

VPX4812

Single-Slot 3U VPX Bus XMC Carrier Card with P16 Support VPX Switch Card

USER'S MANUAL

ACROMAG INCORPORATED

30765 South Wixom Road Wixom, MI 48393-7037 U.S.A. Tel: (248) 295-0310 Fax: (248) 624-9234

Copyright 2014, Acromag, Inc., Printed in the USA. Data and specifications are subject to change without notice.

8501-022A

The information contained in this manual is subject to change without notice. Acromag, Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Further, Acromag, Inc. assumes no responsibility for any errors that may appear in this manual and makes no commitment to update, or keep current, the information contained in this manual.

No part of this manual may be copied or reproduced in any form, without the prior written consent of Acromag, Inc.

IMPORTANT SAFETY CONSIDERATIONS

It is very important for the user to consider the possible adverse effects of power, wiring, component, sensor, or software failures in designing any type of control or monitoring system. This is especially important where economic property loss or human life is involved. It is important that the user employ satisfactory overall system design. It is agreed between the Buyer and Acromag, that this is the Buyer's responsibility.

1.0	General Information	5
	Key Features	5
	Introduction	6
	Module and Backplane Profiles	6
	Build Levels	7
2.0	Ordering Information	8
3.0	Preparation For Use	9
	Unpacking and Inspection	9
4.0	Operational Block Diagram	10
5.0	Board Layout	11
6.0	Connectors	12
	P0 Connector	12
	P1 Connector	12
	P2 Connector	13
	J15 Connector	13
	J16 Connector	14
	J5 Connector – JTAG Header	14
7.0	Switch Settings	15
	Front Panel Layout	17
8.0	Handling	
	ESD Safe Work Area Guidelines	
9.0	Installation	19
	Board Keying	19
	Installation Notes	19
10.0	Specifications	20
	Physical	20
	Power Requirements	20
	Power Consumption	20
	Auxiliary Supply	21
	Power-Up/Reset Sequence	21
	Bus Compliance	21
	Form Factor	21
	Flammability	21
	Environmental	22
	EMI/EMC Regulatory Compliance	22

11.0	Service and Repair	.23
	Service and Repair Assistance	.23
	Preliminary Service Procedure	.23
	Where to Get Help	.23
Append	lix A – Accessory Modules	.24
	TRANS-V112	.24
Certific	ate of Volatility	.28
Revisio	n History	.29

1.0 General Information

The VPX4812 is an XMC Carrier Card Module in the 3U VPX form factor, targeted for processing, communications, and display applications in the commercial, military, and aerospace markets.

The VPX4812 provides support for Rear I/O connections from the XMC P16 connector. The TRANS-V112 is the Rear Transition Module for the VPX4812 used to bring out Rear I/O connections through the backplane.

The VPX4812 supports up to four VPX Fat Pipe (x4) connections to other cards in the system at Gen 2.0 speeds. The VPX4812 can be used as a switch card allowing an upstream Fat Pipe or Double Fan Pipe connection – typically to a CPU – to communicate with up to three downstream Fat Pipe connections or a single Double Fat Pipe connection.

The VPX4812 also provides support for a VPX Double Fat Pipe (x8) connection to an XMC card at Gen 2.0 speeds.

Key Features

- 24-Channel 5-Port PCI Express Gen. 2.0 Switch
- The XMC site is PCIe 8-Lanes Gen. 2.0
- Module conforms to VPX Spec. VITA 46.0, 46.4, and 46.9
- The XMC site supports X24s+X8d+X12d I/O mapping (VITA 46.9)
- 16 Lanes PCI Express to backplane (VITA 46.0 and 46.4)
- Supports Non-Transparent Bridging Applications
- 3U VPX form factor supporting OpenVPX/VITA 65
- Air and conduction cooled variants available
- REDI covers supporting VITA 48 available

Introduction

The VPX4812 has two primary functions that can be utilized in a VPX system simultaneously.

- 1. XMC Carrier Card The VPX4812 supports a Double Fat Pipe (x8) connection from an XMC module to the on-board PCIe switch. The voltage used to power the XMC module can be toggled between 5V or 12V using a DIP switch located on the VPX4812.
- VPX Switch Card The VPX4812 contains a 24-lane 5-port PCIe switch capable of Gen 2.0 speeds. When utilizing the VPX4812 as a switch card, a CPU module configured to be an upstream port can communicate with up to three downstream VPX cards in the system as well as an XMC module on the 4812.

The VPX4812 supports the use of non-transparent bridging using the on-board PCIe switch. By utilizing non-transparent bridging (NTB), the VPX4812 can be used to implement multi-hosted topologies including intelligent adapter cards, dual-host systems with redundancy, and even blade server systems.

Module and Backplane Profiles

The VPX4812 conforms to module profile MOD3-SWH-4F-16.4.5-2 of the VITA 65 specification. The VPX4812 conforms to switch slot profile SLT3-SWH-4F-14.4.4 of the VITA 65 specification.

