

ALASCA
®

User Manual

Version 2.0.0, 2006-02-15

II

All rights reserved!

Published by:

Ibeo Automobile Sensor GmbH

Fahrenkrön 125

22179 Hamburg

Germany

Internet: www.ibeo-as.de

Telephone: +49.40.64587-190

Fax: +49.40.64587-109

Document information

Title: ALASCA User Manual

Article number: —

Authors: J. Scholz, V. Willhoeft, Dr. R. Schulz, T. Kluge

Date: 2006-02-15

Text version: 2.0.0

© Copyright Ibeo Automobile Sensor GmbH 2006

The information contained in this Operating Manual is protected by copyright. Copying or in any way reproducing the contents of this

Operating Manual without the written consent of Ibeo Automobile Sensor GmbH is expressly prohibited. If this document is used in an

electronic format no changes may be made or the Ibeo logo removed.

Ibeo Automobile Sensor GmbH reserves the right at any time to modify the products described herein with a view to improving their

operational reliability, function, and design. Ibeo Automobile Sensor GmbH gives no guarantee as to the accuracy of this Operating Manual.

Any liability for direct or indirect loss or damage arising from the use of this Operating Manual is expressly excluded. Ibeo Automobile

Sensor GmbH accepts no liability for direct or indirect loss or damage arising from the use of the product. This applies in particular to use of

the products as described herein and to use of the products for purposes other than those for which they were designed.

Any information or suggestions for improvement are always welcome.

III

Table of contents

1 Introduction .. 1

2 Laserscanner ALASCA.. 2

2.1 Terminology ... 2

2.2 Principle of measurement... 2

2.2.1 Multi-target capability.. 2

2.2.2 Multi-layer technology... 4

2.2.3 Rotation frequency and angular resolution .. 6

2.3 Scan data visualisation ... 7

3 Handling and operating instructions .. 9

3.1 Eye-safety... 9

3.2 Connecting the ALASCA... 9

3.2.1 Power supply .. 10

3.2.2 ALASCA–ECU connector cable.. 11

3.2.3 CAN connection... 12

3.2.4 RS232 connection .. 12

3.2.5 Ethernet connection.. 13

3.3 Mounting the ALASCA ... 13

3.4 Integration into the vehicle... 14

3.4.1 Ibeo standard integration chamber ... 14

3.4.2 Designing a custom integration chamber ... 15

3.4.3 Optical window .. 16

3.5 Damage to the laserscanner.. 17

3.6 Maintenance ... 18

3.6.1 Cleaning the sensor .. 18

3.6.2 Cleaning optical parts... 18

4 Electronic Control Unit (ECU) .. 20

4.1 Mounting the ECU ... 20

4.2 Connecting the ECU... 21

4.2.1 Interfaces .. 21

4.2.2 ECU connector pinouts .. 22

4.3 LED signals .. 24

4.4 Start-up and shut-down .. 24

4.5 Software Updates ... 24

4.6 Maintenance ... 26

4.7 Ethernet interface ... 27

4.7.1 Definitions.. 27

4.7.2 Data Transfer.. 27

4.7.3 Decoding object data.. 28

4.7.4 Decoding scan data... 28

5 SyncBox ... 32

5.1 Synchronisation details .. 33

5.2 System layout in timer mode.. 33

5.3 System layout in bit I/O mode.. 33

5.4 SyncBox LEDs and connectors.. 35

5.5 Signals of the SyncBox (TTL and LED).. 36

5.5.1 Timing example for timer mode... 37

5.5.2 Timing example for bit I/O mode .. 37

5.6 Setting timer or bit I/O mode ... 38

5.7 Interfaces and Pinouts .. 38

5.7.1 Power supply and bit I/O.. 38

IV

5.7.2 RS232 0/1... 38

5.8 Electrical characteristics... 39

5.8.1 Power supply .. 39

5.8.2 Bit I/O... 39

5.9 Synchronisation without SyncBox ... 39

6 Object tracking ... 40

6.1 Overview .. 40

6.2 ISO 8855 coordinate system .. 40

6.3 Parameter file “AppBase.ini”... 41

6.3.1 Syntax... 41

6.3.2 Section “[Parameter]” .. 42

6.3.3 Section “[Sensor_n]”.. 44

6.3.4 Section “[RS232]”.. 44

6.3.5 Section “[Vehicle]” .. 44

6.3.6 Sections “[Velocity]” and “[SteeringAngle]” (Vehicle Data Parser)............... 45

6.4 Mounting position .. 47

6.4.1 Manual determination .. 48

6.4.2 Automatic determination.. 49

6.4.3 Vertical alignment .. 49

6.5 Vehicle Model .. 50

7 Software ... 52

7.1 Scan data pre-processing.. 52

7.1.1 Dirt detection and range estimation ... 52

7.1.2 Rain detection... 53

7.1.3 Ground detection .. 53

7.1.4 Scan data correction ... 53

7.1.5 Scan data fusion ... 53

7.1.6 Ego-motion estimation ... 54

7.2 Object tracking ... 54

7.2.1 Segmentation.. 54

7.2.2 Contour tracking... 54

7.2.3 Classification.. 54

7.2.4 Street detection... 55

7.3 Applications ... 55

7.3.1 Automatic Emergency Braking.. 55

7.3.2 Other applications .. 59

8 Physical dimensions ... 60

8.1 ALASCA.. 60

8.2 Standard integration chamber... 61

8.2.1 Housing .. 61

8.2.2 Mounting shoe (holder) .. 62

8.3 ECU.. 63

8.4 SyncBox ... 64

9 References .. 65

V

DISCLAIMER – PLEASE READ CAREFULLY!

THE SYSTEM AND ALL COMPONENTS, INCLUDING SOFTWARE AND THIS

DESCRIPTION, HAVE BEEN MANUFACTURED WITH GREAT CARE TO ENSURE

ITS PROPER FUNCTION. HOWEVER, THE SYSTEM AND OTHER HARD- AND

SOFTWARE DESCRIBED IN THIS MANUAL IS CURRENTLY IN PROTOTYPE

STADIUM. ALL OF THE COMPONENTS DESCRIBED HEREIN MUST BE USED IN A

WAY ENSURING THAT NO HARM MAY COME TO HUMAN OPERATORS AND

BYSTANDERS.

IN NO EVENT, REGARDLESS OF CAUSE, WILL IBEO AUTOMOBILE SENSOR

GMBH ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR INDEMNIFICATION OF

THE OTHER PARTY OR FOR INDIRECT, SPECIAL: INCIDENTAL OR

CONSEQUENTIAL DAMAGES RESULTING FROM PERFORMANCE OR FAILURE TO

PERFORM HEREUNDER OR THE FURNISHING, PERFORMANCE OR USE OF ANY

INFORMATION, PRODUCTS OR SERVICES HERETO, WHETHER DUE TO BREACH

OF CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, STRICT LIABILITY OR

OTHERWISE.

THE SYSTEM MUST NOT BE USED AS A LIFE-SAVING DEVICE.

Safety notification – Please read carefully!

Throughout this manual, important specifications and hints for the safety of both the human

operators, bystanders and the system itself are given. In order to highlight the most important

topics, these points are marked specially as shown below. NEVER attempt to violate the

rules or specifications given within this document, especially at any of these signs, as

serious consequences may arise from such behaviour!

This sign is the most important and critical warning throughout this

document. It marks warnings and descriptions, which are critical for

the safety of operators, bystanders or the system.

This sign warns about an electrical risk that may be present in the

system. This risk may be a critical threat for the operators or the

system itself.

This sign warns about a general risk or gives important information,

which must be obeyed to ensure the proper operation of the system.

 Chapter 1. Introduction 1

1 Introduction
This user manual introduces the ALASCA laserscanner. Chapter 2 gives background

information to make the reader familiar with the ALASCA technology. It explains the

measurement principle and introduces the visual interpretation of scan data. Chapter 3

instructs the reader how to install, handle, and operate the sensor such that safety

requirements (e. g. eye-safety) will be met. Chapter 4 concentrates on the electronic control

unit coming along with the ALASCA. Optional hardware components of ALASCA systems

are described in chapter 5. Chapter 6 gives insight in the object tracking that the software in

the electronic control unit performs based on the ALASCA’s scan data. Chapter 7 focuses

even more on software. It explains the software structure and gives concise descriptions of the

individual software modules. Finally, chapter 8 shows the physical dimensions of the

ALASCA.

Please note that this user manual cannot cover all aspects of individual configurations that are

possible for different users. If in doubt the reader is encouraged to directly ask for support at

Ibeo Automobile Sensor GmbH (short form: Ibeo, address see page II).

 Chapter 2. Laserscanner ALASCA 2

2 Laserscanner ALASCA
The ALASCA (Automotive LAserSCAnner) is a multi-layer laser-based range finding device,

which measures the distances to objects in the surroundings of the sensor. The created range

profiles of the different scan planes are called a “scan”. The user can configure the direction

of the scan area, as well as several other parameters. The sensor is typically connected to an

ECU (Electronic Control Unit) which runs the object detection, tracking and classification

algorithm.

This algorithm converts the scan into a set of objects and tracks and classifies these objects.

Objects have properties like size, position, velocity, type etc. They are sent from the ECU to

the host computer on a CAN bus or an Ethernet interface.

2.1 Terminology

Fig. 1 visually explains the terms that are used in conjunction with the ALASCA throughout

this document.

2.2 Principle of measurement

The ALASCA laserscanner is a measuring instrument based on LIDAR technology (LIght

Detection And Ranging). It scans the surroundings by means of a rotating infrared laser beam.

The built-in laser transmits short rapid-fire pulses that are reflected by objects in the surround-

ings (Fig. 2). The laserscanner can detect the reflections, which allows for a measurement of

the pulses’ times of flight. From these times and the velocity of light, the distances to the

objects can be determined. In parallel, the direction to each object is known from the angular

position of the rotating mirror that deflects the laser beam. Fig. 3 shows the main components

inside the ALASCA that are involved in the measurement.

2.2.1 Multi-target capability

When a reflected pulse reaches the photo diode receiver, the received intensity is converted to

a voltage. The reflection will be detected if its voltage exceeds a given threshold. This thresh-

old prevents system noise from being detected as false objects.

Fig. 1: ALASCA components. The protecting glass cylinder is installed

only at stand-alone ALASCA sensors in place of an integration chamber.

Head

Housing

Rotating mirror

Fastening

Protecting glass

cylinder (optional)

 Chapter 2. Laserscanner ALASCA 3

Motor with

angle encoder

Rotating mirror

IR-transmitting laser diode
Photo diode

receiver

Outgoing beam

Reflected echo

Fig. 3: Insight in ALASCA’s internals

b) Reflect laser pulse

c) Receive laser pulse

Fig. 2: Principle of time-of-flight measurements: The distance d to an object can

be determined from the laser pulse’s time of flight t and the velocity of light c0.

d) Time of flight = t, distance of flight = 2d = c0·t

a) Transmit laser pulse (red dot)

 Chapter 2. Laserscanner ALASCA 4

ALASCA’s receiver electronics can detect up to four echoes per transmitted laser pulse, e. g.

echo A coming from the pane of the ALASCA’s integration chamber, echo B from a rain

drop in front of the laserscanner, echo C coming from an object farther away, and echo D

missing because of an opaque object at echo C. This feature is called multi-target capability

(Fig. 4). It becomes mandatory if the ALASCA is integrated into a vehicle.

2.2.2 Multi-layer technology

The ALASCA supports four scan planes with different vertical angles. This so called multi-

layer technology is mandatory for automotive applications as Fig. 5 illustrates.

How does the multi-layer technology work? In detail, the photo diode receiver shown in Fig.

3 is composed of a linear array of four independent receivers. Each receiver corresponds to

one layer (also called channel). Seen through the sensor’s optical components each channel

has its own field of view (Fig. 6).

Since the photo diode receiver remains stationary while the mirror revolves, the fields of view

are rotated. Fig. 8 shows the rotated fields of view for some exemplary mirror directions α.

When α runs over a full revolution the midpoint of each field of view moves on a certain

cosine-like curve (Fig. 9 and Fig. 10).

Fig. 5: Laserscanners with only one scan plane are not suitable for automotive applications because

tracked objects may get lost due to pitch movements as the upper figure illustrates. ALASCA’s multi-

layer technology allows for pitch angle compensation by means of four scan planes at different vertical

angles. For clarity, the vertical divergence is exaggerated here.

t

U(t)

0 tB tC
wC

d

0 dB dC

detection threshold

Fig. 4: Exemplary output voltage U(t) of the photo diode receiver. The laser pulse was transmitted at

t = 0 and afterwards reflected somewhere. The threshold voltage Uth separates system noise from the

relevant laser pulse echoes. The velocity of light c0 relates time t and distance d: 2d = c0·t.

The echo pulse widths wA/B/C are also measured by the ALASCA. The echo D is not shown here.

Uth

echo C echo B

wB wA tA

dA

echo A

p
an

e

ra
in

 d
ro

p

o
b

je
ct

 Chapter 2. Laserscanner ALASCA 5

The following table explains the naming convention for the channels and shows their default

colours used for visualisation. Channels are visualised by hue, whereas echoes are visualised

by saturation.

 Echo Pulse

 1
st
 2

nd
 3

rd
 4

th

Yellow channel (top) 4A 4B 4C 4D

Green channel 3A 3B 3C 3D

Blue channel 2A 2B 2C 2D

Red channel (bottom) 1A 1B 1C 1D

0.25°

+0.8°

+1.6°

–1.6°

–0.8°

0.0°

Fig. 6 shows the fields of view of ALASCA’s four channels.

The cross-section shown at the left end has the original aspect

ratio.

4

3

2

1

φ

 0° +15° +30° –15° –30°

30° 15° 30° 15°

α
Fig

Fig. 8: The four fields of view are tilted when the mirror looks to different directions α.

Both, the tilt angle and the mirror’s direction always have the same angle α.

 Chapter 2. Laserscanner ALASCA 6

2.2.3 Rotation frequency and angular resolution

The motor that drives the deflection mirror is optimised for rotation frequencies of 12.5 and

25 Hz, though it also supports any other frequency in the range from 8 to 40 Hz. This

frequency is directly related to the available angular resolution as shown in the following

table. The relation arises from considerations to ensure eye-safety and to protect the laser

from overheating.

Rotation frequency f Angular resolution

 8.0 Hz ≤ f ≤ 12.5 Hz ≥ 0.25° continuous, 0.125° short term

12.5 Hz < f ≤ 25.0 Hz ≥ 0.50° continuous, 0.250° short term

25.0 Hz < f ≤ 40.0 Hz ≥ 1.00° continuous, 0.500° short term

x y

z

–90°

+90° 0°

Fig. 10: The three-dimensional pendant to the previous graph. The centre of ALASCA’s

mirror forms the origin of the coordinate system. Again the z-axis is exaggerated.

