In	addition,	the	process	presented	in	this	book	can	give	everyone	a	bet-

ter	vision	of	who	is	using	the	tools,	and	what	is	going	to	be	built	before	we	build	it.	This
helps	to	reduce	risk,	giving	stakeholders	the	ability	to	make	better	decisions.

Developers

For	developers,	there	are	multiple	benefits.	One	of	the	most	important

benefits	is	not	so	much	about	improving	the	user	experience,	but	the	tools	development
process	itself.	In	this	book,	we	will	learn	about	understanding	what	the	users	need,
applying	guidelines,	and	getting	a	clearer	picture	of	what	the	tool	will	be	before	writing	a
single	line	of	code.	All	of	these	concepts	and	techniques	help	to	streamline	the	tools
development	process.

Finally,	tools	that	work	well	survive	the	test	of	time.	If	a	tool	is	inefficient	or	difficult	to
learn,	people	will	want	to	replace	it	at	the	first	opportunity.	A	good	user	experience	will
help	to	ensure	that	the	tools	we	have	worked	so	hard	to	create	are	used	to	make	great
games	for	years	to	come.

FINDING	THE	RIGHT	BALANCE

As	we	discussed	in	the	introduction,	tools	are	mandated,	created,	and

used	by	different	groups	of	people	who	all	have	various	needs.	However,

what	happens	when	the	needs	of	one	group	are	prioritized	over	the	needs

of	the	others?

If	the	needs	of	the	developers	are	prioritized,	the	tool	could	lose	focus	on	achieving	the
goals	of	the	business	(important	to	the	stakeholders)	and	could	be	difficult	to	use	for
creating	game	content	(important	to	the	users).

www.allitebooks.com

http://www.allitebooks.org

If	the	needs	of	the	users	are	prioritized,	the	limitations	of	the	technology	may	not	be
respected	(important	to	the	developers)	and	resources

could	be	spent	on	features	that	are	not	important	to	creating	the	main

content	for	the	game	(important	to	the	stakeholders).

If	the	needs	of	the	stakeholders	are	prioritized,	the	time	to	create	a	software	architecture
that	is	easy	to	maintain	could	be	limited	(important

to	the	developers)	and	the	tool	could	be	unstable	and	frustrating	to	use	(important	to	the
users).

For	a	tool	to	be	truly	successful,	the	needs	of	developers,	stakehold-

ers,	and	users	must	all	be	equally	balanced	(see	the	extreme	right	side

of	Figure	1.8).	One	of	the	best	ways	to	do	this	is	by	applying	the	User-

Centered	Design	process,	which	is	covered	in	the	next	chapter.

14	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	1.8	Finding
the	right	balance	between	the	needs	of	the	users,	stakeholders,	and	developers.

WRAPPING	UP

In	this	chapter,	we	reviewed	a	few	common	definitions	of	“user	experi-

ence,”	and	we	learned	the	value	of	improving	the	user	experience.	We

also	learned	about	the	parallels	between	user	experience	design	and	game	development,
and	we	discussed	how	different	groups	of	people	can	benefit	from	improving	the	user
experience,	as	well	as	what	happens	when	the

needs	of	one	of	those	groups	is	prioritized	over	another.

In	the	next	chapter,	we	will	learn	about	the	User-	Centered	Design	pro-

cess,	which	is	at	the	heart	of	improving	the	user	experience	of	game	development	tools.

C	h	a	p	t	e	r	2

The	User-	Centered

Design	Process

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?

•	What	is	the	User-	Centered	Design	process?

•	How	can	User-	Centered	Design	help	us	to	achieve	a	better	user	expe-

rience	faster?

•	How	can	pre-	visualization	be	used	to	improve	the	user	experience?

•	How	can	we	integrate	the	User-	Centered	Design	process	into

Agile	(Scrum)?

•	How	do	we	deal	with	a	lack	of	time	to	implement	the	User-	Centered

Design	process?

WHAT	IS	THE	USER-	CENTERED	DESIGN	PROCESS?

The	User-	Centered	Design	process	is	one	of	the	most	widely	used

approaches	to	user	experience	design.	It	has	been	applied	in	a	variety	of	different
industries	for	many	years.	The	majority	of	this	book	is	focused	on	guiding	you	through
each	step	in	the	process	and,	along	the	way,	presenting	concepts	and	techniques	that	can
be	used	to	improve	the	user	experi-

ence	of	game	development	tools.

The	most	important	concept	to	understand	about	the	User-	Centered

Design	process	is	that	it	is	not	a	magic	solution.	There	is	no	“secret	sauce”

that	will	provide	immediate	results,	and	it	is	not	a	“shiny	coat	of	paint”

15

16	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	2.1	Iterative
improvements	to	the	iPod	Classic	scroll-wheel	across	several	generations.

that	can	be	applied	at	the	end	of	development.	It	is	an	iterative	process.

Comparing	the	first	few	generations	of	the	scroll-	wheel	on	the	Apple	iPod	(see	Figure
2.1)	reminds	us	that	even	very	popular	products	take	time	and	sometimes	several	iterations
to	get	it	right	…	and	even	then,	they	can

always	be	improved.

By	applying	the	User-	Centered	Design	process,	we	accept	that	we	may

not	get	it	right	the	first	time.	However,	with	each	quick	iteration,	we	will	analyze	the	tool
to	find	problems,	make	improvements	to	the	design,	and

evaluate	it	with	the	users	to	confirm	that	we	are	going	in	the	right	direction.

THE	PHASES	OF	THE	USER-	CENTERED	DESIGN	PROCESS

“It	is	a	shift	in	attitude	from	designing	for	users	to	one	of	designing	with	users.”

ELIZABETH	SANDERS	(EMPHASIS	ADDED)

User-	Centered	Design	is	an	iterative	process	that	revolves	around	the

users.	Therefore,	it	should	come	as	no	surprise	that	the	users	are	at	the	center	of	the
process	(see	Figure	2.2).	Everything	that	we	do	is	done	out	of	consideration	for	the	users.

FIGURE	2.2	Each	phase	of	the	User-Centered	Design	process	revolves	around	the	users.

The	User-	Centered	Design	Process	◾	17
There	are	many	different	versions	of	this	process	used	in	user	experi-

ence	design,	such	as	the	ISO	9241-210	ISO	standard	for	human–	computer

interaction.*	We	will	use	a	simple	and	straightforward	process	for	the	purposes	of	this
book,	made	up	of	the	following	phases:	Analysis,	Design,

and	Evaluation.

Analysis

This	phase,	which	is	covered	in	Chapter	4,	is	all	about	examining	how

people	use	the	tools.	We	will	learn	the	importance	of	watching	users	work,	as	opposed	to
relying	only	on	focus	groups,	surveys,	or	simply	asking	the	users	to	tell	us	how	they	think
that	they	work.	We	will	also	learn	how	the	brain	processes	actions	and	mental	loads,
which	will	help	us	find	ways	to	make	the	tools	better	for	the	users.

Through	a	variety	of	techniques,	we	will	learn	how	to	observe	and

interpret	the	way	in	which	people	use	the	tools.	We	are	not	looking	for

solutions	at	this	time;	we	are	only	focusing	on	identifying	problems	(see	Figure	2.3).

Design

There	is	an	old	saying	in	the	field	of	user	experience:	“Design	without	constraints	is	just
art.”	One	of	the	most	important	outputs	of	the	Analysis	phase	is	to	provide	us	with	those
constraints,	so	that	we	can	use	them	to	choose	what	to	improve	during	the	Design	phase.
In	this	phase,	beginning	in	Chapter	5,	we	will	learn	a	number	of	concepts	and	techniques
that	we

can	use	to	improve	the	design	(see	Figure	2.4).

FIGURE	2.3	The	Analysis	phase	of	the	User-Centered	Design	process.

*	For	more	on	the	ISO	9241-210	standard,	visit	the	website	http://www.iso.org/	iso/
catalogue_detail.

htm?csnumber=52075.

18	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	2.4	The
Design	phase	of	the	User-Centered	Design	process.

Evaluation

Finally,	we	can	move	on	to	the	Evaluation	phase,	which	is	covered	in

Chapter	6.	Here,	we	will	learn	what	a	heuristic	evaluation	is.	We	will	also	learn	how	to
build	a	test	plan,	which	will	allow	us	to	determine	if	the

changes	to	the	design	are	improving	the	user	experience.	We	will	also

determine	when	it	is	appropriate	to	go	straight	to	code	or	to	use	pre-

visualization	techniques	such	as	sketching	and	prototypes	(see	Figure	2.5).

Back	to	Analysis

Finally,	we	start	over	again	at	the	Analysis	phase.	Remember,	the	goal

is	quick	and	constant	iteration.	We	can—and	most	likely	will—move

back	and	forth	around	the	loop.	It	is	quite	common	to	move	between	the

Analysis	and	Design	phases	a	few	times	before	going	on	to	the	Evaluation	phase.	There	is
no	wrong	way	so	long	as	we	are	constantly	iterating	and

improving	based	on	regular	feedback	from	the	users	(see	Figure	2.6).

FIGURE	2.5	The	Evaluation	phase	of	the	User-Centered	Design	process.

The	User-	Centered	Design	Process	◾	19
FIGURE	2.6	Returning	back	to	the	Analysis	phase.

THE	POWER	OF	PRE-	VISUALIZATION

One	of	the	most	powerful	aspects	of	the	User-	Centered	Design	process	is	pre-
visualization,	which	allows	us	to	learn	more	about	the	user	experience	before	we	write	any
code.	This	helps	to	ensure	that	the	time	spent	developing	the	tools	is	as	efficient	as
possible.

The	decision	to	invest	in	these	pre-	visualization	techniques	depends

on	a	variety	of	factors:	how	complex	the	change	is,	the	programming

resources	that	are	available	at	the	time,	and	so	on.	We	will	discuss	this	in	Chapter	6.

Jeff’s	Block	of	Wood

In	the	mid-1990s,	electronic	pocket	organizers	were	gaining	in	popularity.

These	devices	were	portable	computers	designed	to	replace	your	address

book,	calendar,	and	notepad.	The	problem	was	that	most	of	their	features	were	badly
implemented,	and	some	were	too	big	to	deserve	the	term	“pocket.”

Jeff	Hawkins	was	one	of	the	founding	members	of	Palm,	and	he	decided

to	change	that.	He	and	his	team	started	working	on	a	pocket-	sized	per-

sonal	organizer	that	had	a	limited	feature	set.	Through	observation	and

analysis,	Hawkins	identified	a	small	set	of	features	that	he	felt	most	people	wanted	a
pocket	organizer	to	do	really	well.

Getting	the	right	size	and	form	factor	for	a	device	that	fits	in	your	pocket	is	not	easy.
When	it	comes	to	hardware,	you	cannot	make	a	change	after

a	device	comes	off	the	assembly	line.	Getting	it	wrong	can	be	disastrous.

Palm	did	not	have	unlimited	resources	to	fabricate	prototypes.

One	day	Jeff	came	in	to	work	with	a	wood	block	small	enough	to	be	held

in	one	hand.	In	a	meeting,	he	took	out	the	wood	block	out	and	started	tapping	on	it.	The
next	day,	he	came	in	with	another	wood	block	that	was	a

20	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	2.7	A
prototype	of	the	first	Palm	Pilot,	created	by	Jeff	Hawkins.	©	Mark	Richards.	Courtesy	of
the	Computer	History	Museum.

slightly	different	size.	Approaching	a	group	of	people	having	a	discussion,	he	took	out	the
wood	block	and	pretended	to	enter	someone’s	information

into	an	address	book.	The	day	after	that,	he	came	in	with	a	slightly	smaller,	but	thicker
wood	block.	After	making	plans	to	meet	someone,	he	took	out

the	wood	block	and	pretended	to	enter	a	new	meeting	in	his	calendar	(see	Figure	2.7).

Had	he	lost	his	mind?	No,	quite	the	opposite.*	Jeff	was	working	on	find-

ing	the	right	size	and	form	factor	early	on	in	the	process,	in	an	inexpensive	and	fast	way.
Instead	of	going	straight	to	manufacturing	with	a	design	that	was	untested,	he	found	a	way
to	try	out	different	options	in	situations	similar	to	those	where	the	real	device	would	be
used.	Over	time,	he	iterated	on	the	wood	blocks	to	create	prototypes	that	were	increasingly
sophisticated,	complete	with	an	interface	printed	on	paper	and	a	stylus	made	from	a
chopstick.	When	he	had	arrived	at	a	form	factor	that	felt	right,	he	was	able	to	use	the
prototypes	to	help	people	understand	his	vision.	All	of	this	work	contributed	to	the	release
of	the	first	Palm	Pilot,	a	device	that	would

*	In	fact,	Jeff	Hawkins	knows	a	thing	or	two	about	the	mind.	In	addition	to	being	a
brilliant	innova-tor,	Jeff	also	has	a	deep	understanding	of	the	brain.	In	2004,	he	wrote	a
book	about	how	we	think,	titled	On	Intel	igence.	Knowing	how	the	brain	works	is	useful
information	when	you	are	designing	for	people.

The	User-	Centered	Design	Process	◾	21
outsell	the	competition,	spawn	a	long	list	of	imitators,	and	ultimately	have	a	huge	impact
on	the	world	of	portable	electronics.

The	important	lesson	that	we	can	learn	from	this	is	that	when	resources

are	not	available	or	are	too	expensive,	pre-	visualization	techniques	are	one	way	to	allow
everyone	to	have	a	shared	vision	of	what	the	tool	will	be,

and	understand	how	it	will	be	used	in	context,	before	you	start	investing	resources	in
development.

Getting	the	Design	Right	and	the	Right	Design

When	creating	a	feature	for	a	tool,	it	is	often	considered	prohibitive	to	build	a	few
alternatives	in	an	effort	to	pick	the	best	option.	However,	the	long-	term	cost	of	getting	the
feature	wrong	can	be	much	higher	than	taking	the	time	to	create	a	few	alternatives!	Bill
Buxton	summarizes	this	perfectly	in	the	subtitle	of	his	book	Sketching	User	Experiences:
“Getting	the	Design	Right	and	the	Right	Design.”	It	is	one	thing	to	get	the	design	right,
but	make	sure	you	are	doing	the	right	design	in	the	first	place.

While	it	is	true	that	Jeff’s	wood	blocks	did	not	have	the	functionality

of	a	real	Palm	Pilot,	it	was	enough	to	help	him	fail	early	and	often	in	a	quick	and
inexpensive	way.	Once	he	had	learned	all	that	he	could	from

that	prototype,	he	was	able	to	share	it	with	other	people	and	move	on	to	more
sophisticated	prototypes.	Pre-	visualization	can	help	us	do	the	same	for	our	game
development	tools.

Having	the	Same	Vision

If	you	have	worked	in	game	development	long	enough,	you	may	be	famil-

iar	with	this	situation:	developers	and	users	are	gathered	in	a	meeting

room,	discussing	how	a	tool	will	work.	Users	talk	about	what	they	need,

and	developers	ask	questions.	When	everyone	agrees	on	what	to	do,	an

e-	mail	is	sent	out	with	bullet-	points	that	summarize	the	decisions.	The	developers	make
changes	to	the	tool,	and	a	few	days	later,	the	users	get	their	hands	on	it.	The	first	reaction
from	the	users	is,	“This	isn’t	what	we	asked	for!”	Frustrated,	the	developers	reply,	“It	is!
It’s	written	right	here	in	the	e-	mail!”	When	the	stakeholders	find	out	about	the	situation,
they	say,

“Why	are	the	users	unable	to	produce	the	content	we	need	for	the	game?

Why	are	the	developers	saying	they	need	more	time	to	make	changes	to

the	tool?”	If	we	do	not	visualize	what	we	intend	to	build,	there	will	always	be	room	for
interpretation	and	misunderstanding.

For	example,	consider	the	word	Letters	(left	side	of	Figure	2.8).	If	you	were	to	close	your
eyes	and	visualize	what	that	word	means	to	you,

22	◾	Designing	the	User	Experience	of	Game	Development	Tools	Letters
FIGURE	2.8	Without	visualization,	a	word	can	be	interpreted	in	different	ways.

what	would	you	see?	A	stack	of	paper	letters	in	envelopes	or	letters	of

the	alphabet?

When	it	comes	to	a	topic	as	complex	as	the	user	experience	of	a	game

development	tool,	we	need	to	visualize	the	meaning	of	our	words.	If	we	do	not,	there	is	a
good	chance	that	we	are	not	talking	about	the	same	thing.

GETTING	TO	A	BETTER	USER	EXPERIENCE	FASTER

Starting	Closer

If	we	could	track	the	development	of	a	tool	on	a	linear	time	graph,	it	might	look
something	like	the	left	side	of	Figure	2.9.	The	bottom	represents	time,	and	the	left	side
represents	the	target	zone	for	a	user	experience	that	is	optimally	usable,	useful,	and
desirable.	Our	goal	is	to	hit	that	zone	as	closely	as	possible.*

When	we	do	not	design	for	the	right	users	or	fully	understand	their

goals,	we	start	far	away	from	the	target	zone	(represented	by	the	triangle	on	the	right	side
of	Figure	2.9).

0	1	2	3	4	5	6	7	8

0	1	2	3	4	5	6	7	8

FIGURE	2.9	Starting	far	from	the	target	zone	increases	the	time	it	takes	to	achieve	an
improved	user	experience.

*	The	book	Effective	UI	by	Anderson,	McRee,	Wilson,	et	al.	uses	a	very	similar	graph	to
compare	the	slow	iteration	of	the	waterfall	process	versus	the	fast	iteration	of	Agile.

The	User-	Centered	Design	Process	◾	23
0	1	2	3	4	5	6	7	8

0	1	2	3	4	5	6	7	8

FIGURE	2.10	Starting	closer	to	the	target	zone	means	that	it	takes	less	time	to	achieve	an
improved	user	experience,	even	if	you	take	into	account	the	time	spent	in	the	User-
Centered	Design	process.

However,	if	we	invest	in	the	Analysis	phase	of	the	User-	Centered	Design	process,	we
start	closer.	This	means	that	hitting	the	target	zone	takes	less	time	(represented	by	the
circle	on	the	left	side	of	Figure	2.10).	Even	if	we	start	a	little	bit	later	because	we	have
chosen	to	invest	time	in	the	Analysis	phase,	we	will	still	have	a	better	chance	of	hitting
our	target	zone	faster	(see	the	right	side	of	Figure	2.10)	because	we	know	what	we	are
building	and	who	we	are	building	it	for.

Small,	Frequent	Iterations

When	we	do	not	get	feedback	from	the	users	on	a	regular	basis,	every	iteration	can	result
in	big,	time-	consuming	changes.	Each	version	attempts	to	realign	the	tool	to	address	what
the	users	need,	and	the	degree	of	success	can	vary	wildly	(see	the	left	side	of	Figure	2.11).

By	comparison,	the	User-	Centered	Design	process	emphasizes	short,

frequent	repetitions	of	the	iteration	loop:	analyze	the	situation,	design	one	0	1	2	3	4	5	6	7	8

0	1	2	3	4	5	6	7	8

FIGURE	2.11	More	frequent	iterations	allow	developers	to	adapt	the	user	experience
faster,	and	with	more	confidence.

24	◾	Designing	the	User	Experience	of	Game	Development	Tools	or	more	focused
improvements,	and	then	evaluate	the	impact	on	the	user

experience.	Validating	the	tool	with	the	users	on	a	regular	basis	makes	for	smaller,	more
concentrated	adjustments	(see	the	right	side	of	Figure	2.11).

This	helps	to	achieve	the	goal	of	an	ideal	user	experience	more	quickly

and	efficiently.

INTEGRATING	THE	USER-	CENTERED

DESIGN	PROCESS	INTO	AGILE

Emphasizing	short,	rapid	iterations	will	feel	familiar	to	those	who	work	with	the	Scrum
framework	of	the	Agile	software	development	process.

However,	despite	the	similarities	between	Agile	and	the	User-	Centered

Design	process,	it	may	not	be	immediately	apparent	how	to	integrate

the	two.

Before	Joining	the	Sprint

At	the	beginning	of	the	project,	it	is	normal	to	spend	a	bit	of	time	gathering	information
about	who	the	stakeholders	and	users	are	before	going

through	the	phases	of	Analysis,	Design,	and	Evaluation.*	A	frequent	reaction	to	this	is,
“What	do	the	developers	do	while	that	is	happening?”	The	fact	is	that	there	will	always	be
programming	tasks	that	can	be	done	during	this	time,	such	as	work	on	the	back-	end,
technical	investigations,	or	other	things	that	will	not	affect	the	user	interface.

Linking	to	the	Sprint

One	of	the	advantages	of	going	through	each	phase	of	the	User-	Centered

Design	process	within	a	single	sprint	is	that	it	forces	small	change	and	rapid	iteration.
Here	is	how	each	of	the	phases	can	be	integrated.

Iteration	Loop

Once	you	have	a	plan,	you	can	set	deadlines	for	the	Analysis,	Design,	and	Evaluation
phases	within	the	sprint.	For	example,	if	the	sprint	lasts	two	or	three	weeks—a	common
length	for	many	teams—you	can	set	a	deadline

to	complete	the	Analysis	phase	before	the	first	third,	the	Design	phase

before	the	second	third,	and	finally,	the	Evaluation	phase	before	the	end	of	the	sprint	(see
Figure	2.12).

*	In	their	article	“Adapting	Usability	Investigations	for	Agile	User-	Centered	Design”	for
the	Journal	of	Usability	Studies,	authors	Desiree	Sy	and	Lynn	Miller	call	this	“Cycle	0.”
You	can	read	it	here:	http://www.upassoc.org/	upa_publications/	jus/2007may/	agile-
ucd.pdf.

The	User-	Centered	Design	Process	◾	25
A

B

FIGURE	2.12	Integrating	the	User-Centered	Design	process	within	a	single	sprint.

A

B

C

FIGURE	2.13	Integrating	the	User-Centered	Design	process	across	several	sprints.

More	Complex	Designs

In	the	case	of	bigger,	more	complex	features	that	take	more	than	a	week

to	design,	there	are	other	approaches	to	integrating	the	iteration	loop	into	the	sprint.

One	approach	is	to	prepare	designs	one	sprint	in	advance,	and	dedicate

an	entire	sprint	to	implementation.	For	example,	consider	Figure	2.13,

which	shows	three	consecutive	sprints.	During	sprint	B,	developers	are

implementing	the	changes	from	the	previous	Design	phase.	Meanwhile,

the	people	in	charge	of	the	User-	Centered	Design	process	do	the	Evaluation	phase	on	the
latest	build	of	the	tool	from	sprint	A.	Then,	they	look	at	the	results	in	the	Analysis	phase.
Finally,	changes	are	proposed	in	the	Design	phase	and	delivered	right	before	the	start	of
sprint	C,	and	then	the	cycle	shifts	ahead	by	one	sprint.

WHO	HAS	THE	TIME	TO	DO	ALL	OF	THIS?

This	process	might	seem	like	a	lot	of	work.	For	many,	this	is	a	big	shift	away	from	how
tools	development	is	traditionally	done.	However,	if	we

agree	that	the	way	we	have	been	working	in	the	past	has	resulted	in	tools	with	a	bad	user
experience,	perhaps	it	is	time	to	try	something	different.

Working	differently	will	require	a	culture	shift,	which	we	will	discuss	in	the	final	chapter.

In	a	perfect	world,	there	would	be	one	person	in	each	tools	team	driv-

ing	the	User-	Centered	Design	process.	However,	when	that	is	not	pos-

sible,	the	team	must	work	together	and	take	it	upon	themselves	to	apply

26	◾	Designing	the	User	Experience	of	Game	Development	Tools	these	concepts	in	an
effort	to	show	that	improving	the	user	experience	is	a	worthy	investment.

If	you	studied	object-	oriented	programming	in	school,	you	probably

started	by	creating	class	diagrams.	If	you	studied	3D	modeling,	you	probably	started	by
using	a	front	and	side	reference	drawing.	After	a	few	years	of	programming,	you	no	longer
needed	to	create	a	class	diagram	for	every	single	class,	and	you	no	longer	needed	front	and
side	references	to	create	every	single	model.	They	were	useful	tools	in	the	early	days,	but

as	you	gained	more	experience,	you	internalized	the	process	and	started	intuitively
applying	the	concepts	and	techniques	without	needing	a	guide.

That	is	how	you	can	apply	the	User-	Centered	Design	process	presented

in	this	book.	Start	by	using	it	as	a	guide.	Once	you	have	applied	the	principles	long
enough,	it	will	naturally	become	part	of	your	development

process.	That	is	when	you	will	begin	to	see	big	improvements	to	the	user	experience	of
your	tools.

WRAPPING	UP

In	this	chapter,	we	learned	about	the	User-	Centered	Design	process	and

how	it	can	help	us	achieve	a	better	user	experience.	We	also	learned	how	pre-	visualization
can	be	used	in	certain	situations	to	help	us	improve	our	design	and	allow	everyone
involved	to	have	the	same	vision	of	what	we	are	going	to	build.	Finally,	we	discussed	how
the	User-	Centered	Design	process	can	be	integrated	into	Agile	and	how	to	justify	the	time
and	resources.

In	the	next	chapter,	we	will	learn	what	it	means	to	be	“User-	Centered,”

which	is	one	of	the	most	important	aspects	of	improving	the	user	experi-

ence	of	game	development	tools.

C	h	a	p	t	e	r	3

What	Does	It	Mean	to	Be

“User-	Centered”?

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?

•	The	importance	of	starting	with	the	users

•	How	to	focus	on	the	right	users

•	Understanding	the	difference	between	features	and	goals

•	Doing	one	thing	really	well

•	Why	it	is	important	to	choose	the	right	features

START	WITH	THE	USERS

“You’ve	got	to	start	with	the	customer	experience	and	work	back

toward	the	technology—not	the	other	way	around.”

—STEVE	JOBS

That	statement,	made	in	1996	by	the	late	CEO	of	Apple	while	he

was	hosting	an	open	question-	and-	answer	session,*	would	define	a

new	direction	for	the	company.	It	would	also	take	their	shares	from	the

rock	bottom	price	of	four	dol	ars	to	over	600	dol	ars	in	a	little	over	a	decade.

www.allitebooks.com

http://www.allitebooks.org

*	The	full	video	can	be	seen	here:	“Steve	Jobs	on	Apple	Customer	Experience	and
Innovation,”

https://www.youtube.com/	watch?v=1SIeTmORl0E.

27

28	◾	Designing	the	User	Experience	of	Game	Development	Tools	Google	clearly	seems
to	share	this	mindset.	On	the	corporate	section	of

their	webpage	that	lists	their	philosophies,	one	reads	“Focus	on	the	user	and	all	else	will
follow.”*	That	mentality	has	also	helped	take	them	from	a	small	start-	up	to	the	world
leader	in	search.

We	Are	Not	the	Users

If	you	are	involved	in	the	creation	of	game	development	tools,	take	a	minute	to	ask
yourself	these	questions:

•	Who	are	the	people	using	the	tools	to	produce	final	content	for

the	game?

•	Who	uses	the	tools	all	day	(and	even	late	into	the	night)?

•	Whose	job	depends	on	how	well	they	can	use	the	tools?

If	you	are	referring	to	software	used	to	program	game	development	tools

(such	as	Microsoft	Visual	Studio,	Eclipse,	and	Apple	Xcode)	or	design

the	interfaces	for	game	development	tools	(such	as	Adobe	Photoshop,

Microsoft	Expression	Blend,	and	Qt	Designer),	then	the	answer	is	you.

However,	if	you	are	talking	about	anything	else,	then	there	is	only	one

answer:	the	users!

One	of	the	biggest	mistakes	that	we	make	as	game	tools	developers	is

creating	tools	without	first	understanding	the	people	who	use	them.	We

can	assume	that	we	know	the	goals	of	the	users	and	the	context	in	which

they	use	the	tools.	Some	of	us	may	not	see	this	as	a	problem	because	we

have	worked	this	way	for	years.†	Changing	this	view	is	one	of	the	first

steps	on	the	road	to	improving	the	user	experience	of	our	game	develop-

ment	tools.

We	need	to	accept	that	we	do	not	always	know	the	answers	to	these

questions.	Furthermore,	we	need	to	make	it	part	of	our	job	to	find	out—

even	if	we	have	many	years	of	experience	in	the	industry,	even	if	we	have	previously
worked	in	the	same	position,	or	even	if	we	have	a	good	relationship	with	someone	who
does	now.	Our	opinion,	or	that	of	one	or	two

expert	users,	does	not	represent	the	reality	of	everyone	using	the	tools	to	produce	the
majority	of	the	game’s	content.

*	This	comes	from	the	Google	company	philosophy	page,	“Ten	Things	We	Know	to	Be
True,”	http://

www.google.ca/	about/	company/	philosophy/.

†	Including	myself!

What	Does	It	Mean	to	Be	“User-	Centered”?	◾	29
When	we	learn	about	the	users,	we	must	also	share	what	we	have

learned	with	everyone	involved	in	the	development	of	the	tool.	If	everyone	shares	the
same	vision	of	whom	a	tool	is	being	developed	for,	they	are	better	prepared	to	work	as	a
team	to	build	a	great	user	experience.

What	Happens	When	We	Do	Not	Know

Whom	We	Are	Designing	For?

When	we	do	not	know	whom	a	tool	is	for,	we	end	up	creating	a	tool	for

everyone.	There	is	an	old	saying	about	that:	“When	you	try	to	please	everyone,	you	please
no	one.”

What	does	that	mean	in	the	context	of	game	development	tools?

Consider	the	following	scenario:	Three	people	are	working	together	to

create	a	game	development	tool.	Based	on	their	own	experiences,	each	one	has	a	different
view	of	who	uses	the	tool,	what	they	need,	and	how	they	use	it.	They	do	not	have	a	shared
vision	of	whom	they	are	building	for.	They	combine	their	ideas	together	into	one	big	list
of	features.

The	first	person	adds	a	few	initial	features	(left	side	of	Figure	3.1).	Then,	the	second
person	adds	a	few	more	features,	because	they	have	a	different	view	of	what	the	users
need	(middle	of	Figure	3.1).	Finally,	the	third	person	adds	more	features	as	well,	based	on
their	view	of	what	the	users	need	(right	side	of	Figure	3.1).

Once	you	see	this,	you	begin	to	understand	why	some	users	say	that

their	game	development	tools	are	overly	complicated	and	difficult	to	learn!

Documentation	Is	Not	the	Magic	Solution

It	might	seem	logical	to	expect	users	to	read	the	documentation	before

saying	that	tool	is	hard	to	understand.	That	would	be	true,	if	the	documentation	is	up	to
date,	or	if	it	even	exists.	When	it	does	exist,	how	many	people	actually	read	it	end	to	end?
Often	it	is	the	technical	directors,	technical	artists,	and	tools	developers	who	act	as	the
documentation.	They	are	also	a	FIGURE	3.1	Trying	to	create	an	interface	to	“please
everyone”	usually	results	in	an	interface	that	will	“please	no	one.”

30	◾	Designing	the	User	Experience	of	Game	Development	Tools	single	point	of	failure
(What	if	they	are	run	over	by	a	Warthog	tomorrow?).

In	addition,	if	there	are	people	constantly	asking	them	questions	about

how	to	use	the	tools,	they	have	less	time	to	solve	other	big	problems.

A	user	manual	is	important	and	should	be	created	and	maintained	if

the	resources	are	available,	but	we	also	need	to	do	our	best	to	create	tools	where	the	basic
functionality	is	easy	to	learn	without	requiring	the	user	to	read	a	manual.

Stop	the	Culture	of	“RTFM”

On	the	topic	of	manuals,	one	of	the	biggest	challenges	to	improving	the

user	experience	of	game	development	tools	is	the	culture	of	“RTFM”:

blaming	the	user	when	they	do	something	wrong.	Content	creators	are

good	at	creating	content.	That	is	already	a	very	big	responsibility	and	can	take	years	of
hard	work!	Not	only	is	it	unrealistic	for	us	to	expect	the	users	to	understand	everything
technical	related	to	game	development,	it	can

also	be	seen	as	hostile.	This	hurts	communication	and	teamwork.	Instead

of	blaming	the	users	or	expecting	them	to	become	something	that	they	are	not,	we	need	to
start	understanding	them.

FOCUS	ON	THE	RIGHT	USERS

As	we	learned	earlier,	when	we	try	to	please	everyone,	we	please	no	one.

However,	the	opposite	can	also	be	true:	it	can	be	problematic	to	design	for	only	one	or	two
people.*

In	the	case	of	a	tool	that	is	made	to	be	used	by	a	lot	of	users	with	minimal	technical
knowledge,	designing	for	one	or	two	people	who	are	highly

technical	and	do	not	use	the	tools	very	often	can	make	this	situation	worse.

For	example,	consider	that	all	of	the	users	of	a	tool	are	spread	among	the	following	two
axes:	technical	knowledge	and	frequency	of	use	(see	the	left	side	of	Figure	3.2).	If	we	only
talk	to	the	users	in	the	upper	left	who	are	more	technical	and	do	not	use	the	tool	very	often
(for	example,	to	set	up	a	pipeline	or	train	a	new	user),	we	are	missing	the	opinions	of	a
large	percentage	of	the	user	base.

The	key	is	to	work	with	enough	users	so	we	know	the	majority	of	the

users’	needs	(highlighted	area	on	the	right	of	Figure	3.2)	and	to	work	with	users	who
represent	the	mix	of	people	using	the	tool	(highlighted	area	on	the	left	of	Figure	3.2),	so
we	are	not	trying	to	please	everyone	at	once.

*	Malcolm	Gladwell	discusses	this	effect,	known	as	the	inverted	U-	curve,	in	his	book
David	&	Goliath:	Underdogs,	Misfits,	and	the	Art	of	Battling	Giants.

What	Does	It	Mean	to	Be	“User-	Centered”?	◾	31
More	technical

More

tiveness

Less

More

ec

frequent

frequent

Eff	sLes

Variety	of	users

Less	technical

FIGURE	3.2	Focusing	on	the	right	users:	finding	the	right	balance.

Minimal	Investment	for	Maximum	Results

Earlier,	we	spoke	about	the	benefits	of	saving	20	minutes	per	8-hour	day	for	20	users.	Let
us	imagine	that	instead	we	found	a	way	to	save	30	minutes	a	day.	This	sounds	like	a	great
improvement.	However,	the	impact	changes	if	that	savings	is	only	for	five	users,	instead
of	20.	Alternatively,	imagine	if	those	users	actually	use	the	tool	only	two	hours	per	day,
instead	of	all	eight	hours	per	day.	To	make	matters	worse,	if	our	savings	of	30	minutes
comes	from	the	implementation	of	a	complex	new	feature	that	only	five	people

use,	we	have	also	spent	a	lot	of	time	and	money	on	development.	This	is	a	lose/	lose
scenario	(see	the	left	side	of	Figure	3.3).

We	can	also	imagine	another	scenario	where	we	save	time	for	50	users.

