
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/92369

 

 

 

Please be advised that this information was generated on 2015-12-18 and may be subject to

change.

http://hdl.handle.net/2066/92369


Submitted to:
Post-Proceedings of TYPES 2009

Stateless HOL

Freek Wiedijk
Institute for Computing and Information Sciences

Radboud University Nijmegen
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

freek@cs.ru.nl

Dedicated to Roel de Vrijer, in the tradition of Automath.

We present a version of the HOL Light system that supports undoing definitions in such a way that
this does not compromise the soundness of the logic. In our system the code that keeps track of the
constants that have been defined thus far has been moved out ofthe kernel. This means that the kernel
now is purely functional.

The changes to the system are small. All existing HOL Light developments can be run by the
stateless system with only minor changes.

The basic principle behind the system is not to name constants by strings, but bypairsconsisting
of a string and adefinition. This means that the data structures for the terms are all merged into
one big graph. OCaml – the implementation language of the system – can use pointer equality to
establish equality of data structures fast. This allows thesystem to run at acceptable speeds. Our
system runs at about 85% of the speed of the stateful version of HOL Light.

1 Introduction

1.1 Problem

This paper describes a modification to the kernel of John Harrison’s HOLLight [6, 8] proof assistant.
Proof assistants are the best route tocompletereliability, both in abstract mathematics as well as for
verification of computer systems. Among the proof assistants HOL [3] is one of the more popular
systems (next to Coq, Isabelle, PVS and ACL2), and among the HOL implementations HOL Light is one
of the most interesting ones. HOL Light has both been used for extensiveverification of floating point
algorithms at Intel [7, 9], as well as for impressive formalizations in mathematics [5, 11]. Furthermore,
a quite precise model of the HOL Light kernel code has been formally proved correct [10].

HOL is a direct descendant of the pioneering LCF [4] system from the seventies. In both LCF and
HOL the user is not interacting with the proof assistant through a system specific language, but instead
interacts directly with the interpreter of the ML language in which the system hasbeen programmed. In
the case of HOL Light this is the OCaml [13] language of Xavier Leroy.

For this reason in HOL there is no one keeping track of which theorems still are valid. Once a
statement has been presented to the user asproved– by giving the user an element of the abstract datatype
‘thm’ as a token of its being proven – it unavoidably will stay available to the user as a proved statement.

This approach has the advantage that the abstract datatypes of ML make iteasy for the system to
have a small proof checkingkernel– also calledlogical core– with the property that if the code of that
kernel can be trusted (and it implements a consistent logic), then it is certain that the system will be
mathematically sound, i.e., it will not be possible to prove the statement of falsity⊥ in it. However,
this approach has the disadvantage that it is difficult toundo state-modifying actions in the system.
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In particular, in the existing HOL Light system it is not possible to change the definition of a defined
constant:

# let X0 = new_definition ‘X = 0‘;;

val ( X0 ) : thm = |- X = 0

# let X1 = new_definition ‘X = 1‘;;

Exception: Failure "new_basic_definition".

In current practice, a user of HOL Light who wants to modify a definition willjust reload the whole
formalization. This is generally not a big problem, but can become quite slow. Also, reloading a for-
malization that is not finished yet and consists of bits and pieces that have been loaded manually, can be
cumbersome.

There is a good reason that HOL does not have a way of undoing definitions. Let us suppose it would
have a functionundo_definition. Then we could have the following session:

# let X0 = new_definition ‘X = 0‘;;

val ( X0 ) : thm = |- X = 0

# undo_definition "X";;

val it : unit = ()

# let X1 = new_definition ‘X = 1‘;;

val ( X1 ) : thm = |- X = 1

# TRANS (SYM X0) X1;;

val it : thm = |- 0 = 1

Of course the ‘theorem’X0 will no longer be valid after we undo the definition ofX as0, but there is no
way for us to take awayX0 from the user once he or she has it. Hence, the system withundo_definition

clearly is inconsistent, as one can prove0 = 1 in it.
The problem is that the kernel of HOL Light keeps track of which constants have been defined

already. It hasstate. Or, stated differently, it is not purely functional. To be able to undo definitions of
constants in the HOL system, we will switch to astatelesskernel for the system.

