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Abstract – Flownet is a general network analysis code used by PBMR (Pty) Ltd for the thermal-

fluid design and analysis of the PBMR plant.  It is based on an implicit pressure correction 

method (IPCM) that solves the continuity, momentum and energy equations (including rotating 

element dynamics) in large arbitrary structured networks for both steady-state and dynamic 

analysis.  In order to facilitate maximum code re-use and maintainability it was re-developed in 

an object-oriented paradigm, using C++, within a strict quality system.  This paper presents the 

architectural design, model development, implementation, and verification and validation 

philosophies used during the development of Flownet.  Finally it comments on results obtained 

with this software package. 

 

I. INTRODUCTION 

 

The interaction of various thermal-fluid components in 

an arbitrary structured network is a complex problem to 

analyse.  Yet accurate modelling of these situations is 

important and imperative in the design of a new power 

plant, where the interactions cannot be optimised based on 

passed experience or empirical data.  To this end a 

software package has been developed that can be used in 

the analysis of this type of network. 

The solution algorithms in the previous procedural 

version of Flownet were developed over an extended 

period of time and evolved into general network analysis 

software that can solve arbitrary structured networks for 

both steady-state and transient cases.  Shaft dynamics are 

also solved as part of the overall solution to the energy, 

mass and momentum equations 1.   

Flownet’s capabilities include the simulation of 

networks such as the PBMR, a high-temperature gas-

cooled reactor (HTGR) plant based on a three-shaft 

Brayton cycle, currently under development by the South 

African utility Eskom.  These dynamic simulations of the 

complete power conversion unit (PCU) are fully integrated 

with core neutronics, turbo-machine power matching and 

controller algorithms2.  In order for a modelling tool to be 

used in the design of a nuclear power plant where safety is 

of the essence, the code had to be rewritten within the 

framework of a stringent quality control system. 

Redeveloping the software also provided an excellent 

opportunity to implement an object-oriented design and 

development approach.  In order to facilitate maximum 

code re-use and maintainability, Flownet was re-developed 

in an object-oriented paradigm, using C++, within a strict 

quality assurance system.  Using classes and grouping 

classes together in packages, each with well-defined 

interfaces, enhanced encapsulation and improved 

maintainability.  A persistence mechanism that maps the 

object-oriented design onto a relational database was 

devised.  Using a relational database has the benefit of 

open-endedness and having a scientific view of the data. 

Model development, implementation, and verification 

and validation are based on three different processes that 

have well defined interfaces to ensure a streamline system. 

Technical teams that specialize either in model 

development, implementation or verification and validation 

are responsible for the execution of these processes.    

In Flownet the approach used to design the classes and 

the interaction among them, resulted in a code that was 

marginally slower than the procedural code that it was 

based on.  The advantage of having an object-oriented code 

is that profiling can be done effectively.  These profiling 

results have the advantage that CPU intensive code can be 

easily identified and optimised.  Using special techniques 

to optimise the code, speed improvements of up to 40% 

were achieved.  These speed improvements, to an already 

fast solving code enables Flownet to perform real time 

dynamic analysis of large integrated thermal-fluid 

networks such as the PBMR. 

When working on a software package that is being 

developed and used by a small but very active user base, it 

is imperative that the configuration management is 
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streamlined and well structured.  Practical procedures have 

been put into place to ensure that anomalies that are logged 

are addressed and new development continues with the 

least possible adverse effect on one another. 

Numerous thermal-fluid simulations were conducted 

with the aid of the Flownet software package on a wide 

variety of networks including both compressible and 

incompressible flow.  These included comparisons with the 

PBMM (Pebble Bed Micro Model) that was designed using 

Flownet. The comparisons between Flownet and both 

analytical and experimental results proved to be excellent. 

 

II. BACKGROUND TO FLOWNET 

 

The complexity associated with the thermal-fluid design of 

closed-loop cycles requires the use of a variety of analysis 

techniques and simulation tools.  These range from simple 

one-dimensional models that do not capture all the 

significant physical phenomena to large-scale three-

dimensional CFD codes that, for practical reasons, cannot 

simulate the entire plant as a single integrated system. 