For details about ALASCA’s coordinate system, see chapter 6.2.

±180°

+90° –90°

α

+180

°
–180° 0°

3.2°

+90° –90°

3.2°

3.2°

Fig. 9: The same view as before but extended to one full revolution of the mirror. The vertical

axis is exaggerated for clarity. The curves intersect the vertical axis at ±0.4° and ±1.2°,

whereas the horizontal axis is intersected at ±90° ± 0.4° and ±90° ± 1.2°. Though the curves

resemble the graph of the cosine function, they are in fact shortened cycloids.

 Chapter 2. Laserscanner ALASCA 7

The restriction “short term” in the table means that the high angular resolution is available

only for a sequence of a few laser shots. In automotive applications, this sequence is typically

located in driving direction to have a high-resolution scan of the oncoming objects.

In automotive applications, there are some directions (e.g. ahead) more relevant than others

(e.g. lateral). An application can put its focus on the relevant part(s) of the surroundings by

using high-resolution scan data there and low-resolution data in the less relevant parts. The

ALASCA XT supports flexible angular resolution to meet this requirement (Fig. 11).

The default setting of the flexible angular resolution puts focus especially on a range of ±16°

around the driving direction (which is defined as the x-axis in automotive applications). Here,

the short-term high resolution is used, whereas the continuous high resolution is used in a

wider range of ±60° around the x-axis (also in backward direction). Within these ranges, most

of the relevant traffic objects can be detected at a good resolution.

The lateral range around the y-axis has a lower resolution. Finally, the small angular range

around the 180° boundary has a very low resolution. The strut that holds motor and mirror

obstructs the view of the laserscanner in this range.

The resolution values shown in Fig. 11 are valid only for low rotation frequencies up to

12.5 Hz. As listed in the previous table, all resolution values are multiplied by 2 or by 4 at

higher rotation frequencies so that resolution gets coarser.

Currently there is no user interface to change the default settings of the flexible angular

resolution by the customer. Upon request, Ibeo can handle this task for the customer. Note

that the laserscanner must be sent back to Ibeo for this purpose.

2.3 Scan data visualisation

As shown in the previous section the reflection of a single laser pulse can be converted to a

point P given in polar coordinates (d, α, φ) relative to the sensor where

d = distance,

α = yaw angle / azimuth angle / horizontal angle,

φ = pitch angle / elevation angle / vertical angle.

x

y

16° –16°

–60°

–120° 120°

60°

164° –164°

Fig. 11: The ALASCA XT supports

a flexible angular resolution. The

resolution depends on the relevance

of each angular range for automotive

applications. For instance, oncoming

objects have a high relevance (red

area), whereas lateral objects are

usually less relevant. The yellow

low-resolution area is obstructed by

the strut that holds motor and mirror

(small black square).

Resolution

12.5 Hz 25 Hz

0.125° 0.25°

0.25° 0.5°

0.5° 1°

1° 2°

 Chapter 2. Laserscanner ALASCA 8

Such a single point is called a scan point. During scan data processing, each scan point is

converted to Cartesian coordinates P = (x, y, z).

During one revolution of the mirror a multitude of laser pulses is transmitted resulting in a set

of scan points {P1, …, Pn}, the so called scan. The number of detected scan points n may vary

from one scan to the next, e. g. due to object movements in the surroundings.

For visualisation, the scan points are usually plotted in a rectangular two-dimensional (2D)

coordinate system, the scan view, but they can also be overlaid to a video image projected in

perspective. Fig. 12 shows an example of both visualisations for the same scene. When

comparing the visualisations please keep the following items in mind:

• The scan view shows the scan in bird’s-eye view whereas the video image shows the scan

in camera (or human’s-eye) view. In Fig. 12, exemplary groups of corresponding scan

points are encircled pink and connected by arrows.

• The camera has a view angle that is much less than the laserscanner’s maximum view

angle. Thus not all scan points in the scan view have a corresponding point in the camera

view. In Fig. 12 only those scan points can be found in both visualisations that lie between

the lines labelled with ���� and ����.

• Like the human eye, a laserscanner neither looks through (infrared) opaque objects nor

looks round the corner. Therefore, cars, trucks, and busses generally appear L-shaped in

the scan because a single sensor can see at most two edges of a vehicle’s outline at the

same time.

• The colours of the scan points refer to ALASCA’s multi-target and multi-layer capabili-

ties, see chapter 2.2.

� Position of camera

� Left margin of video window

� Right margin of video window

� Position of ALASCA

� Scan start angle

� Scan end angle

� Colour legend for scan points �

� �

� � �

�

� �

Fig. 12: Relation between the scan view (left window, bird’s eye view) and the corresponding video view

(right window). The video view shows only a small part of the wider scan view; the angular range is

35° (�, �) out of 160° (�, �). Pink annotations are overlaid for clarity; they are not part of the views.

 Chapter 3. Handling and operating instructions 9

3 Handling and operating instructions
The ALASCA is a highly sensitive optoelectronic device. Although it is designed for auto-

motive applications, the device should be handled with care to avoid damages. Moreover, the

built-in laser may cause harm due to invisible laser radiation if it is not handled as directed.

This chapter gives instructions how to handle the sensor and how to operate it in an eye-safe

way.

3.1 Eye-safety

The ALASCA complies with the laser class 1 requirements of the European laser standard

EN 60825-1:1994 + A11:1996 + A2:2001, see [1].

The laserscanner is equipped with a scanning safeguard that shuts down the laser emission in

case of failure of the scanning mechanism.

Do only use the laserscanner as directed. Do not open the housing of

the sensor and do not dismount the head of the sensor because then

the laserscanner will no longer be eye-safe and may cause harm due

to invisible laser radiation!

3.2 Connecting the ALASCA

The ALASCA has one connector that includes both the power supply and the signal inter-

faces. Fig. 13 shows how to connect the ALASCA to the other system components. The

individual connections are described in the following subsections. The ECU (Electronic

Control Unit) is explained in chapter 4.

PC, laptop,

or vehicle

computer

ECU+ALASCA

power supply

12 V DC

CAN

Ethernet

Power

external

synchronisation

ALASCA–ECU

connector cable

RS232

Fig. 13: Connecting the ALASCA system (dashed lines: optional components)

 Chapter 3. Handling and operating instructions 10

As shown in Fig. 14, each connection transmits a certain kind of data:

ALASCA–ECU connector cable, raw data: Here the ALASCA sensor sends its hardware

measurement data to the ECU. This data is called raw data because it needs further

processing by the ECU. Raw data is transmitted from the ALASCA to the ECU only,

not to the vehicle computer. This connection uses an ARCnet bus for data transmission.

CAN, object data: A condensed high-level description of the scan data is sent as object data

on the CAN bus to the vehicle computer.

Ethernet, object and scan data: While processing in the ECU the raw data becomes scan

data, i. e. a collection of scan points (see section 2.3). The optional Ethernet connection

transmits scan data for debug or visualisation purposes. In addition to the CAN bus,

object data is sent over the Ethernet interface, too.

Usually scan data is of interest for humans only. Humans can intuitively group, interpret, and

assess scan data in the context of a traffic situation. A standard vehicle computer does not

have this intelligence. Therefore, the ECU acts as a pre-processor for the vehicle computer.

Software algorithms on the ECU transform low-level scan data to high-level object data like

“object no. 4 is a car 30 metres ahead driving at 50 km/h” (see also chapter 6.1).

3.2.1 Power supply

The ECU requires a 12 V DC, 20 W power supply. Typical power consumption of the stand-

alone ECU is less than 12 W. Note that the ECU also supplies power to the connected

sensor(s), which will increase the current on this power connector (approx. 12 W per

sensor).

The system may be directly connected to the vehicle power supply of 12 V nets. In order to

avoid damage due to overvoltage, an additional DC/DC converter can be inserted. A suitable

DC/DC converter is available from Ibeo. In order to ensure the proper function of the system,

do not use this converter to supply power to other devices, too.

The supply voltage is 12 to 15 V DC.

Never operate the system outside this voltage interval!

Do not reverse polarity!

CAN:

object data

ARCnet:

raw data

Fig. 14: Types of data busses in the ALASCA system and the corresponding kind of data

Ethernet:

object + scan data

optional service computer

vehicle computer

 Chapter 3. Handling and operating instructions 11

3.2.2 ALASCA–ECU connector cable

The connector cable is used for communication between ALASCA and ECU. It includes

power supply for the sensor, an ARCnet bus for data transmission, and a RS232 interface for

sensor synchronisation. The latter one is described separately in chapter 3.2.4.

For ALASCA sensors, a power supply only between 12 and 15 V DC may be used. The

standard connector cable delivered by Ibeo directly passes the external ECU power supply on

to the sensor(s). Inside the ECU, there is no special power supply unit for the sensor.

The ARCnet bus in the connector cable is used to send commands from the ECU to the sensor

and to receive raw data from the sensor at the ECU. ARCnet is a bus system, which must be

terminated at both ends of the bus. Termination reduces reflections on the cable that disturb

the signals. The ARCnet bus system is internally not terminated to allow connecting multiple

sensors to a single bus, but it must be terminated at both ends of the bus (see Fig. 15). The

standard ALASCA–ECU connector cable delivered by Ibeo is correctly terminated.

The following table shows the pinout of ALASCA’s 15-pin connector:

Pin Description

 1 ARCnet in “–”

 2 ARCnet out “–”

 3 Signal ground for all signals

 5 RS232 RX (receive)

 6 Power supply: +12 V DC

 7 Power supply: +12 V DC

 9 ARCnet in “+”

10 ARCnet out “+”

12 RS232 TX (transmit)

13 Power ground (= Signal GND)

Note: Do not connect the unused pins

that are not listed in this table.

14 Power ground (= Signal GND)

For self-made connector cables, please take care of the following ARCnet items:

• The ARCnet bus is not terminated in the ALASCA sensor. Instead, the end of the ARCnet

cable must be terminated.

• Signal cables should be as short as possible to avoid distortions. Do not exceed the

maximum cable lengths specified by the interface standard.

• Never create cable stubs (“T-branches”).

CAN

ARCnet

ARCnet termination CAN termination

Fig. 15: ARCnet and CAN termination for a standard ALASCA system

 Chapter 3. Handling and operating instructions 12

• ARCnet transmission runs at 10 MBit/s. Data transmission will become unstable and

produce strange errors if low-quality cables are used. Ibeo recommends high-quality

twisted pair cables with 120 Ω characteristic impedance. The pins ARCnet in “–” and

out “–” should be connected to one twisted pair; ARCnet in “+” and out “+” to another

twisted pair.

• Please also refer to the separate manual “ARCnet documentation” [2].

3.2.3 CAN connection

The CAN connection transfers data between the ECU and the vehicle computer:

 Object data ECU → vehicle computer

 Vehicle data ECU ← vehicle computer

 Application data ECU ↔ vehicle computer

 Parameter data ECU ↔ vehicle computer

CAN is a bus system that must be terminated at both ends of the bus (see Fig. 15). The

terminator must be integrated into the cable or an external terminating adapter plug must be

used (available from Ibeo). For details on installing and using the CAN bus see the separate

CAN hardware and user manual “CAN documentation”.

Each message sent on the CAN bus is labelled with a numerical message identifier (ID). This

numerical value also implies the message priority where ID 0 means the highest priority. The

CAN messages sent by Ibeo use only a few identifiers (see also parameter CANBaseID in

section 6.3.2):

• one identifier for communication from the vehicle computer to the ECU,

• another identifier for the opposite direction of communication, and

• some identifiers for high-priority communication (e. g. automatic emergency braking).

To distinguish between messages sent with the same identifier, each message type is

individually identified by a message type value inside the message.

The ECU also includes state information into a certain CAN message so that the vehicle

computer can verify the state of the ALASCA system. The state information comes along

with the so-called list end CAN message.

A complete reference of all Ibeo CAN messages can be found in the separate manual “CAN

message protocol” [3].

3.2.4 RS232 connection

The RS232 connection at the ECU is used to synchronise ALASCAs and other sensors like a

video camera. A periodical signal is sent on the RS232 interface to control synchronisation.

Synchronised sensors look (as good as possible) straight ahead to the 0° direction each time

the synchronisation signal is received. For this purpose, a fine-tuning motor speed controller

is integrated into the scanner.

Note: ALASCA users with an IPC (Industrial PC, predecessor of the ECU)

have no direct access to RS232 when using standard connector cables.

In this case, the only way to access RS232 is to modify the ALASCA

connection cable and add a RS232 connector to the cable. The pinout of

the ALASCA connector is described in the table on page 11.

 Chapter 3. Handling and operating instructions 13

The RS232 connection must be set-up using the following parameters:

RS232 Parameter Value

Baud rate 57,600 bits/s

Data bits 8

Parity no

Stop bits 1

Handshake no

Ibeo offers an optional hardware interface for synchronisation, the so-called SyncBox. For

details, please refer to chapter 5.

3.2.5 Ethernet connection

The Ethernet interface connects the ECU to the local network or to a service laptop. Due to

the high bandwidth of Ethernet, it is possible to visualise both scan and object data with the

ASD software from Ibeo. Please refer to chapter 4.7 for details.

3.3 Mounting the ALASCA

The ALASCA should be mounted at the front of the vehicle, with a clear field of view as

wide as possible. In addition, some general rules should be obeyed:

• Do not obstruct the field of view of the ALASCA. If you mount the ALASCA behind a

pane (glass or acrylic plastic), make sure that the pane is transparent for infrared light (see

chapter 3.4).

• Protect ALASCA’s head and the interface connector from

accidental damage, e.g. due to collisions. Integrate the

sensor into the vehicle (as described in chapter 3.4) or use

simple metal barriers to avoid damage to the sensor. The

opposite figure shows an example of such a metal barrier

for ALASCA’s predecessor sensor LD ML. When driving

on public roads please note that there may be national

statutory regulations that refer to such barriers, and other

restrictions may apply.

• As Fig. 6 shows, ALASCA’s lower (“red”) channel measures the ground at an incident

angle of –1.6° (looking ahead to 0° direction). Depending on the application, the sensor

should be mounted at a height suitable for the wanted range of the lower layer. The height

refers to the distance of the mirror centre above the ground (see also Fig. 41).

• The ALASCA needs a sturdy mechanical mount in order to attach it to the vehicle body.