1.2 Approach

The approach that we will follow is quite simple. In HOL traditionally constants are named, i.e., they
are identified by a string of OCaml typestring. We will change this to identifying the constants by the
definition itself.1 That way, we do not need a state anymore to find the properties of the constant from
the name. Then the properties willbethe name.

Actually, in our approach we will also include a string in the name of the constant, both for conve-
nience and for backward compatibility. This means that the ‘names’ that we willuse for constants will
consist of apair of a string and a definition. It is essential for efficiency reasons that when comparing
constants the strings will be compared first. For this reason we put the stringas the first component of
the pair.

We will now look at what this means for the data structures in memory. Here is what the constant
‘X‘ from the above example looks like in memory in the traditional stateful HOL Light system:

1 In several systems the definition of a constant consists of two parts: first the constant is introduced and then the value of
the constant is set. The approach from this paper does not allow such a separation.
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This data structure takes 40 bytes in memory (24 bytes for the two blocks and 16 for the two strings), so
this is not a large data structure. By hiding the detail of the‘:num‘ type we can abbreviate this as:
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Now here is the corresponding data structure for the constant‘X‘ in our stateless HOL Light implemen-
tation:2
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definition of ‘0‘

We added an extra field to theConst block that points to the definition of theX constant.3 However, this
addition is recursive: the constant0 occurring in the definition ofX also has this pointer which points
to the definition of0. This continues all the way until we get to pure lambda terms that do not involve
constants at all. Only then will this chain of references end.

Clearly, the constant‘X‘ now is a large graph consisting of blocks connected by pointers. Of course
for different constants these graphs will not be disjoint. Therefore, all constants together should be
considered to be part of a single large data structure in memory.4

2We are simplifying reality slightly here. In HOL Light the number0 actually is the term‘NUMERAL _0‘, so it is not a
constant as drawn in the picture. The term_0 howeveris a constant with definition‘_0 = mk_num IND_0‘. Tracing all further
definitions frommk_num andIND_0 is an interesting exercise that we will not pursue here.

3Note that the ‘X’ that occurs on the left hand side of the defining equation is a variable andnot the defined constant. This
equation was the argument tonew_basic_definition.

An alternative approach would be to have the new field just point to the righthand side of the equation. However, we
considered it to be more elegant to have the field point to the exact data thatwas given to the function that introduced the
constant to the system. In this case this is the argument to the functionnew_basic_definition.

4 Note that although the amount of data for a single constant becomes muchlarger, the amount of data for the whole system
stays roughly the same, as the data structures of the constants will be shared.
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Despite the size of their data structures, comparison of constants still turns out to be rather cheap. In
our modified system different constants actually still will have different strings in their names. Therefore,
if constants arenot equal, the comparison will fail exactly like it would fail before, i.e., while comparing
the strings. However, if the constantsare equal, their definitions in fact also will be equal, and even will
be given by equal pointers. Now OCaml can be made to decide that two thingsare equal if the pointers
to them are equal. Hence in the normal use of the HOL Light system constantcomparison will never
follow the pointers to the definitions.

However, if we use theundo_definition function from the above discussion, suddenly this does
not hold anymore. The twoXs, that we defined in the example will thennot be equal (despite the fact
that their strings and types are equal) because the definitions will be different. This then will prevent the
‘proof’ of 0 = 1 from working.