The VPX 4812 is intended for use in backplane profiles BKP3-CEN06-15.2.12-n of the VITA 65 specification. Use of this module in an incompatible backplane profile could result in damage to this module or others in the chassis.

Slot numbers are logical, physical slot	Payload Slot	Peripheral Sloteral	Switch Slot	Peri	pheral S	lots
numbers may be different	VPX 1	VPX 2	VPX 3	VPX 4	VPX 5	VPX 6
Data Plane (FP)	Data Plane	Data Plane	Data Plane	Data Plane	Data Plane	Data Plane
Management Plane (IPMB)	ChMC	ІРМС	ІРМС	ІРМС	ІРМС	ІРМС
Utility Plane including Power						

VPX4812 Suggested Backplane Topology

Build Levels

The VPX4812 is available in three electrically compatible build levels, each of which is carefully tailored to a particular set of requirements and environments. All three levels fully support the power and versatility of VPX, so no matter how large or diversified your project, absolute compatibility is assured at all stages of development. The three build levels have three basic mechanical configurations, both in accordance with the VITA 46.0 VPX standard and the VITA 48 REDI standard:

- 1. Air (convection) cooled modules are intended for use in standard industrial chassis.
- 2. Conduction-cooled modules are intended for use in sealed Air Transportable Racking (ATR) and other conduction-cooled environments.
- 3. REDI cover, Conduction-cooled modules are intended for use in sealed Air Transportable Racking (ATR) and other conduction-cooled environments.

2.0 Ordering Information

VPX4812 Available Models				
VPX4812-XX	Air-cooled Model			
VPX4812-CC-XX	Conduction-cooled Model			
VPX4812-REDI-XX	REDI			
XX = Solder	L = Lead solder			
	LF = Lead-free solder			

3.0 Preparation For Use

Unpacking and Inspection

Upon receipt of this product, inspect the shipping carton for evidence of mishandling during transit. If the shipping carton is badly damaged or water stained, request that the carrier's agent be present when the carton is opened.

If the carrier's agent is absent when the carton is opened and the contents of the carton are damaged, keep the carton and packing material for the agent's inspection.

For repairs to a product damaged in shipment, refer to the Acromag Service Policy to obtain return instructions. It is suggested that salvageable shipping cartons and packing material be saved for future use in the event the product must be shipped.

This board is physically protected with packing material and electrically protected with an anti-static bag during shipment. It is recommended that the board be visually inspected for evidence of mishandling prior to applying power.

The board utilizes static sensitive components and should only be handled at a static-safe workstation.

IMPORTANT: Adequate air circulation must be provided to prevent a temperature rise above the maximum operating temperature.

Adequate air circulation must be provided to prevent a temperature rise above the maximum operating temperature and to prolong the life of the electronics.

If the installation is in an industrial environment and the board is exposed to environmental air, careful consideration should be given to air-filtering.

4.0 Operational Block Diagram

5.0 Board Layout

6.0 Connectors

P0 Connector

P0 Wafer	Α	В	с	D	E	F	G
1	+3.3 V	+3.3 V	+3.3 V	Unused	+12 V	+12 V	+12 V
2	+3.3 V	+3.3 V	+3.3 V	Unused	+12 V	+12 V	+12 V
3	+5 V	+5 V	+5 V	Unused	+5 V	+5 V	+5 V
4	NVRAM_LOCK	PLT_RST#	GND	-12V_AUX	GND	Unused	Unused
5	SMB_DATA	SMB_CLK	GND	+3.3V AUX	GND	Unused	Unused
6	GA0#	GA1#	GND	+12V_AUX	GND	GA2#	GA3#
7	Unused	Unused	GND	Unused	Unused	GND	Unused
8	GND	Unused	Unused	GND	PCIe VPX REF_CLK P	PCIe VPX REF_CLK N	GND