This	sounds	like	we	are	helping	a	large	number	of	people!	However,	because	we	tried	to
please	everyone,	we	spent	a	lot	of	time	implementing	too	many	features	and	did	not	have
the	time	to	optimize	them.	As	a	result,	we	only	save	each	user	one	minute	per	day.	Even
though	it	seems	that	we	are	making	things	better,	we	are	saving	less	overall	(see	the
middle	of	Figure	3.3).

Spent

Saved

FIGURE	3.3	How	focusing	on	the	right	users	can	maximize	the	improvement	to	the	user
experience,	for	a	minimal	investment.

32	◾	Designing	the	User	Experience	of	Game	Development	Tools	Instead,	we	need	to	find
the	people	who	are	using	the	tools	for	the	most	number	of	hours	in	the	day	and	focus	on
delivering	a	focused	feature	set	that	satisfies	their	needs	(see	the	right	side	of	Figure	3.3).
This	will	give	us	the	maximum	results	for	the	minimum	investment.

We’re	Not	Going	to	Make	Everyone	Happy

It	is	important	to	keep	in	mind	that	we	are	not	going	to	make	everyone

happy.	We	have	to	look	at	the	big	picture.	We	are	going	to	make	the	most	frequent	users
more	productive.	That	will	result	in	the	biggest	impact	on	the	user	experience	overall.

FEATURES	VERSUS	GOALS

If	you	have	worked	in	a	game	tools	development	team,	at	some	point	you

have	heard	someone	say,	“Why	don’t	the	users	know	what	they	want?	Why

can’t	they	just	tell	us?”	In	addition,	you	may	be	familiar	with	the	perception	that	when	a
user	is	asked	if	they	want	a	feature,	nine	times	out	of	ten	they	will	say	yes,	regardless	of
the	priority	or	usefulness.

Both	of	these	situations	highlight	the	problems	that	occur	when	we

focus	on	features	instead	of	user	goals.	One	important	point	that	we	need	to	understand	is
this:	it	is	not	the	user’s	job	to	design	the	user	interface.

However,	it	is	their	job	to	be	able	to	tell	us	what	their	goals	are!

Swiss	Army	Knife	Compared	to	Scissors

To	understand	this	better,	let	us	consider	two	common	tools:	a	Swiss	army	knife	and	pair
of	scissors	(see	Figure	3.4).

The	Swiss	army	knife	is	a	great	invention.	Hidden	inside	the	average

Swiss	army	knife	is	a	multitude	of	tools,	from	simple	cutting	blades	to

FIGURE	3.4	Features	versus	goals:	comparing	a	Swiss	army	knife	to	scissors.

What	Does	It	Mean	to	Be	“User-	Centered”?	◾	33
corkscrews,	mini-	scissors,	toothpicks,	bottle	openers,	and	more.	Swiss

army	knives	do	a	lot	of	great	stuff.	There	are	two	trade-	offs,	though:	First,	because	they
do	such	a	great	variety	of	things,	they	are	not	necessarily	very	good	at	any	one	thing	in

particular.	Second,	if	you	have	never	used	a	Swiss	army	knife	before,	it	is	not	immediately
clear	how	it	works	at	first	glance,	or	the	variety	of	tools	contained	within.

Now,	let	us	compare	that	to	a	pair	of	scissors.	Scissors	do	one	thing	really	well:	they	cut
paper!	However,	they	are	not	good	at	much	else.	If	we	needed	to	open	a	bottle,	and	all	we
had	was	a	pair	of	scissors,	we	would	be	out	of	luck.	However,	for	cutting	paper,	scissors
are	hard	to	beat.	Unlike	the	Swiss	army	knife,	however,	they	are	much	more	intuitive:	The
two	holes	suggest	where	we	should	place	our	fingers.	They	can	only	move	in	one	axis.
They	do	not	hide	their	functionality.	They	are	never	in	a	specific	“mode.”

Understand	What	the	User	Is	Trying	to	Accomplish

How	does	this	relate	to	features	versus	goals?	The	truth	is	that	many	of	our	tools	resemble
the	Swiss	army	knife:	they	do	many	things,	but	they	tend

to	do	those	things	moderately	well	from	the	user’s	perspective.	It	is	also	not	clear	what
they	do	just	by	looking	at	them.	This	is	because	we	pack

them	with	features	without	always	understanding	what	the	majority	of

the	users’	goals	are.

If	the	user’s	goal	is	to	cut	a	piece	of	paper	in	half,	and	we	give	them	the	option	of	either	a
Swiss	army	knife	or	a	pair	of	scissors,	the	scissors	would	be	the	clear	choice.	This
illustrates	the	importance	of	understanding	the	user’s	goals.	Before	we	start	adding
features,	we	need	to	understand	what	the	user	is	trying	to	accomplish.	By	knowing	this,
we	can	design	the	right	tool	for	the	task.

A	Faster	Horse

When	asked	about	the	invention	of	the	automobile,	it	is	widely	believed

that	Henry	Ford	said,	“If	I	had	asked	people	what	they	wanted,	they	would	have	said	faster
horses!”	This	quote	is	often	used	to	suggest	that	you	cannot	create	innovative	products	if
you	ask	the	users	or	stakeholders	what	they	want.

As	it	turns	out,	Henry	Ford	never	actually	said	that.*	However,	he	did

say	this:	“If	there	is	any	one	secret	of	success,	it	lies	in	the	ability	to	get	the

*	No	references	to	this	quote	can	be	found	in	books,	in	web	searches,	and	even	from	the
historians	at	the	Ford	Museum:	http://blogs.hbr.org/2011/08/henry-	ford-	never-	said-	the-
fast/.

34	◾	Designing	the	User	Experience	of	Game	Development	Tools	other	person’s	point	of
view	and	see	things	from	that	person’s	angle	as	well	as	from	your	own.”

Learning	about	people	and	their	goals	is	not	the	same	thing	as	letting

them	design	the	features.	If	you	understand	what	people	need,	you	are	in	a	much	better
position	to	propose	features	that	address	those	goals.

In	other	words,	the	user	is	the	best	person	to	tell	you	that	they	want	to	go	from	point	A	to
point	B.	Once	you	understand	that,	you	can	suggest	a

faster	horse	or	an	automobile.

DO	ONE	THING	REALLY	WELL

“Good	design	is	as	little	design	as	possible.”

—DIETER	RAMS

Another	philosophy	listed	on	the	Google	company	webpage	is	this:	“It’s

best	to	do	one	thing	really,	really	well.”	Google	decided	early	on	that	their	focus	would	be
search.	Although	they	went	on	to	create	a	variety	of	different	services,	search	has	always
been	at	their	core.	They	have	chosen	not	to	do	some	other	things	so	that	they	can	allocate
the	necessary	resources

to	continue	providing	the	best	search	experience.

Being	Proud	of	the	Things	We	Haven’t	Done

Another	one	of	the	philosophies	that	transformed	Apple	into	a	huge	suc-

cess	after	the	turn	of	the	millennium	was	focusing	on	a	few	key	prod-

ucts	and	features.	That	attitude	is	perfectly	represented	in	this	quote	from	Steve	Jobs:	“I’m
as	proud	of	the	things	we	haven’t	done	as	the	things	we	have	done.”

It	is	important	to	note	that	saying	“no”	does	not	mean,	“We’ll	never	do

this.”	It	means	“not	yet.”	Knowing	what	not	to	do	helps	you	prioritize.	One	of	the	best
ways	to	know	what	not	to	do	is	to	know	who	your	users	are	and	what	they	need.

We	are	often	overwhelmed	by	the	number	of	features	that	we	feel	must

be	added	to	a	tool.	There	is	never	enough	time	to	add	everything,	and	the	priorities	are
always	changing.	However,	if	we	are	asking	ourselves,	“How	are	we	going	to	create	all	of
these	features	before	the	deadline?”	perhaps	we	are	not	asking	the	right	question.	Instead,
perhaps	we	should	start	by	asking	ourselves,	“Are	these	the	right	features?”

This	mentality	is	also	reflected	in	another	quote	from	Mr.	Jobs,	this

time	while	speaking	at	WWDC	1997:	“The	line	of	code	that	is	the	fastest

What	Does	It	Mean	to	Be	“User-	Centered”?	◾	35
to	write,	that	never	breaks,	that	never	needs	maintenance,	is	the	line	that	you	never	have	to
write.”

The	Monkeys	and	the	Banana

We	have	a	tendency	to	support	features	simply	because	we	have	always

done	so.	If	we	have	built	or	used	a	tool	in	the	past	with	a	certain	list	of	features,	and	it
worked	for	the	users	at	the	time,	we	assume	that	we	need	those	features.

This	behavior	is	similar	to	the	story	of	the	monkeys	and	the	banana

(see	Figure	3.5).	Imagine	that	there	are	three	monkeys	in	a	room.	At	one	point,	a	banana	is
placed	in	the	room.	One	of	the	monkeys	walks	over	to

the	banana	and	picks	it	up.	At	that	moment,	a	door	on	the	ceiling	opens

and	a	bucket	of	water	is	dumped	on	the	other	two	monkeys	in	the	room.

All	of	the	moneys	are	wet,	except	for	the	one	who	took	the	banana,	who

is	happily	munching	away.	Naturally,	the	other	monkeys—now,	soaking

wet—are	not	thrilled.

Later,	another	banana	is	placed	in	the	room.	The	same	thing	happens:

one	of	the	monkeys	takes	the	banana,	and	the	other	monkeys	get	soak-

ing	wet.	The	monkeys	start	to	understand	that	when	one	monkey	gets	the

banana,	the	other	monkeys	are	in	for	a	bad	time.

The	next	time	a	banana	is	placed	in	the	room	and	one	of	the	monkeys

reaches	for	it,	the	other	monkeys	beat	him	up	before	he	can	get	to	it.	Soon	enough,	all	of
the	monkeys	are	afraid	of	going	near	the	bananas.

Now,	imagine	that	we	take	one	of	the	monkeys	out	of	the	room	and

replace	it	with	another	one	who	has	never	been	in	the	room	before.	When

a	banana	is	placed	in	the	room,	the	new	monkey	will	naturally	attempt	to	get	it.	This	is
when	the	other	monkeys,	knowing	what	will	happen	to	them,	pile	on	the	new	monkey	and
beat	him	up.	The	new	monkey	is	terrified	and

does	not	understand	why	the	others	are	so	angry!

Over	time,	imagine	that	we	replace	all	of	the	monkeys	in	the	room	so

that	all	of	the	original	monkeys	are	gone.	The	monkeys	in	the	room	know

FIGURE	3.5	The	analogy	of	the	monkeys	and	the	banana.

36	◾	Designing	the	User	Experience	of	Game	Development	Tools	that	the	rule	is	“No	one
goes	near	the	bananas,”	but	they	do	not	know

why.	That	is	just	the	way	it	is.

This	is	why	we	sometimes	add	features	or	design	tools	in	a	certain	way

without	questioning	it:	“We’ve	just	always	done	it	this	way.”	However,	we	have	to	ask
ourselves,	are	all	of	those	features	necessary?

CHOOSE	THE	RIGHT	FEATURES

To	understand	what	is	necessary,	we	need	to	understand	the	needs	of	the

people	using	the	tools.	If	we	do	not	do	this,	we	may	end	up	trying	to	deliver	too	much	at
once	or	work	on	things	that	the	users	do	not	need	right	away.

All	of	this	leaves	us	with	less	time	to	create	a	great	user	experience	for	the	things	that	the
users	really	do	need.

Less	of	What	You	Don’t	Need,	More	of	What	You	Do

In	the	early	2000s,	laptop	makers	were	struggling	to	find	ways	to	make

their	laptops	lighter	while	still	packing	in	all	of	the	common	components,	such	as	a	disc
drive.	They	never	questioned	the	disc	drive,	because	“we’ve	just	always	done	it	this	way.”

Meanwhile,	Apple	took	a	step	back	and	observed	that	very	few	people

still	use	disc	drives	on	a	regular	basis.	As	a	result,	they	started	phasing	out	disc	drives	on
all	of	their	devices.	Now,	if	you	absolutely	need	a	disc	drive,	you	buy	an	external	one.

This	focus	has	not	only	allowed	them	to	make	their	laptops	lighter	than

the	competition	(see	Figure	3.6),	but	they	were	able	to	fill	up	some	of	that	extra	space	with
a	larger	battery.	They	determined	that	increased	battery	life	is	a	feature	that	people	find
more	compelling	than	having	a	disc	drive.

As	is	the	case	with	other	disruptive	decisions	that	Apple	has	made,	we	now	see	other
companies	following	their	lead	and	removing	disc	drives	in	favor	of	larger	batteries.

Before	you	decide	what	to	work	on	first,	make	certain	that	all	of	the	features	are	useful	for
the	majority	of	users	and	therefore	important	enough	to	justify	your	efforts.	If	your
schedule	treats	features	that	will	be	useful	for	80	percent	of	users	equal	to	those	made	for
one	or	two	expert	users,*

then	perhaps	those	priorities	need	to	be	challenged.

*	As	long	as	the	feature	is	not	a	key	element	related	to	setting	up	a	pipeline,	which	could
result	in	a	bottleneck	for	the	rest	of	the	content	creators.

What	Does	It	Mean	to	Be	“User-	Centered”?	◾	37
FIGURE	3.6	While	other	manufacturers	were	constrained	with	the	assumption	that	all
laptops	must	have	a	disc	drive	(bottom),	Apple	observed	that	very	few	people	used	their
laptop	disc	drives,	and	decided	to	use	that	space	to	make	a	thinner	laptop	with	better
battery	life	(top).

More	Features	Do	Not	Make	a	Better	Tool

The	Apple	iPod	is	another	excellent	example	of	this	philosophy.	The	big-

gest	competitor	to	the	third-	generation	iPod	was	the	iRiver	H300.	At	the	time,	iRiver	was
a	rising	star	in	the	MP3	player	market.	Their	H300	had

many	impressive	features.	It	supported	a	large	number	of	file	formats:	Not	only	could	it
play	music	from	MP3,	WMA,	and	OGG	files,	but	it	could

also	play	videos	and	view	pictures.	It	had	an	FM	tuner,	two	headphone

jacks,	and	a	color	display,	just	to	name	a	few	unique	features.	How	did	the	third-
generation	iPod	compare	to	this?	It	only	played	music.	It	did	not	have	an	FM	tuner.	It	had
one	headphone	jack.	The	display	was	black	and

white.	The	iPod	had	fewer	features,	by	far.	(See	Figure	3.7.)	However,	not	only	did	the
iPod	outsell	the	H300,	it	also	outsold	every	other	MP3	player	on	the	market.	Perhaps	most
telling	is	the	fact	that	very	few	people	talk	about	iRiver	these	days.

Video	&	images

FM	tuner

Two	headphone	jacks

Voice	recording

Color	display

FIGURE	3.7	The	third-generation	iPod	(left)	compared	to	the	iRivier	H300

(right).

38	◾	Designing	the	User	Experience	of	Game	Development	Tools	Complexity
Complexity

Number	of	features

Number	of	features

FIGURE	3.8	Adding	more	features	increases	complexity	exponentially.

How	did	Apple	do	this?	Several	factors	contributed	to	the	success	of	the	iPod,	but	one
thing	is	certain:	it	was	not	by	having	more	features.	Apple	focused	all	their	resources	on
the	right	features,	to	give	the	iPod	the	best	user	experience	possible.	Products	that	choose
the	right	features,	and	do	them	well,	are	in	a	much	better	position	to	succeed.

Exponential	Complexity

We	may	believe	that	adding	features	makes	a	product	more	complex	in	a

linear	fashion.	However,	the	fact	is	that	each	new	feature	increases	complexity
exponentially.	(See	Figure	3.8.)	This	is	because	every	feature	will	be	used	in	combination
with	all	of	the	other	existing	features,	which	adds	an	extra	dimension	to	all	those	that	came
before	it.	This	is	why	it	is	of	the	utmost	importance	to	choose	the	right	features,	and
choose	them	carefully.

WRAPPING	UP

In	this	chapter,	we	discussed	the	value	of	increasing	the	involvement	of	users	in	the
development	process.	We	discussed	the	importance	of	accept-ing	that—more	often	than
not—we	are	not	the	users,	as	well	as	the	dangers	of	not	knowing	for	whom	we	are
designing.	We	also	learned	that	documentation	is	not	the	magic	solution	and	why	it’s
important	to	stop	the	culture	of	“RTFM.”	In	addition,	we	learned	how	focusing	on	the
right	users

allows	us	to	get	the	maximum	results	from	a	minimal	investment,	accept-

www.allitebooks.com

http://www.allitebooks.org

ing	that	we’re	not	going	to	make	everyone	happy.	Finally,	we	learned	the	difference
between	features	and	goals,	the	fact	that	more	features	do	not	make	a	tool	better,	and	why
understanding	the	goals	of	the	users	can	help	us	choose	the	right	features.

In	the	next	chapter,	we	will	learn	important	concepts	and	tech-

niques	that	we	can	use	during	the	Analysis	phase	of	the	User-	Centered

Design	process.

C	h	a	p	t	e	r	4

Analysis

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?

Concepts

•	The	importance	of	watching	users	work

•	Introduction	to	human–	computer	interaction

•	Understanding	the	mental	model	of	the	users

Techniques

•	Interviewing	stakeholders

•	Performing	a	contextual	analysis

•	How	to	create	a	task	flow

•	How	to	discover	the	mental	models	of	the	users

•	Establishing	how	to	measure	improvements	to	the	tools

THE	IMPORTANCE	OF	WATCHING	USERS	WORK

Jakob	Nielsen	is	one	of	the	principals	of	the	respected	usability	consultancy	Nielsen
Norman	Group	(of	which	Don	Norman	is	also	a	principal).

One	of	his	more	famous	articles	is	on	the	importance	of	watching	users

work.	In	his	article,	he	writes,	“To	discover	which	designs	work	best,

watch	users	as	they	attempt	to	perform	tasks	with	the	user	interface.”*	It	is

*	The	full	article	can	be	found	here:	http://www.nngroup.com/	articles/	first-	rule-	of-
usability-	dont-listen-	to-	users/.

39

40	◾	Designing	the	User	Experience	of	Game	Development	Tools	not	enough	to	simply
ask	the	users	about	how	they	use	the	tool.	There	are	aspects	of	the	user’s	world	in	the	heat
of	production	that	are	impossible	to	understand	unless	you	sit	next	to	them	and	watch
them	work.

The	Limitations	of	Metrics	and	Focus	Groups

Two	of	the	most	common	techniques	that	we	may	use	to	understand	how

people	work	are	metrics	and	focus	groups.	Unfortunately,	sometimes	we

base	much	of	our	tools	development	decisions	on	these	techniques	with-

out	actually	sitting	down	with	the	users	watching	them	work.	This	can

have	serious	implications.

Metrics	are	a	quantitative	technique	that	make	it	easier	to	get	informa-

tion	about	a	large	number	of	people.	Metrics	are	very	good	at	telling	us	what	is	happening
but	not	very	good	at	telling	us	why	it	is	happening.

When	the	metrics	report	that	90	percent	of	the	users	never	click	a	specific	button,	we	have
no	idea	why	they	are	not	clicking	on	it.	The	users	may	have	a	very	good	reason	that	we
cannot	be	aware	of	unless	we	watch	the	users

work:	for	example,	they	may	not	understand	the	label,	or	the	button	may

be	hidden	behind	another	window.

In	a	focus	group,	the	loudest	and	more	influential	person	will	usually	be	heard	above
everyone	else.	Even	if	many	other	people	in	the	room	have	an	opinion,	or	actually	use	the
tool	more	hours	per	week,	their	voices	are	not	heard.	Furthermore,	Jakob	Nielsen’s
research	suggests	that	what	people

say	they	do	compared	to	what	they	actually	do	is	often	quite	different.

Metrics	and	focus	groups	can	be	great	starting	points,	but	they	should

be	complemented	by	sitting	down	with	the	users	and	watching	them	work.

Proximity	to	the	Users

Outside	of	the	games	industry,	having	users	nearby	that	you	can	watch

is	considered	a	luxury!	Many	companies	spend	astronomical	amounts	of

money	getting	access	to	users	so	they	can	ask	them	for	feedback	on	their	products.	They
may	pay	for	transportation,	food,	and	even	cash	or	a	gift	card	as	incentive	for	people	to
participate.	They	might	also	pay	an	online	service	to	find	users	and	do	the	analysis	for
them.

Game	developers	who	work	in	the	same	building	as	their	users	are	at

a	huge	advantage	to	improve	the	user	experience	of	their	tools.	They	can	talk	to	their	users
on	a	regular	basis	and	have	a	very	tight	iteration	loop.

If	this	is	your	situation,	you	should	make	the	most	of	it	and	sit	as	close	as	possible	to	the
users.

Analysis	◾	41
There	are	some	situations	where	there	are	users	available,	but	the	developers	do	not	have
easy	access	to	them.	Some	examples	of	this	are	if	you

work	for	a	middle-	ware	company,	or	the	users	are	in	another	building	or	even	another
country.	In	this	case,	you	can	use	remote	collaboration	tools	such	as	WebEx,
GoToMeeting,	and	LiveMeeting.	They	provide	features

that	make	it	easier	to	talk	to	users	and	get	feedback	on	your	tools.

If	you	are	an	independent	tools	developer,	you	can	try	to	find	users	with	the	right	profile	in
online	chat	forums,	such	as	the	CGSociety	forums	or	PolyCount.	Many	people	who
participate	in	online	communities	would

jump	at	the	opportunity	to	try	out	a	new	tool	or	to	give	their	opinion	on	how	they	would
use	it.

Uncovering	Work-	Arounds

Watching	users	work	is	also	a	great	way	to	uncover	work-	arounds.	After

using	a	tool	for	a	long	time,	users	forget	that	they	do	certain	things	automatically,	which
could	potentially	result	in	reduced	productivity.	The

story	of	the	monkeys	and	the	banana	from	Chapter	3	is	a	perfect	example

of	this	behavior.

When	you	see	the	user	doing	something	that	seems	like	a	work-	around,

try	asking	them	why.	Every	time	you	ask	why,	you	dig	deeper	into	the

root	of	the	problem.	For	example,	imagine	this	exchange	between	you	and

a	user:

User:	“So,	first	I’ll	choose	a	new	object	from	this	list.	Before	I	do	that,	I	have	to	press
F5.”	<user	waits>

You:	“OK.	While	we’re	waiting,	can	you	tell	me	why	you	do	that?”

User:	“Oh,	pressing	F5	refreshes	the	list	so	I	see	all	of	the	latest	objects.”

You:	“Why	do	you	do	that?”

User:	“Just	in	case	someone	added	a	new	object	since	the	last	time	I	opened	the	list.”

You:	“Why	are	the	new	objects	not	added	to	the	list	automatically?”

User:	“That’s	a	good	question.	I	don’t	know	…	It’s	just	always	been	that	way!”

Understanding	Context

More	often	than	not,	tools	are	made	to	work	with	other	tools,	and	assets	are	passed	around
between	multiple	users.	Because	of	this,	it	is	essential	to	understand	the	context	in	which
the	tools	are	used.	Taking	a	step	back	and	42	◾	Designing	the	User	Experience	of	Game
Development	Tools	seeing	the	big	picture	can	make	the	difference	between	a	bad	user
experience	and	a	good	one.

Jeff	Hawkins	understood	this	while	experimenting	with	his	wood	block.

He	learned	some	of	the	different	situations	in	which	the	Palm	Pilot	would	be	used:	in	the
context	of	a	meeting,	at	a	discussion	around	the	water-cooler,	and	when	bumping	into
someone.	He	thought	beyond	just	the

interface	of	the	device.	He	understood	that	after	using	their	Palm	Pilots	to	store
information,	people	would	want	to	return	to	their	computers	and	be	able	to	access	the

contacts	and	appointments	that	they	added.	This	realization	led	to	the	ability	to	easily
charge	and	synchronize	your	device	with	your	computer,	which	was	crucial	to	the	success
of	Palm.

By	being	aware	of	context,	Apple	was	able	to	think	beyond	how	people

listen	to	music,	and	understand	how	people	want	to	get	music	onto	their

devices.	This	led	to	the	creation	of	iTunes,	one	of	the	biggest	selling	points	of	the	iPod	and
a	huge	source	of	income	for	Apple.

The	information	that	we	learn	in	the	Analysis	phase	can	be	invaluable

for	understanding	context,	which	can	have	a	huge	impact	on	improving

the	user	experience.

What	Is	the	Problem	That	We	Are	Trying	to	Solve?

In	addition	to	uncovering	work-	arounds,	watching	users	work	also	helps

us	to	remember	the	problem	that	tool	was	originally	made	to	solve.	When

a	tool	has	been	used	in	production	for	a	while,	we	may	try	to	find	solutions	that	conform
to	the	existing	interface.	This	tunnel	vision	can	hinder	our	ability	to	improve	the	user
experience.

For	example,	imagine	that	you	are	working	on	a	shader	creation	tool	for

texture	artists.	The	majority	of	beginner	users	are	having	trouble	understanding	that	when
they	want	transparency,	they	need	to	check	the	“Alpha	On”	checkbox	on	the	shader
options.	In	addition,	the	checkbox	is	hidden

among	a	long	list	of	variables	in	the	Options	tab	for	the	shader.	It	takes	several	clicks	to
enable,	which	hurts	the	efficiency	of	the	users.

We	might	think	that	the	solution	would	be	to	rename	the	label	from

“Alpha	On”	to	“Enable	Alpha	Transparency”	so	it	is	clearer	for	beginners,	or	to	reduce	the
number	of	clicks	required	to	get	to	the	checkbox.	These	are	both	good	ideas,	but	we	must
always	ask	ourselves,	“What	is	the	problem	that	we	are	trying	to	solve?”	Our	goal	is	not	to
make	a	better	checkbox,	or	a	clearer	label.	What	we	really	want	to	do	is	make	it	easier	to
enable	alpha	transparency	on	the	shader!

Analysis	◾	43
Instead,	we	could	automatically	activate	transparency	when	the	tex-

ture	map	in	the	diffuse	input	has	an	alpha	channel.	The	diffuse	texture

needs	to	have	an	alpha	channel	anyway!	This	solves	the	real	problem	and

is	much	more	effective	than	a	clearer	label	or	better	checkbox	placement.

Furthermore,	this	also	results	in	one	less	checkbox	for	the	tools	developers	to	maintain,
and	one	less	checkbox	for	the	user	to	learn.

INTRODUCTION	TO	HUMAN–	COMPUTER	INTERACTION

Tools	developers	are	very	familiar	with	using	software	and	hardware	to

receive	an	input,	process	it,	and	then	send	an	output.	For	example,	a	computer	receives
input	from	the	mouse,	calculates	what	should	happen,	and

then	displays	the	result	on	the	monitor	(see	the	right	side	of	Figure	4.1,	clockwise	from
top).

Although	we	may	be	familiar	with	the	computer	side,	not	everyone

understands	what	is	going	on	inside	the	user’s	head	while	we	are	watching	them	work.	As
it	turns	out,	the	human	side	is	almost	a	mirror	image	of

the	computer	side:	we	receive	an	input,	we	process	it,	and	then	we	send	an	output.	For
example,	we	see	what	is	on	the	monitor,	we	think	about	what	it	means,	and	then	we	click
the	mouse.	After	our	mouse	click	changes	what

we	see	on	the	monitor,	we	start	back	at	the	beginning	(see	the	left	side	of	Figure	4.1,
clockwise	from	bottom).	This	communication	loop	is	called

the	human–	computer	interaction	model,	and	understanding	it	is	key	to	improving	the	user
experience.

Finally,	in	between	the	human	and	the	computer	is	the	user	interface

(see	the	middle	of	Figure	4.1).	The	quality	of	the	interface	determines	how	good	the
interaction	between	the	human	and	the	computer	will	be.

FIGURE	4.1	The	quality	of	the	interaction	between	the	user	(left)	and	the	computer	(right)
is	determined	by	the	interface	(middle).

44	◾	Designing	the	User	Experience	of	Game	Development	Tools	Understanding	the
Action	Cycle

The	communication	loop	on	the	human	side	can	be	boiled	down	to

three	phases:	“Look,”	“Think,”	and	“Act.”	This	is	sometimes	called	the

“Action	Cycle.”*

Imagine	for	a	moment	that	you	had	never	used	a	computer	mouse

before.	If	you	were	told	to	move	the	cursor	on	a	computer	screen	using

the	Logitech	MK710	Wireless	Desktop	Mouse	for	the	first	time,	you	might

start	by	looking	at	the	shape	of	the	mouse:	along	the	left	side,	there	is	a	deep	groove,	and
the	top	has	two	shallower	grooves.	Then	you	might	think	to	yourself,	“If	I	were	to	hold
this	object,	my	thumb	would	fit	into	that	deep	groove,	and	my	fingers	would	drape	over
the	shallower	grooves.”†	Finally,	you	would	act	by	placing	your	hand	over	the	mouse	and
perhaps	moving

it	a	bit.	Finally,	the	cycle	would	start	back	from	the	beginning:	look	at	the	screen,	and
think	to	yourself,	“What	changed?	Oh,	the	cursor	moved!”

With	enough	experience,	you	no	longer	need	to	look	at	the	mouse	to	see

where	the	grooves	are,	or	think	about	what	they	mean.	You	spend	almost

all	of	your	time	in	the	act	phase	of	the	action	cycle.	The	fact	that	the	look	and	think	phases
are	reduced	means	you	can	spend	more	time	acting,

resulting	in	increased	efficiency	(see	Figure	4.2).

The	Logitech	mouse	has	been	designed	to	be	easy	to	understand	so

you	can	start	using	it	immediately.	However,	not	all	computer	mice	are

designed	this	way.	For	instance,	consider	the	Mad	Catz	R.A.T.	mouse	(see	Figure	4.3).	For
someone	who	has	never	used	a	mouse	before,	the	shape

FIGURE	4.2	The	design	of	a	mouse	can	make	it	easier	to	learn,	reducing	the	time	spent	in
the	Action	Cycle.

*	The	action	cycle	is	part	of	the	field	of	action	research,	pioneered	in	the	1940s	by	Kurt
Lewin,	a	professor	at	MIT.	According	to	Lewin,	humans	constantly	iterate	through	three

phases	when	performing	actions:	planning,	acting,	and	evaluating	the	results.	More
recently,	Don	Norman	proposed	a	“Human	Action	Cycle”	more	geared	toward	human–
computer	interaction,	which	features	three	very	similar	phases:	goal	forming,	execution,
and	evaluation.

†	When	the	shape	of	an	object	suggests	how	you	should	interact	with	it,	this	is	called
“Affordance,”

which	you	can	read	more	about	here:	http://en.wikipedia.org/	wiki/	Affordance.

Analysis	◾	45
FIGURE	4.3	A	non-standard	or	confusing	design	can	increase	the	amount	of	time	spent	in
the	Action	Cycle.

does	not	make	it	immediately	obvious	how	you	are	supposed	to	hold	it.	It	also	has
different	modes,	which	means	that	it	works	differently	depending	on	what	mode	the
mouse	is	in.	Another	example	is	a	novelty	computer

mouse,	especially	those	that	are	made	to	look	like	other	objects	like	cars	or	sports

equipment.	If	the	user	is	unfamiliar	with	what	a	mouse	is,	they	will	likely	spend	a	lot	more
time	in	the	look	phase	trying	to	understand	what	they	are	seeing.	All	of	this	wasted	time
could	be	spent	in	the	act	phase.

Novelty	mice	are	a	good	example	of	devices	that	have	the	useful	and	desirable	layer	of	the
pyramid	but	are	missing	the	usable	layer.

Mental	Loads

Susan	Weinschenk’s	book	100	Things	Every	Designer	Needs	to	Know	about	People
presents	the	concept	of	loads,	which	are	the	three	types	of	processes	that	the	brain	can
perform:	cognitive,	visual,	and	motor.	She	describes

them	as	follows:	“There	are	things	you’re	thinking	about	and	remember-

ing	(cognitive),	things	you’re	looking	at	on	the	screen	(visual),	and	buttons	you	are
pressing,	mouse	movements,	and	typing	(motor).”

She	goes	on	to	reveal	that	not	all	loads	are	processed	equally.	Visual

loads	require	more	resources	to	process	than	motor	loads.	Cognitive

loads	require	more	resources	than	visual	loads.	Therefore,	the	hierarchy	of	loads—from
most	to	least	resources	required—is	cognitive,	then	visual,	and	finally,	motor	(see	Figure
4.4).

How	does	this	relate	to	the	action	cycle?	When	you	are	in	the	look

phase,	you	are	processing	a	visual	load.	When	you	are	in	the	think	phase,	46	◾	Designing
the	User	Experience	of	Game	Development	Tools	FIGURE	4.4	The	hierarchy	of	mental
loads,	from	lightest	to	heaviest:	motor,	visual,	and	cognitive.

you	are	processing	a	cognitive	load.	Finally,	when	you	are	in	the	act	phase,	you	are
processing	a	motor	load.	If	a	tool	has	a	complicated	user	interface	(visual	load),	the	user
will	spend	a	lot	of	time	in	the	look	phase.	If	the	tool	requires	that	the	user	do	a	lot	of
mental	calculation	and	remember	things	(cognitive	load),	the	user	will	spend	a	lot	of	time
in	the	think	phase.	This	is	made	worse	by	the	fact	that	cognitive	and	visual	loads	are	more
time

consuming	to	process	compared	to	motor	loads.

More	Clicks	Are	Not	Always	Bad

Common	sense	tells	us	that	adding	a	hundred	clicks	to	a	task	is	going	to	reduce	efficiency.
However,	it	may	come	as	a	surprise	to	find	that	adding	just	a	few	extra	clicks—resulting
in	a	slightly	increased	motor	load—can	actually	increase	efficiency.	How	can	this	be?

Susan	Weinschenk	supports	this	by	describing	research	she	did	com-

paring	different	mental	loads.	Although	the	users	in	her	research	study

had	to	“go	through	more	than	10	clicks	to	get	the	task	done,”	they	con-

cluded	that	the	task	was	easy,	because	“each	step	was	logical	and	gave	them	what	they
expected.	They	didn’t	have	to	think.”

Steve	Krug,	another	well-	respected	author	in	the	field	of	user	experience,	is	probably	best

known	for	his	book	Don’t	Make	Me	Think.	The	topic	of	the	book	is	exactly	that:	the	less
we	have	to	think,	the	more	time	we	spend	acting,	and	therefore	the	more	efficient	we	can
be.	He	further	confirms	Susan	Weinschenk’s	research,	stating,	“It	doesn’t	matter	how
many	times	I	have	to	click,	as	long	as	each	click	is	a	mindless,	unambiguous	choice.”

How	Does	the	Action	Cycle	Affect	Efficiency?

To	see	how	the	action	cycle	applies	to	improving	the	efficiency	of	game

development	tools,	we	will	walk	through	an	example.	In	Chapter	1,	we	calculated	how
saving	20	game	developers	20	minutes	per	day	could	save	time	Analysis	◾	47
Ambient	Light

Barrel

Crate

Fire

Point	Light

Spot	Light

Sword

Shield

Tree

FIGURE	4.5	Example	of	the	interface	for	a	tool	used	to	place	objects	in	a	level.

and	money.	Imagine	that	those	20	users	are	placing	objects	in	a	level,	using	a	standard
level	editor.	The	steps	are	as	follows:

•	Look:	The	user	scans	the	list	of	objects	in	the	object	library.

