

SCCT

Smartphone & Cross-platform

Communication Toolkit

2 Smartphone & Cross-platform Communication Toolkit

Contents

INTRODUCTION 3

COMMON USUAL PROBLEMS 4

SCCT FEATURES AND BENEFITS 5

Comparative table: features & benefits. 5

Advantages and improvements 6

PROGRAMMING DETAILS 8

SCCT FOR LABVIEW 8

SCCT Client for LabVIEW developers 8

SCCT features that simplify the software architecture 10

Source selection 10

Welcome Kit 11

Fully integration into LabVIEW IDE 12

SCCT FOR JAVA AND ANDROID 13

SCCT Client for Java and Android developers 13

SCCT FOR HTML5 15

SCCT Client for HTML5 developers 15

Source selection 17

SCCT FOR IOS 18

SCCT Client for iOS developers 18

SCCT FOR LINUX ANSI C 20

SCCT Client for ANSI C developers 20

Source selection 22

CONCLUSIONS 23

TOOLS for SMART MINDS – White paper series 3

Introduction

“Give me a smartphone and I will change the world”: this seems to be the third

millennium saying: laptops, smartphones, tablets and so on have revolutionized the way in

which all of us keep in touch with the rest of the world.

Information..

 Services..

 Contacts..

 Work..

Focused in few inches of display!

Impossible not to notice the great potential of such technology in the everyday life!

Due to the high availability of broadband technologies, the possibility of reaching everything

you need, wherever it could be, is more and more around us, at home or at work.

Actually, as a matter of fact, mobile technologies are powerfully breaking in the industrial

sector because of their convenience, cheapness and practicality.

Unfortunately, conciliating a similar kind of technological new entry with the being-in-use

industrial system is not always easy: technology updates faster and faster and technicians

have often the challenging task of conciliating the oldest facilities with the most up-to-date

solutions, investing time and energies in code adaptation and with no guarantee that the just

elaborated solution will work if applied to different devices.

Generally the problem of communication between different machines and devices has always

been a great matter for industries just because of a long series of problems technicians

have to deal with, concerning the complexity of industrial systems, the great difficulty in

handling big machines, and several security problems they involve.

This problem has been finally solved: the purpose of this document is show and explain

why SCCT is the solution you’ve been looking for and how it actually works.

4 Smartphone & Cross-platform Communication Toolkit

Common Usual Problems
In this chapter we describe the most common problems that developers usually have to face

when approaching to data communication.

Incompatibility:

It happens often that a great loss of time is caused by the incompatibility of different

devices. This is a great, very widespread, problem because frequently many off-the-shelf

products adopt proprietary protocols or communication techniques not compatible with

third party systems.

• Expensiveness:

Sometimes connecting systems based on old technologies is very expensive. Often the lack

of network cards in many old systems requires purchase of PLCs with serial port or

proprietary interfaces, involving remarkable costs and time waste. Expensiveness, in

addition, is not only a problem occurring when additional hardware is required, but also

when connecting systems using limited communication models like the MASTER-SLAVE

model. A similar out-of-date technology, in facts, significantly limits system potential and

involves adjunctive costs in terms of productivity.

• Slowness:

One of the solutions having been used up to now for devices connection is the Web Server

service. Unfortunately, the problem you can frequently find using this technology is that its

performances are low, due to the fact that they have many intermediate phases and

nonessential overheads slowing down the process and wasting broadband. In addition,

developing a good application with Web Servers is not such an easy work and it takes time

and care.

• Security:

Handling and sending data implies a special care and attention for security, but reaching

this goal is not always as simple as it might appear.

Developing an application that controls logins is possible by means of Web Services, but you

have to develop your own and spend a long time for it, besides risking eventual bugs and

malfunctioning.

TOOLS for SMART MINDS – White paper series 5

SCCT features and benefits
In response to all these problems, T4SM has worked out the most innovative solution for

developers who are tired of wasting time and money on avoidable obstacles. SCCT is the

newest library developed so that programmers can focus on WHICH data are being sent, and

NOT HOW data can being sent! SCCT meets finally the best performances, reliability and

simplicity and takes care of all communication details so you don’t have to.

Comparative table: features & benefits.

