—_— I
| CRC P |

Designing
the USEr

Experience
of GAME |
Development il
Tools <

DAVID LIGHTBOWN

http://www.allitebooks.org

C;c C R{_: Press

—

L

COMPUTER GAME DEVELOPMENT / DESIGN
IGHTBOWN

Designing the User Experience of Game
Development Tools

“David is guided by his belief that he can contribute to raising the bar for all of us: that
we can all speak the same language, understand the same concepts, and use the same
techniques, so that we can all make better games. What you are reading now is the result
of David Lightbown’s first big mission on that very long quest.”

DESI

Ivww.allitebooks.conl

http://www.allitebooks.org

—Mike Acton, Engine Director, Insomniac Games
“User experience is the preeminent design challenge of our time and David has GNIN

captured and refined these concepts to help us produce beautifully designed workflows
that are a pleasure to use. His acclaimed lectures, now demonstrated and elaborated in
this book, are brilliant and very appropriate to our industry.”

G THE U
the User

—Jason Parks, Owner, Continuity Al; Former Technical Artist for SCEA, THQ, and
Volition

SER

“David Lightbown’s book shines a light on a dark corner of the games, but it’s a corner on
the path we take every day in game development. All developers owe EX

it to their future selves to learn to apply the process presented in this book to PER
IEN

Experience

their tools.”

—Corey Johnson, Unity Technologies

C

“If you build games tools and are not familiar with user-centered design, then E O
you should read this book. ... provides a comprehensive introduction to F
user-centered design with easy-to-understand explanations and plenty of GAME
of Game

real-world examples that demonstrate the principles and best practices you need to know
to start building better tools today.”

D

—Tom Hoferek, Principal User Experience Designer, Autodesk EVEL
Designing the User Experience of Game Development Tools explains
OPMEN

Development

how to improve the user experience of game development tools. The first part of the book
details the logic behind why the user experience of game tools must be improved. The
second part introduces the concept of user-centered design, T

a process that revolves around understanding people’s goals, watching them TO

vww allitebooks.cond

http://www.allitebooks.org

OLS
Tools
they think.

Ideal for anyone who makes, uses, or benefits from game development tools, the book
presents complex concepts in a manner that is accessible to those new to user experience
design.

K23310

ISBN: 978-1-4822-4019-1

50000

DAVIDLIGHTBOWN

9 781482 240191

Designing

the User

Experience

of Game

Development

Tools

Designing

the User

Experience

of Game

Development

Tools

DAVIDLIGHTBOWN

Boca Raton London New York

CRC Press is an imprint of the

Taylor & Francis Group, an informa business
CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL. 33487-2742

© 2015 by Taylor & Francis Group, LL.C

vww allitebooks.cond

http://www.allitebooks.org

original U.S. Government works
Version Date: 20140919
International Standard Book Number-13: 978-1-4822-4021-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources.
Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmit-ted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.

com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system
of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

Dedication

When I was young, I tried to convince my parents to buy a video game
console. Instead, they bought a computer.

As aresult, I played video games at my friends’ houses and in arcades.
On days when I wanted to play games at home, my only option was to

try re- creating the games on our computer. To my surprise, I found that I enjoyed creating
games as much as I did playing them. If my parents

had bought a console, I might never have discovered my passion for

vww allitebooks.cond

http://www.allitebooks.org

My parents sacrificed their time and energy (and at times, their sanity) to teach me focus,
patience, and the rewards that come from challenging

yourself. Oh, the fact that they sent me to a great school didn’t hurt either.
They provided me with the tools—intellectual as well as electronic—so

that I could have one of the greatest gifts anyone could ever ask for: a job that I look
forward to every day, where I have the privilege of making tools to help people turn their
ideas into reality.

Thanks, Mom and Dad. I love you!

Contents

Praise for Designing the User Experience of Game
Development Tools, xi

Foreword, xiii

Introduction, xvii

THE BIG GREEN BUTTON xvii

MY STORY xviii

WHO SHOULD READ THIS BOOK? xx

COMPANION WEBSITE AND TWITTER ACCOUNT xxii
BEFORE WE BEGIN ... xxii

About the Author, xxv

Chapter 1 m Welcome to Designing the User Experience

of Game Development Tools

1

WHAT WILL WE LEARN IN THIS CHAPTER? 1

WHAT IS THIS BOOK ABOUT? 1

DEFINING USER EXPERIENCE 2

THE VALUE OF IMPROVING THE USER EXPERIENCE OF
OUR TOOLS 7

PARALLELS BETWEEN USER EXPERIENCE AND GAME
DESIGN 10

HOW DO PEOPLE BENEFIT FROM AN IMPROVED USER
EXPERIENCE? 12

FINDING THE RIGHT BALANCE 13

vww allitebooks.cond

http://www.allitebooks.org

vii

viii B Contents

Chapter 2 m The User- Centered Design Process

15

WHAT WILL WE LEARN IN THIS CHAPTER? 15

WHAT IS THE USER- CENTERED DESIGN PROCESS? 15
THE PHASES OF THE USER- CENTERED DESIGN PROCESS 16
THE POWER OF PRE- VISUALIZATION 19

GETTING TO A BETTER USER EXPERIENCE FASTER 22
INTEGRATING THE USER- CENTERED DESIGN PROCESS
INTO AGILE 24

WHO HAS THE TIME TO DO ALL OF THIS? 25
WRAPPING UP 26

Chapter 3 ®m What Does It Mean to Be “User- Centered”?

27

WHAT WILL WE LEARN IN THIS CHAPTER? 27

START WITH THE USERS 27

FOCUS ON THE RIGHT USERS 30

FEATURES VERSUS GOALS 32

DO ONE THING REALLY WELL 34

CHOOSE THE RIGHT FEATURES 36

WRAPPING UP 38

Chapter 4 m Analysis 39

WHAT WILL WE LEARN IN THIS CHAPTER? 39

THE IMPORTANCE OF WATCHING USERS WORK 39
INTRODUCTION TO HUMAN- COMPUTER INTERACTION 43
UNDERSTANDING THE MENTAL MODEL 54
INTERVIEW STAKEHOLDERS 57

PERFORM CONTEXTUAL ANALYSES 58

CREATE TASK FLOWS 61

DISCOVER THE USERS’ MENTAL MODEL 62

vww allitebooks.cond

http://www.allitebooks.org

ADVANCED TECHNIQUES 67

WRAPPING UP 69

Contents W ix

Chapter 5 m Design 71

WHAT WILL WE LEARN IN THIS CHAPTER? 71
HOW THE BRAIN AND THE EYES WORK TOGETHER 72
VISUAL LANGUAGE 73

INTERACTION PATTERNS 77

HIERARCHY 80

CONSTRAINTS 83

NATURAL MAPPING 85

REPRESENTATION 87

FEEDBACK 91

FEED- FORWARD 95

GROUPING 97

CHUNKING 102

EXCISE 104

PROGRESSIVE DISCLOSURE 112

WRAPPING UP 116

Chapter 6 m Evaluation 117

WHAT WILL WE LEARN IN THIS CHAPTER? 117
HOW DO WE EVALUATE THE DESIGN?

117

CHOOSING BETWEEN CODE OR PRE- VISUALIZATION
117

PRE- VISUALIZE THE INTERFACE

119

PERFORM A HEURISTIC EVALUATION

121

DO USER TESTS

126

vww allitebooks.cond

http://www.allitebooks.org

Chapter 7 m Back to Analysis

131

DEJA VU 131

COMPARING MEASUREMENTS 132

Chapter 8 m Real- World User- Centered Design

135

INTRODUCTION 135

THE PROCESS IN ACTION

136

CALCULATING THE RETURN ON INVESTMENT 144
x W Contents

CONCLUSION, 147

SUMMARY 147

CLOSING WORD 148

THANKS, 151

WORKS CITED & RECOMMENDED READING, 153
TRADEMARKS, 155

Praise for Designing the

User Experience of Game

Development Tools

“As a technical artist, I’ve been espousing the benefits of tools for artists and production

pipelines for more than a decade. But honestly, they’ve been

bare- bones, just- get- the- job- done kind of quality. It’s about time we attach some
professionalism to the design of our tools as well. User experience is the preeminent

design challenge of our time and David has captured and

refined these concepts to help us produce beautifully designed workflows that are a
pleasure to use. His acclaimed lectures, now demonstrated and elaborated in this book, are

brilliant and very appropriate to our industry.

My toolsets going forward are going to incorporate as many of these con-

cepts as I can squeeze into them.”

—Jason Parks

Owner, Continuity Al (former Technical Artist
for SCEA, THQ, and Volition)

vww allitebooks.cond

http://www.allitebooks.org

completely conversational manner that is not only approach-able, but fun and interesting
to read. His examples are worth sharing, and putting them into action has definitely made
me a better designer.”

—Jim Brown

Epic Games

xi

xii W Praise for Designing the User Experience of Game Development Tools

“David Lightbown’s book shines a light on a dark corner of the games, but it’s a corner on
the path we take every day in game development. All developers owe it to their future
selves to learn to apply the process presented in this book to their tools.”

—Corey Johnson
Unity Technologies

“If you build games tools and are not familiar with User- Centered Design, then you
should read this book. David explains why the user experience

of the tools you make is important to your users and how it has a positive impact on your
bottom line. He provides a comprehensive introduction to

User- Centered Design with easy- to- understand explanations and plenty

of real- world examples that demonstrate the principles and best practices you need to
know to start building better tools today.”

—Tom Hoferek

Principal User Experience Designer, Autodesk

“Through honest insight and real- world pragmatism, David has provided
a wonderful entry point to the practice of User- Centered Design while
highlighting its practical application to game development tools. David

not only delivers the concepts and techniques that can be used to improve the user
experience of game development tools, he also outlines—in clear and measurable terms—
the return on investment for doing so. A must

read for anyone who’s serious about improving the efficiency, creativity, and productivity
of the content creators on their team.”

—Liam Grieg

Senior UX Designer, Atlassian

“All too often, in- house software tools are neglected children, with baffling interfaces and
steep learning curves, which translates into countless hours of lost productivity. In this
easy- to- read, comprehensive guide, David Lightbown applies classic principles of User-

Centered Design to the tool-building process, so that developers can help users unlock the
power of

vww allitebooks.cond

http://www.allitebooks.org

their applications, and help stakeholders manage and measure their suc-
cess. A must- read, even if you’re not in the games industry.”

—AJ Kandy

Co- Founder/ Director of Design, Peterson/ Kandy

Foreword

David and I first met just after the Game Developers Conference in 2012.
The interface designer on my team had just given a presentation on our
experience and approach to usability for our internal development tools.

I think what sparked that first conversation was David’s initial surprise that there was
someone else, anyone else, out there in our space that really did care about these issues.
Game development, especially in the console space that I’'m most familiar with, is often
very player- focused. We want to do what makes for the best player experience. As an
industry and a culture we have a very long, fruitful history in that area. Much more rarely
do we take that same expertise and focus it inward. How do we take the lessons of games
and apply them to making games?

Over the last ten years or so, there has though been a growing real-
ization among developers, especially on larger teams, that the cost and

complexity of making games is itself inhibiting our collective ability to develop the best
experience for the player. In just the previous generation of AAA game development it
was quite clear to everyone that these

secondary knock- on effects were actually not just significant, but possibly the most
significant predictor of quality. The phrase “iteration time” was heard everywhere. We had
collectively realized that in making games, like most creative endeavors, you get it wrong
the first time. And the second time. And the third. But you learn something important in
each iteration and the more iterations you can do, the better at it you become. This is no
surprise to anyone on an individual scale. The real change was that no one could escape
this universal truth any longer. Brute force works well to a point and that point has passed.

Many different “solutions” to that problem have appeared since then.

In particular, it’s hard not to recognize the introduction of Agile methodologies in
particular into the game industry as a process response to

this very problem—as much as its adherents will insist it’s not a process.
xiii

xiv B Foreword

While these methods from other industries brought along with them a lot

of baggage of dubious value, they did help to crystalize one important idea into
development culture: you cannot know everything in advance. This

is not to say you cannot know anything in advance, which in my experi-

ence is clearly what some Agile adherents have chosen to believe—and is

clearly stupid. But the very idea that you cannot plan for everything in a creative project,
not just that you should not, was both compelling and

self- evident in retrospect. We had never been able to plan everything. We just pretended
we could.

Then in the last five years or so, everywhere things were happening at
about the same time, which would help mature the concept of “iteration”

into one of “usability.” People were no longer asking whether they should iterate more but
rather how to make those iterations more valuable.

Usability as a discipline and usability research outside the game industry (as well as
within the game industry, but still largely focused on the player experience) had helped to
define what we meant by iteration. How does one improve or increase iterations not just
by making long processes shorter, but by making things better or differently altogether?
Where does a user and her expectations fit into all of this? The discipline of usability
research was growing all around us to answer these kinds of questions. In particular, the
meteoric rise of webapps and mobile development (games or

otherwise) and the unprecedented success of the iPhone in particular

brought usability design into the limelight. And then came Gamification: the much
maligned, and in my view, both largely misunderstood and

completely misapplied, idea that you could take the lessons learned from games and apply
them to other things. Like making games.

It was as both David and I were preparing for GDC 2013 that I think
we found where all of this would lead us. I was preparing my presentation

“Usability Is Not Random” based on my theory that usability could be for-malized in
terms of information and information theory. We can describe

our interactions with our tools as a form of communication, which we
could measure and analyze. I could use this model to help improve and
guide my approach to developing tools with my team, in my day job as
engine director at Insomniac Games.

David, however, was driven by something even larger. That same year,

we were both part of a Google Hangout panel together. We discussed what
drove us and what was most important to us. It became clear that what
David wanted was not just to figure out how much he could improve the

usability of a specific tool or set of development tools or even for a specific Foreword m
XV

team, but that he wanted to improve usability everywhere in our industry.

David is guided by his belief that he can contribute to raising the bar for all of us: that we
can all speak the same language, understand the same concepts, and use the same
techniques, so that we can all make better games.

What you are reading now is the result of David Lightbown’s first big

mission on that very long quest. The rest is a co- op campaign, and he has brought along
these weapons to get us started.

Mike Acton

Engine Director

Insomniac Games

June 20, 2014

Introduction

Even though they had been trying for over an hour, the two men could

not get the machine to perform its greatest trick: print a double- sided page. They were
almost ready to give up. “We’re S.0O.L.,” one of them

said, finally. Fortunately, the interaction analyst was watching, and she got it all on
videotape.

THE BIG GREEN BUTTON

In 1983, Xerox introduced their most technologically advanced pho-
tocopier, the Xerox 8200. It had many innovative features for the time:
double- sided printing and automatically collating pages, to name a few.
However, customer service representatives started reporting that cus-
tomers complained the machine was “too complicated.” Ironically, Xerox
advertised the machine as being simple to use—“All you have to do is
push the green button.”

Xerox was also one of the first companies to hire social anthropologists and psychologists
to help with product development. This is how—a few

years before the Xerox 8200 was introduced—a doctoral student with a
background in interaction analysis started working at Xerox. Her name

was Lucy Suchman.

When the Xerox executives learned what customers were saying about

the machine, Lucy was asked to help figure out why. She requested that

one of the machines be installed at the Palo Alto Research Center so she could watch
people using it.*

Two of the participants were specifically chosen by Lucy from the inter-

nal staff. She put them in front of the machine, in a room equipped with

* The Xerox Palo Alto Research Center, more commonly known as Xerox PARC, would
play a huge role in driving the field of human— computer interaction forward. Michael A.
Hiltzik’s Dealers of Lightning offers a fantastic history of Xerox PARC, the people
involved in its rise and fall, and all of the companies that they would go on to influence,
including Adobe, Microsoft, Pixar, and Apple.

Xvii
xviii B Introduction
a microphone and a camera, and gave them a series of tasks to perform.

One of these tasks was to test a major selling point of the machine: duplex print, or
printing double- sided.

After an hour and a half of filling up the room with paper from failed
attempts, the two men concluded that they could not figure it out. One
of them expressed their frustration with a quote captured on the now-
famous video recording: “We’re S.O.L.”

The video was presented to the Xerox executive as part of Lucy’s report.

After watching the video, one of the executives exclaimed that the reason the two men
could not figure out how to print double- sided was that they are not smart enough. “You
must have got these guys off the loading dock!”

That’s when Lucy revealed that the two men she had chosen were actu-
ally two of the most gifted computer scientists working at Xerox: Ron
Kaplan, a brilliant computational linguist, and Allen Newel, one of the
founding fathers of artificial intelligence.

This was one of the first documented accounts of applying user research
to improve an office productivity tool.* It would be many years before
these techniques would be applied to tools development in the video
games industry.

MY STORY

License to Compute

When I was a teenager, one of my first full- time jobs was working technical support for
an Internet service provider. In the early days of the Internet, everyone who worked in
technical support could do a bit of UNIX shell

scripting and knew how to configure TCP/ IP for every imaginable operat-
ing system.

All day long, we would answer calls from people who did not know as

much about computers as we did, and we found it frustrating. To blow off steam, we
would make fun of the customers when we got off the phone.

One of the more infamous stories was that of a customer who was wor-

ried that they had “deleted the Internet,” because they had accidentally dragged the
Internet Explorer icon into the trash. After getting off a particularly difficult call, I
remember saying to my colleagues that people should have to pass an exam to use a
computer.

* The full version of this story can be found in Lucy Suchman’s book Human— Machine
Reconfigurations.

Introduction W xix

I realize now what a foolish statement that was. The problem is not the
user. It is the user experience.

My Best and Worst Days in Game Development

Years later, I was fortunate enough to get my first job in the games industry. In that time, I
have held a variety of roles, such as modeler, technical artist, and technical director.

Some of my best days working as a technical director were when I would

watch how a change to a tool or pipeline could make an artist, animator, or level designer
more productive. It always made me feel good when they would say, “That tool you
worked on really saved me a lot of time, and I was able to focus on creating!” Nothing
makes me happier than enabling

content creators to do what they do best.
By contrast, some of my worst days were when I would walk by some-
one’s desk and watch them jump through multiple frustrating and ineffi-

cient hoops, just to make a tiny bit of progress. Even if they didn’t get much done, at least
they could feel that they accomplished something.

Seeing content creators limited in their ability to express themselves for reasons beyond
their control is extremely frustrating to watch.

At that time, I had a limited set of options at my disposal, such as writing scripts to
accelerate productivity, mentoring and coaching, trying to find ways to streamline the
pipeline, and so on. However, I always felt that there was more that I could do to improve
the tools. Without a doubt, my experience in the games industry gave me an advantage
when it came to

tools development, but no one can get it right every time. I needed to find a more
consistent and measurable way.

This desire to help the content creators—whose work I admired so much—
led me down a path that would change my career in the games industry.

Discovering the Inmates

One of my work colleagues at the time, who knew that I was looking for
ways to make content creators more productive, handed me a copy of

The Inmates Are Running the Asylum. This book—written by Alan Cooper, the creator of
Visual Basic—had been circulating in web and desktop software development studios but
had not yet made its way into game devel-

opment. When I read it, I was amazed at how perfectly it captured the

software development culture that I had been a part of across many different game
development teams.

xx B Introduction

This book also introduced me to the field of user experience design.
From the first day that I started working in game development, I had
thoughts and opinions on how to design game development tools that

would make the users more productive, but I was never able to pinpoint a system or
methodology to do it consistently. This book opened the door to a world that I never even
knew existed.

After finishing that book, I started to seek out any other books on user experience design
that I could get my hands on: Don Norman’s The Design of Everyday Things, Steve
Krug’s Don’t Make Me Think! , Dan Saffer’s Designing for Interaction, and Jeff Gothelf’s
Lean UX, to name just a few.

It wasn’t long before I came to the realization that the concepts pre-
sented in these books had never been formally applied to tools develop-
ment in the games industry. The untapped potential for improvement
was huge.

The Main Message

I created a presentation about the impact that these concepts could have on tools
development in the games industry, and I started showing it

around to various game development studios. That presentation was

essentially my job interview. This resulted in a full- time position focusing on improving
the user experience of game development pipelines and

tools at Ubisoft Montreal.

I would go on to give that presentation at least a dozen more times,
most notably at the Montreal International Game Summit (MIGS) and
the Game Developers Conference (GDC), where the feedback from the

attendees put it among the most highly rated presentations of both conferences. A featured
article on Gamasutra followed.

No long after, I was approached to turn the presentation into a book,

which you now hold in your hands. The main message of the presentation
and of this book remains the same: the games industry needs to make the
user experience of tools a priority.

WHO SHOULD READ THIS BOOK?

This book is for anyone who makes, uses, or benefits from game develop-

ment tools. However, anyone involved in the production of video games in general should
be aware of the message in this book, because it is my belief that investing in better tools
can help us make better games.

Introduction ®m xxi
The People Who Make the Tools, or “Developers”
Some tools developers have a reputation for not caring about the user

experience of game development tools. This is largely unfair: most tools developers want
to improve the user experience but are not given the time, lack the techniques, or do not
know where to begin. This books aims to

address those issues and empower tools developers to make positive steps toward
improving the user experience of their tools.

Technical directors and technical artists are often in one of the best

positions to initiate change, since they act as a bridge between the users and the
developers. Many of them are also tools developers in their own

right. This book will give them the knowledge to make the most of that
position and improve the process with which our tools are developed.
The People Who Use the Tools, or “Users”

The term content creators is sometimes used to describe anyone who uses the tools to
create content that will appear in the game, though most

people simply know them as “the users.” This can include modelers, ani-

mators, level designers, game designers, audio engineers, special effects artists, and so on.
This book can help them improve communication with

those responsible for making the tools and assist in identifying common
issues, as well as proposing how they can be improved.

The People Who Benefit from the Tools, or “Stakeholders”

The people who benefit from the content produced by the tools are some-

times called stakeholders. These people may never use or even see the tools we that
discuss in this book. Despite this, they can be the most important players, since they—
sometimes indirectly—mandate the creation of the

tools. Creative directors, producers, and managers are a few examples of people who
belong to this group. As they are responsible for setting the requirements for the game and

providing the resources to create it, it is of the utmost importance that they understand that
improving the user

experience can reduce risk, as well as save time and money.
A Note for User Experience Designers
If you are a user experience designer coming from another industry, you

will be familiar with many of the concepts in this book. You will notice that some
concepts and techniques have been simplified in an effort to be easier to understand for
people new to user experience design.

xxii W Introduction
However, this book also includes a lot of information specific to game
tools development. The games industry faces unique challenges in regard

to improving the user experience of their tools. It is those chal enges that make the work
even more interesting for user experience designers: there is a lot of work to do but also a
ton of untapped potential, waiting to

be unlocked.
It Can Take Years to Become an Expert in User Experience

Although this book strives to be as thorough as possible at presenting ways in which the
user experience can be improved, it cannot turn you into a

user experience expert overnight. If your goal is to become an expert, it will take time and
dedication—and by reading this book, you are taking

your first big step.
For the Gamers

When I visit my local game store, I make a point of listening to people in the store talk
about games. It reminds me that the content we create with our tools is ultimately for the
gamers. Hearing people get excited about upcoming games and talking about their
experiences can remind us why

we love making games in the first place.

COMPANION WEBSITE AND TWITTER ACCOUNT

Although the content of this book is static, there are a few resources
available to make it dynamic and interactive. The companion website,
www.UXofGameTools.com, contains the latest information and revisions

for this book, as well as contact information. You can also follow the offi-cial Twitter
account @UXofGameTools to see the latest updates and read a curated list of articles
related to user experience.

Your questions and comments are all welcome, so please feel free to

contact me via e-mail at UXofGameTools@gmail.com or through the

Twitter account.
BEFORE WE BEGIN ...
The concepts and techniques in this book reflect my approach to improv-

ing the user experience of game development tools, and it is by no means the only way.
Just as I have borrowed ideas on user experience design from other sources and tailored
them to fit game tools development, you should take what works best for you and your

situation.

Introduction W xxiii
In addition, this is not an academic text, so some concepts have been

simplified for those who are learning about user experience for the first time. Wherever
possible, I have added resources in the footnotes for people who want more details.

Some of the ideas in this book may be very new and different if you have been developing
game tools for a long time. Keep in mind that the goal is not to completely change the way
we work, but to enhance it. The material presented here is to complement our existing
skills, in an effort to make us better game developers.

At the end of the day, as long as the users, stakeholders, and developers work together to
make better tools, there is no right or wrong way.

Now, let’s jump in!
About the Author
After spending most of his formative years in his parents’ basement try-

ing to clone 8-bit console games on an Apple IIgs, David Lightbown got a job in the
games industry. Since then, he has dedicated the majority of his career to working on
content creation tools and pipelines.

In addition to contributing to a variety of games as a technical director, David has
delivered presentations at the Game Developers Conference,

Montreal International Game Summit, and SIGGRAPH, in various cities
within Canada, the United States, and Europe.
He has also collaborated with Autodesk to create product reviews,

training manuals, tutorial videos, and masterclasses. In 2010, he received the Autodesk
Master Award for his contributions to the 3D community.

The award also included a sweet leather jacket.

David current holds the title of technical director at Ubisoft Montreal.
XXV

Chapterl

Welcome to Designing

the User Experience of

WHAT WILL WE LEARN IN THIS CHAPTER?

* What is this book about?

* What is a user experience?

» What is the value of improving the user experience?

* What are the parallels between user experience and games
development?

* How do people benefit from improving the user experience?

» What happens when the needs of one group are prioritized over
another?

WHAT IS THIS BOOK ABOUT?

The goal of this book is to present concepts and techniques that can be

used to improve the user experience of game development tools. This book focuses on
User- Centered Design, a process that revolves around understanding people’s goals,
watching them work, learning the context in

which they work, and understanding how they think. We will learn how
each phase of the process can contribute to improving the user experience.
1

2 m Designing the User Experience of Game Development Tools

Finally, we will see how this process can be applied to a real- world game development
tool.

Before we learn about how to improve the user experience, it would be
reasonable to begin by describing the term user experience.
DEFINING USER EXPERIENCE

If you do a web search or read books about user experience design, you

will notice that there are many different ways to describe what a user experience is. One
popular description comes from Elizabeth Sanders, who

suggests that tools need to be “useful, usable, and desirable.”* How are these three
objectives prioritized?

The User Experience Pyramid
You may have heard about Maslow’s hierarchy of human needs, which is
often depicted as a pyramid. Essentially, it states that physiological needs—

such as food and shelter—must be fulfilled before more complex needs are met—such as
creativity and confidence (see the left side of Figure 1.1).F

vww allitebooks.cond

http://www.allitebooks.org

The same goes for the user experience. The basic needs and expecta-

tions of a person using a tool must be met before considering functionality that is more
advanced. In this case, a tool should be useful before it can be usable, and a tool should be
usable before making it desirable (see the right side of Figure 1.1).

In other words, a tool may have a nice- looking user interface (desirable), but if it is
difficult to use (not usable) and does not fulfill the user’s needs (not useful), it can result in
a bad user experience.

Self-actualization
Desirable

Esteem
Love/Belonging
Usable

Safety
Physiological
Useful

FIGURE 1.1 Maslow’s hierarchy of human needs (left). The user experience pyramid
(right).
* This was originally proposed in an article for the Design Management Journal, entitled

“Converging Perspectives.” It can be found here: http://onlinelibrary.wiley.com/
doi/10.1111/j.1948-7169.1992.

tb00604.x/ abstract.

T You can read more about Maslow’s hierarchy of human needs here: http://en.wikipedia.
org/ wiki/ Maslow’s_hierarchy_of_needs.

Welcome to Designing the User Experience of Game Development Tools & 3
Unfortunately, some game development tools only provide the base

level of the pyramid: they are useful. That also means that they are neither usable nor
desirable. In the case of in- house tools, people use them because they have no other
choice. To learn how we can make tools that

people want to use, we can start by understanding the three levels.
Useful

At the core of a good user experience is something that fulfills a need.
If a game development tool does not fulfill a need, why does it exist
in the first place? Ideally, these needs should come from the users and
the stakeholders.

To explain this further, we will use the analogy of a vehicle. As this is a book about game

development tools, we will use a Warthog from the

Halo franchise. A Warthog fulfills a Spartan’s need to get from point A to point B in a
short amount of time. It is faster—and in the case of enemy fire, often safer—than
running. If we were to design a Warthog that simply fulfilled the need to get from point A
to point B, it might resemble a frame with wheels, a turret, and an engine (see Figure 1.2).

How do we make a tool that is considered useful? We start by identify-

ing the right people to design for and the context in which they work and by understanding
their goals. We will talk more about this in Chapters 3

and 4.
This Warthog gets us from point A to point B, but it has a major issue:

we are sitting on a metal platform with wheels. We have no protection, we are not
comfortable, and it is not easy to use: the only way to drive is to reach our hands into the
engine and connect the wires. There is no visible way to control the turret. Surely, there
must be a better way! That brings us to the next level in the pyramid: making tools that are
more usable.

Useful

FIGURE 1.2 A user experience that is useful.

4 m Designing the User Experience of Game Development Tools
Usable

FIGURE 1.3 A user experience that is usable.

Usable

Much like user experience, there are many definitions of usability. The

vast majority of these definitions include questions such as “How efficient is it to use?”,
“How easy is it to learn?”, “How well is the user protected from making mistakes?”, and
“How satisfying is it to use?” There are many ways to measure improvements to usability,
but in this book, we will focus on two: efficiency and learnability.

To continue with our example of the Warthog, what would be the defi-
nition of making it more usable? We could add pedals and a seat that is

adjustable so the driver can sit comfortably and reach the pedals with their feet. This
would make it convenient to accelerate and decelerate, without having to reach into the
engine and connect any wires. To make it easier to learn how to drive and shoot the turret,
we could add standard controls that any Spartan who has received basic training is
familiar with: a pistol grip and a steering wheel (see Figure 1.3).

How do we improve usability? There are a variety of techniques, based on human factors,
interaction design, cognitive psychology, and information architecture—just to name a
few—that we will learn about in Chapter 5.

What else could be done to improve our Warthog? This question brings

us to the third level of the pyramid: desirability. This is often dismissed as simply making
the interface look “cool,” but there is much more to it than that.

Desirable

Desirability is often the last step that we consider when designing game development
tools. Typically, the perception is that desirability is not important or does not contribute
enough to the user experience to make

it worth the cost.
However, the fact is that a tool with an aesthetic and appealing design

not only contributes to user satisfaction, but it also confirms to the user Welcome to
Designing the User Experience of Game Development Tools B 5

Desirable
FIGURE 1.4 A user experience that is desirable.

that the designers have taken the time to create a high- quality, professional tool. This
gives the user more confidence in the abilities of the tool.