Our stateless system is almost identical to the stateful one. We did not so much replace the kernel, as
slightly change it. In particular we moved the stateful part outside the kernel.In a picture:

system

kernel r state

system

kernel
r state

Stateful HOL Light Stateless HOL Light

Specifically, we split the implementationfusion.ml of the kernel (the thick box in the left picture) into
a stateless partcore.ml (the thick box in the right picture) and a stateful partstate.ml (the part outside
that box), as further described in Section 3. This means that our system still presents a fully compatible
kernel to the rest of the system. Therefore all existing HOL Light developments will still work with
the stateless kernel. The only code that needs to be adapted is code that probes the representation of
constants. This hardly every happens, and even then the changes needed are small. We will discuss these
changes in more detail below.

1.3 Related Work

The idea from this paper of having definitional information be part of the names of constants is applied
to type theory in [2].

Many systems use an approach similar to the one that we describe here. Forexample the HOL4
system also uses a pointer internally to distinguish different versions of the‘same’ constant. However
the HOL4 system currently is not purely functional. The Matita and Epigram 1systems use an approach
similar to ours in that theyreconstructthe context of a term from the term itself.

Many theorem provers have a purely functional kernel. This holds of course for all systems written
in Haskell, but for example (since version 7) also for Coq [1]. However, one might argue that the kernels
of these systems are not really without a notion of state, as in those systemsstateis an object that the
kernel operates on. In Coq the state object is called anenvironment, while in HOL-based systems like
ProofPower and Isabelle it is called atheory.
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In Coq, one does not have a separate type for well-formed terms: to be purely functional it departs
from the traditional LCF architecture in this respect. Only a type ofpretermexists, that can be used to
extenda state (at which time the preterm will be type checked). Specifically in the caseof Coq the basic
function of the kernel essentially is:5

add_constant : string -> preterm -> state -> state

This function adds a new constant with a given name and expansion to the state. Clearly the Coq kernel
is functional by carrying the state around in a monadic fashion. In contrast, in our approach there does
not exist a type corresponding to a state.

In ProofPower and Isabelle,theoremsinstead of constants are tagged, where the tag indicates which
theory the theorem belongs to. Only theorems from compatible theories are accepted by the inference
rules of those systems. ProofPower has stateful theories, and is quite similar to HOL4. Isabelle has a
purely functional architecture, but for efficiency reasons implements it ina non-functional way [14]. It
uses unique ids to provide an efficient approximation of the inclusion relationon theory content – both
for efficiency and for decidability, since a theory may contain arbitrary data (including ML functions or
fully abstract stuff).

The approaches of the various systems show a trade-off between easyaccess to the implementation
of the system (systems like HOL) and ease of navigation of the formalizations (systems like Coq). We
show that one does not need to sacrifice undo to get the accessibility of HOL’s LCF architecture.

The trick of making the definitions part of the names of constants occurs in logic regularly. For
instance, in Leisenring’s book on the epsilon choice operator [12] the term εx.P[x] takes the place of
a constant name for a witness of∃x.P[x]. That way the completeness theorem can be proved without
having to Skolemize first nor without having to add new constants.

1.4 Contribution

We present a version of the HOL Light system with the following properties:

• The kernel of the system is purely functional.

• The system supports undoing definitions in a logically sound way.

• The system is fully compatible with the existing HOL Light system: all existing developments can
be run with minor changes.

• The system runs at almost the speed of the existing HOL Light system.

• The kernel of the system is theoretically easier to analyze.

1.5 Outline

The paper is structured as follows. In Section 2 we explain how we modified the HOL data structures
and changed the kernel accordingly. In Section 3 we describe how the code of the system further had to
be modified. In Section 4 we describe how to undo definitions. In Section 5 wediscuss how to also have
the kernel track in a functional way which axioms have been used for which theorems. In Section 6 we
present the performance of our system. Finally, in Section 7 we conclude.