The following table clarifies that SCCT includes all benefits of different communication

technologies. As a remarkable feature, SCCT provides built-in high level data packages,

password protected connections and user profiling, so developers can easily define the way

data are distributed.

SCCT

Web services TCP/IP NSV*

Data optimization

to reduce

consumed band

Best Medium Best Good

Data type

High level Not defined String High level

Multiple

connections

Yes Yes No Yes

Debugging

Easy Complex Medium Easy

Integration level

Complete Partial Complete Complete

Performance

Best Low Best Medium

Complexity

Easy Complex Medium Easy

Allow data

streaming

built-in No Built-in Not built-in

Cross-platform

Yes Yes Yes No

White and black list

management

Yes No No No

User profiling

Yes Limited No No

Secure connections

Yes Yes No No

*NSV refers to LabVIEW Network Shared Variables

6 Smartphone & Cross-platform Communication Toolkit

Advantages and improvements

In this chapter we illustrate all the answers T4SM has found out to the more common problems

of data communication: SCCT is a solution made by developers for developers, and it is on

everyday problems we particularly focused on designing SCCT.

• Compatibility:

SCCT is easily integrable in any work system, because it doesn’t need particular hardware

and requires only a computer.

The great versatility of LabVIEW, in which SCCT is developed, allows you to connect all

those devices that haven’t a net interface but use, instead, serial ports or custom boards.

SCCT offers the same interface for every platform you need and is available on the following

ones:

• SCCT for LabVIEW

• SCCT for Android

• SCCT for Java

• SCCT for iOS

• SCCT for HTML5

• SCCT for Linux (Ansi-C)

You can find and download SCCT libraries by checking the following link:

http://www.toolsforsmartminds.com/products/SCCT.php

SCCT for LabVIEW supports LabVIEW 2010 or higher and LabVIEW real-time systems like

Compact RIO and Single board RIO devices. SCCT for LabVIEW is distributed as ADD-ON and

includes both client and server functionalities.

SCCT for HTML5 library is a free library, compliant to RFC 6454.

SCCT for Android, Java and ANSI C libraries are available in two different editions:

• Lite Edition, which includes most common functionalities

• PRO Edition which provides highest performance and advanced features

But why a different type of interface for every different platform?

SCCT for HTML5 works on every platform because it allows you to work through browsers,

but it could be less productive than a native application. That’s why T4SM has developed for

you several types of interfaces for each of your needs, in order to guarantee you the

maximum of performances in every moment.

TOOLS for SMART MINDS – White paper series 7

• Cost-effectiveness:

SCCT is quite remarkable for price accessibility of libraries and for complete absence of

supplementary costs. In facts SCCT has no royalties and, due to its high compatibility with

any device, it doesn’t require special hardware. Every developer knows that Time is money

and wasting time in modifying code and adapting eventual third party products, is one of the

most annoying inconveniences (unfortunately even too much recurring) of developers job:

SCCT’s easiness and completeness smooth the way to efficient job removing useless

obstacles and in this way highly increases productivity .

• Fastness and Productivity:

SCCT is fast in terms both of performances and productivity. Actually in facts is easy and fast

to be developed as well it has the best performances in terms of broadband use and fastness

in sending data. SCCT doesn’t use http protocols and doesn’t produce http overhead; it

uses instead the PUSH methodology for data sending, with which it simplify a lot the data

passage. Programming a good application will be no longer tedious and slow as before!

• Security:

Unlike traditional products, SCCT includes solutions regarding system security and safeness.

Functions for access and traffic volume control, lists for valid and invalid addresses (white

and black lists) have been developed in order to simplify the realization of applications that

need access monitoring, operation logging and so on. Moreover, SCCT handle both the

broadcasting and point to point communication, so that you can choose who is allowed

or not to receive your data. Surely it is possible to do it with Web Servers, but you need to

develop it by yourself: let SCCT do it for you!

• Versatility:

SCCT allows you to manage your data everywhere you are and through every device you’re

using, thanks to its versatility. T4SM development team has worked to make SCCT able to run

on most popular platforms, so that developers don’t have to face to all those details of

communications among heterogeneous platforms: data formats, data encoding, etc. Thanks

to SCCT users community worldwide, SCCT’s functionalities are continuously improved, APIs

are optimized to get better performance and to support emerging technologies and mobile

devices.