Let’s return to our example of the Warthog. Features like tinted win-
dows, shining chrome, and a new paint job may seem unnecessary, but

consider this: if the windows are cracked, the labels on the controls are peeling off, and the
body is covered in rust and falling apart, how confident would you be that this Warthog
will protect you in battle? You might ask yourself, “What else is wrong with the vehicle
that I can’t see? Is this going to keep me safe on the battlefield?” (see Figure 1.4).

Usability and desirability are often intertwined. We will see this when

we learn about the design techniques of hierarchy in Chapter 5, or heuristics such as
aesthetic and minimalist design in Chapter 6.

Missing Levels
Now, imagine if the Warthog was missing only the “usable” level of the

pyramid. It has wheels, an engine, and an armored shell, but you have to crouch down
inside and fiddle with the wires to control the engine and

steer. Furthermore, you would be sitting on a metal plate instead of in a seat, without a
seatbelt. It might look nice, but it would not be very safe or convenient (see the left side of
Figure 1.5).

Alternatively, you could have a Warthog that is missing just the “useful”

level: it has a nice seat with a seatbelt, a steering wheel, pedals, and an armored shell, but
it has no engine or wheels. It may look great and have all of the controls you need on the
inside, but it is not going to get you from point A to point B, which is why you wanted to
use it in the first place (see the right side of Figure 1.5).

FIGURE 1.5 User experiences that are neither usable (left) nor useful (right).

6 m Designing the User Experience of Game Development Tools

Being “More Human”

Definitions from Cooper and Norman

Another common description of a good user experience is software that
resembles an interaction with a human and not a machine.

In The Inmates Are Running the Asylum, Alan Cooper proposes that we should be
“purposefully designing our software- based products to be

more human and forgiving.” An example of this would be a good friend,
who would do the following:

* Remember what you like

* Do their best to help you

* Clearly explain themselves

* Take responsibility

* Be forgiving if something goes wrong

* Be flexible when trying to assist you

The artificial intelligence Cortana from the Halo series and the virtual assistant Siri from
Apple are good examples of machines that appear to

possess these qualities.
What is the opposite of that? A frustrating person. Don Norman

echoes this in his book The Design of Everyday Things with examples on how to make
something difficult to use on purpose: “Be inconsistent,” “Be impolite.” Everyone has had
to deal with someone like this in their life at one point or another. A frustrating person
does the following:

* Forgets what you like

» Will not help you

* Does not communicate clearly

* Does not take responsibility

* Is not forgiving if something goes wrong
* Is not flexible in helping you

The evil artificial intelligence SHODAN from System Shock would be an extreme
example of this, or even GLaDOS from the game Portal.

How many tools can you think of that resemble a good friend? Now,
how many can you think of that resemble a frustrating person?
Welcome to Designing the User Experience of Game Development Tools m 7

Comparing the User Experience of Normal Mapping Tools

CrazyBump (Figure 1.6) is an excellent example of a content creation tool that feels “more
human.” It uses simple language that a human might use

(“Intensity” and “Very Large Detail”). It communicates clearly by using

previews to show you what will happen if you choose a specific option. It tries to help you
by choosing the best option automatically. This makes the tool less intimidating and
encourages users to make it part of their pipeline. Most importantly, it also means people
are more likely to recommend it to their friends and coworkers.

Another example of this is the Unity engine: when you assign a texture

that has characteristics of a normal map but you forget to flag it as such, the engine
automatically detects this and offers to flag it as a normal map.

This is a great example of software acting like a good friend by doing its best to help you
(see the left side of Figure 1.7, at the bottom).

We can compare this to the NVIDIA Normal Map Filter on the right

side of Figure 1.7. It resembles an interaction with a frustrating person. It is unclear what
the options do, just like someone who does not communicate clearly, the 3D View forgets
the last angle that you set it to after you close and reopen the window, and so on.

THE VALUE OF IMPROVING THE USER EXPERIENCE
OF OUR TOOLS

In 2010, Jim Brown of Epic Games presented a talk at the Game Developers Conference
titled “Tools: Making a Better Game.” In this presentation,

he stated that even a small increase in efficiency could result in a significant savings of
time and money, when you look at the big picture. Some

improvements may not seem like a lot on their own, but they can add up
to hundreds of thousands of dollars and many man- months if you design
it for the right people.

To illustrate this, let us assume that we take the time to improve the efficiency of a tool
and make it easier to learn. Those improvements result in a savings of 20 minutes per 8-
hour day. This may not seem like a lot on its own. However, we have to consider how
many people are using that tool,

and how often. If that tool is used by 20 users per 8-hour day, 20 minutes per day can save
the following:

* 7 hours per day
* 32 hours per week

* 1,800 hours per year

e | gans bkl - aaed guitymans [g

L]

8 m Designing the User Experience of Game Development Tools

lark.
yan C
face. © R

nterp i

razyBume CTh

6
E 1.RU
FIG

scund dgisH
lenned] edglét (3
A agemvi 0
snokmvmol slanmlld,
BOA bassidl &
befl (3

e (3

=il O

(B maM 3

eapgnoiol
oo aglsamM (O

irigisH o fevvnod ()
ey Pasvenl sl

Welcome to Designing the User Experience of Game Development Tools B 9

IAIDV
eN

left). Th

ap (

al m

orm

0 a n right).
ial t

ater learly (

noilesndl vigiaH
sigmez b @ syl =&
ExE
=0 v [T

2xd 3
SeT O Kl [T
¥ el [

Exe D
viPwd 3 Shenld [

pa skead o SnM

amaig0 v OC
&= subenT leosdd
swites T lea] sl 7]

lea] nedelgh [
g siasrand [¥]

weaivand cameim]

e larmaM o digisH bt [T
newe] aigiluM prizld [
8aA qew2 [

tam

onver unicated ¢
ocm

asy t om
teotc

ren

aking i hat a
y m

ou b ptions t
elpyfo

o h ber o

est t um
tsbing n
oes i helmwvernspector dn o
nity [as a

e UTh ilter h
7

ap F
E1.RalM
U

orm

FIG

N

10 m Designing the User Experience of Game Development Tools Now, when budgeting
the staff for a game development team, you also

have to consider salary, floor space, equipment, software, and many other details. As of
this writing, the typical cost per man- month on the East Coast of North America is about
$10,000. This means that if we save 20

users 20 minutes per day, after a year we can save the following:

* 100 man- months

* $100,000

If we invest $40,000 to make these changes, the return on investment

is $60,000. In the second year, if the improvements are still saving us

20 minutes per day, we get a full $100,000. Over three years, if 20 users are still saving 20
minutes per 8-hour day, the total return on investment is $260,000. All for an initial
$40,000 investment.

There will always be a difference between these predictions and the

actual results. However, even if the real numbers are half of what we predicted, we still
come out ahead in the end. The bottom line is that investing in the user experience of our
tools has the potential to save us time and money.

PARALLELS BETWEEN USER EXPERIENCE AND GAME DESIGN
Some people may be surprised to learn that there are many similari-
ties between the techniques used to make games and those used in user

experience design. We are very fortunate that this is the case, because it can make the
adoption of these techniques for game development tools

less intimidating compared to other industries, such as banking, sales,
or manufacturing.
Personas and Characters

In Chapter 4, you will learn about personas: profiles of people that represent the average
user. In situations where there are a large number of users for a given tool, these can be
very useful for making design decisions and giving everyone a shared vision of who will
use the tools.

Though some people find the concept of using archetypes of people to

help us make design decisions strange, think about this: we create characters in our games
and consider how they think and what their goals are when

Welcome to Designing the User Experience of Game Development Tools m 11
writing their dialogue, creating the environments they live in, and so on.

This has worked well for the creation of our games, so why not our tools?
Scenario Storyboards and Cinematic Storyboards

When creating game development tools, we often fixate on features without knowing how
and when those features will be used. Scenario storyboards

help to remind us of the context in which a tool is used. This can be an extremely
important and powerful concept in user experience design. We

will learn more about this in Chapter 4.

While it may seem odd to some people that we would create something
like this for game development tools, keep in mind that we use story-
boards for cinematics and complex gameplay moments too. We use them

to plan and estimate risk, as opposed to going straight into implementing everything at full
quality, which can be expensive and risky. There is no reason our tools cannot benefit

from this technique as well.
Pre- Visualization and Gameplay Videos

Pre- visualizations, which we will learn more about in Chapter 6, come in all shapes and
sizes with various levels of quality: sketches, paper prototypes, interactive prototypes, and
so on. Regardless of the form, the goal is the same: simulate the user experience so we can
get feedback from the user early, to ensure we are going in the right direction. All too
often, the first time the user has a sense of how a tool works is when it is already done,
and that is often one of the main reasons why a tool can have a bad user experience.

By comparison, gameplay videos have a similar goal: creating a video that simulates what
the gameplay looks like in an effort to get feedback early.

It may even be semi- interactive: there can be several small videos used as

“branch- points” to show the outcome of different situations. As with pre-visualization, the
visual fidelity of this video can vary, but the purpose remains the same: find out if we are
going in the right direction. If we do this for our gameplay, why would we not apply the
same concept to our tools?

Analytics and Metrics
Analytics may be more familiar to web and mobile app developers, but

they can benefit game tools developers as well. Capturing statistics—such as who is using
certain features, when they use them, and how often—can

12 m Designing the User Experience of Game Development Tools be an incredibly
powerful technique for improving the user experience of your tool.

As we will discuss in Chapter 4, analytics are useful when you have
a very large number of users and need help determining where to start.

However, the results of analytics should not be the only source of information used to
make design decisions. They should be used as a starting

point before meeting your users face- to- face. Nothing helps you to understand how
people use the tools like watching them work.

When a game is not running at the desired frame- rate, game developers

capture metrics for the processor, graphics, and memory and then analyze them to identify
what needs to be optimized. If you have done this before, you may be familiar with the
tools provided by Microsoft and Sony, or the profiler tools in Unity, just to name a few. As
with analytics, metrics can be a starting point as well. If a specific effect is causing the
frame- rate to slow down, it does not necessarily mean that we cut it immediately. We

prioritize based on how slow it is, take a closer look at why, and then see how it can be
optimized.

If this technique is useful for figuring out what to optimize, we can
certainly benefit from analytics to help us improve the user experience of our tools.
HOW DO PEOPLE BENEFIT FROM AN IMPROVED

Users

If 20 users save 100 man- months, that theoretically translates to an extra five months per
person. Think about how much more polish one person

could do in five months. In addition, saving time can help with something else that is all
too common in game development: overtime. It would be

great if saving time resulted in users being able to work five days a week and go home
before 6:00 to have time to themselves, or to see their family, while still being able to
deliver a game with a high level of quality.

Stakeholders
For the people who mandate the tools, improving the user experience to

save time and money is a business decision. If we can create content for our games more
efficiently, and ramp up new team members faster, then

we can allocate resources more effectively to make a better game.
Welcome to Designing the User Experience of Game Development Tools m 13
In addition, the process presented in this book can give everyone a bet-

ter vision of who is using the tools, and what is going to be built before we build it. This
helps to reduce risk, giving stakeholders the ability to make better decisions.

Developers
For developers, there are multiple benefits. One of the most important

benefits is not so much about improving the user experience, but the tools development
process itself. In this book, we will learn about understanding what the users need,
applying guidelines, and getting a clearer picture of what the tool will be before writing a
single line of code. All of these concepts and techniques help to streamline the tools
development process.

Finally, tools that work well survive the test of time. If a tool is inefficient or difficult to
learn, people will want to replace it at the first opportunity. A good user experience will
help to ensure that the tools we have worked so hard to create are used to make great
games for years to come.

FINDING THE RIGHT BALANCE

As we discussed in the introduction, tools are mandated, created, and
used by different groups of people who all have various needs. However,
what happens when the needs of one group are prioritized over the needs
of the others?

If the needs of the developers are prioritized, the tool could lose focus on achieving the
goals of the business (important to the stakeholders) and could be difficult to use for
creating game content (important to the users).

vww allitebooks.cond

http://www.allitebooks.org

If the needs of the users are prioritized, the limitations of the technology may not be
respected (important to the developers) and resources

could be spent on features that are not important to creating the main
content for the game (important to the stakeholders).

If the needs of the stakeholders are prioritized, the time to create a software architecture
that is easy to maintain could be limited (important

to the developers) and the tool could be unstable and frustrating to use (important to the
users).

For a tool to be truly successful, the needs of developers, stakehold-
ers, and users must all be equally balanced (see the extreme right side
of Figure 1.8). One of the best ways to do this is by applying the User-
Centered Design process, which is covered in the next chapter.

14 m Designing the User Experience of Game Development Tools FIGURE 1.8 Finding
the right balance between the needs of the users, stakeholders, and developers.

WRAPPING UP
In this chapter, we reviewed a few common definitions of “user experi-
ence,” and we learned the value of improving the user experience. We

also learned about the parallels between user experience design and game development,
and we discussed how different groups of people can benefit from improving the user
experience, as well as what happens when the

needs of one of those groups is prioritized over another.

In the next chapter, we will learn about the User- Centered Design pro-
cess, which is at the heart of improving the user experience of game development tools.
Chapter?2

The User- Centered

Design Process

WHAT WILL WE LEARN IN THIS CHAPTER?

* What is the User- Centered Design process?

* How can User- Centered Design help us to achieve a better user expe-
rience faster?

* How can pre- visualization be used to improve the user experience?

* How can we integrate the User- Centered Design process into

Agile (Scrum)?

* How do we deal with a lack of time to implement the User- Centered

Design process?
WHAT IS THE USER- CENTERED DESIGN PROCESS?
The User- Centered Design process is one of the most widely used

approaches to user experience design. It has been applied in a variety of different
industries for many years. The majority of this book is focused on guiding you through
each step in the process and, along the way, presenting concepts and techniques that can
be used to improve the user experi-

ence of game development tools.

The most important concept to understand about the User- Centered
Design process is that it is not a magic solution. There is no “secret sauce”
that will provide immediate results, and it is not a “shiny coat of paint”

15

16 m Designing the User Experience of Game Development Tools FIGURE 2.1 Iterative
improvements to the iPod Classic scroll-wheel across several generations.

that can be applied at the end of development. It is an iterative process.

Comparing the first few generations of the scroll- wheel on the Apple iPod (see Figure
2.1) reminds us that even very popular products take time and sometimes several iterations
to get it right ... and even then, they can

always be improved.
By applying the User- Centered Design process, we accept that we may

not get it right the first time. However, with each quick iteration, we will analyze the tool
to find problems, make improvements to the design, and

evaluate it with the users to confirm that we are going in the right direction.
THE PHASES OF THE USER- CENTERED DESIGN PROCESS

“It is a shift in attitude from designing for users to one of designing with users.”
ELIZABETH SANDERS (EMPHASIS ADDED)

User- Centered Design is an iterative process that revolves around the

users. Therefore, it should come as no surprise that the users are at the center of the
process (see Figure 2.2). Everything that we do is done out of consideration for the users.

FIGURE 2.2 Each phase of the User-Centered Design process revolves around the users.
The User- Centered Design Process m 17

There are many different versions of this process used in user experi-

ence design, such as the ISO 9241-210 ISO standard for human— computer

interaction.* We will use a simple and straightforward process for the purposes of this
book, made up of the following phases: Analysis, Design,

and Evaluation.
Analysis
This phase, which is covered in Chapter 4, is all about examining how

people use the tools. We will learn the importance of watching users work, as opposed to
relying only on focus groups, surveys, or simply asking the users to tell us how they think
that they work. We will also learn how the brain processes actions and mental loads,
which will help us find ways to make the tools better for the users.

Through a variety of techniques, we will learn how to observe and

interpret the way in which people use the tools. We are not looking for

solutions at this time; we are only focusing on identifying problems (see Figure 2.3).
Design

There is an old saying in the field of user experience: “Design without constraints is just
art.” One of the most important outputs of the Analysis phase is to provide us with those
constraints, so that we can use them to choose what to improve during the Design phase.
In this phase, beginning in Chapter 5, we will learn a number of concepts and techniques
that we

can use to improve the design (see Figure 2.4).
FIGURE 2.3 The Analysis phase of the User-Centered Design process.

* For more on the ISO 9241-210 standard, visit the website http://www.iso.org/ iso/
catalogue_detail.

htm?csnumber=52075.

18 m Designing the User Experience of Game Development Tools FIGURE 2.4 The
Design phase of the User-Centered Design process.

Evaluation
Finally, we can move on to the Evaluation phase, which is covered in

Chapter 6. Here, we will learn what a heuristic evaluation is. We will also learn how to
build a test plan, which will allow us to determine if the

changes to the design are improving the user experience. We will also
determine when it is appropriate to go straight to code or to use pre-
visualization techniques such as sketching and prototypes (see Figure 2.5).
Back to Analysis

Finally, we start over again at the Analysis phase. Remember, the goal

is quick and constant iteration. We can—and most likely will—move
back and forth around the loop. It is quite common to move between the

Analysis and Design phases a few times before going on to the Evaluation phase. There is
no wrong way so long as we are constantly iterating and

improving based on regular feedback from the users (see Figure 2.6).
FIGURE 2.5 The Evaluation phase of the User-Centered Design process.
The User- Centered Design Process | 19

FIGURE 2.6 Returning back to the Analysis phase.

THE POWER OF PRE- VISUALIZATION

One of the most powerful aspects of the User- Centered Design process is pre-
visualization, which allows us to learn more about the user experience before we write any
code. This helps to ensure that the time spent developing the tools is as efficient as
possible.

The decision to invest in these pre- visualization techniques depends

on a variety of factors: how complex the change is, the programming

resources that are available at the time, and so on. We will discuss this in Chapter 6.
Jeff’s Block of Wood

In the mid-1990s, electronic pocket organizers were gaining in popularity.

These devices were portable computers designed to replace your address

book, calendar, and notepad. The problem was that most of their features were badly
implemented, and some were too big to deserve the term “pocket.”

Jeff Hawkins was one of the founding members of Palm, and he decided
to change that. He and his team started working on a pocket- sized per-
sonal organizer that had a limited feature set. Through observation and

analysis, Hawkins identified a small set of features that he felt most people wanted a
pocket organizer to do really well.

Getting the right size and form factor for a device that fits in your pocket is not easy.
When it comes to hardware, you cannot make a change after

a device comes off the assembly line. Getting it wrong can be disastrous.
Palm did not have unlimited resources to fabricate prototypes.
One day Jeff came in to work with a wood block small enough to be held

in one hand. In a meeting, he took out the wood block out and started tapping on it. The
next day, he came in with another wood block that was a

S r—

Fr
e e = -

20 m Designing the User Experience of Game Development Tools FIGURE 2.7 A
prototype of the first Palm Pilot, created by Jeff Hawkins. © Mark Richards. Courtesy of
the Computer History Museum.

slightly different size. Approaching a group of people having a discussion, he took out the
wood block and pretended to enter someone’s information

into an address book. The day after that, he came in with a slightly smaller, but thicker
wood block. After making plans to meet someone, he took out

the wood block and pretended to enter a new meeting in his calendar (see Figure 2.7).
Had he lost his mind? No, quite the opposite.* Jeff was working on find-

ing the right size and form factor early on in the process, in an inexpensive and fast way.
Instead of going straight to manufacturing with a design that was untested, he found a way
to try out different options in situations similar to those where the real device would be
used. Over time, he iterated on the wood blocks to create prototypes that were increasingly
sophisticated, complete with an interface printed on paper and a stylus made from a
chopstick. When he had arrived at a form factor that felt right, he was able to use the
prototypes to help people understand his vision. All of this work contributed to the release
of the first Palm Pilot, a device that would

* In fact, Jeff Hawkins knows a thing or two about the mind. In addition to being a
brilliant innova-tor, Jeff also has a deep understanding of the brain. In 2004, he wrote a
book about how we think, titled On Intel igence. Knowing how the brain works is useful
information when you are designing for people.

The User- Centered Design Process m 21

outsell the competition, spawn a long list of imitators, and ultimately have a huge impact
on the world of portable electronics.

The important lesson that we can learn from this is that when resources

are not available or are too expensive, pre- visualization techniques are one way to allow
everyone to have a shared vision of what the tool will be,

and understand how it will be used in context, before you start investing resources in
development.

Getting the Design Right and the Right Design

When creating a feature for a tool, it is often considered prohibitive to build a few
alternatives in an effort to pick the best option. However, the long- term cost of getting the
feature wrong can be much higher than taking the time to create a few alternatives! Bill
Buxton summarizes this perfectly in the subtitle of his book Sketching User Experiences:
“Getting the Design Right and the Right Design.” It is one thing to get the design right,
but make sure you are doing the right design in the first place.

While it is true that Jeff’s wood blocks did not have the functionality

of a real Palm Pilot, it was enough to help him fail early and often in a quick and
inexpensive way. Once he had learned all that he could from

that prototype, he was able to share it with other people and move on to more
sophisticated prototypes. Pre- visualization can help us do the same for our game
development tools.

Having the Same Vision

If you have worked in game development long enough, you may be famil-
iar with this situation: developers and users are gathered in a meeting
room, discussing how a tool will work. Users talk about what they need,
and developers ask questions. When everyone agrees on what to do, an

e- mail is sent out with bullet- points that summarize the decisions. The developers make
changes to the tool, and a few days later, the users get their hands on it. The first reaction
from the users is, “This isn’t what we asked for!” Frustrated, the developers reply, “It is!

It’s written right here in the e- mail!” When the stakeholders find out about the situation,
they say,

“Why are the users unable to produce the content we need for the game?
Why are the developers saying they need more time to make changes to

the tool?” If we do not visualize what we intend to build, there will always be room for
interpretation and misunderstanding.

For example, consider the word Letters (left side of Figure 2.8). If you were to close your
eyes and visualize what that word means to you,

22 m Designing the User Experience of Game Development Tools Letters
FIGURE 2.8 Without visualization, a word can be interpreted in different ways.
what would you see? A stack of paper letters in envelopes or letters of

the alphabet?

When it comes to a topic as complex as the user experience of a game

development tool, we need to visualize the meaning of our words. If we do not, there is a
good chance that we are not talking about the same thing.

GETTING TO A BETTER USER EXPERIENCE FASTER
Starting Closer

If we could track the development of a tool on a linear time graph, it might look
something like the left side of Figure 2.9. The bottom represents time, and the left side
represents the target zone for a user experience that is optimally usable, useful, and
desirable. Our goal is to hit that zone as closely as possible.*

When we do not design for the right users or fully understand their

goals, we start far away from the target zone (represented by the triangle on the right side
of Figure 2.9).

012345678
012345678

FIGURE 2.9 Starting far from the target zone increases the time it takes to achieve an
improved user experience.

* The book Effective UI by Anderson, McRee, Wilson, et al. uses a very similar graph to
compare the slow iteration of the waterfall process versus the fast iteration of Agile.

The User- Centered Design Process m 23
012345678
012345678

FIGURE 2.10 Starting closer to the target zone means that it takes less time to achieve an
improved user experience, even if you take into account the time spent in the User-
Centered Design process.

However, if we invest in the Analysis phase of the User- Centered Design process, we
start closer. This means that hitting the target zone takes less time (represented by the
circle on the left side of Figure 2.10). Even if we start a little bit later because we have
chosen to invest time in the Analysis phase, we will still have a better chance of hitting
our target zone faster (see the right side of Figure 2.10) because we know what we are
building and who we are building it for.

Small, Frequent Iterations

When we do not get feedback from the users on a regular basis, every iteration can result
in big, time- consuming changes. Each version attempts to realign the tool to address what
the users need, and the degree of success can vary wildly (see the left side of Figure 2.11).

By comparison, the User- Centered Design process emphasizes short,
frequent repetitions of the iteration loop: analyze the situation, designone 012345678
012345678

FIGURE 2.11 More frequent iterations allow developers to adapt the user experience
faster, and with more confidence.

24 m Designing the User Experience of Game Development Tools or more focused
improvements, and then evaluate the impact on the user

experience. Validating the tool with the users on a regular basis makes for smaller, more
concentrated adjustments (see the right side of Figure 2.11).

This helps to achieve the goal of an ideal user experience more quickly
and efficiently.

INTEGRATING THE USER- CENTERED

DESIGN PROCESS INTO AGILE

Emphasizing short, rapid iterations will feel familiar to those who work with the Scrum
framework of the Agile software development process.

However, despite the similarities between Agile and the User- Centered
Design process, it may not be immediately apparent how to integrate
the two.

Before Joining the Sprint

At the beginning of the project, it is normal to spend a bit of time gathering information
about who the stakeholders and users are before going

through the phases of Analysis, Design, and Evaluation.* A frequent reaction to this is,
“What do the developers do while that is happening?” The fact is that there will always be
programming tasks that can be done during this time, such as work on the back- end,
technical investigations, or other things that will not affect the user interface.

Linking to the Sprint
One of the advantages of going through each phase of the User- Centered

Design process within a single sprint is that it forces small change and rapid iteration.
Here is how each of the phases can be integrated.

Iteration Loop

Once you have a plan, you can set deadlines for the Analysis, Design, and Evaluation
phases within the sprint. For example, if the sprint lasts two or three weeks—a common
length for many teams—you can set a deadline

to complete the Analysis phase before the first third, the Design phase

before the second third, and finally, the Evaluation phase before the end of the sprint (see
Figure 2.12).

* In their article “Adapting Usability Investigations for Agile User- Centered Design” for
the Journal of Usability Studies, authors Desiree Sy and Lynn Miller call this “Cycle 0.”
You can read it here: http://www.upassoc.org/ upa_publications/ jus/2007may/ agile-
ucd.pdf.

The User- Centered Design Process ® 25

A

B

FIGURE 2.12 Integrating the User-Centered Design process within a single sprint.
A

B

C

FIGURE 2.13 Integrating the User-Centered Design process across several sprints.
More Complex Designs

In the case of bigger, more complex features that take more than a week

to design, there are other approaches to integrating the iteration loop into the sprint.
One approach is to prepare designs one sprint in advance, and dedicate

an entire sprint to implementation. For example, consider Figure 2.13,

which shows three consecutive sprints. During sprint B, developers are
implementing the changes from the previous Design phase. Meanwhile,

the people in charge of the User- Centered Design process do the Evaluation phase on the
latest build of the tool from sprint A. Then, they look at the results in the Analysis phase.
Finally, changes are proposed in the Design phase and delivered right before the start of
sprint C, and then the cycle shifts ahead by one sprint.

WHO HAS THE TIME TO DO ALL OF THIS?

This process might seem like a lot of work. For many, this is a big shift away from how
tools development is traditionally done. However, if we

agree that the way we have been working in the past has resulted in tools with a bad user
experience, perhaps it is time to try something different.

Working differently will require a culture shift, which we will discuss in the final chapter.
In a perfect world, there would be one person in each tools team driv-

ing the User- Centered Design process. However, when that is not pos-

sible, the team must work together and take it upon themselves to apply

26 m Designing the User Experience of Game Development Tools these concepts in an
effort to show that improving the user experience is a worthy investment.

If you studied object- oriented programming in school, you probably

started by creating class diagrams. If you studied 3D modeling, you probably started by
using a front and side reference drawing. After a few years of programming, you no longer
needed to create a class diagram for every single class, and you no longer needed front and
side references to create every single model. They were useful tools in the early days, but

aplslyinzg the concepts and techhiques without needin;g a guide.
That is how you can apply the User- Centered Design process presented

in this book. Start by using it as a guide. Once you have applied the principles long
enough, it will naturally become part of your development

process. That is when you will begin to see big improvements to the user experience of
your tools.

WRAPPING UP
In this chapter, we learned about the User- Centered Design process and

how it can help us achieve a better user experience. We also learned how pre- visualization
can be used in certain situations to help us improve our design and allow everyone
involved to have the same vision of what we are going to build. Finally, we discussed how
the User- Centered Design process can be integrated into Agile and how to justify the time
and resources.

In the next chapter, we will learn what it means to be “User- Centered,”
which is one of the most important aspects of improving the user experi-
ence of game development tools.

Chapter3

What Does It Mean to Be

“User- Centered”?

WHAT WILL WE LEARN IN THIS CHAPTER?

 The importance of starting with the users

* How to focus on the right users

* Understanding the difference between features and goals

* Doing one thing really well

* Why it is important to choose the right features

START WITH THE USERS

“You’ve got to start with the customer experience and work back
toward the technology—not the other way around.”

—STEVE JOBS

That statement, made in 1996 by the late CEO of Apple while he

was hosting an open question- and- answer session,* would define a
new direction for the company. It would also take their shares from the

rock bottom price of four dol ars to over 600 dol ars in a little over a decade.

vww allitebooks.cond

http://www.allitebooks.org

* The full video can be seen here: “Steve Jobs on Apple Customer Experience and
Innovation,”

https://www.youtube.com/ watch?v=1SIeTmORIOE.
27

28 m Designing the User Experience of Game Development Tools Google clearly seems
to share this mindset. On the corporate section of

their webpage that lists their philosophies, one reads “Focus on the user and all else will
follow.”* That mentality has also helped take them from a small start- up to the world
leader in search.

We Are Not the Users

If you are involved in the creation of game development tools, take a minute to ask
yourself these questions:

* Who are the people using the tools to produce final content for

the game?

* Who uses the tools all day (and even late into the night)?

* Whose job depends on how well they can use the tools?

If you are referring to software used to program game development tools
(such as Microsoft Visual Studio, Eclipse, and Apple Xcode) or design
the interfaces for game development tools (such as Adobe Photoshop,
Microsoft Expression Blend, and Qt Designer), then the answer is you.
However, if you are talking about anything else, then there is only one
answer: the users!

One of the biggest mistakes that we make as game tools developers is
creating tools without first understanding the people who use them. We
can assume that we know the goals of the users and the context in which
they use the tools. Some of us may not see this as a problem because we
have worked this way for years.T Changing this view is one of the first
steps on the road to improving the user experience of our game develop-
ment tools.

We need to accept that we do not always know the answers to these
questions. Furthermore, we need to make it part of our job to find out—

even if we have many years of experience in the industry, even if we have previously
worked in the same position, or even if we have a good relationship with someone who
does now. Our opinion, or that of one or two

expert users, does not represent the reality of everyone using the tools to produce the
majority of the game’s content.

* This comes from the Google company philosophy page, “Ten Things We Know to Be
True,” http://

www.google.ca/ about/ company/ philosophy/.

T Including myself!

What Does It Mean to Be “User- Centered”? m 29

When we learn about the users, we must also share what we have

learned with everyone involved in the development of the tool. If everyone shares the
same vision of whom a tool is being developed for, they are better prepared to work as a
team to build a great user experience.