5In the actual Coq source code thestring type is calleddir_path * label, thepreterm type is calledconstr, and the
state type is calledsafe_environment.
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2 The datatypes of the logical core

Here are the datatypes of the stateful HOL Light system (these are the traditional HOL datatypes):

type hol_type =

| Tyvar of string

| Tyapp of string * hol_type list

type term =

| Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term

type thm =

| Sequent of term list * term

Of course, these datatypes areabstract, i.e., only the kernel can create data of these types. This is the
essence of the LCF architecture. In our system, we changed these definitions to the following:

type hol_type =

| Tyvar of string

| Tyapp of hol_type_op * hol_type list

and term =

| Var of string * hol_type

| Const of string * hol_type * const_tag

| Comb of term * term

| Abs of term * term

and thm =

| Sequent of term list * term

and hol_type_op =

| Typrim of string * int

| Tydefined of string * int * thm

and const_tag =

| Prim

| Defined of term

| Mk_abstract of string * int * thm

| Dest_abstract of string * int * thm

That is, wetaggedboth the constants and the defined types by the information that was used to introduce
them to the system. In the case of the types it turned out to be more convenientto integrate these tags
with the string and arity into ahol_type_op.

The simplest example of this kind of tagging is theDefined tag for defined constants. However the
constants for the functions that map between an ‘abstract’ defined type and the ‘concrete’ type from
which it was carved have to be tagged too. (Those functions go in oppositedirections: see [8] for a
detailed description of the HOL type definition architecture.) For this we have the Mk_abstract and
Dest_abstract tags.

In our implementation as a sanity check we temporarily replaced the underlined types by function
types, to check that the system never followed the pointers corresponding to these fields (with this hack
we did not have to change any other code in the system). That is, instead ofterm we usedunit -> term

and instead ofthm we usedunit -> thm. This works because OCaml will returntrue if a function is
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compared to itself, while it will throw theInvalid_argument "equal: functional value" exception if
it is compared to any other function.

There are various alternatives for the ‘tagging data’ in these type definitions. We chose to use the
exact arguments of the functions that are used to define constants and types. However, more economical
variants are possible. For example, instead of tagging the definition of a constantX with the defin-
ing equation‘X = . . .‘, we could just have used the body of that definition. Similarly, inTydefined,
Mk_abstract andDest_abstract we could have used aterm instead of athm. In that way we could have
lost the dependency ofterm on thm. However, all these variants are really more or less equivalent, and
we chose for the one where it is most obvious where the ‘tagging information’ originates.

One could also consider using structure-less nonces (unit refs, say) as tags. However, this makes
the system stateful again. Also, a formal analysis of the system will be harder that way, as in that case
the tags will not be semantically meaningful.

We will now present how we adapted and reorganized the kernel according to these new datatype
definitions. We only will do this for constants. Analogous changes had to made for defined types.

We will start by presenting the code before we changed it. The relevant functions for constants from
the original, stateful HOL Light kernel are:

constants : unit -> (string * hol_type) list

definitions : unit -> thm list

get_const_type : string -> hol_type

new_constant : string * hol_type -> unit

new_basic_definition : term -> thm

mk_const : string * (hol_type * hol_type) list -> term

With new_basic_definition one introduces a new constant definition to the system, and withmk_const

one creates constant terms. The implementation of these functions is completely straightforward:

let bool_ty = Tyapp("bool",[]);;

let aty = Tyvar "A";;

let the_term_constants =

ref ["=",Tyapp("fun",[aty;Tyapp("fun",[aty;bool_ty])])];;

let constants() = !the_term_constants;;

let the_definitions = ref ([]:thm list);;

let definitions() = !the_definitions;;

let get_const_type s = assoc s (!the_term_constants);;

let new_constant(name,ty) =

if can get_const_type name then

failwith ("new_constant: constant "^name^" has already been declared")

else the_term_constants := (name,ty)::(!the_term_constants);;

let new_basic_definition tm =

match tm with

Comb(Comb(Const("=",_),(Var(cname,ty) as l)),r) ->

if not(freesin [] r) then failwith "new_definition: term not closed"

else if not (subset (type_vars_in_term r) (tyvars ty))

then failwith "new_definition: Type variables not reflected in constant"

else let c = new_constant(cname,ty); Const(cname,ty) in

let dth = Sequent([],safe_mk_eq c r) in
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the_definitions := dth::(!the_definitions); dth

| _ -> failwith "new_basic_definition";;

let mk_const(name,theta) =

let uty = try get_const_type name with Failure _ ->

failwith "mk_const: not a constant name" in

Const(name,type_subst theta uty);;