8 Smartphone & Cross-platform Communication Toolkit

Programming details
The next chapters, SCCT’s basic features are illustrated, in order to look more into the

problem and show how SCCT makes data communication easier and accessible. Step by step,

these sections explain main details about functioning, differences between usual methods

and SCCT solutions and equip them all with useful consideration and code examples. For

precision and completeness sake, each chapter has been dedicated to the explanation of a

single type of SCCT library.

 SCCT for LabVIEW
In this paragraph SCCT for LabVIEW developers is briefly illustrated.

SCCT was created for LabVIEW to help developers and system integrators to exchange data

with third party machines, because of LabVIEW open architecture and its capability to

manage multiple communication interfaces: serial port, TCP, UDP, etc. Moreover, LabVIEW

includes native functionalities to exchange data with third party industrial systems through

OPC interface, it supports can exchange data with databases and because of its pervasive

diffusion in many industrial fields: automotive, aerospace mechanic and in physics and

medical research labs. In the last years, SCCT is grown up to handle communication with

emerging technologies related to mobile devices, embedded systems and distributed

computing. SCCT has been adopted by as many research centers and Universities to create

distributed computing networks for real-time signal signals.

SCCT Client for LabVIEW developers

From a LabVIEW developer point of view, a client connection made by SCCT offers a set of

queues created by a background task named SCCT-Client. That background task is in charge

to send and receive data packages and manage all connection details so programmer doesn’t

have to. Data coming from server are pushed in the related queue and client app just has to

consume the available data. The figure below illustrates the client task and the SCCT-Client

(background) task. Queues are used to transfer data between the two tasks. This architecture

allows programmers to create clear code.

TOOLS for SMART MINDS – White paper series 9

To transmit data to server, SCCT includes polymorphic Vis that greatly simplifies programmer

job and reduce development time. The Following example shows the code required to a

LabVIEW client that displays analog data streams on a chart.

With Three Vis, a client connects to a server, providing the required API-Key, displays

received analog data packages, and close connection when task is over. The above example

illustrates that SCCT programming style is perfectly integrated in LabVIEW, easy to debug

and maintain.

With SCCT, clients can transmit data to server application. From server point of view, data

transmitted from clients are gathered into a pipe and then distributed into a set of queues

according to send data types, as indicated below:

Data sent by clients are gathered and ordered by SCCT background task at server side. Data

packages are organized into dedicated queues with additional information about the clients

who sent the package.

This greatly helps LabVIEW developers to log client’s requests and, if necessary, to create

programmatically a peer to peer communication with one of the active clients. The following

figure illustrates the code required to a client to send a message package to a server.

10 Smartphone & Cross-platform Communication Toolkit

The communication, in the above figure, is the same for all types of packages, so developers

can extend their applications with new data types in a straightforward manner.

SCCT features that simplify the software architecture

SCCT APIs include high level features created to reduce development time, to help

programmers to create high quality code and to debug their apps in the easiest way. In the

following paragraph, some features are briefly described. SCCT development team

continuously works to improve SCCT performance, add new features and help developers to

save time and create robust high quality code. Refers to SCCT User manual to get more

details.

Source selection

Let’s consider a server that publishes fresh data continuously to all connected clients. In real

life systems data comes from different sources managed by the server. For example consider

the case of a server connected to some acquisition devices, database and PLCs. It’s important

to mark data coming from these sources so that clients can distinguish among packages.

SCCT allows data tagging according to their source so clients can properly organize received

packages as illustrates in the following figure.

In many situations, clients don’t need data from all available sources: to avoid wasting

communication band, SCCT provides a powerful feature that filters data at server side.

TOOLS for SMART MINDS – White paper series 11

Clients simply inform server that they want data only from a specific subset of sources. SCCT

manages the source selection between background tasks. Data filtering is a dynamic

procedure that allows client to change their source selection at run-time. The figure below

illustrates how much easy is, for a client, the selection of sources.

At server side, programmers don’t need to be aware of selections applied by clients: SCCT

background tasks manage and filter data packages according to client requests. For this

reason "Source Selection" greatly simplifies application development and, at the same time,

improves performance of both clients and server and reduces consumed band.