•	Think:	Based	on	what	they	see,	the	user	determines	if	they	have

found	the	object	they	need.

•	Act:	Once	the	desired	object	is	found,	they	select	it	from	the	list	and	place	it	in	the	level.

The	user	interface	could	use	the	search	box	at	the	top,	but	in	this	case,	the	user	does	not
know	the	name	of	the	object	they	are	looking	for	(see

Figure	4.5).	They	will	know	it	when	they	see	it.	They	know	that	the	object	can	be	smashed
into	pieces	by	the	hero.	It	is	not	equipment,	a	light,	or	a	particle	effect.	How	can	the	look,
think,	and	act	phases	be	optimized	so	that	the	user	can	find	the	object	that	they	are	looking
for?*

Look

In	the	current	interface	for	the	object	library,	there	are	many	different	types	of	objects.	It
can	be	difficult	for	the	user	to	distinguish	between	various	object	types	at	a	glance.	How
can	we	reduce	the	time	spent	in	the	look	phase?

*	In	the	example	that	follows,	the	design	techniques	of	hierarchy,	progressive	disclosure,
representation,	grouping,	feed-	forward,	constraints,	and	excise	are	being	applied.	We	will

learn	more	about	them	in	Chapter	5.

48	◾	Designing	the	User	Experience	of	Game	Development	Tools	PHYSICS_ACTIVE
PHYSICS_ACTIVE

Barrel

Barrel

Crate

Crate

FRAG_SHDR_LIGHTS

Ambient	Light

Point	Light

Spot	Light

EQUIPMENT

FIGURE	4.6	Improving	the	user	experience	to	reduce	time	spent	in	the	look	phase.

We	could	start	by	improving	the	way	in	which	the	objects	are	organized

so	that	the	categories	are	easier	to	distinguish,	and	then	use	a	unique	color	and	icon	for
each	object	type.	These	changes	will	make	it	easier	for	the	user	to	identify	the	object	they
are	looking	for.

We	could	also	add	the	ability	to	filter	the	list	by	object	type,	reducing	the	number	of
objects	that	the	user	has	to	scan	at	once.	This	does	add	an	additional	click,	but	remember
that	sometimes	adding	clicks	can	actually	reduce	time	spent	in	the	look	phase,	thereby
making	the	user	more	efficient	overall	(see	Figure	4.6).

Think

The	names	of	the	object	categories	are	taken	from	the	data	structures

underneath.	However,	the	average	user	is	not	aware	of	that,	and	so	they	do	not	think	about
the	categories	in	the	same	way.	For	example,	“Breakables”

is	a	much	more	common	name	for	the	average	user	of	this	tool,	compared

to	“Physics_Active.”	By	understanding	how	they	would	group	the	objects

together,	we	can	have	category	names	that	will	allow	the	user	to	find	what	they	are
looking	for	more	quickly	(see	the	left	side	of	Figure	4.7).

In	addition,	some	objects	can	only	be	placed	in	certain	areas	of	the	level	(for	example,
only	boats	can	be	placed	in	water	zones).	The	user	has	to

think	about	this	beforehand;	otherwise	the	object	cannot	be	placed.	By

showing	a	semi-	grayed-	out	version	of	the	object	when	it	is	being	dragged	on	top	of	a
non-	valid	zone,	the	user	does	not	have	to	spend	a	lot	of	time	in	Analysis	◾	49
BREAKABLES

www.allitebooks.com

http://www.allitebooks.org

Barrel

Crate

FIGURE	4.7	Improving	the	user	experience	to	reduce	time	spent	in	the	think	phase.

the	think	phase,	wondering	if	they	are	placing	the	object	in	the	right	spot	(see	the	right
side	of	Figure	4.7).

Act

By	reducing	the	look	and	the	think	phases	with	the	techniques	mentioned

above,	we	can	spend	more	time	in	the	act	phase:	in	other	words,	placing

objects	in	the	level.	However,	that	does	not	mean	that	we	cannot	also	optimize	the	act
phase	itself!

We	can	see	that	having	the	category	filters	below	the	list	means	a	lot

of	mouse	movement	up	and	down.	Moving	them	up	between	the	search

field	and	the	list	means	less	travel	for	the	mouse	(see	the	left	side	of	Figure	4.8).

We	can	also	add	keyboard	shortcuts:	one	for	putting	the	cursor	in	the

search	field,	and	one	for	each	of	the	categories	to	toggle	them	on	and	off	(see	the	right	side
of	Figure	4.8).

All	of	these	improvements	in	combination	help	to	reduce	the	time	spent

in	the	look,	think,	and	act	phases.	This	makes	it	much	more	efficient	for	the	user	to	find
the	object	they	are	looking	for	and	add	it	to	the	level.

How	Does	the	Action	Cycle	Affect	Learnability?

A	tool	is	considered	to	have	good	learnability	if	a	new	user	can	easily

accomplish	a	task	on	the	first	attempt.	The	learnability	of	a	tool	can	also	be	assessed	on	a
long-	term	basis:	the	speed	at	which	an	existing	user	can	50	◾	Designing	the	User
Experience	of	Game	Development	Tools	CTRL

F

BREAKABLES

Barrel

Crate

CTRL

E

CTRL

L

CTRL

B

CTRL

X

FIGURE	4.8	Improving	the	user	experience	to	reduce	time	spent	in	the	act	phase.

remember	how	to	use	a	tool	after	not	having	used	it	for	a	while	(sometimes	called
memorability),	or	how	quickly	a	beginner	can	become	an	expert.*

Other	than	experimentation,	the	two	most	common	ways	that	a	new

user	learns	a	game	development	tool	are	being	trained	by	an	expert	user

and	reading	documentation.	However,	there	are	issues	with	both	of

these	approaches.

While	support	from	expert	users	is	common,	too	much	can	come	at	a

cost.	Any	time	that	an	expert	user	spends	providing	training	and	answer-

ing	questions	is	time	that	they	could	be	doing	what	expert	users	do	best:	solving
complicated	problems!	Not	to	mention,	the	hourly	wage	for	an

expert	user	can	be	high.	Finally,	they	are	not	always	available:	if	a	new	user	does	not
know	how	to	do	something	without	the	help	of	an	expert	user,

they	are	stuck.

Documentation	is	always	an	option,	but	it	is	frequently	out	of	date,	if	it	exists	at	all.	It	also
goes	without	saying	that	it	can	be	expensive	to	create	and	maintain	good	documentation.

Do	It	the	Long	Way

Experts	spend	less	time	in	the	think	phase	because	they	have	a	deeper

understanding	of	how	a	tool	works.	However,	if	a	tool	is	difficult	to	learn,	users	may	stay
as	beginners	or	intermediates	for	a	long	time.

*	For	more	on	how	Nielsen	and	others	define	learnability,	see	here:
http://www.measuringusability.

com/	blog/	measure-	learnability.php.

Analysis	◾	51
This	situation	is	described	perfectly	in	Jeff	Johnson’s	book	Designing	with	the	Mind	in
Mind.	In	his	book,	he	tells	a	story	about	a	usability	test	where	he	asked	a	user	to	perform	a
task.	After	thinking	for	a	minute,	the	user	told	him,	“I’m	in	a	hurry	…	so	I’ll	do	it	the	long
way.”	This	seems	like	an	unusual	statement	…	or	is	it?

If	you	observe	how	people	use	game	development	tools,	it	is	common	to

see	that	once	they	learn	how	to	accomplish	a	task	in	a	specific	way	without	crashing	or
causing	any	other	problems	they	tend	to	stick	to	it.	This	method	could	contain	a	ton	of
work-	arounds	and	hacks,	but	they	know

that	it	works.	If	the	tool	makes	it	difficult	to	figure	out	a	better	way	on	their	own,	they	are
likely	to	stick	to	the	old	way.	Now,	imagine	that	there	is	a	newer,	better	way,	but	the	user
cannot	find	it.	Their	slower	approach	takes	an	additional	20	minutes	per	day.	How	much
time	and	money	could	we

save	by	making	this	tool	more	learnable?

Ramping	Up	the	Learning	Curve

Understanding	what	the	user	needs	at	each	step	of	their	learning	process	is	crucial	to
designing	a	tool	that	is	easy	to	learn	by	beginners	and	efficient	to	use	by	experts.	This	also
has	a	relationship	to	the	action	cycle:	beginners	spend	a	lot	more	time	in	the	think	phase,
because	they	are	still	figuring	out	how	the	tool	works.	By	making	it	easier	for	beginners	to
become	experts,	they	will	spend	less	time	in	the	think	phase,	making	them	more	efficient.

Imagine	a	scenario	with	Microsoft	Word.	A	beginner	who	has	never

used	Word	before	may	look	at	the	interface	and	ask,	“What	can	this	do?”

They	may	see	the	“Font”	section,	and	see	that	it	contains	buttons	for	bold,	italic,	and
underline.	By	looking	at	the	icons,	reading	the	tooltips,	and	experimenting	with	the
buttons,	they	start	to	understand	that	one	of	the	things	Word	does	is	format	text	(see	Figure
4.9).

FIGURE	4.9	The	commands	exposed	in	the	ribbon	help	beginners	understand	what	the
tool	can	do.	Used	with	permission	from	Microsoft.

52	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	4.10
Contextual	menus	allow	intermediate	users	to	work	more	efficiently.	Used	with
permission	from	Microsoft.

Intermediate	users	already	know	that	they	can	format	text	in	Word.

They	also	know	that	by	right-	clicking	on	some	text,	they	get	a	contextual	menu	with	easy
access	to	the	buttons	in	the	Font	section.	The	contextual	menu	is	not	visible	all	the	time.	It
is	convenient	for	the	intermediate	user,	but	it	does	not	clutter	up	the	interface	(see	Figure
4.10).

An	expert	user	of	Word	also	knows	that	they	can	format	text,	and	they

want	to	do	it	as	quickly	as	possible.	Since	they	have	learned	the	hotkeys	for	bold,	italic,
and	underline,	they	never	use	the	ribbon.	In	fact,	they	have	chosen	to	hide	it,	thereby
customizing	their	interface	and	allowing	them	to	focus	on	their	content	(see	Figure	4.11).

What	is	important	to	note	here	is	that	if	we	removed	the	ribbon,	the

beginner	user	would	never	see	the	Font	section,	and	it	would	take	longer	for	them	to
understand	how	to	format	text,	blocking	their	progress	toward	becoming	expert	users.
However,	if	there	were	no	hotkeys,	the	experts

would	be	less	efficient	and	frustrated	by	having	to	move	their	mouse	up	to	the	ribbon	to
access	the	bold,	italics,	and	underline	buttons.	These	different	user	interface	elements	exist
to	help	guide	the	beginner	to	becoming	an	expert.

FIGURE	4.11	Expert	users	can	customize	the	interface	and	use	hotkeys,	maximiz-ing	the
space	used	to	display	their	content.	Used	with	permission	from	Microsoft.

Analysis	◾	53
Keep	in	mind	that	the	expert	user’s	needs	mostly	apply	to	complex	pro-

ductivity	tools	with	deep	functionality.	A	simple	game	development	tool	with	two	buttons
and	a	checkbox—such	as	an	instal	er—is	unlikely	to	require	the	user	to	go	past	the	criteria
of	the	beginner	or	inter	mediate	stage.

Knowledge	in	the	World	and	Knowledge	in	the	Head

In	his	book	The	Design	of	Everyday	Things,	Don	Norman	compares	two	types	of
knowledge:	knowledge	in	the	world	and	knowledge	in	the	head.

Knowledge	in	the	world	could	be	compared	to	what	you	see	in	the	user

interface,	and	knowledge	in	the	head	could	be	the	equivalent	of	knowing

what	a	tool	does	already.	Norman	suggests	that	when	the	functionality	we	are	looking	for
is	“in	the	world”	(in	other	words,	visible	in	the	interface),	it	is	easier	to	learn	for	the	first
time,	but	that	efficiency	“tends	to	be	slowed	up	by	the	need	to	find	and	interpret	external
information.”	However,	knowledge	“in	the	head”	(something	that	the	user	already	knows
how	to	do)

“requires	learning,	which	can	be	considerable,”	but	“can	be	very	efficient.”

A	good	example	of	this	can	be	seen	by	looking	at	the	steps	required

to	add	an	empty	audio	track	in	Audacity	1.3	for	Windows	and	Apple	GarageBand	for
iPad.

There	is	no	indication	in	the	Audacity	interface	on	how	to	add	a	track.

Right-	clicking	in	the	window	does	not	create	a	contextual	menu,	and	there	are	no	buttons
to	add	a	new	track	in	the	toolbar.	The	user	must	explore	the	menus	and	find	the	“Tracks	→
Add	New	→	Audio	Track”	menu	item	(see

Figure	4.12).	Once	they	find	it,	they	know	where	it	is.	Furthermore,	they	can	use	the
hotkey	“Control	+	Shift	+	N”	to	add	a	new	track	very	quickly.

This	is	a	very	efficient	way	to	add	new	tracks,	but	you	have	to	know	that	it	is	there	to	take
advantage	of	it.	In	other	words,	the	knowledge	has	to	be

“in	the	head.”

On	the	other	hand,	Apple	GarageBand	for	iPad	makes	it	very	easy	to	learn	how	to	add	a
new	track.	At	the	top	of	the	interface,	the	“Instruments”

button	is	prominently	displayed.	Pressing	on	this	button	brings	you	to	a	FIGURE	4.12
Adding	a	new	audio	track	in	Audacity.	Audacity®	software	is	copyright	©	1999–2014
Audacity	Team.

54	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	4.13	Adding	a
new	audio	track	in	the	iPad	version	of	Garage	Band.

©	Apple.

list	of	instruments,	with	visual	representations	so	you	know	what	you	are	getting.	From
here,	you	can	choose	“Audio	Recorder.”	You	can	then	return	to	the	tracks	view	to	see	your
new	track	(see	Figure	4.13).	While	this	is	easier	to	find	because	it	is	at	the	top	of	the
interface	and	always	visible—in	other	words,	it	is	“in	the	world”—it	requires	more	steps.

UNDERSTANDING	THE	MENTAL	MODEL

Another	important	concept	that	helps	us	to	understand	how	the	users

think	is	to	understand	their	mental	models	and	ensure	that	they	match

the	conceptual	model.

What	Are	the	Mental	Model	and	the	Conceptual	Model?

Susan	Weinschenk,	cognitive	psychologist	and	author	of	several	books

on	user	experience,	uses	the	following	analogy	to	explain	the	difference	between	mental
models	and	conceptual	models.

A	mental	model	is	the	way	in	which	a	user	understands	how	something

works.	For	example,	almost	everyone	in	the	world	has	a	mental	model	of	a	book:	it
contains	pages,	each	page	has	words	on	it,	and	you	can	turn	to	the	next	page	or	the
previous	page.

By	comparison,	a	conceptual	model	is	the	way	in	which	an	object	or

interface	actually	works.	For	example,	imagine	that	you	handed	someone

the	device	on	top	of	the	book	in	Figure	4.14.	They	have	never	seen	this

object	before,	and	they	have	no	idea	what	it	is.

When	they	examine	this	device,	they	will	notice	that	it	has	buttons	and

a	screen.	However,	many	other	devices	also	have	buttons	and	a	screen:

laptops,	tablets,	even	calculators.	What	is	this	device?	What	does	it	do?	It

Analysis	◾	55
FIGURE	4.14	Using	the	mental	model	of	a	book	to	accelerate	the	process	of	learning	how
to	use	an	e-reader.

might	take	this	person	a	while	to	figure	out	how	it	works,	because	they	have	no	previous
knowledge	to	draw	on	to	help	them	understand	how	to	use	it.

Now	imagine	a	different	scenario	where,	before	handing	over	the	device,

you	tell	them,	“This	is	just	like	a	book.”	As	they	examine	the	device,	they	compare	their
mental	model	of	a	book	to	the	conceptual	model	of	the

device.	They	look	at	the	words	on	the	screen	and	think,	“This	must	be	like	the	pages	on	a
book.”	They	look	at	the	buttons	on	both	sides	and	think,

“This	must	be	for	the	next	page	and	previous	page.”	By	referring	to	their	mental	model,
they	are	able	to	make	a	connection	to	their	existing	mental	model	and	understand	what	the
device	is—and	how	to	use	it—much	more

quickly	and	easily.

Major	differences	between	the	user’s	mental	model	and	the	tool’s	con-

ceptual	model	is	one	of	the	key	reasons	why	users	have	difficulty	under-

standing	how	a	tool	works.	Designing	with	the	user’s	mental	model	in

mind	can	have	a	big	impact	on	improving	the	user	experience	of	our	game

development	tools.

Why	Is	It	Important	to	Understand	the	User’s	Mental	Model?

The	mental	models	of	programmers	often	include	technical	concepts

that	the	user	is	not	aware	of,	such	as	class	structure	and	data	models.

Because	these	concepts	come	naturally	to	them,	they	might	forget	that

the	average	user	may	not	understand	them.	Consider	the	following	terms:

stereoscopy,	rasterize,	and	Gouraud	shading.	These	are	all	words	that	are	part	of	the
common	vocabulary	of	graphics	programmers.	However,	the

majority	of	non-	programmers	may	know	these	words	as	3D	imaging,

pixel-	based,	and	smooth	shading.	Even	though	these	terms	may	not	be

56	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	4.15	Adobe
Photoshop	uses	the	mental	model	of	a	paintbrush	to	make	it	easier	to	learn	the	settings	in
the	Brush	panel,	reducing	the	amount	of	time	spent	in	the	think	phase.	Adobe	product
screenshot(s)	reprinted	with	permission	from	Adobe	Systems	Incorporated.

perfectly	accurate,	they	are	often	interchangeable	and	may	be	the	most

recognizable	terms	for	the	majority	of	users.

The	brushes	palette	in	Adobe	Photoshop	provides	a	good	example	of	this

(see	Figure	4.15).	There	is	plenty	of	technical	terminology	in	the	brushes	palette.	To	create
or	modify	a	brush,	you	can	set	values	for	abstract	sound-ing	concepts	such	as
“Roundness,”	“Angle	Jitter,”	and	“Purity.”	There	are	categories	with	names	like	“Shape
Dynamics,”	“Transfer,”	and	“Dual

Brush.”	Even	something	with	a	simple	name	like	“Spacing”	can	cause	the

user	to	ask,	“The	spacing	of	what?	And,	how	much	spacing	do	I	want?”

A	large	proportion	of	the	users	many	not	think	of	brushes	in	those

terms.	There	are	accustomed	to	brushes	in	fine	arts.	They	think	about

brushes	visually,	and	how	the	brush	will	look	when	painting	on	a	can-

vas.	Fortunately,	the	bottom	of	the	Brushes	panel	has	a	preview	of	what

the	brush	will	look	like	when	it	is	used	to	create	a	curved	stroke,	and	the	upper	left-	hand
corner	of	the	windows	shows	the	profile	of	the	brush	(see	the	top	left	and	bottom	right	of
Figure	4.15).	This	not	only	allows	a	beginner	to	simply	adjust	the	numbers	until	they	see
the	brushstroke	they	are	looking	for,	but	it	also	allows	them	to	move	closer	to
understanding	what	the	numbers	mean	by	immediately	seeing	the	effect	that	each	setting
has

on	the	brushstroke.

Another	example	is	the	Tree	Creator	in	the	Unity	game	engine.	This

tool	represents	the	tree	structure	in	a	simple	way	that	anyone	can	understand:	it	visualizes
the	trunk,	branches,	and	leaves	in	a	tree-	like	view	(see	Figure	4.16).	It	is	possible	that
underneath,	the	tree	is	represented	by	a

Analysis	◾	57
FIGURE	4.16	The	Tree	Creator	in	the	Unity	engine	visualizes	the	structure	of	a	tree	in	a
way	that	matches	the	user’s	mental	model,	reducing	the	time	spent	in	the	think	phase.

complex	data	model,	but	the	user	does	not	need	to	know	that.	This	con-

ceptual	model	is	much	closer	to	their	mental	model	of	the	parts	that	make	up	a	tree.

INTERVIEW	STAKEHOLDERS

One	of	the	first	steps	to	improving	the	user	experience	of	a	tool	is	to	interview	the
stakeholders.	It	is	surprising	how	many	people	forget	this	funda-mental	step!	Here	are	a
few	suggestions	on	what	kinds	of	questions	to	ask	the	stakeholders.

How	Do	You	Measure	Success?

The	first	and	probably	most	important	question	to	ask	is	how	the	stake-

holders	measure	success.	Is	it	by	making	the	tools	more	efficient,	easier	to	learn,	or	some
other	measurement?	This	information	is	key	to	determining	how	you	will	measure	the
success	of	your	efforts.	It	is	normal	for	these	to	be	more	business-	related	as	compared	to
the	users’	goals.	These	measurements	of	success	are	essentially	the	stakeholders’	goals.

Who	Are	the	Primary	Users?

The	stakeholders	can	also	be	helpful	in	giving	you	the	names	of	people

currently	using	the	tool,	so	you	can	watch	them	work.	If	they	cannot	give	you	the	names
of	primary	users,	they	can	probably	give	you	the	names

of	people	who	work	with	the	primary	users,	such	as	their	team	leads	and

supervisors.	This	question	is	also	important	to	ask	because	many	prob-

lems	in	resource	allocation	can	arise	from	the	stakeholders	being	unaware	of	who	the
primary	users	are.

58	◾	Designing	the	User	Experience	of	Game	Development	Tools	Linking	Stakeholder
Goals	and	User	Goals

Once	you	have	identified	the	stakeholder	goals,	you	will	want	to	try	to	find	a	connection
between	their	goals	and	the	user	goals,	to	ensure	that	they	can	be	connected.	For	example,
imagine	that	one	of	the	user	goals	is	to

optimize	the	level	geometry	to	improve	performance.	At	the	same	time,

one	of	the	stakeholder	goals	is	to	have	the	game	run	at	60	FPS.	There	is	a	clear	connection
between	the	two	goals.

In	contrast,	imagine	that	another	one	of	the	stakeholder	goals	is	to

improve	the	efficiency	of	a	tool	used	for	creating	a	gritty,	urban	environment	with	minimal
impact	on	texture	memory.	Meanwhile,	one	of	the

user	goals	is	to	have	an	easy-	to-	learn	tool	that	generates	hyper-	realistic	trees	with	high-
resolution	textures.

When	one	or	more	user	goals	have	no	connection	to	any	of	the	stake-

holder	goals,	this	could	be	a	sign	that	tools	development	resources	will	not	be	invested
correctly,	leading	to	potential	problems.

PERFORM	CONTEXTUAL	ANALYSES

Once	we	have	a	list	of	users	of	the	tool,	we	can	watch	them	work	using	a	technique	called
contextual	analysis.	The	word	contextual	emphasizes	the	fact	that	we	want	to	watch	the
user	working	in	the	context	of	their	environment,	as	opposed	to	an	interview,	which	could
take	place	anywhere.

In	other	words,	we	want	to	watch	them	working	at	their	desk,	with	their

tools,	as	they	normally	do.	This	ensures	that	we	get	a	sense	of	what	it	is	really	like	when
they	use	the	tool.

How	to	Perform	a	Contextual	Analysis

To	perform	a	contextual	analysis,	start	by	making	a	list	of	the	users	to	meet	and	booking
individual	meetings	with	them.	When	you	sit	down	with	a

user	to	watch	them	work,	keep	the	following	questions	and	ideas	in	mind.*

Introduction

Some	users	might	be	uncomfortable	with	someone	showing	up	at	their

desk	and	asking	questions.	Remember	to	take	the	time	to	introduce	your-

self,	and	ask	the	user	about	themselves.	Ask	them	how	long	they	have	been	doing	their
job,	or	ask	them	about	their	favorite	game.	If	they	have	action

*	For	an	in-	depth	approach	to	doing	interviews	and	performing	contextual	analyses,	you
can	also	read	Steve	Portigal’s	book	Interviewing	Users.

Analysis	◾	59
figures	or	toys	on	their	desk,	ask	about	them.	Even	if	you	know	the	user,	questions	such	as
these	help	to	ease	into	the	contextual	analysis.

It	is	also	very	common	for	people	to	believe	that	they	are	being	judged

on	their	performance,	or	that	this	is	part	of	their	yearly	review.	If	this	is	the	case,	remind
them	that	not	only	is	it	safe	to	make	mistakes,	but

that	making	mistakes	might	help	to	find	and	fix	problems	with	the	tool.

Emphasize	that	the	tool	is	being	evaluated,	not	them.

All	of	these	things	help	to	break	the	ice,	which	will	result	in	the	user	being	more	likely	to
tell	you	how	they	really	feel,	instead	of	what	they	think	you	want	to	hear.

Ask	about	Goals

After	the	introduction,	ask	the	user	why	they	use	a	certain	tool	or	how	a	tool	fits	into	their
pipeline,	and	what	they	are	trying	to	accomplish	with	it.

This	will	help	to	understand	what	their	goals	are.	For	example,	a	user	does	not	think,	“I
want	to	use	the	mesh	exporter”;	they	think,	“I	want	to	add	a	new	object	to	the	game
engine.”	That	is	their	true	goal.	Focus	on	understanding	what	their	goals	are	when	they	are
using	a	tool.	Ask	why	several	times	if	it	helps	to	get	to	the	root	of	the	goal.

Master	and	Apprentice

Even	if	you	know	the	tools	that	the	users	are	using,	imagine	that	you	are	the	apprentice
and	that	they	are	the	master.	Ask	them	to	show	you	how

to	use	the	tool	from	their	perspective.	Ask	them	questions,	and	spend	as	much	time	as	you
can	just	listening.	This	will	give	you	a	better	idea	of	how	they	use	the	tools,	which	can
help	you	identify	how	to	make	them	better.

Re-	Direct	Feature	Talk	to	Goal	Talk

If	issues	with	specific	features	start	to	dominate	the	contextual	analysis,	try	to	re-	direct
the	discussion	back	to	goals.	For	example,	if	the	user	starts	to	describe	how	to	change	a
feature,	respond	with,	“How	would	that	help

you	accomplish	your	goal?”

Don’t	Ask	Leading	Questions

It	is	important	not	to	ask	questions	that	could	force	the	user	into	thinking	that	they	must
answer	one	way	or	the	other.	Questions	like	“Do	you

think	that	this	should	be	red?”	lead	the	user	to	believe	that	there	is	a	right	or	wrong

www.allitebooks.com

http://www.allitebooks.org

answer.	Instead,	ask	an	open	question	such	as	“In	your	opinion,	what	color	would	mean
danger	or	error?”

60	◾	Designing	the	User	Experience	of	Game	Development	Tools	Ask	the	User	to	Talk
Out	Loud

As	the	user	is	performing	their	task,	ask	them	to	talk	out	loud	about	what	they	are
thinking.	Users	can	get	wrapped	up	in	what	they	are	doing	and

forget	to	do	this.	If	this	happens,	gently	remind	the	user	by	saying,	“So	what	are	you
thinking	right	now?”	or	“What’s	going	through	your	mind

at	this	point?”	Some	users	will	be	uncomfortable	with	talking	out	loud,	so	use	common
sense	to	determine	how	you	need	them	to	do	this.

Resist	the	Urge	to	Help

It	might	be	difficult,	but	it	is	very	important	to	resist	helping	the	user	during	the	contextual
analysis.	They	might	have	difficulty	with	a	task,	or	they	might	say	something	about	the
tool	that	you	know	is	wrong.	If	you	correct	them,	or	interrupt	them	and	tell	them	what	to
do,	you	may	miss	valuable

information	that	could	explain	why	they	are	having	trouble.	That	infor-

mation	can	help	you	find	a	way	to	make	the	tool	better.

After	the	contextual	analysis	is	over,	you	may	choose	to	tell	the	user

how	to	do	the	task,	or	correct	their	understanding	of	a	certain	concept.

Start	Wide,	Then	Focus	Down

If	you	are	working	on	a	massive,	monolithic	tool,	remember:	even	the	biggest	content
creation	tool	is	made	up	of	parts.	For	example,	a	fully	featured	level	editor	looks	big,	but	it
is	essentially	made	up	of	a	collection	of	smaller	tools	that	communicate	with	each	other.	If
the	amount	of	work	is	overwhelming,	try	to	start	wide	with	the	first	few	contextual
analyses,	and	then	focus	down	to	a	smaller	part	that	you	feel	will	give	the	biggest	return
on	investment.

Team	of	Two

It	is	also	strongly	recommended	that	you	perform	the	contextual	analysis	with	two	people.
This	has	a	dual	purpose:	The	first	is	that	asking	questions,	watching	the	user,	and	taking
notes	all	at	once	is	very	difficult.	The	second	is	that	a	contextual	inquiry	is	a	great
opportunity	to	invite	someone	who	might	not	have	the	chance	to	watch	the	users	work,
such	as	a	stakeholder,	or	another	developer.	This	can	help	to	get	buy-	in	from	everyone
involved.

What	Can	We	Do	after	the	Contextual	Analyses?

When	you	are	satisfied	with	the	amount	of	information	that	you	have

gathered	through	contextual	analyses,	go	through	your	notes	and	make	a

Analysis	◾	61
prioritized	list	of	the	most	common	goals	shared	by	the	most	frequent	users.

If	you	end	up	with	more	than	a	dozen	goals,	then	you	are	probably	try-

ing	to	do	too	much	at	once,	or	you	are	including	goals	that	are	edge	cases.

Either	concentrate	on	a	smal	er	part	of	the	tool,	or	reevaluate	who	your	target	users	are.

These	goals	can	be	used	as	a	starting	point	to	create	task	flows,	mental	models,	personas,
scenario	storyboards,	and	most	importantly,	measurements.	Each	of	these	techniques	is
described	below.

CREATE	TASK	FLOWS

When	attempting	to	accomplish	a	goal,	a	user	may	execute	one	or	more

tasks.	Each	task	is	made	up	of	a	series	of	actions.	Task	flows	are	a	way	of	thinking	about
the	flow	of	those	actions,	which	can	help	everyone

involved	in	the	development	of	the	tool	to	have	a	shared	vision	of	how	the	actions	are
connected.	This	makes	it	easier	to	pinpoint	where	improvement	is	needed.

How	to	Create	a	Task	Flow

A	task	flow	is	essentially	a	flowchart	that	represents	how	the	user	performs	a	task,	with
each	node	representing	an	action.	For	each	action	that	the

users	perform,	make	a	node.	Connect	it	to	the	other	actions	to	create	a

flow.	If	the	user	branches	off,	split	off	a	node	and	continue	from	there	(see	Figure	4.17).

You	can	create	a	task	flow	for	each	user	and	then	merge	them	into	one

task	flow	that	represents	the	average.	In	the	case	that	a	significant	number	of	users
perform	different	actions,	note	the	percentage	of	users	who	typically	execute	one	action	as
opposed	to	the	other,	as	well	as	the	frequency	at	which	they	perform	that	action.	This	will
allow	you	to	identify	which	part	of	the	task	flow	represents	the	majority	of	the	users’	time,
which	can	help	you	to	prioritize	what	to	work	on	first.

%	of	users,	frequency

Action

Action

Action

%	of	users,	frequency

Action

Action

Action

FIGURE	4.17	The	structure	of	a	task	flow.

62	◾	Designing	the	User	Experience	of	Game	Development	Tools	From	the	User’s
Perspective

Keep	in	mind	that	a	task	flow	is	done	from	the	user’s	perspective.	As	a

result,	the	task	flow	should	not	include	technical	details	that	the	users	do	not	understand.
To	help	reinforce	this,	the	text	in	each	node	should	contain	a	verb	describing	the	action,
such	as	“select	the	object”	or	“export	to	the	engine,”	instead	of	“fire	a	ray-	cast”	or	“server
parses	XAML	data.”

Adding	Details

During	the	contextual	analysis,	you	may	have	taken	note	of	where	the	user	had	problems
or	made	mistakes.	You	can	note	where	these	issues	occur	in

the	task	flow.	For	each	issue,	also	consider	the	following:

•	Is	this	an	efficiency	problem?	If	so,	which	part	of	the	action	cycle

could	be	the	problem:	the	look,	think,	or	act?	Is	it	more	than	one?

•	Is	this	a	learnability	problem?	Will	making	the	feature	easier	to	learn	result	in	it	being
less	efficient?	Is	that	a	problem,	considering	how

frequently	the	feature	is	used?

Creating	an	Optimized	Task	Flow

In	addition	to	creating	a	task	flow	that	represents	the	average,	it	could	also	be	useful	to
create	an	optimal	task	flow.	To	do	this,	you	could	ask,	“Which	actions	could	be	removed?
Which	actions	could	take	less	time?	Which

actions	are	difficult	for	new	users	to	understand?”	You	could	then	create	a	new	task	flow
that	represents	the	optimal	situation.	This	can	be	a	great	way	to	set	clear	objectives	for
everyone	involved	in	the	development	of	the	tool.

DISCOVER	THE	USERS’	MENTAL	MODEL

During	the	contextual	analysis,	you	can	also	take	some	time	to	under-

stand	the	mental	model	of	the	users.	A	few	techniques	can	be	used	to

do	this.	These	can	be	used	with	several	users,	and	then	the	results	can

be	combined	to	create	an	average	mental	model	of	the	users	that	can	be

shared	with	everyone	involved	in	the	development	of	the	tool.

Card	Sort

This	technique	is	useful	when	we	do	not	know	how	the	user	organizes	dif-

ferent	terms	or	concepts	in	their	mind.	For	example,	let	us	assume	that	we	are	building	a
tool	that	contains	a	list	of	objects	that	we	can	place	in	a	level.

Analysis	◾	63
We	can	place	many	different	types	of	objects:	enemies,	weapons,	power-

ups,	lights,	particle	effects,	and	trigger	boxes.	In	the	mind	of	a	developer,	lights	and
enemies	are	related	because	they	are	derived	from	the	same	class	that	represents	the
position	of	an	object.	For	this	reason,	it	might	seem	logical	to	group	them	together.
However,	in	the	user’s	mental	model,	lights	have	more	to	do	with	trigger	boxes	and
particle	effects,	because	they	are	used	together	to	create	the	lighting	and	ambience	of	the
level.	The	users	do	not	associate	lights	and	enemies,	even	though	they	are	related	in	the
code.

Here	is	how	a	card	sort	can	be	used	to	do	this:

1.	Write	each	term	or	concept	on	a	card.

2.	Give	the	cards	to	a	user	and	ask	them	to	lay	them	out	on	a	table	in

groups	that	make	sense	to	them	(see	Figure	4.18).

3.	When	they	are	done,	ask	them	why	they	organized	the	cards	the	way

that	they	did.

4.	Finally,	take	a	photo	or	write	down	how	all	the	cards	were	organized,	and	take	note	of
the	user’s	name	so	you	can	ask	follow-	up	questions

later.

5.	Repeat	steps	2	through	4	with	a	new	user.	Do	this	with	as	many	users

as	you	can.

FIGURE	4.18	Example	of	a	card	sort.