This mount should allow for a vertical adjustment of about 5° to 10°. With this range, the

customer will be able to adjust the proper vertical zero-degree line. Horizontal adjustment

is not required if the design warrants a maximum horizontal angular error less than about

2°. Although it is possible to compensate for arbitrary angular errors by software (cf.

chapter 6.4), you should keep in mind that the divergence of the scan layers is maximal

only in the sensor’s 0° direction (see Fig. 10). Thus significant differences between the

0° direction of the vehicle and the sensor will result in a reduced capability to compensate

pitch angles.

• The ALASCA may also be mounted upside down. In this case, the processing and

visualisation must be informed that the sensor is upside down, because the location of the

vertical scan planes and the scan direction is reversed; see parameter SensorUpsideDown

in section 6.3.2.

 Chapter 3. Handling and operating instructions 14

3.4 Integration into the vehicle

For professional automotive applications, the laserscanner should be integrated into the

vehicle. Fig. 16 shows the integration at the front centre of a test vehicle. Other integration

positions may be located at the front left and right corner or the rear of the vehicle.

The following subsections describe the standard integration chamber offered by Ibeo and give

guidelines for custom designed integration chambers.

3.4.1 Ibeo standard integration chamber

Ibeo offers a standard integration chamber to customers that do not need a perfect integration

into the test vehicle body. Fig. 18 shows this housing. The housing consists of the chamber

and the adjustable mounting shoe. Here only the vehicle connection has to be carried out by

the customer. Chapter 8.2 shows outline drawings and measures of the standard integration

chamber.

The mounting shoe has six adjustment screws (see red arrows in Fig. 18). They allow for

small pitch angle corrections within the range of the flexible rubber seal. Please do not

loosen any other than these six screws. The warranty is void if the seal of any screw is

broken! Moreover, the mounting shoe has six bolt holes (Fig. 18). A custom designed

adaptor can be fastened here to connect the integration chamber to the vehicle body.

Fig. 16: Example for an integration of the ALASCA into an Ibeo test vehicle.

In this case, the ALASCA is mounted overhead (housing: light blue, head: brown).

Fig. 18: Ibeo standard integration chamber

(to be integrated at the front centre of the vehicle)

mounting

shoe

laser-

scanner

integration chamber

pane

6 adjustment screws

(2 screws hidden)

Fig. 18 shows the Ibeo standard integration

chamber from below. The green arrows point to

six holes in the mounting shoe that can be used to

fasten custom designed adaptor, which connect

the integration chamber to the car body.

bolt holes

bolt holes

 Chapter 3. Handling and operating instructions 15

For transportation safety, Ibeo delivers each integration chamber

with a protective plastic film on the pane. Please remove this plastic

film before using the laserscanner for the first time. Otherwise, the

laserscanner will show bad performance!

Integration chambers from Ibeo are delivered with a waterproof

built-in laserscanner. Neither open the integration chamber nor

remove the built-in laserscanner as this will result in a leakage that

may damage the laserscanner! Do not drill holes in the integration

chamber.

3.4.2 Designing a custom integration chamber

The integration chamber can be designed by Ibeo (based on custom requirements) or by the

customer alone. In the latter case some design rules should be observed that are described in

this section. Please contact Ibeo if consulting on this topic is desired.

First, determine the optimum position of the ALASCA in the test vehicle regarding your

application. Note that the ALASCA main axis must aim at that direction where the full 3.2°

vertical divergence is required (cf. Fig. 10). Define the horizontal field of vision (scan range)

and conclude the requirements on the dimensions of the integration chamber. Due to the

vertical divergence of the field of view, consider 6 cm free field of view for the vertical

extension of the optical window as illustrated in Fig. 19. The optical window should be

vertically tilted at no less than 22° (see also next section for details).

As true for any optical device, the ALASCA must work in a clean and dry environment. The

automotive integration chamber must be designed to provide this function. At least the upper

part of the ALASCA (scanning part with mirror and scan-motor unit) must be contained

within this chamber in order to provide dust-free and moisture-free operation. The lower part

of the ALASCA is already designed waterproof and equipped with a Gore-Tex
®

 breather.

Upon customer request, the ALASCA may be equipped with a flexible seal at the interface

between its lower and upper part (see Fig. 20) which allows a waterproof connection of the

integration chamber to the ALASCA scanning unit.

The integration chamber should also be equipped with a Gore-Tex
®

 breather in order to avoid

the intake of water during changes of air pressure. The breather must be located in a position

where water cannot accumulate.

6 cm unobstructed optical path height

optical window

Fig. 19: Illustration of the unobstructed optical path required in the vertical direction

≥ 22° vertical tilt angle
XT

 Chapter 3. Handling and operating instructions 16

It is extremely important for the functioning of the ALASCA that the inner of the integration

chamber is finished with a black matt coating in order to minimise unwanted internal re-

flections.

The connection of the ALASCA to the vehicle body must withstand automotive requirements

and should therefore be carried out with a sturdy design. A mounting shoe should be designed

permitting pitch-angle adjustment. Fig. 20 shows an example of mounting and integrating the

ALASCA.

In addition, a specific mounting shoe is available from Ibeo upon customer request. The

mounting shoe in combination with a vehicle-connector fixes the ALASCA against the

vehicle body. The shape of the connector depends on the specific integration situation and

must therefore be custom designed.

3.4.3 Optical window

For the optical window of the sensor integration chamber, Ibeo recommends the infrared-

transmissive LUXACRYL-IR, Type 1698, thickness 1.5 mm for large bend-radii, as illustrated

in Fig. 21. Smaller bend-radii of the window may be necessary, i. e. for front-bumper-

integration in trucks for applications like turning assistant, which require a scan angle of up to

240°. In this case, optical reasons require a reduced thickness of down to 0.5 mm for a bend

radius of about 100 mm.

For purchasing the optical window, please check the TTV web pages: www.go-ttv.com/

filter/filters.htm. Other colours than IR-black, except for grey, may be chosen if required for

design reasons. To increase durability of the window the outer surface may be coated with a

Fig. 20 left: ALASCA with its

mounting shoe and connector;

top: ALASCA in upside down

position with integration

chamber behind the car bumper.

mechanical connection between

steel-bumper and mounting shoe

pitch angle

adjustment

mounting

shoe

seal

connector

(custom designed)

 Chapter 3. Handling and operating instructions 17

hard coating. This coating must be professionally applied in a clean environment. For a first

go, however, the plastic material may be used uncoated.

The optical window should be formed from a plane sheet of plastic. The plastic window can

be bent horizontally according to the requirements of the integration chamber. The plastic

window must be made from one piece without any parts in the way, e.g. heating wires. For

optical reasons, one should refrain from a full three-dimensional forming of the plastic

material surface because this leads to undesirable optical distortions.

Also for optical reasons, the window must not be positioned perpendicularly to the direction

of the laser beam. This would lead to an optical short circuit due to direct reflections and it

significantly reduces the sensitivity of the ALASCA. It must be ensured that for all scan

angles the laser beam reflected back from the optical window would not re-enter the optical

system of the ALASCA.

For illustration purposes, Fig. 21 shows the top view onto a left-side integration chamber.

Here laser beam 1 is drawn at the critical scan angle range around 45°. At this horizontal

angle, only a vertical tilt of the window can prevent the internal reflection to directly re-enter

the ALASCA. For other scan angles, the reflection from the window is unable to re-enter the

optical system of the ALASCA because of the large horizontal incidence angle.

In terms of numbers, the vertical tilt angle of the optical window (Fig. 19) must measure a

minimum of 22° at that point where the laser beam hits the window perpendicularly (see Fig.

21, beam 1). For design reasons, it is possible to steadily reduce the vertical tilt angle from

22° (at perpendicular horizontal incidence) down to 0° on each end of the window.

3.5 Damage to the laserscanner

If the laserscanner becomes damaged it is necessary to stop working with the system

immediately. In this case, disconnect the laserscanner from power to avoid further damage to

the system. Please send the laserscanner back to Ibeo to have your ALASCA repaired

(address see page II).

Fig. 21 top: Position of the integration

chamber in the vehicle. Right: Top view

on a front left integration chamber. Two

laser beams at scan angles +45° (beam 1)

and –30° (beam 2) are depicted.

ALASCA

Beam 1

Beam 2

Reflections

 Chapter 3. Handling and operating instructions 18

The customer must not open the ALASCA. Only use the laser-

scanner as directed. Otherwise, the laserscanner may cause harm

due to high voltage or invisible laser radiation.

3.6 Maintenance

In general, the ALASCA does not require maintenance. However, the items listed in the

following subsections should be checked regularly.

3.6.1 Cleaning the sensor

Although the sensor is protected against water, it must not be cleaned using a jet or steam jet

cleaner as water may penetrate the seals, or parts of the sensor housing may get damaged. Use

a soft cloth with water and a non-aggressive and non-abrasive cleaner instead.

The sensor does not contain user serviceable parts inside. Its housing

is sealed watertight to protect it from environmental influences.

Do not open the sensor housing!

Do not use a jet cleaner or a steam jet cleaner to clean the sensor!

Do not clean the vehicle in a car wash when the sensor is mounted

outside the vehicle (not protected by an integration chamber)!

3.6.2 Cleaning optical parts

This section applies only to special “naked” ALASCA sensors, which are not mounted inside

an integration chamber and have no protecting glass cylinder. In this case, optical parts of the

sensor may become dirty, for instance by remains of dust or fingerprints. The optical parts to

clean are

• the deflection mirror and

• the circular pane below the mirror.

These optical parts should be cleaned regularly using an optical cleaning kit that contains

cleaning solvent and paper cloth suitable for optical instruments. Such cleaning kits are

available in optical supply and photo stores.

Please carry out the following steps for cleaning:

• Turn off the sensor. Disconnect it from power to prevent the mirror from spinning.

 Chapter 3. Handling and operating instructions 19

• Remove grains of sand or other abrasive particles by blowing them away. Do not rub them

over the surface as this may scratch it and reduce the performance of the sensor.

• Take a fresh cloth, sprinkle it with the cleaning solvent and gently wipe mirror and pane.

If stains still remain after the first cleaning repeat this procedure with a fresh cloth.

 Chapter 4. Electronic Control Unit (ECU) 20

4 Electronic Control Unit (ECU)
The ECU is the platform that runs the signal processing algorithms. It reads the scan data of

one or more laserscanners via the ARCnet interface, and sends the resulting output on CAN

and Ethernet interfaces.

4.1 Mounting the ECU

The ECU may be mounted in any desired position or location. However, some general rules

should be obeyed:

• Fasten the ECU in its mounting position to prevent the housing from crashing about,

causing damage to itself and other components.

• Protect the ECU from shocks and heavy vibrations. Although the system does not contain

moving parts, excessive shocks may cause damage to the system or loosen connectors.

• Use at least 0.75 mm
2
 cables to connect the ECU to power. Using cables with a smaller

diameter may cause the cables to overheat.

• Keep the ECU away from water. Although it is waterproof, exposure to water will not

increase the life expectancy of the ECU.

Note that although all interface connectors are waterproof, they will

become watertight only if there is a matching, also watertight con-

nector or end cap mounted to them!

Fig. 22: The Electronic Control Unit (ECU)

 Chapter 4. Electronic Control Unit (ECU) 21

4.2 Connecting the ECU

The ECU has the following connectors:

• 2x Sensor (15-pin D-Sub, female)

• 1x serial port (15-pin D-Sub, male)

• 1x CAN (9-pin D-Sub, male)

• 1x Ethernet (RJ45)

• 1x Power

For the basic setup of the system, please refer to Fig. 13.

4.2.1 Interfaces

The ECU has the following interfaces (see also Fig. 13):

• Power: The ECU requires a 12 V DC, 20 W power supply. Its connector cable has a red

plug for 12 V and a black plug for ground (GND). Typical power consumption of the

stand-alone ECU is less than 12 Watts. Note that the ECU may also supply power to the

connected sensors, which will increase the current on this power connector (see also

section 3.2.1).

• ALASCA 1: Connects laserscanner and ECU, see section 3.2.2. Its pinout is directly

compatible with the ALASCA.

• ALASCA 2: This connector is for an optional second laserscanner. The pinout is the same

as for connector ALASCA 1. To connect a second ALASCA successfully, Ibeo must

prepare the ECU specially. By default, the ECU supports only one laserscanner.

• CAN: The ECU is equipped with a standard CAN interface. Application data is sent and

received on this interface; see section 3.2.3.

Power

ALASCA 1

Fig. 23: Interfaces at the rear of the ECU.

ALASCA 2
(see text)

LAN

(Network)

CAN Serial (opt.)

 Chapter 4. Electronic Control Unit (ECU) 22

• Serial: This connector holds the serial port of the ECU (“COM1”) as well as the serial

interface of the ALASCA connector. It can be used to connect the SyncBox for the syn-

chronisation of the laserscanner(s), see section 5.

• LAN: 10/100-BaseTX Ethernet interface. This high-speed interface offers access to all

data from the ECU, as well as control of the ECU software. Software updates can be

downloaded via the LAN port, see section 4.5.

Do not open the housing of the ECU unless being explicitly instructed

to do so! Opening the housing may break its watertight seal. Before

touching any components take measures against electrostatic dis-

charge as this might destroy the ECU!

4.2.2 ECU connector pinouts

Power connector pinout of the ECU:

Pin Signal name Description

 1 +12 V Positive power input, may be directly con-

nected to vehicle power (+12 V only!)

 2 GND GND (Vehicle)

 3 +12 V Same as pin 1

The matching connector is a Lumberg Type 033203 plug. It is available from Farnell

InOne (www.farnell.com), order no. 329-6611.

ALASCA connector pinout of the ECU:

Pin Signal name Description

 1 ARC out – ARCnet out “–”

 2 ARC in – ARCnet in “–”

 3 GND Signal ground for all signals

 4 + 5V ext. For active ARCnet termination,

max. 400 mA, via jumper, default = off

 5 RxD 1 / 2 RS232 RX (receive)

 6 +12 V Power supply: +12 V DC

 7 +12 V Power supply: +12 V DC

 8 Shield Connect to cable shield

 9 ARC out + ARCnet out “+”

10 ARC in + ARCnet in “+”

11 Shield Connect to cable shield

12 TxD 1 / 2 RS232 TX (transmit)

13 Pwr GND Power ground (= Signal GND)

14 Pwr GND Power ground (= Signal GND)

15 Shield Connect to cable shield

The signal names of the RS232 signals are identical to the ALASCA signal names,

and thus the signal direction is stated from the sensor’s point of view. For instance,

 Chapter 4. Electronic Control Unit (ECU) 23

RxD on the ECU’s ALASCA 1 connector is the receive line of the sensor, and must

be connected to an external TxD signal on the Serial connector.