Welcome Kit

Automation systems have a “machine status” which reflects the state of each component of

the system. Often there is also a “configuration description” which helps clients to properly

use and display received data. For example, a system with an acquisition device has to

describe the published analog data (Channel name, Unit of measure, signal range) to allow

clients a properly visualization (charts and tables). With SCCT, all data packages, regardless of

their types, can be marked as part of Welcome Kit: a set of packages that clients receive

whenever they succeed to connect to the server. This feature greatly simplifies the code, as

illustrated in the following figure.

In the above example, server configuration is published when there aren’t clients connected!

It works because configuration package is marked to be part of Welcome Kit, so when a

client will connect, SCCT background task will send the configuration package at the very

12 Smartphone & Cross-platform Communication Toolkit

beginning of their communication. Welcome Kit can be composed with multiple packages.

With Five SCCT Vis only, a complete application, capable to communicate with a wide

heterogeneous systems, is ready to run!

Fully integration into LabVIEW IDE

SCCT ADD-ON for LabVIEW is completely integrated into LabVIEW IDE, SCCT Vis are

accessible from LabVIEW's palette.

Many functionalities are grouped into polymorphic VIs to accelerate their placement into

LabVIEW code. Debugging is easy and takes advantage of all debugging features in LabVIEW,

like probes and breakpoints. Every SCCT VI is completed with inline detailed help. SCCT has

been successfully adopted to create machine to machine (m2m) business solutions, due to

the high efficiency of its data encoding and its capability to transfer any type of LabVIEW

data.

SCCT fully supports real-times systems like National Instruments CompactRIO and single

board RIO products. For this reason SCCT is the best choice for applications where an

embedded system has to be monitored and controlled with web-based apps and mobile

devices.

Many research centers and business companies have added SCCT for LabVIEW to their

software solutions to easily exchange data with other LabVIEW applications and create

distributed computing networks.

TOOLS for SMART MINDS – White paper series 13

 SCCT for Java and Android
Thanks to the great portability of Java and the wide-spread diffusion of Android in the

mobile area, SCCT for Java and SCCT for Android cover a wide range of devices:

• SCCT for Java is available for all of the main operative systems (as Windows, OS X,

Linux, etc.) supporting JVM 5 and higher.

• SCCT for Android is available for any device (smartphones, tablets, etc.) working on

Android 2.1 platform and higher.

SCCT Client for Java and Android developers

In this chapter we treat both SCCT for Java and SCCT for Android as a single topic because

from developer’s point of view they are very similar, although they differ one from the other

and they aren’t interchangeable (Refer to SCCT User manuals for Java and Android to get

more details). SCCT for Java and Android are based on the Event-driven Programming

Paradigm (EDP) that provides developers with an easy way to handle data and events

generated by server through the overriding of certain listeners. In order to do this, SCCT

implements the Observer design pattern and then provides two main classes:

• SCCT_Subject: it manages the connection in a background task, sends data to SCCT

server and sends the received packages registered SCCT_Observer objects;

• SCCT_Observer: it provides abstract listeners that developers have to implement in

order to receive data.

Data coming from server are packaged by subject and queued in registered observers. Every

observer has its own queue and can implement different listeners in different ways. The

figure below illustrates the basic structure and how incoming data are managed:

The following example shows the code required for a Java and Android client to display

analog data streams on a chart.

public static void main(String[] args) {
 SCCT_Subject subject = new SCCT_Subject(); // Istantiate a SCCT_Subject object
 ConcreteObserver observer = new ConcreteObs erver();
 s.registerObserver(observer);
 try {
 subject.openCommunication(address, port , apikey, clientDescription);
 subject.startCommunication();
 } catch (IOException ex) { /* Manage Error */ }

14 Smartphone & Cross-platform Communication Toolkit

 …
}
public class ConcreteObserver extends SCCT_Observer {

 @Override
 public void analogDataListener(AnalogDataPackag e package) {
 double[][] data = package.getData();
 /*Use data to display point on a chart*/
 …
 }

 @Override
 public void errorListener(ErrorPackage package){
 /*handle error*/
 }
 … other listener …
}

You can also transmit data to server in simple and safe way using some useful methods

provided by SCCT_Subject object.