What Happens When We Do Not Know
Whom We Are Designing For?
When we do not know whom a tool is for, we end up creating a tool for

everyone. There is an old saying about that: “When you try to please everyone, you please
no one.”

What does that mean in the context of game development tools?
Consider the following scenario: Three people are working together to

create a game development tool. Based on their own experiences, each one has a different
view of who uses the tool, what they need, and how they use it. They do not have a shared
vision of whom they are building for. They combine their ideas together into one big list
of features.

The first person adds a few initial features (left side of Figure 3.1). Then, the second
person adds a few more features, because they have a different view of what the users
need (middle of Figure 3.1). Finally, the third person adds more features as well, based on
their view of what the users need (right side of Figure 3.1).

Once you see this, you begin to understand why some users say that

their game development tools are overly complicated and difficult to learn!
Documentation Is Not the Magic Solution

It might seem logical to expect users to read the documentation before

saying that tool is hard to understand. That would be true, if the documentation is up to
date, or if it even exists. When it does exist, how many people actually read it end to end?
Often it is the technical directors, technical artists, and tools developers who act as the
documentation. They are also a FIGURE 3.1 Trying to create an interface to “please
everyone” usually results in an interface that will “please no one.”

30 m Designing the User Experience of Game Development Tools single point of failure
(What if they are run over by a Warthog tomorrow?).

In addition, if there are people constantly asking them questions about
how to use the tools, they have less time to solve other big problems.
A user manual is important and should be created and maintained if

the resources are available, but we also need to do our best to create tools where the basic
functionality is easy to learn without requiring the user to read a manual.

Stop the Culture of “RTFM”

On the topic of manuals, one of the biggest challenges to improving the
user experience of game development tools is the culture of “RTFM”:
blaming the user when they do something wrong. Content creators are

good at creating content. That is already a very big responsibility and can take years of
hard work! Not only is it unrealistic for us to expect the users to understand everything
technical related to game development, it can

also be seen as hostile. This hurts communication and teamwork. Instead

of blaming the users or expecting them to become something that they are not, we need to
start understanding them.

FOCUS ON THE RIGHT USERS
As we learned earlier, when we try to please everyone, we please no one.

However, the opposite can also be true: it can be problematic to design for only one or two
people.*

In the case of a tool that is made to be used by a lot of users with minimal technical
knowledge, designing for one or two people who are highly

technical and do not use the tools very often can make this situation worse.

For example, consider that all of the users of a tool are spread among the following two
axes: technical knowledge and frequency of use (see the left side of Figure 3.2). If we only
talk to the users in the upper left who are more technical and do not use the tool very often
(for example, to set up a pipeline or train a new user), we are missing the opinions of a
large percentage of the user base.

The key is to work with enough users so we know the majority of the

users’ needs (highlighted area on the right of Figure 3.2) and to work with users who
represent the mix of people using the tool (highlighted area on the left of Figure 3.2), so
we are not trying to please everyone at once.

* Malcolm Gladwell discusses this effect, known as the inverted U- curve, in his book
David & Goliath: Underdogs, Misfits, and the Art of Battling Giants.

What Does It Mean to Be “User- Centered”? m 31
More technical
More

tiveness

Less

More

ec

frequent

frequent

Eff sLes

Variety of users

Less technical

FIGURE 3.2 Focusing on the right users: finding the right balance.
Minimal Investment for Maximum Results

Earlier, we spoke about the benefits of saving 20 minutes per 8-hour day for 20 users. Let
us imagine that instead we found a way to save 30 minutes a day. This sounds like a great
improvement. However, the impact changes if that savings is only for five users, instead
of 20. Alternatively, imagine if those users actually use the tool only two hours per day,
instead of all eight hours per day. To make matters worse, if our savings of 30 minutes
comes from the implementation of a complex new feature that only five people

use, we have also spent a lot of time and money on development. This is a lose/ lose
scenario (see the left side of Figure 3.3).

We can also imagine another scenario where we save time for 50 users.

This sounds like we are helping a large number of people! However, because we tried to
please everyone, we spent a lot of time implementing too many features and did not have
the time to optimize them. As a result, we only save each user one minute per day. Even
though it seems that we are making things better, we are saving less overall (see the
middle of Figure 3.3).

Spent
Saved

FIGURE 3.3 How focusing on the right users can maximize the improvement to the user
experience, for a minimal investment.

32 m Designing the User Experience of Game Development Tools Instead, we need to find
the people who are using the tools for the most number of hours in the day and focus on
delivering a focused feature set that satisfies their needs (see the right side of Figure 3.3).
This will give us the maximum results for the minimum investment.

We’re Not Going to Make Everyone Happy
It is important to keep in mind that we are not going to make everyone

happy. We have to look at the big picture. We are going to make the most frequent users
more productive. That will result in the biggest impact on the user experience overall.

FEATURES VERSUS GOALS
If you have worked in a game tools development team, at some point you
have heard someone say, “Why don’t the users know what they want? Why

can’t they just tell us?” In addition, you may be familiar with the perception that when a
user is asked if they want a feature, nine times out of ten they will say yes, regardless of
the priority or usefulness.

Both of these situations highlight the problems that occur when we

focus on features instead of user goals. One important point that we need to understand is
this: it is not the user’s job to design the user interface.

However, it is their job to be able to tell us what their goals are!
Swiss Army Knife Compared to Scissors

To understand this better, let us consider two common tools: a Swiss army knife and pair
of scissors (see Figure 3.4).

The Swiss army knife is a great invention. Hidden inside the average

Swiss army knife is a multitude of tools, from simple cutting blades to
FIGURE 3.4 Features versus goals: comparing a Swiss army knife to scissors.
What Does It Mean to Be “User- Centered”? m 33

corkscrews, mini- scissors, toothpicks, bottle openers, and more. Swiss

army knives do a lot of great stuff. There are two trade- offs, though: First, because they
do such a great variety of things, they are not necessarily very good at any one thing in

particular. Second, if you have never used a Swiss army knife before, it is not immediately
clear how it works at first glance, or the variety of tools contained within.

Now, let us compare that to a pair of scissors. Scissors do one thing really well: they cut
paper! However, they are not good at much else. If we needed to open a bottle, and all we
had was a pair of scissors, we would be out of luck. However, for cutting paper, scissors
are hard to beat. Unlike the Swiss army knife, however, they are much more intuitive: The
two holes suggest where we should place our fingers. They can only move in one axis.
They do not hide their functionality. They are never in a specific “mode.”

Understand What the User Is Trying to Accomplish

How does this relate to features versus goals? The truth is that many of our tools resemble
the Swiss army knife: they do many things, but they tend

to do those things moderately well from the user’s perspective. It is also not clear what
they do just by looking at them. This is because we pack

them with features without always understanding what the majority of
the users’ goals are.

If the user’s goal is to cut a piece of paper in half, and we give them the option of either a
Swiss army knife or a pair of scissors, the scissors would be the clear choice. This
illustrates the importance of understanding the user’s goals. Before we start adding
features, we need to understand what the user is trying to accomplish. By knowing this,
we can design the right tool for the task.

A Faster Horse
When asked about the invention of the automobile, it is widely believed

that Henry Ford said, “If I had asked people what they wanted, they would have said faster
horses!” This quote is often used to suggest that you cannot create innovative products if
you ask the users or stakeholders what they want.

As it turns out, Henry Ford never actually said that.* However, he did
say this: “If there is any one secret of success, it lies in the ability to get the

* No references to this quote can be found in books, in web searches, and even from the
historians at the Ford Museum: http://blogs.hbr.org/2011/08/henry- ford- never- said- the-
fast/.

34 m Designing the User Experience of Game Development Tools other person’s point of
view and see things from that person’s angle as well as from your own.”

Learning about people and their goals is not the same thing as letting

them design the features. If you understand what people need, you are in a much better
position to propose features that address those goals.

In other words, the user is the best person to tell you that they want to go from point A to
point B. Once you understand that, you can suggest a

faster horse or an automobile.

DO ONE THING REALLY WELL

“Good design is as little design as possible.”

—DIETER RAMS

Another philosophy listed on the Google company webpage is this: “It’s

best to do one thing really, really well.” Google decided early on that their focus would be
search. Although they went on to create a variety of different services, search has always
been at their core. They have chosen not to do some other things so that they can allocate
the necessary resources

to continue providing the best search experience.

Being Proud of the Things We Haven’t Done

Another one of the philosophies that transformed Apple into a huge suc-
cess after the turn of the millennium was focusing on a few key prod-

ucts and features. That attitude is perfectly represented in this quote from Steve Jobs: “I’'m
as proud of the things we haven’t done as the things we have done.”

It is important to note that saying “no” does not mean, “We’ll never do

this.” It means “not yet.” Knowing what not to do helps you prioritize. One of the best
ways to know what not to do is to know who your users are and what they need.

We are often overwhelmed by the number of features that we feel must

be added to a tool. There is never enough time to add everything, and the priorities are
always changing. However, if we are asking ourselves, “How are we going to create all of
these features before the deadline?” perhaps we are not asking the right question. Instead,
perhaps we should start by asking ourselves, “Are these the right features?”

This mentality is also reflected in another quote from Mr. Jobs, this
time while speaking at WWDC 1997: “The line of code that is the fastest
What Does It Mean to Be “User- Centered”? m 35

to write, that never breaks, that never needs maintenance, is the line that you never have to
write.”

The Monkeys and the Banana
We have a tendency to support features simply because we have always

done so. If we have built or used a tool in the past with a certain list of features, and it
worked for the users at the time, we assume that we need those features.

This behavior is similar to the story of the monkeys and the banana

(see Figure 3.5). Imagine that there are three monkeys in a room. At one point, a banana is
placed in the room. One of the monkeys walks over to

the banana and picks it up. At that moment, a door on the ceiling opens

and a bucket of water is dumped on the other two monkeys in the room.

All of the moneys are wet, except for the one who took the banana, who
is happily munching away. Naturally, the other monkeys—now, soaking
wet—are not thrilled.

Later, another banana is placed in the room. The same thing happens:
one of the monkeys takes the banana, and the other monkeys get soak-
ing wet. The monkeys start to understand that when one monkey gets the
banana, the other monkeys are in for a bad time.

The next time a banana is placed in the room and one of the monkeys

reaches for it, the other monkeys beat him up before he can get to it. Soon enough, all of
the monkeys are afraid of going near the bananas.

Now, imagine that we take one of the monkeys out of the room and
replace it with another one who has never been in the room before. When

a banana is placed in the room, the new monkey will naturally attempt to get it. This is
when the other monkeys, knowing what will happen to them, pile on the new monkey and
beat him up. The new monkey is terrified and

does not understand why the others are so angry!

Over time, imagine that we replace all of the monkeys in the room so
that all of the original monkeys are gone. The monkeys in the room know
FIGURE 3.5 The analogy of the monkeys and the banana.

36 m Designing the User Experience of Game Development Tools that the rule is “No one
goes near the bananas,” but they do not know

why. That is just the way it is.
This is why we sometimes add features or design tools in a certain way

without questioning it: “We’ve just always done it this way.” However, we have to ask
ourselves, are all of those features necessary?

CHOOSE THE RIGHT FEATURES
To understand what is necessary, we need to understand the needs of the

people using the tools. If we do not do this, we may end up trying to deliver too much at
once or work on things that the users do not need right away.

All of this leaves us with less time to create a great user experience for the things that the
users really do need.

Less of What You Don’t Need, More of What You Do
In the early 2000s, laptop makers were struggling to find ways to make

their laptops lighter while still packing in all of the common components, such as a disc
drive. They never questioned the disc drive, because “we’ve just always done it this way.”

Meanwhile, Apple took a step back and observed that very few people

still use disc drives on a regular basis. As a result, they started phasing out disc drives on
all of their devices. Now, if you absolutely need a disc drive, you buy an external one.

This focus has not only allowed them to make their laptops lighter than

the competition (see Figure 3.6), but they were able to fill up some of that extra space with
a larger battery. They determined that increased battery life is a feature that people find
more compelling than having a disc drive.

As is the case with other disruptive decisions that Apple has made, we now see other
companies following their lead and removing disc drives in favor of larger batteries.

Before you decide what to work on first, make certain that all of the features are useful for
the majority of users and therefore important enough to justify your efforts. If your
schedule treats features that will be useful for 80 percent of users equal to those made for
one or two expert users,*

then perhaps those priorities need to be challenged.

* As long as the feature is not a key element related to setting up a pipeline, which could
result in a bottleneck for the rest of the content creators.

What Does It Mean to Be “User- Centered”? m 37

FIGURE 3.6 While other manufacturers were constrained with the assumption that all
laptops must have a disc drive (bottom), Apple observed that very few people used their
laptop disc drives, and decided to use that space to make a thinner laptop with better
battery life (top).

More Features Do Not Make a Better Tool
The Apple iPod is another excellent example of this philosophy. The big-

gest competitor to the third- generation iPod was the iRiver H300. At the time, iRiver was
a rising star in the MP3 player market. Their H300 had

many impressive features. It supported a large number of file formats: Not only could it
play music from MP3, WMA, and OGG files, but it could

also play videos and view pictures. It had an FM tuner, two headphone

;genefation iPod cornlsaré'tvo this? It only played music. It did not have an FM tuner. It had
one headphone jack. The display was black and

white. The iPod had fewer features, by far. (See Figure 3.7.) However, not only did the
iPod outsell the H300, it also outsold every other MP3 player on the market. Perhaps most
telling is the fact that very few people talk about iRiver these days.

Video & images

FM tuner

Two headphone jacks

Voice recording

Color display

FIGURE 3.7 The third-generation iPod (left) compared to the iRivier H300
(right).

38 m Designing the User Experience of Game Development Tools Complexity
Complexity

Number of features

Number of features

FIGURE 3.8 Adding more features increases complexity exponentially.

How did Apple do this? Several factors contributed to the success of the iPod, but one
thing is certain: it was not by having more features. Apple focused all their resources on
the right features, to give the iPod the best user experience possible. Products that choose
the right features, and do them well, are in a much better position to succeed.

Exponential Complexity
We may believe that adding features makes a product more complex in a

linear fashion. However, the fact is that each new feature increases complexity
exponentially. (See Figure 3.8.) This is because every feature will be used in combination
with all of the other existing features, which adds an extra dimension to all those that came
before it. This is why it is of the utmost importance to choose the right features, and
choose them carefully.

WRAPPING UP

In this chapter, we discussed the value of increasing the involvement of users in the
development process. We discussed the importance of accept-ing that—more often than
not—we are not the users, as well as the dangers of not knowing for whom we are
designing. We also learned that documentation is not the magic solution and why it’s
important to stop the culture of “RTFM.” In addition, we learned how focusing on the
right users

allows us to get the maximum results from a minimal investment, accept-

vww allitebooks.cond

http://www.allitebooks.org

ing that we’re not going to make everyone happy. Finally, we learned the difference
between features and goals, the fact that more features do not make a tool better, and why
understanding the goals of the users can help us choose the right features.

In the next chapter, we will learn important concepts and tech-
niques that we can use during the Analysis phase of the User- Centered
Design process.

Chapter4

Analysis

WHAT WILL WE LEARN IN THIS CHAPTER?

Concepts

 The importance of watching users work

* Introduction to human— computer interaction

* Understanding the mental model of the users

Techniques

* Interviewing stakeholders

* Performing a contextual analysis

* How to create a task flow

* How to discover the mental models of the users

* Establishing how to measure improvements to the tools

THE IMPORTANCE OF WATCHING USERS WORK

Jakob Nielsen is one of the principals of the respected usability consultancy Nielsen
Norman Group (of which Don Norman is also a principal).

One of his more famous articles is on the importance of watching users
work. In his article, he writes, “To discover which designs work best,
watch users as they attempt to perform tasks with the user interface.”* It is

* The full article can be found here: http://www.nngroup.com/ articles/ first- rule- of-
usability- dont-listen- to- users/.

39

40 m Designing the User Experience of Game Development Tools not enough to simply
ask the users about how they use the tool. There are aspects of the user’s world in the heat
of production that are impossible to understand unless you sit next to them and watch
them work.

The Limitations of Metrics and Focus Groups

Two of the most common techniques that we may use to understand how

people work are metrics and focus groups. Unfortunately, sometimes we
base much of our tools development decisions on these techniques with-
out actually sitting down with the users watching them work. This can
have serious implications.

Metrics are a quantitative technique that make it easier to get informa-

tion about a large number of people. Metrics are very good at telling us what is happening
but not very good at telling us why it is happening.

When the metrics report that 90 percent of the users never click a specific button, we have
no idea why they are not clicking on it. The users may have a very good reason that we
cannot be aware of unless we watch the users

work: for example, they may not understand the label, or the button may
be hidden behind another window.

In a focus group, the loudest and more influential person will usually be heard above
everyone else. Even if many other people in the room have an opinion, or actually use the
tool more hours per week, their voices are not heard. Furthermore, Jakob Nielsen’s
research suggests that what people

say they do compared to what they actually do is often quite different.
Metrics and focus groups can be great starting points, but they should

be complemented by sitting down with the users and watching them work.
Proximity to the Users

Outside of the games industry, having users nearby that you can watch

is considered a luxury! Many companies spend astronomical amounts of

money getting access to users so they can ask them for feedback on their products. They
may pay for transportation, food, and even cash or a gift card as incentive for people to
participate. They might also pay an online service to find users and do the analysis for
them.

Game developers who work in the same building as their users are at

a huge advantage to improve the user experience of their tools. They can talk to their users
on a regular basis and have a very tight iteration loop.

If this is your situation, you should make the most of it and sit as close as possible to the
users.

Analysis m 41

There are some situations where there are users available, but the developers do not have
easy access to them. Some examples of this are if you

work for a middle- ware company, or the users are in another building or even another
country. In this case, you can use remote collaboration tools such as WebEx,
GoToMeeting, and LiveMeeting. They provide features

that make it easier to talk to users and get feedback on your tools.

If you are an independent tools developer, you can try to find users with the right profile in
online chat forums, such as the CGSociety forums or PolyCount. Many people who
participate in online communities would

jump at the opportunity to try out a new tool or to give their opinion on how they would
use it.

Uncovering Work- Arounds
Watching users work is also a great way to uncover work- arounds. After

using a tool for a long time, users forget that they do certain things automatically, which
could potentially result in reduced productivity. The

story of the monkeys and the banana from Chapter 3 is a perfect example
of this behavior.

When you see the user doing something that seems like a work- around,
try asking them why. Every time you ask why, you dig deeper into the
root of the problem. For example, imagine this exchange between you and
a user:

User: “So, first I’ll choose a new object from this list. Before I do that, I have to press
F5.” <user waits>

You: “OK. While we’re waiting, can you tell me why you do that?”

User: “Oh, pressing F5 refreshes the list so I see all of the latest objects.”

You: “Why do you do that?”

User: “Just in case someone added a new object since the last time I opened the list.”
You: “Why are the new objects not added to the list automatically?”

User: “That’s a good question. I don’t know ... It’s just always been that way!”
Understanding Context

More often than not, tools are made to work with other tools, and assets are passed around
between multiple users. Because of this, it is essential to understand the context in which
the tools are used. Taking a step back and 42 m Designing the User Experience of Game
Development Tools seeing the big picture can make the difference between a bad user
experience and a good one.

Jeff Hawkins understood this while experimenting with his wood block.

He learned some of the different situations in which the Palm Pilot would be used: in the
context of a meeting, at a discussion around the water-cooler, and when bumping into
someone. He thought beyond just the

interface of the device. He understood that after using their Palm Pilots to store
information, people would want to return to their computers and be able to access the

contacts and appointments that they added. This realization led to the ability to easily
charge and synchronize your device with your computer, which was crucial to the success
of Palm.

By being aware of context, Apple was able to think beyond how people
listen to music, and understand how people want to get music onto their

devices. This led to the creation of iTunes, one of the biggest selling points of the iPod and
a huge source of income for Apple.

The information that we learn in the Analysis phase can be invaluable

for understanding context, which can have a huge impact on improving
the user experience.

What Is the Problem That We Are Trying to Solve?

In addition to uncovering work- arounds, watching users work also helps
us to remember the problem that tool was originally made to solve. When

a tool has been used in production for a while, we may try to find solutions that conform
to the existing interface. This tunnel vision can hinder our ability to improve the user
experience.

For example, imagine that you are working on a shader creation tool for

texture artists. The majority of beginner users are having trouble understanding that when
they want transparency, they need to check the “Alpha On” checkbox on the shader
options. In addition, the checkbox is hidden

among a long list of variables in the Options tab for the shader. It takes several clicks to
enable, which hurts the efficiency of the users.

We might think that the solution would be to rename the label from

“Alpha On” to “Enable Alpha Transparency” so it is clearer for beginners, or to reduce the
number of clicks required to get to the checkbox. These are both good ideas, but we must
always ask ourselves, “What is the problem that we are trying to solve?” Our goal is not to
make a better checkbox, or a clearer label. What we really want to do is make it easier to
enable alpha transparency on the shader!

Analysis m 43

Instead, we could automatically activate transparency when the tex-

ture map in the diffuse input has an alpha channel. The diffuse texture
needs to have an alpha channel anyway! This solves the real problem and
is much more effective than a clearer label or better checkbox placement.

Furthermore, this also results in one less checkbox for the tools developers to maintain,
and one less checkbox for the user to learn.

INTRODUCTION TO HUMAN- COMPUTER INTERACTION

Tools developers are very familiar with using software and hardware to

receive an input, process it, and then send an output. For example, a computer receives
input from the mouse, calculates what should happen, and

then displays the result on the monitor (see the right side of Figure 4.1, clockwise from
top).
Although we may be familiar with the computer side, not everyone

understands what is going on inside the user’s head while we are watching them work. As
it turns out, the human side is almost a mirror image of

the computer side: we receive an input, we process it, and then we send an output. For
example, we see what is on the monitor, we think about what it means, and then we click
the mouse. After our mouse click changes what

we see on the monitor, we start back at the beginning (see the left side of Figure 4.1,
clockwise from bottom). This communication loop is called

the human— computer interaction model, and understanding it is key to improving the user
experience.

Finally, in between the human and the computer is the user interface

(see the middle of Figure 4.1). The quality of the interface determines how good the
interaction between the human and the computer will be.

FIGURE 4.1 The quality of the interaction between the user (left) and the computer (right)
is determined by the interface (middle).

44 m Designing the User Experience of Game Development Tools Understanding the
Action Cycle

The communication loop on the human side can be boiled down to

three phases: “Look,” “Think,” and “Act.” This is sometimes called the
“Action Cycle.”*

Imagine for a moment that you had never used a computer mouse

before. If you were told to move the cursor on a computer screen using

the Logitech MK710 Wireless Desktop Mouse for the first time, you might

start by looking at the shape of the mouse: along the left side, there is a deep groove, and
the top has two shallower grooves. Then you might think to yourself, “If I were to hold
this object, my thumb would fit into that deep groove, and my fingers would drape over
the shallower grooves.”T Finally, you would act by placing your hand over the mouse and
perhaps moving

it a bit. Finally, the cycle would start back from the beginning: look at the screen, and
think to yourself, “What changed? Oh, the cursor moved!”

With enough experience, you no longer need to look at the mouse to see
where the grooves are, or think about what they mean. You spend almost

all of your time in the act phase of the action cycle. The fact that the look and think phases
are reduced means you can spend more time acting,

resulting in increased efficiency (see Figure 4.2).
The Logitech mouse has been designed to be easy to understand so
you can start using it immediately. However, not all computer mice are

designed this way. For instance, consider the Mad Catz R.A.T. mouse (see Figure 4.3). For
someone who has never used a mouse before, the shape

FIGURE 4.2 The design of a mouse can make it easier to learn, reducing the time spent in
the Action Cycle.

* The action cycle is part of the field of action research, pioneered in the 1940s by Kurt
Lewin, a professor at MIT. According to Lewin, humans constantly iterate through three

phases when performing actions: planning, acting, and evaluating the results. More
recently, Don Norman proposed a “Human Action Cycle” more geared toward human—
computer interaction, which features three very similar phases: goal forming, execution,
and evaluation.

T When the shape of an object suggests how you should interact with it, this is called
“Affordance,”

which you can read more about here: http://en.wikipedia.org/ wiki/ Affordance.

Analysis m 45

FIGURE 4.3 A non-standard or confusing design can increase the amount of time spent in
the Action Cycle.

does not make it immediately obvious how you are supposed to hold it. It also has
different modes, which means that it works differently depending on what mode the
mouse is in. Another example is a novelty computer

mouse, especially those that are made to look like other objects like cars or sports

equipment. If the user is unfamiliar with what a mouse is, they will likely spend a lot more
time in the look phase trying to understand what they are seeing. All of this wasted time
could be spent in the act phase.

Novelty mice are a good example of devices that have the useful and desirable layer of the
pyramid but are missing the usable layer.

Mental Loads

Susan Weinschenk’s book 100 Things Every Designer Needs to Know about People
presents the concept of loads, which are the three types of processes that the brain can
perform: cognitive, visual, and motor. She describes

them as follows: “There are things you’re thinking about and remember-

ing (cognitive), things you’re looking at on the screen (visual), and buttons you are
pressing, mouse movements, and typing (motor).”

She goes on to reveal that not all loads are processed equally. Visual
loads require more resources to process than motor loads. Cognitive

loads require more resources than visual loads. Therefore, the hierarchy of loads—from
most to least resources required—is cognitive, then visual, and finally, motor (see Figure
4.4).

How does this relate to the action cycle? When you are in the look

phase, you are processing a visual load. When you are in the think phase, 46 B Designing
the User Experience of Game Development Tools FIGURE 4.4 The hierarchy of mental
loads, from lightest to heaviest: motor, visual, and cognitive.

you are processing a cognitive load. Finally, when you are in the act phase, you are
processing a motor load. If a tool has a complicated user interface (visual load), the user
will spend a lot of time in the look phase. If the tool requires that the user do a lot of
mental calculation and remember things (cognitive load), the user will spend a lot of time
in the think phase. This is made worse by the fact that cognitive and visual loads are more
time

consuming to process compared to motor loads.

More Clicks Are Not Always Bad

Common sense tells us that adding a hundred clicks to a task is going to reduce efficiency.
However, it may come as a surprise to find that adding just a few extra clicks—resulting
in a slightly increased motor load—can actually increase efficiency. How can this be?

Susan Weinschenk supports this by describing research she did com-
paring different mental loads. Although the users in her research study
had to “go through more than 10 clicks to get the task done,” they con-

cluded that the task was easy, because “each step was logical and gave them what they
expected. They didn’t have to think.”

Steve Krug, another well- respected author in the field of user experience, is probably best

known for his book Don’t Make Me Think. The topic of the book is exactly that: the less
we have to think, the more time we spend acting, and therefore the more efficient we can
be. He further confirms Susan Weinschenk’s research, stating, “It doesn’t matter how
many times I have to click, as long as each click is a mindless, unambiguous choice.”

How Does the Action Cycle Affect Efficiency?
To see how the action cycle applies to improving the efficiency of game

development tools, we will walk through an example. In Chapter 1, we calculated how
saving 20 game developers 20 minutes per day could save time Analysis m 47

Ambient Light

Barrel

Crate

Fire

Point Light

Spot Light

Sword

Shield

Tree

FIGURE 4.5 Example of the interface for a tool used to place objects in a level.

and money. Imagine that those 20 users are placing objects in a level, using a standard
level editor. The steps are as follows:

* Look: The user scans the list of objects in the object library.

* Think: Based on what they see, the user determines if they have

found the object they need.

* Act: Once the desired object is found, they select it from the list and place it in the level.

The user interface could use the search box at the top, but in this case, the user does not
know the name of the object they are looking for (see

Figure 4.5). They will know it when they see it. They know that the object can be smashed
into pieces by the hero. It is not equipment, a light, or a particle effect. How can the look,
think, and act phases be optimized so that the user can find the object that they are looking
for?*

Look

In the current interface for the object library, there are many different types of objects. It
can be difficult for the user to distinguish between various object types at a glance. How
can we reduce the time spent in the look phase?

* In the example that follows, the design techniques of hierarchy, progressive disclosure,
representation, grouping, feed- forward, constraints, and excise are being applied. We will

48 m Designing the User Experience of Game Development Tools PHYSICS_ACTIVE
PHYSICS_ACTIVE

Barrel

Barrel

Crate

Crate

FRAG_SHDR_LIGHTS

Ambient Light

Point Light

Spot Light

EQUIPMENT

FIGURE 4.6 Improving the user experience to reduce time spent in the look phase.
We could start by improving the way in which the objects are organized

so that the categories are easier to distinguish, and then use a unique color and icon for
each object type. These changes will make it easier for the user to identify the object they
are looking for.

We could also add the ability to filter the list by object type, reducing the number of
objects that the user has to scan at once. This does add an additional click, but remember
that sometimes adding clicks can actually reduce time spent in the look phase, thereby
making the user more efficient overall (see Figure 4.6).

Think
The names of the object categories are taken from the data structures

underneath. However, the average user is not aware of that, and so they do not think about
the categories in the same way. For example, “Breakables”

is a much more common name for the average user of this tool, compared
to “Physics_Active.” By understanding how they would group the objects

together, we can have category names that will allow the user to find what they are
looking for more quickly (see the left side of Figure 4.7).

In addition, some objects can only be placed in certain areas of the level (for example,
only boats can be placed in water zones). The user has to

think about this beforehand; otherwise the object cannot be placed. By

showing a semi- grayed- out version of the object when it is being dragged on top of a
non- valid zone, the user does not have to spend a lot of time in Analysis B 49

BREAKABLES

vww allitebooks.cond

http://www.allitebooks.org

Barrel
Crate
FIGURE 4.7 Improving the user experience to reduce time spent in the think phase.

the think phase, wondering if they are placing the object in the right spot (see the right
side of Figure 4.7).

Act
By reducing the look and the think phases with the techniques mentioned
above, we can spend more time in the act phase: in other words, placing

objects in the level. However, that does not mean that we cannot also optimize the act
phase itself!

We can see that having the category filters below the list means a lot

of mouse movement up and down. Moving them up between the search

field and the list means less travel for the mouse (see the left side of Figure 4.8).
We can also add keyboard shortcuts: one for putting the cursor in the

search field, and one for each of the categories to toggle them on and off (see the right side
of Figure 4.8).

All of these improvements in combination help to reduce the time spent

in the look, think, and act phases. This makes it much more efficient for the user to find
the object they are looking for and add it to the level.