We will now show the corresponding code in our system. In our stateless version of HOL Light, the
kernel interface becomes simpler. The only relevant functions now are:

new_prim_const : string * hol_type -> term

eq_term : hol_type -> term

new_defined_const : term -> term * thm

inst_const : term * (hol_type * hol_type) list -> term

with implementation:

let bool_tyop = Typrim("bool",0);;

let bool_ty = Tyapp(bool_tyop,[]);;

let new_prim_const(name,ty) =

Const(name,ty,Prim);;

let eq_term ty =

Const("=",Tyapp(Typrim("fun",2),[ty;Tyapp(Typrim("fun",2),[ty;bool_ty])]),

Prim);;

let new_defined_const tm =

match tm with

Comb(Comb(Const("=",_,Prim),(Var(cname,ty) as l)),r) ->

if not(freesin [] r) then failwith "new_definition: term not closed"

else if not (subset (type_vars_in_term r) (tyvars ty))

then failwith "new_definition: Type variables not reflected in constant"

else let c = Const(cname,ty,Defined tm) in

let dth = Sequent([],safe_mk_eq c r) in

c,dth

| _ -> failwith "new_basic_definition";;

let inst_const(tm,theta) =

match tm with

| Const(name,uty,tag) -> Const(name,type_subst theta uty,tag)

| _ -> failwith "inst_const: not a constant";;

The remainder of the code was moved out of the kernel. These are the following functions:

the_term_constants : (string * term) list ref

the_definitions : thm list ref

get_const_type : string -> hol_type

new_constant’ : string * term -> unit

new_constant : string * hol_type -> unit

new_basic_definition : term -> thm

mk_const : string * (hol_type * hol_type) list -> term

(We did not need to hide the stateful variablesthe_term_constants andthe_definitions anymore, as
changing them can no longer compromise the logic. For this reason we no longer need theconstants and
definitions functions for inspecting them.) The implementation of these functions again is straightfor-
ward:
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let the_term_constants = ref ["=",eq_term aty];;

let the_definitions = ref ([]:thm list);;

let get_const_type s = type_of (assoc s (!the_term_constants));;

let new_constant’(name,c) =

if can get_const_type name then

failwith ("new_constant: constant "^name^" has already been declared")

else the_term_constants := (name,c)::(!the_term_constants);;

let new_constant(name,ty) =

new_constant’(name,new_prim_const(name,ty));;

let new_basic_definition tm =

let c,dth = new_defined_const tm in

match c with

| Const(name,_,_) ->

new_constant’(name,c); the_definitions := dth::(!the_definitions); dth;;

let mk_const(name,theta) =

let tm = try assoc name (!the_term_constants) with Failure _ ->

failwith "mk_const: not a constant name" in

inst_const(tm,theta);;

Clearly, the code in our system is slightly more complicated, but essentially it is a reorganized version of
the original code.

Our code has the property that makes it easy to distinguish calls tonew_constant that add ‘primitive’
constants to the system – which in practice only is used for the Hilbert epsilon choice operator‘(@)‘
– from other calls tonew_constant. In our system the first kind corresponds to the kernel function
new_prim_const.6

3 Modifications to the HOL source code

The sizes of the kernel files are compared in the following table:

source file all lines content

Stateful HOL Light

kernel fusion.ml 669 394

Stateless HOL Light

kernel core.ml 383
state state.ml 64

total 447

The last column counts the number of non-blank non-comment lines. (In ourversion of the code we
removed all the comments, which means that the total line count of our files is notmeaningful in com-
parison to the original system.) The kernel of the stateful HOL Light is calledfusion.ml (it used to

6If one wants to be pedantic, one might keep track of calls tonew_prim_const (and to its counterpart for types) in the
context data structure described in Section 5 below. In some sense these are ‘axiomatic’ too.
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be three files,type.ml, term.ml andthm.ml, which at some point were fused). We split this file in our
kernel, calledcore.ml, and the remainder of the code,state.ml.