= Low true signal

P1 Connector

P1 Wafer	Α	В	с	D	E	F	G
1	PCIE_VPX_P0_RXP	PCIE_VPX_P0_RXN	GND	PCIE_VPX_P0_TXP	PCIE_VPX_P0_TXN	GND	Unused
2	GND	PCIE_VPX_P1_RXP	PCIE_VPX_P1_RXN	GND	PCIE_VPX_P1_TXP	PCIE_VPX_P1_TXN	GND
3	PCIE_VPX_P2_RXP	PCIE_VPX_P2_RXN	GND	PCIE_VPX_P2_TXP	PCIE_VPX_P2_TXN	GND	Unused
4	GND	PCIE_VPX_P3_RXP	PCIE_VPX_P3_RXN	GND	PCIE_VPX_P3_TXP	PCIE_VPX_P3_TXN	GND
5	PCIE_VPX_P4_RXP	PCIE_VPX_P4_RXN	GND	PCIE_VPX_P4_TXP	PCIE_VPX_P4_TXN	GND	Unused
6	GND	PCIE_VPX_P5_RXP	PCIE_VPX_P5_RXN	GND	PCIE_VPX_P5_TXP	PCIE_VPX_P5_TXN	GND
7	PCIE_VPX_P6_RXP	PCIE_VPX_P6_RXN	GND	PCIE_VPX_P6_TXP	PCIE_VPX_P6_TXN	GND	Unused
8	GND	PCIE_VPX_P7_RXP	PCIE_VPX_P7_RXN	GND	PCIE_VPX_P7_TXP	PCIE_VPX_P7_TXN	GND
9	PCIE_VPX_P8_RXP	PCIE_VPX_P8_RXN	GND	PCIE_VPX_P8_TXP	PCIE_VPX_P8_TXN	GND	Unused
10	GND	PCIE_VPX_P9_RXP	PCIE_VPX_P9_RXN	GND	PCIE_VPX_P9_TXP	PCIE_VPX_P9_TXN	GND
11	PCIE_VPX_P10_RXP	PCIE_VPX_P10_RXN	GND	PCIE_VPX_P10_TXP	PCIE_VPX_P10_TXN	GND	Unused
12	GND	PCIE_VPX_P11_RXP	PCIE_VPX_P11_RXN	GND	PCIE_VPX_P11_TXP	PCIE_VPX_P11_TXN	GND
13	PCIE_VPX_P12_RXP	PCIE_VPX_P12_RXN	GND	PCIE_VPX_P12_TXP	PCIE_VPX_P12_TXN	GND	Unused
14	GND	PCIE_VPX_P13_RXP	PCIE_VPX_P13_RXN	GND	PCIE_VPX_P13_TXP	PCIE_VPX_P13_TXN	GND
15	PCIE_VPX_P14_RXP	PCIE_VPX_P14_RXN	GND	PCIE_VPX_P14_TXP	PCIE_VPX_P14_TXN	GND	Unused
16	GND	PCIE_VPX_P15_RXP	PCIE_VPX_P15_RXN	GND	PCIE_VPX_P15_TXP	PCIE_VPX_P15_TXN	GND

RX is defined as a signal that is an input to the VPX4812. TX is defined as a signal that is an output from the VPX4812.

P2 Wafer	А	В	С	D	E	F	G
1	J16_SIO11_P	J16_SIO11_N	GND	J16_SIO10_P	J16_SIO10_N	GND	Unused
2	GND	J16_SIO9_P	J16_SIO9_N	GND	J16_SIO8_P	J16_SIO8_N	GND
3	J16_SIO7_P	J16_SIO7_N	GND	J16_SIO6_P	J16_SIO6_N	GND	Unused
4	GND	J16_SIO5_P	J16_SIO5_N	GND	J16_SIO4_P	J16_SIO4_N	GND
5	J16_SIO3_P	J16_SIO3_N	GND	J16_SIO2_P	J16_SIO2_N	GND	Unused
6	GND	J16_SIO1_P	J16_SIO1_N	GND	J16_SIO0_P	J16_SIO0_N	GND
7	J16_DP01_N	J16_DP01_P	GND	J16_DP00_N	J16_DP00_P	GND	Unused
8	GND	J16_DP03_N	J16_DP03_P	GND	J16_DP02_N	J16_DP02_P	GND
9	J16_DP11_N	J16_DP11_P	GND	J16_DP10_N	J16_DP10_P	GND	Unused
10	GND	J16_DP13_N	J16_DP13_P	GND	J16_DP12_N	J16_DP12_P	GND
11	J16_DP05_N	J16_DP05_P	GND	J16_DP04_N	J16_DP04_P	GND	Unused
12	GND	J16_DP07_N	J16_DP07_P	GND	J16_DP06_N	J16_DP06_P	GND
13	J16_DP09_N	J16_DP09_P	GND	J16_DP08_N	J16_DP08_P	GND	Unused
14	GND	J16_DP15_N	J16_DP15_P	GND	J16_DP14_N	J16_DP14_P	GND
15	J16_DP17_N	J16_DP17_P	GND	J16_DP16_N	J16_DP16_P	GND	Unused
16	GND	J16_DP19_N	J16_DP19_P	GND	J16_DP18_N	J16_DP18_P	GND