64	◾	Designing	the	User	Experience	of	Game	Development	Tools	Once	you	are	done,
compare	the	results	across	all	users	to	find	trends	and	common	groupings.	You	can	use	a
spreadsheet	to	do	this,	or	you	can	use

web-	based	tools	to	facilitate	the	process.*

User	Objects

The	term	user	object	describes	the	mental	model	of	a	specific	type	of	object	that	the	user
can	manipulate.	The	word	user	in	user	object	is	important	here,	since	this	is	about	how	the

user	sees	it,	not	how	it	is	coded.	For	example,	the	class	definition	for	an	entity	in	a	level
editor	may	define	rotation	in	radians	with	an	angle-	axis	Vector4.	However,	the	user	may
not	know

what	any	of	those	words	mean,	and	they	simply	think	of	rotation	as	being	between	0	and
360	degrees,	on	the	x-,	y-,	and	z-	axes.

For	each	user	object,	we	take	note	of	how	the	user	perceives	them	by

making	a	list	of	attributes	and	actions:	the	attributes	of	the	object,	and	the	actions	that	you
perform	with	the	object.	If	the	discussion	about	the	user	objects	turns	to	features	requests,
steer	the	conversation	back	to	what	the	user’s	goals	are,	and	how	they	can	be	translated
into	attributes	and	actions.

Once	we	have	performed	a	contextual	analysis	with	a	few	users,	we

can	start	to	identify	the	most	common	attributes	and	actions	requested

by	most	users.	This	will	help	us	to	focus	on	the	right	features	used	by	the	majority	of
users.

For	example,	if	we	worked	with	a	user	to	create	a	user	object	for	a	point	light,	the	results
might	look	like	Figure	4.19.	This	user’s	mental	model	of	a	point	light	is	that	it	has	the
attributes	of	color,	intensity,	and	range.	They	also	consider	the	color	as	being	set	as	HSV
(hue,	saturation,	and	value),	the	intensity	as	a	number	(where	100	is	equal	to	100	percent
intensity),	and	the	range	is	measured	in	meters.

Object

Attributes

Actions

Point	light

Color	(HSV)

Move	light

Intensity	(100	=	100%)

Change	the	color

Range	(in	meters)

Set	the	intensity

Set	range

Enable	or	disable

FIGURE	4.19	Example	of	a	user	object	for	a	point	light.

*	Two	popular	options	are	Optimal	Sort	(http://www.optimalworkshop.com/
optimalsort.htm)	and	Websort	(http://dirtarchitecture.wordpress.com/	websort/).	These
services	also	provide	an	automated	analysis	such	as	most	common	groupings,	trends,	and
so	on.

Analysis	◾	65

%	of	users

HSV	RGB	HEX

1.0

100

0.0

M

CM

Color

100%	Intensity

Range

FIGURE	4.20	Choosing	how	data	is	represented	based	upon	the	most	common	attributes
of	the	user	objects.

If	you	have	a	large	number	of	users,	you	could	add	up	the	results	of	the	user	objects	to
determine	the	most	common	attributes	and	actions,	in	an

effort	to	build	a	shared	mental	model	for	point	lights	(see	shaded	bars	in	Figure	4.20).

Note	that	the	user	who	created	the	point	light	user	object	earlier	pre-

ferred	100	percent	intensity	to	be	the	number	100,	whereas	the	majority

of	users	preferred	1.0.	Remember	that	we	are	not	going	to	make	everyone

happy.	Start	with	1.0.	If	it	becomes	a	problem	to	a	significant	number	of	users,	we	can
always	add	an	option	to	switch	between	1.0	and	100.

Developers	who	are	familiar	with	object-	oriented	programming	will

notice	that—although	they	are	from	the	user’s	perspective—creating	user

objects	is	almost	like	describing	a	class.	Therefore,	doing	this	exercise	before	writing	code
can	accelerate	developer	productivity,	because	it

provides	a	starting	point	that	provides	the	functionality	that	the	users	are	expecting.

ESTABLISH	MEASUREMENTS

One	of	the	most	important	aspects	of	the	User-	Centered	Design	process	is	measuring
progress,	which	helps	to	ensure	that	you	are	going	in	the	right	direction.	The	process
described	in	Jeff	Gothelf’s	book	Lean	UX	focuses	on	doing	small,	rapid	iterations	and
measuring	Key	Performance	Indicators,

or	KPIs.	The	ISO	9241-210	specification	provides	examples	about	what	to

measure,	and	how.	Taking	the	time	to	track	these	measurements	is	one	of

the	best	ways	to	ensure	that	your	efforts	are	improving	the	user	experience.

In	Chapter	1,	we	learned	that	there	are	many	different	ways	to	mea-

sure	usability,	and	that	this	book	focuses	on	efficiency	and	learnability.

Choosing	what	to	measure	depends	on	a	variety	of	factors,	such	as	the

goals	of	the	users	and	the	stakeholders,	as	well	as	the	experience	level	of	the	users.

66	◾	Designing	the	User	Experience	of	Game	Development	Tools	Measuring	Efficiency

If	the	goals	of	the	stakeholders	are	related	to	producing	assets	faster	with	fewer	people	or
more	assets	with	the	same	number	of	people,	efficiency

could	be	the	right	choice.	During	the	contextual	inquiry,	if	a	large	proportion	of	the	users
complain	that	the	tool	is	slow,	or	that	the	number	of	steps	required	to	complete	specific
tasks	is	too	high,	this	could	also	point	to	the	decision	to	measure	efficiency.

Furthermore,	if	the	users	are	mostly	experts	who	are	accustomed	to

complex	tools,	and	they	have	a	deadline	looming	on	the	horizon,	this

could	further	confirm	a	decision	to	measure	efficiency.	This	decision	could	mean	that	the
users	are	required	to	receive	some	training	on	the	changes	to	the	interface,	and	they	may
require	documentation.	However,	the	intention	would	be	higher	efficiency	overall.

To	measure	efficiency	within	the	task	flow,	you	can	use	a	stopwatch

to	time	how	long	the	user	takes	to	perform	either	each	task	or	specific

actions.	Ensure	that	the	users	are	working	with	the	same	assets	or	values,	if	possible,	so
that	the	numbers	are	comparable.	These	numbers	can	be

averaged	across	multiple	users	to	get	a	baseline	measurement	that	you	can	compare
against	each	time	you	go	through	the	Analysis	phase.	We	will

talk	more	about	this	in	Chapters	6	and	7.

You	may	also	be	able	to	measure	efficiency	of	tasks	and	actions	by	using	metrics.
However,	it	can	be	challenging	to	make	decisions	based	only	on

these	numbers,	because	it	may	not	be	possible	to	determine	if	the	task	was	completed
successfully,	and	because	the	user	could	be	away	from	their

desk	in	the	middle	of	an	action,	inflating	the	results.	As	always,	a	combination	of	metrics
and	watching	the	users	work	can	give	the	best	results.

Measuring	Learnability

If	the	goals	of	the	stakeholders	are	to	ramp	up	new	users	faster,	or	to

reduce	support	costs	(such	as	the	salaries	of	people	writing	the	documentation	or	the	time
spent	by	expert	users	training	users	and	answering	their	questions),	learnability	may	be	a
better	measurement.	Additionally,	if	you	notice	that	during	the	contextual	inquiry	the	users
have	difficulty	remembering	all	of	the	various	functions	within	a	tool,	or	they	make	many
mistakes	that	could	potentially	be	avoided	by	understanding	how	the	tool

works,	this	could	confirm	a	decision	to	measure	learnability.

In	addition,	if	the	content	creators	are	less	experienced,	and	the	team	is	still	ramping	up	to
full	production	mode,	leaning	more	toward	learnability	Analysis	◾	67

could	be	a	better	choice.	Keep	in	mind	that	a	focus	on	improving	learn-

ability	could	have	an	adverse	effect	on	efficiency,	and	the	intention	is	to	compensate	for
that	by	making	the	tools	easier	to	learn.

As	we	discovered	earlier	in	the	chapter,	a	tool	is	considered	to	have	good	learnability	if	a
new	user	unfamiliar	with	the	tool	can	accomplish	a	task	on	the	first	attempt.	This	can	be
measured	by	using	a	stopwatch	to	time

how	long	it	takes	the	user	to	complete	a	task	successfully,	with	specific	assets	or	values.

Measuring	Both

Finally,	it	is	possible	to	design	a	tool	where	the	majority	of	the	features	are	both	easy	to
learn	and	efficient	to	use.	This	often	takes	much	longer	to	measure	and	design	compared
to	simply	choosing	one	or	the	other,

because	efficiency	and	learnability	can	sometimes	be	in	opposition	with

each	other.	As	a	result,	you	may	have	to	compromise,	or	choose	to	improve	both	for	only
the	most	frequently	used	features	in	your	tool.

There	is	a	good	reason	why	very	few	tools	are	both	efficient	and	learn-

able:	finding	a	balance	between	the	two	is	one	of	the	biggest	challenges	in	user	experience
design.

ADVANCED	TECHNIQUES

Personas

If	you	perform	a	contextual	analysis	on	a	large	number	of	users	and	it

is	difficult	to	communicate	the	goals	and	mental	models	for	all	of	those	users,	you	have
the	option	of	creating	personas.	Personas	are	archetypes	of	people	who	represent	the
majority	of	the	people	that	use	the	tool.	Not	only	does	it	make	it	easier	for	you	to	see	the
big	picture	of	whom	you	are	building	for,	but	it	also	helps	to	communicate	who	these
people	are.

How	to	Create	Personas

Here	is	a	very	basic	approach	to	creating	a	persona:	study	your	contex-

tual	analysis	notes	and	try	to	identify	the	most	common	goals	and	mental	models.	Group
related	goals	and	mental	models	together.	Each	group	will

become	a	persona.	You	may	choose	to	create	a	separate	persona	per	job	role,	such	as	one
for	level	designers	and	one	for	animators,	or	be	more	specific,	such	as	separate	personas
for	AI	programmers	and	physics	programmers.*

*	For	more	on	creating	personas,	you	can	read	Chapter	5	of	Cooper,	Reinmann,	and
Cronin’s	book	About	Face	3,	or	Adlin	and	Pruitt’s	The	Essential	Persona	Lifecycle.

68	◾	Designing	the	User	Experience	of	Game	Development	Tools	Goals
Goals

Nullam	quis

Morbi	metus	sapien

Dapibus	augue

Blandit	eget

Vitae	blandit	justo

Ullamcorper	tinci

Donec	malesuad

Mental	Models

Mental	Models

Pellentesque	quis

Ellentesque	ornare

Nibh	in	dignissim

Patrick

Tincidunt	felis

Rochelle

Elit	sapien	maecena

Level	Designer

At	ultrices	aliquam

Animator

Fasellus	imperdiet

FIGURE	4.21	Example	personas.

It	is	also	important	to	give	each	persona	a	realistic	name	and	a	natural-looking	picture.	For
example,	giving	a	persona	the	name	“Moe	the

Modeler”	and	using	a	cartoon	character	as	a	photo	will	result	in	people

not	taking	the	personas	seriously.*

Personas	created	to	represent	users	of	a	game	development	tool	might

look	something	like	Figure	4.21.

Scenario	Storyboards

To	create	an	even	deeper	understanding	of	context,	you	can	also	choose

to	create	scenario	storyboards.	Scenario	storyboards	resemble	the	sto-

ryboards	we	use	when	planning	a	game	cinematic	(see	Figure	4.22).	The

FIGURE	4.22	Example	scenario	storyboard.

*	You	can	auto-	generate	realistic	names	and	pictures	from	websites	like
http://www.randomuser.

me,	or	you	can	use	a	more	complete	persona	creation	solution	with	tools	such	as
http://www.

usabilitytools.com/	features-	benefits/	persona-	creator.

Analysis	◾	69
purpose	of	a	scenario	is	to	explore	how	the	tool	is	used	in	a	variety	of	contexts.	They	are
very	useful	for	ensuring	that	everyone	involved	in	the	development	of	the	tool	understands
and	agrees	on	how	the	tool	is	supposed	to	be	used.

How	to	Create	Scenario	Storyboards

To	create	a	scenario	storyboard,	first	choose	one	or	more	user	goals	or

tasks.	If	you	have	also	created	personas,	you	can	choose	to	feature	them	in	the	scenario
storyboard.	Each	frame	in	the	storyboard	depicts	an	action

performed	by	the	personas	while	they	are	using	the	tool,	and	it	ends	in	the	successful
completion	of	their	task	or	goals.*

Scenario	storyboards	do	not	include	references	to	the	user	interface.

Instead,	they	show	how	the	personas	would	interact	with	the	user	objects.

This	keeps	the	scenario	storyboards	at	a	high	level	so	that	they	do	not

influence	us	into	assuming	that	the	interface	must	function	or	look	a	certain	way.	This
enables	us	to	focus	on	finding	the	best	possible	design	solution	to	achieve	the	users’	goals.

The	quality	of	the	drawings	is	not	important.	However,	if	you	need	some

assistance	producing	storyboards,	many	web-	based	tools	are	available.†

WRAPPING	UP

In	this	chapter,	we	learned	about	the	Analysis	phase	of	the	User-	Centered	Design	process.
We	discussed	the	value	of	watching	users	work,	the	limitations	of	metrics	and	focus
groups,	and	the	importance	of	thinking	in

terms	of	the	problems	that	we	are	trying	to	solve	(not	the	features	we	want	to	implement).
We	also	learned	about	human–	computer	interaction,	the

action	cycle,	its	effects	on	efficiency	and	learnability,	as	well	as	the	concept	of	the	user’s
mental	model.	Finally,	we	learned	a	variety	of	techniques	to	be	used	during	the	Analysis
phase,	such	as	interviewing	stakeholders,	performing	contextual	analyses,	creating	task
flows,	and	establish-

ing	measurements.

In	the	next	chapter,	we	will	discuss	concepts	and	techniques	to	be	used

during	the	Design	phase	of	the	User-	Centered	Design	process.

*	For	more	on	creating	scenarios,	you	can	also	read	Chapter	6	of	Cooper,	Reinmann,	and
Cronin’s	book	About	Face	3.

†	Storyboard	That	(http:/	www.storyboardthat.com/)	and	Amazon	Storyteller	(http:/
studios.amazon.

com/	storyteller)	are	two	popular	examples.

C	h	a	p	t	e	r	5

Design

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?

Concepts

•	Understanding	how	the	eyes	and	the	brain	work	together

•	How	a	visual	language	can	help	humans	and	computers	communicate

•	The	importance	of	using	interaction	patterns

Techniques

•	How	hierarchy	can	guide	the	user	through	the	interface

•	Making	the	interface	easier	to	understand	with	natural	mapping

•	How	to	use	representation	to	help	the	user	work	with	and	under-

stand	complex	data

•	How	to	use	feedback	to	let	the	user	know	what	the	tool	is	doing

•	Using	feed-	forward	to	help	the	user	learn	what	an	action	will	do,

before	they	commit	to	it

•	How	to	use	grouping	to	associate	information	in	a	way	that	the

users	expect

•	How	to	use	chunking	to	make	it	easier	for	the	user	to	process	more

information	at	once

•	How	to	use	excise	to	make	the	user	work	faster	(or	slower,	if	necessary)

•	Using	progressive	disclosure	to	design	an	interface	that	is	simple	for	beginners	and
powerful	for	experts

71

72	◾	Designing	the	User	Experience	of	Game	Development	Tools	HOW	THE	BRAIN
AND	THE	EYES	WORK	TOGETHER

Previous	generations	of	the	Sony	PlayStation	have	included	unique

microprocessors,	such	as	the	Emotion	Engine	and	the	Cell.	Getting	the

best	performance	out	of	these	chips	required	specialized	knowledge	and

programming	skills.	Each	chip	had	its	own	quirks	and	idiosyncrasies.

Expecting	a	programmer	to	get	the	best	performance	out	of	these	chips

without	first	understanding	their	architecture	would	be	unrealistic.

Designing	tools	for	people	is	no	different.	The	brain	is	a	microprocessor	in	its	own	right
and	has	strengths	and	weaknesses.	Just	as	understanding	the	architecture	of	a	chip	allows
us	to	be	better	console	developers,	understanding	how	the	brain	works	can	help	us	design
tools	with	a	better	user	experience.

Our	Brains	Decide	What	We	See

As	tools	developers,	we	may	have	had	the	experience	of	adding	a	new	but-

ton	to	an	interface,	only	to	realize	that	very	few	users	notice	it.	All	the	work	that	was	put
into	the	feature	is	lost	since	no	one	knows	that	it	is	there.

You	may	have	asked	yourself,	“Why	don’t	the	users	see	that	button?”

It	may	come	as	a	surprise	to	learn	that	we	do	not	always	see	what	we

think	we	do.	Our	brain	fills	in	the	blanks.	A	great	example	of	this	is	our	blind	spot.	On	the
inside	of	our	eye	are	rods	and	cones,	responsible	for	detecting	colors	and	contrast.
However,	at	the	point	where	the	optic	nerve	connects	to	the	eyeball,	there	are	no	rods	and
cones.	As	a	result,	we	cannot	see	in	that	spot.

To	test	this,	hold	this	book	away	from	your	face	and	cover	your	left	eye.

Now,	look	at	the	cross	in	Figure	5.1.	Slowly	move	the	book	closer	to	your	face	until	the

dot	disappears.	Where	did	the	dot	go?	The	answer	is	that

your	eye	does	not	have	any	rods	or	cones	where	the	circle	should	be,	so

your	brain	fills	in	the	missing	information.

After	experiencing	this,	you	can	begin	to	understand	how	it	is	possible

that	users	do	not	see	the	new	button	that	you	added.

FIGURE	5.1	Testing	your	blind	spot.

Design	◾	73
FIGURE	5.2	Examples	of	how	our	brains	are	optimized	to	interpret	specific	patterns.

Our	Brains	Are	Optimized	for	Specific	Patterns

Figure	5.2	contains	a	series	of	shapes.	Most	people	see	a	triangle	on	the	left,	even	though
there	is	no	triangle,	only	three	pies.	In	the	middle,	we	recognize	the	shape	as	a	circle,	even
though	the	line	is	broken.	Finally,	on	the	right,	our	eye	is	immediately	attracted	to	the
cross	that	looks	different.*

Our	brains	are	hardwired	to	interpret	these	specific	visual	patterns

very	quickly,	which	is	probably	a	result	of	natural	selection.	Consider	the	image	in	the
middle	of	Figure	5.2:	if	the	circle	is	a	saber-	toothed	tiger	and	the	missing	parts	are	trees
that	it	is	hiding	behind,	the	ability	to	recognize	the	shape—despite	the	missing	parts—may
have	kept	our	ancestors	alive.

VISUAL	LANGUAGE

It	turns	out	that	if	we	want	to	understand	visual	language,	video	games

provide	some	of	the	best	examples.	The	visual	language	for	a	game	is	made	of	multiple
elements,	and	two	of	the	most	important	are	shape	and	color.

At	GDC	2008,	Valve’s	Jason	Mitchell	presented	a	talk†	about	the	dis-

tinct	visual	language	of	Team	Fortress	2.	As	the	game	is	a	multiplayer	first-person	shooter,
identifying	the	class	of	the	enemy	you	are	fighting	from	far	away	is	very	important,	and	so
each	class	has	a	unique	shape,	or	silhouette	(see	the	top	of	Figure	5.3).	Finding	the	enemy
base	is	also	extremely	important,	and	so	each	team’s	base	has	a	distinctive	architectural
style:	warm	colors	and	angular	shapes	for	the	RED	team	versus	cool	colors	and

orthogonal	shapes	for	the	BLU	team	(see	the	bottom	of	Figure	5.3).	Once

you	learn	this	language,	you	can	see	which	class	of	enemies	you	are	facing	and	which	base
you	are	in,	at	a	glance.

*	These	are	all	examples	from	Gestalt	psychology,	which	you	can	read	more	about	here:
http://

en.wikipedia.org/	wiki/	Gestalt_psychology.

†	You	can	see	the	entire	presentation	here:	http://www.valvesoftware.com/
publications/2008/

GDC2008_StylizationWithAPurpose_TF2.pdf.

74	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.3	The	visual
language	of	Team	Fortress	2.	©	Valve	Corporation.

Learning	the	Language

As	the	gamer	learns	how	to	communicate	with	the	visual	language,	it

becomes	a	conversation:	the	screen	shows	the	status	of	the	game,	and	the	gamer	responds
with	the	controller.	The	gamer	may	also	learn	the	language	faster	if	the	same	elements	are
seen	in	other	games	of	the	same	genre.	For	example,	in	the	vast	majority	of	first-	person
shooter	games,	when	we	see	an	arrow	shape	that	is	colored	red	on	the	edge	of	the	screen,
we	know	that	someone	is	attacking	us	from	that	angle,	and	we	instinctively	respond	to	the
threat	with	the	controller.

The	same	can	be	said	for	game	development	tools.	If	we	use	familiar

and	consistent	shapes	and	colors,	the	user	spends	less	time	learning	the	tool,	and	they	will
know	what	to	do	at	a	glance.

Familiar	Icons

Some	people	believe	that	the	save	icon	is	outdated	and	should	be	replaced.

The	typical	save	icon	represents	a	3.5″	diskette,	which	most	people	have	not	used	to	save	a
file	since	the	1990s	(see	the	left	side	of	Figure	5.4).	Recently,	FIGURE	5.4	Familiar	icons
are	recognized	and	interpreted	more	quickly	than	new	designs	or	“ideal”	representations.

Design	◾	75
some	of	the	best	designers	in	the	world	tried	to	design	a	replacement	but	were	unable	to
reach	a	consensus.*	Despite	being	out	of	date,	the	save	icon	prevails	for	one	important
reason:	because	our	brains	are	better	at	recognizing	a	familiar	shape	than	interpreting	a
new	one,	even	if	it	is	a	more	appropriate	representation.

Consider	the	iconography	for	“call”	on	a	smartphone	or	“train	crossing”

on	a	street	sign	(see	the	middle	and	right	side	of	Figure	5.4,	respectively).

We	do	not	see	rotary	telephone	receivers	or	steam	engines	very	often	these	days,	yet	their
silhouettes	are	iconic—pardon	the	pun—and	continue	to	be	used	because	they	are	the
most	familiar	shapes	for	those	concepts.

When	choosing	icons	for	your	game	development	tools,	strive	for

familiarity	over	a	new	design.	Although	the	shape	of	an	icon	may	seem

out	of	date,	it	is	more	important	that	the	user	can	recognize	it	as	opposed	to	having	the
perfect	representation.

Color	Consistency

Users	of	Microsoft	Visual	Studio—or	any	other	modern	IDE—are	accus-

tomed	to	the	concept	of	color	syntax:	specific	keywords	use	the	same	color	consistently,
making	it	easy	to	pick	out	variables,	functions,	and	comments.	There	is	no	denying	that
using	color	to	communicate	in	this	way

is	an	extremely	useful	tool:	for	example,	color	makes	it	easier	to	fix	an	unterminated
string.	While	we	should	take	advantage	of	using	color	to

communicate	with	the	user,	we	need	to	ensure	that	our	tools	use	color

consistently,	and	that	the	colors	match	existing	standards.

For	example,	imagine	if	Visual	Studio	had	inconsistent	color	syntax.

In	some	cases,	variables	would	be	blue,	and	in	other	cases,	they	would	be	green.	This
would	frustrate	any	programmer.	However,	many	game	development	tools	do	not	use
color	consistently.	In	one	window,	an	object	may	be	purple,	while	in	another	window,	it
may	be	orange.

In	Microsoft	Excel,	when	the	value	of	a	cell	is	negative,	it	is	colored

red	to	indicate	a	problem.	This	is	because	accountants	want	to	see	where	money	is	being
lost.	However,	imagine	if	that	color	was	green.	All	around	the	world,	the	colors	green,
yellow,	and	red	in	software	interfaces	are

accepted	to	represent	OK,	caution,	and	danger,†	so	a	problem	represented	by	the	color
green	would	seem	unnatural.	Unfortunately,	some	game

*	You	can	see	that	discussion	here:	http://branch.com/	b/redesigning-	the-	save-	symbol-
let-	s-do-	this.

†	These	standards	were	originally	recommended	by	the	Vienna	Convention	on	Road	Signs
and	Signals.	Read	more	here:	http://en.wikipedia.org/	wiki/
Convention_on_Road_Signs_and_Signals.

76	◾	Designing	the	User	Experience	of	Game	Development	Tools	More	contrast

Less	contrast

FIGURE	5.5	Our	eyes	are	able	to	read	text	with	stronger	contrast	more	quickly	and
accurately.

development	tools	use	bright	red	in	situations	where	there	is	no	problem,	leading	to
confusion	and	concern	among	the	users.

To	design	an	interface	with	a	better	user	experience,	pick	colors	that	are	consistent	and
match	existing	standards.*

Legible	Contrast

Although	our	brain	works	hard	to	compensate	for	the	limitations	of	our

eyes,	there	are	some	things	that	it	simply	cannot	do.	To	ensure	that	the	user	is	able	to	see
the	visual	language	that	we	have	designed,	we	must	also	consider	the	ability	of	our	eyes	to
see	contrast.

When	the	shade	for	text	and	the	background	are	too	close	to	each

other,	our	eyes	have	difficulty	making	out	the	shapes	(see	the	right	side	of	Figure	5.5).
Fortunately,	there	are	standards	for	contrast	that	we	can	follow	and	tools	we	can	use	to
ensure	maximum	legibility.†

A	Note	on	Dark	Interfaces

The	popularity	of	dark	interfaces	has	increased	in	the	last	few	years,	especially	in	the	case
of	content	creation	tools.	One	of	the	first	tools	to	adopt	a	dark	interface	was	Autodesk
Combustion.	Other	content	creation	tools

started	including	a	“dark	mode,”	such	as	Adobe	Photoshop	and	Autodesk

3ds	max.	When	Apple	announced	a	dark	mode	for	OSX	Yosemite	at

WWDC	2014,	it	prompted	cheers	from	the	crowd.	Now,	dark	interfaces

can	even	be	found	in	tools	that	are	not	used	exclusively	by	artists,	such	as	Unity	and
Microsoft	Visual	Studio.

The	fact	is	that	our	eyes	have	more	difficulty	seeing	contrast	when	light	text	is	used	on	a
dark	background.	To	experience	this	effect,	try	using	a	tool	with	an	interface	that	can	be
switched	between	dark	and	light	on	a	laptop	outside	on	a	sunny	day,	such	as	one	of	the
many	tools	in	the	Adobe	suite,	or	the	Unity	game	engine.	When	you	switch	between	the
dark	and	light	interfaces,	you	will	notice	that	you	can	see	more	details	on	the	light
interface.

*	Microsoft’s	recommendations	for	color	can	be	found	here:	http://msdn.microsoft.com/
en-	us/

library/	windows/	desktop/	dn742482.asp.

†	Here	is	a	list	if	tools	from	the	W3C	website	to	verify	that	contrast	standards	are	being
respected:	http://www.w3.org/	TR/	UNDERSTANDING-	WCAG20/visual-	audio-
contrast-	contrast.

html#visual-	audio-	contrast-	contrast-	resources-	head.

Design	◾	77
However,	this	should	not	lead	us	to	conclude	that	light	interfaces	are	better.	To	do	this
would	be	to	forget	the	importance	of	watching	users	work.

We	need	to	understand	context	in	which	the	dark	interface	was	developed

in	the	first	place:	Combustion	is	a	tool	for	film	compositing,	typically	used	in	a	dark
editing	room	with	no	windows.	The	users	found	that	a	lighter

interface	blinded	them,	and	that	a	darker	interface	was	more	comfortable,	given	the
context:	working	in	dark	editing	room	with	no	windows.

The	point	is	that	light	and	dark	interfaces	each	have	their	place,	and	the	best	choice
depends	on	the	context	of	the	environment	of	the	users.	When	in	doubt,	give	the	users	a
choice	of	one	or	the	other.

INTERACTION	PATTERNS

One	of	the	first	professions	to	understand	the	significance	of	humans

interacting	with	patterns	was	architecture.*	Through	our	life	experience,	we	have	learned
that	a	series	of	stacked	cubes	is	a	flight	of	stairs	that	can	be	climbed,	and	a	rectangle	with
a	handle	is	a	door	that	can	be	opened.	Just	like	a	visual	language,	when	we	see	these
shapes,	our	brain	recognizes	the	pattern	and	we	know	what	to	do.

The	same	goes	for	user	interfaces.	For	example,	through	experience,	we

have	learned	the	difference	between	radio	buttons	and	checkboxes:	one

lets	the	user	choose	only	one	option	at	a	time,	while	the	other	lets	the	user	choose	more
than	one	option	at	once	(see	Figure	5.6).	When	we	see	them,

we	know	how	they	are	supposed	to	work	instantly.

It	may	be	tempting	to	create	new	and	unique	user	interface	elements	or

behaviors	for	existing	controls.	This	might	be	because	we	feel	that	we	know	a	better	way
for	the	user	to	manipulate	the	data,	or	it	looks	like	an	interesting	chal	enge.	We	must	do
our	best	to	resist	this	temptation.	Not	only	could	it	result	in	decreased	learnability	and
efficiency,	but	it	will	also	take	more	time	to	create	and	maintain	the	code	for	a	control	that
does	not	already	exist.

FIGURE	5.6	The	importance	of	following	interaction	guidelines	and	patterns:	the	majority
of	users	have	learned	how	a	radio	button	works	(left),	and	how	it	is	different	from	a
checkbox	(right).

*	The	book	A	Pattern	Language	by	Alexander,	Ishikawa,	Silverstein,	et	al.	is	generally
regarded	as	one	of	the	best	books	on	the	patterns	of	architecture	and	urban	design.

78	◾	Designing	the	User	Experience	of	Game	Development	Tools	General
Modeling

Animation

FIGURE	5.7	Changing	the	current	view:	a	non-standard	pattern	(left)	compared	to	a
standard	pattern	(right).

For	example,	if	your	tool	requires	a	control	to	switch	between	different	views,	it	might	be
appealing	to	develop	a	dial	that	the	user	can	turn	to	set	the	current	view.	While	it	is	true
that	using	a	dial	to	switch	between	views	is	more	common	for	physical	devices,	a	more
standardized	pattern	for	a	desktop	software-	based	content	creation	tool	would	be	tabs	(see
Figure	5.7).	They	are	common	in	software	user	interfaces,	and	most	users	are	familiar	with
them.*

What	Happens	When	We	Do	Not	Follow	Guidelines?

While	it	is	true	that	there	are	rare	times	where	the	advantages	of	a	new	pattern	outweigh
the	disadvantages,	we	should	strive	for	familiarity	as	much	as	possible.	This	means
following	existing	interaction	patterns	guidelines,	such	as	those	created	and	maintained	by
Microsoft	and	Apple.

Imagine	that	we	introduce	a	new	interaction	pattern	to	our	tool.	This	pattern	is	unfamiliar
to	all	of	the	users	and	must	be	learned.	When	the	user	sees	the	pattern,	they	spend	more
time	in	the	think	and	look	phases	of	the	action	cycle.	If	the	new	pattern	does	not	improve
the	efficiency	of	the	tool,	this	means	that	the	new	pattern	has	actual	y	made	the	usability	of
our	tool	worse!

Established	interaction	patterns	do	not	have	to	be	learned.	We	know

how	they	work	from	experience.	They	have	been	streamlined	over	time.

If	used	correctly,	users	will	learn	the	tool	faster	(because	they	are	familiar	with	the
interface)	and	be	more	efficient	(because	they	can	jump	back	and	forth	between	different
tools	without	having	to	adjust	the	way	they	work).

Who	Establishes	Interaction	Patterns?

An	interaction	pattern	becomes	a	standard	because	it	works	well.	Just	as	our	brain’s	ability
to	see	visual	patterns	evolved	to	keep	us	from	being

*	This	is	also	dependent	on	the	platform.	For	example,	to	toggle	a	value	on	and	off,	a
switch	control	is	more	common	in	tablets	and	smartphones,	while	a	checkbox	is	more
common	in	desktop	software	applications.

Design	◾	79
eaten	by	a	saber-	toothed	tiger,	interaction	patterns	survive	because	they	have	proven	to	be
some	of	the	most	effective	and	well-	established	solutions	to	a	given	problem	within	a
specific	context.

It	is	unusual	for	new	interaction	patterns	to	be	established	by	anyone

other	than	big	companies	such	as	Apple,	Microsoft,	and	Adobe.*	Because

they	have	such	a	large	market	share,	many	people	are	exposed	to	their

products	and	become	familiar	with	their	interaction	patterns.†

There	are	times	when	Apple,	Adobe,	and	Microsoft	deviate	slightly	from

their	own	guidelines.	However,	the	vast	majority	of	their	applications	follow	the
guidelines	and	use	the	same	patterns	consistently.	We	should	do

the	same.	If	the	interaction	patterns	are	standardized,	users	can	focus	on	creating	content,
instead	of	learning	how	to	use	the	interface.

How	to	Choose	the	Right	Interaction	Pattern

If	you	have	read	the	books	Design	Patterns:	Elements	of	Reusable	Object-Oriented
Software	by	Gamma,	Helm,	Johnson,	and	Vlissides	or	Code	Complete	by	Steve
McConnell,	you	know	that	design	patterns	are	a	solution	to	a	problem	within	a	given

context.	Many	interaction	pattern	libraries	also	use	this	format	to	help	you	decide	which
one	is	best	to	use.

For	example,	when	the	problem	is	choosing	one	unique	option	from	a

list,	and	the	context	is	that	there	are	between	two	and	seven	options,	the	Microsoft
guidelines	suggest	using	radio	buttons.	However,	in	the	context	that	there	are	more	than
seven	options	and	not	a	lot	of	space	to	display	them,	a	drop-	down	is	suggested.‡	(See
Figure	5.8.)

Many	guidelines	derive	from	this	format	to	help	you	choose	the	right

interaction	pattern.	When	in	doubt,	implement	it	and	watch	the	users

work	with	it.

*	The	guidelines	for	Microsoft	Windows	and	Apple	OSX	can	be	found	below.	To	the	best
of	my	knowledge,	the	design	guidelines	for	Adobe	products	are	not	publicly	available.

http://msdn.microsoft.com/	library/	windows/	desktop/	dn688964.aspx

https://developer.apple.com/	library/	mac/	documentation/	UserExperience/	Conceptual/

AppleHIGuidelines/	Intro/	Intro.html

†	In	some	ways,	Apple’s	keynote	presentations—watched	by	millions	of	people	all	over
the	world—

are	a	training	session	on	how	to	use	their	products.	This	can	have	a	huge	impact	on	the
perception	of	how	easy	to	learn	their	products	are!

‡	See	the	guidelines	on	radio	buttons	here:	http://msdn.microsoft.com/	en-	us/	library/
windows/

desktop/	dn742436%28v=vs.85%29.aspx.

80	◾	Designing	the	User	Experience	of	Game	Development	Tools	1
1

3

2

2

1

3

3

2

4

4

3

5

5

4

6

6

56

7

7

7

8

8

FIGURE	5.8	An	example	of	how	guidelines	help	to	determine	when	to	use	radio	buttons
versus	a	drop-down	menu.