The ECU’s ARCnet controller sends and receives data on the ARC out lines (pins 1

and 9). The ARC in lines (pins 2 and 10) are used for termination of the bus only. If an

external termination closer to the sensor(s) is used, the ARCnet bus must not be fed

back into the ARC in lines.

Serial connector pinout of the ECU:

Pin Signal name Description

 1 RS 1 RxD RxD signal of ALASCA 1.

This pin is internally connected to pin 5 of

connector ALASCA 1.

Note that signal ground is RS_GND!

 2 RS 1 TxD TxD signal of ALASCA 1.

This pin is internally connected to pin 12 of

connector ALASCA 1.

Note that signal ground is RS_GND!

4 RS 2 RxD RxD signal of ALASCA 2.

This pin is internally connected to pin 5 of

connector ALASCA 2.

Note that signal ground is RS_GND!

 5 RS 2 TxD TxD signal of ALASCA 2.

This pin is internally connected to pin 12 of

connector ALASCA 2.

Note that signal ground is RS_GND!

 6 GND GND of ECU COM1

 7 RxD Receive line of ECU COM1

 8 TxD Transmit line of ECU COM1

 14 RS_GND Sensor RS232 signal ground. This ground is

internally connected to vehicle ground.

 15 RS_GND Sensor RS232 signal ground. This ground is

internally connected to vehicle ground.

CAN connector pinout of the ECU:

Pin Signal name Description

 2 CAN_L CAN bus “low”

 3 GND Signal ground for all signals

 7 CAN_H CAN bus “high”

LAN connector of the ECU:

The LAN connector is a standard 10/100-BaseTX Ethernet connector. The matching

plug is a BULGIN PX0834/B type, available from Farnell InOne, Order No. 428-

5864. Bulgin also offers read-to-use Ethernet cables.

 Chapter 4. Electronic Control Unit (ECU) 24

4.3 LED signals

The tracking software running on the ECU is called “AppBase”. The LEDs of the ECU show

the current state of ECU and AppBase:

LED Status Description

red on Power supply on

yellow off ECU start-up phase (approx. 45 sec),

neither AppBase running nor sensor connected

yellow quickly

flashing

The sensor is connected but AppBase is not (yet) running

yellow slowly

flashing

AppBase tries to connect to the sensor but the sensor is not connected

yellow on Data transmission on the ARCnet bus between ECU and sensor

green flashing Data transmission on the Ethernet

4.4 Start-up and shut-down

The AppBase software is started automatically after booting the ECU. It takes approximately

45 seconds to boot the ECU.

Unlike a PC, the ECU needs no preparation to shut down. It can be shut down at any time

simply by removing power.

4.5 Software Updates

The AppBase software on the ECU and consists of three files: AppBase.exe, AppBase.ini, and

AppBase.dat. It is not always necessary to update all three files.

The following steps describe the update process on a Windows
®

 system:

1. Modify the network configuration of the host PC to get the ECU connected:

• This operation requires administrator privileges.

• Open the network settings by clicking on Start → Settings → Network Connections. In

the Network Connections dialog, click with the right mouse button on the icon of the

Local Area Connection, and select Properties to open the Local Area Connection

Properties dialog (Fig. 24, left).

• In this dialog, first click on Internet Protocol (TCP/IP) and then click on Properties.

• The Internet Protocol (TCP/IP) Properties dialog appears (Fig. 24, right). Write

down the original settings shown in this dialog to restore them later.

• Click on the radio button Use the following IP address.

• Edit the four parts of the IP address. The first three parts must be equal to the ones of

the IP address of the ECU (e.g. 10.152.10, see label at the ECU). The last part must

differ at your choice from the IP address of the ECU.

• Set the subnet mask to the same mask that is printed on the label of the ECU and close

the dialog with the OK button.

• Note: If firewall and/or virus scanner software is running on the host PC, this may

cause some trouble when connecting to the ECU. In this case, try to disable the

firewall and/or the virus scanner temporarily.

 Chapter 4. Electronic Control Unit (ECU) 25

2. Connect the ECU to the LAN (local area network). Maybe you need a standard CAT-5

Ethernet patch cable. Alternatively, you may connect the ECU directly to the host

computer with the delivered Ethernet cross-link cable.

3. Start the program ServiceInterface.exe (Fig. 25) from the Ibeo application CD-ROM,

directory \Tools\ServiceInterface. Insert the IP address of the ECU (see label on the ECU)

and click on the button Stop Application to close the AppBase. This operation does not

stop the laserscanner.

4. If there is a FTP program on the host computer, start it. Or you can use the freeware

windows based FTP program “FileZilla” (Fig. 27). The Ibeo application CD-ROM

contains this program. To install the program, start the FileZilla_x_x_xx_setup.exe and

follow the instructions. Then start the program. The following description is based on this

program. Other FTP programs work similarly.

Fig. 25: Service Interface

Fig. 24: Changing the IP address of the host PC to connect to the ECU

 Chapter 4. Electronic Control Unit (ECU) 26

5. Insert the IP address of the ECU, the user name “Administrator”, and the password

“Administrator” in the three text fields. Then click on the Quick connect button.

6. Open the source directory where the AppBase.* files are stored on the host computer.

Open the destination directory D:\Appl\.

7. Copy all new AppBase.* files via drag-and-drop to the destination directory (click on the

file, hold left mouse button, and move the mouse to the destination directory). Another

way is click with the right mouse button on the file and select upload. Click on the OK

button to overwrite the existing files.

8. Close the FTP connection and restart the ECU (power-up) or click on the Start

Application button in the program ServiceInterface.exe.

Do not delete any files on the ECU.

4.6 Maintenance

The ECU does not require maintenance and has no user-serviceable parts inside. In case of

failure, please contact Ibeo.

Password User name IP address

Source directory Destination directory Source files Destination files

Fig. 27: FTP program “FileZilla”

 Chapter 4. Electronic Control Unit (ECU) 27

4.7 Ethernet interface

This document describes the Ethernet interface of the ECU, which provides data transfer from

the ECU to a host computer (e. g. for data visualisation).

4.7.1 Definitions

The following data types are used to describe the Ethernet interface:

Type Description

UINT8

UINT16

UINT32

signed integers of 8, 16, or 32 bit length, respectively

UINT8

UINT16

UINT32

unsigned integers of 8, 16, or 32 bit length, respectively

When sending multi-byte data types (i. e. data with a type other than INT8 or UINT8), care

must be taken of the correct byte order (also known as Endianness) because any data is sent

as a byte stream on the Ethernet. There are two different byte orders in common use, called

Little Endian (e.g. Intel
®

 x86 compatible processors) and Big Endian (e.g. Motorola
®

, TCP/IP

network byte order). They differ only by the direction of reading.

The following table shows the byte streams for similar sample data that have a length of four

bytes each (“0x…” denotes hexadecimal numbers):

Sample data Little Endian Big Endian

4 × UINT8 : 0x01, 0x02, 0x03, 0x04 0x01, 0x02, 0x03, 0x04 0x01, 0x02, 0x03, 0x04

2 × UINT16: 0x0102, 0x0304 0x02, 0x01, 0x04, 0x03 0x01, 0x02, 0x03, 0x04

1 × UINT32: 0x01020304 0x04, 0x03, 0x02, 0x01 0x01, 0x02, 0x03, 0x04

 → Intel
®

 x86 standard → TCP/IP standard

Standard PCs with Intel
®

 compatible x86 processors use Little Endian, whereas Big Endian is

the recommended byte order for data exchange on the network. If your processor architecture

is of type Little Endian, data must be converted between Little and Big Endian. Users of a

Microsoft
®

 Windows
®

 operating system can do this e. g. using the C functions htons(),

htonl(), ntohs(), and ntohl() that are declared in the Microsoft
®

 header file “winsock2.h”.

4.7.2 Data Transfer

The Ethernet interface uses the TCP/IP protocol and port number 12 000 for communication.

Data is sent automatically when connecting to the port.

All data that is sent to or received from an Ibeo application has the same general structure, a

16 bytes message header followed by the message body itself:

 Chapter 4. Electronic Control Unit (ECU) 28

Message header: 4 × UINT32, always Big Endian

1. “Magic word”, always UINT32 0xAFFEC0C0 (Note: 0 = zero, not letter O)

2. Size of message body in bytes (UINT32)

3. Data type of message body, see constants FILE_TYPE_… in the header file “ASL.h”

(UINT32)

4. Time-stamp in milliseconds when the message was sent (UINT32)

Message body: The byte order is always Big Endian.

Different data types (e. g. scan data, object data, …) are all transmitted on the same port.

Since the data packet size on the Ethernet is limited, the message may be spilt-up into several

packets. This packet splitting is independent of the messages sent, thus it is possible, that the

header of the next message is sent within the same packet as the end of the current message.

Since the message length is known from the header, it is easy to find the beginning of the next

message even if it is in the middle of a packet.

In case of a transmission error or data jam, the magic word 0xAFFEC0C0 can be used to find

the next message header – just read data from the Ethernet until this byte sequence is

received, and you have got the start of the next message header. (AFFEC0C0 is a German

play on words which means “monkey Coco”.)

For decoding the different message types, C source code is available from Ibeo. Alternatively,

a self-made parser can be constructed based on the following sections.

4.7.3 Decoding object data

An object data message has the file type 1 = FILE_TYPE_OBJECTDATA. It consists of a

sequence of blocks with eight byte length each. Each block is a copy of a CAN message. All

CAN messages of one object data message refer to the same scan. For details about the

individual CAN messages please refer to the document “Ibeo CAN Specification” [3].

The theoretical maximum size of an object data message is 3 136 bytes (16 bytes header +

390 × 8 bytes). It is recommended to provide a buffer of this size, even if the message size is

much smaller during normal operation.

Since all object data are UINT8 (i. e. bytes), the Endianness does not matter here.

4.7.4 Decoding scan data

A scan data message has file type 15 = FILE_TYPE_COMPRESSED_SCAN. This message

contains a subset of the scan data information, so called compressed scan data. The com-

pression removes internal administrative information from the scan that is not relevant for the

scan data receiver.

The message length depends on the number of scan points N in the current scan. The

theoretical maximum number of scan points depends on the scanner type, the angular scan

range and resolution. For an ALASCA there are N ≤ 8 648 points (max. 270° scan range in-

cluding start and end angle × 4 channels × 2 sub-channels / 0.25° resolution = 1 081 × 4 × 2).

In this case, the message size is ≤ 103 808 bytes (= 2 × 16 + 8 648 × 12, see Fig. 28).

 Chapter 4. Electronic Control Unit (ECU) 29

The message body contains the compressed data of a single scan. As Fig. 28 shows, the

message body is subdivided into a scan header (16 bytes) followed by a sequence of N scan

points (12 bytes each). The following tables show the structure of the scan header and scan

points.

SCAN HEADER Data

Type

See

note

Description

(decoding instructions see following notes)

Version UINT8 1 Version number of the data structure,

current version = 1

ScannerType UINT8 2 ALASCA has type 2

ECU_ID UINT8 1 ID of the ECU that has sent this scan

PadByte UINT8 Unused, just for proper memory alignment

TimeStamp UINT32 3 Time-stamp of the scan in milliseconds

StartAngle INT16

EndAngle INT16
4

Scan start angle [rad × 10
4
],

ISO 8855 coordinate system [5]

ScanCounter UINT16 1 Consecutive scan number

NumPoints = N UINT16 1 Number of subsequent scan points

SCAN POINT Data

Type

See

note

Description

(decoding instructions see following notes)

ScannerID UINT8 1 ID of the scanner that has detected this point

Channel UINT8 5 Zero-based channel number (0 = bottom channel)

SubChannel UINT8 6 Zero-based sub-channel (0 = A, 1 = B, …)

PointStatus UINT8 7 Point can be ground, rain, dirt etc.

XCoord INT16

YCoord INT16

ZCoord INT16

8
Cartesian coordinates of the point according to

ISO 8855 (except for z-coordinate, see note 8)

EchoPulseWidth UINT16 9 0 = invalid or not available; arbitrary unit

Ethernet message

Message body

Scan header

Scan point 0

Scan point N – 1

…

Message header 16 bytes

16 bytes

N × 12 bytes

Fig. 28: Structure of the message when receiving compressed scan data.

The total message length is 12N + 32 bytes where N is the number of scan points.

 Chapter 4. Electronic Control Unit (ECU) 30

Note 1: Integer value, no decoding necessary

Note 2: Currently known scanner types are: 0 = LD Automotive, 1 = LD ML, 2 = ALASCA.

These values are also defined as constants SCANNER_TYPE_… in “ASL.h”.

Note 3: The integer value represents a reference time-stamp given in milliseconds when the

scanner measures to its 0° direction (“ahead”). Exception: If there is only a single

laserscanner (no fusion system) and this scanner is mounted in the rear of the vehicle,

the 180° direction (“backwards”) is used as reference time-stamp.

 Due to the rotation of the scanner’s mirror it takes some time to collect the points of a

scan (e. g. 50 ms at 10 Hz and 180° scan range). This recording time results in a

distortion of objects that move relatively to the laserscanner. To reduce this effect, all

scan data are compensated for the absolute velocity of the vehicle (so called scan data

correction). After that step all scan points are corrected to the positions they (nearly)

had at the reference time-stamp and the scan data has become an instantaneous snap-

shot of the surroundings. The restriction “nearly” refers to the fact that the scan data is

not compensated for the absolute velocity of the moving objects in the surroundings

which also contributes to object distortions.

Note 4: Angles are specified according to the ISO 8855 coordinate system (see section 6.2)

with the unit radians × 10
4
. The conversion between an INT16 value n and angle α in

radians is

[] παπα

α

+≤≤−=

+≤≤−=

,00010

4163141631,00010/

n

nn

where [·] means rounding towards the nearest integer. Please note that the extreme

values n = ±31 416 slightly exceed the ±π boundary. The angular resolution arising

from this conversion is approximately 1° / 175 ≈ 0.0057° (= 10
–4

 rad).

Note 5: Channel numbers: 3 = channel 4 (yellow, top)

2 = channel 3 (green)

1 = channel 2 (blue)

0 = channel 1 (red, bottom)

Note 6: Sub-channels: 0 = sub-channel A (first echo)

 1 = sub-channel B (second echo)

Note 7: The point status can be one of the following values:

0 = PT_STATUS_OK: Normal scan point

1 = PT_STATUS_INVALID: Do not use this scan point. Note that invalid scan

points are not transmitted; therefore this status should

never be received.

2 = PT_STATUS_RAIN: For echoes from rain drops

3 = PT_STATUS_GROUND: For echoes from the ground

4 = PT_STATUS_DIRT: For echoes from dirt on the pane of the integration

chamber.

