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We present a version of the HOL Light system that support®imngddefinitions in such a way that
this does not compromise the soundness of the logic. In atesythe code that keeps track of the
constants that have been defined thus far has been movedtbat@inel. This means that the kernel
now is purely functional.

The changes to the system are small. All existing HOL Lighteltgoments can be run by the
stateless system with only minor changes.

The basic principle behind the system is not to name corsskargtrings, but byairs consisting
of a string and alefinition This means that the data structures for the terms are atiedento
one big graph. OCaml — the implementation language of thiesys can use pointer equality to
establish equality of data structures fast. This allowssiystem to run at acceptable speeds. Our
system runs at about 85% of the speed of the stateful versid®a Light.

1 Introduction

1.1 Problem

This paper describes a modification to the kernel of John Harrison’s HGHt [6, 8] proof assistant.
Proof assistants are the best routectmnpletereliability, both in abstract mathematics as well as for
verification of computer systems. Among the proof assistants HOL [3] is frtleeomore popular
systems (next to Coq, Isabelle, PVS and ACL2), and among the HOL impletoaistel OL Light is one

of the most interesting ones. HOL Light has both been used for exteveiification of floating point
algorithms at Intel [7, 9], as well as for impressive formalizations in mathesggicl1]. Furthermore,

a quite precise model of the HOL Light kernel code has been formallyeproarrect [10].

HOL is a direct descendant of the pioneering LCF [4] system from thergies. In both LCF and
HOL the user is not interacting with the proof assistant through a systetifisganguage, but instead
interacts directly with the interpreter of the ML language in which the systerbé@as programmed. In
the case of HOL Light this is the OCaml [13] language of Xavier Leroy.

For this reason in HOL there is no one keeping track of which theorems #ilVaid. Once a
statement has been presented to the ugemoagd- by giving the user an element of the abstract datatype
‘thm’ as a token of its being proven — it unavoidably will stay available to the usarmoved statement.

This approach has the advantage that the abstract datatypes of ML neslsy itor the system to
have a small proof checkingernel- also calledogical core— with the property that if the code of that
kernel can be trusted (and it implements a consistent logic), then it is certdithth system will be
mathematically sound, i.e., it will not be possible to prove the statement of falsityit. However,
this approach has the disadvantage that it is difficultindo state-modifying actions in the system.

Submitted to:
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2 Stateless HOL

In particular, in the existing HOL Light system it is not possible to change #fmition of a defined
constant:

# let XO = new_definition ‘X = 0¢;;

val ( X0 ) : thm = |- X =0

# let X1 = new_definition ‘X = 1¢;;
Exception: Failure "new_basic_definition".

In current practice, a user of HOL Light who wants to modify a definition yuit reload the whole
formalization. This is generally not a big problem, but can become quite sldso, feloading a for-
malization that is not finished yet and consists of bits and pieces that hemddamled manually, can be
cumbersome.

There is a good reason that HOL does not have a way of undoing defmitiet us suppose it would
have a functiorindo_definition. Then we could have the following session:

# let X0 = new_definition ‘X = 0¢;;
val ( X0 ) : thm = |- X =0

# undo_definition "X";;

val it : unit = ()

# let X1 = new_definition ‘X 1¢;;

val ( X1 ) : thm=|-X =1
# TRANS (SYM X0) X1;;
val it : thm = |- 0 = 1

Of course the ‘theorenxo will no longer be valid after we undo the definition 0fso, but there is no
way for us to take awayo from the user once he or she has it. Hence, the systermmdth definition
clearly is inconsistent, as one can prove1 in it.

The problem is that the kernel of HOL Light keeps track of which coristaave been defined
already. It hastate Or, stated differently, it is not purely functional. To be able to undo d&firs of
constants in the HOL system, we will switch tetateleskernel for the system.

1.2 Approach

The approach that we will follow is quite simple. In HOL traditionally constanesrnamed i.e., they
are identified by a string of OCaml typering. We will change this to identifying the constants by the
definition itselt! That way, we do not need a state anymore to find the properties of thabfrom
the name. Then the properties vbkthe name.

