
 1

Flownet Nuclear Architecture, Implementation and Verification & Validation

WA Landman, E van Heerden, JP van Ravenswaay and GP Greyvenstein

Faculty of Engineering, Potchefstroom University for CHE

Private Bag X6001, Potchefstroom, 2520, South Africa

Tel: 27 (18) 2994022, Fax: 27 (18) 2991320

e-mail: dinwal@puknet.puk.ac.za

Abstract – Flownet is a general network analysis code used by PBMR (Pty) Ltd for the thermal-

fluid design and analysis of the PBMR plant. It is based on an implicit pressure correction

method (IPCM) that solves the continuity, momentum and energy equations (including rotating

element dynamics) in large arbitrary structured networks for both steady-state and dynamic

analysis. In order to facilitate maximum code re-use and maintainability it was re-developed in

an object-oriented paradigm, using C++, within a strict quality system. This paper presents the

architectural design, model development, implementation, and verification and validation

philosophies used during the development of Flownet. Finally it comments on results obtained

with this software package.

I. INTRODUCTION

The interaction of various thermal-fluid components in

an arbitrary structured network is a complex problem to

analyse. Yet accurate modelling of these situations is

important and imperative in the design of a new power

plant, where the interactions cannot be optimised based on

passed experience or empirical data. To this end a

software package has been developed that can be used in

the analysis of this type of network.

The solution algorithms in the previous procedural

version of Flownet were developed over an extended

period of time and evolved into general network analysis

software that can solve arbitrary structured networks for

both steady-state and transient cases. Shaft dynamics are

also solved as part of the overall solution to the energy,

mass and momentum equations 1.

Flownet’s capabilities include the simulation of

networks such as the PBMR, a high-temperature gas-

cooled reactor (HTGR) plant based on a three-shaft

Brayton cycle, currently under development by the South

African utility Eskom. These dynamic simulations of the

complete power conversion unit (PCU) are fully integrated

with core neutronics, turbo-machine power matching and

controller algorithms2. In order for a modelling tool to be

used in the design of a nuclear power plant where safety is

of the essence, the code had to be rewritten within the

framework of a stringent quality control system.

Redeveloping the software also provided an excellent

opportunity to implement an object-oriented design and

development approach. In order to facilitate maximum

code re-use and maintainability, Flownet was re-developed

in an object-oriented paradigm, using C++, within a strict

quality assurance system. Using classes and grouping

classes together in packages, each with well-defined

interfaces, enhanced encapsulation and improved

maintainability. A persistence mechanism that maps the

object-oriented design onto a relational database was

devised. Using a relational database has the benefit of

open-endedness and having a scientific view of the data.

Model development, implementation, and verification

and validation are based on three different processes that

have well defined interfaces to ensure a streamline system.

Technical teams that specialize either in model

development, implementation or verification and validation

are responsible for the execution of these processes.

In Flownet the approach used to design the classes and

the interaction among them, resulted in a code that was

marginally slower than the procedural code that it was

based on. The advantage of having an object-oriented code

is that profiling can be done effectively. These profiling

results have the advantage that CPU intensive code can be

easily identified and optimised. Using special techniques

to optimise the code, speed improvements of up to 40%

were achieved. These speed improvements, to an already

fast solving code enables Flownet to perform real time

dynamic analysis of large integrated thermal-fluid

networks such as the PBMR.

When working on a software package that is being

developed and used by a small but very active user base, it

is imperative that the configuration management is

 2

streamlined and well structured. Practical procedures have

been put into place to ensure that anomalies that are logged

are addressed and new development continues with the

least possible adverse effect on one another.

Numerous thermal-fluid simulations were conducted

with the aid of the Flownet software package on a wide

variety of networks including both compressible and

incompressible flow. These included comparisons with the

PBMM (Pebble Bed Micro Model) that was designed using

Flownet. The comparisons between Flownet and both

analytical and experimental results proved to be excellent.