Note 8: Distances are encoded such that values up to 100 m have a resolution of 1 cm and

values above 100 m have a resolution of 10 cm. The conversion between an INT16

value n and the corresponding distance d in metres is as follows:









+>−×

+≤≤−×

−<+×

=

00010ifm 900m 1.0

0001000010ifm 01.0

00010ifm 900m 1.0

nn

nn

nn

d

 Chapter 4. Electronic Control Unit (ECU) 31

()

()







+>+

+≤≤−

−<−

=

m 100ifm/m 90010

m 100m 100ifm/100

m 100ifm/m 90010

dd

dd

dd

n

 For INT16 values the ranges of n and d are:

–32 768 ≤ n ≤ +32 767

–2 376.8 m ≤ d ≤ +2 376.7 m

Note that it is not recommended to use the z-component of a scan point; it is only

transmitted for completeness. Practically the z-component is problematic because it

refers to the local coordinate system of the respective scanner (even in case of a fusion

system). Since the pitch angle of the laserscanner is not known, a conversion to the

vehicle’s ISO 8855 coordinate system is impossible. Nevertheless, the z-components

of all points that originate from the same scanner can be compared relatively.

Note 9: Currently an echo pulse width is given only as an integer value with an arbitrary unit.

A small value corresponds to a small echo pulse and vice versa. For future sensor

generations a conversion e. g. to nanoseconds (temporal pulse length) and/or metres

(spatial pulse length) may be available.

 Chapter 5. SyncBox 32

5 SyncBox
Note: The SyncBox is an optional system component that may not be part of the ALASCA

system delivered by Ibeo

The SyncBox (Fig. 29) is a hardware interface to synchronise laserscanners with other external

devices (e.g. a camera). Synchronisation minimises time-shifts in the data collection of the

connected laserscanners. This is especially useful for scan data fusion where synchronisation

reduces the need for scan data corrections during processing. Thus, the induced error is also

minimised, resulting in an improved performance and reliability.

During the synchronisation process, the laserscanners adapt their scan frequency to a given

synchronisation frequency in such a way that each scanner measures at its 0° direction at the

time of the synchronisation pulse.

Note that in a fusion system with two laserscanners only, the SyncBox is not necessary for

synchronisation because both laserscanners can synchronise directly (master/slave mode, see

section 5.9).

The SyncBox allows the synchronisation of up to two Ibeo laserscanners. Depending on the

generation of the synchronisation frequency, the SyncBox operates either in timer mode or in

bit I/O mode:

• In timer mode, the SyncBox itself generates the synchronisation frequency. This signal is

also available on a bit I/O line to synchronise external sensors to the 0° direction of the

scanners. For instance, a video camera can capture a video frame when the scanner(s)

measure in the 0° direction.

• In bit I/O mode, the SyncBox gets the synchronisation frequency from an externally

generated periodic signal that is received on a bit I/O line. This mode allows the

synchronisation of the laserscanners to an external frequency. For instance, the capturing

of camera frames can trigger the synchronisation.

Fig. 29: The SyncBox

 Chapter 5. SyncBox 33

5.1 Synchronisation details

The accuracy of synchronisation (i.e. the temporal difference between the synchronisation

pulse and the crossing of the 0° direction) is about ±200 µs if no external forces act upon the

laserscanner (esp. no angular acceleration). This is equivalent to an angular accuracy of ±0.9°

or ±1.8° around the true 0° direction for rotation frequencies of 12.5 or 25 Hz, respectively.

The external synchronisation frequency fsync may be selected from the range 10 Hz ≤ fsync ≤

40 Hz and should have a relative accuracy better than 0.1 % (the better fsync the better

synchronisation). Therefore, it is not recommended to send the synchronisation signal from a

PC because its timers are usually not that accurate. Instead, a dedicated microcontroller

should be used to generate the synchronisation signal. Also for a correct synchronisation, the

scan area must contain at least the angular range from +5° to –5°.

It is important that synchronisation frequency and scan frequency are approximately the same;

otherwise, the controller will fail to synchronise. Therefore, the configuration parameter

RotationFreq (see section 6.3.2) should be equal to fsync.

5.2 System layout in timer mode

The SyncBox connects to the laserscanners via RS232 by means of the ECU. In the

configuration shown in Fig. 30, the SyncBox sends its signals to the ECU that distributes them

to the laserscanners. The SyncBox runs in timer mode, generating the synchronisation pulses

internally. Each trigger time also causes a 5 ms high pulse on the trigger output, which

allows triggering external devices at the same time.

To run in timer mode, the SyncMaster parameters in the file “AppBase.ini” must be set to

FALSE in the sections “[Sensor_n]”:

 SyncMaster = FALSE

Note that the same system layout applies if only one laserscanner is connected.

5.3 System layout in bit I/O mode

In bit I/O mode, the trigger signal is supplied by an external source to the trigger input of the

SyncBox (Fig. 31). Upon receiving a low-to-high transition on the trigger input, the

synchronisation commands are sent to the laserscanners. The signal is also acknowledged by

setting the trigger output signal for 5 ms (see chapter 5.5 for detailed timing examples).

Note: After the transition, the external synchronisation signal should remain in high state

for at least 1 ms in order to allow the SyncBox a stable detection of the signal.

Since the connected laserscanners will derive both their scan frequency and head position

from the trigger input signal, care must be taken that this signal is within the specification of

the connected laserscanners. If the trigger signal frequency exceeds the limits of the scan

frequency, the laserscanner will go to error mode and report this in its scan data (sensor status

field). Accordingly, if the input signal has a high time jitter, the laserscanners will be unable

to synchronise to that signal. In this case, a jitter warning signal is generated.

 Chapter 5. SyncBox 34

Trigger output

CAN bus
ARCnet + RS232

SyncBox

er

ECU

RS232

Fig. 30: System layout in timer mode (internal triggering)

Trigger output

CAN bus

SyncBox

er

ECU

RS232

Jitter warning

Trigger input

Fig. 31: System layout in bit I/O mode (external triggering)

ARCnet + RS232

 Chapter 5. SyncBox 35

5.4 SyncBox LEDs and connectors

This section describes the LEDs at the front of the SyncBox (see Fig. 32) and the connectors at

the backside (Fig. 33).

The used connectors are not waterproof.

Therefore, the SyncBox must not be exposed to water.

LED Status Description

Power on Power supply on

Mode on, red Bit I/O mode

Mode on, green Timer mode

Sync0/1 Reserved for future use

P
o

w
er

M
o

d
e

S
y

n
c0

S
y

n
c1

Fig. 32: Front side of the SyncBox

Fig. 33: Back side of the SyncBox (n/c = not connected)

n/c

n/c RS232

Reserved

B
it
 I

/O
 +

 P
o

w
e
r

 Chapter 5. SyncBox 36

5.5 Signals of the SyncBox (TTL and LED)

These signals are available on the bit I/O connector of the SyncBox:

Signal name Operation Description

Ext_Sync_In

(“trigger input”)
bit I/O

mode only

Input signal for external synchronisation. The

first low-to-high transition on this input will

activate the bit I/O mode. Subsequent low-to-

high transitions will cause a sync signal to be

sent to the laserscanners. The sync signal is

acknowledged by a corresponding output on

Ext_Sync_Out.

Ext_Sync_In_Dbl

(“double-speed

trigger input”)

bit I/O

mode only
Same as Ext_Sync_In, but only each second

low-to-high transition will cause a sync signal.

For instance, a camera that captures 25 frames/s

can synchronize a scanner with 12.5 Hz.

Ext_Sync_Out

(“trigger output”)
always Output signal. A 5 ms high-pulse is generated

every time a sync signal is sent to the laser-

scanners.

Ext_Sync_Out_Inv always Same as Ext_Sync_Out, but with inverse

polarity. During sync, this signal generates a

low pulse.

Jitter_Warning_Out

(“jitter warning”)
always Output signal, valid only in bit I/O mode. If this

signal is high, the input trigger applied at

Ext_Sync_In has a time jitter of more than

1 ms and is not suitable for laserscanner

synchronisation.

Synced_Out_0,
Synced_Out_1

always The signal is high if the connected laserscanner

on RS232 0/1 is synchronised.

 Chapter 5. SyncBox 37

5.5.1 Timing example for timer mode

The scan frequency is 12.5 Hz. Scanner 0 notifies the SyncBox at t = 112 ms that it is

synchronised, scanner 1 does so at t = 64 ms. Ext_Sync_in must be kept high at all time

to remain in timer mode.

 *) The signal Ext_Sync_Out_Inv is the inverse of this signal.

**) If unconnected, Ext_Sync_In is kept at high level by an internal pull-up resistor.

5.5.2 Timing example for bit I/O mode

The signal Ext_Sync_In is supplied by an external source. After the first low-to-high

transition, the SyncBox activates the bit I/O mode. In the figure shown below, the externally

supplied scan frequency is 25 Hz (derived from external input). After a low-to-high

transition is recognised, the SyncBox sends the sync command via RS232 and sets the signal

Ext_Sync_Out for 5 ms.

 *) The signal Ext_Sync_Out_Inv is the inverse of this signal.

t 0 ms 40 ms 80 ms

Ext_Sync_In

Ext_Sync_Out*

Jitter_-

Warning_Out

Synced_Out_0

Synced_Out_1

RS232_TX 0/1

t 0 ms 80 ms 160 ms

Ext_Sync_In**

Ext_Sync_Out*

Jitter_-

Warning_Out

Synced_Out_0

Synced_Out_1

RS232_TX 0/1

 Chapter 5. SyncBox 38

5.6 Setting timer or bit I/O mode

By default, the SyncBox runs in timer mode after start-up. The operation mode changes

automatically to bit I/O mode when a transition is detected on the input Ext_Sync_In or

Ext_Sync_In_Dbl.

5.7 Interfaces and Pinouts

The SyncBox uses a bit I/O port and both serial interfaces. All inputs have internal 20 kΩ pull-

ups to +5 V. Therefore, it is not necessary to make any connection in order to achieve a high

level. Signals that should have a low level can be connected to GND directly.

Do not connect pins that are not expressly linked to a function

(see tables below) as this will interfere with the SyncBox!

5.7.1 Power supply and bit I/O

Pin Name Function

4 Synced_Out_1 Output, high if the laserscanner connected on port 1

has signalled that it is synchronised.

5 Jitter_Warning_Out Output, high if the time jitter of Ext_Sync_In

signal is too large.

6 Ext_Sync_Out_Inv Sync signal output (active low).

9 Power_In Positive power input. The supplied voltage must be in

the range of 9 to 18 V. Short-time transitions are also

tolerable. This input can be directly connected to vehicle

power.

10 GND

11 GND

Ground pin corresponding to Power_In. It is also the

GND reference for all output signals.

13 Ext_Sync_Out Sync signal output (active high).

14 Synced_Out_0 Output, high if the laserscanner connected on port 0

has signalled that it is synchronised.

15 Ext_Sync_In Input for external sync signal.

5.7.2 RS232 0/1

Pin Name Function

2 TxD Transmit data. SyncBox sends commands on this line.

Connect this line to RxD of the laserscanner.

3 RxD Receive data. SyncBox receives laserscanner replies on

this line. Connect this line to TxD of the laserscanner.

5 GND Reference ground

 Chapter 5. SyncBox 39

5.8 Electrical characteristics

Do not reverse polarity on the input voltage!

Do not exceed the voltage limit!

5.8.1 Power supply

The SyncBox requires a 12 V (9 – 18 V), 300 mA (3.6 W) power input. This input is filtered

internally so that a direct connection to vehicle power is possible. It is also protected against

reversed polarity. However, in case of a reversed polarity, a critical current may flow through

the data lines and destroy the SyncBox and/or connected devices.

5.8.2 Bit I/O

The bit I/O outputs of the SyncBox are TTL compatible with a 5 V level and push/pull driver

stage. Therefore, multiple outputs must not be connected together and outputs must not be

connected to ground externally. No output signal may drive more than a 2 mA load, both to

high or low level.

A low signal is a voltage level of 0.0 – 0.7 V, a high signal is a level of 2.4 – 5.0 V. The

inputs are connected internally to +5 V with 20 kΩ pull-up resistors. In order to input a low

signal, external devices must pull this level below 0.7 V.

Do not apply high voltage or transients to the signal lines, as this will

destroy the internal components!

5.9 Synchronisation without SyncBox

The ALASCA also supports a self-synchronising mode. In this mode, one ALASCA (master)

transmits its 0°-time to a second ALASCA (slave). The slave then adjusts its own mirror

movement to match the master exactly. To enter this synchronisation mode, the AppBase.ini

file must be edited as follows: One sensor must have set SyncMaster = TRUE (e.g. in the

section [Sensor_0]) and the other one SyncMaster = FALSE (e.g. in section [Sensor_1]).

FALSE is the default value for the parameter SyncMaster.

In order to synchronise in master/slave mode, the two ALASCAs must be connected to the

ECU, and the special SyncPlug must be inserted into the serial connector of the ECU. The

SyncPlug is delivered by Ibeo.

 Chapter 6. Object tracking 40

6 Object tracking

6.1 Overview

The ECU computer runs a complete object de-

tection and tracking algorithm on the ALASCA

scan data. This algorithm splits the scan data into

objects and tracks those objects through sub-

sequent scans. The result is, instead of the scan

data, a set of object data with information for

each object like position, size, outline and

velocity. The object data is sent to the host

system on a standard CAN bus. This frees the

host computer from the task of isolating the

relevant information from the huge amount of

scan data that the laserscanners produce.

An overview of the standard tracking algorithm

is shown on the right. After receiving the scan, it

is split into segments. Segments are clusters of

scan data that are believed to belong to one

object. Then, the characteristics for each segment

are calculated, such as the position, size, and

number of scan points. At this stage of the algo-

rithm, all those characteristics are purely static.

In parallel, the prediction of the object movement is calculated using the output of a Kalman

filter. All objects are extrapolated from the previous scan by one step to predict their position

in the current scan. Then, the segments of the current scan are matched with the predicted

objects, and the best matches are assigned. More than one segment may be assigned to one

object because parts of the object may be blocked from view by some smaller object in the

foreground. Finally, the object properties (position, size, velocity, uncertainties) are updated,

using the precisely measured position of the assigned segment. This is done by updating the

state vector of the object and running this vector through a Kalman filter. Unassigned seg-

ments are stored as new objects with default properties.

After the object detection and tracking is complete for the scan, the objects are sent to the host

computer. The information for each object consists at least of a set of points on the object

outline including the leftmost, rightmost and closest points, a velocity, and uncertainties for

all values. All information is given in both x- and y-direction, in an ISO 8855 coordinate

system (see next section).