In the rest of the system only two kinds of changes had to be made. First, thesystem would be
impractically slow if we compared objects using the default OCaml equality. Recently OCaml has been
changed to consider Not-A-Number floating point numbers not to be equalto themselves, and for this
reason the default equality test never uses pointer equality as an optimization. To get around this problem,
we added the following lines at the start of the first HOL Light source filelib.ml:

let (=) = fun x y -> Pervasives.compare x y = 0;;

let (<>) = fun x y -> Pervasives.compare x y <> 0;;

let (<) = fun x y -> Pervasives.compare x y < 0;;

let (<=) = fun x y -> Pervasives.compare x y <= 0;;

let (>) = fun x y -> Pervasives.compare x y > 0;;

let (>=) = fun x y -> Pervasives.compare x y >= 0;;

Second, pattern matching on kernel datatypes had to be changed occasionally. As an example, in
basics.ml the line

Tyapp("fun",[ty1;ty2]) -> (ty1,ty2)

had to be changed to

Tyapp(Typrim("fun",2),[ty1;ty2]) -> (ty1,ty2)

In the basic library of the system (which consists of 26,602 lines of sourcecode) there were only 74 lines
that had to be changed like this. These changes were systematic and could be made with a few global
replacements.

4 Undoing definitions

With a stateless kernel implementing safe removal of definitions becomes trivial.We just add the fol-
lowing implementation ofundo_definition to the source filepair.ml (right after the implementation
of new_definition):

let undo_definition cname =

the_term_constants := filter ((<>) cname o fst) !the_term_constants;

the_core_definitions := filter ((<>) cname o fst o dest_const o fst o

strip_comb o fst o dest_eq o snd o strip_forall o concl)

!the_core_definitions;

the_definitions := filter ((<>) cname o fst o dest_const o fst o

strip_comb o fst o dest_eq o snd o strip_forall o concl)

!the_definitions;;

This code has to be in (or after)pair.ml, because only there the variablethe_definitions is intro-
duced. In fact HOL Light hastwo variables with that name, one in the kernel (in our version of
course instate.ml outside the kernel), and another one inpair.ml. We renamed the first one to
the_core_definitions, and update both variables simultaneously.

Now with this function, our motivating example session from Section 1.1 runs asfollows:

# let X0 = new_definition ‘X = 0‘;;

val ( X0 ) : thm = |- X = 0

# undo_definition "X";;

val it : unit = ()
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# let X1 = new_definition ‘X = 1‘;;

val ( X1 ) : thm = |- X = 1

# TRANS (SYM X0) X1;;

Exception: Failure "TRANS".

As expected the system considers the twoXs to be different, and does not allow the transitivity step
anymore.

However, there still is a subtle issue. If we now printX0 and X1, the system will do this in the
following way:

# X0;;

val it : thm = |- X = 0

# X1;;

val it : thm = |- X = 1

I.e., the system prints out what appears to be contradictory judgements. Ofcourse these judgements are
not actuallycontradictory, the system is perfectly sound. TheX in the firstthm is the ‘old’ X, while the
second is the ‘new’X. It therefore willnot be possible to prove from this that

val it : thm = |- 0 = 1

However one might ask, from a pragmatic point of view, how much difference that makes with the
confusing printout ofX0 andX1.

This is not a problem with the consistency of the system, but with what in [15] iscalledPollack-
consistency. There is nothing wrong with the kernel of the system, but with its printing/parsing code.
The statement of theoremX0 is printed in a way that doesnot parse back to the same statement. That is
(using the terminology from [15]) the printing/parsing functions are notwell-behaved.