P2 Connector

J15 Connector

	А	В	с	D	E	F
1	PCIE_XMC_P0_RXP	PCIE_XMC_P0_RXN	+3.3V	PCIE_XMC_P1_RXP	PCIE_XMC_P1_RXN	VPWR
2	GND	GND	NC	GND	GND	XMC_RSTI#
3	PCIE_XMC_P2_RXP	PCIE_XMC_P2_RXN	+3.3V	PCIE_XMC_P3_RXP	PCIE_XMC_P3_RXN	VPWR
4	GND	GND	JTAG_TCK	GND	GND	XMC_RSTO#
5	PCIE_XMC_P4_RXP	PCIE_XMC_P4_RXN	+3.3V	PCIE_XMC_P5_RXP	PCIE_XMC_P5_RXN	VPWR
6	GND	GND	JTAG_TMS	GND	GND	+12V
7	PCIE_XMC_P6_RXP	PCIE_XMC_P6_RXN	+3.3V	PCIE_XMC_P7_RXP	PCIE_XMC_P7_RXN	VPWR
8	GND	GND	JTAG_TDI	GND	GND	-12V_AUX
9	NC	NC	NC	NC	NC	VPWR
10	GND	GND	JTAG_TDO	GND	GND	GA0#
11	PCIE_XMC_P0_TXP	PCIE_XMC_P0_TXN	NC	PCIE_XMC_P1_TXP	PCIE_XMC_P1_TXN	VPWR
12	GND	GND	GA1#	GND	GND	NC
13	PCIE_XMC_P2_TXP	PCIE_XMC_P2_TXN	+3.3V_AUX	PCIE_XMC_P3_TXP	PCIE_XMC_P3_TXN	VPWR
14	GND	GND	GA2#	GND	GND	SMB_DATA
15	PCIE_XMC_P4_TXP	PCIE_XMC_P4_TXN	NC	PCIE_XMC_P5_TXP	PCIE_XMC_P5_TXN	VPWR
16	GND	GND	NVRAM_LOCK	GND	GND	SMB_CLK
17	PCIE_XMC_P6_TXP	PCIE_XMC_P6_TXN	NC	PCIE_XMC_P7_TXP	PCIE_XMC_P7_TXN	NC
18	GND	GND	NC	GND	GND	NC
19	PCIE_VPX REF_CLK P	PCIE_VPX REF_CLK N	NC	NC	ROOT0#	NC

= Low true signal

J16 Connector

	А	В	с	D	E	F
1	J16_DP00_P	J16_DP00_N	NC	J16_DP01_P	J16_DP01_N	NC
2	GND	GND	NC	GND	GND	NC
3	J16_DP02_P	J16_DP02_N	NC	J16_DP03_P	J16_DP03_N	NC
4	GND	GND	NC	GND	GND	NC
5	J16_DP04_P	J16_DP04_N	NC	J16_DP05_P	J16_DP05_N	NC
6	GND	GND	NC	GND	GND	NC
7	J16_DP06_P	J16_DP06_N	NC	J16_DP07_P	J16_DP07_N	NC
8	GND	GND	J16_SIO10_N	GND	GND	J16_SIO11_N
9	J16_DP08_P	J16_DP08_N	J16_SIO10_P	J16_DP09_P	J16_DP09_N	J16_SIO11_P
10	GND	GND	J16_SIO8_N	GND	GND	J16_SIO9_N
11	J16_DP10_P	J16_DP10_N	J16_SIO8_P	J16_DP11_P	J16_DP11_N	J16_SIO9_P
12	GND	GND	J16_SIO6_N	GND	GND	J16_SIO7_N
13	J16_DP12_P	J16_DP12_N	J16_SIO6_P	J16_DP13_P	J16_DP13_N	J16_SIO7_P
14	GND	GND	J16_SIO4_N	GND	GND	J16_SIO5_N
15	J16_DP14_P	J16_DP14_N	J16_SIO4_P	J16_DP15_P	J16_DP15_N	J16_SIO5_P
16	GND	GND	J16_SIO2_N	GND	GND	J16_SIO3_N
17	J16_DP16_P	J16_DP16_N	J16_SIO2_P	J16_DP17_P	J16_DP17_N	J16_SIO3_P
18	GND	GND	J16_SIO0_N	GND	GND	J16_SIO1_N
19	J16_DP18_P	J16_DP18_N	J16_SIO0_P	J16_DP19_P	J16_DP19_N	J16_SIO1_P

J5 Connector – JTAG Header

Pin Number	Description
1	JTAG_TDI
2	JTAG_TDO
3	GND
4	JTAG_TCK
5	JTAG_TMS
6	JTAG_VREF

7.0 Switch Settings

The following describes the VPX4812 switches with their default positions and their functions.

SW1 – Upstream Port Selection						
	Switch	Position		Colocted Unstroom Dort		
1	2	3	4	Selected Upstream Port		
ON	ON	ON	ON	VPX Fat Pipe A (default)		
OFF	ON	ON	ON	VPX Fat Pipe B		
OFF	ON	OFF	ON	VPX Fat Pipe C		
ON	OFF	OFF	ON	VPX Fat Pipe D		
ON	ON	ON	OFF	XMC		

SW2	1-2 (default)	FRU uses 3.3V	
	2-3	FRU uses 3.3V_AUX	
(FRUSEL & ORBGND)	4-5 (default)	Orb ground is connected to digital ground.	
onbonby	5-6	Orb ground is isolated from digital ground.	

Orb ground is the front panel and the VPX key-guides.