For example, if you want to transmit a message to server you can do as follow:

/*The subject object has been already instantiated and the connection has been
opened.*/
int code = 1;
String message = “Hello World”;
subject.sendMessage(message, code);

If the message can’t be sent, the sendMessage method returns a false value and an

ErrorPackage object is automatically generated and sent to all registered observers in order

to be handled.

As illustrated above, SCCT for Java and Android is very easy to use, you don’t have to worry

about low level problems or about thread handling: SCCT looks after it for you. This allows

you to save lots of time, keep code cleaner and maintainable and get an already tested tool

safe to use. For these reasons, SCCT is considered the most powerful and complete

communication library today available on the market.

TOOLS for SMART MINDS – White paper series 15

 SCCT for HTML5
Thanks to the great diffusion of HTML5 compatible browsers in the mobile area, SCCT for

HTML5 can reach any kind of device. Based on the RFC 6455 websockets. You can use SCCT

with one of the following browsers:

• Chrome, Chrome for Android, Chromium

• Firefox and Firefox Mobile

• Opera and Opera Mobile

• Safari (version 5 or above) and Safari Mobile

• Internet Explorer (version 9 or above) with the flash plugin

SCCT Client for HTML5 developers

From an HTML5 developer point of view, a client connection made by SCCT offers a set of

queues created by a background task named SCCT-Client. That background task is in charge

to sends and receives data packages and manage all connection details so programmer

doesn’t have to. Data coming from server are pushed in the related queue and client app just

has to consume the available data using an event driven approach. The figure below

illustrates the client task and the SCCT-Client (background) task. Queues are used to transfer

data between the two tasks. This architecture allows programmers to create clear code.

The following example shows the code required to an HTML5 client that displays digital data

streams on a simple web page and that sends commands to the server (the communication

channel is bidirectional).

<!DOCTYPE HTML>
<head>
 <script language='javascript'>
 var libScctPath = "./libscct";
 </script>
 <script src="./libscct/libscct.js"></script>
 <script type='text/javascript'>
 var scctChannel = new SCCTChannel();

 /******* EVENT HANDLERS REGISTRATION*******/
 scctChannel.connectionOpenedHandler = onOpened ;
 scctChannel.digitalDataArrivedHandler = onDig italDataArrived;
 scctChannel.connectionClosedHandler = onClos ed;

 /*******EVENT HANDLERS DEFINITION**********/
 function onOpened(){

Client app

Server

SCCT-Client

Background

task

16 Smartphone & Cross-platform Communication Toolkit

 scctChannel.start();
 }
 function onClosed(){
 alert('Connection closed by server');
 }
 function onDigitalDataArrived(){
 var digitalData = scctChannel.getDigitalData();
 if (digitalData != null){
 if (digitalData.lines[0]==true){
 document.getElementById("d1").style.backgro und = #00FF00";
 document.getElementById("d1").innerHTML = " ON";
 }
 else{
 document.getElementById("d1").style.backgro und = #FF4444";
 document.getElementById("d1").innerHTML = " OFF";
 }
 }
 }
 /*******APPLICATION FUNCTIONS*******/
 function switchOn(){
 scctChannel.sendMessageData("switchOn",0);
 }

 function switchOff(){
 scctChannel.sendMessageData("switchOff",0);
 }

 function connect(){
 scctChannel.connectToPublisher(
 document.getElementById('finalipaddress').value ,
 document.getElementById('finalport').value,
 document.getElementById('apikey').value,'20.00');
 }
 </script>
</head>

<body>
 Server
 <input id='finalipaddress' style='border-radiu s:10px;font-weight:bold;width:150px;'
value=''></input>
 Port
 <input id='finalport' style='border-radius:10 px;font-weight:bold;width:30px;'
value='8083'>
 </input>
 Api-Key
 <input id='apikey' style='border-radius:10px; font-weight:bold;width:100px;'value=
'OvenDemo'>
 </input>
 <button id="connectButton" style='border-radius:15px;'
onclick=" connect() " >Start</button>
 <button id="onButton" style='border-radius:15px;'
onclick=" switchOn() " >SetOn</button>
 <button id="offButton" style='border-radius:15px;'
onclick=" switchOff() " >SetOff</button>

 <div id="d1" style='border-radius:10px;float:left;m argin:0 auto; width:150px;
height:20px;
 background:lightgray;border:solid #77777 7 1px;text-align:center;
 font-weight:bold;'>OFF
 </div>
</body>

With the above code, a client connects to a server, providing the required API-Key, displays

received digital data packages, and close connection when task is over. The above example

illustrates that SCCT programming style is perfectly integrated in HTML5, easy to debug and

maintain.