II. BACKGROUND TO FLOWNET

The complexity associated with the thermal-fluid design of

closed-loop cycles requires the use of a variety of analysis

techniques and simulation tools. These range from simple

one-dimensional models that do not capture all the

significant physical phenomena to large-scale three-

dimensional CFD codes that, for practical reasons, cannot

simulate the entire plant as a single integrated system.

Flownet is a code that provide a good compromise between

accuracy and speed. Its distinquising features are as

follows:

• Easy to use graphical user interface, where networks

can be created and edited.

• Flownet can handle a wide variety of network

component models including pipes, turbo-machines,

pumps and fans, a number of heat exchangers, orifices,

reactor models and valves.

• PID and other controllers.

• In addition to its fluid dynamics and heat transfer

capabilities, Flownet also features a one-dimensional

solid heat transfer modelling capability with which

heat transfer through solid structures can be modelled.

• Both steady-state and dynamic analysis of large

arbitrary structured thermal-fluid system.

• Gas mixture concentration solver.

• Turbo-machine power matching.

• A general external control interface which allows the

use of other software packages such as Simulink and

Matlab to design and simulate advanced plant control.

• Direct design functionality that can be used to perform

design analysis.

• Sensitivity analysis that is based on the Monte Carlo

algorithm.

• The code has been extensively verified and validated

in industry for a number of years.

• Very fast steady-state solution times.

• Perform real-time dynamic analysis of large arbitrary

structured thermal fluid system.3

During the early stages of the PBMR project it was

decided to re-develop Flownet. Its predecessor was

developed in procedural C code using text files for data

storage. The objectives of the redevelopment of Flownet

were the following:

• Develop the code within the framework of a strict

quality assurance system.

• Improve maintainability of a large and complex code.

• Maximize code re-usability.

• Use of relational database technology to improve the

data persistance mechanism.

• Give the code a real Windows look and feel.

• Based the new development on exactly the same

solution algorithm and have all the capabilities it

predecessor possessed.

• Retain the solution speed and flexibility of its

predecessor.

In the next section a brief outline of some of the

architectural issues will be given.

III. ARCHITECTURAL DESIGN

There were a number of preconditions that existed

when the redevelopment started:

• The program was to be written in C++ in an object-

oriented paradigm.

• A relational database had to be used to store the

network data as well as the repository of

characteristics such as fan and pump curves, turbine

and compressor maps, etc.

• The target operating system chosen was Windows®.

It soon became apparent that one large monolithic

executable was not going to be very practical. One large

program implied longer compile-debug cycles and longer

built times that impacted on the productivity of the

development group. The program was therefore divided

up into packages.

In object-oriented terminology a package is a

collection of classes collaborating to implement the

functionality that is associated with the package. Each

package represents a functional area in Flownet and is

mapped to a dynamically linked library (DLL) on the

Windows platform. Each package has well-defined

interfaces that enhances encapsulation and improve

maintainability.

A persistence mechanism was devised to map classes

in the object-oriented design onto tables in a relational

database. A design pattern of mapping each class to a table

in the database, and every data member of a class to a field

in the table was adopted. Each class that needs interaction

with the database was given the responsibility of doing so

by implementing the appropriate methods.

Using a relational database for this kind of data is

somewhat of an overkill. It takes longer to save large

 3

volumes of data to a relational database than it takes to

save the corresponding data to an ASCII file. However,

the relational technology provides a structured way to

organize data and to filter that data. The availability of

third party tools to view and edit the data gives the added

benefit of open-endedness. These benefits far outweigh the

mentioned drawback.

IV. NEW MODEL DEVELOPMENT

Model development, implementation and verification

and validation form a integrated process, as part of the

quality assurance of Flownet, to ensure that the

development and implementation of new models into

Flownet are controlled and streamlined.

IV.A Model development

Figure 1: Model development flow chart.

Model development consists of the process of refining

a user requirement into a theoretical model to be

implemented into Flownet.

During this process theory is derived for a new model

after which it is peer reviewed. The next step is to rewrite

the theory into the Flownet solver format for

implementation. A validation case is then formulated and a

benchmark is developed. The benchmark can consist of a

simple hand calculation, a numerical solution or

experimental data. In parallel with this, the various

documents required are developed. The next step is to

implement the new model into Flownet.