6.2 ISO 8855 coordinate system

For input and output, the application uses a coordinate system according to ISO 8855, see [5].

All angles are given in the range from –180° to +180°, see Fig. 35.

Fig. 34: Structure of the object tracking

Receive scan

Segment scan

Get segment

characteristics

Object
prediction

Object-to-segment assignment

Object filtering (Kalman filter)

 Chapter 6. Object tracking 41

If the ISO 8855 coordinate system is rotated by 90° clockwise, it turns into the well-known

Cartesian coordinate system. ISO 8855 assumes that the vehicle moves along the x-axis

(0° direction). This coincides with the ALASCA’s 0° direction.

Since ALASCA’s mirror rotates clockwise, the start angle of the scan is usually greater than

the end angle. As an example in Fig. 35 a 160° scan area is drawn in red colour, starting at

+80° and ending at –80°. If start and end angles were swapped this yielded the comple-

mentary scan area (crossing the ±180° boundary). The maximum usable scan area is limited

to about 240°.

6.3 Parameter file “AppBase.ini”

The ECU will start the sensor automatically after booting. Before the first scan, the AppBase

software restores the last saved parameter set from the ECU. After that, the sensor will send

object data via CAN for every scan.

A number of parameters control the steps of the object tracking process. The parameters are

stored in the file “D:\Appl\AppBase.ini” (short: ini-file) on the ECU’s built-in CompactFlash

card. The file can be edited with a text editor.

Note: Changing any parameters with the CAN interface has only a temporary effect until the

power is switched off. In order to save the parameters so that they are restored after

every power-on, use the “Store Parameters to Flash” command.

Note: Never change unknown entries in the ini-file!

6.3.1 Syntax

The AppBase.ini file is separated into sections where each section groups a number of

parameters. A section begins with a line that contains the section name in brackets, e.g.

“[Vehicle]”. It follows a list of parameter assignments “Parameter = Value” where each

assignment is placed in a separate line. Section and parameter names are not case-sensitive. A

semicolon at the first column indicates a comment.

Parameter values must be entered without units. The expected units are shown in the table

below:

Kind of Parameter Unit

Distance, Offset m

Angle °

Velocity km/h

Acceleration m/s
2

To Boolean parameters TRUE or FALSE can be assigned.

x

y

±180°

 0°

+90° −90°

ALASCA

seen from above

Fig. 35: Coordinate system of the ALASCA

 Chapter 6. Object tracking 42

6.3.2 Section “[Parameter]”

In this section, a number of parameters can be set that define the behaviour of the AppBase

application and the object tracking. Most of the parameters for the tracking can also be set

with the CAN interface; see CAN specification for details. The following lists describe the

parameters using the scheme 〈parameter name〉 = 〈default value〉: 〈explanation〉

AutoStart = TRUE: Start connected sensors automatically when AppBase starts.

SensorUpsideDown = TRUE: Mounting direction of the sensor(s). TRUE: Sensor is mounted

upside down, FALSE: Sensor is mounted normally.

ARCnetBaudRate = 5M: Baud rate of the ARCnet transmission: “5M” = 5 MBit/s, “10M” =

10 MBit/s

AppBaseID = 6: ARCnet-ID of the AppBase (ECU) on the ARCnet bus. Must be between 1

and 255 and must be unique on the bus.

CANBaudRate = 1: Baud rate of the CAN transmission. 1 = 1 MBit/s, 2 = 500 kBit/s

CANBaseID = 0x04F0: Base-ID of the CAN output, must be between 0x0001 and 0x07FE.

The following CAN identifiers are used:

• CANBaseID – n for application messages

• CANBaseID for commands to the AppBase

• CANBaseID + 1 for object data

MinDist = 0.5: Minimum distance between two segments of scan points. If two segments lie

closer together than this value, they are merged to a single segment. MinDist must be

greater than 0.1; typical values are between 0.2 and 1.0 m. Increasing this value to

greater values (e. g. 1 m) causes the segmentation and thereby the object tracking to

become more coarse, meaning that objects become merged and are tracked together.

Reducing this parameter to small values (e.g. 0.2 m) allows a much finer segmentation

but causes objects to fall apart if there are small gaps in the outline. This parameter is

only valid in y-direction. The minimum distance in x-direction is determined by the

XYFactor, see below.

XYFactor = 3.0: Stretch factor for the segmentation in x-direction; must be greater than 1. In

x-direction, the minimum distance between segments results from the product MinDist

× XYFactor. Because the main direction of movement is forward it is advisable in most

situations to allow the segmentation to become coarser in forward direction. This pre-

vents objects to fall apart in longitudinal direction. Typical values are between 1 and 5.

ObjectPoints = 0: Number of points on the object outline. Valid values are between 3 and 16,

0 = adaptively select the number of object points (max. 16).

QualityCriterion = 0: After the object tracking is complete, the objects are sent on the CAN

bus. Before sending the objects, they are sorted in order to send the most relevant object

first. The following sorting criteria are available:

0. Radial: This quality criterion is the simplest of all sorting criteria. It sorts the

objects by their distance from the centre of the vehicle coordinate system so that the

closest object is sent first. Note that due to the possible offset between the sensor

position and the origin of the coordinate system, the first object is not necessarily

the object that is closest to the laserscanner.

1. Look-Ahead: The look-ahead criterion sorts objects by a roughly club-shaped area

of priority. The axis between the origin of the coordinate system and the centre of

the look-ahead criterion at position (15 m, 0 m) has the highest priority, while

objects further to the sides have lower priority (see Fig. 36). This criterion takes

 Chapter 6. Object tracking 43

into account the typical forward movement of a vehicle, prioritizing objects in front

of the vehicle higher.

5. ACC: The ACC criterion generates the object output list according the requirements

of an ACC application. This criterion filters all uninteresting objects for this appli-

cation. In difference, other criterions only determine the output order by a quality

and send as many objects as possible, even if they have a very low priority.

The necessary conditions for an object to be sent are:

• The object is tracked longer than 0.5 s.

• The object must have the same main moving direction as the own vehicle.

• A small object must be closer than 10 m. Small means that the result of the

object classification is “unknown small”.

• The object must be on my lane or on the lane right or left of it.

• The object output order is similar to look-ahead.

SendObjects = 20: Maximum number of objects

that may be sent for each scan (0 … 31)

OutputAreaX1 = 0.0,

OutputAreaY1 = 0.0,

OutputAreaX2 = 0.0,

OutputAreaY2 = 0.0: As Fig. 37 shows, the points

(x1, y1) and (x2, y2) define a trapezoidal area,

the so-called output area. If these points are

specified only objects inside the output area

are sent in the CAN or Ethernet output. An

object is inside the output area if any scan

point of the object is inside the output area. If

all values are zero or not specified the output

area filter is disabled.

RotationFreq = 20: Scan frequency of all connected scanners (8 … 40)

y
151050-5-10-15

x

30

20

10

0

-10

Own vehicle

Medium priority object (70 %)

High priority object (100 %)

Fig. 36: Distribution of the priorities at the look-ahead criterion: red = high priority (100 %),

violet = medium priority (70 %). The priority continues falling outside the coloured area; the

limitation to 70 – 100 % is for better visualization only. Axes annotation is given in metres.

Low priority object (< 70 %)

(x1, y1)

(x2, y2) (x2, –y2)

(x1, –y1)
x

y
Fig. 37: The four parameters x1, y1, x2,

and y2 define a trapezoidal output area.

 Chapter 6. Object tracking 44

6.3.3 Section “[Sensor_n]”

Each sensor that is connected to the ECU must be configured by setting its scan start and end

angle as well as the mounting position offsets. The section name for the first sensor is

“[Sensor_0]”, for the second sensor “[Sensor_1]”, and so on.

StartAngle = 90.0,

EndAngle = –90.0: Start and end angle of the scan area (see Fig. 35). The maximum usable

scan area is currently limited to about 240° to allow sufficient time for the ARCnet

transmission of the scan data.

OffsetX = 0.0,

OffsetY = 0.0,

HorizontalAngleOffset = 0.0: Mounting position offsets (see section 6.4)

SyncMaster = FALSE: In a fusion system with two laserscanners, this flag distinguishes

between the synchronisation master (TRUE) and slave (FALSE); see section 5.9.

6.3.4 Section “[RS232]”

The RS232 port can be used to transmit status and error messages in plain text. Each message

comes along with the current time stamp. The RS232 protocol used is 8N1 (8 bit, no protocol,

1 stop bit). This section is optional, but if used, all four entries must exist.

SendStatus = FALSE: Turns the RS232 output on (TRUE) or off (FALSE).

SendANB = FALSE: Turns the AEB output on (TRUE) or off (FALSE). The AEB messages

are for debugging purposes only. Do not activate this feature. AEB is described in detail

in section 7.3.1.

ComPort = 1: Specifies the RS232 port.

BaudRate = 38400; Specifies the Baud rate (bits/s). Use only valid rates for RS232: 2400,

4800, 9600, 19200, and 38400.

6.3.5 Section “[Vehicle]”

This section of the ini-file describes the vehicle’s geometry. The parameters listed below are

shown together with exemplary values.

CenterToFrontAxle = 1.409: see Fig. 42

CenterToRearAxle = 1.291

DistOriginFront = 0.932

TurningCircle = 11.0

VehicleWidth = 1.745

VehicleLength = 4.682

For calculating the vehicle movement from the velocity and the steering angle some vehicle

parameter are necessary. The transmission ratio of the steering (i. e. the ratio between the

steering wheel angle and the front wheel angle) is given as a third-order polynomial with the

four coefficients SteerRatio0, …, SteerRatio3. Two different definitions of the polynomial

are available, type 0 and type 1. The choice between these types depends on the data available

from the vehicle manufacturer.

Type 0: Transmission ratio

Let x be the steering wheel angle in degrees. Then the transmission ratio is defined as

 Chapter 6. Object tracking 45

TransmissionRatio = SteerRatio3 · x
3
 + SteerRatio2 · x

2
 + SteerRatio1 · x + SteerRatio0

The front wheel angle is calculated from the steering wheel angle by

FrontWheelAngle = x / (1.095 · TransmissionRatio)

SteerRatioType = 0: The following coefficients belong to a transmission ratio polynomial:

SteerRatio0 = 16.155, (exemplary data)

SteerRatio1 = –4.241E–04,

SteerRatio2 = –2.178E–05,

SteerRatio3 = –2.516E–09: Coefficients of the transmission ratio polynomial

Type 1: Transfer function

Let x be the steering wheel angle in degrees. The front wheel angle is directly calculated by

FrontWheelAngle = SteerRatio3 · x
3
 + SteerRatio2 · x

2
 + SteerRatio1 · x + SteerRatio0

SteerRatioType = 1: The following coefficients belong to a transfer function polynomial:

SteerRatio0 = 0.0, (exemplary data)

SteerRatio1 = 5.383561E–2,

SteerRatio2 = 5.704158E–6,

SteerRatio3 = 1.199232E–7: Coefficients of the transfer function polynomial

6.3.6 Sections “[Velocity]” and “[SteeringAngle]” (Vehicle Data Parser)

A few modules of the application software AppBase need information about the vehicle like

velocity, steering angle, and so on. If these parameters are not available, the modules will be

disabled automatically. To be able to support CAN protocols of different vehicles AppBase

has an integrated vehicle data parser. The parameters of the vehicle data parser are specified

in the sections “[Velocity]” and “[SteeringAngle]”. Both sections need the same set of

parameters as listed below. There are no default values for these parameters.

Identifier: The identifier of the CAN message that contains the vehicle parameter, e.g. the

velocity. Valid values are decimal or hexadecimal numbers like 648 or 0x288.

FirstBit, LastBit: The range of bits where the parameter value is located in the CAN

message. The first bit corresponds to the least significant bit (LSB) and the last bit to the

most significant bit (MSB) of the value. A CAN message has 8 bytes with 8 bits each,

thus FirstBit and LastBit must lie within the range from 0 to 63 (see examples below).

SignBitAvailable: For some parameters there is a sign bit placed in the CAN message that

determines if the current value is negative or positive. If a sign bit is available set

SignBitAvailable = TRUE, otherwise set to FALSE.

SignBit: If a sign bit is available, this value defines the position of the sign bit in the CAN

message, e.g. SignBit = 15. If the sign bit is set, the value is considered as being

negative.

ErrorValue: For some parameters, an error value is defined. If the parameter is equal to the

given ErrorValue this parameter is invalidated and will not be used for internal

calculations. If there is no error value defined, ErrorValue should be set to a value out

of the range, e.g. 0xFFFF.

Factor, Offset: Parameter values must be decoded by a simple linear equation:

decoded value = encoded value × Factor + Offset

 Chapter 6. Object tracking 46

 The encoded value is the integer value extracted from the bits between FirstBit and

LastBit and the optional SignBit. The units of Factor and Offset must be metric, e. g.

velocities in m/s or angles in radians. (These are the internal units. Note that at the user

interface of ASD or AppBase the units are converted to more common and user-friendly

units like km/h or degrees.) If the parameter is not encoded, please set Factor to 1 and

Offset to 0.

 Take the steering angle parameter as an example. Assume a conversion factor of 0.5°

per integer value and an angular offset of –10°. (The actual parameters can be found in

your CAN specification.) Factor and offset must be converted to radians yielding

Factor = 0.5° · π / 180° ≈ 0.008727 and Offset = –10° · π / 180° ≈ –0.174533.

UseLittleEndian: Defines if the data is encoded in Little Endian (= TRUE) or Big Endian

(= FALSE). For more information about Endianness, please refer to page 27.

Example 1 (Little Endian)

The example describes how to get the velocity parameter out of a CAN message with the

identifier 0x288. Let the velocity be encoded in byte 0 and byte 1 (coloured in light blue in

the following table), and there is a sign bit (coloured in dark blue). The parameter is encoded

using a factor of 0.02, an offset of 0, and the original unit (used by the vehicle) is km/h.

A CAN message has 8 bytes with 8 bits each. Byte 0 starts with bit 0 and ends with bit 7.