How Does the Action Cycle Affect Learnability?
A tool is considered to have good learnability if a new user can easily

accomplish a task on the first attempt. The learnability of a tool can also be assessed on a
long- term basis: the speed at which an existing user can 50 B Designing the User
Experience of Game Development Tools CTRL

F
BREAKABLES
Barrel

Crate

CTRL

E

CTRL

L

CTRL

B

CTRL
X
FIGURE 4.8 Improving the user experience to reduce time spent in the act phase.

remember how to use a tool after not having used it for a while (sometimes called
memorability), or how quickly a beginner can become an expert.*

Other than experimentation, the two most common ways that a new
user learns a game development tool are being trained by an expert user
and reading documentation. However, there are issues with both of
these approaches.

While support from expert users is common, too much can come at a
cost. Any time that an expert user spends providing training and answer-

ing questions is time that they could be doing what expert users do best: solving
complicated problems! Not to mention, the hourly wage for an

expert user can be high. Finally, they are not always available: if a new user does not
know how to do something without the help of an expert user,

they are stuck.

Documentation is always an option, but it is frequently out of date, if it exists at all. It also
goes without saying that it can be expensive to create and maintain good documentation.

Do It the Long Way
Experts spend less time in the think phase because they have a deeper

understanding of how a tool works. However, if a tool is difficult to learn, users may stay
as beginners or intermediates for a long time.

* For more on how Nielsen and others define learnability, see here:
http://www.measuringusability.

com/ blog/ measure- learnability.php.

BE 5 - Dizcurmeer 11 - Weed 'rm - 0O %
MOME IMSERT DESIGN PAGELAYOUT REFEREMCES MARINGS FEVIEW WIEW Sgnin

Y S PR TERIE Ve 2 MW iind -
| i z T - M .= B2 O O% A -
" Cafibr {Dody] =1L A s M A — E # AalilyColc asBbCote AaB0C 7

=
Pl . B Ucamk N QBT hr BES He - s ® Fgrmal %o Spac.. Meadingl |3

e i

tipbakd Pom h‘ e Paragiten G St % Editing -

it's dangerous to go alonel Take this,

Analysis m 51

This situation is described perfectly in Jeff Johnson’s book Designing with the Mind in
Mind. In his book, he tells a story about a usability test where he asked a user to perform a
task. After thinking for a minute, the user told him, “I’m in a hurry ... so I’ll do it the long
way.” This seems like an unusual statement ... or is it?

If you observe how people use game development tools, it is common to

see that once they learn how to accomplish a task in a specific way without crashing or
causing any other problems they tend to stick to it. This method could contain a ton of
work- arounds and hacks, but they know

that it works. If the tool makes it difficult to figure out a better way on their own, they are
likely to stick to the old way. Now, imagine that there is a newer, better way, but the user
cannot find it. Their slower approach takes an additional 20 minutes per day. How much
time and money could we

save by making this tool more learnable?
Ramping Up the Learning Curve

Understanding what the user needs at each step of their learning process is crucial to
designing a tool that is easy to learn by beginners and efficient to use by experts. This also
has a relationship to the action cycle: beginners spend a lot more time in the think phase,
because they are still figuring out how the tool works. By making it easier for beginners to
become experts, they will spend less time in the think phase, making them more efficient.

Imagine a scenario with Microsoft Word. A beginner who has never
used Word before may look at the interface and ask, “What can this do?”

They may see the “Font” section, and see that it contains buttons for bold, italic, and
underline. By looking at the icons, reading the tooltips, and experimenting with the
buttons, they start to understand that one of the things Word does is format text (see Figure
4.9).

FIGURE 4.9 The commands exposed in the ribbon help beginners understand what the
tool can do. Used with permission from Microsoft.

BE % & - Document] - Weed P - O X
HOME INSERT DESIGN PAGELAYOUT REFERESMICES MARINGS REVIEW VIEW Sgnin

B EH % 4-: Decument] « Weed T m - 0O %
HOME | INSERT DESGN PASELAYOUT REFERENCES MAILINGS REVIEW VIEW Signin

— e e T 2 i 1 # Find -
t i i g - - Aae Bp =« » ice §E 8 L) n o e
| e Tl B S ol 2 FEE| 21 BaBLCoD: | AsBBCeD: AZBLC: | 4
Pute _|@m 7y e - e . K Mo 5 K 1 i
: - U B - - - B E- ¥ - - T Meemial | T He Spac. g b
. - e M, K B~ A = H- 1 i 5 eadingl [a| poeg.
Oipboard % Fant '. Farsgrapl Callsi Body) ~|01 = | &5 & & ,ﬂ.l- . Edfting ~

B I U W-p-ic-
It's dangerous to go alone! Take this. L

Bald {Cril=E

PAGELOF1 9 0OF3WODRDS

52 m Designing the User Experience of Game Development Tools FIGURE 4.10
Contextual menus allow intermediate users to work more efficiently. Used with
permission from Microsoft.

Intermediate users already know that they can format text in Word.

They also know that by right- clicking on some text, they get a contextual menu with easy
access to the buttons in the Font section. The contextual menu is not visible all the time. It
is convenient for the intermediate user, but it does not clutter up the interface (see Figure
4.10).

An expert user of Word also knows that they can format text, and they

want to do it as quickly as possible. Since they have learned the hotkeys for bold, italic,
and underline, they never use the ribbon. In fact, they have chosen to hide it, thereby
customizing their interface and allowing them to focus on their content (see Figure 4.11).

What is important to note here is that if we removed the ribbon, the

beginner user would never see the Font section, and it would take longer for them to
understand how to format text, blocking their progress toward becoming expert users.
However, if there were no hotkeys, the experts

would be less efficient and frustrated by having to move their mouse up to the ribbon to
access the bold, italics, and underline buttons. These different user interface elements exist
to help guide the beginner to becoming an expert.

FIGURE 4.11 Expert users can customize the interface and use hotkeys, maximiz-ing the
space used to display their content. Used with permission from Microsoft.

File Edit View Transport Irm: genale Effect Anabyze Ip

[AddNew v [AudioTrack CulsshitsN]|
n : |
.-/J v j Steren Track to Mono Stereo Track
L| e | Mix and Render Label Track
"l R Tirne Track

Rezample..

Analysis m 53
Keep in mind that the expert user’s needs mostly apply to complex pro-

ductivity tools with deep functionality. A simple game development tool with two buttons
and a checkbox—such as an instal er—is unlikely to require the user to go past the criteria
of the beginner or inter mediate stage.

Knowledge in the World and Knowledge in the Head

In his book The Design of Everyday Things, Don Norman compares two types of
knowledge: knowledge in the world and knowledge in the head.

Knowledge in the world could be compared to what you see in the user
interface, and knowledge in the head could be the equivalent of knowing

what a tool does already. Norman suggests that when the functionality we are looking for
is “in the world” (in other words, visible in the interface), it is easier to learn for the first

time, but that efficiency “tends to be slowed up by the need to find and interpret external

information.” However, knowledge “in the head” (something that the user already knows
how to do)

“requires learning, which can be considerable,” but “can be very efficient.”

A good example of this can be seen by looking at the steps required

to add an empty audio track in Audacity 1.3 for Windows and Apple GarageBand for
iPad.

There is no indication in the Audacity interface on how to add a track.

Right- clicking in the window does not create a contextual menu, and there are no buttons
to add a new track in the toolbar. The user must explore the menus and find the “Tracks —
Add New — Audio Track” menu item (see

Figure 4.12). Once they find it, they know where it is. Furthermore, they can use the
hotkey “Control + Shift + N” to add a new track very quickly.

This is a very efficient way to add new tracks, but you have to know that it is there to take
advantage of it. In other words, the knowledge has to be

“in the head.”

On the other hand, Apple GarageBand for iPad makes it very easy to learn how to add a
new track. At the top of the interface, the “Instruments”

button is prominently displayed. Pressing on this button brings you to a FIGURE 4.12
Adding a new audio track in Audacity. Audacity® software is copyright © 1999-2014
Audacity Team.

54 m Designing the User Experience of Game Development Tools FIGURE 4.13 Adding a
new audio track in the iPad version of Garage Band.

© Apple.

list of instruments, with visual representations so you know what you are getting. From
here, you can choose “Audio Recorder.” You can then return to the tracks view to see your
new track (see Figure 4.13). While this is easier to find because it is at the top of the
interface and always visible—in other words, it is “in the world”—it requires more steps.

UNDERSTANDING THE MENTAL MODEL

Another important concept that helps us to understand how the users
think is to understand their mental models and ensure that they match
the conceptual model.

What Are the Mental Model and the Conceptual Model?

Susan Weinschenk, cognitive psychologist and author of several books

on user experience, uses the following analogy to explain the difference between mental
models and conceptual models.

A mental model is the way in which a user understands how something

works. For example, almost everyone in the world has a mental model of a book: it
contains pages, each page has words on it, and you can turn to the next page or the
previous page.

By comparison, a conceptual model is the way in which an object or
interface actually works. For example, imagine that you handed someone
the device on top of the book in Figure 4.14. They have never seen this
object before, and they have no idea what it is.

When they examine this device, they will notice that it has buttons and

a screen. However, many other devices also have buttons and a screen:

laptops, tablets, even calculators. What is this device? What does it do? It

Analysis B 55

FIGURE 4.14 Using the mental model of a book to accelerate the process of learning how
to use an e-reader.

might take this person a while to figure out how it works, because they have no previous
knowledge to draw on to help them understand how to use it.

Now imagine a different scenario where, before handing over the device,

you tell them, “This is just like a book.” As they examine the device, they compare their
mental model of a book to the conceptual model of the

device. They look at the words on the screen and think, “This must be like the pages on a
book.” They look at the buttons on both sides and think,

“This must be for the next page and previous page.” By referring to their mental model,
they are able to make a connection to their existing mental model and understand what the
device is—and how to use it—much more

quickly and easily.
Major differences between the user’s mental model and the tool’s con-

ceptual model is one of the key reasons why users have difficulty under-

standing how a tool works. Designing with the user’s mental model in
mind can have a big impact on improving the user experience of our game
development tools.

Why Is It Important to Understand the User’s Mental Model?

The mental models of programmers often include technical concepts

that the user is not aware of, such as class structure and data models.
Because these concepts come naturally to them, they might forget that

the average user may not understand them. Consider the following terms:

stereoscopy, rasterize, and Gouraud shading. These are all words that are part of the
common vocabulary of graphics programmers. However, the

majority of non- programmers may know these words as 3D imaging,

pixel- based, and smooth shading. Even though these terms may not be

v WO e BN | T v mmrme w (i ol
A s m]

| s -

T T

F s Top
S e

[pp—

b

e

s L1E B PR

=

ilff'iﬁih‘

ENEEDEDEDEDD

= ettt JElY i . o

56 m Designing the User Experience of Game Development Tools FIGURE 4.15 Adobe
Photoshop uses the mental model of a paintbrush to make it easier to learn the settings in
the Brush panel, reducing the amount of time spent in the think phase. Adobe product
screenshot(s) reprinted with permission from Adobe Systems Incorporated.

perfectly accurate, they are often interchangeable and may be the most
recognizable terms for the majority of users.
The brushes palette in Adobe Photoshop provides a good example of this

(see Figure 4.15). There is plenty of technical terminology in the brushes palette. To create
or modify a brush, you can set values for abstract sound-ing concepts such as
“Roundness,” “Angle Jitter,” and “Purity.” There are categories with names like “Shape
Dynamics,” “Transfer,” and “Dual

Brush.” Even something with a simple name like “Spacing” can cause the
user to ask, “The spacing of what? And, how much spacing do I want?”
A large proportion of the users many not think of brushes in those

terms. There are accustomed to brushes in fine arts. They think about

brushes visually, and how the brush will look when painting on a can-
vas. Fortunately, the bottom of the Brushes panel has a preview of what

the brush will look like when it is used to create a curved stroke, and the upper left- hand
corner of the windows shows the profile of the brush (see the top left and bottom right of
Figure 4.15). This not only allows a beginner to simply adjust the numbers until they see
the brushstroke they are looking for, but it also allows them to move closer to
understanding what the numbers mean by immediately seeing the effect that each setting
has

on the brushstroke.

Another example is the Tree Creator in the Unity game engine. This

tool represents the tree structure in a simple way that anyone can understand: it visualizes
the trunk, branches, and leaves in a tree- like view (see Figure 4.16). It is possible that
underneath, the tree is represented by a

Analysis m 57

FIGURE 4.16 The Tree Creator in the Unity engine visualizes the structure of a tree in a
way that matches the user’s mental model, reducing the time spent in the think phase.

complex data model, but the user does not need to know that. This con-
ceptual model is much closer to their mental model of the parts that make up a tree.
INTERVIEW STAKEHOLDERS

One of the first steps to improving the user experience of a tool is to interview the
stakeholders. It is surprising how many people forget this funda-mental step! Here are a
few suggestions on what kinds of questions to ask the stakeholders.

How Do You Measure Success?
The first and probably most important question to ask is how the stake-

holders measure success. Is it by making the tools more efficient, easier to learn, or some
other measurement? This information is key to determining how you will measure the
success of your efforts. It is normal for these to be more business- related as compared to
the users’ goals. These measurements of success are essentially the stakeholders’ goals.

Who Are the Primary Users?

The stakeholders can also be helpful in giving you the names of people

currently using the tool, so you can watch them work. If they cannot give you the names
of primary users, they can probably give you the names

of people who work with the primary users, such as their team leads and
supervisors. This question is also important to ask because many prob-

lems in resource allocation can arise from the stakeholders being unaware of who the
primary users are.

58 m Designing the User Experience of Game Development Tools Linking Stakeholder
Goals and User Goals

Once you have identified the stakeholder goals, you will want to try to find a connection
between their goals and the user goals, to ensure that they can be connected. For example,
imagine that one of the user goals is to

optimize the level geometry to improve performance. At the same time,

one of the stakeholder goals is to have the game run at 60 FPS. There is a clear connection
between the two goals.

In contrast, imagine that another one of the stakeholder goals is to

improve the efficiency of a tool used for creating a gritty, urban environment with minimal
impact on texture memory. Meanwhile, one of the

user goals is to have an easy- to- learn tool that generates hyper- realistic trees with high-
resolution textures.

When one or more user goals have no connection to any of the stake-

holder goals, this could be a sign that tools development resources will not be invested
correctly, leading to potential problems.

PERFORM CONTEXTUAL ANALYSES

Once we have a list of users of the tool, we can watch them work using a technique called
contextual analysis. The word contextual emphasizes the fact that we want to watch the
user working in the context of their environment, as opposed to an interview, which could
take place anywhere.

In other words, we want to watch them working at their desk, with their

tools, as they normally do. This ensures that we get a sense of what it is really like when
they use the tool.

How to Perform a Contextual Analysis

To perform a contextual analysis, start by making a list of the users to meet and booking
individual meetings with them. When you sit down with a

user to watch them work, keep the following questions and ideas in mind.*
Introduction

Some users might be uncomfortable with someone showing up at their

UCOSK dlll doRKlillg (QUESULIULLS. RCLICIIUCL LU LdRT UIC UHIC O U OUULc youl=

self, and ask the user about themselves. Ask them how long they have been doing their
job, or ask them about their favorite game. If they have action

* For an in- depth approach to doing interviews and performing contextual analyses, you
can also read Steve Portigal’s book Interviewing Users.

Analysis ® 59

figures or toys on their desk, ask about them. Even if you know the user, questions such as
these help to ease into the contextual analysis.

It is also very common for people to believe that they are being judged

on their performance, or that this is part of their yearly review. If this is the case, remind
them that not only is it safe to make mistakes, but

that making mistakes might help to find and fix problems with the tool.
Emphasize that the tool is being evaluated, not them.

All of these things help to break the ice, which will result in the user being more likely to
tell you how they really feel, instead of what they think you want to hear.

Ask about Goals

After the introduction, ask the user why they use a certain tool or how a tool fits into their
pipeline, and what they are trying to accomplish with it.

This will help to understand what their goals are. For example, a user does not think, “I
want to use the mesh exporter”; they think, “I want to add a new object to the game
engine.” That is their true goal. Focus on understanding what their goals are when they are
using a tool. Ask why several times if it helps to get to the root of the goal.

Master and Apprentice

Even if you know the tools that the users are using, imagine that you are the apprentice
and that they are the master. Ask them to show you how

to use the tool from their perspective. Ask them questions, and spend as much time as you
can just listening. This will give you a better idea of how they use the tools, which can
help you identify how to make them better.

Re- Direct Feature Talk to Goal Talk

If issues with specific features start to dominate the contextual analysis, try to re- direct
the discussion back to goals. For example, if the user starts to describe how to change a
feature, respond with, “How would that help

you accomplish your goal?”
Don'’t Ask Leading Questions

It is important not to ask questions that could force the user into thinking that they must
answer one way or the other. Questions like “Do you

think that this should be red?” lead the user to believe that there is a right or wrong

vww allitebooks.cond

http://www.allitebooks.org

answer. Instead, ask an open question such as “In your opinion, what color would mean
danger or error?”

60 m Designing the User Experience of Game Development Tools Ask the User to Talk
Out Loud

As the user is performing their task, ask them to talk out loud about what they are
thinking. Users can get wrapped up in what they are doing and

forget to do this. If this happens, gently remind the user by saying, “So what are you
thinking right now?” or “What’s going through your mind

at this point?” Some users will be uncomfortable with talking out loud, so use common
sense to determine how you need them to do this.

Resist the Urge to Help

It might be difficult, but it is very important to resist helping the user during the contextual
analysis. They might have difficulty with a task, or they might say something about the
tool that you know is wrong. If you correct them, or interrupt them and tell them what to
do, you may miss valuable

information that could explain why they are having trouble. That infor-
mation can help you find a way to make the tool better.

After the contextual analysis is over, you may choose to tell the user
how to do the task, or correct their understanding of a certain concept.
Start Wide, Then Focus Down

If you are working on a massive, monolithic tool, remember: even the biggest content
creation tool is made up of parts. For example, a fully featured level editor looks big, but it
is essentially made up of a collection of smaller tools that communicate with each other. If
the amount of work is overwhelming, try to start wide with the first few contextual
analyses, and then focus down to a smaller part that you feel will give the biggest return
on investment.

Team of Two

It is also strongly recommended that you perform the contextual analysis with two people.
This has a dual purpose: The first is that asking questions, watching the user, and taking
notes all at once is very difficult. The second is that a contextual inquiry is a great
opportunity to invite someone who might not have the chance to watch the users work,
such as a stakeholder, or another developer. This can help to get buy- in from everyone
involved.

What Can We Do after the Contextual Analyses?

When you are satisfied with the amount of information that you have
gathered through contextual analyses, go through your notes and make a
Analysis m 61

prioritized list of the most common goals shared by the most frequent users.

If you end up with more than a dozen goals, then you are probably try-
ing to do too much at once, or you are including goals that are edge cases.
Either concentrate on a smal er part of the tool, or reevaluate who your target users are.

These goals can be used as a starting point to create task flows, mental models, personas,
scenario storyboards, and most importantly, measurements. Each of these techniques is
described below.

CREATE TASK FLOWS
When attempting to accomplish a goal, a user may execute one or more

tasks. Each task is made up of a series of actions. Task flows are a way of thinking about
the flow of those actions, which can help everyone

involved in the development of the tool to have a shared vision of how the actions are
connected. This makes it easier to pinpoint where improvement is needed.

How to Create a Task Flow

A task flow is essentially a flowchart that represents how the user performs a task, with
each node representing an action. For each action that the

users perform, make a node. Connect it to the other actions to create a
flow. If the user branches off, split off a node and continue from there (see Figure 4.17).
You can create a task flow for each user and then merge them into one

task flow that represents the average. In the case that a significant number of users
perform different actions, note the percentage of users who typically execute one action as
opposed to the other, as well as the frequency at which they perform that action. This will
allow you to identify which part of the task flow represents the majority of the users’ time,
which can help you to prioritize what to work on first.

% of users, frequency

Action

Action

Action

% of users, frequency

Action

Action

Action

FIGURE 4.17 The structure of a task flow.

62 m Designing the User Experience of Game Development Tools From the User’s
Perspective

Keep in mind that a task flow is done from the user’s perspective. As a

result, the task flow should not include technical details that the users do not understand.
To help reinforce this, the text in each node should contain a verb describing the action,
such as “select the object” or “export to the engine,” instead of “fire a ray- cast” or “server
parses XAML data.”

Adding Details

During the contextual analysis, you may have taken note of where the user had problems
or made mistakes. You can note where these issues occur in

the task flow. For each issue, also consider the following:
* Is this an efficiency problem? If so, which part of the action cycle
could be the problem: the look, think, or act? Is it more than one?

* Is this a learnability problem? Will making the feature easier to learn result in it being
less efficient? Is that a problem, considering how

frequently the feature is used?
Creating an Optimized Task Flow

In addition to creating a task flow that represents the average, it could also be useful to
create an optimal task flow. To do this, you could ask, “Which actions could be removed?
Which actions could take less time? Which

actions are difficult for new users to understand?” You could then create a new task flow
that represents the optimal situation. This can be a great way to set clear objectives for
everyone involved in the development of the tool.

DISCOVER THE USERS’ MENTAL MODEL

During the contextual analysis, you can also take some time to under-
stand the mental model of the users. A few techniques can be used to

do this. These can be used with several users, and then the results can

be combined to create an average mental model of the users that can be
shared with everyone involved in the development of the tool.

Card Sort

This technique is useful when we do not know how the user organizes dif-

ferent terms or concepts in their mind. For example, let us assume that we are building a
tool that contains a list of objects that we can place in a level.

Analysis m 63

We can place many different types of objects: enemies, weapons, power-

ups, lights, particle effects, and trigger boxes. In the mind of a developer, lights and
enemies are related because they are derived from the same class that represents the
position of an object. For this reason, it might seem logical to group them together.
However, in the user’s mental model, lights have more to do with trigger boxes and
particle effects, because they are used together to create the lighting and ambience of the
level. The users do not associate lights and enemies, even though they are related in the
code.

Here is how a card sort can be used to do this:

1. Write each term or concept on a card.

2. Give the cards to a user and ask them to lay them out on a table in
groups that make sense to them (see Figure 4.18).

3. When they are done, ask them why they organized the cards the way
that they did.

4. Finally, take a photo or write down how all the cards were organized, and take note of
the user’s name so you can ask follow- up questions

later.

5. Repeat steps 2 through 4 with a new user. Do this with as many users
as you can.

FIGURE 4.18 Example of a card sort.

64 m Designing the User Experience of Game Development Tools Once you are done,
compare the results across all users to find trends and common groupings. You can use a
spreadsheet to do this, or you can use

web- based tools to facilitate the process.*
User Objects

The term user object describes the mental model of a specific type of object that the user
can manipulate. The word user in user object is important here, since this is about how the

user sees it, not how it is coded. For example, the class definition for an entity in a level
editor may define rotation in radians with an angle- axis Vector4. However, the user may
not know

what any of those words mean, and they simply think of rotation as being between 0 and
360 degrees, on the x-, y-, and z- axes.

For each user object, we take note of how the user perceives them by

making a list of attributes and actions: the attributes of the object, and the actions that you
perform with the object. If the discussion about the user objects turns to features requests,
steer the conversation back to what the user’s goals are, and how they can be translated
into attributes and actions.

Once we have performed a contextual analysis with a few users, we
can start to identify the most common attributes and actions requested

by most users. This will help us to focus on the right features used by the majority of
users.

For example, if we worked with a user to create a user object for a point light, the results
might look like Figure 4.19. This user’s mental model of a point light is that it has the
attributes of color, intensity, and range. They also consider the color as being set as HSV
(hue, saturation, and value), the intensity as a number (where 100 is equal to 100 percent
intensity), and the range is measured in meters.

Object

Attributes

Actions

Point light

Color (HSV)

Move light

Intensity (100 = 100%)
Change the color
Range (in meters)

Set the intensity

Set range

Enable or disable
FIGURE 4.19 Example of a user object for a point light.

* Two popular options are Optimal Sort (http://www.optimalworkshop.com/
optimalsort.htm) and Websort (http://dirtarchitecture.wordpress.com/ websort/). These
services also provide an automated analysis such as most common groupings, trends, and
SO on.

Analysis B 65

% of users

HSV RGB HEX
1.0

100

0.0

M

CM

Color

100% Intensity
Range

FIGURE 4.20 Choosing how data is represented based upon the most common attributes
of the user objects.

If you have a large number of users, you could add up the results of the user objects to
determine the most common attributes and actions, in an

effort to build a shared mental model for point lights (see shaded bars in Figure 4.20).
Note that the user who created the point light user object earlier pre-

ferred 100 percent intensity to be the number 100, whereas the majority

of users preferred 1.0. Remember that we are not going to make everyone

happy. Start with 1.0. If it becomes a problem to a significant number of users, we can
always add an option to switch between 1.0 and 100.

Developers who are familiar with object- oriented programming will
notice that—although they are from the user’s perspective—creating user

objects is almost like describing a class. Therefore, doing this exercise before writing code
can accelerate developer productivity, because it

provides a starting point that provides the functionality that the users are expecting.

ESTABLISH MEASUREMENTS

One of the most important aspects of the User- Centered Design process is measuring
progress, which helps to ensure that you are going in the right direction. The process
described in Jeff Gothelf’s book Lean UX focuses on doing small, rapid iterations and
measuring Key Performance Indicators,

or KPIs. The ISO 9241-210 specification provides examples about what to
measure, and how. Taking the time to track these measurements is one of
the best ways to ensure that your efforts are improving the user experience.

In Chapter 1, we learned that there are many different ways to mea-

sure usability, and that this book focuses on efficiency and learnability.

Choosing what to measure depends on a variety of factors, such as the

goals of the users and the stakeholders, as well as the experience level of the users.

66 m Designing the User Experience of Game Development Tools Measuring Efficiency

If the goals of the stakeholders are related to producing assets faster with fewer people or
more assets with the same number of people, efficiency

could be the right choice. During the contextual inquiry, if a large proportion of the users
complain that the tool is slow, or that the number of steps required to complete specific
tasks is too high, this could also point to the decision to measure efficiency.

Furthermore, if the users are mostly experts who are accustomed to
complex tools, and they have a deadline looming on the horizon, this

could further confirm a decision to measure efficiency. This decision could mean that the
users are required to receive some training on the changes to the interface, and they may
require documentation. However, the intention would be higher efficiency overall.

To measure efficiency within the task flow, you can use a stopwatch
to time how long the user takes to perform either each task or specific

actions. Ensure that the users are working with the same assets or values, if possible, so
that the numbers are comparable. These numbers can be

averaged across multiple users to get a baseline measurement that you can compare
against each time you go through the Analysis phase. We will

talk more about this in Chapters 6 and 7.

You may also be able to measure efficiency of tasks and actions by using metrics.
However, it can be challenging to make decisions based only on

these numbers, because it may not be possible to determine if the task was completed
successfully, and because the user could be away from their

desk in the middle of an action, inflating the results. As always, a combination of metrics
and watching the users work can give the best results.

Measuring Learnability
If the goals of the stakeholders are to ramp up new users faster, or to

reduce support costs (such as the salaries of people writing the documentation or the time
spent by expert users training users and answering their questions), learnability may be a
better measurement. Additionally, if you notice that during the contextual inquiry the users
have difficulty remembering all of the various functions within a tool, or they make many
mistakes that could potentially be avoided by understanding how the tool

works, this could confirm a decision to measure learnability.

In addition, if the content creators are less experienced, and the team is still ramping up to
full production mode, leaning more toward learnability Analysis m 67

could be a better choice. Keep in mind that a focus on improving learn-

ability could have an adverse effect on efficiency, and the intention is to compensate for
that by making the tools easier to learn.

As we discovered earlier in the chapter, a tool is considered to have good learnability if a
new user unfamiliar with the tool can accomplish a task on the first attempt. This can be
measured by using a stopwatch to time

how long it takes the user to complete a task successfully, with specific assets or values.
Measuring Both

Finally, it is possible to design a tool where the majority of the features are both easy to
learn and efficient to use. This often takes much longer to measure and design compared
to simply choosing one or the other,

because efficiency and learnability can sometimes be in opposition with

each other. As a result, you may have to compromise, or choose to improve both for only
the most frequently used features in your tool.

There is a good reason why very few tools are both efficient and learn-

able: finding a balance between the two is one of the biggest challenges in user experience
design.

ADVANCED TECHNIQUES
Personas
If you perform a contextual analysis on a large number of users and it

is difficult to communicate the goals and mental models for all of those users, you have
the option of creating personas. Personas are archetypes of people who represent the
majority of the people that use the tool. Not only does it make it easier for you to see the
big picture of whom you are building for, but it also helps to communicate who these
people are.

How to Create Personas
Here is a very basic approach to creating a persona: study your contex-

tual analysis notes and try to identify the most common goals and mental models. Group
related goals and mental models together. Each group will

become a persona. You may choose to create a separate persona per job role, such as one
for level designers and one for animators, or be more specific, such as separate personas
for Al programmers and physics programmers.*

* For more on creating personas, you can read Chapter 5 of Cooper, Reinmann, and
Cronin’s book About Face 3, or Adlin and Pruitt’s The Essential Persona Lifecycle.

68 m Designing the User Experience of Game Development Tools Goals

Goals

Nullam quis
Morbi metus sapien
Dapibus augue
Blandit eget

Vitae blandit justo
Ullamcorper tinci
Donec malesuad
Mental Models
Mental Models
Pellentesque quis
Ellentesque ornare
Nibh in dignissim
Patrick

Tincidunt felis
Rochelle

Elit sapien maecena

Level Designer

At ultrices aliquam

Animator

Fasellus imperdiet

FIGURE 4.21 Example personas.

It is also important to give each persona a realistic name and a natural-looking picture. For
example, giving a persona the name “Moe the

Modeler” and using a cartoon character as a photo will result in people
not taking the personas seriously.*

Personas created to represent users of a game development tool might
look something like Figure 4.21.

Scenario Storyboards

To create an even deeper understanding of context, you can also choose
to create scenario storyboards. Scenario storyboards resemble the sto-
ryboards we use when planning a game cinematic (see Figure 4.22). The
FIGURE 4.22 Example scenario storyboard.

* You can auto- generate realistic names and pictures from websites like
http://www.randomuser.

me, Or you can use a more complete persona creation solution with tools such as
http://www.

usabilitytools.com/ features- benefits/ persona- creator.
Analysis m 69

purpose of a scenario is to explore how the tool is used in a variety of contexts. They are
very useful for ensuring that everyone involved in the development of the tool understands
and agrees on how the tool is supposed to be used.