IV.B Model Implementation

The first step of the model implementation phase is to

investigate the impact the new model has on the existing

architecture and to update the architectural design

documentation, if needed. Next the detail design and

implementation documentation is generated.

Figure 2: Model implementation flow chart.

To ensure code integrity, unit tests for the new model

are already defined and implemented at this point. The next

step is the physical implementation of the new model into

the Flownet source code. Implemented code is submitted to

stringent design reviews to ensure that the derived models

have been correctly translated into computer code. At this

point a preliminary comparison with the stipulated

benchmark is performed. The outcome of this step could

Need / Requirement
Definition (CR)

Validation case definition
(Incuding Boundaries

and Limitations)

Theory Deriviation

Design Review
(Verification)

Benchmark
Program and

Data

Project Planning
Project Plan

Implement into
Flownet

User Requirement
Spec

Validation Manual

Theory Manual

User Manual

Training Material

Flownet Solver
Implementation Detail

Flownet Model Development

Theory Implementation
into benchmark code OR
experimental test set-up

planning

Comparison with
benchmark

Develop Design
and Implementation

documentation

Implement into
Flownet

Implementation into
Flownet

Release for
Compliance Testing

(Validation)

Design Review of
implemented code

(Verifcation)

D&I Documentation

Flownet
Source Code

Design Review
Minutes

Updated Arch. Design
Documentation

Develop and
implement Unit Test

Unit Test
Code

Flownet Model Inplementation

User Manual

Training Material

Acceptable?
Model / Benchmark

refinement

 4

result in refinements to the model or the benchmark.

Successful preliminary testing leads to the release of

Flownet for compliance testing (validation).

IV.C Verification and Validation

Verification is performed during the model

development and implementation phases through the

design and peer review processes. The final step before

releasing Flownet to the client is to validate the newly

implemented model against the benchmark specified in the

model development phase.

Figure 3: Model validation and verification flow chart.

If the results obtained with Flownet are within the

specified tolerances from the benchmarks, the code is

deemed acceptable, all relevant documentation is updated

and Flownet is released to the client.

V. CODE OPTIMISATION

One of the intended end uses of the newly developed

code is as part of a simulator for training and engineering

analysis purposes.

It is imperative that real-time (or faster) simulations

can be achieved for training simulators. On currently

available “general purpose” hardware, simulation times are

marginally slower than real-time for a realistically sized

problem. For this reason an effort was made to increase

the performance of the program.

Increasing the performance of any computer program

can be broadly classified into two categories, namely

algorithm improvements and code tweaking.

Algorithm improvements should always be tried first

when code optimisation is considered. The reason for this

is that if one has an algorithm that has a complexity of

O(n3), and there is another algorithm available that

essentially solves the same problem but is of complexity

O(n2), then no amount of code tweaking will provide

comparable benefits to replacing the algorithm for large

enough problems (i.e. large enough n). Thus the first step

is to make sure that all the algorithms are as efficient as

possible.

When it comes to code performance enhancement

there are two schools of thought. The first is that one

designs with efficiency in mind from the outset. The

second is that one firstly designs for clarity and

maintainability and then improves performance of the

code. The code that should be considered for performance

improvements should be identified by actual measurement

in a representative size problem.

Donald Knuth4 observed that premature optimisation

is the root of all evil. Furthermore, it is generally accepted

that programmers have a very bad intuition for where

bottlenecks lurk within their code, thus frequently spending

hours optimising code that very rarely gets executed.

Heeding that warning, the approach that was preferred

in the redesign process was to firstly design for

maintainability and clarity. Code speed improvements

were only attempted on code where performance profiling

pointed to the existence of a bottleneck(s).

The first round of profiling pointed to the matrix

solver as the largest consumer of CPU cycles. The

calculation of pressure correction terms in the solution

algorithm requires the improved accuracy that is associated

with matrix methods.