Actually, in our approach we will also include a string in the name of the condiath for conve-
nience and for backward compatibility. This means that the ‘names’ that weisdlfor constants will
consist of gpair of a string and a definition. It is essential for efficiency reasons thanhvdomparing
constants the strings will be compared first. For this reason we put the afiting first component of
the pair.

We will now look at what this means for the data structures in memory. Hereas thh constant
‘x¢ from the above example looks like in memory in the traditional stateful HOL Ligsétiesn:

1 In several systems the definition of a constant consists of two partsthirsonstant is introduced and then the value of
the constant is set. The approach from this paper does not allow sega@gon.
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Const !
I
IIXII
Tyapp ! (]
{
llnumll

This data structure takes 40 bytes in memory (24 bytes for the two blocksGdiod the two strings), so
this is not a large data structure. By hiding the detail of theim‘ type we can abbreviate this as:

l

Const I
I
IIXII

‘:num®

Now hﬂere is the corresponding data structure for the constarih our stateless HOL Light implemen-
tation?

Const 111l
!
I|X|l
‘X = | Const 1 ¢

M

definition of <0¢

We added an extra field to tleenst block that points to the definition of theconstant However, this
addition is recursive: the constambccurring in the definition ok also has this pointer which points
to the definition ofo. This continues all the way until we get to pure lambda terms that do not involve
constants at all. Only then will this chain of references end.

Clearly, the constantx‘ now is a large graph consisting of blocks connected by pointers. O$eour
for different constants these graphs will not be disjoint. Therefdie;amstants together should be
considered to be part of a single large data structure in méinory.

2We are simplifying reality slightly here. In HOL Light the numbemctually is the ternf NUMERAL _0°, so it is not a
constant as drawn in the picture. The terorhoweveis a constant with definitiod_0 = mk_num IND_O‘. Tracing all further
definitions frommk_num andIND_0 is an interesting exercise that we will not pursue here.

SNote that theX’ that occurs on the left hand side of the defining equation is a variableairtte defined constant. This
equation was the argumentiew_basic_definition.

An alternative approach would be to have the new field just point to the hightl side of the equation. However, we
considered it to be more elegant to have the field point to the exact datadkagiven to the function that introduced the
constant to the system. In this case this is the argument to the fumetiobasic_definition.

4 Note that although the amount of data for a single constant becomeslangeh the amount of data for the whole system
stays roughly the same, as the data structures of the constants will bd.shar
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Despite the size of their data structures, comparison of constants still wtrteslme rather cheap. In
our modified system different constants actually still will have differemgsrin their names. Therefore,
if constants ar@ot equal, the comparison will fail exactly like it would fail before, i.e., while comipg
the strings. However, if the constaraie equal, their definitions in fact also will be equal, and even will
be given by equal pointers. Now OCaml can be made to decide that two Hriegsjual if the pointers
to them are equal. Hence in the normal use of the HOL Light system corstargarison will never
follow the pointers to the definitions.

However, if we use th@ndo_definition function from the above discussion, suddenly this does
not hold anymore. The twas, that we defined in the example will theot be equal (despite the fact
that their strings and types are equal) because the definitions will beedifférhis then will prevent the
‘proof’ of 0 = 1 from working.

Our stateless system is almost identical to the stateful one. We did not so eplaberthe kernel, as
slightly change it. In particular we moved the stateful part outside the kdmalpicture:

kernel
system system
Stateful HOL Light Stateless HOL Light

Specifically, we split the implementatigusion.ml of the kernel (the thick box in the left picture) into
a stateless patbre.m1 (the thick box in the right picture) and a stateful patite.m1 (the part outside
that box), as further described in Section 3. This means that our sysligonesents a fully compatible
kernel to the rest of the system. Therefore all existing HOL Light dewvetaygs will still work with
the stateless kernel. The only code that needs to be adapted is codeotiest fhre representation of
constants. This hardly every happens, and even then the changesl aee small. We will discuss these
changes in more detail below.