How to Create Scenario Storyboards
To create a scenario storyboard, first choose one or more user goals or

tasks. If you have also created personas, you can choose to feature them in the scenario
storyboard. Each frame in the storyboard depicts an action

performed by the personas while they are using the tool, and it ends in the successful
completion of their task or goals.*

Scenario storyboards do not include references to the user interface.

Instead, they show how the personas would interact with the user objects.

This keeps the scenario storyboards at a high level so that they do not

influence us into assuming that the interface must function or look a certain way. This
enables us to focus on finding the best possible design solution to achieve the users’ goals.

The quality of the drawings is not important. However, if you need some
assistance producing storyboards, many web- based tools are available.T

WRAPPING UP

In this chapter, we learned about the Analysis phase of the User- Centered Design process.
We discussed the value of watching users work, the limitations of metrics and focus
groups, and the importance of thinking in

terms of the problems that we are trying to solve (not the features we want to implement).
We also learned about human— computer interaction, the

action cycle, its effects on efficiency and learnability, as well as the concept of the user’s
mental model. Finally, we learned a variety of techniques to be used during the Analysis
phase, such as interviewing stakeholders, performing contextual analyses, creating task
flows, and establish-

Ing measurements.
In the next chapter, we will discuss concepts and techniques to be used
during the Design phase of the User- Centered Design process.

* For more on creating scenarios, you can also read Chapter 6 of Cooper, Reinmann, and
Cronin’s book About Face 3.

T Storyboard That (http:/ www.storyboardthat.com/) and Amazon Storyteller (http:/
studios.amazon.

com/ storyteller) are two popular examples.

Chapter5

Design

WHAT WILL WE LEARN IN THIS CHAPTER?

Concepts

* Understanding how the eyes and the brain work together

* How a visual language can help humans and computers communicate
* The importance of using interaction patterns

Techniques

* How hierarchy can guide the user through the interface

» Making the interface easier to understand with natural mapping
* How to use representation to help the user work with and under-

stand complex data

* How to use feedback to let the user know what the tool is doing

* Using feed- forward to help the user learn what an action will do,
before they commit to it

» How to use grouping to associate information in a way that the

users expect

* How to use chunking to make it easier for the user to process more
information at once

* How to use excise to make the user work faster (or slower, if necessary)

» Using progressive disclosure to design an interface that is simple for beginners and
powerful for experts

71

72 m Designing the User Experience of Game Development Tools HOW THE BRAIN
AND THE EYES WORK TOGETHER

Previous generations of the Sony PlayStation have included unique
microprocessors, such as the Emotion Engine and the Cell. Getting the
best performance out of these chips required specialized knowledge and
programming skills. Each chip had its own quirks and idiosyncrasies.
Expecting a programmer to get the best performance out of these chips
without first understanding their architecture would be unrealistic.

Designing tools for people is no different. The brain is a microprocessor in its own right
and has strengths and weaknesses. Just as understanding the architecture of a chip allows
us to be better console developers, understanding how the brain works can help us design
tools with a better user experience.

Our Brains Decide What We See
As tools developers, we may have had the experience of adding a new but-

ton to an interface, only to realize that very few users notice it. All the work that was put
into the feature is lost since no one knows that it is there.

You may have asked yourself, “Why don’t the users see that button?”
It may come as a surprise to learn that we do not always see what we

think we do. Our brain fills in the blanks. A great example of this is our blind spot. On the
inside of our eye are rods and cones, responsible for detecting colors and contrast.
However, at the point where the optic nerve connects to the eyeball, there are no rods and
cones. As a result, we cannot see in that spot.

To test this, hold this book away from your face and cover your left eye.

Now, look at the cross in Figure 5.1. Slowly move the book closer to your face until the

dot disappears. Where did the dot go? The answer is that

your eye does not have any rods or cones where the circle should be, so

your brain fills in the missing information.

After experiencing this, you can begin to understand how it is possible

that users do not see the new button that you added.

FIGURE 5.1 Testing your blind spot.

Design m 73

FIGURE 5.2 Examples of how our brains are optimized to interpret specific patterns.
Our Brains Are Optimized for Specific Patterns

Figure 5.2 contains a series of shapes. Most people see a triangle on the left, even though
there is no triangle, only three pies. In the middle, we recognize the shape as a circle, even
though the line is broken. Finally, on the right, our eye is immediately attracted to the
cross that looks different.*

Our brains are hardwired to interpret these specific visual patterns

very quickly, which is probably a result of natural selection. Consider the image in the
middle of Figure 5.2: if the circle is a saber- toothed tiger and the missing parts are trees
that it is hiding behind, the ability to recognize the shape—despite the missing parts—may
have kept our ancestors alive.

VISUAL LANGUAGE
It turns out that if we want to understand visual language, video games

provide some of the best examples. The visual language for a game is made of multiple
elements, and two of the most important are shape and color.

At GDC 2008, Valve’s Jason Mitchell presented a talk{ about the dis-

tinct visual language of Team Fortress 2. As the game is a multiplayer first-person shooter,
identifying the class of the enemy you are fighting from far away is very important, and so
each class has a unique shape, or silhouette (see the top of Figure 5.3). Finding the enemy
base is also extremely important, and so each team’s base has a distinctive architectural
style: warm colors and angular shapes for the RED team versus cool colors and

orthogonal shapes for the BLU team (see the bottom of Figure 5.3). Once

you learn this language, you can see which class of enemies you are facing and which base
you are in, at a glance.

* These are all examples from Gestalt psychology, which you can read more about here:
http://

en.wikipedia.org/ wiki/ Gestalt_psychology.

T You can see the entire presentation here: http://www.valvesoftware.com/
publications/2008/

GDC2008_StylizationWithAPurpose_TF2.pdf.

AEATRATIA

74 m Designing the User Experience of Game Development Tools FIGURE 5.3 The visual
language of Team Fortress 2. © Valve Corporation.

Learning the Language
As the gamer learns how to communicate with the visual language, it

becomes a conversation: the screen shows the status of the game, and the gamer responds
with the controller. The gamer may also learn the language faster if the same elements are
seen in other games of the same genre. For example, in the vast majority of first- person
shooter games, when we see an arrow shape that is colored red on the edge of the screen,
we know that someone is attacking us from that angle, and we instinctively respond to the
threat with the controller.

The same can be said for game development tools. If we use familiar

and consistent shapes and colors, the user spends less time learning the tool, and they will
know what to do at a glance.

Familiar Icons
Some people believe that the save icon is outdated and should be replaced.

The typical save icon represents a 3.5" diskette, which most people have not used to save a
file since the 1990s (see the left side of Figure 5.4). Recently, FIGURE 5.4 Familiar icons
are recognized and interpreted more quickly than new designs or “ideal” representations.

Design m 75

some of the best designers in the world tried to design a replacement but were unable to
reach a consensus.* Despite being out of date, the save icon prevails for one important
reason: because our brains are better at recognizing a familiar shape than interpreting a
new one, even if it is a more appropriate representation.

Consider the iconography for “call” on a smartphone or “train crossing”
on a street sign (see the middle and right side of Figure 5.4, respectively).

We do not see rotary telephone receivers or steam engines very often these days, yet their
silhouettes are iconic—pardon the pun—and continue to be used because they are the
most familiar shapes for those concepts.

When choosing icons for your game development tools, strive for
familiarity over a new design. Although the shape of an icon may seem

out of date, it is more important that the user can recognize it as opposed to having the
perfect representation.

Color Consistency
Users of Microsoft Visual Studio—or any other modern IDE—are accus-

tomed to the concept of color syntax: specific keywords use the same color consistently,
making it easy to pick out variables, functions, and comments. There is no denying that
using color to communicate in this way

is an extremely useful tool: for example, color makes it easier to fix an unterminated
string. While we should take advantage of using color to

communicate with the user, we need to ensure that our tools use color
consistently, and that the colors match existing standards.
For example, imagine if Visual Studio had inconsistent color syntax.

In some cases, variables would be blue, and in other cases, they would be green. This
would frustrate any programmer. However, many game development tools do not use
color consistently. In one window, an object may be purple, while in another window, it
may be orange.

In Microsoft Excel, when the value of a cell is negative, it is colored

red to indicate a problem. This is because accountants want to see where money is being
lost. However, imagine if that color was green. All around the world, the colors green,
yellow, and red in software interfaces are

accepted to represent OK, caution, and danger,T so a problem represented by the color
green would seem unnatural. Unfortunately, some game

* You can see that discussion here: http://branch.com/ b/redesigning- the- save- symbol-
let- s-do- this.

T These standards were originally recommended by the Vienna Convention on Road Signs
and Signals. Read more here: http://en.wikipedia.org/ wiki/
Convention_on_Road_Signs_and_Signals.

76 ®m Designing the User Experience of Game Development Tools More contrast
Less contrast

FIGURE 5.5 Our eyes are able to read text with stronger contrast more quickly and
accurately.

development tools use bright red in situations where there is no problem, leading to
confusion and concern among the users.

To design an interface with a better user experience, pick colors that are consistent and
match existing standards.*

Legible Contrast
Although our brain works hard to compensate for the limitations of our

eyes, there are some things that it simply cannot do. To ensure that the user is able to see
the visual language that we have designed, we must also consider the ability of our eyes to
see contrast.

When the shade for text and the background are too close to each

other, our eyes have difficulty making out the shapes (see the right side of Figure 5.5).
Fortunately, there are standards for contrast that we can follow and tools we can use to
ensure maximum legibility.T

A Note on Dark Interfaces

The popularity of dark interfaces has increased in the last few years, especially in the case
of content creation tools. One of the first tools to adopt a dark interface was Autodesk
Combustion. Other content creation tools

started including a “dark mode,” such as Adobe Photoshop and Autodesk
3ds max. When Apple announced a dark mode for OSX Yosemite at
WWDC 2014, it prompted cheers from the crowd. Now, dark interfaces

can even be found in tools that are not used exclusively by artists, such as Unity and
Microsoft Visual Studio.

The fact is that our eyes have more difficulty seeing contrast when light text is used on a
dark background. To experience this effect, try using a tool with an interface that can be
switched between dark and light on a laptop outside on a sunny day, such as one of the
many tools in the Adobe suite, or the Unity game engine. When you switch between the
dark and light interfaces, you will notice that you can see more details on the light
interface.

* Microsoft’s recommendations for color can be found here: http://msdn.microsoft.com/
en- us/

library/ windows/ desktop/ dn742482.asp.

T Here is a list if tools from the W3C website to verify that contrast standards are being
respected: http://www.w3.org/ TR/ UNDERSTANDING- WCAG20/visual- audio-
contrast- contrast.

html#visual- audio- contrast- contrast- resources- head.
Design m 77

However, this should not lead us to conclude that light interfaces are better. To do this
would be to forget the importance of watching users work.

We need to understand context in which the dark interface was developed

in the first place: Combustion is a tool for film compositing, typically used in a dark
editing room with no windows. The users found that a lighter

interface blinded them, and that a darker interface was more comfortable, given the
context: working in dark editing room with no windows.

The point is that light and dark interfaces each have their place, and the best choice
depends on the context of the environment of the users. When in doubt, give the users a
choice of one or the other.

INTERACTION PATTERNS
One of the first professions to understand the significance of humans

interacting with patterns was architecture.* Through our life experience, we have learned
that a series of stacked cubes is a flight of stairs that can be climbed, and a rectangle with
a handle is a door that can be opened. Just like a visual language, when we see these
shapes, our brain recognizes the pattern and we know what to do.

The same goes for user interfaces. For example, through experience, we
have learned the difference between radio buttons and checkboxes: one

lets the user choose only one option at a time, while the other lets the user choose more
than one option at once (see Figure 5.6). When we see them,

we know how they are supposed to work instantly.
It may be tempting to create new and unique user interface elements or

behaviors for existing controls. This might be because we feel that we know a better way
for the user to manipulate the data, or it looks like an interesting chal enge. We must do
our best to resist this temptation. Not only could it result in decreased learnability and
efficiency, but it will also take more time to create and maintain the code for a control that
does not already exist.

FIGURE 5.6 The importance of following interaction guidelines and patterns: the majority
of users have learned how a radio button works (left), and how it is different from a
checkbox (right).

* The book A Pattern Language by Alexander, Ishikawa, Silverstein, et al. is generally
regarded as one of the best books on the patterns of architecture and urban design.

78 m Designing the User Experience of Game Development Tools General
Modeling
Animation

FIGURE 5.7 Changing the current view: a non-standard pattern (left) compared to a
standard pattern (right).

For example, if your tool requires a control to switch between different views, it might be
appealing to develop a dial that the user can turn to set the current view. While it is true
that using a dial to switch between views is more common for physical devices, a more
standardized pattern for a desktop software- based content creation tool would be tabs (see
Figure 5.7). They are common in software user interfaces, and most users are familiar with
them.*

What Happens When We Do Not Follow Guidelines?

While it is true that there are rare times where the advantages of a new pattern outweigh
the disadvantages, we should strive for familiarity as much as possible. This means
following existing interaction patterns guidelines, such as those created and maintained by
Microsoft and Apple.

Imagine that we introduce a new interaction pattern to our tool. This pattern is unfamiliar
to all of the users and must be learned. When the user sees the pattern, they spend more
time in the think and look phases of the action cycle. If the new pattern does not improve
the efficiency of the tool, this means that the new pattern has actual y made the usability of
our tool worse!

Established interaction patterns do not have to be learned. We know
how they work from experience. They have been streamlined over time.

If used correctly, users will learn the tool faster (because they are familiar with the
interface) and be more efficient (because they can jump back and forth between different
tools without having to adjust the way they work).

Who Establishes Interaction Patterns?

An interaction pattern becomes a standard because it works well. Just as our brain’s ability
to see visual patterns evolved to keep us from being

* This is also dependent on the platform. For example, to toggle a value on and off, a
switch control is more common in tablets and smartphones, while a checkbox is more
common in desktop software applications.

Design m 79

eaten by a saber- toothed tiger, interaction patterns survive because they have proven to be
some of the most effective and well- established solutions to a given problem within a
specific context.

It is unusual for new interaction patterns to be established by anyone
other than big companies such as Apple, Microsoft, and Adobe.* Because
they have such a large market share, many people are exposed to their
products and become familiar with their interaction patterns.¥

There are times when Apple, Adobe, and Microsoft deviate slightly from

their own guidelines. However, the vast majority of their applications follow the
guidelines and use the same patterns consistently. We should do

the same. If the interaction patterns are standardized, users can focus on creating content,
instead of learning how to use the interface.

How to Choose the Right Interaction Pattern

If you have read the books Design Patterns: Elements of Reusable Object-Oriented
Software by Gamma, Helm, Johnson, and Vlissides or Code Complete by Steve
McConnell, you know that design patterns are a solution to a problem within a given

context. Many interaction pattern libraries also use this format to help you decide which
one is best to use.

For example, when the problem is choosing one unique option from a

list, and the context is that there are between two and seven options, the Microsoft
guidelines suggest using radio buttons. However, in the context that there are more than
seven options and not a lot of space to display them, a drop- down is suggested.t (See
Figure 5.8.)

Many guidelines derive from this format to help you choose the right
interaction pattern. When in doubt, implement it and watch the users
work with it.

* The guidelines for Microsoft Windows and Apple OSX can be found below. To the best
of my knowledge, the design guidelines for Adobe products are not publicly available.

http://msdn.microsoft.com/ library/ windows/ desktop/ dn688964.aspx
https://developer.apple.com/ library/ mac/ documentation/ UserExperience/ Conceptual/
AppleHIGuidelines/ Intro/ Intro.html

T In some ways, Apple’s keynote presentations—watched by millions of people all over
the world—

are a training session on how to use their products. This can have a huge impact on the
perception of how easy to learn their products are!

T See the guidelines on radio buttons here: http://msdn.microsoft.com/ en- us/ library/
windows/

desktop/ dn742436%28v=vs.85%29.aspx.

80 m Designing the User Experience of Game Development Tools 1

uT W ~ A N W W L MM N W =

5
4
6
6
56
7
7
7
8
8

FIGURE 5.8 An example of how guidelines help to determine when to use radio buttons
versus a drop-down menu.

What to Do if a Pattern Does Not Exist in the Guidelines
There may be times when the user interface control that you need does

not exist in the Microsoft or Apple guidelines. In this case, the next best thing to do is to
find as many examples of other similar controls in other software, and look for similarities
in the look and functionality.

For example, Microsoft and Apple may not have guidelines for a control
that resizes a two- dimensional object. However, if you compare almost
any image manipulation software (especially those made by Adobe), you

will see that a rectangle around one or more selected objects, with handles at the four
corners that you can drag to resize, is a common pattern that will be familiar to most users.

HIERARCHY

In the world of graphic design, hierarchy can be used to draw the user’s attention to a
specific part of the interface. This can be useful if you must show a lot of information in
your interface, but you want the user to focus on a specific part that will help them to
accomplish their goals.

How Can Hierarchy Improve Usability?
Efficiency

By using hierarchy, we can influence the user’s gaze. This can reduce the amount of time
spent in the look phase of the action cycle while the user is scanning the interface to find
what they are looking for.

Learnability

We can use hierarchy to attract the user’s eye to specific parts of the interface, making it
easier for beginners to find the basic functions they are looking for when seeing the tool
for the first time.

Design m 81

FIGURE 5.9 Example of hierarchy, from left to right: position, thickness, size, and
contrast.

Understanding Hierarchy

Like a visual language, hierarchy uses shape and color to influence where the user looks.
Hierarchy is defined by four properties: position, thickness, size, and contrast (see Figure
5.9, from left to right).

Position

Objects that are placed close to each other are considered grouped. This also means that
objects with a lot of white space around them will stand out, attracting the user’s attention
first relative to the other objects.

Thickness
Thicker objects are often seen as having more importance and will typi-

cally be noticed before thinner objects. A good example of this is bold text versus regular
text.

Size

A single object that is a different size compared to the other objects around it is likely to
be noticed first. The fine print in an advertisement is a good example of this. The
advertisers want you to notice the text in the ad first, not the fine print!

Contrast
We tend to notice objects that have more contrast first and then other

objects with less contrast after. In fact, newborn babies see extreme contrast before they
can see subtle contrast, which is why many baby toys have highly contrasted shapes and
colors.

What Are Examples of Patterns That Use Hierarchy?
The Google weather card is an excellent example of hierarchy (see

Figure 5.10). If the user’s goal is to see the current temperature, the design is very efficient
at using all four elements of hierarchy to draw the user’s

&3 Primary 22 Social ® Promotions +
Gmail Team Stay more organized with Gmail’s inbox - 6:55 am
Gmail Team The best of Gmail, wherever you are 6:55 am

Gmail Team Three tips to get the most out of Gmail - 6.55 am

Montreal, QC

Monday 10:00 PM
Overcast
2 *C|°F Precipitation: 0%
1 Humidity; 14%
Wind: 6 kmv/h
Temperature = Precipitation Wind
26
21 - =" B
11 PM 2 Al 5 AN 2 Al 11 AN 2P 5PN 2PN
Man Tue Wed Thu Fri Sat Sun hlon
rra 177 '

27" 15° | 26°18° 26°14° 24°11° 21°12° 23°14° 24°15° 22° 15°

The Weather Channel - Weather Underground - AccuWeather Send feedback

82 m Designing the User Experience of Game Development Tools FIGURE 5.10 The
Google Weather card uses hierarchy to help the user focus on the most important
information first. Google and the Google logo are registered trademarks of Google Inc.,
used with permission.

attention to that information. The current temperature is by itself, sur-rounded by white
space (position), it is bigger and bolder than the other text (size and thickness), and it is
100 percent black on 100 percent white (contrast). All of these properties in combination
influence our eyes to look at the current temperature first and then scan the rest of the
interface after.

As you can see in Figure 5.11, new e- mails in Gmail feature two proper-

ties of hierarchy: they are bold (thickness) and are written in black text on FIGURE 5.11
The Gmail inbox uses hierarchy to make unread messages stand out. Google and the
Google logo are registered trademarks of Google Inc., used with permission.

Design m 83

a white background (contrast). By comparison, read e- mails are not bold and are written
in black text on a gray background. All of this draws your eye to the new e- mails.

CONSTRAINTS
Constraints impose limits on what the user can do. Their purpose is to
protect the user from making mistakes, allowing them to focus on their

work without having to worry about the limitations.

How Can Constraints Improve Usability?
Efficiency

Without constraints, the user may try to do something that will result in an error. Because
of this, they will spend a lot of time in the think phase trying to understand why something
is not working. Furthermore, limiting the user’s choices means they spend less time in the
look phase considering options that are not allowed anyway.

Learnability

Limiting the user’s options also means that they have less to learn. The constraints make it
clear what can and cannot be done.

Understanding Constraints

When we are deeply involved in the creation of a tool, we sometimes forget that not all
users are aware of the system’s technical limitations. Users will try things that we never
thought possible.

When users make mistakes, not only does it affect their efficiency, but

it can also make them feel frustrated and hesitant to explore the rest of the tool.
Furthermore, constraints can protect bad assets from being shared

with the rest of the production team—which affects everyone’s productiv-

ity. Good constraints make the users more confident about using the tool, so they can
focus on creating content.

What Are Good Constraints?
Some constraints have the best intentions to protect the user but still
allow them to make mistakes. For example, USB cables use a small piece

of plastic to prevent the user from plugging it in the wrong way (see the left side of Figure
5.12). However, this merely acts as a guide, and it is not guaranteed to work. As you may
have experienced, sometimes it takes

multiple attempts of plugging and flipping to insert a USB cable properly.

_—

84 m Designing the User Experience of Game Development Tools FIGURE 5.12 The
USB cable and Lightning cable demonstrate different types of constraints.

There are other examples like this, such as jumper cables or component

cables: the color code might seem like it protects the user, but mistakes are still possible.
One of the best examples of a cable that truly protects the user from
making a mistake is the Apple Lightning cable (see the right side of

Figure 5.12). Unlike the USB cable design, there is no wrong way to plug it in. You plug it
in whichever way you want. Even better, the edges are rounded, helping to guide the plug
into the charging port. Constraints that protect the user without having to think make for a
better user experience.

What Are Examples of Patterns That Use Constraints?

A very basic constraint could be the use of a slider instead of a numeric input box when
the value has a minimum and maximum value (see Figure 5.13).

By adding a slider, it is impossible for the user to enter an incorrect value.

Furthermore, the slider is a familiar interaction pattern, and users expect it to limit the
range of values that can be entered,* as opposed to a numeric input box that sometimes
rejects or readjusts the value.

0
-7+
+

0

10
12 +

5

FIGURE 5.13 Sliders have clear constraints (left), as opposed to numeric input boxes with
minimum and maximum values (right).

* You can refer to Microsoft’s guidelines on sliders here: http://msdn.microsoft.com/ en-
us/ library/

windows/ desktop/ bb226811%28v=vs.85%29.aspx.

r1|l'I=

& New Material @ =
Shader

|||l ||I'|I . O “ or

'1
I

Tiling

"_"'_ 4 -'I.
m |||-||r| -_'._.||r|r|il:

Script

Design m 85

FIGURE 5.14 The Inspector in the Unity Engine uses constraints to ensure that a script
can only be added where it is allowed.

Another example of constraints: limiting where an object can be
dragged and dropped. For example, in the Unity game engine, you can

only drag and drop a script on the Script input of a Game Object (see the top of Figure
5.14). This makes it impossible for a user to insert a script file in the wrong place, such as
a texture map input (see the bottom of

Figure 5.14).*

NATURAL MAPPING
An interface with good natural mapping means that the placement of the
controls matches the actions that they perform. For example, buttons to

move objects left and right are placed to the left and right of each other, instead of top and
bottom.

* You can find guidelines for drag and drop in OSX here: https://developer.apple.com/
library/

mac/ documentation/ userexperience/ conceptual/ applehiguidelines/
TechnologyGuidelines/

TechnologyGuidelines.html#//apple_ref/ doc/ uid/ TP30000355-SW9.

86 m Designing the User Experience of Game Development Tools How Can Natural
Mapping Improve Usability?

Efficiency

Bad natural mapping can affect all three phases of the action cycle. The user must spend
more time in the look phase to read the specific text on button labels, instead of quickly
glancing at their overall position. The user must also spend more time in the think phase,
considering what the label of each button means. Finally, it is also possible that the act
phase could be delayed as the user tries different controls until they get the right one, due
to the position of the controls feeling unnatural.

Learnability

Natural mapping can also improve learnability. If controls are laid out in a way that
matches the action that they perform, as well as the user’s mental model, the user will
understand how the controls work much faster.*

Understanding Natural Mapping

A common keyboard configuration for first- person shooter games is
WASD: pressing the “w” key moves you forward, “s” moves you back, and
the “a” and “d” keys strafe left and right (see the left side of Figure 5.15).

Because the movement is relative to the position of the keys, this is an example of good
natural mapping.

Instead, imagine if the “w” and “s” keys strafe left and right, and the “a”
and “d” keys move forward and backward (see the right side of Figure 5.15).

When your opponent fires a rocket at you, and you press the “a” key expecting to go left,
instead you walk right into it and explode into a ludicrous amount of giblets. You can
imagine how frustrating that would be!

w
w
A

O v » O W

FIGURE 5.15 The standard WASD key configuration for first-person shooters.

* Furthermore, when it comes to memorability—the ability to remember how to use the
tool after not having used it for a while—users tend to remember the general location of a
control first (left side, right side, or middle of the toolbar), and then the label/ icon
associated with that control.

Design m 87

Moving forward with the “a” key does not feel natural, because it is to

the left of the other keys. This would be an example of bad natural mapping.
What Are Examples of Patterns That Use Natural Mapping?

The Color Set Editor window in Autodesk Maya shows an example of good
natural mapping. The “Move Up” and “Move Down” buttons are positioned
relative to the actions that they perform (see the left side of Figure 5.16).
Another good example is the Connection Editor window. All of the

buttons that are related to the left are positioned on the left, and all of the buttons that are
related to the right are positioned on the right (see the middle of Figure 5.16).

However, there are times when limited space can lead to compromises

to natural mapping, as can be seen in the Layers Editor. The buttons for moving layers up
and down are placed side by side (see the right side of Figure 5.16). This is not ideal
natural mapping.

REPRESENTATION

Representation is a technique that can be used to help users make quicker decisions
without increasing time spent in the think phase of the action cycle (such as doing
calculations in their heads). It is often most useful when the user interface does not match
the user’s mental model.

How Can Representation Improve Usability?
Efficiency

If the user has to do calculations in their head, they will spend a lot of time in the think
phase. By presenting complex concepts in a simple way, they can spend more time in the
act phase, increasing their efficiency.

Learnability

If the concepts in a tool are confusing for the user, they will have difficulty learning how
to use it. By using representation to match the user’s mental model, the interface more
closely resembles how the users think, making

it easier to learn.

Understanding Representation

The Numbers Game

To understand how we can use representation, we will play a game. You

can also play this with a friend to explain the concept of representation.

88 m Designing the User Experience of Game Development Tools eprinted
hots r

creen s

utodesk s

face. A

nter

aya i

utodesk M

he Aft

ditors o

arious e

Cross v

apping a nc.

atural mf n utodesk, I
plesof A

Exam ission omer

E5.16 Rhep

U

ith t

FIG

w

Design m 89

123456789

ABAAB

AB

8+2+5=15

FIGURE 5.17 An example of the numbers game.

First, one player writes down the numbers 1 through 9 on a piece of
paper. Each player takes a turn choosing a number. They announce it to

the other player and then cross it off the list. Once a number is chosen, it is no longer
available.

The goal of the game is to keep picking numbers until one player can

add up three of their numbers to make a total of 15. For example, the game could go like
this (see Figure 5.17):

. Player A picks 8
. Player B picks 6
. Player A picks 4
. Player B picks 3
. Player A picks 2
. Player B picks 9
. Player A picks 5

. N o U1 A W N =

. The game is over: Player B picked 8, 4, 2, and 5. They can make 15 by adding up the
numbers 8, 2, and 5.

Does that sounds a little bit complicated? Now, imagine playing the
game without writing anything down, and calculating the numbers in
your head! Add to that the fact that you also have to remember if your
opponent already picked a specific number.

Tic- Tac- Toe

Let’s forget about the numbers game and play a completely different game: tic- tac- toe.
By comparison, this game is very simple: you and your opponent take turns placing X’s
and O’s on a three- by- three grid, and the first player to get three X’s or O’s in a
horizontal, vertical, or diagonal line wins (see Figure 5.18). This is a game that anyone can
learn in seconds and does not require doing any calculations in your head.

90 m Designing the User Experience of Game Development Tools FIGURE 5.18 An
example of tic-tac-toe.

Magic Square

Here is where it gets interesting: what if I told you that the two games we just saw—the
numbers game and tic- tac- toe—are actually the same game?

A magic square is a three- by- three grid, with each space containing a

different number from one to nine. If you add up the numbers diagonally, vertically, and
horizontally, you always end up with 15 (see Figure 5.19).

Now, think back to the numbers game, and how complicated it is:
remembering your own numbers, doing math in your head, and even hav-
ing to remember what numbers your opponent picked. Now, if you simply

play tic- tac- toe with a magic square, you can pick three numbers that add up to exactly
15 in a matter of seconds, with little effort.

That is the power of representation: presenting the user interface in

such a way that it simplifies a complex concept, allowing the user to make decisions more
quickly and easily.

What Are Examples of Patterns That Use Representation?

In previous versions of Microsoft Office, you had to use an interface similar to the one
you see on the left in Figure 5.20 if you wanted to insert a new table.

This interface requires you to visualize the table in your head, think
about how many rows and columns you want it to have, and then translate
that into the numbers that you enter into the “Number of columns” and

“Number of rows” fields.

N U w0 oy

15

15

4

9

2

FIGURE 5.19 An example of a magic square.

m E v Docuims. ? = = 0O X m B »w Docume.. T EH - O X
HOME INSERT DESIGM PAF HOME INSERT DESIGM F‘JIT
Table
MNumber of columns: ?;} Table A
Num.h er of [T:w:. =] IDDD
AutoFit behavior . 000
@ Fixed column width: [Auto 3] @%DD
() AutoFit to contents |:| |:| |: |: E E DD
e OOO0000000
- DOO0000000
[7] Remember dimensions for new tables |:| |:| |:| I:“:":":":":":‘
——— T DOO0000000
B Insert Table..

Convert Text to Table...
Eﬂ Excel Spreadsheet
B Quick Tables ¥

Design m 91

FIGURE 5.20 An example of using representation to insert a table in Microsoft Office.
Used with permission from Microsoft.