TOOLS for SMART MINDS – White paper series 17

Source selection

Let’s consider a server that publishes fresh data continuously to all connected clients. In real

life systems data comes from different sources managed by the server. For example consider

the case of a server connected to some acquisition devices, database and PLCs. It’s important

to mark data coming from these sources so that clients can distinguish among packages.

SCCT allows data tagging according to their source so clients can properly organize received

packages as illustrates in the following figure.

In many situations, clients don’t need data from all available sources: to avoid wasting

communication band, SCCT provides a powerful feature that filters data at server side. Clients

simply inform server that they want data only from a specific subset of sources, while SCCT

manages the source selection between background tasks. Data filtering is a dynamic

procedure that allows client to change their source selection at run-time. The figure below

illustrates how easy is, for a client, the selection of sources.

var sources = new Array();
sources[0] = 2; //select source 2
sources[1] = 7; //select source 7
scctChannel.selectSourceList(sources);

As illustrated above, SCCT for HTML5 is very easy to use and you don’t have to worry about low

level and browsers compatibility problems: SCCT takes care of all communication details, so you

don’t have to. This allows you to save lots of time, keep code cleaner and maintainable and get

an already tested tool safe to use. For these reasons, SCCT for HTML5 is considered the most

powerful and complete communication library today available on the market.

18 Smartphone & Cross-platform Communication Toolkit

 SCCT for iOS
SCCT for iOS is available for all of the most popular Apple mobile devices (iPhone, iPad, iPad

mini, iPod touch, etc.) working with iOS 5 or later versions. It has been developed entirely in

native code, which allows very high performances and a complete integration with the

system. Moreover, it has been tested for guaranteeing a perfect compatibility with Xcode 4.x

and higher.

SCCT Client for iOS developers

SCCT for iOS is developed in Objective-C language and it is totally integrated in Cocoa Touch

framework: this makes using and integrating it in iPhone and iPad applications easier and

faster for developers. It implements the Observer design pattern, allowing to handle data

related to events. The Observer pattern is very similar to Delegate pattern, that is often used

in Cocoa Touch framework, but it allows to register at the same time more observers to the

same data source. Then SCCT provides the SCCT_Subject class, that handles the connection in

background and has the task of distributing data to registered observers, and the

SCCT_Observer protocol, that provides optional methods that enable to receive data and

events sent by the server.

The figure below illustrates the basic structure and how arriving data are managed:

The following example shows the code required for an iOS client to display analog data

streams on a chart.

@implementation MainViewController
@synthesize … ;

- (void)viewDidLoad
{

[super viewDidLoad];
self . subject = [[SCCT_Subject alloc] init];
[self . subject registerObserver : self];
[self . subject openCommunication : self . address port : self . port apiKey : self . apiKey

description : self . description];
[self . subject start];

}

/*SCCT_Observer listeners*
-(void) onConnected:(SCCT_Subject *)subject
{

//this method is called if connection is establishe d
}

TOOLS for SMART MINDS – White paper series 19

-(void) onDisconnected:(SCCT_Subject *)subject
{

//this method is called when connection is closed
}

-(void) analogDataListener:(SCCT_AnalogDataPackage *)analogDataPackage
{

for (NSArray * channel in analogDataPackage. channels)
for (NSNumber * value in channel)
{

 // Use values to add it in your chart
}

}

-(void) errorListener:(SCCT_ErrorPackage *)errorPackage
{

//This method is called when an error occurs. You c an use errorPackage.description
end errorPackage.code

//to identify the type of error.
}
…
@end

You can also transmit data to server in simple and safe way using some useful methods

provided by SCCT_Subject object. For example, if you want to transmit a message to server

you can do as follow:

/*The subject object has been already instantiated and the connection has been
opened.*/
NSInteger code = 1;
NSString * message = @“Hello World” ;
[self . subject sendMessage :[SCCT_MessagePackage packageWithMessage :message code : code]];

If the message can’t be sent, the sendMessage method returns a False value and an

SCCT_ErrorPackage object is automatically generated and sent to all registered observers in

order to be handled. SCCT for iOS perfectly integrates with Cocoa Touch and it results very

simple for an iOS developer using and including it in his own programs. SCCT for iOS makes

you save time while designing, developing and testing applications oriented to data

communication.

20 Smartphone & Cross-platform Communication Toolkit

SCCT for Linux ANSI C
SCCT for Linux ANSI C is available for all of the most popular Linux distributions (Debian,

Ubuntu, RedHat, Arch-Linux, Suse, Gentoo), and works naturally with gcc and make classic

Linux utilities. It is provided in two different binary forms:

• SCCT for Linux ANSI-C for X86 CPU family

• SCCT for Linux ANSI-C for ARM CPU family

SCCT Client for ANSI C developers

From a Linux ANSI C developer point of view, a client connection made by SCCT offers a set

of queues created by a background task named SCCT-Client. That background task is in

charge to send and receive data packages and manage all connection details so programmer

doesn’t have to. Data coming from server are pushed in the related queue and client

application just has to consume the available data simply calling the appropriate SCCT non-

blocking pop function.

The figure below illustrates the client task and the SCCT-Client (background) task. Queues are

used to transfer data between the two tasks. This architecture allows programmers to create

clear code.

The following example shows the code of a Linux ANSI C client that receives configuration

and analog data packets from server.

#include <stdio.h>
#include "libscct.h"

int main(int argc, char **argv)
{
 char server_ip_or_name[512];
 char api_key[512];
 int port;
 int sec_timeout = 10;

 ConnectResult *cnn_res = NULL;
 ConfigurationData *configurationData = NULL;
 AnalogData *analogData = NULL;
 MessageInfo msg_info;

 int i = 0;
 int j = 0 ;

Client app

Server

SCCT-Client

Background

task

TOOLS for SMART MINDS – White paper series 21

 if(argc< 4){
 printf("\n\nUse: program.out ip_address_server p ort api-key\n");
 return 0 ;
 }

 /* Prepare parameters for connect function */
 port = atoi(argv[2]);
 sprintf(server_ip_or_name,"%s",argv[1]);
 sprintf(api_key,"%s",argv[3]);

 /* Connect */
 cnn_res = connectToPublisher (server_ip_or_name,port,api_key,"exampleClient",sec _timeout);

 /* wait for connecting status */
 do{
 usleep(5000);
 msg_info = getStatusConnection(cnn_res->data_co nnection);
 } while (msg_info.code == CONNECTING);

 if (msg_info.code != CONNECTED){
 printf("\nConnection error");
 return 0;
 }

 if (msg_info.code==CONNECTED){
 printf("\nConnected...");
 msg_info = start(cnn_res->data_connection);
 printf("\nStart executed...”);
 fflush(stdout);

 do{
 usleep(5000);
 msg_info = getStatusConnection(cnn_res->data _connection);
 configurationData = getConfigurationData (cnn_res ->data_connection);
 analogData = getAnalogData(cnn_res->data_ connection);

 if (configurationData!= NULL){
 /*use configuration data*/
 free_configuration_data(configurationData);
 start(cnn_res->data_connection);
 }

 if (analogData != NULL){
 for (i= 0;i<analogData->numChannels;i++)
 for(j=0;j<analogData->channels[i].num_channel; j++)
 /*use analog channel*/ ;
 free_analog_data(analogData);
 }

 } while (msg_info.code == CONNECTED);
 }

 freeDataConnection(cnn_res->data_connection);
 printf("\nProgram exited. %d %s", msg_info.code, m sg_info.message);
}

With the above code, a client connects to a server providing the required API-Key, displays

received configuration data, analog data, digital data, custom xml data, string message data,

file and image packages and closes program when disconnected status occurs. The

communication channel that SCCT library provides is bidirectional, for this reason it is

possible to send some kind of packets to server using specific functions, for example a client

sending an image packet to server with this simple piece of code :