1.3 Related Work

The idea from this paper of having definitional information be part of theesaof constants is applied
to type theory in [2].

Many systems use an approach similar to the one that we describe herexarmple the HOL4
system also uses a pointer internally to distinguish different versions ¢éahee’ constant. However
the HOL4 system currently is not purely functional. The Matita and Epigraysiems use an approach
similar to ours in that theyeconstructhe context of a term from the term itself.

Many theorem provers have a purely functional kernel. This holdewifse for all systems written
in Haskell, but for example (since version 7) also for Coq [1]. Howemee might argue that the kernels
of these systems are not really without a notion of state, as in those systiis an object that the
kernel operates on. In Coq the state object is calledrasronmentwhile in HOL-based systems like
ProofPower and Isabelle it is calledteeory.
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In Coq, one does not have a separate type for well-formed terms: torbly functional it departs
from the traditional LCF architecture in this respect. Only a typpretermexists, that can be used to
extenda state (at which time the preterm will be type checked). Specifically in theof&3aq the basic
function of the kernel essentially?s:

add_constant : string -> preterm -> state -> state

This function adds a new constant with a given name and expansion to tineGlarly the Coq kernel
is functional by carrying the state around in a monadic fashion. In cdninagur approach there does
not exist a type corresponding to a state.

In ProofPower and Isabelltheoremsnstead of constants are tagged, where the tag indicates which
theory the theorem belongs to. Only theorems from compatible theories@pted by the inference
rules of those systems. ProofPower has stateful theories, and is quiter sovH®L4. Isabelle has a
purely functional architecture, but for efficiency reasons implementsdtrion-functional way [14]. It
uses unique ids to provide an efficient approximation of the inclusion relatidheory content — both
for efficiency and for decidability, since a theory may contain arbitratg @iacluding ML functions or
fully abstract stuff).

The approaches of the various systems show a trade-off betweea@®ss to the implementation
of the system (systems like HOL) and ease of navigation of the formalizasyete(s like Coq). We
show that one does not need to sacrifice undo to get the accessibilitylcd HCF architecture.

The trick of making the definitions part of the names of constants occurs io legularly. For
instance, in Leisenring’s book on the epsilon choice operator [12] the ¢&P[x| takes the place of
a constant name for a witness ®.P[x]. That way the completeness theorem can be proved without
having to Skolemize first nor without having to add new constants.

1.4 Contribution

We present a version of the HOL Light system with the following properties:
e The kernel of the system is purely functional.
e The system supports undoing definitions in a logically sound way.

e The system is fully compatible with the existing HOL Light system: all existing dgraknts can
be run with minor changes.

The system runs at almost the speed of the existing HOL Light system.

The kernel of the system is theoretically easier to analyze.

1.5 Outline

The paper is structured as follows. In Section 2 we explain how we modife#i®L data structures
and changed the kernel accordingly. In Section 3 we describe hovotieeaf the system further had to
be modified. In Section|4 we describe how to undo definitions. In Sectiondiseass how to also have
the kernel track in a functional way which axioms have been used forhwh&orems. In Section 6 we
present the performance of our system. Finally, in Section 7 we conclude.

5In the actual Coq source code thering type is callediir_path * label, thepreterm type is calledconstr, and the
state type is callecsafe_environment.
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2 The datatypes of the logical core