What	to	Do	if	a	Pattern	Does	Not	Exist	in	the	Guidelines

There	may	be	times	when	the	user	interface	control	that	you	need	does

not	exist	in	the	Microsoft	or	Apple	guidelines.	In	this	case,	the	next	best	thing	to	do	is	to
find	as	many	examples	of	other	similar	controls	in	other	software,	and	look	for	similarities
in	the	look	and	functionality.

For	example,	Microsoft	and	Apple	may	not	have	guidelines	for	a	control

that	resizes	a	two-	dimensional	object.	However,	if	you	compare	almost

any	image	manipulation	software	(especially	those	made	by	Adobe),	you

will	see	that	a	rectangle	around	one	or	more	selected	objects,	with	handles	at	the	four
corners	that	you	can	drag	to	resize,	is	a	common	pattern	that	will	be	familiar	to	most	users.

HIERARCHY

In	the	world	of	graphic	design,	hierarchy	can	be	used	to	draw	the	user’s	attention	to	a
specific	part	of	the	interface.	This	can	be	useful	if	you	must	show	a	lot	of	information	in
your	interface,	but	you	want	the	user	to	focus	on	a	specific	part	that	will	help	them	to
accomplish	their	goals.

How	Can	Hierarchy	Improve	Usability?

Efficiency

By	using	hierarchy,	we	can	influence	the	user’s	gaze.	This	can	reduce	the	amount	of	time
spent	in	the	look	phase	of	the	action	cycle	while	the	user	is	scanning	the	interface	to	find
what	they	are	looking	for.

Learnability

We	can	use	hierarchy	to	attract	the	user’s	eye	to	specific	parts	of	the	interface,	making	it
easier	for	beginners	to	find	the	basic	functions	they	are	looking	for	when	seeing	the	tool
for	the	first	time.

Design	◾	81
FIGURE	5.9	Example	of	hierarchy,	from	left	to	right:	position,	thickness,	size,	and
contrast.

Understanding	Hierarchy

Like	a	visual	language,	hierarchy	uses	shape	and	color	to	influence	where	the	user	looks.
Hierarchy	is	defined	by	four	properties:	position,	thickness,	size,	and	contrast	(see	Figure
5.9,	from	left	to	right).

Position

Objects	that	are	placed	close	to	each	other	are	considered	grouped.	This	also	means	that
objects	with	a	lot	of	white	space	around	them	will	stand	out,	attracting	the	user’s	attention
first	relative	to	the	other	objects.

Thickness

Thicker	objects	are	often	seen	as	having	more	importance	and	will	typi-

cally	be	noticed	before	thinner	objects.	A	good	example	of	this	is	bold	text	versus	regular
text.

Size

A	single	object	that	is	a	different	size	compared	to	the	other	objects	around	it	is	likely	to
be	noticed	first.	The	fine	print	in	an	advertisement	is	a	good	example	of	this.	The
advertisers	want	you	to	notice	the	text	in	the	ad	first,	not	the	fine	print!

Contrast

We	tend	to	notice	objects	that	have	more	contrast	first	and	then	other

objects	with	less	contrast	after.	In	fact,	newborn	babies	see	extreme	contrast	before	they
can	see	subtle	contrast,	which	is	why	many	baby	toys	have	highly	contrasted	shapes	and
colors.

What	Are	Examples	of	Patterns	That	Use	Hierarchy?

The	Google	weather	card	is	an	excellent	example	of	hierarchy	(see

Figure	5.10).	If	the	user’s	goal	is	to	see	the	current	temperature,	the	design	is	very	efficient
at	using	all	four	elements	of	hierarchy	to	draw	the	user’s

82	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.10	The
Google	Weather	card	uses	hierarchy	to	help	the	user	focus	on	the	most	important
information	first.	Google	and	the	Google	logo	are	registered	trademarks	of	Google	Inc.,
used	with	permission.

attention	to	that	information.	The	current	temperature	is	by	itself,	sur-rounded	by	white
space	(position),	it	is	bigger	and	bolder	than	the	other	text	(size	and	thickness),	and	it	is
100	percent	black	on	100	percent	white	(contrast).	All	of	these	properties	in	combination
influence	our	eyes	to	look	at	the	current	temperature	first	and	then	scan	the	rest	of	the
interface	after.

As	you	can	see	in	Figure	5.11,	new	e-	mails	in	Gmail	feature	two	proper-

ties	of	hierarchy:	they	are	bold	(thickness)	and	are	written	in	black	text	on	FIGURE	5.11
The	Gmail	inbox	uses	hierarchy	to	make	unread	messages	stand	out.	Google	and	the
Google	logo	are	registered	trademarks	of	Google	Inc.,	used	with	permission.

Design	◾	83
a	white	background	(contrast).	By	comparison,	read	e-	mails	are	not	bold	and	are	written
in	black	text	on	a	gray	background.	All	of	this	draws	your	eye	to	the	new	e-	mails.

CONSTRAINTS

Constraints	impose	limits	on	what	the	user	can	do.	Their	purpose	is	to

protect	the	user	from	making	mistakes,	allowing	them	to	focus	on	their

work	without	having	to	worry	about	the	limitations.

How	Can	Constraints	Improve	Usability?

Efficiency

Without	constraints,	the	user	may	try	to	do	something	that	will	result	in	an	error.	Because
of	this,	they	will	spend	a	lot	of	time	in	the	think	phase	trying	to	understand	why	something
is	not	working.	Furthermore,	limiting	the	user’s	choices	means	they	spend	less	time	in	the
look	phase	considering	options	that	are	not	allowed	anyway.

Learnability

Limiting	the	user’s	options	also	means	that	they	have	less	to	learn.	The	constraints	make	it
clear	what	can	and	cannot	be	done.

Understanding	Constraints

When	we	are	deeply	involved	in	the	creation	of	a	tool,	we	sometimes	forget	that	not	all
users	are	aware	of	the	system’s	technical	limitations.	Users	will	try	things	that	we	never
thought	possible.

When	users	make	mistakes,	not	only	does	it	affect	their	efficiency,	but

it	can	also	make	them	feel	frustrated	and	hesitant	to	explore	the	rest	of	the	tool.
Furthermore,	constraints	can	protect	bad	assets	from	being	shared

with	the	rest	of	the	production	team—which	affects	everyone’s	productiv-

ity.	Good	constraints	make	the	users	more	confident	about	using	the	tool,	so	they	can
focus	on	creating	content.

What	Are	Good	Constraints?

Some	constraints	have	the	best	intentions	to	protect	the	user	but	still

allow	them	to	make	mistakes.	For	example,	USB	cables	use	a	small	piece

of	plastic	to	prevent	the	user	from	plugging	it	in	the	wrong	way	(see	the	left	side	of	Figure
5.12).	However,	this	merely	acts	as	a	guide,	and	it	is	not	guaranteed	to	work.	As	you	may
have	experienced,	sometimes	it	takes

multiple	attempts	of	plugging	and	flipping	to	insert	a	USB	cable	properly.

84	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.12	The
USB	cable	and	Lightning	cable	demonstrate	different	types	of	constraints.

There	are	other	examples	like	this,	such	as	jumper	cables	or	component

cables:	the	color	code	might	seem	like	it	protects	the	user,	but	mistakes	are	still	possible.

One	of	the	best	examples	of	a	cable	that	truly	protects	the	user	from

making	a	mistake	is	the	Apple	Lightning	cable	(see	the	right	side	of

Figure	5.12).	Unlike	the	USB	cable	design,	there	is	no	wrong	way	to	plug	it	in.	You	plug	it
in	whichever	way	you	want.	Even	better,	the	edges	are	rounded,	helping	to	guide	the	plug
into	the	charging	port.	Constraints	that	protect	the	user	without	having	to	think	make	for	a
better	user	experience.

What	Are	Examples	of	Patterns	That	Use	Constraints?

A	very	basic	constraint	could	be	the	use	of	a	slider	instead	of	a	numeric	input	box	when
the	value	has	a	minimum	and	maximum	value	(see	Figure	5.13).

By	adding	a	slider,	it	is	impossible	for	the	user	to	enter	an	incorrect	value.

Furthermore,	the	slider	is	a	familiar	interaction	pattern,	and	users	expect	it	to	limit	the
range	of	values	that	can	be	entered,*	as	opposed	to	a	numeric	input	box	that	sometimes
rejects	or	readjusts	the	value.

0

–7	+

+

–

0

–

10

12	+

+

–

10	–

5

5

+

+

–

5

–

FIGURE	5.13	Sliders	have	clear	constraints	(left),	as	opposed	to	numeric	input	boxes	with
minimum	and	maximum	values	(right).

*	You	can	refer	to	Microsoft’s	guidelines	on	sliders	here:	http://msdn.microsoft.com/	en-
us/	library/

windows/	desktop/	bb226811%28v=vs.85%29.aspx.

Design	◾	85
FIGURE	5.14	The	Inspector	in	the	Unity	Engine	uses	constraints	to	ensure	that	a	script
can	only	be	added	where	it	is	allowed.

Another	example	of	constraints:	limiting	where	an	object	can	be

dragged	and	dropped.	For	example,	in	the	Unity	game	engine,	you	can

only	drag	and	drop	a	script	on	the	Script	input	of	a	Game	Object	(see	the	top	of	Figure
5.14).	This	makes	it	impossible	for	a	user	to	insert	a	script	file	in	the	wrong	place,	such	as
a	texture	map	input	(see	the	bottom	of

Figure	5.14).*

NATURAL	MAPPING

An	interface	with	good	natural	mapping	means	that	the	placement	of	the

controls	matches	the	actions	that	they	perform.	For	example,	buttons	to

move	objects	left	and	right	are	placed	to	the	left	and	right	of	each	other,	instead	of	top	and
bottom.

*	You	can	find	guidelines	for	drag	and	drop	in	OSX	here:	https://developer.apple.com/
library/

mac/	documentation/	userexperience/	conceptual/	applehiguidelines/
TechnologyGuidelines/

TechnologyGuidelines.html#//apple_ref/	doc/	uid/	TP30000355-SW9.

86	◾	Designing	the	User	Experience	of	Game	Development	Tools	How	Can	Natural
Mapping	Improve	Usability?

Efficiency

Bad	natural	mapping	can	affect	all	three	phases	of	the	action	cycle.	The	user	must	spend
more	time	in	the	look	phase	to	read	the	specific	text	on	button	labels,	instead	of	quickly
glancing	at	their	overall	position.	The	user	must	also	spend	more	time	in	the	think	phase,
considering	what	the	label	of	each	button	means.	Finally,	it	is	also	possible	that	the	act
phase	could	be	delayed	as	the	user	tries	different	controls	until	they	get	the	right	one,	due
to	the	position	of	the	controls	feeling	unnatural.

Learnability

Natural	mapping	can	also	improve	learnability.	If	controls	are	laid	out	in	a	way	that
matches	the	action	that	they	perform,	as	well	as	the	user’s	mental	model,	the	user	will
understand	how	the	controls	work	much	faster.*

Understanding	Natural	Mapping

A	common	keyboard	configuration	for	first-	person	shooter	games	is

WASD:	pressing	the	“w”	key	moves	you	forward,	“s”	moves	you	back,	and

the	“a”	and	“d”	keys	strafe	left	and	right	(see	the	left	side	of	Figure	5.15).

Because	the	movement	is	relative	to	the	position	of	the	keys,	this	is	an	example	of	good
natural	mapping.

Instead,	imagine	if	the	“w”	and	“s”	keys	strafe	left	and	right,	and	the	“a”

and	“d”	keys	move	forward	and	backward	(see	the	right	side	of	Figure	5.15).

When	your	opponent	fires	a	rocket	at	you,	and	you	press	the	“a”	key	expecting	to	go	left,
instead	you	walk	right	into	it	and	explode	into	a	ludicrous	amount	of	giblets.	You	can
imagine	how	frustrating	that	would	be!

W

W

A

S

D

A

S

D

FIGURE	5.15	The	standard	WASD	key	configuration	for	first-person	shooters.

*	Furthermore,	when	it	comes	to	memorability—the	ability	to	remember	how	to	use	the
tool	after	not	having	used	it	for	a	while—users	tend	to	remember	the	general	location	of	a
control	first	(left	side,	right	side,	or	middle	of	the	toolbar),	and	then	the	label/	icon
associated	with	that	control.

Design	◾	87
Moving	forward	with	the	“a”	key	does	not	feel	natural,	because	it	is	to

the	left	of	the	other	keys.	This	would	be	an	example	of	bad	natural	mapping.

What	Are	Examples	of	Patterns	That	Use	Natural	Mapping?

The	Color	Set	Editor	window	in	Autodesk	Maya	shows	an	example	of	good

natural	mapping.	The	“Move	Up”	and	“Move	Down”	buttons	are	positioned

relative	to	the	actions	that	they	perform	(see	the	left	side	of	Figure	5.16).

Another	good	example	is	the	Connection	Editor	window.	All	of	the

buttons	that	are	related	to	the	left	are	positioned	on	the	left,	and	all	of	the	buttons	that	are
related	to	the	right	are	positioned	on	the	right	(see	the	middle	of	Figure	5.16).

However,	there	are	times	when	limited	space	can	lead	to	compromises

to	natural	mapping,	as	can	be	seen	in	the	Layers	Editor.	The	buttons	for	moving	layers	up
and	down	are	placed	side	by	side	(see	the	right	side	of	Figure	5.16).	This	is	not	ideal
natural	mapping.

REPRESENTATION

Representation	is	a	technique	that	can	be	used	to	help	users	make	quicker	decisions
without	increasing	time	spent	in	the	think	phase	of	the	action	cycle	(such	as	doing
calculations	in	their	heads).	It	is	often	most	useful	when	the	user	interface	does	not	match
the	user’s	mental	model.

How	Can	Representation	Improve	Usability?

Efficiency

If	the	user	has	to	do	calculations	in	their	head,	they	will	spend	a	lot	of	time	in	the	think
phase.	By	presenting	complex	concepts	in	a	simple	way,	they	can	spend	more	time	in	the
act	phase,	increasing	their	efficiency.

Learnability

If	the	concepts	in	a	tool	are	confusing	for	the	user,	they	will	have	difficulty	learning	how
to	use	it.	By	using	representation	to	match	the	user’s	mental	model,	the	interface	more
closely	resembles	how	the	users	think,	making

it	easier	to	learn.

Understanding	Representation

The	Numbers	Game

To	understand	how	we	can	use	representation,	we	will	play	a	game.	You

can	also	play	this	with	a	friend	to	explain	the	concept	of	representation.

88	◾	Designing	the	User	Experience	of	Game	Development	Tools	eprinted
hots	r

creen	s

utodesk	s

face.	A

nter

aya	i

utodesk	M

he	Af	t

ditors	o

arious	e

cross	v

apping	a	nc.

atural	mf	n	utodesk,	I

ples	o	f	A

Exam	ission	omer

E	5.16	R	he	p

U

ith	t

FIG

w

Design	◾	89
1	2	3	4	5	6	7	8	9

A	B	A	A	B

A	B

8	+	2	+	5	=	15

FIGURE	5.17	An	example	of	the	numbers	game.

First,	one	player	writes	down	the	numbers	1	through	9	on	a	piece	of

paper.	Each	player	takes	a	turn	choosing	a	number.	They	announce	it	to

the	other	player	and	then	cross	it	off	the	list.	Once	a	number	is	chosen,	it	is	no	longer
available.

The	goal	of	the	game	is	to	keep	picking	numbers	until	one	player	can

add	up	three	of	their	numbers	to	make	a	total	of	15.	For	example,	the	game	could	go	like
this	(see	Figure	5.17):

1.	Player	A	picks	8

2.	Player	B	picks	6

3.	Player	A	picks	4

4.	Player	B	picks	3

5.	Player	A	picks	2

6.	Player	B	picks	9

7.	Player	A	picks	5

8.	The	game	is	over:	Player	B	picked	8,	4,	2,	and	5.	They	can	make	15	by	adding	up	the
numbers	8,	2,	and	5.

Does	that	sounds	a	little	bit	complicated?	Now,	imagine	playing	the

game	without	writing	anything	down,	and	calculating	the	numbers	in

your	head!	Add	to	that	the	fact	that	you	also	have	to	remember	if	your

opponent	already	picked	a	specific	number.

Tic-	Tac-	Toe

Let’s	forget	about	the	numbers	game	and	play	a	completely	different	game:	tic-	tac-	toe.
By	comparison,	this	game	is	very	simple:	you	and	your	opponent	take	turns	placing	X’s
and	O’s	on	a	three-	by-	three	grid,	and	the	first	player	to	get	three	X’s	or	O’s	in	a
horizontal,	vertical,	or	diagonal	line	wins	(see	Figure	5.18).	This	is	a	game	that	anyone	can
learn	in	seconds	and	does	not	require	doing	any	calculations	in	your	head.

90	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.18	An
example	of	tic-tac-toe.

Magic	Square

Here	is	where	it	gets	interesting:	what	if	I	told	you	that	the	two	games	we	just	saw—the
numbers	game	and	tic-	tac-	toe—are	actually	the	same	game?

A	magic	square	is	a	three-	by-	three	grid,	with	each	space	containing	a

different	number	from	one	to	nine.	If	you	add	up	the	numbers	diagonally,	vertically,	and
horizontally,	you	always	end	up	with	15	(see	Figure	5.19).

Now,	think	back	to	the	numbers	game,	and	how	complicated	it	is:

remembering	your	own	numbers,	doing	math	in	your	head,	and	even	hav-

ing	to	remember	what	numbers	your	opponent	picked.	Now,	if	you	simply

play	tic-	tac-	toe	with	a	magic	square,	you	can	pick	three	numbers	that	add	up	to	exactly
15	in	a	matter	of	seconds,	with	little	effort.

That	is	the	power	of	representation:	presenting	the	user	interface	in

such	a	way	that	it	simplifies	a	complex	concept,	allowing	the	user	to	make	decisions	more
quickly	and	easily.

What	Are	Examples	of	Patterns	That	Use	Representation?

In	previous	versions	of	Microsoft	Office,	you	had	to	use	an	interface	similar	to	the	one
you	see	on	the	left	in	Figure	5.20	if	you	wanted	to	insert	a	new	table.

This	interface	requires	you	to	visualize	the	table	in	your	head,	think

about	how	many	rows	and	columns	you	want	it	to	have,	and	then	translate

that	into	the	numbers	that	you	enter	into	the	“Number	of	columns”	and

“Number	of	rows”	fields.

8

1

6

3

5

7

15

15

15

4

9

2

FIGURE	5.19	An	example	of	a	magic	square.

Design	◾	91
FIGURE	5.20	An	example	of	using	representation	to	insert	a	table	in	Microsoft	Office.
Used	with	permission	from	Microsoft.

Newer	versions	of	Microsoft	Office	provide	an	interesting	example	of

representation	to	build	your	table.	This	design	allows	the	user	to	move

their	mouse	inside	a	grid	to	set	the	number	of	rows	and	columns	for	their	table	visually,
which	matches	most	users’	mental	model	of	what	a	table	is	much	more	closely	(see	the
right	side	of	Figure	5.20).

Using	this	technique	does	have	a	small	downside:	it	limits	the	total

number	of	rows	and	columns	the	user	can	choose.	This	limit	is	likely

based	on	the	maximum	number	of	columns	and	rows	that	the	average

user	needs.	For	the	edge	case	of	an	expert	user	who	needs	to	go	beyond

the	maximum,	the	“Insert	Table…”	menu	item	is	still	available	just	below	the	grid	(see	the
right	side	of	Figure	5.20,	near	the	bottom).*

FEEDBACK

Feedback	is	all	about	how	the	tool	communicates	with	the	user.	Examples

of	feedback	include	what	the	tool	is	doing	now,	what	just	happened,	and

how	much	time	is	left	in	a	particular	process.

*	If	the	user	needs	hundreds	of	cells	in	a	table,	maybe	Microsoft	Word	is	not	the	right	tool,
and	they	should	be	using	a	tool	that	does	one	thing	(spreadsheets)	really	well:	Microsoft
Excel.

92	◾	Designing	the	User	Experience	of	Game	Development	Tools	How	Can	Feedback
Improve	Usability?

Efficiency

Feedback	helps	indirectly	with	efficiency	because	it	lets	the	user	know	if	they	can	do
something	else	while	they	are	waiting.	Furthermore,	the	user	is	less	likely	to	force	close	an
application,	requiring	them	to	redo	any	work	that	they	may	have	lost.

Learnability

In-	context	feedback	through	carefully	worded	messages	can	help	the	user	learn	how	the
tool	works	more	quickly	and	make	them	more	confident	in

their	understanding	of	the	tool.

Understanding	Feedback

When	two	humans	engage	in	conversation,	there	is	an	exchange	of	infor-

mation.	One	person	speaks,	and	the	other	listens.	When	one	person	is

done	speaking,	the	other	person	replies.	We	are	accustomed	to	this	from

years	of	social	interaction.

For	example,	a	back-	and-	forth	conversation	might	go	something	like

this:

Mario:	Hello,	Luigi.	It’s-	a	me,	Mario!	How	are	you	today?

Luigi:	I	am	doing	well.	How	are	you?

Mario:	I	am	doing	very	well,	thank	you	for	asking!

Now,	imagine	a	conversation	like	this:

Mario:	Hello,	Luigi.	It’s-	a	me,	Mario!	How	are	you	today?

Luigi:	I	am	doing	well.	How	are	you?

Mario:	…	(stares	at	Luigi)

Luigi:	Mario?

Mario:	…	(continues	staring	at	Luigi)

Luigi:	Mario,	hello?

Mario:	…	(blinks	once)

Luigi:	…	oookay	…	(walks	away)

That	would	make	for	a	very	awkward	conversation.	As	humans,	we	are	not

accustomed	to	interactions	like	this.	We	expect	an	almost	instantaneous

confirmation	of	our	presence	in	our	social	interactions.	We	cannot	fault	Luigi	for	walking
away.

Design	◾	93
Likewise,	as	you	will	recall	from	Chapter	4,	an	interaction	between	a

human	and	computer	is	a	back-	and-	forth	process.	The	human	performs

an	action,	and	the	computer	responds.	The	human	sees	what	the	computer

did,	and	they	perform	the	next	action.

However,	too	often,	the	interaction	between	humans	and	computers

resembles	the	awkward	social	interaction:	the	human	performs	an	action,

but	the	computer	does	not	respond.	Worse	still,	the	user	may	think	that

the	program	has	crashed	and	close	it,	losing	all	unsaved	work.

Now,	imagine	a	third	conversation	like	this:

Mario:	Hello,	Luigi.	How	are	you	today?

Luigi:	I	am	doing	well.	How	are	you?

Mario:	Just	a	moment,	let	me	think	…

Luigi:	Sure,	I	can	wait.

Mario:	…

Luigi:	Are	you	still	thinking?

Mario:	Yep,	just	give	me	a	minute.

Luigi:	OK!	No	problem.	Thanks	for	letting	me	know.

Mario:	Sorry	about	that.	I	am	doing	very	well,	thank	you	for	asking!

This	interaction	is	less	awkward.	Luigi	knows	that	Mario	is	still	participat-ing	in	the
conversation	but	that	he	is	not	ready	to	respond	quite	yet.	Luigi	is	unlikely	to	walk	away.

Acceptable	Response	Time

Jakob	Nielsen,	whom	we	spoke	about	in	Chapter	4,	published	a	book	in

1993	titled	Usability	Engineering	where	he	describes	three	important	limits	when	it	comes
to	acceptable	response	times,	with	recommendations	on

when	feedback	is	recommended:*

•	At	0.1	second,	the	users	“feel	that	the	system	is	reacting	instanta-

neously”	and	no	feedback	is	necessary.

•	1	second	“is	about	the	limit	for	the	user’s	flow	of	thought	to	stay

uninterrupted.”	The	user	will	notice	the	delay	and	will	“lose	the	feel-

ing	of	operating	directly	on	the	data,”	which	can	make	the	tool	feel

sluggish.	In	this	case,	a	wait	cursor	is	recommended.

*	Here	is	an	article	with	a	summary	of	the	information:	http://www.nngroup.com/	articles/

response-	times-3-important-	limits/.

94	◾	Designing	the	User	Experience	of	Game	Development	Tools
•	10	seconds	is	“the	limit	for	keeping	the	user’s	attention.”	For	anything	longer,	the	user
will	forget	what	they	were	doing,	which	could	affect

their	efficiency.	In	this	case,	users	should	receive	feedback	to	confirm	that	the	computer	is
working,	and	an	estimate	of	how	much	longer

they	need	to	wait.	Using	a	progress	bar	is	ideal	in	this	situation.

Perceived	Wait	Time

In	1985,	while	he	was	studying	at	the	University	of	Toronto	under	Bill

Buxton,	Brad	Allan	Myers	published	a	paper	titled	“The	Importance	of

Percent-	Done	Progress	Indicators	for	Computer–	Human	Interfaces.”*

The	paper	describes	Myers’s	research	on	how	progress	bars	affect	our	perception	of	time.
In	his	experiment,	he	asked	people	to	perform	database

searches,	some	of	which	had	progress	bars	and	some	of	which	did	not	have	them.	The
results	of	the	study	indicate	that	the	participants	felt	more	confident	in	the	database
searches	with	progress	bars.

The	Benefits	of	Giving	the	User	Feedback

As	we	can	see	in	the	previous	examples,	giving	the	user	feedback	with	a

progress	bar	can	help	in	multiple	ways.	It	confirms	to	the	user	that	the	tool	is	still	working
—which	stops	them	from	forcing	it	to	close	and	potentially	losing	unsaved	work—and
gives	them	the	confidence	to	do	something	else

while	they	are	waiting,	which	increases	their	overall	efficiency.

Furthermore,	in	Chapter	1	we	learned	how	one	of	the	qualities	of	a	good

user	experience	is	when	the	interaction	is	“more	human.”	If	we	compare

our	awkward	conversation	example	from	before	to	a	long	wait	without	a

progress	bar,	we	can	see	how	waiting	without	feedback	can	result	in	a	“less	human”	user
experience.

Feedback	Overload

One	of	the	dangers	of	feedback	is	that	it	can	quickly	turn	into	more	noise	than	signal.	If
you	give	the	user	too	much	feedback,	they	are	likely	to	start	ignoring	all	of	it	and	miss

something	important.	If	you	are	aware	of	the	user’s	goals	and	mental	models,	you	can	use
that	knowledge	to	filter	the	feedback	you	provide.	If	you	are	not,	the	feedback	is	likely	to
be	overloaded	with	information	that	may	be	important	for	the	conceptual	model,	but	not	to
the	user.

*	Note	the	term	“percent-	done	progress	indicators”—at	the	time,	progress	bars	did	not
exist	as	we	know	them	now.	You	can	find	the	paper	here:	http://dl.acm.org/	citation.cfm?
id=317459.

Design	◾	95
FIGURE	5.21	The	progress	bar	in	Windows	gives	feedback	on	the	progress	of	a	large	file
being	pasted.	Used	with	permission	from	Microsoft.

What	Are	Some	Examples	of	Patterns	That	Use	Feedback?

Progress	Bar

Progress	bars	indicate	the	progress	of	a	task	and	give	us	a	sense	of	how	much	of	the	task	is
left.*	Perhaps	one	of	the	most	recognized	is	the	copy	progress	bar	in	Microsoft	Windows
(see	Figure	5.21).†

Some	progress	bars	lock	the	tool	while	they	are	running.	However,	some

can	show	a	progress	bar	while	still	allowing	the	user	to	continue	working.

A	good	example	of	this	is	Adobe	Audition:	when	running	a	multitrack

mixdown,	the	editor	is	locked	and	a	pie-	chart	progress	indicator	appears,	with	the
estimated	remaining	time	(see	Figure	5.22).	However,	the	user

can	still	work	on	other	aspects	of	the	user	interface	while	they	are	waiting.

Wait	Cursor

Showing	a	wait	cursor	next	to	the	mouse	has	the	advantage	of	being	eas-

ier	for	the	user	to	notice,	as	their	eyes	are	likely	already	on	the	mouse.

However,	since	most	wait	cursors	do	not	show	progress,	it	is	best	to	use	this	option	when
the	wait	time	is	relatively	short.

FEED-	FORWARD

Feed-	forward	is	essentially	the	opposite	of	feedback:	instead	of	learning	the	results	of
their	actions	after	the	fact,	the	user	sees	what	will	happen	before	they	commit	to	an	action.
This	gives	them	the	option	of	changing

their	mind,	which	is	especially	useful	if	the	action	is	destructive	or	complicated	to	reverse.

*	Some	research	even	suggests	that	animated	patterns	overlaid	on	top	of	the	progress	bar
can	make	it	feel	as	though	it	is	moving	faster!	http://chrisharrison.net/	projects/
progressbars2/

ProgressBarsHarrison.pdf.

†	Microsoft’s	guidelines	for	progress	bars	can	be	seen	here:	http://msdn.microsoft.com/
en-	us/

library/	windows/	desktop/	dn742475%28v=vs.85%29.aspx.

96	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.22	An
integrated	progress	pie-chart	gives	feedback	on	the	export	progress	in	Adobe	Audition.
Adobe	product	screenshot(s)	reprinted	with	permission	from	Adobe	Systems	Incorporated.

How	Can	Feed-	Forward	Improve	Usability?

Efficiency

Feed-	forward	is	especially	helpful	in	reducing	the	amount	of	time	spent	in	the	think
phase.	There	is	no	need	to	wonder	what	is	going	to	happen,	as	you	simply	see	it	before
you	choose	to	commit.

Learnability

Feed-	forward	is	an	extremely	effective	learning	technique.	Previewing	what	will	happen
al	ows	the	user	to	learn	what	a	feature	does	instantly	and	with	less	risk,	which	also	invites
them	to	explore	the	other	features	of	the	tool.

Understanding	Feed-	Forward

While	the	concept	of	feedback	in	user	interfaces	is	well	known,	feed-

forward	is	less	so	.	*	Research	suggests	that	when	people	make	a	decision,	their	brain
“previews”	the	outcome	of	their	choices	to	assist	in	choosing	the	correct	action.†	In	a
sense,	feed-	forward	helps	us	preview	decisions	in	the	same	way	that	our	brain	does.

*	One	of	the	first	uses	of	the	term	feed-	forward	in	the	context	of	user	experience	design
comes	from	Tom	Djajadiningrat,	in	his	paper	“But	How,	Donald,	Tell	Us	How.”	If	you
have	access	to	the	ACM

Digital	Library,	you	can	read	the	article	here:	http://dl.acm.org/	citation.cfm?id=778752.

†	You	can	read	more	here:	http://en.wikipedia.org/	wiki/
Feedforward,_Behavioral_and_Cognitive_

Science.

Design	◾	97
What	Are	Examples	of	Patterns	That	Use	Feed-	Forward?

A	good	example	of	a	pattern	that	uses	feed-	forward	is	the	Styles	section	of	the	ribbon	in
Microsoft	Word.	By	hovering	their	mouse	over	each	style,	the	user	can	get	a	preview	of
what	their	text	will	look	like	with	the	style	applied	directly	in	their	document	(see	the	top
of	Figure	5.23).	However,	they	do	not	have	to	commit	to	the	decision.	If	they	are	not
satisfied,	they	simply	move	the	mouse	to	another	style	(see	the	middle	of	Figure	5.23)

or	out	of	the	Styles	section	completely	(see	the	bottom	of	Figure	5.23).

However,	once	they	find	the	style	they	like,	they	can	click	to	commit	to	it.	This	is	much
more	efficient	than	applying	a	style,	undoing,	applying	a	style,	undoing,	and	so	on.

When	attempting	to	drag	and	drop	a	material	onto	objects	in	the	Unity

game	engine	viewport,	the	objects	under	the	mouse	are	shown	with	the

material	instantly,	as	opposed	to	only	after	you	release	the	mouse	button	(see	Figure	5.24).

The	numbers	that	indicate	how	many	items	are	inside	a	folder	is	another

example	of	feed-	forward.	For	example,	the	folder	list	in	Gmail	shows	how	many	unread
mail	items	there	are	in	each	category	(see	Figure	5.25),	allowing	the	user	to	skip	over
folders	that	do	not	contain	unread	items	instead	of	taking	the	time	to	check	each	one.

GROUPING

Grouping	is	the	technique	of	associating	similar	terms,	concepts,	or	commands	together	in
a	way	that	matches	the	user’s	mental	model.

How	Can	Grouping	Improve	Usability?

Efficiency

By	grouping	related	items	together,	the	user	can	scan	through	a	list	of	items	and	find	what
they	are	looking	for	more	quickly,	reducing	the	amount

of	time	spent	in	the	look	phase.	This	could	also	reduce	the	think	phase,	because	fewer
items	to	look	at	mean	fewer	items	to	think	about.

Learnability

Grouping	can	make	a	tool	easier	to	learn	because	the	interface	is	orga-

nized	in	a	logical	way	that	matches	how	the	user	thinks,	allowing	them	to	adapt	to	it	faster.

98	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.23	Using
feed-forward	to	preview	changes	to	formatting	in	Microsoft	Word.	Used	with	permission
from	Microsoft.

Design	◾	99
FIGURE	5.24	Feed-forward	allows	the	user	to	preview	how	a	material	will	change	the
look	of	an	object	in	the	Unity	Engine	before	committing	to	the	change.

100	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.25	Feed-
forward	gives	the	user	information	about	the	contents	of	a	folder	in	Gmail	without
requiring	them	to	click	on	it.	Google	and	the	Google	logo	are	registered	trademarks	of
Google	Inc.,	used	with	permission.

Understanding	Grouping

Grouping	is	one	of	the	many	techniques	that	make	up	the	discipline	of

information	architecture.	The	most	important	factor	in	determining	how

terms,	concepts,	and	commands	can	be	grouped	is	by	understanding	the

user’s	mental	model.

For	example,	by	using	separators,	menu	items	can	be	organized	to

reflect	how	the	user	associates	them.	This	allows	the	user	to	skip	the	menu	items	that	are
not	applicable	to	their	immediate	goals	and	find	what	they	are	looking	for	faster.

Some	people	may	look	at	the	concept	of	grouping	menu	items	and	say,

“Well,	that’s	just	associating	similar	commands	together!”	That	may	be

true,	but	how	they	are	associated	is	not	always	obvious.	We	may	have	an

opinion	on	how	the	menus	should	be	organized,	but	we	could	be	influ-

enced	by	the	way	the	data	is	organized	in	the	code,	and	not	how	the	user	thinks	about	it.
To	help	us	determine	how	to	group	information	from	the

user’s	perspective,	we	can	do	a	card	sort.

Using	a	Card	Sort	to	Determine	Groups

In	Chapter	4,	we	learned	about	how	card	sorting	can	help	us	understand

the	user’s	mental	model.	The	way	in	which	a	user	associates	menu	items	is	also	part	of

their	mental	model.	By	putting	each	command	in	our	menu

onto	a	set	of	cards,	and	asking	the	user	to	organize	them,	we	can	get	a

much	better	idea	as	to	how	they	associate	each	of	the	commands.