22 Smartphone & Cross-platform Communication Toolkit

ImageData *imageDataTmp = NULL;

// Create image packet from image file name

imageDataTmp = createImageDataFromFileName("image.jpg");

// Create two image attributes

appendAttributeOnImageData(imageDataTmp,"Attrib 1");

appendAttributeOnImageData(imageDataTmp,"Attrib 2");

// Send image packet to server

sendImageData(cnn_res->data_connection,imageDataTmp,0,NULL,0);

// free image packet

free_image_data(imageDataTmp);

Source selection

Consider the case of a server that continuously publishes fresh data to all connected clients.

In real life systems data come from different sources managed by the server. For example

consider the case of a server connected to some acquisition devices, database and PLCs. It’s

important to mark data coming from these sources so that clients can distinguish among

packages. SCCT allows data tagging according to their source so clients can properly

organize received packages as illustrated in the following figure.

In many situations, clients don’t need data from all available sources: to avoid wasting

communication band, SCCT provides a powerful feature that filters data at server side. Clients

simply inform server that they want data only from a specific subset of sources. SCCT

manages the source selection between background tasks. Data filtering is a dynamic

procedure that allows client to change their source selection at run-time. The figure below

illustrates how easy is, for a client, the selection of sources.

// Define an array of two integer
int source_ids[2] ;
// Settings value of id sources to select
source_ids[0] = 1;
source_ids[1] = 5;
// Send a request
selectedSourceList(cnn_res->data_connection,source_ ids,sizeof(source_ids));

Client

Server

Source 1: NI-6229

Source 2: NI-6224

Source 3: SIEMENS S7

Source 4: MS-SQL 2008

4

3 3

1 1 1 2 2 2 3 3 4

2 2 2

1 1 1

PLC

SQL

SCCT

TOOLS for SMART MINDS – White paper series 23

As illustrated above, SCCT for Linux ANSI C is very easy to use and you don’t have to worry

about low level problems or about thread handling: SCCT looks after them for you. In

addition, you can use the same code for X86 and ARM CPU families. This allows you to save

lots of time, keep code cleaner and maintainable and get an already tested tool safe to use.

For these reasons, SCCT is considered the most powerful and complete communication

library today available for Linux systems.

Conclusions
In this last chapter we sum up those SCCT most important features and characteristics you’ve

already got an idea of in the previous parts. The purpose of this section is to provide you with

an overview of the reasons why SCCT is the best solution to all the most common data

communication problems for its completeness and efficiency:

• SCCT is the most complete solution on the market because it actually enables

communication between a great variety of platforms.

• In comparison with other products, SCCT guarantees the best performances in terms

of transfer rate, consumed band and CPU utilization. For these reason, SCCT is favorite

solution to connect mobile devices to industrial systems.

• SCCT is easily integrable with every application, irrespective of different programming

languages.

• SCCT manages all the communication details and allows programmers to focus only

on the application they want to realize.

• SCCT for LabVIEW, as regards server side, provides a long series of benefits in terms

of simplicity and rapidity and includes powerful functionalities which solve every

common problem possible. Such useful tools are fundamental to avoid programmers

wasting such a big amount of hours with avoidable details.

• SCCT for LabVIEW allows high performance data sending towards LabVIEW, Java and

ANSI-C clients and therefore it is the most suitable tool for the elaboration of

distributed computing solutions.

The points enlisted before fully explain the reasons why SCCT libraries are the best choice for

handling communications between interconnected systems and for solutions of machine to

machine (m2m) data elaboration. SCCT has been chosen and employed by research centers

and Universities all around the world and has been chosen by private companies to create

their own commercial products and extend their existing systems toward mobile devices.

24 Smartphone & Cross-platform Communication Toolkit

White Paper Series

Release: 1.2

December 2012

Worldwide technical support and product information:

www.toolsforsmartminds.com

Email: info@toolsforsmartminds.com

TOOLS for SMART MINDS Corporate headquarter

Via Padania, 16 Castel Mella 25030 Brescia (Italy)

Copyright © 201 Tools for Smart Minds. All rights reserved.