Here are the datatypes of the stateful HOL Light system (these are tliteotvabdHOL datatypes):

type hol_type =
| Tyvar of string
| Tyapp of string * hol_type list

type term =

| Var of string * hol_type

| Const of string * hol_type
| Comb of term * term

| Abs of term * term

type thm =
| Sequent of term list * term

Of course, these datatypes afestract i.e., only the kernel can create data of these types. This is the
essence of the LCF architecture. In our system, we changed thestatefito the following:

type hol_type =
| Tyvar of string
| Tyapp of hol_type_op * hol_type list

and term =

| Var of string * hol_type

| Const of string * hol_type * const_tag
| Comb of term * term

| Abs of term * term

and thm =

| Sequent of term list * term

and hol_type_op =

| Typrim of string * int

| Tydefined of string * int * thm

and const_tag =

| Prim

| Defined of term

| Mk_abstract of string * int * thm

| Dest_abstract of string * int * thm

That is, wetaggedboth the constants and the defined types by the information that was useddoggr
them to the system. In the case of the types it turned out to be more convenietegrate these tags
with the string and arity into Aol_type_op.

The simplest example of this kind of tagging is thefined tag for defined constants. However the
constants for the functions that map between an ‘abstract’ defined typehariconcrete’ type from
which it was carved have to be tagged too. (Those functions go in oppbsations: see [8] for a
detailed description of the HOL type definition architecture.) For this we haw@xhabstract and
Dest_abstract tags.

In our implementation as a sanity check we temporarily replaced the underlipesl lby function
types, to check that the system never followed the pointers corresgpiudinese fields (with this hack
we did not have to change any other code in the system). That is, insteathofie usedinit -> term
and instead ofhm we usedunit -> thm. This works because OCaml will retugzue if a function is
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compared to itself, while it will throw thénvalid_argument "equal: functional value" exception if
it is compared to any other function.

There are various alternatives for the ‘tagging data’ in these type defisitid/e chose to use the
exact arguments of the functions that are used to define constants asdltgwever, more economical
variants are possible. For example, instead of tagging the definition of stariR with the defin-
ing equation‘x = ..., we could just have used the body of that definition. SimilarlyTjfiefined,
Mk_abstract andDest_abstract we could have usedtrn instead of ahm. In that way we could have
lost the dependency akrm on thm. However, all these variants are really more or less equivalent, and
we chose for the one where it is most obvious where the ‘tagging informatiginates.

One could also consider using structure-less nongeis (refs, say) as tags. However, this makes
the system stateful again. Also, a formal analysis of the system will beehtrdt way, as in that case
the tags will not be semantically meaningful.

We will now present how we adapted and reorganized the kerneldingato these new datatype
definitions. We only will do this for constants. Analogous changes had te fivadliefined types.

We will start by presenting the code before we changed it. The relevaatibns for constants from
the original, stateful HOL Light kernel are:

constants : unit -> (string * hol_type) list
definitions : unit -> thm list

get_const_type : string -> hol_type

new_constant : string * hol_type -> unit
new_basic_definition : term -> thm

mk_const : string * (hol_type * hol_type) list -> term

With new_basic_definition One introduces a new constant definition to the system, andmwittonst
one creates constant terms. The implementation of these functions is completiglyt®orward:

let bool_ty = Tyapp("bool",[1);;
let aty = Tyvar "A";;

let the_term_constants =
ref ["=",Tyapp("fun", [aty;Tyapp("fun", [aty;bool_ty])1)]1;;

let constants() = !the_term_constants;;

let the_definitions = ref ([]:thm list);;

let definitions() = !the_definitions;;

let get_const_type s = assoc s (!the_term_constants);;

let new_constant(name,ty) =
if can get_const_type name then
failwith ("new_constant: constant "“name”" has already been declared")
else the_term_constants := (name,ty)::(!the_term_constants);;

let new_basic_definition tm =
match tm with
Comb (Comb(Const("=",_), (Var(cname,ty) as 1)),r) ->
if not(freesin [] r) then failwith "new_definition: term not closed"
else if not (subset (type_vars_in_term r) (tyvars ty))
then failwith "new_definition: Type variables not reflected in constant"
else let ¢ = new_constant(cname,ty); Const(cname,ty) in
let dth = Sequent([],safe_mk_eq ¢ r) in
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the_definitions := dth::('the_definitions); dth
| _ -> failwith "new_basic_definition";;

let mk_const(name,theta) =
let uty = try get_const_type name with Failure _ ->

failwith "mk_const: not a constant name" in
Const (name, type_subst theta uty);;