Newer versions of Microsoft Office provide an interesting example of
representation to build your table. This design allows the user to move

their mouse inside a grid to set the number of rows and columns for their table visually,
which matches most users’ mental model of what a table is much more closely (see the
right side of Figure 5.20).

Using this technique does have a small downside: it limits the total
number of rows and columns the user can choose. This limit is likely
based on the maximum number of columns and rows that the average
user needs. For the edge case of an expert user who needs to go beyond

the maximum, the “Insert Table...” menu item is still available just below the grid (see the
right side of Figure 5.20, near the bottom).*

FEEDBACK

Feedback is all about how the tool communicates with the user. Examples
of feedback include what the tool is doing now, what just happened, and
how much time is left in a particular process.

* If the user needs hundreds of cells in a table, maybe Microsoft Word is not the right tool,
and they should be using a tool that does one thing (spreadsheets) really well: Microsoft
Excel.

92 m Designing the User Experience of Game Development Tools How Can Feedback
Improve Usability?

Efficiency

Feedback helps indirectly with efficiency because it lets the user know if they can do
something else while they are waiting. Furthermore, the user is less likely to force close an
application, requiring them to redo any work that they may have lost.

Learnability

In- context feedback through carefully worded messages can help the user learn how the
tool works more quickly and make them more confident in

their understanding of the tool.

Understanding Feedback

When two humans engage in conversation, there is an exchange of infor-
mation. One person speaks, and the other listens. When one person is
done speaking, the other person replies. We are accustomed to this from
years of social interaction.

For example, a back- and- forth conversation might go something like
this:

Mario: Hello, Luigi. It’s- a me, Mario! How are you today?

Luigi: I am doing well. How are you?

Mario: 1 am doing very well, thank you for asking!

Now, imagine a conversation like this:

Mario: Hello, Luigi. It’s- a me, Mario! How are you today?

Luigi: I am doing well. How are you?

Mario: ... (stares at Luigi)

Luigi: Mario?

Mario: ... (continues staring at Luigi)

Luigi: Mario, hello?

Mario: ... (blinks once)

Luigi: ... oookay ... (walks away)
That would make for a very awkward conversation. As humans, we are not
accustomed to interactions like this. We expect an almost instantaneous

confirmation of our presence in our social interactions. We cannot fault Luigi for walking
away.

Design m 93

Likewise, as you will recall from Chapter 4, an interaction between a
human and computer is a back- and- forth process. The human performs
an action, and the computer responds. The human sees what the computer
did, and they perform the next action.

However, too often, the interaction between humans and computers
resembles the awkward social interaction: the human performs an action,
but the computer does not respond. Worse still, the user may think that
the program has crashed and close it, losing all unsaved work.

Now, imagine a third conversation like this:

Mario: Hello, Luigi. How are you today?

Luigi: I am doing well. How are you?

Mario: Just a moment, let me think ...

Luigi: Sure, I can wait.

Mario: ...

Luigi: Are you still thinking?

Mario: Yep, just give me a minute.

Luigi: OK! No problem. Thanks for letting me know.

Mario: Sorry about that. I am doing very well, thank you for asking!

This interaction is less awkward. Luigi knows that Mario is still participat-ing in the
conversation but that he is not ready to respond quite yet. Luigi is unlikely to walk away.

Acceptable Response Time
Jakob Nielsen, whom we spoke about in Chapter 4, published a book in

1993 titled Usability Engineering where he describes three important limits when it comes
to acceptable response times, with recommendations on

when feedback is recommended:*
» At 0.1 second, the users “feel that the system is reacting instanta-

neously” and no feedback is necessary.

* 1 second “is about the limit for the user’s flow of thought to stay

uninterrupted.” The user will notice the delay and will “lose the feel-

ing of operating directly on the data,” which can make the tool feel

sluggish. In this case, a wait cursor is recommended.

* Here is an article with a summary of the information: http://www.nngroup.com/ articles/
response- times-3-important- limits/.

94 m Designing the User Experience of Game Development Tools

* 10 seconds is “the limit for keeping the user’s attention.” For anything longer, the user
will forget what they were doing, which could affect

their efficiency. In this case, users should receive feedback to confirm that the computer is
working, and an estimate of how much longer

they need to wait. Using a progress bar is ideal in this situation.
Perceived Wait Time

In 1985, while he was studying at the University of Toronto under Bill
Buxton, Brad Allan Myers published a paper titled “The Importance of
Percent- Done Progress Indicators for Computer— Human Interfaces.”*

The paper describes Myers’s research on how progress bars affect our perception of time.
In his experiment, he asked people to perform database

searches, some of which had progress bars and some of which did not have them. The
results of the study indicate that the participants felt more confident in the database
searches with progress bars.

The Benefits of Giving the User Feedback
As we can see in the previous examples, giving the user feedback with a

progress bar can help in multiple ways. It confirms to the user that the tool is still working
—which stops them from forcing it to close and potentially losing unsaved work—and
gives them the confidence to do something else

while they are waiting, which increases their overall efficiency.

Furthermore, in Chapter 1 we learned how one of the qualities of a good
user experience is when the interaction is “more human.” If we compare
our awkward conversation example from before to a long wait without a

progress bar, we can see how waiting without feedback can result in a “less human” user
experience.

Feedback Overload

One of the dangers of feedback is that it can quickly turn into more noise than signal. If
you give the user too much feedback, they are likely to start ignoring all of it and miss

something important. If you are aware of the user’s goals and mental models, you can use
that knowledge to filter the feedback you provide. If you are not, the feedback is likely to
be overloaded with information that may be important for the conceptual model, but not to
the user.

* Note the term “percent- done progress indicators”—at the time, progress bars did not
exist as we know them now. You can find the paper here: http://dl.acm.org/ citation.cfm?
id=317459.

from Toolsmiths P... ..\Toolsmiths P to Desktop (C:\...\Desktop)
Discovered 1 item (414 MB)...

— e

@More details

Design m 95

FIGURE 5.21 The progress bar in Windows gives feedback on the progress of a large file
being pasted. Used with permission from Microsoft.

What Are Some Examples of Patterns That Use Feedback?
Progress Bar

Progress bars indicate the progress of a task and give us a sense of how much of the task is
left.* Perhaps one of the most recognized is the copy progress bar in Microsoft Windows
(see Figure 5.21).7

Some progress bars lock the tool while they are running. However, some
can show a progress bar while still allowing the user to continue working.
A good example of this is Adobe Audition: when running a multitrack

mixdown, the editor is locked and a pie- chart progress indicator appears, with the
estimated remaining time (see Figure 5.22). However, the user

can still work on other aspects of the user interface while they are waiting.
Wait Cursor

Showing a wait cursor next to the mouse has the advantage of being eas-
ier for the user to notice, as their eyes are likely already on the mouse.

However, since most wait cursors do not show progress, it is best to use this option when
the wait time is relatively short.

FEED- FORWARD

Feed- forward is essentially the opposite of feedback: instead of learning the results of
their actions after the fact, the user sees what will happen before they commit to an action.
This gives them the option of changing

their mind, which is especially useful if the action is destructive or complicated to reverse.

* Some research even suggests that animated patterns overlaid on top of the progress bar
can make it feel as though it is moving faster! http://chrisharrison.net/ projects/
progressbars2/

ProgressBarsHarrison.pdf.

T Microsoft’s guidelines for progress bars can be seen here: http://msdn.microsoft.com/
en- us/

Ecifter: Toalomeths Podcast 3 - Bloomuosesx * = =

Exporting Multitrack Miodown_. () 1% O

Time Remaining: 44 seconds

96 m Designing the User Experience of Game Development Tools FIGURE 5.22 An
integrated progress pie-chart gives feedback on the export progress in Adobe Audition.
Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.

How Can Feed- Forward Improve Usability?
Efficiency

Feed- forward is especially helpful in reducing the amount of time spent in the think
phase. There is no need to wonder what is going to happen, as you simply see it before
you choose to commit.

Learnability

Feed- forward is an extremely effective learning technique. Previewing what will happen
al ows the user to learn what a feature does instantly and with less risk, which also invites
them to explore the other features of the tool.

Understanding Feed- Forward
While the concept of feedback in user interfaces is well known, feed-

forward is less so . * Research suggests that when people make a decision, their brain
“previews” the outcome of their choices to assist in choosing the correct action.t In a
sense, feed- forward helps us preview decisions in the same way that our brain does.

* One of the first uses of the term feed- forward in the context of user experience design
comes from Tom Djajadiningrat, in his paper “But How, Donald, Tell Us How.” If you
have access to the ACM

Digital Library, you can read the article here: http://dl.acm.org/ citation.cfm?id=778752.

T You can read more here: http://en.wikipedia.org/ wiki/
Feedforward,_Behavioral_and_Cognitive_

Science.
Design m 97
What Are Examples of Patterns That Use Feed- Forward?

A good example of a pattern that uses feed- forward is the Styles section of the ribbon in
Microsoft Word. By hovering their mouse over each style, the user can get a preview of
what their text will look like with the style applied directly in their document (see the top
of Figure 5.23). However, they do not have to commit to the decision. If they are not
satisfied, they simply move the mouse to another style (see the middle of Figure 5.23)

or out of the Styles section completely (see the bottom of Figure 5.23).

However, once they find the style they like, they can click to commit to it. This is much
more efficient than applying a style, undoing, applying a style, undoing, and so on.

When attempting to drag and drop a material onto objects in the Unity

game engine viewport, the objects under the mouse are shown with the

material instantly, as opposed to only after you release the mouse button (see Figure 5.24).
The numbers that indicate how many items are inside a folder is another

example of feed- forward. For example, the folder list in Gmail shows how many unread
mail items there are in each category (see Figure 5.25), allowing the user to skip over
folders that do not contain unread items instead of taking the time to check each one.

GROUPING

Grouping is the technique of associating similar terms, concepts, or commands together in
a way that matches the user’s mental model.

How Can Grouping Improve Usability?
Efficiency

By grouping related items together, the user can scan through a list of items and find what
they are looking for more quickly, reducing the amount

of time spent in the look phase. This could also reduce the think phase, because fewer
items to look at mean fewer items to think about.

Learnability
Grouping can make a tool easier to learn because the interface is orga-

nized in a logical way that matches how the user thinks, allowing them to adapt to it faster.

mi.:]".'l'{}i- Document] - Werd T E = O %
HEKE INSERT DESIGH PaGE LAYOUT REFEREMCES ke

AaBbCeDe | AsBbcen: | AaBbCr asEbcel AJDB| assecer -

T Marmad | T Mo Spaci. - Heading E’} Heading 2 Title Subtitie |3 |

Siyles "oA

Thank you Mariol But our princess
is in another castlel

m- H - Q = Documentl - Ward T M - O X
HUME INSERT DESGN PAGE LAYOUT REFEREMCES ke

AsBbCcDs | AsBbCeDr AaBbCr Asbcct | ASBI assbcer |
Elormal | ThoSpec. Headingl Headngl T-'.Ieh Subtitle ||

Shyles B A

Thank you Mario!
But our princess is in
another castle!

BEE % O Documentd - Word T M = 0O X
HOME INSERT DESIGH PAGE LAYOLT REFEREMCES K

| AaBbCcle. AsBbCcDy AaBDC) AeBbCcl HEHL AaBbCel -

fiormnal | TNeSpac. Hesadngl Heading2 Tile Submtle

Syles h T A

98 m Designing the User Experience of Game Development Tools FIGURE 5.23 Using
feed-forward to preview changes to formatting in Microsoft Word. Used with permission
from Microsoft.

| B GemaOtpn Compean fisdes Hew
| A + BE¥E| e] T | T

i'
| 1 + FBF3] Emmeresm Wi yan 2 Ly =

P =

.
(=] + B3 eEmmereT 3] o | rrr—

Design m 99

FIGURE 5.24 Feed-forward allows the user to preview how a material will change the
look of an object in the Unity Engine before committing to the change.

v Categories

s Social (2) v

O

¥ Promotions (1)

© Updates
B Forums

100 m Designing the User Experience of Game Development Tools FIGURE 5.25 Feed-
forward gives the user information about the contents of a folder in Gmail without
requiring them to click on it. Google and the Google logo are registered trademarks of
Google Inc., used with permission.

Understanding Grouping

Grouping is one of the many techniques that make up the discipline of
information architecture. The most important factor in determining how
terms, concepts, and commands can be grouped is by understanding the
user’s mental model.

For example, by using separators, menu items can be organized to

reflect how the user associates them. This allows the user to skip the menu items that are
not applicable to their immediate goals and find what they are looking for faster.

Some people may look at the concept of grouping menu items and say,
“Well, that’s just associating similar commands together!” That may be
true, but how they are associated is not always obvious. We may have an
opinion on how the menus should be organized, but we could be influ-

enced by the way the data is organized in the code, and not how the user thinks about it.
To help us determine how to group information from the

user’s perspective, we can do a card sort.
Using a Card Sort to Determine Groups
In Chapter 4, we learned about how card sorting can help us understand

the user’s mental model. The way in which a user associates menu items is also part of

their mental model. By putting each command in our menu

onto a set of cards, and asking the user to organize them, we can get a
much better idea as to how they associate each of the commands.
When you are done, study the results and look for common trends. For
example, did the majority of users put all of the commands that create
polygon and NURBS primitives together, or did they combine the cre-

ate polygon primitives and polygon editing tools together into one group?

s EEREORW fF@rans

Transfer Attributes

Paint Transfer Attributes Weights Tool

Reduce
Paint Reduce Weights Tool
Cleanup...

Triangulate

Design m 101

Afterward, you can transform the groups into top- level menus and the

cards into individual menu items.

This process can be applied to window menus, contextual menus, tool-
bars, and so on.

What Are Examples of Patterns That Use Grouping?

The menu items in Autodesk Maya are grouped in such a way that matches
the user’s mental model (see Figure 5.26). For example, even though the

FIGURE 5.26 The Mesh menu in Autodesk Maya demonstrates the technique of grouping.
Autodesk screen shots reprinted with the permission of Autodesk, Inc.

{ SR D] - Weard

HOLE PEERT [ESHGH PAGE LAYTHN FEFERFRCES AL IMITS SEVIEW

BcoverPage= M= 5 T = 1) Tsmantn 1 Heputiek
B o lag WO F :

. ol L
[Bask Page g ol Chan

Table Pxtunes Onine Shapes bpgater | Onlire
1= Paye Breske ; T R T L R - [T

hpos et Commenti

102 m Designing the User Experience of Game Development Tools FIGURE 5.27
Grouping is used to organize commands in the Microsoft Office ribbon. Used with
permission from Microsoft.

“Smooth” command adds new vertices to the selected mesh, and the
“Average Vertices” command moves vertices, they are grouped together
because they are both related to giving the mesh a smoother appearance.
In addition, all of the commands related to transferring information

from one mesh to another are grouped together. If the user is scanning the list of
commands and is not planning to transfer information, they can

skip over that whole section to the next group.
The Microsoft ribbon shows yet another example of grouping. At the
top level, the commands in the ribbon are organized into tabs. For exam-

ple, all commands related to inserting charts or external resources to a Microsoft Word
document can be found under the “INSERT” tab. If the

user wants to insert a chart to their document, they can quickly skip over the “VIEW” or
“REFERENCES?” tabs, as they do not contain the commands they are looking for (see the
top of the ribbon in Figure 5.27).

One level below are the sections. If we return to the example of the

“INSERT” tab, we have a series of sections for different elements that can be inserted:
Pages, Tables, Illustrations, and so on (see the bottom of the ribbon in Figure 5.27). These
are grouped together in a way that the average user may expect. This way, if the user is
looking to insert an illustration, they can skip over all of the commands within the “Pages”
and “Tables”

groups and go directly to the commands within the “Illustrations” group.
CHUNKING

You may have heard the statistic that people are able to remember seven
items at once, plus or minus two. This number comes from research by
George A. Miller in 1956 and is often referred to as “Miller’s Law.”*

* You can read more about Miller’s Law here: http://en.wikipedia.org/ wiki/
Miller%27s_law.

Design m 103
However, new research suggests that this number is closer to four, plus
or minus two. The reason that Miller’s numbers were higher is that his

research subjects were able to clump similar items together, making them easier to
remember. This behavior is known as “chunking.”

How Can Chunking Improve Usability?
Efficiency

If the information is organized in a consistent way, the user can remember and interpret it
more easily, resulting in less time spent in the think phase.

Learnability

If the information is organized in such a way that matches the user’s mental model,
learnability can be improved.

Understanding Chunking

To feel the difference that chunking can make, we will play a memory
game. Study the image of letters and numbers in Figure 5.28 for ten sec-
onds, and try to remember as many as you can.

After the ten seconds are up, close the book and get a piece of paper and a pen. First, write
down how many letters and numbers you think that

there were. Next, try to write down as many of the letters and numbers
you can remember. When you are a ready, turn to the next page.
In Figure 5.28, you can see the exact same letters and numbers as in

Figure 5.29. Imagine that you were asked to study those same letters and numbers for ten
seconds, but in this configuration. How many do you

think you would be able to recall? Would you get them all right?
The fact that it is easier for you to remember those same letters and
numbers this way is an example of chunking: You have a predefined struc-

ture in your brain for the shortened names of these video game consoles. It is easier to

remember and decipher the letters and numbers when you can
group them together in a logical way that makes sense to you.
FIGURE 5.28 Memory game.

104 m Designing the User Experience of Game Development Tools FIGURE 5.29
Memory game, with chunking.

What Are Examples of Patterns That Use Chunking?

Content creation tools allow users to work with RGBA color values in different ways: 0 to
255, 0.0 to 1.0, and hexadecimal. Despite the fact that hexadecimal does not match the
mental model of color for the average

person, it has become a standard for working with certain types of content.
When users are accustomed to working with hexadecimal, they are able

to pick out the red, green, blue, and alpha values quickly by chunking the characters in
groups of two. For example, a user familiar with RGBA in

hexadecimal can look at the value #FF7FOOFF and determine very quickly

that the color has 100 percent red (the first and second characters) and 50 percent blue (the
third and fourth characters).

However, some tools do not work with hexadecimal colors in RGBA—
such as Microsoft Expression Blend, which uses ARGB.* This can be con-

fusing to users who are accustomed to chunking RGBA colors. The previous color would
appear to be 100 percent red, 100 percent blue, 50 percent

green, and fully transparent to someone who is used to working with
RGBA!
When designing how information will appear to the user, consider how

they will chunk it. Also, try to follow existing standards. If technical limitations make this
impossible, make the information familiar and easier to chunk for the user in the interface,
and then convert it to the necessary format in the background so the user does not have to

think about it.

EXCISE

Excise refers to navigating around the interface, from switching tabs to changing
windows. Anything that involves moving the cursor across the

screen to reach an element of the user interface is excise.
How Can This Technique Improve Usability?
Efficiency

Reducing excise will have the biggest impact on the act phase of the action cycle.
Although it is the lightest load, reducing a repetitive task even by

* This is likely because it was designed to work with the XAML file format, which uses

ARGB.
Design m 105

one second can add up to a huge boost in efficiency over time if it helps a large number of
users.

Learnability

Excise does not have a significant impact on learnability.
Understanding Excise

One of the most consistently confirmed studies in human— computer
interaction was completed in 1954 by Paul Fitts, who proposed that the

time it takes a user to touch a target with a cursor is directly related to the distance from
the target and the size of the target. This is known as Fitts’s Law.*

Therefore, to reduce excise, the target must be made larger and/ or closer to the current
position of the cursor.

What Are Examples of Patterns That Use Excise?

Window Menus Versus Contextual Menus

Accessing items in a menu or toolbar frequently is an example of excise
that is mainly related to target distance. The user must move their cur-

sor to the menu or toolbar and click on the item and then move the cursor back to where it
was before (see top of Figure 5.30).T

File Edit View Help
File Edit View Help
File Edit View Help
File Edit View Help
Undo

Redo

Rename

Delete

File Edit View Help
File Edit View Help
File Edit View Help
File Edit View Help
Rename

Rename

Delete
Delete

FIGURE 5.30 Comparing the excise of a window menu (top) versus a contextual menu
(bottom).

* You can read more about Fitts’s Law here: http://en.wikipedia.org/ wiki/ Fitts%27s_law.

T Specifications for menus and contextual menus from Microsoft can be found here:
http://msdn.

microsoft.com/ en- us/ library/ windows/ desktop/ dn742392%?28v=vs.85%29.aspx.

106 m Designing the User Experience of Game Development Tools By comparison,
contextual menus can help to reduce excise because

they appear right next to the user’s cursor, resulting in shorter distance (see the bottom of
Figure 5.30). In addition, as the name “contextual

menu” implies, only items that are contextually related to the item that was clicked should
be enabled in the menu, which means a shorter list,

and therefore a shorter distance to the option that the user is looking for.
Window Menu Item Order

While it might seem that organizing menu items alphabetically will make
it easy to find a specific menu item, this approach presents two problems.
The first is that the menu rarely matches how the user chunks informa-

tion. The second is that the items that are accessed more frequently may be further from
the cursor, because the first letter of the command is near the end of the alphabet.

For example, the level editor GTKRadiant has a contextual menu with

items that are ordered alphabetically. If the majority of users are frequently required to
create entities of type “worldspawn,” they must move their

mouse to the bottom of the contextual menu every single time, which
results in a lot of excise (see the left of Figure 5.31).

Another very common situation is having menu items listed in the order
that they were created. In other words, when a developer adds a new com-
mand, it is placed at the bottom of the menu (see the right of Figure 5.31).
A better solution is to place the most frequently used commands at

the top of the menu, reducing the travel time from the point at which the menu was raised
(see Figure 5.32). When new items are added, learn the

frequency at which they will be used—either by looking at metrics or by
doing a task analysis—and place them in the appropriate position in the

menu. This can apply to window menus, contextual menus, combo boxes,

menu buttons, and more.
Bottom of the Screen
There is one problem with ordering items in a contextual menu from

top to bottom: the mouse is not always at the top! Sometimes, a user will invoke a
contextual menu from the bottom of the screen, and the contex-

_skybox
dom

func >
info
item
leght
[sghtjunior

MESE R e :

enslaught
path_corner
runematch_spawn_point
target »
Ergeer * brigger_countar
weapon » trigger_delay
trigger_hurt
trigger_impulse

| worldspawn

trigger_multiple
trigger_once
....... tngger_push
trigger_relay
trigger_swamp

trigger_teleport

Design m 107
Edit
Preferences...
Added earlier
Find...

Replace...
Copy
Paste

Undo

Redo
Added later

FIGURE 5.31 Two ways in which the organization of a contextual menu can increase
excise: Alphabetical, as in GTKRadiant (left) or the order in which the commands were
added (right).

Edit

Undo

More frequently
Redo

Copy

Paste

Find...
Replace...
Preferences...
Less frequently

FIGURE 5.32 Organizing a menu based upon how often the commands are used can
reduce excise.

tual menu will appear above the mouse, instead of below it. What can be
done about this?

Microsoft Office presents an interesting solution to this problem: fre-
quently used formatting commands appear in a floating bar that changes

position depending on where the contextual menu was invoked. When

| E - z Documents « Word r M = O g z wmentd « Wand T [= 0
B %- 0 7T m (= I 4 B %- 0 Deoc T m o x
HOME INSERT DESIGH PAGE LAYOUT REFEREMC) HOME INSERT DESIGH PAGE LAYOUT REFERENC +
Calibri (Bady) -[11 | A" & ¥ A
B I U ¥-p-i=-i=- sin =
X
L ity Paste Optioes:
b k.
B Paste Options: |
o= ont...
B ool
A -.n1 4 Panagraph
o
. e
S Paesgraph... 1@ Define
Symeoimyms:]
Defire:
8o By Tranglete
Synarymy "
. l;a Sgarch with Bing
a5 Tranglate
Hy fink
-ﬁ, Saaech with Bang E:. Hyperin
Ld Mew Comment
8 Hpelink.
Anbadote J
Ly Hew Comyment [}
Artidot L] ¥
idiste Calibri (Body) =10 x o P

108 m Designing the User Experience of Game Development Tools FIGURE 5.33 The
contextual menu in Microsoft Office changes based upon

where it was invoked in an effort to minimize excise. Used with permission from
Microsoft.

the cursor is at the top of the window, the floating bar appears at the top, nearer to the
cursor (see the left side of Figure 5.33). However, when the cursor is at the bottom, the
floating bar appears at the bottom (see the right side of Figure 5.33).

The marking menu in Autodesk Maya is yet another approach to reduc-
ing excise (see Figure 5.34). Marking menus typically have up to eight
regions,* which are all the same distance from the cursor.

Contextual Menus and Learning Curve

When considering the use of contextual menus, do not forget about the
learning curve concepts that were presented in Chapter 4. Because con-

textual menus are not always visible, they are difficult to discover for beginners. For this
reason, it is best to ensure that the most frequently used commands are always visible in
toolbars or menus so new users can

find them.

* While the number of options on the menu is limited to eight, commands can be chained
together.

However, that technique is geared more toward expert users.

"B Autodesk Maya 2012 x64: unﬁmlﬁﬁ- B

File Edit Modify Create Display Window Assets

View Shading Lighting Show Renderer Panels

@ogEl @ o) B EE e

Create Polygon Tool O

Poly Plane O Poly Disk
Poly Cylinder O . Poly Sphere [u]
Poly Cone O Poly Torus O
Poly Cube O

Poly Pyramid

Poly Prism

Pipe

Helix
v Interactive Creation
v’ Exit On Completion

Polygon Display All ¢

Design m 109
FIGURE 5.34 The marking menu in Autodesk Maya is excellent at reduc-

ing excise, though it can be difficult for beginner users. Autodesk screen shots reprinted
with the permission of Autodesk, Inc.

Examples of Target Size
For an example of target size, we can look at Adobe Premiere Pro (see

Figure 5.35). One of the most frequent actions is pressing the play button, while one of the
least common actions is closing the sequence that you are currently working on.

Because the play button is a large target, it is easy to acquire with the mouse. By
comparison, the close button for a sequence is only a few pixels across, making it difficult
to click by accident.

B Adobe Premiere Pro - C:\Users\dlightbown\My Docu... |- |- &) | (s3]
File Edit Project Clip Sequence Marker Title Window Help

00;00;00;00 it v < 00;00;00;00
)

Sequence 02

110 m Designing the User Experience of Game Development Tools FIGURE 5.35 The
size difference of the “play” and “close sequence” buttons in Adobe Premiere
demonstrates the concept of target size excise. Adobe product screenshot(s) reprinted with
permission from Adobe Systems Incorporated.

Hotkeys and Excise

While it may be true that using hotkeys to activate a command can reduce excise as
compared to moving the mouse to click on a button, reaching

keys on the keyboard can be excise too!

A complicated hotkey combination such as Ctrl/ Cmd+Alt+P cannot be
done one- handed by most users. It may require the user to look down at
the keyboard and take their other hand off the mouse. This may not seem

like much, but if the hotkey is for a command that is used often, it can add up to lost
efficiency like any other kind of excise.

Resting Place

Any pro gamer can tell you that optimal hotkey placement is crucial to

efficiency. All of the default hotkeys for the competitive multiplayer RTS

Starcraft are placed along the left side of the keyboard, near the resting Design m 111

2 Z W <O XNEDRXRSITO™TTUO®E9O0—~c<HmME 50

FIGURE 5.36 Considering the resting place of the left hand when choosing hotkeys.

place of the left hand.* In the case where efficiency is not important, choosing a hotkey
based on the first letter of the command would make sense,

such as using “M” to build a marine. However, to make the player more

efficient, the second letter in the word marine is used: “A,” because it is on the left side of
the keyboard, near the resting place of the left hand (see Figure 5.36).

You can see the same rules applied to content creation tools. For exam-

ple, the majority of 3D content creation applications use the letters Q, W, E, and R for
select, move, rotate, and scale, respectively, which are some of the commands that are
used most frequently. Another classic example is

undo, copy, cut, and paste: Ctrl/ Cmd+Z, X, C, and V.}
When choosing hotkeys for the commands that are used most fre-

quently, try to choose hotkeys that are near the left side of the keyboard. If the key for the
first letter of the command is on the right side, or is already used, then use the next letter
in the name of the command. Also, to avoid confusion, don’t replace standard hotkeys like
the ones for undo, copy,

cut, and paste that are listed above, as well as Ctrl/ Cmd+S, O, W, and A for save, open,
close, and select all, respectively.

Deliberately Increasing Excise to Protect the User
There may be times when you want to increase excise on purpose. This
may be to slow down the user so that they have more time to think about a

* As left- handed people already know, most default hotkeys are made with right- handed
people in mind. If there are a significant number of left- handed users, you can give the
option to customize the keyboard so the resting place is on the right side instead.

T Of course, all of this is assuming a North American QWERTY layout. Other layouts like
AZERTY

would alter these rules a little bit.

112 m Designing the User Experience of Game Development Tools potentially dangerous
decision or to protect them from accidental actions.

Here are a few options.
Dialog Boxes
There is a commonly held belief that dialog boxes should never be used,

and that the fewer dialog boxes you have, the better. However, dialog boxes can be useful
for protecting the user from errors. One such example is

a dialog box confirming that you want to delete a file. Accidental clicks resulting in data
loss can be reduced by forcing the user to change their focus to the dialog box, move their
mouse, and click.

It is extremely important to note that a dialog box should be avoided in the case of
commands that are used frequently. The slowdown in efficiency may be worse than the
lack of error protection. In these cases, allowing the user to recover or undo their choice is
highly recommended.

Potential y Dangerous Menu Items
Menu items that have the potential to cause irreversible damage—such as

deleting an object—can be placed at the bottom of a menu, adding excise

to protect the user from clicking on them by accident.

Inconvenient Hotkeys

Deliberately increasing the excise for a hotkey can also protect the user.
For example, using the spacebar as a hotkey for a dangerous command
that cannot be reversed would be a very bad idea. By comparison, a com-
plex hotkey such as Ctrl/ Cmd+Alt+P usually requires two hands and
therefore has a significantly lower chance of being pressed accidentally.
However, there are a few exceptions: standards such as the “delete” key

to delete should not be changed to protect the user, as they are so common that changing
them would just lead to confusion. Again, the best way to

protect against this is to implement a robust undo system.
PROGRESSIVE DISCLOSURE
Progressive disclosure means showing only the parts of the interface

that the user needs to see. The interface starts simple, and we allow the user to reveal
(disclose) more, one piece at a time (progressively), to suit their needs.

Design m 113

How Can Progressive Disclosure Improve Usability?