Since a state of the art matrix solver for sparse

matrices is already used, and the fact that we could not use

an iterative approach for solving the pressure correction

equations, it was concluded that the code needed to be

optimised rather than changing the matrix solution

algorithm.

Guided by the profiling tool and zooming in on the

detail of the matrix algorithm, it was found that

considerable CPU time was spent on the setting up of the

connectivity of the matrix. This connectivity did not

change from one pressure correction calculation to the

next, but the same matrix code was used for solving the

temperatures in the energy conservation equations. So the

storage of the connectivity was therefore encapsulated into

a matrix class and an instance of the matrix class created

for each set of equations that needs to be solved. This

allowed for the storage of the connectivity data rather than

recalculation of it at each matrix solution.

Test against
Benchmarks - compile
Compliance test report

Release to Client

Update User
Documentation

Release Notes / User

Manual / Help System

Training Material

Installation V&V Plan

Installation Instructions

Delivery Note

Acceptable?

Release Compliance test

report

Anomally Report

Flownet Validation

 Validation

 5

This approach led to a performance gain of 9.3% in a

typical large network. As is the case with most

engineering solutions a compromise had to be made.

Using a technique of caching results, so that it can be used

again, uses more memory in order to gain some speed

advantage. A second opportunity for performance

enhancement was identified as the calculation process of

Mach numbers at the nodes. Again the bottleneck was

identified by the use of a performance profiler.

In the original code, the Mach-numbers were

calculated at each node and after each iteration. There are

places in the solution algorithm where these Mach numbers

were used, and they were also printed as part of the results.

Here the solution was obvious. Instead of calculating the

Mach number upfront, the Mach number was invalidated

after each iteration and then re-calculated as needed. For

the majority of the nodes this resulted in the Mach number

being calculated only once during the printing of the

results.

This is a technique known as lazy-evaluation, and in

this case led to performance improvements of 8.9% for a

typical large network. Again there was a compromise of a

slightly more complex solution but with the benefit of

performance gains.

There were various additional situations, all identified

by actual performance profiling that led to various

performance gains. Almost without exception some

clarity, simplicity and code maintainability were lost for

the sake of performance. The benefit, however, is that the

changes have been introduced where it resulted in

undisputed benefits.

In Table 1 the results from a typical network is shown

before and after the performance enhancements were

made.

 Procedural

program

Before

optimisation

After

optimisation

With

graphical

output

16.843 26.052 15.820

Without

graphical

output

16.527 19.033 14.286

Table 1: Optimisation comparison between procedural and

object oriented code.

From the table one can see that there has been a 25%

improvement in simulation times where the solver is

invoked without output, and a 40% improvement where

graph plotting is involved. Furthermore the difference in

performance between an equivalent procedural program is

also given. After optimisation there is a speed

improvement of 6% when the output is given and 13%

when the graphs are not plotted.

It should be pointed out that the graphs for the new

code is much more feature rich than the procedural code

that gave rise to a big performance concern. The

optimisation of the graphing functionality was not

discussed in the section on performance enhancements

since it relates to user interface issues and as such is

platform specific, but there was significant performance

gains introduced in the graphing functionality too.

At this point a realistic question is whether real-time

simulation have been achieved yet? The answer: “It

depends”. In this case it depends on the size of the

problem and the price of the hardware, but for a

representative sized problem with higher end generally

available hardware, real-time simulation can be achieved.

There is still scope for more performance

enhancements. Two options that come to mind are using

iterative matrix algorithms for the temperature solver and

parallelization of the code. These will be addressed in the

future as the need arises.

VI. CONFIGURATION MANAGEMENT

VI.A Code configuration management (SourceSafe)

The Flownet code configuration management is done

with the assistance of Visual SourceSafe®, a Microsoft®

product. For developers at different locations a web based

third party software product is used that allows these users

to access the Flownet source code on the SourceSafe

server. The software used has the following capabilities:

• Provides the users with easy to use graphical user

interfaces for both the server and client applications.

• It keeps advanced history tracing of all activities

related to Flownet source code under configuration

management.