We will now show the corresponding code in our system. In our stateles®meof HOL Light, the
kernel interface becomes simpler. The only relevant functions now are:

new_prim_const : string * hol_type -> term

eq_term : hol_type -> term

new_defined_const : term -> term * thm

inst_const : term * (hol_type * hol_type) list -> term

with implementation:
let bool_tyop = Typrim("bool",0);;
let bool_ty = Tyapp(bool_tyop,[1);;

let new_prim_const(name,ty) =
Const (name,ty,Prim);;

let eq_term ty =
Const ("=",Tyapp(Typrim("fun",2), [ty; Tyapp(Typrim("fun",2), [ty;bool_tyl)1),
Prim);;

let new_defined_const tm =
match tm with
Comb (Comb(Const ("=",_,Prim), (Var (cname,ty) as 1)),r) ->
if not(freesin [] r) then failwith "new_definition: term not closed"
else if not (subset (type_vars_in_term r) (tyvars ty))
then failwith "new_definition: Type variables not reflected in constant"
else let ¢ = Const(cname,ty,Defined tm) in
let dth = Sequent([],safe_mk_eq ¢ r) in
c,dth
| _ -> failwith "new_basic_definition";;

let inst_const(tm,theta) =
match tm with
| Const(name,uty,tag) -> Const(name,type_subst theta uty,tag)
| _ -> failwith "inst_const: not a constant";;

The remainder of the code was moved out of the kernel. These are theifigltunctions:

the_term_constants : (string * term) list ref
the_definitions : thm list ref

get_const_type : string —-> hol_type

new_constant’ : string * term -> unit

new_constant : string * hol_type -> unit
new_basic_definition : term -> thm

mk_const : string * (hol_type * hol_type) list -> term

(We did not need to hide the stateful variabt®s_term_constants andthe_definitions anymore, as
changing them can no longer compromise the logic. For this reason we rey loegd theonstants and
definitions functions for inspecting them.) The implementation of these functions againigratos-
ward:
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let the_term_constants = ref ["=",eq_term aty];;
let the_definitions = ref ([]:thm list);;
let get_const_type s = type_of (assoc s (!the_term_constants));;

let new_constant’ (name,c) =
if can get_const_type name then
failwith ("new_constant: constant "“name”" has already been declared")
else the_term_constants := (name,c)::(!the_term_constants);;

let new_constant(name,ty) =
new_constant’ (name,new_prim_const (name,ty));;

let new_basic_definition tm =
let c,dth = new_defined_const tm in
match ¢ with
| Const(name,_,_) —>
new_constant’ (name,c); the_definitions := dth::(!the_definitions); dth;;

let mk_const(name,theta) =
let tm = try assoc name (!the_term_constants) with Failure _ ->
failwith "mk_const: not a constant name" in
inst_const(tm,theta);;

Clearly, the code in our system is slightly more complicated, but essentially iemganized version of
the original code.

Our code has the property that makes it easy to distinguish callsrt@onstant that add ‘primitive’
constants to the system — which in practice only is used for the Hilbert epgilninecoperator (@) ¢
— from other calls tmew_constant. In our system the first kind corresponds to the kernel function

new_prim_const@

3 Modifications to the HOL source code

The sizes of the kernel files are compared in the following table:

source file all lines  content
Stateful HOL Light
kernel fusion.ml 669 394
Stateless HOL Light
kernel core.ml 383
state state.ml 64
total 447

The last column counts the number of non-blank non-comment lines. (Inevsion of the code we
removed all the comments, which means that the total line count of our files meaningful in com-
parison to the original system.) The kernel of the stateful HOL Light is cafledon.m1 (it used to

61f one wants to be pedantic, one might keep track of callsed_prim_const (and to its counterpart for types) in the
context data structure described in Secfion 5 below. In some sense theseianedix’ too.
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be three filestype.ml, term.ml andthm.m1, which at some point were fused). We split this file in our
kernel, callectore.m1, and the remainder of the codgate .m1.