Efficiency

Progressive disclosure can reduce the amount of time spent in the look

phase by reducing visual clutter in the interface. Furthermore, the less we see, the less we
have to figure out, resulting in less time spent in the think phase. However, since showing
and hiding can increase the amount of

excise—in other words, time spent in the act phase—it is important to find the right
balance between the amount of progressive disclosure and excise.

Learnability

Progressive disclosure is one of the most powerful techniques for improving learnability.
By simplifying the interface, first- time users can get a grasp of how a tool works without
being overwhelmed by all of the features at once, and expert users can customize the
interface to suit their needs.

Understanding Progressive Disclosure
In Chapter 3, we spoke about how new features add complexity exponen-

tially, not linearly. The same goes for the number of interface elements that are visible at
one time. By starting with a simple and clean interface, and allowing the user to see more
as they gain more experience, we are allowing the user to control the amount of
complexity.

Progressive Disclosure and the Learning Curve

To decide if progressive disclosure is the right technique to use, you must first look at how
many interface elements there are and how often they will be used.

For example, for a tool that has many interface elements and will be used all day by
beginners as well as experts, using progressive disclosure makes sense. Beginners
appreciate an interface that starts simple and accessible, and experts benefit from an
interface that is powerful and customizable.

However, if the tool has a smaller number of interface elements, and is
going to be used for five minutes, once per week—for example, a tool to
update to the latest version of the game engine—progressive disclosure

may not provide significant benefits.

= Copying 2 items (1.64 G

Copying 2 items (1.64 GB)

from Toolsmiths\Toolsmiths to Toolsmiths\Toolsmiths

—

@ More details

Copying 2 items (1.64 GB)

Copying 2 items (1.64 GB)

Name: IGDAPodcast.wav

From: Toolsmiths Podcast 3 - Bloom_Recorded ...\Tool
To: Toolsmiths Podcast 3 - Bloom_Recorded ..\Tool
Time remaining: About 10 Seconds

Items remaining: 2 (1.02 GE)

Speed: 158 MB/second

N

@ Fewer details

114 m Designing the User Experience of Game Development Tools FIGURE 5.37
Progressive disclosure can be used to hide information that most users may not be
interested in, such as technical details about the “paste” process.

Used with permission from Microsoft.

Design m 115
res- dobe

rogf p rom Aple o
xam ission f

t e mer

xcellen ith p
nesa

ized i eprinted w
ustome c shot(s) r
an b creen
roducts c roduct s
dobe p dobe p

ost Af m plexity. A
face o omf c

nter

heievel o

hich t heir 1
nwort

ays if w
ppropriate f .
ariety o s a

e v nd i rated

Th

38

Incorpo

E 5.R isclosure, a
U

FIG

sive d Systems

116 m Designing the User Experience of Game Development Tools What Are Some
Examples of Patterns That Use

Progressive Disclosure?

Progressive disclosure is such an established pattern that Microsoft has an entire section in
their user experience guidelines dedicated to it.* As a result, you can find examples of this
technique being used to show and hide elements all over Windows. For example, when
pasting a large file,

most users only want to know if the operation is done (see the top of
Figure 5.37). However, for users who want to know more—such as pre-
cisely how much time is remaining, and the file transfer speed—they can

click on the “More details” expander (see the bottom of Figure 5.37). In addition, when
the paste dialog appears, the expander is closed by default, since this information does not
interest most users.

It should not come as a surprise to see extensive use of progressive disclosure in Adobe
products such as Photoshop and Illustrator, as they are extremely complex and have many
different interface elements. To address this, each panel can be individually expanded and
collapsed to show

exactly what the user needs to accomplish their task (see Figure 5.38).

WRAPPING UP

In this chapter, we concentrated on the Design phase of the User- Centered Design
process. We learned about how the brain and the eyes work together and how humans
have evolved to see specific patterns more efficiently.

We learned about the importance of using a consistent, clear visual lan-
guage, and we also discovered the value of following design guidelines.

Finally, we learned a wide variety of design techniques, such as Hierarchy, Constraints,
Natural Mapping, Representation, Feedback, Feed- forward,

Grouping, Chunking, Excise, and Progressive Disclosure.
In the next chapter, we will discuss concepts and techniques to be used
during the Evaluation phase of the User- Centered Design process.

* You can find it here: http://msdn.microsoft.com/ en- us/ library/ windows/ desktop/

dn742409

%28v=vs.85%29.aspx.

Chapter6

Evaluation

WHAT WILL WE LEARN IN THIS CHAPTER?
Concepts

* Choosing the right evaluation strategy

* Deciding between code and pre- visualization
Techniques

* Pre- visualize the interface

* How to do a heuristic evaluation

* Performing user tests

HOW DO WE EVALUATE THE DESIGN?
Now that we have analyzed how the users use the tool and designed one

or more improvements, it is time for the Evaluation phase. One of the first questions to ask
ourselves is if it will be more cost- effective to go straight to code or to pre- visualize the
changes to the tool. The next question to ask is if there are current users or users with a
similar profile available to validate the interface. If users are available, we can do user
tests. If not, we can perform a heuristic evaluation while we wait for users to become
available.

CHOOSING BETWEEN CODE OR PRE- VISUALIZATION
In Chapter 2, we learned about Jeff Hawkins and the power of pre-

visualizing. You might be asking yourself, “If pre- visualizing is so powerful, why not use
it all the time?”

117

118 m Designing the User Experience of Game Development Tools If you are not a
programmer and there are no programmers on your

team, or if there are programmers but they do not have time during the

current sprint, your only option is to pre- visualize. This will allow you to start getting
feedback from the users while you wait for programming

resources to become available.
However, if you can program or if programmers are available, your

decision to code or pre- visualize will depend on your situation. Here are a few aspects to
consider.

When to Pre- Visualize

Pre- visualization is recommended if the estimated time to make changes

to the tool is higher than the time it would take to pre- visualize. For example, it takes a lot
less time to sketch out a new type of user interface control that has never been created
before compared to fully implementing it in code.

If your goal is to measure the improvement to learnability, pre-

visualization can be a good choice. For example, the design techniques of representation
and hierarchy can be simulated by using pre- visualization with good accuracy.

However, pre- visualization is not ideal for measuring improvements
to efficiency compared to making changes directly to the code. This is
because pre- visualization techniques cannot simulate the response time

of a real computer, and, in the case of a sketch, using your finger to press a button is not
the same as clicking on the button with the mouse.

Furthermore, it is difficult to simulate a large database with pre-

visualization. For example, if your user test requires that the user is able to search through
a database containing thousands of textures, it could take significantly longer to pre-
visualize every possible option. In these cases, you may choose to go straight to code.

When to Code

As we learned earlier, if your main goal is to improve efficiency, the best way to measure
this accurately is by making changes to the code, due to

the limited ability of pre- visualization to simulate the complete experience of using a tool.

If the changes are relatively small, such as moving around a few controls in the interface,
this may also be a reason to make the changes directly in code. This is because the time it
would take to simulate such a small change to the interface through pre- visualization may
be higher.

e A< .

= “-._#N 7 # - -

B
B

Evaluation m 119
However, if the changes that you want to make require a large program-

ming effort and your main interest is seeing if the users understand and appreciate the new
interface, going straight to code could be more expensive in the long term, especially if the
users do not like the design in the end. In this case, pre- visualization may be the best
choice.

PRE- VISUALIZE THE INTERFACE

If you have decided to pre- visualize instead of going straight to code, here are a few
techniques that you can use.

Sketch

Sketches are one of the quickest ways to pre- visualize (see Figure 6.1). They could be on
a whiteboard, in a notebook, or even on a napkin. Because

they are so fast to create, they are ideal for trying out a variety of different options. It does
not matter how you sketch, as long as you are turning words into visuals in an effort to
have a shared vision of the design.

You do not have to be a good artist to sketch. In fact, if the sketch looks like it did not take
a lot of time to create and it is easy to change, people are more likely to be honest with
their feedback, which is exactly what

you want.
However, one of the reasons that sketches are fast to create is because

they are not interactive, and they contain the least amount of detail compared to other pre-
visualization options. This could lead to problems during the evaluation, if the lack of
interactivity and details impairs the user’s ability to understand the interface. The choice to
use sketches depends on the complexity of the design that you are evaluating.

FIGURE 6.1 Sketches are a quick and easy way to pre-visualize the interface.

120 m Designing the User Experience of Game Development Tools FIGURE 6.2 Paper
prototype, using the “Wizard of Oz” technique.

Paper Prototype
Paper prototypes are essentially interactive sketches. We can use pen,

paper, cardboard, scissors, tape, sticky notes, and other materials to create and simulate
interactive elements (see Figure 6.2).

To make a paper prototype interactive, we can use what is called the

“Wizard of Oz” technique. The name comes from the movie of the same

name, because the interactivity is created by someone “behind the cur-

tain.” This technique works best with two people: one person asks the

user to accomplish a specific task, and the other simulates the inter-

activity by moving pieces of the paper prototype around in reaction to the user’s actions.*
Simulating interaction with a paper prototype has a few advantages

over code: Paper prototypes never get compiler or linking errors. The only thing you need
to deploy them are your own two legs. They are easily portable and can be archived
indefinitely in a file folder. Finally, anyone can create a paper prototype without having to
learn a programming language

or a graphic design tool.T

* To see an example of this in action, watch this video: http://www.youtube.com/ watch?
V:

GrvV2SZuRPvO.

T In fact, there is an old joke among user experience designers: if you have ever done arts
and crafts in kindergarten, you can create a paper prototype.

Evaluation m 121
Interactive Prototype

These prototypes are created and evaluated on a computer or other device, using
interactive prototype creation tools.* These tools come prepackaged with standard
controls such as buttons, drop- downs, and checkboxes.

Most allow you to add simple interactions, such as opening a dialog box
when clicking a button (see Figure 6.3).
Although they cannot simulate every single type of interaction, most

interactive prototype creation tools have very powerful and versatile systems for building
interactions, as well as vibrant communities where people share recipes to simulate
different types of behaviors.

In addition, if your users are not in the same building—or even the

same country—interactive prototypes are clearly a better choice compared to sketches and
paper prototypes, as they can be shared electronically. By using screen sharing, you can
even watch people test the prototype in real time and get feedback as if you were sitting
next to them.

Interactive prototypes can bring you closer to simulating the real tool
as compared to sketches and paper prototypes. If you are simulating a

tool that will be used on a desktop computer, interactive prototypes are about as close as
you can get to reality without actually writing code.

However, there are a few drawbacks to interactive prototypes. For most

people new to user experience design, building an interactive prototype
requires learning a new tool. In addition, making changes can sometimes
be more complicated compared to a sketch or paper prototype. There is
also the chance that deploying a prototype on somebody else’s computer

will not work at first. For this reason, it is recommended to test out interactive prototypes
on another machine before doing a large number of

user tests.
PERFORM A HEURISTIC EVALUATION
In Chapter 1, we learned—through the user experience pyramid—that

one of the foundations of a good user experience is usability. Heuristic evaluation can be a
useful technique when there are no users available

to evaluate the interface. It allows us to catch usability problems before the users do.

* Two of the most popular professional tools are Axure and Balsamiq, which you can find
at http://

www.axure.com and http://www.balsamiqg.com, respectively. Another alternative is to
import a series of static screenshots into Microsoft PowerPoint, Apple Keynote, or Adobe
Acrobat and make them interactive by creating clickable hotspots.

e - T
C = =t Haes @@O
lM g L] —
prem— [ﬂ] ol 1T e e e [==5]
C—] | ————— ! il woled OM " E
g bt don cet BB
@ s e @O [o B
Woalzeganen sl isiproems | 08 i beediniiief O =
——— ® s s [
— g &8 |
samc | ooy wreen gt L i B E
teil aoi
Sgie dell E p L] Bebid d108 no oel i E
e e e Pt | paee
e e g o et e SL el g i ol gl E
i .
=1 T E
1 i o 7 b F e it 5]
B I T e —— ~ ack ,,ME
& 5H0% oot & sl 2 E
P T wrrs B tmmaterd ek ot e D €7 - =
-] el
L E

122 m Designing the User Experience of Game Development Tools iq
alsamo B

sed t

icen

uilizzoni, 1

oG

acom

f Gi

ark o

radem

edt

egister
sariqi

alsam
ission.m
rototype. B er
ithp

active p sed w
nter, u
nifaLC

ple o tudios, L
xamn e ig SA
3

alsam

E 6.Rnd B

U

FIG

SRL a
Evaluation m 123
Although there are many varieties of usability heuristics,* for the pur-

poses of this book, we will learn the heuristics established by Jakob Nielsen in 1994,
which are perhaps the most popular and widely used. They origi-nate from his book
Usability Engineering. T

The heuristics are listed in the following sections. For each one, you
will find a quote of what someone might say when confronting this heu-

ristic, one or more examples to help you identify the heuristic, as well as design
techniques from the previous chapter that could be used to improve the problem.

What Are the Heuristics?
Visibility of System Status
“What is the tool doing right now? Did it crash?” There are no progress

bars or wait cursors. The tool freezes while it is performing an action without telling the
user to wait. There are no dialogs to inform the user of what is going on. For this heuristic,
the technique of feedback is recommended to keep the user informed of what the tool is

doing.
Match between System and Real World

“I don’t understand what this means.” The words and concepts used in the tool are
confusing, because they do not match the user’s mental model. In addition, the position of
the controls does not make sense relative to their functionality (for example, up and down
buttons are placed side by side).

In the case of this heuristic, natural mapping and representation can help make the tool
easier to understand by matching the users’ mental model

more closely.

User Control and Freedom

“How do I go back to where I was before?” When a mistake is made, there
is no clear way to go back to where you were before. Another common

sign: the tool does not support undo/ redo. In this case, the technique of feed- forward can
help. This is because it allows the user to see what their action will do, which gives them
the option to change their mind before

it is too late.

* Here are a few: http://en.wikipedia.org/ wiki/ Heuristic_evaluation, as well as those by
Bastien & Scapin: http://www.webmaestro. gouv. qc. ca/ publications/ archives/
webeducation1998-2004/2000-11/

criteres.pdf.

T You can read more about Nielsen’s heuristics here: http://www.nngroup.com/
articles/

ten- usability- heuristics/.

124 m Designing the User Experience of Game Development Tools Consistency and
Standards

“Is this the same as that?” Two similar controls that edit the same type of data do not work
the same way. For example, one list box may only delete selected items with the delete
key on the keyboard, whereas the other list box within the same tool only deletes selected
items with a delete button in the interface. As opposed to a specific design technique, the
best way to address this heuristic is to ensure that the tool follows guidelines and uses
interaction patterns consistently.

Error Prevention
“How can I prevent that mistake from happening again?” The interface

makes it far too easy for mistakes to occur, such as allowing an item to be dragged and
dropped where it is not supposed to, or setting the default

button for a “Exit without save changes?” dialog box to “Yes.” The design techniques of
constraints and feed- forward can be useful for fixing issues associated with this heuristic.

In addition, by strategically increasing excise, you can give the user more time to consider
their options and prevent them from making mistakes.

Recognition Rather Than Recal

“I can’t remember what it was called. If I had a list of options to choose from ...” The tool
does not provide a visual preview for a list of 3D meshes, so the only way to know what
they are is to open them one at a time.

Another common example is forcing the user to remember syntax or
object names instead of providing suggestions. This not only hurts effi-

ciency but also can lead to errors. The design technique of representation can be useful
here, since it can be used to help the user remember what

they were looking for by showing them a list of options.
Flexibility and Efficiency of Use
“I wish there was a faster way to do this.” Actions that need to be per-

formed very frequently do not have shortcuts, such as a hotkey or a prominent button in
the interface. Improving excise is one of the most common ways to help address problems
associated with this heuristic.

Aesthetic and Minimalist Design

“Whoa, this interface is complicated. I don’t know where to start!” Every possible feature
is exposed at once, and the user does not know where to Evaluation m 125

look first. Furthermore, there is no way to hide or simplify the user interface for the first-
time user. In the case of this heuristic, the design techniques of hierarchy and progressive
disclosure could be used, as they can help guide the eye of the user, as well as letting them
determine how much visual complexity they need in the interface.

Help Users Recognize, Diagnose, and Recover from Errors
“An error occurred. What do I do now?” Error messages do not clearly

indicate what the problem is or help the user to find a solution. In this case, the
recommended design techniques would be a combination of feedback

(to let the user know how to fix the error) and constraints (to help the user avoid making
the mistake in the first place).

Help and Documentation
“I’m stuck, and there’s no one around that I can ask. What do I do?” No

documentation, such as a wiki page, training video, or help file, is available. There is no
clearly marked place to ask for assistance or log a bug.

The design technique of feedback can be used in the form of contextual

help within the application, often seen as little question marks near a user interface
element to learn more about how it works.

How to Perform a Heuristic Evaluation

In an ideal situation, a heuristic evaluation is done by a large number of qualified user
experience designers, who then combine their efforts to find as many usability problems as
possible. However, doing a heuristic evaluation by yourself, or with a few members of the
tools development team,

may be better than not doing it at all.

To perform a heuristic evaluation, look at the pre- visualization or the working tool that
you want to evaluate, and search for issues similar to those from the list of heuristics. It
can be helpful to do this by stepping through the task flows that you created during the
Analysis phase.

When you notice an issue that matches one of the heuristics, indicate

the name of the heuristic and write a short description. Optionally, you can take a
screenshot of the specific part of the interface that exhibits the problem. You can also
assign a level of severity, to indicate how much this could affect the usability of the tool.
This can help to prioritize what to improve first.

D i Previ Heﬂiﬁmdic_m I-!ei;htﬁmce
Fiter Type @ 4 sample () Alpha Channel
®3x3 () Average RGB
EWIﬁ ;::'535 - age
vj 2 Altemate Conversions
CinvetX © 757 i
@ Biased RGB
Flinvety © 9x9 © Red
f = D'.m
Flinvetz © v © Green
() Blue
MinZ o Scale 5) Max [R.G.B)
() Colorspace
3D Viiew Options Em e
[7] Add Height to Mormal Map ~ Decal Texture o
[Using Multiple Layers [F]Use Decal Textue () Corwvert to Height
7] Swap RGB ["] Brighten Decal (Use Invert options)
[¥] Animate Light

126 m Designing the User Experience of Game Development Tools FIGURE 6.4 Heuristic

evaluation of the NVIDIA Normal Map filter.

For example, if we were to do a heuristic evaluation on the NVIDIA

Normal Map tool (see Figure 6.4), we might identify the following issues:

* Aesthetic and minimalist design: All of the options are displayed at

once. Beginners do not know where to look first, which can be very

intimidating. Severity: High.

* Consistency and standards: The “Alternate Conversions” section has

more than seven radio buttons. Microsoft’s design guidelines sug-

gest using a drop- down when there are more than seven options.

Severity: Low.

* Error prevention: The “Use Decal Texture” option can be checked
even when there is no texture selected. This could lead to the user
wondering why they cannot see their decal texture. Severity: Medium.

These are just a few examples, and you may be able to identify other issues with this
particular interface.

Finally, remember that people use tools in unexpected ways. Doing
a heuristic evaluation is a good first pass when no users are available.
However, you should make every effort to follow it up by testing with

users. Someone will work with the tool eventually, and the sooner you can watch them
work, the better!

DO USER TESTS
One of the best ways to evaluate the user experience is by doing a user
test. The first step to doing this is to build a test plan and select the users Evaluation m 127

to test. Then, you need to prepare the interface that the users will evaluate, either by
making changes directly in the code or by pre- visualizing. Finally, you can run the tests
and examine the results in the next Analysis phase.

Building a Test Plan

The simplest kind of test plan is simply a list of tasks that you assign to the user. If you are
building a test plan for the first time, you can get an idea of which tasks to include by
looking at the user and stakeholder goals, as well as the task flows and scenario
storyboards that you created during the Analysis phase. All of these can be used to help
you determine which tasks you will ask the users to perform.

How to Phrase Tasks

A task should be phrased in the form of a question such as “How would
you do this?” as opposed to a command: “Now do that.” This is a closer
match for the way people think when they are trying to achieve their goals.
For example, imagine that one of the user goals identified during a con-

textual inquiry is to create a new mesh with a shader assigned and add it to the level.
Three tasks are required to accomplish this goal: create the mesh, add a shader, and add it
to the level. In this case, you could phrase the three tasks as fol ows: “How would you
create a mesh?”, “How would you add a

shader to the object?”, and “How would you add the object to the level?”
Don’t Assign Leading Tasks
In the Analysis phase, we discussed the danger of asking leading ques-

tions, and the same applies to user tests. If the question influences the user, you could get
inaccurate results. For example, a leading task would be, “Use the object list to search for

a tree, then drag and drop it into the level.” The question implies where to find the tree and
how to add it. A better alternative would be “You need to add a tree to the level. How
would you do that?”

Realism and Context

It is also important to make the questions realistic and to give them context. For example,
“How would you add a skyscraper in the middle of the

forest in this level?” could result in unusual feedback since it is not a very realistic task.
Asking the user, “How would you add a large tree to the forest in this

level?” is good, but an even better alternative would be, “The art director 128 ® Designing
the User Experience of Game Development Tools has requested that a large tree be added
to the forest. How would you do that?” This question is more realistic, and the fact that the
request comes from the art director adds context that is appropriate to that task.

Specific Tasks Are Easier to Measure

It is important that the tasks are as specific as possible. This allows the results of the user
test to be compared not only between users but also

across future iterations of the Evaluation phase. For example, the results of the task “How
would you create a new shader?” could vary wildly if the user adds a default shader versus
a complex ocean shader requiring several texture maps and customized properties for
water movement. The task

“How would you create a lambert shader with a prebuilt texture in the diffuse channel?” is
much more specific and therefore can be measured and

compared with more accuracy.
Select the Users

To select which users to test, you can use the same approach as the Analysis phase. Pick
users who have a profile appropriate to the tasks. To get the most accurate results, you
want to choose users who are already using

the tool, in production.

Testing with Similar Users

In the games industry, it is very common that tool development begins
before the content creators have joined the team, and that the deadline

to deliver the tools is right before the users arrive and start producing assets. This often
means that tools developers are scheduled to work on

other tasks shortly after the users arrive and start using the tools for the first time. If the
users have feedback about how the tools could be

improved, there could be no one available to make changes. Oftentimes,
nothing besides the most urgent problems with the base functionality of

the tools are fixed. This often results in tools with an inferior user experience, which costs

the game developer time and money in lost productivity over the course of production.
A better alternative would be to have the equivalent tools development
resources working with the users but spread out all the way through pro-

duction, instead of a big burst of work at the beginning. This will require that the people
who manage tools developers understand the value of the

User- Centered Design process, so that they can plan tools development
Evaluation m 129

tasks accordingly, which will require time and a cultural shift in the games industry. We
will talk more about that in the final chapter.

In the meantime, if you find yourself in this situation, selecting other users who fit a
similar profile may be your best option. If you are testing changes in code, and it is not
possible to deploy the tool to the users’ computers, do not let that stop you from getting
feedback. Bring them to your desk, or to any computer that has an early version of the tool
running.

Alternatively, you can connect to a computer running the tool via remote desktop (as long
as doing that does not significantly affect the user experience or measurements). The
bottom line is that waiting for the perfect moment to test could result in a missed
opportunity to improve the user

experience. You should do everything that you can to ensure that the first time that the
users lay eyes on the tool is not right before they start working with it for the first time.

How Many Users?

According to Jakob Nielsen, user testing with more than five users results in diminishing
returns.* While there is some debate over this number,

one thing is clear: if you limit your tests to five users, remember that those five users
should have the same role and should do the same tasks. In

other words, if you assign five users the task of using a level editor to place objects, but
those users are a mix of animators, 3D artists, and programmers, you are unlikely to get
accurate results. On the other hand, if you do this with five users who are all level
designers responsible for placing objects in the level, you are much more likely to get
accurate results.

Run the Test
Now it is time to get feedback. Meet with each user, show them the tool

or pre- visualization, and go through your test plan one task at a time. As in the contextual
analysis, resist the urge to help if they have difficulty understanding one of the tasks. Try
to understand why they are having

difficulty, and then move on to the next task. However, unlike the contextual analysis, you
may choose to ask that the users do not talk out loud, since it could affect the time it takes
them to complete a task. In this case, use your own judgment.

* You can read the article here: http://www.nngroup.com/ articles/ why- you- only- need-
to- test- with-5-users/.

130 m Designing the User Experience of Game Development Tools If you can, it is also
recommended to perform the user tests with two

people: one person assigning the tasks, and the other taking notes. When you are alone, it
can be difficult to assign tasks, observe the user, and take notes all at once. Having a
dedicated note- taker ensures that the person assigning the tasks can focus on the user and
notice things that they might miss if they were taking notes.

Although user tests can take less time than a contextual analysis, try to keep them under an
hour. Being the subject of a user test can be draining for some people. In any case, if the
users are in production, they may not have more time than that. If you encounter resistance
while running the

user tests (either from the user you are testing or from their supervisor), ensure that
everyone understands that the time required to run a user

test is a small investment compared to the potential savings of time and money in the long
term.

It can also be helpful to record a video of the user’s screen, or their

interaction with the pre- visualization. If an interesting or significant event occurs during
the user test, make a note of the time that it occurs in the video, so that you can go back
during the Analysis phase and grab a

screenshot or short video clip.

WRAPPING UP

This chapter focused on the Evaluation phase of the User- Centered Design process. We
learned how to evaluate a design and how to decide between

pre- visualization and going straight to code. We also learned a series of techniques to be
used during the Evaluation phase, such as sketching,

paper prototyping, interactive prototyping, performing a heuristic evaluation, and finally,
performing user tests.

In the next chapter, we will return to the Analysis phase, going back
through the loop of the User- Centered Design process, and discuss the
importance of comparing measurements.

Chapter?7

Back to Analysis

DEJA VU

If you have been reading up until this point, you might be won-

dering why we are talking about the Analysis phase again. “We already
did that in Chapter 4!”

The purpose of this chapter is to emphasize—once again—that the

User- Centered Design process is an iterative cycle. Once you have com-
pleted the Evaluation phase, examine the feedback gathered during the
Analysis phase to plan your next move.

Do We Have to Do Everything Over Again?

One of the misconceptions of the User- Centered Design process is that

it is a heavy process and that each of the techniques must be used every time through the
cycle. This is not true: while there is an up- front cost in doing Analysis for the first time,
in subsequent iterations, the techniques are there to be used on an as- needed basis.

As you go through the loop, you may find that you missed an impor-

tant task that the majority of users do on a regular basis. In this case, you can produce
another task flow to add to the others. You may also discover important users of the tool
that you were not aware of before. This could require doing more contextual analyses to
discover their goals and mental models.

If not, you can spend the rest of the time focusing on analyzing the

results of the Evaluation phase and preparing for the next round of adjustments in the
Design phase.

131

132 m Designing the User Experience of Game Development Tools COMPARING
MEASUREMENTS

In game development, we are accustomed to gathering all sorts of mea-
surements: the burn- down rate of a sprint, performance metrics of the
CPU and GPU, how different types of memory are allocated, budgets for

various types of expenses, the amount of information on each vertex of a mesh, and so on.
Yet, when was the last time that the efficiency and learnability of the game development
tools were measured on a regular basis?

One of the main reasons is due to the perception that it takes too much

time to measure. However, consider this: if you go on a road trip, do you drive around
aimlessly, hoping that you will soon arrive at your destina-tion, or do you stop
occasionally to check a map? Developing a tool without measuring is like driving around
without occasionally checking a map (see Figure 7.1). While it is true that verifying
measurements takes a little bit of time at each iteration, the goal is that the overall time
will be lower, as opposed to barreling forward aimlessly in the hope that we are making
the tool better.

Expert Opinions

If you have studied the history of computer science, you may have learned about Admiral
Grace Hopper. She developed the first compiler, and she is credited with popularizing the

term debugging. One of her most famous FIGURE 7.1 The importance of taking the time
to analyze the results of the evaluation phase.

Back to Analysis m 133

quotes is this: “One accurate measurement is worth more than a thousand
expert opinions.”

In the games industry, it is common to have an expert user or stake-

holder whose job it is to represent the needs of all users with the same job description.
When changes are made to a tool, we may ask this person to

decide if the changes are good enough. In some cases, they may say that

recent changes to the tool have made everyone more productive, and often the
conversation ends there. However, how do we know that this is true? *

The Analysis phase is our opportunity to learn the answer to this ques-
tion. By verifying and comparing the measurements, you can see if the
changes have really helped to improve efficiency, learnability, or both.
Each time you go through the Analysis phase, compare the measurements

to the previous cycle, and keep a record for the next cycle. This is one of the most reliable
ways to know if the changes made in the Design phase

are moving the tool in the right direction.

It is important to note that this does not mean that we do not value the opinion of the
expert users and stakeholders. On the contrary, by including them in the User- Centered
Design process, they can use the informa-

tion to make even better decisions, with less risk. This will help to build a stronger
relationship between all of the people involved in the development of the tool, and keep
everyone focused on improving the user experience.

* I was this person for several games, tools, and pipelines, and there is no doubt in my
mind that my opinion was wrong on many occasions!

Chapter8

Real- World User-

Centered Design

INTRODUCTION

The purpose of this chapter is to present a “day in the life” account

of a tools development team using the User- Centered Design process.

This will give you a sense of what the process feels like, which can help you to understand
how to implement it yourself.

The Cast

Stakeholders

* Sophie, project manager

* Ben, art director

Developers

* Daniel, tools programmer

* Francis, technical artist

The Company

This story takes place at a medium- sized game developer that has been

in business for over ten years. They have developed their own engine and tools, which
they have used to create games that have sold enough cop-ies to keep them in business.
However, very little effort has been put into improving the tools, due to perceived time
and budget constraints. No one 135

136 m Designing the User Experience of Game Development Tools is measuring the
performance of the users, and it is generally accepted that if the tool can create the
content, it is “done.”

As a result, some of the tools are not very easy to use and are frequently the source of
frustration for the content creators. Most of the senior users who have been with the
company for many years have given up on complaining and have simply accepted that the
tools are the way they are.

The Situation

Sophie has recently been promoted to project manager. The last game that she shipped
suffered from grueling overtime, productivity problems, lost data, and the slow ramp- up
of new staff due to difficulty learning the tools.

Some senior people quit shortly after the project, and the cost of retraining the new hires
was significantly higher than if they had been able to keep their staff.

Sophie is currently in the production phase of her next project, and she is starting to see
the same situation emerge from the last project, especially in the cut- scene pipeline.
Concerned that history will repeat itself, and because work on cut- scenes will be starting
soon, she decides that she wants to see if she should invest in improving the efficiency of
the cut-scene pipeline.