SW3-1 (STATION 0 PORT	ON (default)	VPX Fat Pipe A = x4, VPX Fat Pipe B = x4
CONFIG)	OFF	VPX Fat Pipe A = x8, VPX Fat Pipe B = Disabled

SW3-2 ON	VPX Fat Pipe C = x8, VPX Fat Pipe D = Disabled	
(STATION 1 PORT CONFIG)	OFF (default)	VPX Fat Pipe C = x4, VPX Fat Pipe D = x4

SW3-3	ON	Force Gen 1.0 Speed Only
(PCIE LINK SPEED)	OFF (default)	Allow Gen 1.0 & Gen 2.0 Speeds

SW3-4	ON	VPWR = +12V
(XMC VPWR VOLT SELECT)	OFF (default)	VPWR = +5V

SW4-1:3 – Upstream NT Port Selection				
Switch Position			Selected NT Linctroom Dort	
1	2	3	Selected NT Upstream Port	
ON	ON	ON	VPX Fat Pipe A	
ON	OFF	ON	VPX Fat Pipe B	
OFF	OFF OFF OFF NT Mode Disabled (default)			

Note: In addition to the switch configuration, there are settings for the PEX8624 that must be programmed to the on-board EEPROM device to enable Non-Transparent Mode.

SW4-4 (SYSTEM CLOCK SELECT)	ON	(Common) Uses the 100MHz reference clock pins on the VPX bus generated by the CPU board for PCIe timing. (Pins E8 & F8 on the VPX P0 connector)	
	OFF (default)	(Non-Common) Uses the 100MHz reference clock generated on board for PCIe timing.	

Note: Best system stability may be achieved with the use of a 100MHz common clock connection from the SBC, especially at Gen 2.0 link speeds. If the system does not provide a common clock then non-common clock mode must be used.

	1-2 (default)	JTAG_VREF = +3.3V
SW5	2-3	JTAG_VREF = +2.5V
(JTAG VREF SELECT)	4-5	Unused
,	5-6	Unused

Front Panel Layout

VPX4812 Front Panel

On the front panel of air-cooled VPX4812 assemblies, there are 5 port status LED's. The first four LED's indicate the PCIe link status for each of the four Fat Pipe connections to other slots on the VPX backplane. The fifth LED on the front panel indicates the PCIe link status of an XMC module connected to the VPX4812. The table below describes what the LED On/Off patterns indicate about the corresponding port states.

Port Status LED On/Off Patterns, by State

State	LED Pattern
Link is down	Off
Link is up, Gen 2.0 speed, all Lanes are up	On
Link is up, Gen 2.0 speed, reduced Lanes are up	Blinking, 0.5 seconds On, 0.5 seconds Off
Link is up, Gen 1.0 speed, all Lanes are up	Blinking, 1.5 seconds On, 0.5 seconds Off
Link is up, Gen 1.0 speed, reduced Lanes are up	Blinking, 0.5 seconds On, 1.5 seconds Off

8.0 Handling

Modules should be handled in ESD-safe work areas in order to prevent damage to sensitive components from electrostatic discharges. These areas must be designed and maintained to prevent ESD damage.

ESD Safe Work Area Guidelines

- 1. Module should be handled at properly designated work areas only.
- 2. Designated ESD safe work areas must be checked periodically to ensure their continued safety from ESD. The areas should be monitored for the following:
 - a. Proper grounding methods.
 - b. Static dissipation of work surfaces.
 - c. Static dissipation of floor surfaces.
 - d. Operation of ion blowers and ion air guns.
- 3. Designated work areas must be kept free of static generating materials such as Styrofoam, vinyl, plastic, fabrics, or any other static generating materials.
- 4. Work areas must be kept clean and neat in order to prevent contamination of the work area.
- 5. Modules should be handled by the edges. Avoid touching component leads.

NOTE: When not installed in a system, modules must be enclosed in shielded bags or boxes. There are three types of ESD protective enclosure materials this module was shipped in an approved ESD bag.

- 6. Whenever handling the module the operator must be properly grounded by one of the following:
 - a. Wearing a wrist strap connected to earth ground.
 - b. Wearing heel grounders and have both feet on a static dissipative floor surface.
- 7. Stacking of modules should be avoided to prevent physical damage.

9.0 Installation

IMPORTANT: The VPX4812 has been specifically design for use with 3U VPX backplanes and my not be compatible with some 6U backplanes. Plugging the board into an unsupported 6U VPX backplane may cause permanent damage.

Consult the enclosure documentation to ensure that the VPX4812's power requirements are compatible with those supplied by the backplane.

Board Keying		
	The 3U VPX backplane specification requires all backplane slots to have two guide pins: one above the J0 connector and one below the J2 connector. As well as providing correct alignment, these pins are keyed to prevent cards from being inserted into incorrect backplane slot(s) to avoid electrical incompatibility.	
	The VPX4812 has receptacles for these guide pins (see the Connectors section). By default, these are not keyed. Please contact the factory to discuss keying requirements.	
Installation Notes	 Keying may dictate the backplane slot(s) into which the VPX4812 can be inserted. 	
	2. Air-cooled versions have an ejector handle to ensure that the backplane connectors mate properly with the backplane. The captive screws at the top and bottom of the front panel allow the VPX4812 to be tightly secured in position, which provides continuity with system chassis ground.	
	 Conduction-cooled and REDI versions have screw driven wedge locks at the top and bottom of the board to provide the necessary mechanical/thermal interface. Correct adjustment requires a calibrated torque wrench set to between 0.6 and 0.8 Nm. 	