When	you	are	done,	study	the	results	and	look	for	common	trends.	For

example,	did	the	majority	of	users	put	all	of	the	commands	that	create

polygon	and	NURBS	primitives	together,	or	did	they	combine	the	cre-

ate	polygon	primitives	and	polygon	editing	tools	together	into	one	group?

Design	◾	101
Afterward,	you	can	transform	the	groups	into	top-	level	menus	and	the

cards	into	individual	menu	items.

This	process	can	be	applied	to	window	menus,	contextual	menus,	tool-

bars,	and	so	on.

What	Are	Examples	of	Patterns	That	Use	Grouping?

The	menu	items	in	Autodesk	Maya	are	grouped	in	such	a	way	that	matches

the	user’s	mental	model	(see	Figure	5.26).	For	example,	even	though	the

FIGURE	5.26	The	Mesh	menu	in	Autodesk	Maya	demonstrates	the	technique	of	grouping.
Autodesk	screen	shots	reprinted	with	the	permission	of	Autodesk,	Inc.

102	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.27
Grouping	is	used	to	organize	commands	in	the	Microsoft	Office	ribbon.	Used	with
permission	from	Microsoft.

“Smooth”	command	adds	new	vertices	to	the	selected	mesh,	and	the

“Average	Vertices”	command	moves	vertices,	they	are	grouped	together

because	they	are	both	related	to	giving	the	mesh	a	smoother	appearance.

In	addition,	all	of	the	commands	related	to	transferring	information

from	one	mesh	to	another	are	grouped	together.	If	the	user	is	scanning	the	list	of
commands	and	is	not	planning	to	transfer	information,	they	can

skip	over	that	whole	section	to	the	next	group.

The	Microsoft	ribbon	shows	yet	another	example	of	grouping.	At	the

top	level,	the	commands	in	the	ribbon	are	organized	into	tabs.	For	exam-

ple,	all	commands	related	to	inserting	charts	or	external	resources	to	a	Microsoft	Word
document	can	be	found	under	the	“INSERT”	tab.	If	the

user	wants	to	insert	a	chart	to	their	document,	they	can	quickly	skip	over	the	“VIEW”	or
“REFERENCES”	tabs,	as	they	do	not	contain	the	commands	they	are	looking	for	(see	the
top	of	the	ribbon	in	Figure	5.27).

One	level	below	are	the	sections.	If	we	return	to	the	example	of	the

“INSERT”	tab,	we	have	a	series	of	sections	for	different	elements	that	can	be	inserted:
Pages,	Tables,	Illustrations,	and	so	on	(see	the	bottom	of	the	ribbon	in	Figure	5.27).	These
are	grouped	together	in	a	way	that	the	average	user	may	expect.	This	way,	if	the	user	is
looking	to	insert	an	illustration,	they	can	skip	over	all	of	the	commands	within	the	“Pages”
and	“Tables”

groups	and	go	directly	to	the	commands	within	the	“Illustrations”	group.

CHUNKING

You	may	have	heard	the	statistic	that	people	are	able	to	remember	seven

items	at	once,	plus	or	minus	two.	This	number	comes	from	research	by

George	A.	Miller	in	1956	and	is	often	referred	to	as	“Miller’s	Law.”*

*	You	can	read	more	about	Miller’s	Law	here:	http://en.wikipedia.org/	wiki/
Miller%27s_law.

Design	◾	103
However,	new	research	suggests	that	this	number	is	closer	to	four,	plus

or	minus	two.	The	reason	that	Miller’s	numbers	were	higher	is	that	his

research	subjects	were	able	to	clump	similar	items	together,	making	them	easier	to
remember.	This	behavior	is	known	as	“chunking.”

How	Can	Chunking	Improve	Usability?

Efficiency

If	the	information	is	organized	in	a	consistent	way,	the	user	can	remember	and	interpret	it
more	easily,	resulting	in	less	time	spent	in	the	think	phase.

Learnability

If	the	information	is	organized	in	such	a	way	that	matches	the	user’s	mental	model,
learnability	can	be	improved.

Understanding	Chunking

To	feel	the	difference	that	chunking	can	make,	we	will	play	a	memory

game.	Study	the	image	of	letters	and	numbers	in	Figure	5.28	for	ten	sec-

onds,	and	try	to	remember	as	many	as	you	can.

After	the	ten	seconds	are	up,	close	the	book	and	get	a	piece	of	paper	and	a	pen.	First,	write
down	how	many	letters	and	numbers	you	think	that

there	were.	Next,	try	to	write	down	as	many	of	the	letters	and	numbers

you	can	remember.	When	you	are	a	ready,	turn	to	the	next	page.

In	Figure	5.28,	you	can	see	the	exact	same	letters	and	numbers	as	in

Figure	5.29.	Imagine	that	you	were	asked	to	study	those	same	letters	and	numbers	for	ten
seconds,	but	in	this	configuration.	How	many	do	you

think	you	would	be	able	to	recall?	Would	you	get	them	all	right?

The	fact	that	it	is	easier	for	you	to	remember	those	same	letters	and

numbers	this	way	is	an	example	of	chunking:	You	have	a	predefined	struc-

ture	in	your	brain	for	the	shortened	names	of	these	video	game	consoles.	It	is	easier	to

remember	and	decipher	the	letters	and	numbers	when	you	can

group	them	together	in	a	logical	way	that	makes	sense	to	you.

FIGURE	5.28	Memory	game.

104	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.29
Memory	game,	with	chunking.

What	Are	Examples	of	Patterns	That	Use	Chunking?

Content	creation	tools	allow	users	to	work	with	RGBA	color	values	in	different	ways:	0	to
255,	0.0	to	1.0,	and	hexadecimal.	Despite	the	fact	that	hexadecimal	does	not	match	the
mental	model	of	color	for	the	average

person,	it	has	become	a	standard	for	working	with	certain	types	of	content.

When	users	are	accustomed	to	working	with	hexadecimal,	they	are	able

to	pick	out	the	red,	green,	blue,	and	alpha	values	quickly	by	chunking	the	characters	in
groups	of	two.	For	example,	a	user	familiar	with	RGBA	in

hexadecimal	can	look	at	the	value	#FF7F00FF	and	determine	very	quickly

that	the	color	has	100	percent	red	(the	first	and	second	characters)	and	50	percent	blue	(the
third	and	fourth	characters).

However,	some	tools	do	not	work	with	hexadecimal	colors	in	RGBA—

such	as	Microsoft	Expression	Blend,	which	uses	ARGB.*	This	can	be	con-

fusing	to	users	who	are	accustomed	to	chunking	RGBA	colors.	The	previous	color	would
appear	to	be	100	percent	red,	100	percent	blue,	50	percent

green,	and	fully	transparent	to	someone	who	is	used	to	working	with

RGBA!

When	designing	how	information	will	appear	to	the	user,	consider	how

they	will	chunk	it.	Also,	try	to	follow	existing	standards.	If	technical	limitations	make	this
impossible,	make	the	information	familiar	and	easier	to	chunk	for	the	user	in	the	interface,
and	then	convert	it	to	the	necessary	format	in	the	background	so	the	user	does	not	have	to
think	about	it.

EXCISE

Excise	refers	to	navigating	around	the	interface,	from	switching	tabs	to	changing
windows.	Anything	that	involves	moving	the	cursor	across	the

screen	to	reach	an	element	of	the	user	interface	is	excise.

How	Can	This	Technique	Improve	Usability?

Efficiency

Reducing	excise	will	have	the	biggest	impact	on	the	act	phase	of	the	action	cycle.
Although	it	is	the	lightest	load,	reducing	a	repetitive	task	even	by

*	This	is	likely	because	it	was	designed	to	work	with	the	XAML	file	format,	which	uses

ARGB.

Design	◾	105
one	second	can	add	up	to	a	huge	boost	in	efficiency	over	time	if	it	helps	a	large	number	of
users.

Learnability

Excise	does	not	have	a	significant	impact	on	learnability.

Understanding	Excise

One	of	the	most	consistently	confirmed	studies	in	human–	computer

interaction	was	completed	in	1954	by	Paul	Fitts,	who	proposed	that	the

time	it	takes	a	user	to	touch	a	target	with	a	cursor	is	directly	related	to	the	distance	from
the	target	and	the	size	of	the	target.	This	is	known	as	Fitts’s	Law.*

Therefore,	to	reduce	excise,	the	target	must	be	made	larger	and/	or	closer	to	the	current
position	of	the	cursor.

What	Are	Examples	of	Patterns	That	Use	Excise?

Window	Menus	Versus	Contextual	Menus

Accessing	items	in	a	menu	or	toolbar	frequently	is	an	example	of	excise

that	is	mainly	related	to	target	distance.	The	user	must	move	their	cur-

sor	to	the	menu	or	toolbar	and	click	on	the	item	and	then	move	the	cursor	back	to	where	it
was	before	(see	top	of	Figure	5.30).†

File	Edit	View	Help

File	Edit	View	Help

File	Edit	View	Help

File	Edit	View	Help

Undo

Redo

Rename

Delete

File	Edit	View	Help

File	Edit	View	Help

File	Edit	View	Help

File	Edit	View	Help

Rename

Rename

Delete

Delete

FIGURE	5.30	Comparing	the	excise	of	a	window	menu	(top)	versus	a	contextual	menu
(bottom).

*	You	can	read	more	about	Fitts’s	Law	here:	http://en.wikipedia.org/	wiki/	Fitts%27s_law.

†	Specifications	for	menus	and	contextual	menus	from	Microsoft	can	be	found	here:
http://msdn.

microsoft.com/	en-	us/	library/	windows/	desktop/	dn742392%28v=vs.85%29.aspx.

106	◾	Designing	the	User	Experience	of	Game	Development	Tools	By	comparison,
contextual	menus	can	help	to	reduce	excise	because

they	appear	right	next	to	the	user’s	cursor,	resulting	in	shorter	distance	(see	the	bottom	of
Figure	5.30).	In	addition,	as	the	name	“contextual

menu”	implies,	only	items	that	are	contextually	related	to	the	item	that	was	clicked	should
be	enabled	in	the	menu,	which	means	a	shorter	list,

and	therefore	a	shorter	distance	to	the	option	that	the	user	is	looking	for.

Window	Menu	Item	Order

While	it	might	seem	that	organizing	menu	items	alphabetically	will	make

it	easy	to	find	a	specific	menu	item,	this	approach	presents	two	problems.

The	first	is	that	the	menu	rarely	matches	how	the	user	chunks	informa-

tion.	The	second	is	that	the	items	that	are	accessed	more	frequently	may	be	further	from
the	cursor,	because	the	first	letter	of	the	command	is	near	the	end	of	the	alphabet.

For	example,	the	level	editor	GTKRadiant	has	a	contextual	menu	with

items	that	are	ordered	alphabetically.	If	the	majority	of	users	are	frequently	required	to
create	entities	of	type	“worldspawn,”	they	must	move	their

mouse	to	the	bottom	of	the	contextual	menu	every	single	time,	which

results	in	a	lot	of	excise	(see	the	left	of	Figure	5.31).

Another	very	common	situation	is	having	menu	items	listed	in	the	order

that	they	were	created.	In	other	words,	when	a	developer	adds	a	new	com-

mand,	it	is	placed	at	the	bottom	of	the	menu	(see	the	right	of	Figure	5.31).

A	better	solution	is	to	place	the	most	frequently	used	commands	at

the	top	of	the	menu,	reducing	the	travel	time	from	the	point	at	which	the	menu	was	raised
(see	Figure	5.32).	When	new	items	are	added,	learn	the

frequency	at	which	they	will	be	used—either	by	looking	at	metrics	or	by

doing	a	task	analysis—and	place	them	in	the	appropriate	position	in	the

menu.	This	can	apply	to	window	menus,	contextual	menus,	combo	boxes,

menu	buttons,	and	more.

Bottom	of	the	Screen

There	is	one	problem	with	ordering	items	in	a	contextual	menu	from

top	to	bottom:	the	mouse	is	not	always	at	the	top!	Sometimes,	a	user	will	invoke	a
contextual	menu	from	the	bottom	of	the	screen,	and	the	contex-

Design	◾	107
Edit

Preferences…

Added	earlier

Find…

Replace…

Copy

Paste

Undo

Redo

Added	later

FIGURE	5.31	Two	ways	in	which	the	organization	of	a	contextual	menu	can	increase
excise:	Alphabetical,	as	in	GTKRadiant	(left)	or	the	order	in	which	the	commands	were
added	(right).

Edit

Undo

More	frequently

Redo

Copy

Paste

Find…

Replace…

Preferences…

Less	frequently

FIGURE	5.32	Organizing	a	menu	based	upon	how	often	the	commands	are	used	can
reduce	excise.

tual	menu	will	appear	above	the	mouse,	instead	of	below	it.	What	can	be

done	about	this?

Microsoft	Office	presents	an	interesting	solution	to	this	problem:	fre-

quently	used	formatting	commands	appear	in	a	floating	bar	that	changes

position	depending	on	where	the	contextual	menu	was	invoked.	When

108	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.33	The
contextual	menu	in	Microsoft	Office	changes	based	upon

where	it	was	invoked	in	an	effort	to	minimize	excise.	Used	with	permission	from
Microsoft.

the	cursor	is	at	the	top	of	the	window,	the	floating	bar	appears	at	the	top,	nearer	to	the
cursor	(see	the	left	side	of	Figure	5.33).	However,	when	the	cursor	is	at	the	bottom,	the
floating	bar	appears	at	the	bottom	(see	the	right	side	of	Figure	5.33).

The	marking	menu	in	Autodesk	Maya	is	yet	another	approach	to	reduc-

ing	excise	(see	Figure	5.34).	Marking	menus	typically	have	up	to	eight

regions,*	which	are	all	the	same	distance	from	the	cursor.

Contextual	Menus	and	Learning	Curve

When	considering	the	use	of	contextual	menus,	do	not	forget	about	the

learning	curve	concepts	that	were	presented	in	Chapter	4.	Because	con-

textual	menus	are	not	always	visible,	they	are	difficult	to	discover	for	beginners.	For	this
reason,	it	is	best	to	ensure	that	the	most	frequently	used	commands	are	always	visible	in
toolbars	or	menus	so	new	users	can

find	them.

*	While	the	number	of	options	on	the	menu	is	limited	to	eight,	commands	can	be	chained
together.

However,	that	technique	is	geared	more	toward	expert	users.

Design	◾	109
FIGURE	5.34	The	marking	menu	in	Autodesk	Maya	is	excellent	at	reduc-

ing	excise,	though	it	can	be	difficult	for	beginner	users.	Autodesk	screen	shots	reprinted
with	the	permission	of	Autodesk,	Inc.

Examples	of	Target	Size

For	an	example	of	target	size,	we	can	look	at	Adobe	Premiere	Pro	(see

Figure	5.35).	One	of	the	most	frequent	actions	is	pressing	the	play	button,	while	one	of	the
least	common	actions	is	closing	the	sequence	that	you	are	currently	working	on.

Because	the	play	button	is	a	large	target,	it	is	easy	to	acquire	with	the	mouse.	By
comparison,	the	close	button	for	a	sequence	is	only	a	few	pixels	across,	making	it	difficult
to	click	by	accident.

110	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.35	The
size	difference	of	the	“play”	and	“close	sequence”	buttons	in	Adobe	Premiere
demonstrates	the	concept	of	target	size	excise.	Adobe	product	screenshot(s)	reprinted	with
permission	from	Adobe	Systems	Incorporated.

Hotkeys	and	Excise

While	it	may	be	true	that	using	hotkeys	to	activate	a	command	can	reduce	excise	as
compared	to	moving	the	mouse	to	click	on	a	button,	reaching

keys	on	the	keyboard	can	be	excise	too!

A	complicated	hotkey	combination	such	as	Ctrl/	Cmd+Alt+P	cannot	be

done	one-	handed	by	most	users.	It	may	require	the	user	to	look	down	at

the	keyboard	and	take	their	other	hand	off	the	mouse.	This	may	not	seem

like	much,	but	if	the	hotkey	is	for	a	command	that	is	used	often,	it	can	add	up	to	lost
efficiency	like	any	other	kind	of	excise.

Resting	Place

Any	pro	gamer	can	tell	you	that	optimal	hotkey	placement	is	crucial	to

efficiency.	All	of	the	default	hotkeys	for	the	competitive	multiplayer	RTS

Starcraft	are	placed	along	the	left	side	of	the	keyboard,	near	the	resting	Design	◾	111

Q

W

E

R

T

Y

U

I

O

P

A

S

D

F

G

H

J

K

L

Z

X

C

V

B

N

M

FIGURE	5.36	Considering	the	resting	place	of	the	left	hand	when	choosing	hotkeys.

place	of	the	left	hand.*	In	the	case	where	efficiency	is	not	important,	choosing	a	hotkey
based	on	the	first	letter	of	the	command	would	make	sense,

such	as	using	“M”	to	build	a	marine.	However,	to	make	the	player	more

efficient,	the	second	letter	in	the	word	marine	is	used:	“A,”	because	it	is	on	the	left	side	of
the	keyboard,	near	the	resting	place	of	the	left	hand	(see	Figure	5.36).

You	can	see	the	same	rules	applied	to	content	creation	tools.	For	exam-

ple,	the	majority	of	3D	content	creation	applications	use	the	letters	Q,	W,	E,	and	R	for
select,	move,	rotate,	and	scale,	respectively,	which	are	some	of	the	commands	that	are
used	most	frequently.	Another	classic	example	is

undo,	copy,	cut,	and	paste:	Ctrl/	Cmd+Z,	X,	C,	and	V.†

When	choosing	hotkeys	for	the	commands	that	are	used	most	fre-

quently,	try	to	choose	hotkeys	that	are	near	the	left	side	of	the	keyboard.	If	the	key	for	the
first	letter	of	the	command	is	on	the	right	side,	or	is	already	used,	then	use	the	next	letter
in	the	name	of	the	command.	Also,	to	avoid	confusion,	don’t	replace	standard	hotkeys	like
the	ones	for	undo,	copy,

cut,	and	paste	that	are	listed	above,	as	well	as	Ctrl/	Cmd+S,	O,	W,	and	A	for	save,	open,
close,	and	select	all,	respectively.

Deliberately	Increasing	Excise	to	Protect	the	User

There	may	be	times	when	you	want	to	increase	excise	on	purpose.	This

may	be	to	slow	down	the	user	so	that	they	have	more	time	to	think	about	a

*	As	left-	handed	people	already	know,	most	default	hotkeys	are	made	with	right-	handed
people	in	mind.	If	there	are	a	significant	number	of	left-	handed	users,	you	can	give	the
option	to	customize	the	keyboard	so	the	resting	place	is	on	the	right	side	instead.

†	Of	course,	all	of	this	is	assuming	a	North	American	QWERTY	layout.	Other	layouts	like
AZERTY

would	alter	these	rules	a	little	bit.

112	◾	Designing	the	User	Experience	of	Game	Development	Tools	potentially	dangerous
decision	or	to	protect	them	from	accidental	actions.

Here	are	a	few	options.

Dialog	Boxes

There	is	a	commonly	held	belief	that	dialog	boxes	should	never	be	used,

and	that	the	fewer	dialog	boxes	you	have,	the	better.	However,	dialog	boxes	can	be	useful
for	protecting	the	user	from	errors.	One	such	example	is

a	dialog	box	confirming	that	you	want	to	delete	a	file.	Accidental	clicks	resulting	in	data
loss	can	be	reduced	by	forcing	the	user	to	change	their	focus	to	the	dialog	box,	move	their
mouse,	and	click.

It	is	extremely	important	to	note	that	a	dialog	box	should	be	avoided	in	the	case	of
commands	that	are	used	frequently.	The	slowdown	in	efficiency	may	be	worse	than	the
lack	of	error	protection.	In	these	cases,	allowing	the	user	to	recover	or	undo	their	choice	is
highly	recommended.

Potential	y	Dangerous	Menu	Items

Menu	items	that	have	the	potential	to	cause	irreversible	damage—such	as

deleting	an	object—can	be	placed	at	the	bottom	of	a	menu,	adding	excise

to	protect	the	user	from	clicking	on	them	by	accident.

Inconvenient	Hotkeys

Deliberately	increasing	the	excise	for	a	hotkey	can	also	protect	the	user.

For	example,	using	the	spacebar	as	a	hotkey	for	a	dangerous	command

that	cannot	be	reversed	would	be	a	very	bad	idea.	By	comparison,	a	com-

plex	hotkey	such	as	Ctrl/	Cmd+Alt+P	usually	requires	two	hands	and

therefore	has	a	significantly	lower	chance	of	being	pressed	accidentally.

However,	there	are	a	few	exceptions:	standards	such	as	the	“delete”	key

to	delete	should	not	be	changed	to	protect	the	user,	as	they	are	so	common	that	changing
them	would	just	lead	to	confusion.	Again,	the	best	way	to

protect	against	this	is	to	implement	a	robust	undo	system.

PROGRESSIVE	DISCLOSURE

Progressive	disclosure	means	showing	only	the	parts	of	the	interface

that	the	user	needs	to	see.	The	interface	starts	simple,	and	we	allow	the	user	to	reveal
(disclose)	more,	one	piece	at	a	time	(progressively),	to	suit	their	needs.

Design	◾	113
How	Can	Progressive	Disclosure	Improve	Usability?

Efficiency

Progressive	disclosure	can	reduce	the	amount	of	time	spent	in	the	look

phase	by	reducing	visual	clutter	in	the	interface.	Furthermore,	the	less	we	see,	the	less	we
have	to	figure	out,	resulting	in	less	time	spent	in	the	think	phase.	However,	since	showing
and	hiding	can	increase	the	amount	of

excise—in	other	words,	time	spent	in	the	act	phase—it	is	important	to	find	the	right
balance	between	the	amount	of	progressive	disclosure	and	excise.

Learnability

Progressive	disclosure	is	one	of	the	most	powerful	techniques	for	improving	learnability.
By	simplifying	the	interface,	first-	time	users	can	get	a	grasp	of	how	a	tool	works	without
being	overwhelmed	by	all	of	the	features	at	once,	and	expert	users	can	customize	the
interface	to	suit	their	needs.

Understanding	Progressive	Disclosure

In	Chapter	3,	we	spoke	about	how	new	features	add	complexity	exponen-

tially,	not	linearly.	The	same	goes	for	the	number	of	interface	elements	that	are	visible	at
one	time.	By	starting	with	a	simple	and	clean	interface,	and	allowing	the	user	to	see	more
as	they	gain	more	experience,	we	are	allowing	the	user	to	control	the	amount	of
complexity.

Progressive	Disclosure	and	the	Learning	Curve

To	decide	if	progressive	disclosure	is	the	right	technique	to	use,	you	must	first	look	at	how
many	interface	elements	there	are	and	how	often	they	will	be	used.

For	example,	for	a	tool	that	has	many	interface	elements	and	will	be	used	all	day	by
beginners	as	well	as	experts,	using	progressive	disclosure	makes	sense.	Beginners
appreciate	an	interface	that	starts	simple	and	accessible,	and	experts	benefit	from	an
interface	that	is	powerful	and	customizable.

However,	if	the	tool	has	a	smaller	number	of	interface	elements,	and	is

going	to	be	used	for	five	minutes,	once	per	week—for	example,	a	tool	to

update	to	the	latest	version	of	the	game	engine—progressive	disclosure

may	not	provide	significant	benefits.

114	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	5.37
Progressive	disclosure	can	be	used	to	hide	information	that	most	users	may	not	be
interested	in,	such	as	technical	details	about	the	“paste”	process.

Used	with	permission	from	Microsoft.

Design	◾	115
res-	dobe

rogf	p	rom	Aple	o

xam	ission	f

t	e	mer

xcellen	ith	p

n	es	a

ized	i	eprinted	w

ustome	c	shot(s)	r

an	b	creen

roducts	c	roduct	s

dobe	p	dobe	p

ost	Af	m	plexity.	A

face	o	omf	c

nter

he	i	evel	o

hich	t	heir	l

n	w	or	t

ays	if	w

ppropriate	f	.

ariety	o	s	a

e	v	nd	i	rated

Th

38

Incorpo

E	5.R	isclosure,	a

U

FIG

sive	d	Systems

116	◾	Designing	the	User	Experience	of	Game	Development	Tools	What	Are	Some
Examples	of	Patterns	That	Use

Progressive	Disclosure?

Progressive	disclosure	is	such	an	established	pattern	that	Microsoft	has	an	entire	section	in
their	user	experience	guidelines	dedicated	to	it.*	As	a	result,	you	can	find	examples	of	this
technique	being	used	to	show	and	hide	elements	all	over	Windows.	For	example,	when
pasting	a	large	file,

most	users	only	want	to	know	if	the	operation	is	done	(see	the	top	of

Figure	5.37).	However,	for	users	who	want	to	know	more—such	as	pre-

cisely	how	much	time	is	remaining,	and	the	file	transfer	speed—they	can

click	on	the	“More	details”	expander	(see	the	bottom	of	Figure	5.37).	In	addition,	when
the	paste	dialog	appears,	the	expander	is	closed	by	default,	since	this	information	does	not
interest	most	users.

It	should	not	come	as	a	surprise	to	see	extensive	use	of	progressive	disclosure	in	Adobe
products	such	as	Photoshop	and	Illustrator,	as	they	are	extremely	complex	and	have	many
different	interface	elements.	To	address	this,	each	panel	can	be	individually	expanded	and
collapsed	to	show

exactly	what	the	user	needs	to	accomplish	their	task	(see	Figure	5.38).

WRAPPING	UP

In	this	chapter,	we	concentrated	on	the	Design	phase	of	the	User-	Centered	Design
process.	We	learned	about	how	the	brain	and	the	eyes	work	together	and	how	humans
have	evolved	to	see	specific	patterns	more	efficiently.

We	learned	about	the	importance	of	using	a	consistent,	clear	visual	lan-

guage,	and	we	also	discovered	the	value	of	following	design	guidelines.

Finally,	we	learned	a	wide	variety	of	design	techniques,	such	as	Hierarchy,	Constraints,
Natural	Mapping,	Representation,	Feedback,	Feed-	forward,

Grouping,	Chunking,	Excise,	and	Progressive	Disclosure.

In	the	next	chapter,	we	will	discuss	concepts	and	techniques	to	be	used

during	the	Evaluation	phase	of	the	User-	Centered	Design	process.

*	You	can	find	it	here:	http://msdn.microsoft.com/	en-	us/	library/	windows/	desktop/

dn742409

%28v=vs.85%29.aspx.

C	h	a	p	t	e	r	6

Evaluation

WHAT	WILL	WE	LEARN	IN	THIS	CHAPTER?

Concepts

•	Choosing	the	right	evaluation	strategy

•	Deciding	between	code	and	pre-	visualization

Techniques

•	Pre-	visualize	the	interface

•	How	to	do	a	heuristic	evaluation

•	Performing	user	tests

HOW	DO	WE	EVALUATE	THE	DESIGN?

Now	that	we	have	analyzed	how	the	users	use	the	tool	and	designed	one

or	more	improvements,	it	is	time	for	the	Evaluation	phase.	One	of	the	first	questions	to	ask
ourselves	is	if	it	will	be	more	cost-	effective	to	go	straight	to	code	or	to	pre-	visualize	the
changes	to	the	tool.	The	next	question	to	ask	is	if	there	are	current	users	or	users	with	a
similar	profile	available	to	validate	the	interface.	If	users	are	available,	we	can	do	user
tests.	If	not,	we	can	perform	a	heuristic	evaluation	while	we	wait	for	users	to	become
available.

CHOOSING	BETWEEN	CODE	OR	PRE-	VISUALIZATION

In	Chapter	2,	we	learned	about	Jeff	Hawkins	and	the	power	of	pre-

visualizing.	You	might	be	asking	yourself,	“If	pre-	visualizing	is	so	powerful,	why	not	use
it	all	the	time?”

117

118	◾	Designing	the	User	Experience	of	Game	Development	Tools	If	you	are	not	a
programmer	and	there	are	no	programmers	on	your

team,	or	if	there	are	programmers	but	they	do	not	have	time	during	the

current	sprint,	your	only	option	is	to	pre-	visualize.	This	will	allow	you	to	start	getting
feedback	from	the	users	while	you	wait	for	programming

resources	to	become	available.

However,	if	you	can	program	or	if	programmers	are	available,	your

decision	to	code	or	pre-	visualize	will	depend	on	your	situation.	Here	are	a	few	aspects	to
consider.

When	to	Pre-	Visualize

Pre-	visualization	is	recommended	if	the	estimated	time	to	make	changes

to	the	tool	is	higher	than	the	time	it	would	take	to	pre-	visualize.	For	example,	it	takes	a	lot
less	time	to	sketch	out	a	new	type	of	user	interface	control	that	has	never	been	created
before	compared	to	fully	implementing	it	in	code.

If	your	goal	is	to	measure	the	improvement	to	learnability,	pre-

visualization	can	be	a	good	choice.	For	example,	the	design	techniques	of	representation
and	hierarchy	can	be	simulated	by	using	pre-	visualization	with	good	accuracy.

However,	pre-	visualization	is	not	ideal	for	measuring	improvements

to	efficiency	compared	to	making	changes	directly	to	the	code.	This	is

because	pre-	visualization	techniques	cannot	simulate	the	response	time

of	a	real	computer,	and,	in	the	case	of	a	sketch,	using	your	finger	to	press	a	button	is	not
the	same	as	clicking	on	the	button	with	the	mouse.

Furthermore,	it	is	difficult	to	simulate	a	large	database	with	pre-

visualization.	For	example,	if	your	user	test	requires	that	the	user	is	able	to	search	through
a	database	containing	thousands	of	textures,	it	could	take	significantly	longer	to	pre-
visualize	every	possible	option.	In	these	cases,	you	may	choose	to	go	straight	to	code.

When	to	Code

As	we	learned	earlier,	if	your	main	goal	is	to	improve	efficiency,	the	best	way	to	measure
this	accurately	is	by	making	changes	to	the	code,	due	to

the	limited	ability	of	pre-	visualization	to	simulate	the	complete	experience	of	using	a	tool.

If	the	changes	are	relatively	small,	such	as	moving	around	a	few	controls	in	the	interface,
this	may	also	be	a	reason	to	make	the	changes	directly	in	code.	This	is	because	the	time	it
would	take	to	simulate	such	a	small	change	to	the	interface	through	pre-	visualization	may
be	higher.

Evaluation	◾	119
However,	if	the	changes	that	you	want	to	make	require	a	large	program-

ming	effort	and	your	main	interest	is	seeing	if	the	users	understand	and	appreciate	the	new
interface,	going	straight	to	code	could	be	more	expensive	in	the	long	term,	especially	if	the
users	do	not	like	the	design	in	the	end.	In	this	case,	pre-	visualization	may	be	the	best
choice.

PRE-	VISUALIZE	THE	INTERFACE

If	you	have	decided	to	pre-	visualize	instead	of	going	straight	to	code,	here	are	a	few
techniques	that	you	can	use.

Sketch

Sketches	are	one	of	the	quickest	ways	to	pre-	visualize	(see	Figure	6.1).	They	could	be	on
a	whiteboard,	in	a	notebook,	or	even	on	a	napkin.	Because

they	are	so	fast	to	create,	they	are	ideal	for	trying	out	a	variety	of	different	options.	It	does
not	matter	how	you	sketch,	as	long	as	you	are	turning	words	into	visuals	in	an	effort	to
have	a	shared	vision	of	the	design.

You	do	not	have	to	be	a	good	artist	to	sketch.	In	fact,	if	the	sketch	looks	like	it	did	not	take
a	lot	of	time	to	create	and	it	is	easy	to	change,	people	are	more	likely	to	be	honest	with
their	feedback,	which	is	exactly	what

you	want.

However,	one	of	the	reasons	that	sketches	are	fast	to	create	is	because

they	are	not	interactive,	and	they	contain	the	least	amount	of	detail	compared	to	other	pre-
visualization	options.	This	could	lead	to	problems	during	the	evaluation,	if	the	lack	of
interactivity	and	details	impairs	the	user’s	ability	to	understand	the	interface.	The	choice	to
use	sketches	depends	on	the	complexity	of	the	design	that	you	are	evaluating.

FIGURE	6.1	Sketches	are	a	quick	and	easy	way	to	pre-visualize	the	interface.

120	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	6.2	Paper
prototype,	using	the	“Wizard	of	Oz”	technique.

Paper	Prototype

Paper	prototypes	are	essentially	interactive	sketches.	We	can	use	pen,

paper,	cardboard,	scissors,	tape,	sticky	notes,	and	other	materials	to	create	and	simulate
interactive	elements	(see	Figure	6.2).

To	make	a	paper	prototype	interactive,	we	can	use	what	is	called	the

“Wizard	of	Oz”	technique.	The	name	comes	from	the	movie	of	the	same

name,	because	the	interactivity	is	created	by	someone	“behind	the	cur-

tain.”	This	technique	works	best	with	two	people:	one	person	asks	the

user	to	accomplish	a	specific	task,	and	the	other	simulates	the	inter-

activity	by	moving	pieces	of	the	paper	prototype	around	in	reaction	to	the	user’s	actions.*

Simulating	interaction	with	a	paper	prototype	has	a	few	advantages

over	code:	Paper	prototypes	never	get	compiler	or	linking	errors.	The	only	thing	you	need
to	deploy	them	are	your	own	two	legs.	They	are	easily	portable	and	can	be	archived
indefinitely	in	a	file	folder.	Finally,	anyone	can	create	a	paper	prototype	without	having	to
learn	a	programming	language

or	a	graphic	design	tool.†

*	To	see	an	example	of	this	in	action,	watch	this	video:	http://www.youtube.com/	watch?
v=

GrV2SZuRPv0.

†	In	fact,	there	is	an	old	joke	among	user	experience	designers:	if	you	have	ever	done	arts
and	crafts	in	kindergarten,	you	can	create	a	paper	prototype.

Evaluation	◾	121
Interactive	Prototype

These	prototypes	are	created	and	evaluated	on	a	computer	or	other	device,	using
interactive	prototype	creation	tools.*	These	tools	come	prepackaged	with	standard
controls	such	as	buttons,	drop-	downs,	and	checkboxes.

Most	allow	you	to	add	simple	interactions,	such	as	opening	a	dialog	box

when	clicking	a	button	(see	Figure	6.3).

Although	they	cannot	simulate	every	single	type	of	interaction,	most

interactive	prototype	creation	tools	have	very	powerful	and	versatile	systems	for	building
interactions,	as	well	as	vibrant	communities	where	people	share	recipes	to	simulate
different	types	of	behaviors.

In	addition,	if	your	users	are	not	in	the	same	building—or	even	the

same	country—interactive	prototypes	are	clearly	a	better	choice	compared	to	sketches	and
paper	prototypes,	as	they	can	be	shared	electronically.	By	using	screen	sharing,	you	can
even	watch	people	test	the	prototype	in	real	time	and	get	feedback	as	if	you	were	sitting
next	to	them.