In the rest of the system only two kinds of changes had to be made. Firstyshem would be
impractically slow if we compared objects using the default OCaml equality. iRgg@Caml has been
changed to consider Not-A-Number floating point numbers not to be ¢éguhémselves, and for this
reason the default equality test never uses pointer equality as an optimiZatiget around this problem,
we added the following lines at the start of the first HOL Light sourcelfile m1:
let (=) = fun x y -> Pervasives.compare x y = 0;;
let (<>) = fun x y -> Pervasives.compare x y <> 0;;
let (<) = fun x y -> Pervasives.compare x y < 0;;
let (<=) = fun x y -> Pervasives.compare x y <= 0;;
let (>) = fun x y -> Pervasives.compare x y > 0;;
let (>=) = fun x y -> Pervasives.compare x y >= 0;;

Second, pattern matching on kernel datatypes had to be changed naltgsicAs an example, in
basics.ml the line

Tyapp("fun", [ty1;ty2]) -> (tyl,ty2)
had to be changed to
Tyapp (Typrim("fun",2), [tyl;ty2]) -> (tyl,ty2)

In the basic library of the system (which consists of 26,602 lines of smade) there were only 74 lines
that had to be changed like this. These changes were systematic and eguétlb with a few global
replacements.

4 Undoing definitions

With a stateless kernel implementing safe removal of definitions becomes tiVaajust add the fol-
lowing implementation ofindo_definition to the source filgpair.ml (right after the implementation
Of new_definition):

let undo_definition cname =
the_term_constants := filter ((<>) cname o fst) !the_term_constants;
the_core_definitions := filter ((<>) cname o fst o dest_const o fst o
strip_comb o fst o dest_eq o snd o strip_forall o concl)
the_core_definitions;
the_definitions := filter ((<>) cname o fst o dest_const o fst o
strip_comb o fst o dest_eq o snd o strip_forall o concl)
!the_definitions;;

This code has to be in (or afteghir.m1, because only there the varialilge_definitions is intro-
duced. In fact HOL Light haswo variables with that name, one in the kernel (in our version of
course instate.ml outside the kernel), and another onepiir.m1. We renamed the first one to
the_core_definitions, and update both variables simultaneously.

Now with this function, our motivating example session from Section 1.1 rufallaws:

# let X0 = new_definition ‘X = 0¢;;
val ( X0 ) : thm = |- X =0

# undo_definition "X";;

val it : unit = ()
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# let X1 = new_definition ‘X = 1¢;;
val ( X1 ) : thm = |- X =1

# TRANS (SYM X0) Xi;;

Exception: Failure "TRANS".

As expected the system considers the tgato be different, and does not allow the transitivity step
anymore.

However, there still is a subtle issue. If we now priot and x1, the system will do this in the
following way:

# XO0;;
val it : thm = |- X = 0
# X1;;
val it : thm = |- X = 1

l.e., the system prints out what appears to be contradictory judgementsu3e these judgements are
not actually contradictory, the system is perfectly sound. Eha the firstthm is the ‘old’ X, while the
second is the ‘newX. It therefore willnot be possible to prove from this that

val it : thm = |- 0 = 1

However one might ask, from a pragmatic point of view, how much diflezethat makes with the
confusing printout oko andx1.

This is not a problem with the consistency of the system, but with what in [1&4lled Pollack-
consistency There is nothing wrong with the kernel of the system, but with its printingiipgrsode.
The statement of theorero is printed in a way that doasot parse back to the same statement. That is
(using the terminology from [15]) the printing/parsing functions arevmeit-behaved

Of course, in [15] it is pointed out that the stateful version of HOL Ligheady was Pollack-
inconsistent. Apparently this was not considered a serious problem, @pddblem shown here might
for the same reason be ignored. However (although we did not pursyéntifil5] a simple strategy is
given to make a system Pollack-consistent, which can easily be applied here

A simple variant of this would be to insert in the printing code some extra linesteak whether
a constant that is being printed is equal to the ‘current’ value of thatt@otisand if not to throw an
exception. In that way it is probably easy to have the system poirds ‘<obsolete theorem>’ (Or
something like that) after the definition ®thas been undone. For this paper we were mainly interested
in how to minimally modify thekernelof the system to find out what the performance of our approach
would be (and not so much to further develop the result into a ‘better’ mystherefore we have not
pursued implementing this yet.