Byte 1 starts with bit 8 and ends with bit 15 and so on.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 7 6 5 4 3 2 1 0

Byte 1 15 14 13 12 11 10 9 8

Byte 2 23 22 21 20 19 18 17 16

Byte 3 31 30 29 28 27 26 25 24

Byte 4 39 38 37 36 35 34 33 32

Byte 5 47 46 45 44 43 42 41 40

Byte 6 55 54 53 52 51 50 49 48

Byte 7 63 62 61 60 59 58 57 56

For this example the following section should be specified in the ini-file:

[Velocity]

Identifier = 0x288

FirstBit = 0

LastBit = 13

SignBitAvailable = TRUE

SignBit = 14

ErrorValue = 0x3FFF

Factor = 0.0055555556 = 0.02 · (1 m/s) / (1 km/h) = 0.02 / 3.6
Offset = 0

UseLittleEndian = TRUE

 Chapter 6. Object tracking 47

Example 2 (Big Endian)

Note: The bit numbers 0 to 63 are independent of the number of bytes transferred in the CAN

message. For example, if only one byte is transferred, only bit 56 to 63 is available.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 63 62 61 60 59 58 57 56

Byte 1 55 54 53 52 51 50 49 48

Byte 2 47 46 45 44 43 42 41 40

Byte 3 39 38 37 36 35 34 33 32

Byte 4 31 30 29 28 27 26 25 24

Byte 5 23 22 21 20 19 18 17 16

Byte 6 15 14 13 12 11 10 9 8

Byte 7 7 6 5 4 3 2 1 0

For this example, the following section should be specified in the ini-file:

[Velocity]

Identifier = 0x288

FirstBit = 24

LastBit = 37

SignBitAvailable = TRUE

SignBit = 38

ErrorValue = 0x3FFF

Factor = 0.0055555556 = 0.02 · (1 m/s) / (1 km/h) = 0.02 / 3.6

Offset = 0

UseLittleEndian = FALSE

6.4 Mounting position

The mounting position of the laserscanner(s) must be known to convert the local coordinate

system of each laserscanner to the ISO 8855 coordinate system of the vehicle (see section

6.2). The coordinate transformation is composed of translations and rotations: The origin is

shifted by (∆x, ∆y, ∆z), and there may be a rotation around each axis (∆α, ∆φ, ∆ψ). From

these six parameters, the parameters ∆z (vertical offset), ∆φ and ∆ψ (roll and pitch angle) can

be neglected here, because scan data is mainly evaluated using the bird’s-eye view (cf. section

2.3). Therefore, the relevant parameters for detecting the mounting position are (see Fig. 38):

• (∆x, ∆y) – the offset in the ground plane, and

• ∆α – the horizontal angle offset (yaw angle).

The transformation from laserscanner to ISO 8855 coordinates is performed as follows:

1. Laserscanner coordinates convert Cartesian (x, y) to polar = (r, α)

2. Rotation by ∆α (r', α') = (r, α + ∆α), back to Cartesian = (x', y')

3. Translation by (∆x, ∆y) (x'', y'') = (x' + ∆x, y' + ∆y)

4. ISO 8855 coordinates (x'', y'')

The mounting position can be determined manually or automatically. Note that – even though

the automatic determination appears to be more attractive at first sight – the manual

alternative is usually much faster and has a similar precision.

 Chapter 6. Object tracking 48

6.4.1 Manual determination

The ASD visualisation software from Ibeo allows setting the mounting position manually. The

mounting position is entered in the Parameter property page of ASD (see Fig. 39).

• The offset in the ground plane (∆x, ∆y) can be measured directly (e.g. using a tape

measure). Often the offset can also be determined from CAD data. In the Parameter

property page of ASD, assign ∆x to the parameter “Offset X” and ∆y to “Offset Y”.

• To determine the horizontal angle offset ∆α manually, place the vehicle next to a long

plain wall (e.g. side of a house) so that the 0° direction of the vehicle is exactly parallel to

the wall. In ASD, tune the parameter “Horizontal angle offset” until the scan data

visualisation shows the wall exactly parallel to the x-axis of ASD.

y

x

∆x

∆y

∆α

x'

y'

Fig. 38: For the transformation from laserscanner

coordinates (green, cf. Fig. 35) to ISO 8855 coordinates

(black), the displacement (∆x, ∆y) and the angle offset

∆α (red) must be known.

Fig. 39: The Parameter property

page in ASD is used to set the

mounting position of the

laserscanner manually.

 Chapter 6. Object tracking 49

6.4.2 Automatic determination

Ibeo delivers a software tool called ASystem-

Setup to detect the mounting position auto-

matically. Note that the automatic mounting

position detection requires time-consuming

preparation so that you might prefer to set the

mounting position manually as described in the

previous section. The manual determination is

usually faster than and as precise as the auto-

matic determination.

Even in ASystemSetup there is an option to

enter the offset (∆x, ∆y) manually because in

many cases this offset is known with high

precision (e.g. from CAD data). ASystemSetup

can use this knowledge to determine the

horizontal angle offset ∆α more precisely.

Fig. 40 shows the calibration field that

ASystemSetup expects. The tip of the V-shaped

reference target (red) must be located exactly at

the point Pref = (10 m, 0 m) in vehicle co-

ordinates. Note that in contrast to Fig. 38, the

origin is located at the middle of the rear axle.

If the offset (∆x, ∆y) shall be determined

automatically, too, the bisector of the V-angle

must lie exactly on the x-axis (red dotted line in

Fig. 40). Any angular error directly propagates

from here to ∆α.

The main (and time-consuming) challenge of

this procedure is to find the exact position of

the reference point Pref in front of the vehicle.

6.4.3 Vertical alignment

The multi-layer technology of the ALASCA is useful e.g. for pitch angle compensation (cf.

Fig. 5). To work as expected, the laserscanner must be vertically adjusted so that it is aligned

parallel to the ground plane. For this purpose, an adjustable mounting shoe is recommended

as shown in Fig. 20. Two methods to adjust the vertical alignment are presented below.

Preparation to adjust the vertical alignment (see Fig. 41)

• Place the vehicle on flat ground and make sure the ground is level up to 10 m in front of

the vehicle.

• Place the standard load in the vehicle, e.g. a driver and a passenger.

• Activate the laserscanner. It must be actively measuring. If the object tracking application

AppBase is running on the ECU, it activates the laser automatically.

• Measure the height h0 above ground of the beam at the position of the scanner. This is the

distance from the ground to the middle of the mirror of the laserscanner.

y

Pref

10 m

x

Fig. 40: Calibration field for the

automatic mounting position detection

with ASystemSetup

 Chapter 6. Object tracking 50

Method A using a laser detector (available from Ibeo):

• While the ALASCA actively measures, use the detector to measure the height above

ground of the beam centre in a distance of 10 m in front of the sensor (0° direction).

• Adjust the laserscanner so that the height of the beam centre is the same as the height h0

directly at the laserscanner.

• Repeat the previous step for at least one different direction (e.g. 45° or 90°) to correct a

possible roll angle of the sensor. After this correction, the scan plane should be parallel to

the ground level and the mirror centre should lie inside the scan plane.

Method B using ASD and a reference target

• Construct a simple target of height h0, e.g. a wooden log or board with a foot to stand

alone. Put the target in a distance of 10 m in front of the sensor (0° direction).

• Adjust the laserscanner so that in the ASD visualisation only the lower two beams (default

colours: red and blue) hit the target, whereas the upper two beams (green and yellow) hit

the background or show no measurement at all. Note that there is no sharp border or a gap

between adjacent beams. This makes the position detection procedure somewhat tricky

because of “crosstalk” between adjacent beams.

• Repeat the previous step for at least one different direction (e.g. 45° or 90°) to correct a

possible roll angle of the sensor. After this correction, the scan plane should be parallel to

the ground level and the mirror centre should lie inside the scan plane.

6.5 Vehicle Model

Without further precautions, any non-linear ego-motion of the vehicle reduces the quality of

the PreCrash information. For example, if two vehicles run the risk of colliding in a curve, the

quality of the estimated time-to-collision (TTC) can get unacceptable low. Knowledge about

the ego-motion helps to improve the TTC quality for non-linear motion. This knowledge

comes from a vehicle model that describes the physical behaviour of the vehicle given its

current velocity and steering angle. Using this model a non-linear ego-motion can be

predicted better and the TTC quality is improved.

Furthermore, the known ego-motion can be subtracted from the other objects’ motion to get

their absolute velocities. These results are helpful input e.g. for object classification.

h0 h0

10 m

A) laser detector B) target

Fig. 41: Vertical alignment of the ALASCA using a laser detector (method A) or a simple

reference target (method B). The red shaded area has a vertical divergence of 3.2°. The area is

split up vertically into four channels of 0.8° divergence each (cf. Fig. 6).

 Chapter 6. Object tracking 51

Fig. 42 shows the parameters of the vehicle model. If the position of the centre of gravity C is

not known the centre may be shifted to C' half way between the centres of the front and rear

axle. The error due to this displacement is acceptable for most applications.

The vehicle model takes as input the current velocity v and the front wheel angle α (ESP

data). The latter one can be computed from the well-known angle of the steering wheel using

a cubic polynomial as transfer function. Both, v and α, should be updated frequently (min.

10 Hz) to ensure a good accuracy of the model.

The model yields for the point C (or C') the changes of position (∆x, ∆y) and yaw angle ∆ψ

relative to the previous output data of the model.

DistOriginFront

CenterToFrontAxle

CenterToRearAxle

O

C

VehicleLength

VehicleWidth

TurningCircle
(diameter)

C'

R

v

α

Fig. 42: Parameters of the vehicle model: O = centre of the front axle = origin,

C = centre of gravity, C' = alternative centre = ½ (O + R), R = centre of rear axle.

The vehicle width does not include the side mirrors.

 Chapter 7. Software 52

7 Software
This chapter describes the individual software modules. The structure of this chapter

resembles the data flow from the laserscanner to the application:

Please note that – depending on your system configuration – some of the following modules

may be disabled or unavailable. This especially applies to the high-level modules or

applications.

7.1 Scan data pre-processing

During scan data pre-processing, the scan data sent from ALASCA is filtered and corrected in

many ways. For example, each individual measurement is checked for being dirt, rain, or

ground. Coordinates have to be corrected according to the mounting position parameters and

so on.

The following subsections give concise descriptions of the software modules that are part of

the scan data pre-processing.

7.1.1 Dirt detection and range estimation

If dirt accumulates on the cover of the integration chamber, the sensor’s range of view will be

reduced. In extreme cases (e.g. a layer of slush on the cover), the laserscanner even may get

“blind”. The vehicle computer and/or the driver must be informed about the reduced

performance due to dirt. Therefore, a dirt detection module is included.

This software module defines dirt as fixed scan data close to the sensor up to 1.2 m. It

recognises such fixed data and marks the sensor as being dirty. In this case all scan points up

to 1.2 m are excluded from the object tracking and the “sensor dirty” flag in the Environ-

mentInfo CAN message is set.

ALASCA

scan data

Scan data pre-

processing

Object

tracking
Application

Scan

data

Scan

data

Object

data

Chapter 7.1 Chapter 7.2 Chapter 7.3

Fig. 43: Overview over the data flow from the sensor to the application

 Scan data pre-processing

Dirt

detection

data Rain

detection

Ground

detection

Scan data

correction

ALASCA

#1

Dirt

detection

data Rain

detection

Ground

detection

Scan data

correction

ALASCA

#2 (opt.)

Scan data

fusion

Vehicle
data Ego-motion

estimation

Fig. 44: Overview over the scan data pre-processing. The second ALASCA (middle row)

is optional. Currently up to three ALASCA’s can be merged at the scan data fusion.

The scan data fusion module is available only if more than one ALASCA is connected.

Scan

data

 Chapter 7. Software 53

To verify this module the scan area can be partially covered by hand directly in front of the

sensor. After five seconds (until scan data is recognised as being fixed), the dirt detection

module signals a dirty laserscanner. Some seconds after removing the hand, the module

signals a clean state again.

The dirt detection module also estimates the current range of view by averaging the farthest

scan points of the most recent scans. This range estimation is printed as “view range” at the

bottom of the AppBase window.

7.1.2 Rain detection

Rain may produce randomly scattered isolated scan points (like noise) in the near field in

front of the sensor up to about 10 m. This range depends on the size of the rain drops and the

intensity of the rain.

The rain detection module internally labels such scan points as rain. These points will be

excluded from object tracking. The module also estimates a measure for the rain’s intensity.

This measure is defined as the number of rainy scan points out of 1000 scan points. The

intensity comes along with the EnvironmentInfo CAN message.

7.1.3 Ground detection

ALASCA’s multi-layer technology allows for ground detection (cf. Fig. 5). It is important for

the application to distinguish between ground points and object points because ground must

not be tracked as an object in automotive applications.

When scanning the ground, the different incident angles of the scan planes result in a

characteristic scan pattern that is detected by the ground detection module. Scan points

detected in this way are labelled internally as ground and are excluded from the object

tracking.

7.1.4 Scan data correction

A scan is not an instantaneous snapshot of the sensor’s surroundings but rather takes some

time to be measured (e. g. 25 ms for 180° scan area and 20 Hz scan frequency). The task of

the scan data correction is to shift scan points back to a common point in time. This point is

the time of the 0° measurement. For this computation the ego-motion is needed which is

estimated by another module (see chapter 7.1.6). After scan data correction, the scan is an

instantaneous snapshot.

Scan data correction becomes relevant if the sensor is moved or if the scan data of more than

one laserscanner are merged (scan data fusion to overlay or extend scan areas).

Note that vehicle data must be supplied to the laserscanner system in order for this module to

work.

7.1.5 Scan data fusion

If more than one laserscanner is integrated in the vehicle the individual scans have to be

merged to one “big” scan before the object tracking can take place. This procedure is called

scan data fusion. Since the scanner positions must be known for the merging of the scan data,

the mounting position detection procedure must be done for the system (see chapter 6.4).

 Chapter 7. Software 54

7.1.6 Ego-motion estimation

Ego-motion is the motion of the vehicle where the laserscanner is mounted. The ego-motion

is estimated based on the data from the vehicle (velocity, steering angle) combined with a

mathematical model of the vehicle’s motion. The result of the ego-motion estimation is used

by the scan data correction (chapter 7.1.4) and the computation of absolute velocities for

objects tracked in the scan.

7.2 Object tracking

The object tracking modules implement a high-level abstraction from the scan data. They

perform the transition from scan data (many individual measurements) to object data

(condensed and interpreted information). Objects are structures in the scan data that have been

recognised algorithmically as an independent entity. For each object, the geometric, dynamic,

and qualitative properties are computed, e.g. position, velocity, contour, and classification.

7.2.1 Segmentation

The segmentation procedure forms groups of scan points that are believed to belong together

(e.g. due to geometrical correspondence). These groups are called segments. The separation of

such segments is determined by a decision function, which is currently the distance between

the scan points. (For details, refer to the parameters MinDist and XYFactor in chapter 6.3.2.)

An object may be built up of many segments, but each segment may belong to at most one

object.

7.2.2 Contour tracking

This module performs the actual object tracking based on the segments that have been found

in the previous step. Each segment is considered as a part of one object’s contour, hence by

tracking segments we track object contours.