Interactive	prototypes	can	bring	you	closer	to	simulating	the	real	tool

as	compared	to	sketches	and	paper	prototypes.	If	you	are	simulating	a

tool	that	will	be	used	on	a	desktop	computer,	interactive	prototypes	are	about	as	close	as
you	can	get	to	reality	without	actually	writing	code.

However,	there	are	a	few	drawbacks	to	interactive	prototypes.	For	most

people	new	to	user	experience	design,	building	an	interactive	prototype

requires	learning	a	new	tool.	In	addition,	making	changes	can	sometimes

be	more	complicated	compared	to	a	sketch	or	paper	prototype.	There	is

also	the	chance	that	deploying	a	prototype	on	somebody	else’s	computer

will	not	work	at	first.	For	this	reason,	it	is	recommended	to	test	out	interactive	prototypes
on	another	machine	before	doing	a	large	number	of

user	tests.

PERFORM	A	HEURISTIC	EVALUATION

In	Chapter	1,	we	learned—through	the	user	experience	pyramid—that

one	of	the	foundations	of	a	good	user	experience	is	usability.	Heuristic	evaluation	can	be	a
useful	technique	when	there	are	no	users	available

to	evaluate	the	interface.	It	allows	us	to	catch	usability	problems	before	the	users	do.

*	Two	of	the	most	popular	professional	tools	are	Axure	and	Balsamiq,	which	you	can	find
at	http://

www.axure.com	and	http://www.balsamiq.com,	respectively.	Another	alternative	is	to
import	a	series	of	static	screenshots	into	Microsoft	PowerPoint,	Apple	Keynote,	or	Adobe
Acrobat	and	make	them	interactive	by	creating	clickable	hotspots.

122	◾	Designing	the	User	Experience	of	Game	Development	Tools	iq
alsamo	B

sed	t

icen

uilizzoni,	l

o	G

acom

f	Gi

ark	o

radem

ed	t

egister

s	a	riq	i

alsam

ission.m

rototype.	B	er

ith	p

active	p	sed	w

nter	,	u

n	if	a	LC

ple	o	tudios,	L

xamn	e	iq	SA

3

alsam

E	6.R	nd	B

U

FIG

SRL	a

Evaluation	◾	123
Although	there	are	many	varieties	of	usability	heuristics,*	for	the	pur-

poses	of	this	book,	we	will	learn	the	heuristics	established	by	Jakob	Nielsen	in	1994,
which	are	perhaps	the	most	popular	and	widely	used.	They	origi-nate	from	his	book
Usability	Engineering.	†

The	heuristics	are	listed	in	the	following	sections.	For	each	one,	you

will	find	a	quote	of	what	someone	might	say	when	confronting	this	heu-

ristic,	one	or	more	examples	to	help	you	identify	the	heuristic,	as	well	as	design
techniques	from	the	previous	chapter	that	could	be	used	to	improve	the	problem.

What	Are	the	Heuristics?

Visibility	of	System	Status

“What	is	the	tool	doing	right	now?	Did	it	crash?”	There	are	no	progress

bars	or	wait	cursors.	The	tool	freezes	while	it	is	performing	an	action	without	telling	the
user	to	wait.	There	are	no	dialogs	to	inform	the	user	of	what	is	going	on.	For	this	heuristic,
the	technique	of	feedback	is	recommended	to	keep	the	user	informed	of	what	the	tool	is

doing.

Match	between	System	and	Real	World

“I	don’t	understand	what	this	means.”	The	words	and	concepts	used	in	the	tool	are
confusing,	because	they	do	not	match	the	user’s	mental	model.	In	addition,	the	position	of
the	controls	does	not	make	sense	relative	to	their	functionality	(for	example,	up	and	down
buttons	are	placed	side	by	side).

In	the	case	of	this	heuristic,	natural	mapping	and	representation	can	help	make	the	tool
easier	to	understand	by	matching	the	users’	mental	model

more	closely.

User	Control	and	Freedom

“How	do	I	go	back	to	where	I	was	before?”	When	a	mistake	is	made,	there

is	no	clear	way	to	go	back	to	where	you	were	before.	Another	common

sign:	the	tool	does	not	support	undo/	redo.	In	this	case,	the	technique	of	feed-	forward	can
help.	This	is	because	it	allows	the	user	to	see	what	their	action	will	do,	which	gives	them
the	option	to	change	their	mind	before

it	is	too	late.

*	Here	are	a	few:	http://en.wikipedia.org/	wiki/	Heuristic_evaluation,	as	well	as	those	by
Bastien	&	Scapin:	http://www.webmaestro.	gouv.	qc.	ca/	publications/	archives/
webeducation1998-2004/2000-11/

criteres.pdf.

†	You	can	read	more	about	Nielsen’s	heuristics	here:	http://www.nngroup.com/

articles/

ten-	usability-	heuristics/.

124	◾	Designing	the	User	Experience	of	Game	Development	Tools	Consistency	and
Standards

“Is	this	the	same	as	that?”	Two	similar	controls	that	edit	the	same	type	of	data	do	not	work
the	same	way.	For	example,	one	list	box	may	only	delete	selected	items	with	the	delete
key	on	the	keyboard,	whereas	the	other	list	box	within	the	same	tool	only	deletes	selected
items	with	a	delete	button	in	the	interface.	As	opposed	to	a	specific	design	technique,	the
best	way	to	address	this	heuristic	is	to	ensure	that	the	tool	follows	guidelines	and	uses
interaction	patterns	consistently.

Error	Prevention

“How	can	I	prevent	that	mistake	from	happening	again?”	The	interface

makes	it	far	too	easy	for	mistakes	to	occur,	such	as	allowing	an	item	to	be	dragged	and
dropped	where	it	is	not	supposed	to,	or	setting	the	default

button	for	a	“Exit	without	save	changes?”	dialog	box	to	“Yes.”	The	design	techniques	of
constraints	and	feed-	forward	can	be	useful	for	fixing	issues	associated	with	this	heuristic.

In	addition,	by	strategically	increasing	excise,	you	can	give	the	user	more	time	to	consider
their	options	and	prevent	them	from	making	mistakes.

Recognition	Rather	Than	Recal

“I	can’t	remember	what	it	was	called.	If	I	had	a	list	of	options	to	choose	from	…”	The	tool
does	not	provide	a	visual	preview	for	a	list	of	3D	meshes,	so	the	only	way	to	know	what
they	are	is	to	open	them	one	at	a	time.

Another	common	example	is	forcing	the	user	to	remember	syntax	or

object	names	instead	of	providing	suggestions.	This	not	only	hurts	effi-

ciency	but	also	can	lead	to	errors.	The	design	technique	of	representation	can	be	useful
here,	since	it	can	be	used	to	help	the	user	remember	what

they	were	looking	for	by	showing	them	a	list	of	options.

Flexibility	and	Efficiency	of	Use

“I	wish	there	was	a	faster	way	to	do	this.”	Actions	that	need	to	be	per-

formed	very	frequently	do	not	have	shortcuts,	such	as	a	hotkey	or	a	prominent	button	in
the	interface.	Improving	excise	is	one	of	the	most	common	ways	to	help	address	problems
associated	with	this	heuristic.

Aesthetic	and	Minimalist	Design

“Whoa,	this	interface	is	complicated.	I	don’t	know	where	to	start!”	Every	possible	feature
is	exposed	at	once,	and	the	user	does	not	know	where	to	Evaluation	◾	125
look	first.	Furthermore,	there	is	no	way	to	hide	or	simplify	the	user	interface	for	the	first-
time	user.	In	the	case	of	this	heuristic,	the	design	techniques	of	hierarchy	and	progressive
disclosure	could	be	used,	as	they	can	help	guide	the	eye	of	the	user,	as	well	as	letting	them
determine	how	much	visual	complexity	they	need	in	the	interface.

Help	Users	Recognize,	Diagnose,	and	Recover	from	Errors

“An	error	occurred.	What	do	I	do	now?”	Error	messages	do	not	clearly

indicate	what	the	problem	is	or	help	the	user	to	find	a	solution.	In	this	case,	the
recommended	design	techniques	would	be	a	combination	of	feedback

(to	let	the	user	know	how	to	fix	the	error)	and	constraints	(to	help	the	user	avoid	making
the	mistake	in	the	first	place).

Help	and	Documentation

“I’m	stuck,	and	there’s	no	one	around	that	I	can	ask.	What	do	I	do?”	No

documentation,	such	as	a	wiki	page,	training	video,	or	help	file,	is	available.	There	is	no
clearly	marked	place	to	ask	for	assistance	or	log	a	bug.

The	design	technique	of	feedback	can	be	used	in	the	form	of	contextual

help	within	the	application,	often	seen	as	little	question	marks	near	a	user	interface
element	to	learn	more	about	how	it	works.

How	to	Perform	a	Heuristic	Evaluation

In	an	ideal	situation,	a	heuristic	evaluation	is	done	by	a	large	number	of	qualified	user
experience	designers,	who	then	combine	their	efforts	to	find	as	many	usability	problems	as
possible.	However,	doing	a	heuristic	evaluation	by	yourself,	or	with	a	few	members	of	the
tools	development	team,

may	be	better	than	not	doing	it	at	all.

To	perform	a	heuristic	evaluation,	look	at	the	pre-	visualization	or	the	working	tool	that
you	want	to	evaluate,	and	search	for	issues	similar	to	those	from	the	list	of	heuristics.	It
can	be	helpful	to	do	this	by	stepping	through	the	task	flows	that	you	created	during	the
Analysis	phase.

When	you	notice	an	issue	that	matches	one	of	the	heuristics,	indicate

the	name	of	the	heuristic	and	write	a	short	description.	Optionally,	you	can	take	a
screenshot	of	the	specific	part	of	the	interface	that	exhibits	the	problem.	You	can	also
assign	a	level	of	severity,	to	indicate	how	much	this	could	affect	the	usability	of	the	tool.
This	can	help	to	prioritize	what	to	improve	first.

126	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	6.4	Heuristic
evaluation	of	the	NVIDIA	Normal	Map	filter.

For	example,	if	we	were	to	do	a	heuristic	evaluation	on	the	NVIDIA

Normal	Map	tool	(see	Figure	6.4),	we	might	identify	the	following	issues:

•	Aesthetic	and	minimalist	design:	All	of	the	options	are	displayed	at

once.	Beginners	do	not	know	where	to	look	first,	which	can	be	very

intimidating.	Severity:	High.

•	Consistency	and	standards:	The	“Alternate	Conversions”	section	has

more	than	seven	radio	buttons.	Microsoft’s	design	guidelines	sug-

gest	using	a	drop-	down	when	there	are	more	than	seven	options.

Severity:	Low.

•	Error	prevention:	The	“Use	Decal	Texture”	option	can	be	checked

even	when	there	is	no	texture	selected.	This	could	lead	to	the	user

wondering	why	they	cannot	see	their	decal	texture.	Severity:	Medium.

These	are	just	a	few	examples,	and	you	may	be	able	to	identify	other	issues	with	this
particular	interface.

Finally,	remember	that	people	use	tools	in	unexpected	ways.	Doing

a	heuristic	evaluation	is	a	good	first	pass	when	no	users	are	available.

However,	you	should	make	every	effort	to	follow	it	up	by	testing	with

users.	Someone	will	work	with	the	tool	eventually,	and	the	sooner	you	can	watch	them
work,	the	better!

DO	USER	TESTS

One	of	the	best	ways	to	evaluate	the	user	experience	is	by	doing	a	user

test.	The	first	step	to	doing	this	is	to	build	a	test	plan	and	select	the	users	Evaluation	◾	127
to	test.	Then,	you	need	to	prepare	the	interface	that	the	users	will	evaluate,	either	by
making	changes	directly	in	the	code	or	by	pre-	visualizing.	Finally,	you	can	run	the	tests
and	examine	the	results	in	the	next	Analysis	phase.

Building	a	Test	Plan

The	simplest	kind	of	test	plan	is	simply	a	list	of	tasks	that	you	assign	to	the	user.	If	you	are
building	a	test	plan	for	the	first	time,	you	can	get	an	idea	of	which	tasks	to	include	by
looking	at	the	user	and	stakeholder	goals,	as	well	as	the	task	flows	and	scenario
storyboards	that	you	created	during	the	Analysis	phase.	All	of	these	can	be	used	to	help
you	determine	which	tasks	you	will	ask	the	users	to	perform.

How	to	Phrase	Tasks

A	task	should	be	phrased	in	the	form	of	a	question	such	as	“How	would

you	do	this?”	as	opposed	to	a	command:	“Now	do	that.”	This	is	a	closer

match	for	the	way	people	think	when	they	are	trying	to	achieve	their	goals.

For	example,	imagine	that	one	of	the	user	goals	identified	during	a	con-

textual	inquiry	is	to	create	a	new	mesh	with	a	shader	assigned	and	add	it	to	the	level.
Three	tasks	are	required	to	accomplish	this	goal:	create	the	mesh,	add	a	shader,	and	add	it
to	the	level.	In	this	case,	you	could	phrase	the	three	tasks	as	fol	ows:	“How	would	you
create	a	mesh?”,	“How	would	you	add	a

shader	to	the	object?”,	and	“How	would	you	add	the	object	to	the	level?”

Don’t	Assign	Leading	Tasks

In	the	Analysis	phase,	we	discussed	the	danger	of	asking	leading	ques-

tions,	and	the	same	applies	to	user	tests.	If	the	question	influences	the	user,	you	could	get
inaccurate	results.	For	example,	a	leading	task	would	be,	“Use	the	object	list	to	search	for

a	tree,	then	drag	and	drop	it	into	the	level.”	The	question	implies	where	to	find	the	tree	and
how	to	add	it.	A	better	alternative	would	be	“You	need	to	add	a	tree	to	the	level.	How
would	you	do	that?”

Realism	and	Context

It	is	also	important	to	make	the	questions	realistic	and	to	give	them	context.	For	example,
“How	would	you	add	a	skyscraper	in	the	middle	of	the

forest	in	this	level?”	could	result	in	unusual	feedback	since	it	is	not	a	very	realistic	task.

Asking	the	user,	“How	would	you	add	a	large	tree	to	the	forest	in	this

level?”	is	good,	but	an	even	better	alternative	would	be,	“The	art	director	128	◾	Designing
the	User	Experience	of	Game	Development	Tools	has	requested	that	a	large	tree	be	added
to	the	forest.	How	would	you	do	that?”	This	question	is	more	realistic,	and	the	fact	that	the
request	comes	from	the	art	director	adds	context	that	is	appropriate	to	that	task.

Specific	Tasks	Are	Easier	to	Measure

It	is	important	that	the	tasks	are	as	specific	as	possible.	This	allows	the	results	of	the	user
test	to	be	compared	not	only	between	users	but	also

across	future	iterations	of	the	Evaluation	phase.	For	example,	the	results	of	the	task	“How
would	you	create	a	new	shader?”	could	vary	wildly	if	the	user	adds	a	default	shader	versus
a	complex	ocean	shader	requiring	several	texture	maps	and	customized	properties	for
water	movement.	The	task

“How	would	you	create	a	lambert	shader	with	a	prebuilt	texture	in	the	diffuse	channel?”	is
much	more	specific	and	therefore	can	be	measured	and

compared	with	more	accuracy.

Select	the	Users

To	select	which	users	to	test,	you	can	use	the	same	approach	as	the	Analysis	phase.	Pick
users	who	have	a	profile	appropriate	to	the	tasks.	To	get	the	most	accurate	results,	you
want	to	choose	users	who	are	already	using

the	tool,	in	production.

Testing	with	Similar	Users

In	the	games	industry,	it	is	very	common	that	tool	development	begins

before	the	content	creators	have	joined	the	team,	and	that	the	deadline

to	deliver	the	tools	is	right	before	the	users	arrive	and	start	producing	assets.	This	often
means	that	tools	developers	are	scheduled	to	work	on

other	tasks	shortly	after	the	users	arrive	and	start	using	the	tools	for	the	first	time.	If	the
users	have	feedback	about	how	the	tools	could	be

improved,	there	could	be	no	one	available	to	make	changes.	Oftentimes,

nothing	besides	the	most	urgent	problems	with	the	base	functionality	of

the	tools	are	fixed.	This	often	results	in	tools	with	an	inferior	user	experience,	which	costs

the	game	developer	time	and	money	in	lost	productivity	over	the	course	of	production.

A	better	alternative	would	be	to	have	the	equivalent	tools	development

resources	working	with	the	users	but	spread	out	all	the	way	through	pro-

duction,	instead	of	a	big	burst	of	work	at	the	beginning.	This	will	require	that	the	people
who	manage	tools	developers	understand	the	value	of	the

User-	Centered	Design	process,	so	that	they	can	plan	tools	development

Evaluation	◾	129
tasks	accordingly,	which	will	require	time	and	a	cultural	shift	in	the	games	industry.	We
will	talk	more	about	that	in	the	final	chapter.

In	the	meantime,	if	you	find	yourself	in	this	situation,	selecting	other	users	who	fit	a
similar	profile	may	be	your	best	option.	If	you	are	testing	changes	in	code,	and	it	is	not
possible	to	deploy	the	tool	to	the	users’	computers,	do	not	let	that	stop	you	from	getting
feedback.	Bring	them	to	your	desk,	or	to	any	computer	that	has	an	early	version	of	the	tool
running.

Alternatively,	you	can	connect	to	a	computer	running	the	tool	via	remote	desktop	(as	long
as	doing	that	does	not	significantly	affect	the	user	experience	or	measurements).	The
bottom	line	is	that	waiting	for	the	perfect	moment	to	test	could	result	in	a	missed
opportunity	to	improve	the	user

experience.	You	should	do	everything	that	you	can	to	ensure	that	the	first	time	that	the
users	lay	eyes	on	the	tool	is	not	right	before	they	start	working	with	it	for	the	first	time.

How	Many	Users?

According	to	Jakob	Nielsen,	user	testing	with	more	than	five	users	results	in	diminishing
returns.*	While	there	is	some	debate	over	this	number,

one	thing	is	clear:	if	you	limit	your	tests	to	five	users,	remember	that	those	five	users
should	have	the	same	role	and	should	do	the	same	tasks.	In

other	words,	if	you	assign	five	users	the	task	of	using	a	level	editor	to	place	objects,	but
those	users	are	a	mix	of	animators,	3D	artists,	and	programmers,	you	are	unlikely	to	get
accurate	results.	On	the	other	hand,	if	you	do	this	with	five	users	who	are	all	level
designers	responsible	for	placing	objects	in	the	level,	you	are	much	more	likely	to	get
accurate	results.

Run	the	Test

Now	it	is	time	to	get	feedback.	Meet	with	each	user,	show	them	the	tool

or	pre-	visualization,	and	go	through	your	test	plan	one	task	at	a	time.	As	in	the	contextual
analysis,	resist	the	urge	to	help	if	they	have	difficulty	understanding	one	of	the	tasks.	Try
to	understand	why	they	are	having

difficulty,	and	then	move	on	to	the	next	task.	However,	unlike	the	contextual	analysis,	you
may	choose	to	ask	that	the	users	do	not	talk	out	loud,	since	it	could	affect	the	time	it	takes
them	to	complete	a	task.	In	this	case,	use	your	own	judgment.

*	You	can	read	the	article	here:	http://www.nngroup.com/	articles/	why-	you-	only-	need-
to-	test-	with-5-users/.

130	◾	Designing	the	User	Experience	of	Game	Development	Tools	If	you	can,	it	is	also
recommended	to	perform	the	user	tests	with	two

people:	one	person	assigning	the	tasks,	and	the	other	taking	notes.	When	you	are	alone,	it
can	be	difficult	to	assign	tasks,	observe	the	user,	and	take	notes	all	at	once.	Having	a
dedicated	note-	taker	ensures	that	the	person	assigning	the	tasks	can	focus	on	the	user	and
notice	things	that	they	might	miss	if	they	were	taking	notes.

Although	user	tests	can	take	less	time	than	a	contextual	analysis,	try	to	keep	them	under	an
hour.	Being	the	subject	of	a	user	test	can	be	draining	for	some	people.	In	any	case,	if	the
users	are	in	production,	they	may	not	have	more	time	than	that.	If	you	encounter	resistance
while	running	the

user	tests	(either	from	the	user	you	are	testing	or	from	their	supervisor),	ensure	that
everyone	understands	that	the	time	required	to	run	a	user

test	is	a	small	investment	compared	to	the	potential	savings	of	time	and	money	in	the	long
term.

It	can	also	be	helpful	to	record	a	video	of	the	user’s	screen,	or	their

interaction	with	the	pre-	visualization.	If	an	interesting	or	significant	event	occurs	during
the	user	test,	make	a	note	of	the	time	that	it	occurs	in	the	video,	so	that	you	can	go	back
during	the	Analysis	phase	and	grab	a

screenshot	or	short	video	clip.

WRAPPING	UP

This	chapter	focused	on	the	Evaluation	phase	of	the	User-	Centered	Design	process.	We
learned	how	to	evaluate	a	design	and	how	to	decide	between

pre-	visualization	and	going	straight	to	code.	We	also	learned	a	series	of	techniques	to	be
used	during	the	Evaluation	phase,	such	as	sketching,

paper	prototyping,	interactive	prototyping,	performing	a	heuristic	evaluation,	and	finally,
performing	user	tests.

In	the	next	chapter,	we	will	return	to	the	Analysis	phase,	going	back

through	the	loop	of	the	User-	Centered	Design	process,	and	discuss	the

importance	of	comparing	measurements.

C	h	a	p	t	e	r	7

Back	to	Analysis

DÉJÀ	VU

If	you	have	been	reading	up	until	this	point,	you	might	be	won-

dering	why	we	are	talking	about	the	Analysis	phase	again.	“We	already

did	that	in	Chapter	4!”

The	purpose	of	this	chapter	is	to	emphasize—once	again—that	the

User-	Centered	Design	process	is	an	iterative	cycle.	Once	you	have	com-

pleted	the	Evaluation	phase,	examine	the	feedback	gathered	during	the

Analysis	phase	to	plan	your	next	move.

Do	We	Have	to	Do	Everything	Over	Again?

One	of	the	misconceptions	of	the	User-	Centered	Design	process	is	that

it	is	a	heavy	process	and	that	each	of	the	techniques	must	be	used	every	time	through	the
cycle.	This	is	not	true:	while	there	is	an	up-	front	cost	in	doing	Analysis	for	the	first	time,
in	subsequent	iterations,	the	techniques	are	there	to	be	used	on	an	as-	needed	basis.

As	you	go	through	the	loop,	you	may	find	that	you	missed	an	impor-

tant	task	that	the	majority	of	users	do	on	a	regular	basis.	In	this	case,	you	can	produce
another	task	flow	to	add	to	the	others.	You	may	also	discover	important	users	of	the	tool
that	you	were	not	aware	of	before.	This	could	require	doing	more	contextual	analyses	to
discover	their	goals	and	mental	models.

If	not,	you	can	spend	the	rest	of	the	time	focusing	on	analyzing	the

results	of	the	Evaluation	phase	and	preparing	for	the	next	round	of	adjustments	in	the
Design	phase.

131

132	◾	Designing	the	User	Experience	of	Game	Development	Tools	COMPARING
MEASUREMENTS

In	game	development,	we	are	accustomed	to	gathering	all	sorts	of	mea-

surements:	the	burn-	down	rate	of	a	sprint,	performance	metrics	of	the

CPU	and	GPU,	how	different	types	of	memory	are	allocated,	budgets	for

various	types	of	expenses,	the	amount	of	information	on	each	vertex	of	a	mesh,	and	so	on.
Yet,	when	was	the	last	time	that	the	efficiency	and	learnability	of	the	game	development
tools	were	measured	on	a	regular	basis?

One	of	the	main	reasons	is	due	to	the	perception	that	it	takes	too	much

time	to	measure.	However,	consider	this:	if	you	go	on	a	road	trip,	do	you	drive	around
aimlessly,	hoping	that	you	will	soon	arrive	at	your	destina-tion,	or	do	you	stop
occasionally	to	check	a	map?	Developing	a	tool	without	measuring	is	like	driving	around
without	occasionally	checking	a	map	(see	Figure	7.1).	While	it	is	true	that	verifying
measurements	takes	a	little	bit	of	time	at	each	iteration,	the	goal	is	that	the	overall	time
will	be	lower,	as	opposed	to	barreling	forward	aimlessly	in	the	hope	that	we	are	making
the	tool	better.

Expert	Opinions

If	you	have	studied	the	history	of	computer	science,	you	may	have	learned	about	Admiral
Grace	Hopper.	She	developed	the	first	compiler,	and	she	is	credited	with	popularizing	the

term	debugging.	One	of	her	most	famous	FIGURE	7.1	The	importance	of	taking	the	time
to	analyze	the	results	of	the	evaluation	phase.

Back	to	Analysis	◾	133
quotes	is	this:	“One	accurate	measurement	is	worth	more	than	a	thousand

expert	opinions.”

In	the	games	industry,	it	is	common	to	have	an	expert	user	or	stake-

holder	whose	job	it	is	to	represent	the	needs	of	all	users	with	the	same	job	description.
When	changes	are	made	to	a	tool,	we	may	ask	this	person	to

decide	if	the	changes	are	good	enough.	In	some	cases,	they	may	say	that

recent	changes	to	the	tool	have	made	everyone	more	productive,	and	often	the
conversation	ends	there.	However,	how	do	we	know	that	this	is	true?	*

The	Analysis	phase	is	our	opportunity	to	learn	the	answer	to	this	ques-

tion.	By	verifying	and	comparing	the	measurements,	you	can	see	if	the

changes	have	really	helped	to	improve	efficiency,	learnability,	or	both.

Each	time	you	go	through	the	Analysis	phase,	compare	the	measurements

to	the	previous	cycle,	and	keep	a	record	for	the	next	cycle.	This	is	one	of	the	most	reliable
ways	to	know	if	the	changes	made	in	the	Design	phase

are	moving	the	tool	in	the	right	direction.

It	is	important	to	note	that	this	does	not	mean	that	we	do	not	value	the	opinion	of	the
expert	users	and	stakeholders.	On	the	contrary,	by	including	them	in	the	User-	Centered
Design	process,	they	can	use	the	informa-

tion	to	make	even	better	decisions,	with	less	risk.	This	will	help	to	build	a	stronger
relationship	between	all	of	the	people	involved	in	the	development	of	the	tool,	and	keep
everyone	focused	on	improving	the	user	experience.

*	I	was	this	person	for	several	games,	tools,	and	pipelines,	and	there	is	no	doubt	in	my
mind	that	my	opinion	was	wrong	on	many	occasions!

C	h	a	p	t	e	r	8

Real-	World	User-

Centered	Design

INTRODUCTION

The	purpose	of	this	chapter	is	to	present	a	“day	in	the	life”	account

of	a	tools	development	team	using	the	User-	Centered	Design	process.

This	will	give	you	a	sense	of	what	the	process	feels	like,	which	can	help	you	to	understand
how	to	implement	it	yourself.

The	Cast

Stakeholders

•	Sophie,	project	manager

•	Ben,	art	director

Developers

•	Daniel,	tools	programmer

•	Francis,	technical	artist

The	Company

This	story	takes	place	at	a	medium-	sized	game	developer	that	has	been

in	business	for	over	ten	years.	They	have	developed	their	own	engine	and	tools,	which
they	have	used	to	create	games	that	have	sold	enough	cop-ies	to	keep	them	in	business.
However,	very	little	effort	has	been	put	into	improving	the	tools,	due	to	perceived	time
and	budget	constraints.	No	one	135

136	◾	Designing	the	User	Experience	of	Game	Development	Tools	is	measuring	the
performance	of	the	users,	and	it	is	generally	accepted	that	if	the	tool	can	create	the
content,	it	is	“done.”

As	a	result,	some	of	the	tools	are	not	very	easy	to	use	and	are	frequently	the	source	of
frustration	for	the	content	creators.	Most	of	the	senior	users	who	have	been	with	the
company	for	many	years	have	given	up	on	complaining	and	have	simply	accepted	that	the
tools	are	the	way	they	are.

The	Situation

Sophie	has	recently	been	promoted	to	project	manager.	The	last	game	that	she	shipped
suffered	from	grueling	overtime,	productivity	problems,	lost	data,	and	the	slow	ramp-	up
of	new	staff	due	to	difficulty	learning	the	tools.

Some	senior	people	quit	shortly	after	the	project,	and	the	cost	of	retraining	the	new	hires
was	significantly	higher	than	if	they	had	been	able	to	keep	their	staff.

Sophie	is	currently	in	the	production	phase	of	her	next	project,	and	she	is	starting	to	see
the	same	situation	emerge	from	the	last	project,	especially	in	the	cut-	scene	pipeline.
Concerned	that	history	will	repeat	itself,	and	because	work	on	cut-	scenes	will	be	starting
soon,	she	decides	that	she	wants	to	see	if	she	should	invest	in	improving	the	efficiency	of
the	cut-scene	pipeline.

She	learns	that	two	developers	from	another	team,	Daniel	and	Francis,

have	been	using	a	new	approach	in	their	tools	development	work—the

User-	Centered	Design	process—and	that	they	have	been	getting	positive

results.	Although	she	wants	to	improve	the	tools,	like	a	good	project	manager,	she	also
wants	to	ensure	that	the	benefits	outweigh	the	costs.

Daniel	and	Francis	have	recently	become	available,	so	she	asks	them	to

join	her	team	to	focus	on	making	the	cut-	scene	pipeline	more	efficient.	She	requests	that

they	keep	her	up	to	date	on	their	sprint	reports	so	she	can	track	their	progress.

THE	PROCESS	IN	ACTION

Sprint	1

Analysis

Daniel	and	Francis	start	by	interviewing	the	stakeholders.	They	know

that	Sophie’s	goal	is	to	make	the	cut-	scene	pipeline	more	efficient.	They	also	interview
another	stakeholder:	Ben,	the	art	director	who	is	responsible	for	the	cut-	scenes.	They
learn	that	one	of	Ben’s	goals	is	to	be	able	to	request	changes	to	the	cameras	and	see	the
results	so	he	can	validate	Real-	World	User-	Centered	Design	◾	137
the	composition.	He	also	mentions	that,	during	the	last	project	he	worked	on,	asking	the
animators	to	make	changes	to	the	camera	took	a	very	long

time,	which	he	found	frustrating.

With	these	stakeholder	goals	in	mind,	Daniel	and	Francis	move	on	to

the	next	step:	contextual	analyses	with	the	users	who	work	on	cut-	scenes.

In	light	of	the	art	director’s	comments,	they	focus	on	the	users	who	spend	the	most	amount
of	time	working	with	cameras,	the	animators.	There

are	twelve	animators	in	the	cut-	scene	team,	and	they	are	scheduled	to	be	working	on	cut-
scenes	for	a	total	of	six	months.

During	the	contextual	analyses,	Daniel	talks	to	the	animators,	while

Francis	takes	notes.	They	begin	by	asking	them	what	their	goals	are	when	working	with
the	camera.	Many	of	the	goals	that	the	users	talk	about	can	be	linked	to	the	producer	and
the	art	director:	they	want	to	adjust	the

camera,	and	they	want	to	do	it	quickly.	However,	unlike	the	art	director,	their	goal	is	not
setting	the	composition	of	the	camera	but	simply	getting	the	job	done	so	they	can	move	on
to	their	next	task.

During	the	task	of	adjusting	the	camera,	one	of	the	actions	is	to	adjust	the	depth	of	field.
The	depth	of	field	has	five	values	that	the	users	can	set:	the	start	and	end	of	the	near	blur,
the	start	and	end	of	the	far	blur,	and	the	focus	point	distance.	They	mention	that	they
sometimes	get	confused

about	what	each	value	represents,	that	it	is	difficult	to	find	the	value	they	are	looking	for	at
a	glance,	and	that	they	often	have	to	readjust	the	values	multiple	times	because	they	go
beyond	the	minimum	or	maximum.

The	junior	users	say	that	it	is	extremely	difficult	to	use	the	depth	of	field	tool.	The	senior
users	say	that	while	it	is	not	perfect,	the	junior	users	just	have	to	adapt	to	it.	In	fact,	the
biggest	complaint	from	the	senior	users	is	regarding	something	that	is	done	only	on
occasion:	copying	the	settings

from	one	camera	to	another,	which	requires	that	they	copy	and	paste	the

values	one	field	at	a	time.

Some	users	even	say	that	the	depth	of	field	tool	does	not	need	to	be

improved,	mostly	because	it	used	to	be	worse!	In	the	past,	to	change	the	depth	of	field,	the
users	had	to	create	a	script	file	that	contained	commands	to	set	the	depth	of	field	and
attach	that	script	file	to	the	camera.	This	was	a	problem	because	many	users	would
generate	errors	by	forgetting	to	put	a	comma	or	a	semicolon,	misspelling	the	name	of	the
command,	and	so	on

(see	the	left	side	of	Figure	8.1).

To	improve	the	situation,	one	of	the	tools	programmers	created	a	tool

to	set	the	depth	of	field:	a	window	with	a	row	of	numeric	boxes	(see	the	right	side	of
Figure	8.1).	Even	though	some	users	feel	that	this	tool	is	good

138	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	8.1	The
previous	(left)	and	current	(right)	methods	for	setting	the	depth	of	field	of	cameras.

100%	of	users,	often

Manually

Select	camera

Move/Rotate

Adjust	DOF

30%	of	users,	rarely

Copy/Paste	Values

FIGURE	8.2	Task	flow	analysis	for	the	process	of	setting	up	cameras	for	cut-scenes.

enough	and	that	there	is	nothing	left	to	do,	it	is	clear	to	Daniel	and	Francis	that	this	tool
simply	exposes	the	conceptual	model	of	the	depth	of	field	script	command,	and	that
efficiency	could	be	improved	further.

Using	the	notes	from	their	contextual	analyses,	Daniel	and	Francis

start	to	build	a	task	flow	for	adjusting	the	camera	(see	Figure	8.2).

After	analyzing	the	results	of	the	task	flow,	they	observe	that	all	of	the	users	adjust	the
depth	of	field	manually,	and	that	they	do	it	often.	They	decide	that	they	will	work	on
improving	the	efficiency	of	this	action	first,	and	that	they	will	work	on	the	copy/	pasting

of	values	from	one	camera	to	another	later.

Design

To	improve	the	efficiency	of	making	manual	adjustments	using	the	depth

of	field	tool,	Daniel	and	Francis	start	by	proposing	a	few	small,	iterative	changes	to	the
existing	design.

To	make	the	labels	easier	to	scan,	they	apply	the	design	technique	of

hierarchy.	Next,	to	reduce	the	amount	of	time	wasted	by	fixing	invalid	values,	they	replace
the	numeric	boxes	with	sliders	(following	the	Microsoft	guidelines).	This	makes	it	clear
that	the	values	have	a	minimum	and	maximum.	Finally,	they	modify	the	labels	so	that	they
are	more	familiar	to

Real-	World	User-	Centered	Design	◾	139
the	users.	For	example,	the	new	term	for	“TARGET”	is	“Focus	Distance,”

which	matches	the	name	of	a	similar	value	found	in	the	depth	of	field

camera	settings	of	the	animation	tool	that	the	animators	are	accustomed

to	using.