Of course, in [15] it is pointed out that the stateful version of HOL Light already was Pollack-
inconsistent. Apparently this was not considered a serious problem, and the problem shown here might
for the same reason be ignored. However (although we did not pursue this) in [15] a simple strategy is
given to make a system Pollack-consistent, which can easily be applied here.

A simple variant of this would be to insert in the printing code some extra lines thatcheck whether
a constant that is being printed is equal to the ‘current’ value of that constant, and if not to throw an
exception. In that way it is probably easy to have the system printX0 as ‘<obsolete theorem>’ (or
something like that) after the definition ofX has been undone. For this paper we were mainly interested
in how to minimally modify thekernelof the system to find out what the performance of our approach
would be (and not so much to further develop the result into a ‘better’ system), therefore we have not
pursued implementing this yet.

5 Tracking the axioms

The stateful HOL Light system keeps track of the axioms that have been introduced by the user in the
variable

the_axioms : thm list ref

We moved this variable out of the kernel, and therefore the system described thus far does not keep track
of the axioms that have been used for the theorems. The whole system only uses three axioms, so one
might not consider this to be a serious problem.
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However, we also investigated a variant of the system where eachthm was ‘tagged’ with the set of
axioms from which it was derived. In that case each basic inference rule of the system had to take the
union of this set of axioms for each of thethms that it got as arguments. If implemented naively this
would become expensive, computationally.

To get this to run with acceptable speed, we used the following data structure7. Thethm type now is
defined as

type context =

int * term list array

type thm =

| Sequent of context * term list * term

The context type represents the axioms used in proving thethm. It consists of an array holding thehistory
of the axiom lists during the execution of the system. Specifically it consists of an array of lists of axioms
of decreasing length, prefixed with the length of the array minus one. The function that introduces an
axiom now is:

let axiom_sequent ((n,axa) as ctx) tm =

let axl = Array.get axa 0 in

let ctx’ = (n + 1),Array.of_list ((tm::axl)::Array.to_list axa) in

let ax = Sequent(ctx’,[],tm) in

ax,ctx’;;

Here the(n,axa) argument represents the set of axioms thus far. This is given by the stateful outside of
the kernel. The code to merge contexts is:

let empty_context = 0,[|[]|];;

let merge_contexts ((n1,axa1) as ctx1) ((n2,axa2) as ctx2) =

if ctx1 == ctx2 then ctx1 else

if n1 < n2 then

if Array.get axa1 0 = Array.get axa2 (n2 - n1) then ctx2 else

failwith "merge_contexts" else

if n1 > n2 then

if Array.get axa1 (n1 - n2) = Array.get axa2 0 then ctx1 else

failwith "merge_contexts" else

failwith "merge_contexts";;

This code, when given two contexts, does not have to walk those contextsto see whether one is a prefix
of the other (which would cost linear time), but instead uses the array data structure together with pointer
equality to check whether the two contexts match (taking constant time). With this code only ‘compati-
ble’ contexts, where one is a subset of the other, can be merged. Of course a more refined version of this
code, that also is able to merge sets of axioms that are incompatible, could be written.

With this code, the ‘set of axioms’ for theorems always will be subsets of each other. We call this
version of the systemwith linear tracking of the axioms. We were curious whether maybe there was a
theorem that, for instance, only needed the first and third axioms but not the second one. For this reason,
we made yet another modification to the code, that kept track of theexactset of axioms used. This
version is calledwith precise tracking of axioms.