12.37 Oz (0.35 Kg)

10.0 Specifications

Physical

Height:	100.00 mm (3.937 in.)
Width:	160.00 mm (6.299 in.)
Board Thickness:	1.575 mm (0.062 in.)
Unit Weight (air-cooled):	5.10 Oz (0.14 Kg)
Unit Weight (conduction-cooled):	8.34 Oz (0.24 Kg)

Power Requirements

The VPX4812 requires +3.3V and +5V from the VPX backplane. The +/-12V supplies are used only if required by the XMC module.

Unit Weight (REDI):

Power Consumption

No XMC Card Installed:

+3.3V: <1W +5V: 2.62W typ. 5.43W max +12V: 0W

XMC Card Installed:

<1W	
80.43W max	(VPWR = 5V)
5.43W max	(VPWR = 12V)
0W max	(VPWR = 5V)
60W max	(VPWR = 12V)
	80.43W max 5.43W max 0W max

Note: The power supplied to the XMC card can be toggled between 5V or 12V depending on the card's requirements and/or the power supply's available capacities.

Caution

If VPWR is set to 12V, you must ensure that the XMC card is capable of handling a 12V supply voltage. If the XMC card is not capable of handling a 12V supply voltage, ensure that the VPWR switch is set to supply 5V.

Auxiliary Supply

The following functions may be powered from the 3.3V Auxiliary supply (VPX +3.3V_AUX line):

FRU EEPROM TEMP SENSOR

Power-Up/Reset Sequence

From the application of 3.3V and 5V power to all components being out of reset typically takes 250ms.

Since the ramp up times of the 3.3 V and 5 V system power source and the onboard power source will vary with load, the time taken for the VPX4812 to come out of reset will vary from system to system. It is the software's responsibility to account for this.

Bus Compliance

Vita 46.0, 46.4, 46.9, 48 and 65 MIL Spec 217-F MTBF – TBD

Form Factor

3U VPXbus 3.94" (100mm) x 6.3" (160mm)

Flammability

The circuit board is made by an UL recognized manufacturer and has a flammability rating of UL94V-1.

Environmental

Caution

The VPX4812 requires air-flow of at least 200 linear-feet/minute for the **air cooled version**, plus what is required for an XMC device installed on this module. If the **conduction cooled** version is operating on an extender card, it requires air-flow of at least 300 linear-feet/minute across it. Versions using the **REDI covers** must not be operated outside of a fully configured and fully installed conduction cooled REDI system.

ENVIRONMENTAL SPECIFICATION	OPERATING	NON-OPERATING		
THERMAL				
Air-cooled	0° to 70°C*	-40° to 85°C		
Conduction-cooled	-40° to 85°C* ¹	-40° to 105°C		
REDI Cover, Conduction-cooled	-40° to 85°C* ²	-40° to 105°C		
HUMIDITY	20% - 80% RH, non-condensing	20% - 80% RH, non-condensing		
SHOCK	30 g peak acceleration, 11msec	50 g peak acceleration, 11msec		
	duration	duration		
VIBRATION	.015" (.38mm) peak-to-peak	.030" (.76mm) peak-to-peak		
20 - 2000 Hz	displacement	displacement		
	2.5 g max acceleration	5.0 g max acceleration		

* w/ 200 lfm airflow

¹ must operate in a fully installed conduction-cooled rack

² must operate in a fully installed conduction-cooled REDI rack

EMI/EMC Regulatory Compliance

Caution

This module generates, uses, and can radiate electromagnetic energy. It may cause, or be susceptible to EMI if not installed and used in a cabinet with adequate EMI protection.

The VPX4812 is designed using good EMC practices and, when used in a suitably EMC-compliant chassis, should maintain the compliance of the total system.

The VPX4812 also complies with EN60950 (product safety), which is essentially the requirement for the Low Voltage Directive (73/23/EEC).

Air-cooled build levels of the VPX4812 are designed for use in systems meeting VDE class B, EN and FCC regulations for EMC emissions and susceptibility.

Conduction cooled and REDI build levels of the VPX4812 are intended for integration into EMC hardened cabinets/boxes.

11.0 Service and Repair

Service and Repair Assistance

Surface-Mounted Technology (SMT) boards are generally difficult to repair. It is highly recommended that a non-functioning board be returned to Acromag for repair. The board can be damaged unless special SMT repair and service tools are used. Further, Acromag has automated test equipment that thoroughly checks the performance of each board.

Please refer to Acromag's Service Policy Bulletin or contact Acromag for complete details on how to obtain parts and repair.