• It allows multiple user accounts with adjustable levels

of access rights assigned by the system administrator.

The Flownet release cycle is divided into major and

minor releases. Minor releases are usually associated with

bug fixes while major releases, on the other hand, are

associated with new model development. The duration

between major releases is usually in the order of four to six

months.

In order to ensure that new developments that are

currently underway do not introduce unwanted anomalies

into the released code the following system is used:

Directly after a major release the source code on the

SourceSafe server are branched into two different sets of

identical code. The one is labelled Production Code and

the other one is labelled Development Code. The

 6

production code is associated with bug fixes and the

development code is associated with the new

functionalities that will be introduced during the

development cycle leading up to the next major release.

During minor releases, after an anomaly was reported and

fixed on both the production and development code, the

production code is taken from the server, built and released

for testing. If the tests are successful it is released to the

client. By the end of a major release life cycle the

production code and development code are merged with

one another, built and released for testing. If these tests are

successful a major release is done to the client. The

development code on the server is then branched and a new

development/release cycle starts.

VI.B Anomaly Reporting (AR) and Change Requesting(CR)

In order to streamline these supporting system for a

code with an international user base, a web based reporting

system was developed. This system has the advantage that

users can track either AR’s or CR’s as they move through

the system. The figures below present the flow path for

these processes.

Figure 4: Anomaly reporting flow chart.

Figure 5: Change requesting flow chart.

VII. RESULTS

Numerous thermal hydraulic simulations were

conducted with the aid of the Flownet software package on

a wide variety of networks including both compressible

and incompressible flow. These included comparisons

with the PBMM that was designed using Flownet.

The validation cases are presented as follows: Firstly a

short description of the problem that was modelled is

given. Secondly the results are compared to results

obtained with other codes or to experimental data. Finally

a short discussion of the results is given. In all the cases

the Flownet results are presented by the markers only and

the results of the validation case by the solid line.

VII.A Pipe with pressure waves

This example shows a compressible pipe element with

an inlet pressure of 300 kPa and an outlet pressure of 100

kPa. During a transient event a valve at node 2 (outlet) is

closed instantaneously. The comparison between the

pressures and temperatures calculated with Flownet, an

Submit

Approval

Reject

Assigned person
transmission

Received

Investigation and
Classification

Classification

Software Operator Duplicate

Correcting

fault/error

Document

Operator
fault/error

Reference

Fault/Error
Corrected

Included in
Manual

Close

Review

Complete
submission

Generate
Anomaly report

data pack

Unsatisfactory Complete

Prelim
Investigation

Assigned

Internal
Review

Released

Unsatisfactory

resolution

Unapproved

Submit
Change Request

Approval
for

Investigation
Reject

Assigned person

transmission

Received

Investigation
and Analysis
of Change

Classification and
Estimated Effort

Major
Change

Minor
Change

Requirement

specification

Implementation

Complete

submission

Requirements
fixed

Revision

Internal

Review

Released

Review
Change

Unsatisfactory Complete

Generate Change
Request report

data pack

Preliminary

Investigation

Unsatisfactory
implementation

 7

implicit pressure correction method (IPCM) and with an

explicit code (EX) are shown in Figure 7.

Figure 6: Flownet graphical presentation of pipe element.

The system specifications are as follows:

Pipe 1

Number of Increments 20

Length [m] 100

Diameter [mm] 100

Node 1

Pressure [kPa] 300

Node 2

Pressure [kPa] 100

Table 2: Pipe system inputs.

From the comparison it can be seen that the results of

the two codes compare very well. The explicit code

(XNET) that was used to solve the problem is based on a

4th order Runge Kutta solution algorithm.

Figure 7: Pressure at the end of a 100 m long pipe due to

the sudden closure of a valve at the downstream end of thr

pipe.

Figure 8: Temperature at the end of 100m long pipe due to

the sudden closure of a valve at the downstream end of the

pipe.