Evaluation

Daniel	and	Francis	start	to	build	their	test	plan.	They	make	a	list	of	tasks	that	can	be	used
to	measure	the	efficiency	of	manually	adjusting	the	depth	of	field	values.	A	few	examples:
“The	art	director	would	like	you	to	increase	the	focus	point	of	‘camera_2’	by	10	units	from
frame	10	to	frame	35	in	the	cut-	scene	‘Chapter1_ChaseB.’	How	would	you	do	that?”	and
“You	receive	a	bug	report	that	the	near	blur	of	‘camera_3’	is	too	high	by	20	units
throughout	the	cut-	scene	‘Chapter3_BossFightIntro.’	How	would	you	fix	that?”

Because	they	are	measuring	efficiency,	and	Daniel	is	a	programmer,	they

decide	to	go	directly	to	code	as	opposed	to	pre-	visualizing	(Figure	8.3).

Before	running	the	tests,	Daniel	and	Francis	also	decide	to	perform	a

heuristic	evaluation	on	the	new	version	of	the	depth	of	field	tool.	A	few	of	the	heuristics
jump	out	at	them	right	away:

•	Match	between	system	and	real	world:	The	order	and	layout	of	the

numeric	boxes	match	the	“setDOF”	command	more	than	the	cam-

era	and	the	depth	of	field	effect.

•	Flexibility	and	efficiency	of	use:	The	users	need	to	click	on	the	“Apply”

button	every	time	they	make	a	change.

FIGURE	8.3	First	iteration	of	the	improved	depth	of	field	tool.

140	◾	Designing	the	User	Experience	of	Game	Development	Tools	They	deploy	the
changes	and	run	their	user	tests.	This	time,	Francis

assigns	tasks	to	the	users	while	Daniel	takes	notes.	They	also	record	the	users’	screen
while	they	are	watching	them	work.

Sprint	2

Analysis

After	the	user	tests	are	done,	Daniel	and	Francis	analyze	the	notes	and	the	videos.	They
calculate	that	the	users	take	an	average	of	20	seconds	to	complete	all	of	the	tasks	from	the
user	test.	This	will	be	their	baseline	measurement.

They	also	note	that	the	majority	of	the	users	feel	that	the	order	of	the	sliders	is	confusing.
Daniel	and	Francis	believe	that	this	is	because	they	do	not	match	the	users’	mental	model
of	the	camera,	which	is	consistent	with	their	findings	during	the	heuristic	evaluation.
Daniel	and	Francis	decide	to	do	a	brief	contextual	analysis	focused	on	understanding	the
users’	mental	model	of	the	camera.

After	meeting	with	the	users,	they	realize	that	many	of	them	describe

the	camera	from	a	side	view,	indicating	the	points	at	which	the	near	and	far	blur	occur.
One	of	the	users	even	does	a	sketch	representing	their	mental	model	of	the	camera	(see
Figure	8.4).	This	inspires	Daniel	and	Francis	to	improve	the	design.

Design

Francis	has	the	idea	to	use	the	design	technique	of	representation	to	lay	out	the	sliders	so
that	they	match	the	users’	mental	model.	The	only	issue	is	that	Francis	cannot	find	a
multithumb	slider	in	the	Microsoft	guidelines,	so	he	looks	to	other	content	creation
software.	He	finds	examples	of	multithumb	sliders	in	the	Input	Levels	section	of	the
Levels	window

in	Adobe	Photoshop	(see	the	top	of	Figure	8.5),	as	well	as	with	the	Range	FIGURE	8.4
Exploring	the	mental	model	for	depth	of	field.

Real-	World	User-	Centered	Design	◾	141
FIGURE	8.5	Researching	common	interaction	patterns	for	a	multi-thumb

slider	in	Adobe	Photoshop	(top)	and	Autodesk	Maya	(bottom).	Adobe	product

screenshot(s)	reprinted	with	permission	from	Adobe	Systems	Incorporated.

Autodesk	screen	shots	reprinted	with	the	permission	of	Autodesk,	Inc.

142	◾	Designing	the	User	Experience	of	Game	Development	Tools	FIGURE	8.6	Second
iteration	of	the	improved	depth	of	field	tool.

slider	in	Autodesk	Maya	(see	the	bottom	of	Figure	8.5).	He	uses	these	as	the	interaction
pattern.

Evaluation

Because	this	design	contains	controls	that	do	not	exist	in	their	UI	toolkit,	and	Daniel	has
an	urgent	bug	to	fix,	Francis	decides	to	pre-	visualize.	He	creates	a	simple	paper	prototype
and	then	performs	a	“Wizard	of	Oz”	test.

The	feedback	from	the	users	is	positive.	They	say	that	the	interface	feels	more	natural	than
the	previous	tool,	and	they	state	that	it	will	enable	them	to	work	faster.	While	this	is	good
feedback,	the	paper	prototype	can	only	confirm	that	the	new	design	matches	the	mental
model,	but	it	cannot

determine	if	it	increases	efficiency.	The	only	way	to	answer	that	will	be	to	implement	the
changes.	Once	Daniel	is	available,	they	modify	the	interface	and	deploy	the	updated
version	(see	Figure	8.6).

As	they	are	modifying	the	interface,	Daniel	and	Francis	are	approached

by	a	few	users	who	remind	them	that	copying	and	pasting	values	is	still	a	problem.	Since
they	have	made	some	progress	on	making	manual	adjustments,	Daniel	and	Francis	decide
to	see	if	they	can	improve	copying	and

pasting	values	as	wel	.	They	start	by	creating	a	user	test	for	copying	and	pasting	values
from	one	camera	to	another,	with	tasks	such	as	“Another	animator	set	up	‘cam_5’	in	the
cut-	scene	‘Chapter5_IntroC,’	and	you	want	to	use	the	same	settings	from	frame	25.	How
would	you	do	that?”

They	run	both	the	user	test	for	manually	adjusting	values	as	well	as	the	user	test	for
copying	and	pasting	values	from	one	camera	to	another.

Sprint	3

Analysis

Daniel	and	Francis	analyze	the	previous	Evaluation	phase	and	perform

another	measurement.	They	discover	that	the	users	now	take	an	average	of

Real-	World	User-	Centered	Design	◾	143
nine	seconds	to	adjust	the	depth	of	field	manually,	which	is	an	11-second	improvement
from	where	they	started.	They	also	analyze	the	results	from

the	copying	and	pasting	camera	values	user	test	and	arrive	at	a	baseline	measurement	of
seven	seconds.

Design

To	improve	the	efficiency	even	further,	Daniel	and	Francis	design	two

changes	that	use	the	technique	of	reducing	excise.

First,	they	modify	the	tool	so	that	the	camera	settings	automatically

update	as	soon	as	the	sliders	are	modified.	This	allows	the	Apply	button	to	be	removed,	so
the	users	do	not	have	to	move	their	mouse	down	to	the

bottom	of	the	tool	and	click	every	time	they	make	a	change.

Second,	they	add	the	ability	to	copy	and	paste	from	one	camera	to

another.	They	expose	this	functionality	to	the	users	by	implementing

a	standard	Edit	menu	with	copy	and	paste	menu	items.	They	associate

the	copy	and	paste	commands	to	hotkeys	that	follow	existing	standards:

Ctrl/	Cmd+C	and	Ctrl/	Cmd+V.	This	way,	users	can	copy	and	paste	values

from	one	camera	to	another	quickly	and	easily.

Evaluation

Since	the	changes	are	small,	they	decide	to	make	them	directly	in	code

(see	Figure	8.7).	They	run	their	user	tests,	and	the	results	from	the	users	are	positive.	All
of	the	users	appreciate	that	they	are	no	longer	required	to	click	on	the	Apply	button	to
update	the	depth	of	field	in	the	viewport.

The	users	who	copy	and	paste	values	are	very	happy	that	they	can

now	do	it	faster.	They	also	say	that	they	think	this	will	have	the	biggest	impact	on
efficiency	out	of	all	the	improvements	that	Daniel	and	Francis	have	made.

FIGURE	8.7	Third	iteration	of	the	improved	depth	of	field	tool.

144	◾	Designing	the	User	Experience	of	Game	Development	Tools	Sprint	4

Analysis

Daniel	and	Francis	examine	the	results	and	see	that	copying	and	past-

ing	values	has	dropped	from	seven	seconds	to	two	seconds.	That	is	an

improvement	of	five	seconds,	which	appears	to	be	significant.

Removing	the	Apply	button	has	made	a	big	difference	for	all	of	the

users	of	the	tool,	by	lowering	the	time	to	adjust	the	depth	of	field	manually	to	just	three
seconds.	That	is	an	overall	improvement	of	17	seconds.

CALCULATING	THE	RETURN	ON	INVESTMENT

Ben	is	very	pleased	with	the	improvements	to	the	depth	of	field	tool,	and	he	tells	Sophie
about	it.	Although	she	trusts	Ben’s	opinion,	she	wants	to	ensure	that	the	time	and	money
spent	on	improving	the	tools	are	paying

off.	She	requests	a	status	update	from	Daniel	and	Francis	so	that	she	can	calculate	the
return	on	investment.*	She	uses	the	following	information

for	her	calculation:

•	Cut-	scene	production	will	last	six	months	(130	working	days).

•	Twelve	users	use	the	depth	of	field	tool	to	adjust	the	camera.	On	average,	they	do	this	90
times	per	8-hour	day.

•	Four	users	copy	and	paste	values	between	cameras.	On	average,	they

do	this	10	times	per	8-hour	day.

•	Each	user	working	on	the	cut-	scenes	costs	$10,000	per	month.

This	means	that	before	Daniel	and	Francis	made	any	improvements,	all	of

the	users	together	would	spend	over	five	man-	months	working	with	the

depth	of	field	over	the	six-	month	period,	at	a	cost	of	almost	$50,000	(see	Figure	8.8).

After	the	improvements,	the	users	are	now	spending	a	little	under	one

man-	month	working	with	the	depth	of	field	over	the	six-	month	period,	or	around	$7,500
(see	Figure	8.9).

Although	it	may	look	like	the	improvements	have	resulted	in	a	savings

of	$42,500,	Sophie	has	to	subtract	the	time	spent	by	Daniel	and	Francis.

Since	they	worked	on	the	depth	of	field	tool	for	three	two-	week	sprints,	and	they	cost
$10,000	per	man-	month,	the	investment	was	$30,000.	This

*	You	can	find	a	variety	of	ROI	calculators	on	the	Human	Factors	website	here:
http://humanfactors.

com/	coolstuff/	roi.asp.

Real-	World	User-	Centered	Design	◾	145
Before	Changes	to	Depth	of	Field	Tool

Duration	(in	days)

130

Cost/man-month	$10,000

Manually	Change	Values

Copy/Paste	Values

Number	of	users

12

Number	of	users

4

Seconds	per	action

20

Seconds	per	action

7

Times	per	day

90

Times	per	day

10

Total	man-months

4.8

Total	man-months

0.06

Total	cost	$48,750

Total	cost

$630

FIGURE	8.8	Calculating	the	cost	of	using	the	depth	of	field	tool.

After	Changes	to	Depth	of	Field	Tool

Duration	(in	days)

130

Cost/man-month	$10,000

Manually	Change	Values

Copy/Paste	Values

Number	of	users

12

Number	of	users

4

Seconds	per	action

3

Seconds	per	action

2

Times	per	day

90

Times	per	day

10

Total	man-months

0.7

Total	man-months

0.01

Total	cost	$7,312

Total	cost

$180

FIGURE	8.9	Calculating	the	cost	of	using	the	depth	of	field	tool	after	the	improvements	to
the	user	experience,	in	an	effort	to	calculate	the	return	on	investment	(ROI).

means	that	the	total	return	on	investment	was	$12,500.	That	is	over	a	man-month	of	time
that	did	not	exist	before	the	improvements,	and	Daniel	and	Francis	are	not	done	yet.	In
addition,	it	is	important	to	note	that	any	other	production	that	uses	the	updated	depth	of
field	tool	in	the	future	will	benefit	from	these	improvements,	immediately,	at	no	cost.

Unfortunately,	the	copy	and	paste	functionality	did	not	result	in	as

much	of	a	return	as	was	hoped,	which	emphasizes	that	the	biggest	impact

comes	from	the	improvements	that	affect	the	highest	number	of	users,	and	those	who	use
the	tools	the	most	frequently.

Ultimately,	the	improvements	have	had	a	positive	return	on	investment.

Sophie	is	satisfied	with	the	results	and	asks	Daniel	and	Francis	to	continue	improving	the
user	experience	of	the	game	development	tools	by	applying

the	User-	Centered	Design	process.

Conclusion

SUMMARY

The	purpose	of	this	book	is	to	introduce	you	to	concepts	and	techniques

that	can	be	used	to	improve	the	user	experience	of	game	development	tools.

In	Chapter	1,	we	learned	the	definition	of	a	user	experience,	why	we

should	improve	the	user	experience,	as	well	as	the	value	of	improving	the	user	experience.
We	also	learned	the	importance	of	balancing	the	needs	of	the	various	groups	involved	in
the	development	of	a	tool.

Chapter	2	introduced	you	to	the	User-	Centered	Design	process.	We

learned	about	the	advantages	of	the	process,	as	well	as	how	to	integrate	it	into	Agile.	We
also	discussed	how	to	deal	with	a	lack	of	time	and	resources.

Chapter	3	focused	on	what	it	means	to	be	“User-	Centered.”	In	this

chapter,	we	learned	about	the	importance	of	focusing	on	the	right	users

and	ensuring	that	the	features	are	useful	for	those	users.	We	also	discovered	the	power	of
pre-	visualization	and	the	differences	between	features	and	goals.

Chapter	4	presented	the	Analysis	phase,	where	we	discussed	the	impor-

tance	of	watching	users	work,	an	introduction	to	human–	computer	inter-

action,	as	well	as	the	difference	between	a	mental	model	and	a	conceptual	model.	We	also
learned	about	interviews,	contextual	analysis,	and	task

flows,	in	addition	to	understanding	how	to	measure	improvements	to	the

user	experience.

Chapter	5	was	all	about	the	Design	phase:	how	the	brain	and	the	eyes

work	together,	as	well	as	visual	language	and	interaction	patterns.	We	also	learned	a	wide
variety	of	techniques	that	can	be	used	to	address	common

design	problems,	as	well	as	common	interaction	patterns	for	each.

In	Chapter	6,	we	discovered	how	to	choose	the	right	strategy	for	evalu-

ating	our	designs.	We	also	learned	pre-	visualization	techniques	and	heuristic	evaluation.
Finally,	we	learned	how	to	build	and	run	user	tests.

147

148	◾	Conclusion
Chapter	7	brought	us	back	to	the	Analysis	phase	to	compare	our	mea-

surements	and	to	prepare	for	another	cycle	through	the	User-	Centered

Design	process.

Finally,	Chapter	8	walked	us	through	a	day	in	the	life	of	a	tools	development	team	tasked
with	improving	the	user	experience	of	a	tool,	to	give	us	a	better	sense	of	how	it	feels	to
apply	the	User-	Centered	Design	process.

CLOSING	WORD

Culture	Shift

Throughout	this	book,	we	have	used	examples	from	Apple.	This	is	not

because	every	single	one	of	their	products	has	the	best	user	experience—

they	certainly	have	made	some	mistakes	over	the	years—but	their	prod-

ucts	provide	good	examples	that	can	be	used	to	support	the	concepts	and

techniques	presented	in	this	book.	However,	you	might	be	wondering,

what	is	their	secret?	How	do	they	do	it?

One	of	the	misconceptions	about	why	Apple	products	are	so	successful

is	that	they	have	the	best	designers	in	the	world.	While	their	designers	are	certainly	very
good,	that	is	not	the	only	factor	at	play.

An	interview	with	former	Apple	senior	designer	Mark	Kawano	sheds

some	light	on	the	truth:	everyone	at	Apple	works	together	to	improve

the	user	experience.	“It’s	actually	the	engineering	culture,	and	the	way	the	organization	is
structured	to	appreciate	and	support	design.	Everybody

there	is	thinking	about	UX	and	design,	not	just	the	designers.	And	that’s	what	makes
everything	about	the	product	so	much	better	…	much	more

than	any	individual	designer	or	design	team.”*

The	games	industry	needs	to	make	the	user	experience	of	tools	a	prior-

ity.	To	do	that,	we	need	the	User-	Centered	Design	process	to	become	as

common	as	using	Scrum,	profiling	GPU	performance,	and	creating	cut-

scene	storyboards.	When	that	happens,	we	will	start	to	see	the	culture

shift	necessary	to	make	big	improvements.

Where	to	Begin?

Now	that	you	have	read	this	book,	the	first	step	is	to	start	applying	the	User-	Centered
Design	process	to	your	own	tools	development	work.	Once

you	feel	confident	with	the	process	and	you	have	had	success	that	you

can	measure,	the	next	step	is	to	spread	the	word.	Help	people	understand

*	You	can	read	the	full	interview	here:	http://www.fastcodesign.com/	3030923/	4-myths-
about-apple-	design-	from-	an-	ex-	apple-	designer.

Conclusion	◾	149
how	User-	Centered	Design	can	be	integrated	into	the	tools	development

pipeline	at	your	studio,	because	every	studio	is	different.	Tell	your	colleagues	how	you
achieved	your	successes,	and	what	you	learned	from	your

failures.	Everyone	in	the	games	industry	should	be	aware	of	the	incredible	potential	that	is

waiting	to	be	unlocked	by	improving	the	user	experience	of	our	game	development	tools.

There	is	no	right	or	wrong	time	to	start.	Start	small,	and	then	work	your	way	up.	Do	a
heuristic	evaluation	of	that	tool	you	have	been	working	on.

Set	up	a	few	interviews	with	the	stakeholders	and	contextual	analyses	with	the	users	so
you	can	establish	and	track	measurements.	Apply	one	of	the

many	techniques	found	in	the	Design	chapter.

Improving	the	user	experience	is	an	iterative	process,	which	means	you

can	begin	at	any	time	…	and	that	time	might	as	well	be	now!

Are	you	ready?	Three	…	two	…	one	…	go!

Thanks

This	book	was	written,	illustrated,	and	edited	in	airplanes,	trains,	hotel	rooms,	and	cafes,
in	four	cities,	on	two	continents,	on	one	laptop.	It	would	not	have	been	possible	without
the	following	people.

Jim	Brown,	Liam	Grieg,	Tom	Hoferek,	Corey	Johnson,	Thérèse

Migan,	Jason	Parks,	and	Karine	Thériault	for	their	invaluable	feedback.

Dominique	Roussy,	for	giving	me	my	first	job	in	the	games	industry.	My

first	computer	science	teacher,	Susan	Van	Gelder,	for	seeing	my	interest	in	the	fusion	of
programming	and	art,	and	providing	me	with	the	tools	I

needed.	Mike	Acton,	for	his	contributions	to	game	tools	usability,	and	for	providing	the
foreword.	Geoff	Evans,	Jeff	Ward,	Dan	Goodman,	and	all

other	past,	present,	and	future	members	of	the	Toolsmiths	IGDA	SIG,	for

working	to	bring	the	challenges	of	game	tools	development	into	the	spot-

light.	Ubisoft,	for	giving	me	the	opportunity	to	turn	my	passion	for	user	experience	and
content	creation	tools	into	a	career.	Pierre-	Luc	Tremblay,	for	introducing	me	to	The
Inmates	Are	Running	the	Asylum—and	to	Alan	Cooper	for	writing	it.	Rick	Adams,	Maura
Cregan,	Marsha	Pronin,	Amy

Blalock,	Charlotte	Byrnes,	and	everyone	at	CRC	Press	who	helped	to	make

this	book	possible.	Lucy	Suchman,	Jason	Mitchell,	and	Sara	Lott	at	the

Computer	History	Museum	for	providing	a	few	of	the	images	in	this	book.

Sony,	for	making	a	tough	little	laptop	that	accompanied	me	throughout

this	long	journey.	My	big	brother	and	big	sister,	who	prepared	me	for	the	real	world	by
sandwiching	me	in	the	back	seat	of	our	parents’	car.	My	wife	and	children	for	reminding
me	that	there	is	more	to	life	than	just	content	creation	tools	…	which	I	believe,	most	of	the
time.	Thank	you,	Andrea,

Benjamin,	and	Sophie	…	I	love	you!

151

Works	Cited	&

Recommended	Reading

Adlin,	Tamara,	and	John	Pruitt.	The	Essential	Persona	Lifecycle:	Your	Guide	to	Building
and	Using	Personas.	San	Francisco,	CA:	Morgan	Kaufmann,	2010.

Alexander,	Christopher,	Sara	Ishikawa,	and	Murray	Silverstein.	A	Pattern	Language:
Towns,	Buildings,	Construction.	New	York:	Oxford	University	Press,	1977.

Anderson,	Jonathan,	John	McRee,	Robb	Wilson,	et	al.	Effective	UI.	Beijing:	O’Reil	y,
2010.

Buxton,	William.	Sketching	User	Experiences:	Getting	the	Design	Right	and	the	Right
Design.	Amsterdam:	Elsevier/Morgan	Kaufmann,	2007.

Cooper,	Alan.	The	Inmates	Are	Running	the	Asylum.	Indianapolis,	IN:	Sams,	1999.

Cooper,	Alan,	Robert	Reimann,	and	Dave	Cronin.	About	Face	3:	The	Essentials	of
Interaction	Design.	3rd	ed.	Indianapolis,	IN:	Wiley	Pub.,	2007.

Gamma,	Erich,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides.	Design	Patterns:
Elements	of	Reusable	Object-Oriented	Software.	Upper	Saddle	River,	NJ:	Addison-
Wesley,	1995.

Gladwel	,	Malcolm.	David	and	Goliath:	Underdogs,	Misfits,	and	the	Art	of	Battling
Giants.	New	York:	Little	Brown	&	Company,	2013.

Gothelf,	Jeff,	and	Josh	Seiden.	Lean	UX:	Applying	Lean	Principles	to	Improve	User
Experience.	Sebastopol,	CA:	O’Reil	y	Media,	2013.

Hawkins,	Jeff,	and	Sandra	Blakeslee.	On	Intel	igence.	New	York:	Times	Books,	2004.

Hiltzik,	Michael	A.	Dealers	of	Lightning:	Xerox	PARC	and	the	Dawn	of	the	Computer
Age.	New	York:	HarperBusiness,	1999.

Johnson,	Jeff.	Designing	with	the	Mind	in	Mind:	Simple	Guide	to	Understanding	User
Interface	Design	Rules.	Amsterdam:	Morgan	Kaufmann	Publishers/

Elsevier,	2010.

Krug,	Steve.	Don’t	Make	Me	Think!:	A	Common	Sense	Approach	to	Web	Usability.

2nd	ed.	Berkeley,	CA:	New	Riders	Pub.,	2006.

McConnel	,	Steve.	Code	Complete:	A	Practical	Handbook	of	Software	Construction.

2nd	ed.	Redmond,	WA:	Microsoft	Press,	2004.

Myers,	Brad	A.	“The	Importance	of	Percent-	Done	Progress	Indicators	for

Computer–	Human	Interfaces.”	ACM	SIGCHI	Bul	etin	16,	no.	4	(1985):	11–17.

153

154	◾	Works	Cited	&	Recommended	Reading

Nielsen,	Jakob.	“First	Rule	of	Usability?	Don’t	Listen	to	Users.”	Nielsen	Norman	Group.
http://www.nngroup.com/articles/first-	rule-	of-	usability-	dont-	listen-to-	users/	(accessed

July	15,	2014).

Nielsen,	Jakob.	“Why	You	Only	Need	to	Test	with	5	Users.”	Nielsen	Norman	Group.
http://www.nngroup.com/articles/why-	you-	only-	need-	to-	test-	with-5-users	(accessed
July	15,	2014).

Nielsen,	Jakob.	“Response	Time	Limits.”	Nielsen	Norman	Group.	http://www.

nngroup.com/articles/response-	times-3-important-	limits/	(accessed	July	15,	2014).

Nielsen,	Jakob.	Usability	Engineering.	Boston:	Academic	Press,	1993.

Norman,	Donald	A.	The	Design	of	Everyday	Things.	New	York:	Basic	Books,	1988.

Portigal,	Steve.	Interviewing	Users:	How	to	Uncover	Compel	ing	Insights.	Brooklyn,	NY:
Rosenfeld	Media,	2013.

Saffer,	Dan.	Designing	for	Interaction:	Creating	Innovative	Applications	and	Devices.

2nd	ed.	Berkeley,	CA:	New	Riders,	2010.

Sanders,	Elizabeth	B.-N.	“Converging	Perspectives:	Product	Development	Research	for
the	1990s.”	Design	Management	Journal	(Former	Series)	3,	no.	4	(1992):	49–54.

Suchman,	Lucille	Alice.	Human–	Machine	Reconfigurations:	Plans	and	Situated	Actions.
2nd	ed.	Cambridge:	Cambridge	University	Press,	2007.

Sy,	Desiree.	“Adapting	Usability	Investigations	for	Agile	User-Centered	Design.”

Journal	of	Usability	Studies	2,	no.	3	(May	2007),	112–132.	(Available	at
http://uxpajournal.org/wp-content/uploads/pdf/agile-ucd.pdf.)

Vlaskovits,	Patrick.	“Henry	Ford,	Innovation,	and	That	‘Faster	Horse’	Quote.”

Harvard	Business	Review.	http://blogs.hbr.org/2011/08/henry-	ford-	never-said-	the-	fast/
(accessed	July	15,	2014).

Weinschenk,	Susan.	100	Things	Every	Designer	Needs	to	Know	about	People.

Berkeley,	CA:	New	Riders,	2011.

Wilson,	Mark.	“4	Myths	about	Apple	Design,	from	an	Ex-	Apple	Designer.”	Co.

Design.	http://www.fastcodesign.com/3030923/4-myths-	about-	apple-	design-from-	an-
ex-	apple-	designer	(accessed	July	15,	2014).

TOOLS	&	GUIDELINES

Microsoft	Windows	User	Experience	Guidelines:	http://msdn.microsoft.com/

library/windows/desktop/dn688964.aspx

Apple	OSX	User	Experience	Guidelines:	https://developer.apple.com/library/mac/

documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/

Intro.html

W3C	standards	for	contrast:	http://www.w3.org/TR/UNDERSTANDING-	WCAG20/

visual-	audio-	contrast-	contrast.html

Human	Factors	International	ROI	Calculators:	http://humanfactors.com/coolstuff/

roi.asp

Measuring	Usability	article	on	the	SUS	(System	Usability	Scale):	http://www.

measuringusability.com/sus.php

Jakob	Nielsen’s	10	Usability	Heuristics:	http://www.	nngroup.com/	articles/	ten-usability-
heuristics/

Trademarks

Adobe•,	the	Adobe•	logo,	Adobe•	Audition•,	Adobe•	Photoshop•,

Adobe•	Premiere	Pro•,	and	Adobe•	Illustrator•	are	either	registered

trademarks	or	trademarks	of	Adobe	Systems	Incorporated	in	the	United

States	and/	or	other	countries.

Autodesk•,	the	Autodesk•	logo,	Autodesk•	Maya•,	Autodesk•

Combustion•,	and	Autodesk•	3ds	max•	are	registered	trademarks	or

trademarks	of	Autodesk,	Inc.,	and/	or	its	subsidiaries	and/	or	affiliates	in	the	United	States
and/	or	other	countries.

The	Unity•	name,	logo,	brand,	and	other	trademarks	or	images	featured

or	referred	to	within	this	book	are	licensed	from	and	are	the	sole	property	of	Unity
Technologies.	Neither	this	book,	its	author,	nor	the	publisher	is	affiliated	with,	endorsed
by,	or	sponsored	by	Unity	Technologies	or	any	of	its	affiliates.

Microsoft•,	the	Microsoft•	logo,	Office•,	Word•,	Excel•,	PowerPoint•,

Visual	Studio•,	Halo•,	Expression	Blend•,	and	Windows•	are	either	reg-

istered	trademarks	or	trademarks	of	Microsoft	Corporation	in	the	United

States	and/	or	other	countries.

Apple•,	the	Apple•	logo,	GarageBand•,	Mac•,	Xcode•,	iTunes•,	iPhone•,

iPod•,	iOS•,	and	OSX•	are	trademarks	of	Apple,	Inc.,	registered	in	the

United	States	and	other	countries.

NVIDIA•,	the	NVIDIA•	logo,	NVIDIA•	Texture	Tools,	and	the

NVIDIA•	Normal	Map	filter	are	trademarks	and/	or	registered	trade-

marks	of	NVIDIA	Corporation	in	the	United	States	and	other	countries.

Audacity•	software	is	copyright	(c)	1999-2014	Audacity	Team.	The	name

Audacity•	is	a	registered	trademark	of	Dominic	Mazzoni.

155

156	◾	Trademarks

Balsamiq•	is	a	registered	trademark	of	Giacomo	Guilizzoni,	licensed	to

Balsamiq	SRL	and	Balsamiq	Studios,	LLC,	used	with	permission.

StarCraft•	and	Blizzard	Entertainment•	are	trademarks	or	registered	trademarks	of
Blizzard	Entertainment,	Inc.,	in	the	United	States	and/	or	other	countries.

Qt	is	a	registered	trademark	of	Digia	Plc	and/	or	its	subsidiaries.

Xerox•,	the	Xerox•	logo,	and	the	Xerox•	8200	are	registered	trademarks

of	Xerox	Corporation	in	the	United	States	and/	or	other	countries.

iRiver,	the	iRiver	logo,	and	the	iRiver	H300	are	registered	trademarks	of	iRiver	Limited	in
the	Republic	of	Korea	and/	or	other	countries.

Epic,	Epic	Games,	and	the	Epic	Games	logo	are	trademarks	or	registered

trademarks	of	Epic	Games,	Inc.,	in	the	United	States	and	elsewhere.

Amazon,	Kindle,	Storyteller,	and	Mechanical	Turk	are	trademarks	of

Amazon.com,	Inc.,	or	its	affiliates.

Sony,	the	Sony	logo,	PlayStation,	Vaio,	Emotion	Engine,	and	Cell

Broadband	Engine	are	trademarks	or	registered	trademarks	of	Sony

Computer	Entertainment,	Inc.,	in	the	United	States,	other	countries,	or

both	and	is	used	under	license	therefrom.

Pixar	is	a	registered	trademark	of	Pixar	Animation	Studios.

Logitech	is	a	registered	trademark	of	Logitech	International	in	the	United	States	and	other
countries.

Valve,	the	Valve	logo,	and	Team	Fortress	2	are	trademarks	and/	or	regis-

tered	trademarks	of	Valve	Corporation.

Mad	Catz	and	the	Mad	Catz	logo	are	trademarks	or	registered	trademarks

of	Mad	Catz	Interactive,	Inc.,	its	subsidiaries	and	affiliates.

“Minicons	Free	Vector	Icons	Pack”	by	Webalys	(http:/	www.webalys.com/

minicons)	used	under	CC	BY	3.0	license	(http:/	creativecommons.org/

licenses/by/3.0/).

L

COMPUTER	GAME	DEVELOPMENT	/	DESIGN

IGHTBOWN

Designing	the	User	Experience	of	Game

Development	Tools

“David	is	guided	by	his	belief	that	he	can	contribute	to	raising	the	bar	for	all	of	us:	that
we	can	all	speak	the	same	language,	understand	the	same	concepts,	and	use	the	same
techniques,	so	that	we	can	all	make	better	games.	What	you	are	reading	now	is	the	result
of	David	Lightbown’s	first	big	mission	on	that	very	long	quest.”

DESI

Designing

—Mike	Acton,	Engine	Director,	Insomniac	Games

“User	experience	is	the	preeminent	design	challenge	of	our	time	and	David	has	GNIN

captured	and	refined	these	concepts	to	help	us	produce	beautifully	designed	workflows
that	are	a	pleasure	to	use.	His	acclaimed	lectures,	now	demonstrated	and	elaborated	in
this	book,	are	brilliant	and	very	appropriate	to	our	industry.”

G	THE	U

the	User

—Jason	Parks,	Owner,	Continuity	AI;	Former	Technical	Artist	for	SCEA,	THQ,	and
Volition

SER

“David	Lightbown’s	book	shines	a	light	on	a	dark	corner	of	the	games,	but	it’s	a	corner	on
the	path	we	take	every	day	in	game	development.	All	developers	owe	EX

it	to	their	future	selves	to	learn	to	apply	the	process	presented	in	this	book	to	PER

IEN

Experience

their	tools.”

—Corey	Johnson,	Unity	Technologies

C

“If	you	build	games	tools	and	are	not	familiar	with	user-centered	design,	then	E	O

you	should	read	this	book.	…	provides	a	comprehensive	introduction	to	F

user-centered	design	with	easy-to-understand	explanations	and	plenty	of	GAME

of	Game

real-world	examples	that	demonstrate	the	principles	and	best	practices	you	need	to	know
to	start	building	better	tools	today.”

D

—Tom	Hoferek,	Principal	User	Experience	Designer,	Autodesk	EVEL

Designing	the	User	Experience	of	Game	Development	Tools	explains

OPMEN

Development

how	to	improve	the	user	experience	of	game	development	tools.	The	first	part	of	the	book
details	the	logic	behind	why	the	user	experience	of	game	tools	must	be	improved.	The
second	part	introduces	the	concept	of	user-centered	design,	T

a	process	that	revolves	around	understanding	people’s	goals,	watching	them	TO

work,	learning	the	context	in	which	they	work,	and	understanding	how

OLS

Tools

they	think.

Ideal	for	anyone	who	makes,	uses,	or	benefits	from	game	development	tools,	the	book
presents	complex	concepts	in	a	manner	that	is	accessible	to	those	new	to	user	experience
design.

K23310

ISBN:	978-1-4822-4019-1

90000

D	A	V	I	D	L	I	G	H	T	B	O	W	N

9	781482	240191

Document	Outline
Front	Cover
Contents
Praise	for	Designing	the	User	Experience	of	Game	Development	Tools
Foreword
Introduction
About	the	Author
Chapter	1:	Welcome	to	Designing	the	User	Experience	of	Game	Development	Tools
Chapter	2:	The	User-Centered	Design	Process
Chapter	3:	What	Does	It	Mean	to	Be	“User-Centered”?
Chapter	4:	Analysis
Chapter	5:	Design
Chapter	6:	Evaluation
Chapter	7:	Back	to	Analysis
Chapter	8:	Real-World	User-Centered	Design
Conclusion
Thanks
Works	Cited	&	Recommended	Reading
Trademarks
Back	Cover

	Front Cover
	Contents
	Praise for Designing the User Experience of Game Development Tools
	Foreword
	Introduction
	About the Author
	Chapter 1: Welcome to Designing the User Experience of Game Development Tools
	Chapter 2: The User-­Centered Design Process
	Chapter 3: What Does It Mean to Be “User-­Centered”?
	Chapter 4: Analysis
	Chapter 5: Design
	Chapter 6: Evaluation
	Chapter 7: Back to Analysis
	Chapter 8: Real-­World User-­Centered Design
	Conclusion
	Thanks
	Works Cited & Recommended Reading
	Trademarks
	Back Cover