She learns that two developers from another team, Daniel and Francis,
have been using a new approach in their tools development work—the
User- Centered Design process—and that they have been getting positive

results. Although she wants to improve the tools, like a good project manager, she also
wants to ensure that the benefits outweigh the costs.

Daniel and Francis have recently become available, so she asks them to

join her team to focus on making the cut- scene pipeline more efficient. She requests that

they keep her up to date on their sprint reports so she can track their progress.
THE PROCESS IN ACTION

Sprint 1

Analysis

Daniel and Francis start by interviewing the stakeholders. They know

that Sophie’s goal is to make the cut- scene pipeline more efficient. They also interview
another stakeholder: Ben, the art director who is responsible for the cut- scenes. They
learn that one of Ben’s goals is to be able to request changes to the cameras and see the
results so he can validate Real- World User- Centered Design m 137

the composition. He also mentions that, during the last project he worked on, asking the
animators to make changes to the camera took a very long

time, which he found frustrating.
With these stakeholder goals in mind, Daniel and Francis move on to
the next step: contextual analyses with the users who work on cut- scenes.

In light of the art director’s comments, they focus on the users who spend the most amount
of time working with cameras, the animators. There

are twelve animators in the cut- scene team, and they are scheduled to be working on cut-
scenes for a total of six months.

During the contextual analyses, Daniel talks to the animators, while

Francis takes notes. They begin by asking them what their goals are when working with
the camera. Many of the goals that the users talk about can be linked to the producer and
the art director: they want to adjust the

camera, and they want to do it quickly. However, unlike the art director, their goal is not
setting the composition of the camera but simply getting the job done so they can move on
to their next task.

During the task of adjusting the camera, one of the actions is to adjust the depth of field.
The depth of field has five values that the users can set: the start and end of the near blur,
the start and end of the far blur, and the focus point distance. They mention that they
sometimes get confused

about what each value represents, that it is difficult to find the value they are looking for at
a glance, and that they often have to readjust the values multiple times because they go
beyond the minimum or maximum.

The junior users say that it is extremely difficult to use the depth of field tool. The senior
users say that while it is not perfect, the junior users just have to adapt to it. In fact, the
biggest complaint from the senior users is regarding something that is done only on
occasion: copying the settings

from one camera to another, which requires that they copy and paste the

values one field at a time.

Some users even say that the depth of field tool does not need to be

improved, mostly because it used to be worse! In the past, to change the depth of field, the
users had to create a script file that contained commands to set the depth of field and
attach that script file to the camera. This was a problem because many users would
generate errors by forgetting to put a comma or a semicolon, misspelling the name of the
command, and so on

(see the left side of Figure 8.1).
To improve the situation, one of the tools programmers created a tool

to set the depth of field: a window with a row of numeric boxes (see the right side of
Figure 8.1). Even though some users feel that this tool is good

i setdof (8, 32, 12, 42, 25):

——

Apply

2 DepthofField =
3 setDOF (2, 26, 10, 18): BLUR_BEGIN_FORE 8

4 BLUR_BEGIN_BACK 32

5N setDOF (4, 31, 11, 37, 22) BLUR_END_FORE 12

o BLUR_END_BACK

7 setDOF(5, 29, 14, 41 21): mncf:r_

8

9

setDOF (4, 30, 11, 39, 26):

138 m Designing the User Experience of Game Development Tools FIGURE 8.1 The
previous (left) and current (right) methods for setting the depth of field of cameras.

100% of users, often

Manually

Select camera

Move/Rotate

Adjust DOF

30% of users, rarely

Copy/Paste Values

FIGURE 8.2 Task flow analysis for the process of setting up cameras for cut-scenes.

enough and that there is nothing left to do, it is clear to Daniel and Francis that this tool
simply exposes the conceptual model of the depth of field script command, and that
efficiency could be improved further.

Using the notes from their contextual analyses, Daniel and Francis
start to build a task flow for adjusting the camera (see Figure 8.2).

After analyzing the results of the task flow, they observe that all of the users adjust the
depth of field manually, and that they do it often. They decide that they will work on
improving the efficiency of this action first, and that they will work on the copy/ pasting

of values from one camera to another later.
Design
To improve the efficiency of making manual adjustments using the depth

of field tool, Daniel and Francis start by proposing a few small, iterative changes to the
existing design.

To make the labels easier to scan, they apply the design technique of

hierarchy. Next, to reduce the amount of time wasted by fixing invalid values, they replace
the numeric boxes with sliders (following the Microsoft guidelines). This makes it clear
that the values have a minimum and maximum. Finally, they modify the labels so that they
are more familiar to

l

Focus distance a

Near Blur

Real- World User- Centered Design m 139

the users. For example, the new term for “TARGET” is “Focus Distance,”
which matches the name of a similar value found in the depth of field
camera settings of the animation tool that the animators are accustomed
to using.

Evaluation

Daniel and Francis start to build their test plan. They make a list of tasks that can be used
to measure the efficiency of manually adjusting the depth of field values. A few examples:
“The art director would like you to increase the focus point of ‘camera_2’ by 10 units from
frame 10 to frame 35 in the cut- scene ‘Chapter1_ChaseB.” How would you do that?” and
“You receive a bug report that the near blur of ‘camera_3’ is too high by 20 units
throughout the cut- scene ‘Chapter3_BossFightIntro.” How would you fix that?”

Because they are measuring efficiency, and Daniel is a programmer, they
decide to go directly to code as opposed to pre- visualizing (Figure 8.3).
Before running the tests, Daniel and Francis also decide to perform a

heuristic evaluation on the new version of the depth of field tool. A few of the heuristics
jump out at them right away:

» Match between system and real world: The order and layout of the
numeric boxes match the “setDOF” command more than the cam-

era and the depth of field effect.

* Flexibility and efficiency of use: The users need to click on the “Apply”
button every time they make a change.

FIGURE 8.3 First iteration of the improved depth of field tool.

-

AR
l I

140 m Designing the User Experience of Game Development Tools They deploy the
changes and run their user tests. This time, Francis

assigns tasks to the users while Daniel takes notes. They also record the users’ screen
while they are watching them work.

Sprint 2
Analysis

After the user tests are done, Daniel and Francis analyze the notes and the videos. They
calculate that the users take an average of 20 seconds to complete all of the tasks from the
user test. This will be their baseline measurement.

They also note that the majority of the users feel that the order of the sliders is confusing.
Daniel and Francis believe that this is because they do not match the users’ mental model
of the camera, which is consistent with their findings during the heuristic evaluation.
Daniel and Francis decide to do a brief contextual analysis focused on understanding the
users’ mental model of the camera.

After meeting with the users, they realize that many of them describe

the camera from a side view, indicating the points at which the near and far blur occur.
One of the users even does a sketch representing their mental model of the camera (see
Figure 8.4). This inspires Daniel and Francis to improve the design.

Design

Francis has the idea to use the design technique of representation to lay out the sliders so
that they match the users’ mental model. The only issue is that Francis cannot find a
multithumb slider in the Microsoft guidelines, so he looks to other content creation
software. He finds examples of multithumb sliders in the Input Levels section of the
Levels window

in Adobe Photoshop (see the top of Figure 8.5), as well as with the Range FIGURE 8.4
Exploring the mental model for depth of field.

P B B owe o | O cstiver [o]E)

Preset: Default

~ Channek Gray
Input Levels:

Bea |4 fa A B ®f B]

Real- World User- Centered Design m 141
FIGURE 8.5 Researching common interaction patterns for a multi-thumb

slider in Adobe Photoshop (top) and Autodesk Maya (bottom). Adobe product

screenshot(s) reprinted with permission from Adobe Systems Incorporated.

Autodesk screen shots reprinted with the permission of Autodesk, Inc.

88 —i—i 0 —

8 12 25 32 42
Start End Start End
MNear Blur Focus point distance Far Blur

[Apply | I

142 m Designing the User Experience of Game Development Tools FIGURE 8.6 Second
iteration of the improved depth of field tool.

slider in Autodesk Maya (see the bottom of Figure 8.5). He uses these as the interaction
pattern.

Evaluation

Because this design contains controls that do not exist in their Ul toolkit, and Daniel has
an urgent bug to fix, Francis decides to pre- visualize. He creates a simple paper prototype
and then performs a “Wizard of Oz” test.

The feedback from the users is positive. They say that the interface feels more natural than
the previous tool, and they state that it will enable them to work faster. While this is good
feedback, the paper prototype can only confirm that the new design matches the mental
model, but it cannot

determine if it increases efficiency. The only way to answer that will be to implement the
changes. Once Daniel is available, they modify the interface and deploy the updated
version (see Figure 8.6).

As they are modifying the interface, Daniel and Francis are approached

by a few users who remind them that copying and pasting values is still a problem. Since
they have made some progress on making manual adjustments, Daniel and Francis decide
to see if they can improve copying and

pasting values as wel . They start by creating a user test for copying and pasting values
from one camera to another, with tasks such as “Another animator set up ‘cam_5’ in the
cut- scene ‘Chapter5_IntroC,” and you want to use the same settings from frame 25. How
would you do that?”

They run both the user test for manually adjusting values as well as the user test for
copying and pasting values from one camera to another.

Sprint 3
Analysis
Daniel and Francis analyze the previous Evaluation phase and perform

another measurement. They discover that the users now take an average of

Edit
00 | M M N
e U A i
8 12 25 32 42
Start End Start End
MNear Blur Focus point distance Far Blur

Real- World User- Centered Design m 143

nine seconds to adjust the depth of field manually, which is an 11-second improvement
from where they started. They also analyze the results from

the copying and pasting camera values user test and arrive at a baseline measurement of
seven seconds.

Design

To improve the efficiency even further, Daniel and Francis design two
changes that use the technique of reducing excise.

First, they modify the tool so that the camera settings automatically

update as soon as the sliders are modified. This allows the Apply button to be removed, so
the users do not have to move their mouse down to the

bottom of the tool and click every time they make a change.

Second, they add the ability to copy and paste from one camera to
another. They expose this functionality to the users by implementing

a standard Edit menu with copy and paste menu items. They associate

the copy and paste commands to hotkeys that follow existing standards:
Ctrl/ Cmd+C and Ctrl/ Cmd+V. This way, users can copy and paste values
from one camera to another quickly and easily.

Evaluation

Since the changes are small, they decide to make them directly in code

(see Figure 8.7). They run their user tests, and the results from the users are positive. All
of the users appreciate that they are no longer required to click on the Apply button to
update the depth of field in the viewport.

The users who copy and paste values are very happy that they can

now do it faster. They also say that they think this will have the biggest impact on
efficiency out of all the improvements that Daniel and Francis have made.

FIGURE 8.7 Third iteration of the improved depth of field tool.
144 m Designing the User Experience of Game Development Tools Sprint 4

Analysis

Daniel and Francis examine the results and see that copying and past-
ing values has dropped from seven seconds to two seconds. That is an
improvement of five seconds, which appears to be significant.
Removing the Apply button has made a big difference for all of the

users of the tool, by lowering the time to adjust the depth of field manually to just three
seconds. That is an overall improvement of 17 seconds.

CALCULATING THE RETURN ON INVESTMENT

Ben is very pleased with the improvements to the depth of field tool, and he tells Sophie
about it. Although she trusts Ben’s opinion, she wants to ensure that the time and money
spent on improving the tools are paying

off. She requests a status update from Daniel and Francis so that she can calculate the
return on investment.* She uses the following information

for her calculation:
* Cut- scene production will last six months (130 working days).

» Twelve users use the depth of field tool to adjust the camera. On average, they do this 90
times per 8-hour day.

* Four users copy and paste values between cameras. On average, they

do this 10 times per 8-hour day.

* Each user working on the cut- scenes costs $10,000 per month.

This means that before Daniel and Francis made any improvements, all of

the users together would spend over five man- months working with the

depth of field over the six- month period, at a cost of almost $50,000 (see Figure 8.8).
After the improvements, the users are now spending a little under one

man- month working with the depth of field over the six- month period, or around $7,500
(see Figure 8.9).

Although it may look like the improvements have resulted in a savings
of $42,500, Sophie has to subtract the time spent by Daniel and Francis.

Since they worked on the depth of field tool for three two- week sprints, and they cost
$10,000 per man- month, the investment was $30,000. This

* You can find a variety of ROI calculators on the Human Factors website here:
http://humanfactors.

com/ coolstuff/ roi.asp.
Real- World User- Centered Design m 145
Before Changes to Depth of Field Tool

Duration (in days)

130

Cost/man-month $10,000
Manually Change Values
Copy/Paste Values
Number of users

12

Number of users

4

Seconds per action

20

Seconds per action

7

Times per day

90

Times per day

10

Total man-months

4.8

Total man-months

0.06

Total cost $48,750

Total cost

$630

FIGURE 8.8 Calculating the cost of using the depth of field tool.
After Changes to Depth of Field Tool
Duration (in days)

130

Cost/man-month $10,000
Manually Change Values
Copy/Paste Values

Number of users

12

Number of users

4

Seconds per action
3

Seconds per action
2

Times per day

90

Times per day

10

Total man-months
0.7

Total man-months
0.01

Total cost $7,312
Total cost

$180

FIGURE 8.9 Calculating the cost of using the depth of field tool after the improvements to
the user experience, in an effort to calculate the return on investment (ROI).

means that the total return on investment was $12,500. That is over a man-month of time
that did not exist before the improvements, and Daniel and Francis are not done yet. In
addition, it is important to note that any other production that uses the updated depth of
field tool in the future will benefit from these improvements, immediately, at no cost.

Unfortunately, the copy and paste functionality did not result in as
much of a return as was hoped, which emphasizes that the biggest impact

comes from the improvements that affect the highest number of users, and those who use
the tools the most frequently.

Ultimately, the improvements have had a positive return on investment.

Sophie is satisfied with the results and asks Daniel and Francis to continue improving the
user experience of the game development tools by applying

the User- Centered Design process.
Conclusion
SUMMARY

The purpose of this book is to introduce you to concepts and techniques
that can be used to improve the user experience of game development tools.
In Chapter 1, we learned the definition of a user experience, why we

should improve the user experience, as well as the value of improving the user experience.
We also learned the importance of balancing the needs of the various groups involved in
the development of a tool.

Chapter 2 introduced you to the User- Centered Design process. We

learned about the advantages of the process, as well as how to integrate it into Agile. We
also discussed how to deal with a lack of time and resources.

Chapter 3 focused on what it means to be “User- Centered.” In this
chapter, we learned about the importance of focusing on the right users

and ensuring that the features are useful for those users. We also discovered the power of
pre- visualization and the differences between features and goals.

Chapter 4 presented the Analysis phase, where we discussed the impor-
tance of watching users work, an introduction to human— computer inter-

action, as well as the difference between a mental model and a conceptual model. We also
learned about interviews, contextual analysis, and task

flows, in addition to understanding how to measure improvements to the
user experience.
Chapter 5 was all about the Design phase: how the brain and the eyes

work together, as well as visual language and interaction patterns. We also learned a wide
variety of techniques that can be used to address common

design problems, as well as common interaction patterns for each.
In Chapter 6, we discovered how to choose the right strategy for evalu-

ating our designs. We also learned pre- visualization techniques and heuristic evaluation.
Finally, we learned how to build and run user tests.

147

148 m Conclusion

Chapter 7 brought us back to the Analysis phase to compare our mea-
surements and to prepare for another cycle through the User- Centered
Design process.

Finally, Chapter 8 walked us through a day in the life of a tools development team tasked
with improving the user experience of a tool, to give us a better sense of how it feels to
apply the User- Centered Design process.

CLOSING WORD

Culture Shift

Throughout this book, we have used examples from Apple. This is not
because every single one of their products has the best user experience—
they certainly have made some mistakes over the years—but their prod-
ucts provide good examples that can be used to support the concepts and
techniques presented in this book. However, you might be wondering,
what is their secret? How do they do it?

One of the misconceptions about why Apple products are so successful

is that they have the best designers in the world. While their designers are certainly very
good, that is not the only factor at play.

An interview with former Apple senior designer Mark Kawano sheds
some light on the truth: everyone at Apple works together to improve

the user experience. “It’s actually the engineering culture, and the way the organization is
structured to appreciate and support design. Everybody

there is thinking about UX and design, not just the designers. And that’s what makes
everything about the product so much better ... much more

than any individual designer or design team.”*

The games industry needs to make the user experience of tools a prior-
ity. To do that, we need the User- Centered Design process to become as
common as using Scrum, profiling GPU performance, and creating cut-
scene storyboards. When that happens, we will start to see the culture
shift necessary to make big improvements.

Where to Begin?

Now that you have read this book, the first step is to start applying the User- Centered
Design process to your own tools development work. Once

you feel confident with the process and you have had success that you
can measure, the next step is to spread the word. Help people understand

* You can read the full interview here: http://www.fastcodesign.com/ 3030923/ 4-myths-
about-apple- design- from- an- ex- apple- designer.

Conclusion m 149
how User- Centered Design can be integrated into the tools development

pipeline at your studio, because every studio is different. Tell your colleagues how you
achieved your successes, and what you learned from your

failures. Everyone in the games industry should be aware of the incredible potential that is

waiting to be unlocked by improving the user experience of our game development tools.

There is no right or wrong time to start. Start small, and then work your way up. Do a
heuristic evaluation of that tool you have been working on.

Set up a few interviews with the stakeholders and contextual analyses with the users so
you can establish and track measurements. Apply one of the

many techniques found in the Design chapter.

Improving the user experience is an iterative process, which means you
can begin at any time ... and that time might as well be now!

Are you ready? Three ... two ... one ... go!

Thanks

This book was written, illustrated, and edited in airplanes, trains, hotel rooms, and cafes,
in four cities, on two continents, on one laptop. It would not have been possible without
the following people.

Jim Brown, Liam Grieg, Tom Hoferek, Corey Johnson, Thérese
Migan, Jason Parks, and Karine Thériault for their invaluable feedback.
Dominique Roussy, for giving me my first job in the games industry. My

first computer science teacher, Susan Van Gelder, for seeing my interest in the fusion of
programming and art, and providing me with the tools I

needed. Mike Acton, for his contributions to game tools usability, and for providing the
foreword. Geoff Evans, Jeff Ward, Dan Goodman, and all

other past, present, and future members of the Toolsmiths IGDA SIG, for
working to bring the challenges of game tools development into the spot-

light. Ubisoft, for giving me the opportunity to turn my passion for user experience and
content creation tools into a career. Pierre- Luc Tremblay, for introducing me to The
Inmates Are Running the Asylum—and to Alan Cooper for writing it. Rick Adams, Maura
Cregan, Marsha Pronin, Amy

Blalock, Charlotte Byrnes, and everyone at CRC Press who helped to make
this book possible. Lucy Suchman, Jason Mitchell, and Sara Lott at the
Computer History Museum for providing a few of the images in this book.
Sony, for making a tough little laptop that accompanied me throughout

this long journey. My big brother and big sister, who prepared me for the real world by
sandwiching me in the back seat of our parents’ car. My wife and children for reminding
me that there is more to life than just content creation tools ... which I believe, most of the
time. Thank you, Andrea,

Benjamin, and Sophie ... I love you!
151

Works Cited &
Recommended Reading

Adlin, Tamara, and John Pruitt. The Essential Persona Lifecycle: Your Guide to Building
and Using Personas. San Francisco, CA: Morgan Kaufmann, 2010.

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern Language:
Towns, Buildings, Construction. New York: Oxford University Press, 1977.

Anderson, Jonathan, John McRee, Robb Wilson, et al. Effective Ul Beijing: O’Reil y,
2010.

Buxton, William. Sketching User Experiences: Getting the Design Right and the Right
Design. Amsterdam: Elsevier/Morgan Kaufmann, 2007.

Cooper, Alan. The Inmates Are Running the Asylum. Indianapolis, IN: Sams, 1999.

Cooper, Alan, Robert Reimann, and Dave Cronin. About Face 3: The Essentials of
Interaction Design. 3rd ed. Indianapolis, IN: Wiley Pub., 2007.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Upper Saddle River, NJ: Addison-
Wesley, 1995.

Gladwel , Malcolm. David and Goliath: Underdogs, Misfits, and the Art of Battling
Giants. New York: Little Brown & Company, 2013.

Gothelf, Jeff, and Josh Seiden. Lean UX: Applying Lean Principles to Improve User
Experience. Sebastopol, CA: O’Reil y Media, 2013.

Hawkins, Jeff, and Sandra Blakeslee. On Intel igence. New York: Times Books, 2004.

Hiltzik, Michael A. Dealers of Lightning: Xerox PARC and the Dawn of the Computer
Age. New York: HarperBusiness, 1999.

Johnson, Jeff. Designing with the Mind in Mind: Simple Guide to Understanding User
Interface Design Rules. Amsterdam: Morgan Kaufmann Publishers/

Elsevier, 2010.

Krug, Steve. Don’t Make Me Think!: A Common Sense Approach to Web Usability.
2nd ed. Berkeley, CA: New Riders Pub., 2006.

McConnel , Steve. Code Complete: A Practical Handbook of Software Construction.
2nd ed. Redmond, WA: Microsoft Press, 2004.

Myers, Brad A. “The Importance of Percent- Done Progress Indicators for
Computer— Human Interfaces.” ACM SIGCHI Bul etin 16, no. 4 (1985): 11-17.

153

154 m Works Cited & Recommended Reading

Nielsen, Jakob. “First Rule of Usability? Don’t Listen to Users.” Nielsen Norman Group.
http://www.nngroup.com/articles/first- rule- of- usability- dont- listen-to- users/ (accessed

July 15, 2014).

Nielsen, Jakob. “Why You Only Need to Test with 5 Users.” Nielsen Norman Group.
http://www.nngroup.com/articles/why- you- only- need- to- test- with-5-users (accessed
July 15, 2014).

Nielsen, Jakob. “Response Time Limits.” Nielsen Norman Group. http://www.
nngroup.com/articles/response- times-3-important- limits/ (accessed July 15, 2014).
Nielsen, Jakob. Usability Engineering. Boston: Academic Press, 1993.

Norman, Donald A. The Design of Everyday Things. New York: Basic Books, 1988.

Portigal, Steve. Interviewing Users: How to Uncover Compel ing Insights. Brooklyn, NY:
Rosenfeld Media, 2013.

Saffer, Dan. Designing for Interaction: Creating Innovative Applications and Devices.
2nd ed. Berkeley, CA: New Riders, 2010.

Sanders, Elizabeth B.-N. “Converging Perspectives: Product Development Research for
the 1990s.” Design Management Journal (Former Series) 3, no. 4 (1992): 49-54.

Suchman, Lucille Alice. Human— Machine Reconfigurations: Plans and Situated Actions.
2nd ed. Cambridge: Cambridge University Press, 2007.

Sy, Desiree. “Adapting Usability Investigations for Agile User-Centered Design.”

Journal of Usability Studies 2, no. 3 (May 2007), 112-132. (Available at
http://uxpajournal.org/wp-content/uploads/pdf/agile-ucd.pdf.)

Vlaskovits, Patrick. “Henry Ford, Innovation, and That ‘Faster Horse’ Quote.”

Harvard Business Review. http://blogs.hbr.org/2011/08/henry- ford- never-said- the- fast/
(accessed July 15, 2014).

Weinschenk, Susan. 100 Things Every Designer Needs to Know about People.
Berkeley, CA: New Riders, 2011.
Wilson, Mark. “4 Myths about Apple Design, from an Ex- Apple Designer.” Co.

Design. http://www.fastcodesign.com/3030923/4-myths- about- apple- design-from- an-
ex- apple- designer (accessed July 15, 2014).

TOOLS & GUIDELINES

Microsoft Windows User Experience Guidelines: http://msdn.microsoft.com/
library/windows/desktop/dn688964.aspx

Apple OSX User Experience Guidelines: https://developer.apple.com/library/mac/
documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/

Intro.html

W3C standards for contrast: http://www.w3.org/TR/UNDERSTANDING- WCAG20/

visual- audio- contrast- contrast.html

Human Factors International ROI Calculators: http://humanfactors.com/coolstuff/
roi.asp

Measuring Usability article on the SUS (System Usability Scale): http://www.
measuringusability.com/sus.php

Jakob Nielsen’s 10 Usability Heuristics: http://www. nngroup.com/ articles/ ten-usability-
heuristics/

Trademarks

Adobee, the Adobe* logo, Adobee Auditione, Adobe* Photoshope,
Adobee Premiere Proe, and Adobee Illustratore are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United
States and/ or other countries.

Autodeske, the Autodeske logo, Autodeske Mayae, Autodeske
Combustione, and Autodeske* 3ds maxe are registered trademarks or

trademarks of Autodesk, Inc., and/ or its subsidiaries and/ or affiliates in the United States
and/ or other countries.

The Unity* name, logo, brand, and other trademarks or images featured

or referred to within this book are licensed from and are the sole property of Unity
Technologies. Neither this book, its author, nor the publisher is affiliated with, endorsed
by, or sponsored by Unity Technologies or any of its affiliates.

Microsofte, the Microsofte logo, Offices, Worde, Excele, PowerPointe,
Visual Studioe, Haloe, Expression Blends, and Windowse are either reg-
istered trademarks or trademarks of Microsoft Corporation in the United
States and/ or other countries.

Applee, the Apple* logo, GarageBande, Mace, Xcode+, iTunese, iPhone-,
iPode, iOSe, and OSX- are trademarks of Apple, Inc., registered in the
United States and other countries.

NVIDIA-, the NVIDIA®« logo, NVIDIA* Texture Tools, and the
NVIDIA« Normal Map filter are trademarks and/ or registered trade-
marks of NVIDIA Corporation in the United States and other countries.
Audacity- software is copyright (c) 1999-2014 Audacity Team. The name
Audacity- is a registered trademark of Dominic Mazzoni.

155

156 m Trademarks

Balsamige is a registered trademark of Giacomo Guilizzoni, licensed to
Balsamiq SRL and Balsamiq Studios, LL.C, used with permission.

StarCrafte and Blizzard Entertainmente are trademarks or registered trademarks of
Blizzard Entertainment, Inc., in the United States and/ or other countries.

Qt is a registered trademark of Digia Plc and/ or its subsidiaries.
Xeroxe, the Xeroxe logo, and the Xeroxe 8200 are registered trademarks
of Xerox Corporation in the United States and/ or other countries.

iRiver, the iRiver logo, and the iRiver H300 are registered trademarks of iRiver Limited in
the Republic of Korea and/ or other countries.

Epic, Epic Games, and the Epic Games logo are trademarks or registered
trademarks of Epic Games, Inc., in the United States and elsewhere.
Amazon, Kindle, Storyteller, and Mechanical Turk are trademarks of
Amazon.com, Inc., or its affiliates.

Sony, the Sony logo, PlayStation, Vaio, Emotion Engine, and Cell
Broadband Engine are trademarks or registered trademarks of Sony
Computer Entertainment, Inc., in the United States, other countries, or
both and is used under license therefrom.

Pixar is a registered trademark of Pixar Animation Studios.

Logitech is a registered trademark of Logitech International in the United States and other
countries.

Valve, the Valve logo, and Team Fortress 2 are trademarks and/ or regis-
tered trademarks of Valve Corporation.

Mad Catz and the Mad Catz logo are trademarks or registered trademarks
of Mad Catz Interactive, Inc., its subsidiaries and affiliates.

“Minicons Free Vector Icons Pack” by Webalys (http:/ www.webalys.com/
minicons) used under CC BY 3.0 license (http:/ creativecommons.org/
licenses/by/3.0/).

L
COMPUTER GAME DEVELOPMENT / DESIGN
IGHTBOWN

Designing the User Experience of Game

Development Tools

“David is guided by his belief that he can contribute to raising the bar for all of us: that
we can all speak the same language, understand the same concepts, and use the same
techniques, so that we can all make better games. What you are reading now is the result
of David Lightbown’s first big mission on that very long quest.”

DESI

Designing
—Mike Acton, Engine Director, Insomniac Games
“User experience is the preeminent design challenge of our time and David has GNIN

captured and refined these concepts to help us produce beautifully designed workflows
that are a pleasure to use. His acclaimed lectures, now demonstrated and elaborated in
this book, are brilliant and very appropriate to our industry.”

G THE U
the User

—Jason Parks, Owner, Continuity Al; Former Technical Artist for SCEA, THQ, and
Volition

SER

“David Lightbown’s book shines a light on a dark corner of the games, but it’s a corner on
the path we take every day in game development. All developers owe EX

it to their future selves to learn to apply the process presented in this book to PER
IEN

Experience

their tools.”

—Corey Johnson, Unity Technologies

C

“If you build games tools and are not familiar with user-centered design, then E O
you should read this book. ... provides a comprehensive introduction to F
user-centered design with easy-to-understand explanations and plenty of GAME
of Game

real-world examples that demonstrate the principles and best practices you need to know
to start building better tools today.”

D

—Tom Hoferek, Principal User Experience Designer, Autodesk EVEL
Designing the User Experience of Game Development Tools explains
OPMEN

Development

how to improve the user experience of game development tools. The first part of the book
details the logic behind why the user experience of game tools must be improved. The
second part introduces the concept of user-centered design, T

a process that revolves around understanding people’s goals, watching them TO

work, learning the context in which they work, and understanding how
OLS

Tools

they think.

Ideal for anyone who makes, uses, or benefits from game development tools, the book
presents complex concepts in a manner that is accessible to those new to user experience
design.

K23310

ISBN: 978-1-4822-4019-1
90000
DAVIDLIGHTBOWN
9781482 240191

Document Outline

Front Cover

Contents

Praise for Designing the User Experience of Game Development Tools
Foreword

Introduction

About the Author

Chapter 1: Welcome to Designing the User Experience of Game Development Tools
Chapter 2: The User-Centered Design Process

Chapter 3: What Does It Mean to Be “User-Centered”?

Chapter 4: Analysis

Chapter 5: Design

Chapter 6: Evaluation

Chapter 7: Back to Analysis

Chapter 8: Real-World User-Centered Design

Conclusion

Thanks

Works Cited & Recommended Reading
Trademarks

Back Cover

	Front Cover
	Contents
	Praise for Designing the User Experience of Game Development Tools
	Foreword
	Introduction
	About the Author
	Chapter 1: Welcome to Designing the User Experience of Game Development Tools
	Chapter 2: The User-­Centered Design Process
	Chapter 3: What Does It Mean to Be “User-­Centered”?
	Chapter 4: Analysis
	Chapter 5: Design
	Chapter 6: Evaluation
	Chapter 7: Back to Analysis
	Chapter 8: Real-­World User-­Centered Design
	Conclusion
	Thanks
	Works Cited & Recommended Reading
	Trademarks
	Back Cover