An object is tracked by first extrapolating its movement from the previous scan to the present

scan. This prediction forms the seek area where in a second step the actual object position (in

form of one or more segments) is found by a best match comparison.

7.2.3 Classification

Based on the properties of the objects the classification module labels each object with a type.

Available classes/types are:

• Pedestrian,

• bike,

• car,

• truck,

• unknown big and unknown small.

 Object tracking

Scan data pre-

processing

Segmen-

tation

scan

data

obj.

data

Contour

tracking

Classifi-

cation

Object

output

Street

detection

Fig. 45: Simplified overview over the object tracking.

For clarity, some internal modules have been omitted.

 Chapter 7. Software 55

This information is used by high-level applications that have to evaluate objects depending on

their type. The object class is included in the object data of the CAN output.

Note: The classification is improved if vehicle data is available because then the objects’

absolute velocities can be determined.

7.2.4 Street detection

The street detection module tries to estimate the course of the street ahead. It uses boundary

objects and tries to find a clear path through these objects. At this process vehicles on the

street are ignored.

The module yields the vehicle’s position on the street (implying which lane the vehicle drives

on), the street width and curvature, and the range of view available for street detection. These

parameters are included in the CAN output.

7.3 Applications

Application modules evaluate all available data (scan, object, and vehicle data) to solve their

tasks. In contrast to the object tracking the applications generate information that can be used

directly for actions of the vehicle.

7.3.1 Automatic Emergency Braking

Note: This application is an optional module that may not be part of the delivered software

package. To order this module, please contact Ibeo. Moreover, the documentation in

this chapter has also an exemplary character to give a deeper insight in one concrete

application. Apart from AEB, Ibeo offers many other applications. Please visit the

Ibeo homepage www.ibeo-as.com to get informed about more applications.

The entire laserscanner system, including Automatic Emergency

Braking, is currently in prototype stadium. For safety reasons, never

use this application in closed-loop on public roads!

Applications

AEB

object

data

Object

tracking

Fig. 46: Overview over some applications

(AEB = Automatic Emergency Braking)

Crash

prediction

Pedestrian

protection

 Chapter 7. Software 56

The Automatic Emergency Braking application (AEB) is designed to reduce the threat due to

frontal collisions. When AEB detects a possible crash situation, brakes are pretensioned auto-

matically as a precaution to shorten the response time of the brakes. The AEB system will

maximise the brake pressure if a collision cannot be avoided anymore. AEB aims at

mitigation of the accident consequences by reducing the velocity at the time of collision.

The collision will explicitly not be avoided even though this would be possible to some extent

with the current system. The reason for this approach is given by the driver as a human being.

When an automatic emergency braking happens, the driver is overridden by an electronic

system. It cannot be assumed that a driver instantaneously can continue driving after a

collision has been avoided automatically. Consequently, the decelerated vehicle would move

in the traffic as it was driverless or—after coming to standstill—would be a potential obstacle

for the following traffic. These considerations give rise to legal questions concerning product

liability.

In daily routine, the driver will not notice the AEB system because normally, AEB is only

monitoring the surroundings for dangerous situations. As long as the traffic situation is fine,

the AEB system is in the all-clear state. If the traffic situation becomes more dangerous and

an obstacle is in the way-to-stop, the AEB switches to the warning state. In this state, the

driver still can avoid the crash by steering, but time-consuming reversible safety measures

(e.g. the brake booster pressure-up) can be prepared now. If also steering cannot avoid the

crash anymore, the AEB state is set to alarm and an external system is signalled to initiate the

emergency braking.

To check that the driver cannot avoid a crash (neither by braking nor by steering) the AEB

algorithm assumes the following facts:

• The maximum cross acceleration that the driver can control while steering is constant

(default: 5 m/s
2
).

• Since the grip of the tyres is unknown for the way-to-stop ahead a constant coefficient of

friction = 1 is assumed.

• The maximum deceleration is constant (default: −10 m/s
2
).

The AEB algorithm takes vehicle and object data as input. From this information, the risk of a

collision is assessed. This is done by a chain of object filters where each filter checks a certain

AEB criterion. Objects that fail to pass a filter are ignored in the remaining steps of the filter

chain. If any object passes all filters, a collision with this object is unavoidable and an

emergency braking must be initiated. The following list explains the filter chain in detail. The

filter parameters can be set in the section “[ANB]” of the file “AppBase.ini” (see example

below).

1. AEB is deactivated if the own velocity is slow. In this situation, no serious damage due to

collisions is expected. At such slow velocities, AEB might also interfere with other

applications like e.g. automatic parking. The threshold is specified in m/s using the

parameter dEgoMinSpeed (default: 2.78 m/s [= 10 km/h])

2. Ignore “young” objects. The number of scans while an object has been tracked is called

the object age. AEB relevant objects must have a minimum age to be sure that their

detection and tracking is stable. The corresponding parameter is uMinObjectAge

(default: 5).

3. Ignore all objects that do not intersect with the driving path. The driving path is defined as

the area in front of the vehicle that has the same width as the vehicle and runs parallel to

the x-axis (driving direction, see � in Fig. 47). All objects that lie completely outside the

driving path are ignored by AEB. In other words, only those objects are kept that have at

 Chapter 7. Software 57

least one scan point inside the driving path. Use the parameter dVehicleWidth [m] to set

the width of the vehicle. The width does not include the side mirrors. Default: 1.75 m.

4. Ignore remaining objects directly in front of the vehicle. This filter is required to handle

some rare situations: Imagine a long crash barrier next to a narrow road. While driving

along the crash barrier it will be tracked as one object for a long time, i. e. it will not be

filtered by step 2 due to its age. Now, if e.g. a bush suddenly penetrates through the crash

barrier into the vehicle tube AEB will trigger an alarm because in the object data, the bush

is merged with the crash barrier and this merged object intersects with the vehicle tube. To

avoid this problem a “blind” range is installed directly in front of the vehicle (see � in

Fig. 47). The size of this range depends on the velocity of the vehicle. Therefore, it is

specified in milliseconds, the so-called system delay time. The actual blind range results

from the product of the system delay time and the current velocity. The parameter

uSystemDelayTime [ms] defaults to 100 ms. It must not be greater than 10.000 ms.

5. Keep only those objects that have a distance less than the vehicle’s way-to-stop (see � in

Fig. 47). This way is mainly composed of the way-to-reaction of the AEB system and the

way-to-brake:

 Way-to-stop: xstop = k · (xreact + xbrake + x0)

 Way-to-react: xreact = vτ

 Way-to-brake: xbrake = v
2
 / (2ax,max)

k is a stretch factor that models the reduced deceleration when braking in a curve. As

will be shown in the next step the AEB application checks if the vehicle can escape in

a curve to the left or right of an obstacle. The parameter nEscapeWayOffset [%]

specifies the percentage that is added to the normal (straight on) way-to-stop, i. e.

k = (1 + nEscapeWayOffset / 100). For instance, 0 % implies xstop = xreact + xbrake + x0

(the normal way-to-stop) and 50 % implies xstop = 1.5 (xreact + xbrake + x0). It must hold

Fig. 47: Screenshot of the AEB

application integrated in ASD.

In this example a crash object �

is detected, and AEB has calcu-

lated that the crash is unavoid-

able by braking or steering, so

AEB is activated.

� Vehicle outline (green),

velocity approx. 35 km/h

� Blind range due to the system

delay time (red)

� Way-to-stop (blue)

� Crash object (red outline).

The object has tracking no. 2.

Its velocity equals 0.7 km/h.

� Driving path (dashed lines)

� Circular curve with the left

escape radius

� Circular curve with the right

escape radius

�

�

�

�

�

� �

 Chapter 7. Software 58

–100 ≤ nEscapeWayOffset ≤ +100. The default value is 25 %.

x0 is the offset between the front of the car and the origin of the vehicle’s coordinate

system. It can be set with the parameter dDistOriginFront [m] (cf. Fig. 42, default:

0.6 m).

v is the vehicle’s current velocity.

τ is the system dead time which is the sum of the parameter uSystemDelayTime from

the previous step and the parameter uSystemPreFiredTime [ms]. The latter one is

the time between triggering an AEB alarm and the beginning of deceleration (default:

300 ms, must not be greater than 10.000 ms).

ax,max is the maximum longitudinal acceleration when fully braking. ax,max is set by the

parameter dMaxAcceleration [m/s
2
] and must be a negative value (i. e. deceleration).

The default value is –10 m/s
2
. Note that ax,max is constant so that this parameter does

not reflect the maximum possible deceleration given the tyres’ current grip—simply

because this grip is unknown. Since an AEB application brakes only if a crash is un-

avoidable ax,max must be set to the maximum deceleration possible at best grip.

6. Keep only those objects where the vehicle can escape neither to the left nor to the right of

the object. To check this, the current left and right escape radius is computed. The escape

radius is the smallest radius of a (circular) curve that the vehicle can take at the current

velocity (see �, �, and � in Fig. 47). It is computed using the formula rescape = v
2
 / ay,max

where ay,max is the maximum lateral acceleration. This constant can be specified by the

parameter dMaxCrossAcceleration [m/s
2
] (default: 5 m/s

2
). As in the previous step here

again a constant acceleration is assumed that is available only at best grip. Since the

escape radius cannot be less than the radius of the vehicle’s turning circle this limit can be

configured using the parameter dTurningCircle [m] (default: 11 m).

The following lines show an exemplary ANB section of the “AppBase.ini” file with the

default parameters:

; Parameters for the AEB application

[ANB] ← not AEB for historical reasons

dEgoMinSpeed = 2.78

dMaxObjectSpeed = 1.0

uMinObjectAge = 5

dVehicleWidth = 1.75

uSystemDelayTime = 100

nEscapeWayOffset = 25

dDistOriginFront = 0.6

uSystemPreFiredTime = 300

dMaxAcceleration = -10.0

dMaxCrossAcceleration = 5.0

dTurningCircle = 11.0

Two requirements must be met for the AEB application to work:

1. The ANB section of the “AppBase.ini” file must contain valid settings, i. e. name spelling

must be correct and values must be plausible. If parsing of the ANB section fails, a

warning will appear in the AppBase dialog window and in the log file, and the AEB

application is aborted. Care must be taken that all parameters are set correctly, since there

is no error message in case of missing or redefined parameters. Missing parameters will

be set to their default values without notice.

2. Vehicle data must be sent regularly, at least once a second. Otherwise an error message

appears in the AppBase dialog window and AEB will not work. It is recommended to

 Chapter 7. Software 59

update the vehicle data at 10 Hz. Higher update rates do not improve the quality, but may

cause unwanted delay because all incoming messages must be evaluated.

If any object passes all AEB filters a collision with this object is unavoidable and the AEB

application initiates an emergency braking by sending a CAN message. After the application

is started successfully, AEB sends CAN messages periodically with the scan frequency. All

messages have the ID = (CAN_base_ID – 1) and are two bytes long. The following messages

are available:

AEB_ALL_CLEAR (Message: ID = CAN_base_ID – 1; length = 2; data = 0x00, 0xFF): This

is the standard AEB message. It indicates that the application is alive and that the AEB

filters have detected no potential crash object.

AEB_WARNING (Message: ID = CAN_base_ID – 1; length = 2; data = 0x55, 0xAA): AEB

has detected an object inside the driving path that is closer than the way-to-stop but there

is still a chance of escaping to the left or right of the object. This warning informs that a

crash might happen soon. Therefore, measures should be taken that reduce the reaction

time in the case of an actual crash; e.g. the brake booster can be pretensioned. This

message is repeated as long as the potential crash object is detected.

AEB_ALARM (Message: ID = CAN_base_ID – 1; length = 2; data = 0xAA, 0x55): AEB has

detected a crash object so that an emergency braking must be initiated. This message may

be sent without a prior AEB warning because of a sudden change in the traffic situation.

This message is repeated as long as the crash object is detected.

Note that if AEB is not active, e.g. because the parameter read has failed or no vehicle data is

available, no messages will be sent. In this case, a warning will be given both in the dialog

window of the AppBase and in the log file.

7.3.2 Other applications

As stated at the beginning of the previous section, AEB is only one exemplary application for

the ALASCA laserscanner. Other applications are available from Ibeo, too:

• Automatic Stop & Go

• PreCrash

• Pedestrian Protection

• Collision Warning

• Turing Assist

• Park Assist

• …

Please visit www.ibeo-as.com to get informed about the latest applications for your laser-

scanner.

 Chapter 8. Physical dimensions 60

8 Physical dimensions

8.1 ALASCA

All measures are given in millimetres.

Weight: approx. 1.5 kg,

including the flexible rubber seal

(not shown here)

 Chapter 8. Physical dimensions 61

8.2 Standard integration chamber

8.2.1 Housing

All measures are given in millimetres.

Weight: approx. 0.5 kg

 Chapter 8. Physical dimensions 62

8.2.2 Mounting shoe (holder)

All measures are given in millimetres.

Weight: approx. 1.0 kg

 Chapter 8. Physical dimensions 63

8.3 ECU

All measures are given in millimetres.

Weight: approx. 2.6 kg

 Chapter 8. Physical dimensions 64

8.4 SyncBox

All measures are given in millimetres.

Weight:

approx. 1.1 kg

 Chapter 9. References 65

9 References

[1a] European Committee for Electrotechnical Standardization: “EN 60825-1: Safety of laser

products – Part 1: Equipment classification, requirements and user’s guide” (IEC

60825-1:1993 + A2:2001); Internet: www.cenelec.org

[1b] Deutsches Institut für Normung e.V.: „DIN EN 60825-1: Sicherheit von Laser-

Einrichtungen – Teil 1: Klassifizierung von Anlagen, Anforderungen und Benutzer-

Richtlinien“; Internet: www.din.de

[2] Ibeo Automobile Sensor GmbH: “ARCnet Documentation”

[3] Ibeo Automobile Sensor GmbH: “Specification of the CAN message protocol for Ibeo

Automobile Sensor GmbH Laserscanners”

[4] Till Heinrich: „Bewertung von technischen Maßnahmen zum Fußgängerschutz am

Kraftfahrzeug“, Technische Universität Berlin, ILS, August 2003

[5a] International Organization for Standardization: “ISO 8855:1991: Road vehicles –

Vehicle dynamics and road-holding ability – Vocabulary”; Internet: www.iso.org

[5b] Deutsches Institut für Normung e.V.: „DIN 70000: Straßenfahrzeuge; Fahrzeugdynamik

und Fahrverhalten; Begriffe“; edition 1994-01 (ISO 8855:1991, modified); Internet:

www.din.de