Preliminary Service Procedure

Before beginning repair, be sure that all of the procedures in section **Error! Reference source not found.**Preparation for Use have been followed. Also, refer to the documentation of your carrier board to verify that it is correctly configured. Verify that there are no blown fuses. Replacement of the carrier and/or IP with one that is known to work correctly is a good technique to isolate a faulty board.

CAUTION: POWER MUST BE TURNED OFF BEFORE REMOVING OR INSERTING BOARDS

Where to Get Help

If you continue to have problems, your next step should be to visit the Acromag worldwide web site at <u>http://www.acromag.com</u>. Our web site contains the most up-to-date product and software information.

Go to the "Support" tab to access:

- Application Notes
- Frequently Asked Questions (FAQ's)
- Product Knowledge Base
- Tutorials
- Software Updates/Drivers

An email question can also be submitted from within the Knowledge Base or directly from the "Contact Us" tab.

Acromag's application engineers can also be contacted directly for technical assistance via telephone or FAX through the numbers listed below. When needed, complete repair services are also available. Phone: 248-295-0310 Fax: 248-624-9234 Email: solutions@acromag.com

Appendix A – Accessory Modules

TRANS-V112

The TRANS-V112 is the rear transition module for the VPX4812 and is used in backplanes that bring out the rear I/O signals from the VPX4812. If you are using a custom backplane, you will not need the RTM.

The TRANS-V112 brings out the P16 rear I/O signals from the XMC slot on the VPX4812. The signals are brought out by two high speed Samtec differential pair connectors (PN QTH-020-01-F-D-DP-A-K).

Switch Settings

1-2 (default)		Orb ground is connected to digital ground.			
SW1	2-3	Orb ground is isolated from digital ground.			
(ORBGND)	4-5	Unused			
	5-6	Unused			

Connectors

RP1 Connector

RP1 Wafer	А	В	с	D	E	F	G
1	Unused	Unused	GND	Unused	J16_SIO10_N	GND	Unused
2	GND	Unused	Unused	GND	J16_SIO8_P	J16_SIO8_N	GND
3	Unused	Unused	GND	Unused	J16_SIO6_N	GND	Unused
4	GND	Unused	Unused	GND	J16_SIO4_P	J16_SIO4_N	GND
5	Unused	Unused	GND	Unused	J16_SIO2_N	GND	Unused
6	GND	Unused	Unused	GND	J16_SIO0_P	J16_SIO0_N	GND
7	Unused	Unused	GND	Unused	J16_DP00_P	GND	Unused
8	GND	Unused	Unused	GND	J16_DP02_N	J16_DP02_P	GND
9	J16_SIO11_P	J16_SIO11_N	GND	J16_SIO10_P	Unused	GND	Unused
10	GND	J16_SIO9_P	J16_SIO9_N	GND	Unused	Unused	GND
11	J16_SIO7_P	J16_SIO7_N	GND	J16_SIO6_P	Unused	GND	Unused
12	GND	J16_SIO5_P	J16_SIO5_N	GND	Unused	Unused	GND
13	J16_SIO3_P	J16_SIO3_N	GND	J16_SIO2_P	Unused	GND	Unused
14	GND	J16_SIO1_P	J16_SIO1_N	GND	Unused	Unused	GND
15	J16_DP01_N	J16_DP01_P	GND	J16_DP00_N	Unused	GND	Unused
16	GND	J16_DP03_N	J16_DP03_P	GND	Unused	Unused	GND

RP2 Connector

RP2 Wafer	А	В	с	D	E	F	G
1	J16_DP11_N	J16_DP11_P	GND	J16_DP10_N	Unused	Unused	Unused
2	GND	J16_DP13_N	J16_DP13_P	GND	Unused	Unused	Unused
3	J16_DP05_N	J16_DP05_P	GND	J16_DP04_N	Unused	Unused	Unused
4	GND	J16_DP07_N	J16_DP07_P	GND	Unused	Unused	Unused
5	J16_DP09_N	J16_DP09_P	GND	J16_DP08_N	Unused	Unused	Unused
6	GND	J16_DP15_N	J16_DP15_P	GND	Unused	Unused	Unused
7	J16_DP17_N	J16_DP17_P	GND	J16_DP16_N	Unused	Unused	Unused
8	GND	J16_DP19_N	J16_DP19_P	GND	Unused	Unused	Unused
9	Unused	Unused	Unused	Unused	J16_DP10_P	GND	Unused
10	Unused	Unused	Unused	Unused	J16_DP12_N	J16_DP12_P	GND
11	Unused	Unused	Unused	Unused	J16_DP04_P	GND	Unused
12	Unused	Unused	Unused	Unused	J16_DP06_N	J16_DP06_P	GND
13	Unused	Unused	Unused	Unused	J16_DP08_P	GND	Unused
14	Unused	Unused	Unused	Unused	J16_DP14_N	J16_DP14_P	GND
15	Unused	Unused	Unused	Unused	J16_DP16_P	GND	Unused
16	Unused	Unused	Unused	Unused	J16_DP18_N	J16_DP18_P	GND