7One of the referees of this paper pointed out that the use of thearray type introduces state to the kernel again, and that
this undermines the point of the paper a bit. However, note that we use the arrays in a ‘purely functional’ way. We never update
arrays, and only use them to be able to get to a specific index without havingto walk a list.
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In this version of the system we represented the set of axioms as a bit stringin a 32 bit integer. (This
version of the kernel therefore only can handle 32 axioms. As the actualsystem only uses 3 axioms, for
the experiment this was sufficient.) Now thecontext type is:

type context =

(int * term list array) * int32

and themerge_context code used OCaml’sInt32.logor function on theint32 bitstrings.
The result of this experiment however turned out to be that fornoneof the theorems in the basic

library of HOL Light that are named by a global OCaml variable, a set of axioms is used that is not just
a prefix of the list of the three axioms in the system. Therefore this refinementof the kernel turned out
not to be very useful.

6 Performance

We measured the performance of our modified HOL Light versions, but only using wall clock time.
Specifically we used the following code in an OCaml session:

#load "unix.cma";;

let starttime = ref (Unix.time());;

#use "hol.ml";;

Unix.time() -. !starttime;;

Here are the results on an unloaded Debian Etch system, using a computer witha single 1.86GHz Intel
Pentium M processor.

version running time increase

Stateful 113s
Stateless, without tracking of axioms 130s +15%
Stateless, with linear tracking of axioms 131s +16%
Stateless, with precise tracking of axioms 132s +17%

These are the times needed to load the basic HOL Light library. Of course, these numbers not only
represent the time spend by the HOL Light system. For instance, displaying the output of the system in
a terminal window already takes around 10 seconds. Still, the table gives a reasonable impression of the
performance of the approach promoted in this paper.

7 Conclusion

7.1 Discussion

Switching HOL Light to our stateless kernel architecture has advantages and disadvantages: The advan-
tages are:

• One gets the possibility to implement a functionundo_definition in a logically sound way (and
a similar function for type definitions).

• One gets a system that is probably easier to analyze theoretically. John Harrison’s HOL in HOL
formalization [10], in which he proves his kernel source code sound, currently leaves out the
definitions. We expect that it will be easier to extend that work to include definitions for our
version of the system, than it would be to do this for the stateful version of HOL Light.
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It might seem that a system with 3 non-mutual datatypes is easier to analyze than a system with 5
mutually defined datatypes. However, it is much less difficult to reason abouta purely functional
program than about a stateful program. This more than compensates for the slightly more involved
datatypes.

In the stateful version of HOL Light the semantics of data from the kernel depend on the state of
the system, and often data has to be interpreted in a different state than in which it was created.
This makes it hard to give the semantics in a compositional way. In contrast, in the stateless version
all data has a direct interpretation, making analysis much simpler.

One subtlety with proving correctness of our stateless kernel is that it mightbe difficult to represent
pointer equality in such a proof. Pointer equality is rarely considered in mechanized correctness
proofs of functional programs. However, it is clear that pointer equalityis just an optimization of
structural equality and that proving the correctness of the kernel usingstructural equality could be
considered equivalent.

The disadvantages of our system compared to the stateful HOL Light are:

• The system runs at about 85% of the normal speed in daily use.

• The kernel is more complicated. In particular the kernel datatype definitionsare more involved.

We are undecided whether the slowness and added complexity in the kerneloutweighs the nicety of
having a purely functional kernel that supports undo.

7.2 Availability

A version of the system described in this paper can be downloaded on the web at the web address:

http://www.cs.ru.nl/~freek/notes/hol_light-stateless.tar.gz

This tar file contains just the basic library of the system, adapted for the stateless kernel. For reference,
the tar file also contains the unmodified source code of the HOL Light versionthat we used for the
experiment.

7.3 Future work

We mainly did this experiment to satisfy our curiosity, to find out whether the approach was viable. We
were surprised that it all worked as painlessly as it did.

We did not argue here why our changes in the implementation are sound. Although this seems rather
obvious, it would be good to have a formal analysis of this. An interesting way to do this would be to
adapt John Harrison’s HOL in HOL proof to also include definitions using our stateless variant of the
code.

We would like the main version of the HOL Light system to adopt our stateless variant. In that sense,
this article can be considered an open letter to John Harrison, asking him to consider doing this.
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