VII.B Tanks blowing down

This example shows a number of tanks that have been

pressurized to specific pressures. Starting at steady state,

valves at tanks 1, 3 and 4 are opened instantaneously and

the response of the system are modelled by both Flownet

(IPCM) and by a code based on an explicit solver (EX).

The figure below shows the graphical layout of the

network as presented in the Flownet GUI.

Figure 9: Flownet presentation of a blow down tank

system.

The system specifications are as follows:

Pipe 1

Number of Increments 20

Length [m] 100

Diameter [mm] 100

Pipe 2

Number of Increments 20

Length [m] 100

Diameter [mm] 100

Pipe 3

Number of Increments 20

Length [m] 100

Diameter [mm] 100

Node 1

Volume [m2] 10

Pressure [kPa] 300

Temperature [˚C] 100

Node 2

Volume [m2] 10

Pressure [kPa] 150

Temperature [˚C] 15

Node 3

Volume [m2] 10

1

PT

RS

2

PT

RS

3

PT

RS

4

P

RS

1

2

3

P

1 2

P1

100

150

200

250

300

350

400

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time [s]

P
re

s
s
u

re
 [

k
P

a
]

IPCM EX

10

20

30

40

50

60

70

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time [s]

T
e

m
p
e

ra
tu

re
 [

°C
]

IPCM EX

 8

Pressure [kPa] 250

Temperature [˚C] 50

Node 4

Volume [m2] 10

Pressure [kPa] 100

Table 3:Blow down tank system inputs.

The graphs below shows the pressure and temperature

response of the system as calculated by both Flownet and

the explicit solver.

Figure 10: Pressure transient in a blow down tank system.

Figure 11: Temperature transient in a blow down tank

system.

VII.C Temperature transient in a recuperator

In this example a recuperator with a total heat transfer

area of 300 m2 and a thermal capacitance of 9 kJ/K is

considered. The hydraulic diameter and cross flow area of

both conduits are 0.5 m and 0.1963 m2 respectively. Both

the hot and cold fluids are helium at an inlet pressure of

700 kPa and an outlet pressure of 670 kPa. Initially the

total inlet temperature of both streams is 300 ˚C. Starting at

steady-state conditions, the total inlet temperature of the

hot stream is stepped to 500 ˚C at time t = 0 s.5

Figure 12: Recuperator exit temperature due to a

temperature step at the inlet of the hot stream for a counter

flow configuration.

Figure 12 shows the outlet temperatures with time of

the hot and cold streams for a counter flow arrangement.

The results of the IPCM are compared to that of the two-

step Lax-Wendroff (LW) method.

Figure 13: Recuperator exit temperature due to a

temperature step at the inlet of the hot stream for a

parallel flow configuration.

The LW method shows a fluctuation in the hot outlet

temperature shortly after the beginning of the transient.

After about 0.03 s the curve becomes smooth with a very

good agreement between the IPCM and the LW method.

Figure 13 shows the outlet temperatures with time of

the hot and cold streams for a parallel flow arrangement.

Again the agreement between the IPCM and the LW

method is very good apart from the temperature fluctuation

of the LW method at the start of the transient5.

VII.D Pebble Bed Micro Model start-up (PBMM)

This example presents the comparison of Flownet with

the pressure over the start-up blower during the start-up of

100

150

200

250

300

0.0 1.0 2.0 3.0 4.0 5.0

Time [s]

P
re

s
s

u
re

 [
k

P
a

]

IPCM N1 IPCM N2 IPCM N3 IPCM N4

EX N1 EX N2 EX N3 EX N4

0

20

40

60

80

100

0.0 1.0 2.0 3.0 4.0 5.0

Time [s]

T
e

m
p

e
ra

tu
re

 [
°C

]

IPCM N1 IPCM N2 IPCM N3 IPCM N4

EX N1 EX N2 EX N3 EX N4

250

270

290

310

330

350

370

390

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time (s)

T
e

m
p

e
ra

tu
re

 (
°C

)

LW, Hot outlet IPCM, Hot outlet LW, Cold outlet IPCM, Cold outlet

250

270

290

310

330

350

370

390

410

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time (s)

T
e
m

p
e

ra
tu

re
 (

°C
)

LW, Hot outlet IPCM, Hot outlet LW, Cold outlet IPCM, Cold outlet

 9

the PBMM. The drawing below shows the graphical

layout of the model.