P1 Connector

Pin Number	Description			
1	J16 DPO0 P			
2	J16 DPO10 P			
3	J16_DP00_N			
4	J16_DP010_N			
5	J16_DP01_P			
6	J16 DPO11 P			
7	J16 DP01 N			
8	J16 DP011 N			
9	J16 DPO2 P			
10	J16 DPO12 P			
11	J16 DPO2 N			
12	J16 DPO12 N			
13	J16 DPO3 P			
14	J16_DPO13_P			
15	J16 DPO3 N			
16	J16_DP013_N			
17	J16_DPO8_P			
18	J16 DP09 P			
19	J16 DP08 N			
20	J16_DPO9_N			
21	J16_SIO0_P			
22	J16_SIO1_P			
23	J16_SIO0_N			
24	J16_SIO1_N			
25	J16_SIO2_P			
26	J16_SIO3_P			
27	J16_SIO2_N			
28	J16_SIO3_N			
29	J16_SIO4_P			
30	J16_SIO5_P			
31	J16_SIO4_N			
32	J16_SIO5_N			
33	J16_SIO6_P			
34	J16_SIO7_P			
35	J16_SIO6_N			
36	J16_SIO7_N			
37	J16_SIO8_P			
38	J16_SIO9_P			
39	J16_SIO8_N			
40	J16_SIO9_N			

P2 Connector

Pin Number	Description			
1	J16_DP04_P			
2	J16_DP14_P			
3	J16_DP04_N			
4	J16_DP14_N			
5	J16_DP05_P			
6	J16_DP15_P			
7	J16_DP05_N			
8	J16_DP15_N			
9	J16_DP06_P			
10	J16_DP16_P			
11	J16_DP06_N			
12	J16_DP16_N			
13	J16_DP07_P			
14	J16_DP17_P			
15	J16_DP07_N			
16	J16_DP17_N			
17	J16_DP18_P			
18	J16_DP19_P			
19	 J16_DP18_N			
20	J16_DP19_N			
21	J16_SIO10_P			
22	J16_SIO11_P			
23	J16_SIO10_N			
24	J16_SIO11_N			
25	NC			
26	NC			
27	NC			
28	NC			
29	NC			
30	NC			
31	NC			
32	NC			
33	NC			
34	NC			
35	NC			
36	NC			
37	NC			
38	NC			
39	NC			
40	NC			

Certificate of Volatility

Certificate of Volatility					
Acromag Model	Manufacturer:				
VPX4812-XXX-L/LF	Acromag, Inc.				
TRANS-V112-L/LF	30765 Wixom Rd				
	Wixom, MI 48393	}			
		Volatile Men	nory		
Does this product contain	/olatile memory (i.	e. Memory of whose	contents a	re lost when l	power is removed)
□ Yes ■ No					
Type (SRAM, SDRAM, etc.)	Size:	User Modifiable	Function	:	Process to Sanitize:
		🗆 Yes			
		🗆 No			
Type (SRAM, SDRAM, etc.)	Size:	User Modifiable	Function	:	Process to Sanitize:
		🗆 Yes			
		🗆 No			
		Non-Volatile M	emory		
Does this product contain I	Non-Volatile memo	ory (i.e. Memory of w	hose conte	ents is retaine	d when power is removed)
■ Yes □ No		, , , , , , , , , , , , , , , , , , , ,			
Type (EEPROM, Flash, etc.)	Size:	User Modifiable	Function	:	Process to Sanitize:
EEPROM – AT25640B	64-KB	■ Yes	Store settings for		Device can be accessed via SPI
		🗆 No	PEX8624	PCIe switch	through the PEX8624. Device
					can be sanitized by writing 0's
					to all bits.
Type (EEPROM, Flash, etc.)	Size:	User Modifiable	Function	:	Process to Sanitize:
EEPROM – PCA9500BS	2-kbit	■ Yes	Misc. sto	rage	Device can be accessed via
		□ No			SMBus on host CPU. Device
					can be sanitized by writing 0's
					to all bits.
Type (EEPROM, Flash, etc.)	Size:	User Modifiable	Function	•	Process to Sanitize:
	01201		i unction	•	
Other capabilities:	I		1		1
Does device contain media	storage capabilitie	es: □Yes ∎No	If yes ex	olain	
Is this device capable of wireless transmission: \Box Yes \blacksquare No If yes explain					
			, co cx	F	
		Acromag Represe	entative		
Name: Title:		Email:		Office Phone	e: Office Fax:
Joseph Primeau Dir. of Sales and Marketing solutions@acromag.com 248-624-1541 248-624-9234			41 248-624-9234		

Revision History

The following table shows the revision history for this document:

Release Date	Version	EGR/DOC	Description of Revision
4/25/2014	А	MDW	Initial Acromag release.