5 Tracking the axioms

The stateful HOL Light system keeps track of the axioms that have beedirtted by the user in the
variable

the_axioms : thm list ref

We moved this variable out of the kernel, and therefore the system ded¢hibbs far does not keep track
of the axioms that have been used for the theorems. The whole systemseslyhuee axioms, so one
might not consider this to be a serious problem.
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However, we also investigated a variant of the system where gactvas ‘tagged’ with the set of
axioms from which it was derived. In that case each basic inferedeefuhe system had to take the
union of this set of axioms for each of thems that it got as arguments. If implemented naively this
would become expensive, computationally.

To get this to run with acceptable speed, we used the following data st@;cﬁhrethm type now is
defined as

type context =
int * term list array

type thm =
| Sequent of context * term list * term

The context type represents the axioms used in provinghitidt consists of an array holding thnéstory
of the axiom lists during the execution of the system. Specifically it consistsafray of lists of axioms
of decreasing length, prefixed with the length of the array minus one. dretidén that introduces an
axiom now is:

let axiom_sequent ((n,axa) as ctx) tm =
let axl = Array.get axa O in
let ctx’ = (n + 1),Array.of_list ((tm::axl)::Array.to_list axa) in
let ax = Sequent(ctx’,[],tm) in
ax,ctx’;;

Here the(n,axa) argument represents the set of axioms thus far. This is given by thaustaitfide of
the kernel. The code to merge contexts is:

let empty_context = 0,[I[11];;

let merge_contexts ((nl,axal) as ctxl) ((n2,axa2) as ctx2) =

if ctxl == ctx2 then ctxl else

if nl1 < n2 then
if Array.get axal O = Array.get axa2 (n2 - nl) then ctx2 else
failwith "merge_contexts" else

if nl > n2 then
if Array.get axal (nl - n2) = Array.get axa2 O then ctxl else
failwith "merge_contexts" else

failwith "merge_contexts";;

This code, when given two contexts, does not have to walk those cotdesée whether one is a prefix
of the other (which would cost linear time), but instead uses the arraytlatéduse together with pointer
equality to check whether the two contexts match (taking constant time). With thésardy ‘compati-
ble’ contexts, where one is a subset of the other, can be merged. Beamore refined version of this
code, that also is able to merge sets of axioms that are incompatible, couldtea.wr

With this code, the ‘set of axioms’ for theorems always will be subsets @i ether. We call this
version of the systerwith linear tracking of the axiomsWe were curious whether maybe there was a
theorem that, for instance, only needed the first and third axioms buteneetiond one. For this reason,
we made yet another modification to the code, that kept track oéxhetset of axioms used. This
version is calledvith precise tracking of axioms

7One of the referees of this paper pointed out that the use afrthey type introduces state to the kernel again, and that
this undermines the point of the paper a bit. However, note that we usgdys a a ‘purely functional’ way. We never update
arrays, and only use them to be able to get to a specific index without havivalk a list.
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In this version of the system we represented the set of axioms as a bitistar82 bit integer. (This
version of the kernel therefore only can handle 32 axioms. As the atstm only uses 3 axioms, for
the experiment this was sufficient.) Now tbentext type is:

type context =
(int * term list array) * int32

and themerge_context code used OCaml'snt32.1ogor function on theint32 bitstrings.

The result of this experiment however turned out to be thanfareof the theorems in the basic
library of HOL Light that are named by a global OCaml variable, a set wfrag is used that is not just
a prefix of the list of the three axioms in the system. Therefore this refineohd¢mé kernel turned out
not to be very useful.