Figure 14: Pebble Bed Micro model graphical layout.

During start-up the inline valve (IV) is closed and the

start-up blower system (SBS) is used to circulate the gas

through the cycle. The SBS is a positive displacement

device, thus the flow-rate remains essentially constant.

Heat is then added to the gas in the heater. This energy is

converted in the turbines into shaft work to power the

compressors. For start-up, the power to the heater is kept

constant at about 180kW. As the system heats up, the

outlet temperature of the heater rises as the inlet

temperature rises and the pressure increase across the IV

drops. The cycle spirals towards self sustained circulation

and the SBS is disengaged when the pressure drop over the

valve is 0 kPa. At this condition the cycle is said to have

bootstrapped.

The exit temperature of the heater is probably the most

important determinant of the bootstrap point as the energy

that the turbines can deliver, depends on the inlet gas

temperature. An estimation of the bootstrap temperature

was made by calculating with Flownet the pressure

increase over the IV as function of heater outlet

temperature. In Figure 14 a comparison between the

calculated and measured variables can be seen.6

Figure 15: Pressure difference across the inline valve as a

function of the heater outlet temperature.

VIII. CONCLUSION

This paper presented the architectural design, new

model development and validation and verification

required during the redevelopment of Flownet, a thermal

fluid tool that is used to solve complex thermal fluid

systems. Advanced optimisation techniques was used to

improve the solution time to such an extent that real-time

simulation of realistic networks are possible. In order to

successfully manage a code based in a large development

team, a number of practical procedures needs to be used to

ensure proper configuration management. The newly

developed code was validated against a number of

benchmarks. These comparisons proved to be extremely

good.

ACKNOWLEDGMENTS

This work is being carried out in association with M-Tech

Industrial (PTY) Ltd. on contract for the PBMR (PTY)

Ltd.

REFERENCES

1. G.P. GREYVENSTEIN, “An implicit method for the

analysis of transient flows in pipe networks”, Int. J.

Numer. Meth. Engrng., 53, 1127 – 1143 (2002).

2. C.G. DU TIOT, G.P. GREYVENSTEIN AND P.G.

ROUSSEAU, “A comprehensive reactor model for the

integrated network simulation of the PBMR power

plant”, To be published.

3. G.P. GREYVENSTEIN and C.G. DU TOIT,

FLOWNET Version 5.4 USER MANUAL, M-Tech

Industrial, Potchefstroom (2001).

4. B Stroustup, The C++ programming language, Third

Edition, Addison-Westley, 1997

5. G.P. GREYVENSTEIN, J.P. VAN RAVENSWAAY

AND P.G. ROUSSEAU, “Dynamic modeling of heat

mass and momentum transfer in the pebble bed

modular reactor”, Proc of 1
st
 Int Conf on Heat

Transfer, Fluid Mechanics and Thermodynamics,

Kruger Park, South Africa (2002).

6. W.M.K VAN NIEKERK, G.P. GREYVENSTEIN

AND P.G. ROUSSEAU, “Operation and simulation of

a three shaft, closed loop, Breyton cycle model of the

PBMR power plant”, To be published.

0

5

10

15

20

25

30

35

40

50 150 250 350 450 550 650

HPT inlet temperature [°C]

P
re

s
su

re
 i
n
c
re

a
s
e
 o

v
e

r
IV

 [
k
P

a
]

Measured Predicted

1

2

3

4

5

6

7 8

9

10

Recuperator

Low Pressure

Compressor

High Pressure

Compressor

High Pressure

Turbine
Low Pressure

Turbine

Pre-

cooler

Inter-

cooler

Power Turbine

Gas Cycle

By-Pass

Valve

Electrical

Heater

Power Compressor

Load rejection cooler

Inline

valve
Start up

Blower