6 Performance

We measured the performance of our modified HOL Light versions, biytusing wall clock time.
Specifically we used the following code in an OCaml session:

#load "unix.cma'";;

let starttime = ref (Unix.time());;

#use "hol.ml";;

Unix.time() -. !starttime;;

Here are the results on an unloaded Debian Etch system, using a computarsimgte 186 GHz Intel
Pentium M processor.

version running time increase
Stateful 113s

Stateless, without tracking of axioms 130s +15%
Stateless, with linear tracking of axioms 131s +16%
Stateless, with precise tracking of axioms 132s +17%

These are the times needed to load the basic HOL Light library. Of coumse tiumbers not only

represent the time spend by the HOL Light system. For instance, displagraytput of the system in

a terminal window already takes around 10 seconds. Still, the table gieesamable impression of the
performance of the approach promoted in this paper.

7 Conclusion

7.1 Discussion

Switching HOL Light to our stateless kernel architecture has advantagedisadvantages: The advan-
tages are:

e One gets the possibility to implement a functi@nio_definition in a logically sound way (and
a similar function for type definitions).

e One gets a system that is probably easier to analyze theoretically. JohsoHarHOL in HOL
formalization [10], in which he proves his kernel source code souundeuwtly leaves out the
definitions. We expect that it will be easier to extend that work to includenitiefis for our
version of the system, than it would be to do this for the stateful version af Hght.
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It might seem that a system with 3 non-mutual datatypes is easier to analypzz siatem with 5
mutually defined datatypes. However, it is much less difficult to reason abpuitely functional
program than about a stateful program. This more than compensates &igtitly more involved
datatypes.

In the stateful version of HOL Light the semantics of data from the kerepédd on the state of
the system, and often data has to be interpreted in a different state than mitwhis created.

This makes it hard to give the semantics in a compositional way. In contrase, stetteless version
all data has a direct interpretation, making analysis much simpler.

One subtlety with proving correctness of our stateless kernel is that it imegtifficult to represent
pointer equality in such a proof. Pointer equality is rarely considered in améodd correctness
proofs of functional programs. However, it is clear that pointer equilipyst an optimization of
structural equality and that proving the correctness of the kernel ssinctural equality could be
considered equivalent.

The disadvantages of our system compared to the stateful HOL Light are:
e The system runs at about 85% of the normal speed in daily use.
e The kernel is more complicated. In particular the kernel datatype defindi@sore involved.

We are undecided whether the slowness and added complexity in the keimaighs the nicety of
having a purely functional kernel that supports undo.

7.2 Availability

A version of the system described in this paper can be downloaded orethatithe web address:

http://www.cs.ru.nl/"freek/notes/hol_light-stateless.tar.gz

This tar file contains just the basic library of the system, adapted for the statelmel. For reference,
the tar file also contains the unmodified source code of the HOL Light vethainwe used for the
experiment.

7.3 Future work

We mainly did this experiment to satisfy our curiosity, to find out whether thecgoh was viable. We
were surprised that it all worked as painlessly as it did.

We did not argue here why our changes in the implementation are soundugtitiois seems rather
obvious, it would be good to have a formal analysis of this. An interestingtwalo this would be to
adapt John Harrison’s HOL in HOL proof to also include definitions usingstateless variant of the
code.

We would like the main version of the HOL Light system to adopt our statelegswaln that sense,
this article can be considered an open letter to John Harrison, asking homdimer doing this.

Acknowledgments. Thanks to Pierre Corbineau for interesting discussions on state in the HOL Lig
kernel. Thanks to Jean-Christophe Riltie, Rob Arthan and Makarius Wenzel for details of the ar-
chitecture of the Coq, ProofPower and Isabelle kernels. Thanks tdyRRwilack for pointing out the
Pollack-inconsistency issue addressed in Section 4. Thanks to anosyafenees for helpful comments.
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