Flownet is a code that provide a good compromise between 

accuracy and speed. Its distinquising features are as 

follows: 

• Easy to use graphical user interface, where networks 

can be created and edited. 

• Flownet can handle a wide variety of network 

component models including pipes, turbo-machines, 

pumps and fans, a number of heat exchangers, orifices, 

reactor models and valves.  

• PID and other controllers. 

• In addition to its fluid dynamics and heat transfer 

capabilities, Flownet also features a one-dimensional 

solid heat transfer modelling capability with which 

heat transfer through solid structures can be modelled. 

• Both steady-state and dynamic analysis of large 

arbitrary structured thermal-fluid system. 

• Gas mixture concentration solver. 

• Turbo-machine power matching. 

• A general external control interface which allows the 

use of other software packages such as Simulink and 

Matlab to design and simulate advanced plant control. 

• Direct design functionality that can be used to perform 

design analysis. 

• Sensitivity analysis that is based on the Monte Carlo 

algorithm. 

• The code has been extensively verified  and validated 

in industry for a number of years. 

• Very fast steady-state solution times. 

• Perform real-time dynamic analysis of large arbitrary 

structured thermal fluid system.3 

 

During the early stages of the PBMR project it was 

decided to re-develop Flownet.  Its predecessor was 

developed in procedural C code using text files for data 

storage. The objectives of the redevelopment of Flownet 

were the following: 

• Develop the code within the framework of a strict 

quality assurance system. 

• Improve maintainability of a large and complex code. 

• Maximize code re-usability. 

• Use of relational database technology to improve the 

data persistance mechanism.  

• Give the code a real Windows look and feel. 

• Based the new development on exactly the same 

solution algorithm and have all the capabilities it 

predecessor possessed. 

• Retain the solution speed and flexibility of its 

predecessor.  

 

In the next section a brief outline of some of the 

architectural issues will be given. 

 

III. ARCHITECTURAL DESIGN 

 

There were a number of preconditions that existed 

when the redevelopment started:  

• The program was to be written in C++ in an object-

oriented paradigm. 

• A relational database had to be used to store the 

network data as well as the repository of 

characteristics such as fan and pump curves, turbine 

and compressor maps, etc.   

• The target operating system chosen was Windows®. 

 

It soon became apparent that one large monolithic 

executable was not going to be very practical.  One large 

program implied longer compile-debug cycles and longer 

built times that impacted on the productivity of the 

development group.  The program was therefore divided 

up into packages. 

In object-oriented terminology a package is a 

collection of classes collaborating to implement the 

functionality that is associated with the package.  Each 

package represents a functional area in Flownet and is 

mapped to a dynamically linked library (DLL) on the 

Windows platform.  Each package has well-defined 

interfaces that enhances encapsulation and improve 

maintainability. 

A persistence mechanism was devised to map classes 

in the object-oriented design onto tables in a relational 

database.  A design pattern of mapping each class to a table 

in the database, and every data member of a class to a field 

in the table was adopted.   Each class that needs interaction 

with the database was given the responsibility of doing so 

by implementing the appropriate methods. 

Using a relational database for this kind of data is 

somewhat of an overkill.  It takes longer to save large 
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volumes of data to a relational database than it takes to 

save the corresponding data to an ASCII file.  However, 

the relational technology provides a structured way to 

organize data and to filter that data.  The availability of 

third party tools to view and edit the data gives the added 

benefit of open-endedness.  These benefits far outweigh the 

mentioned drawback.   

 

IV. NEW MODEL DEVELOPMENT 

 

Model development, implementation and verification 

and validation form a integrated process, as part of the 

quality assurance of Flownet, to ensure that the 

development and implementation of new models into 

Flownet are controlled and streamlined. 

 
IV.A Model development 

Figure 1: Model development flow chart. 

Model development consists of the process of refining 

a user requirement into a theoretical model to be 

implemented into Flownet.  

During this process theory is derived for a new model 

after which it is peer reviewed. The next step is to rewrite 

the theory into the Flownet solver format for 

implementation. A validation case is then formulated and a 

benchmark is developed. The benchmark can consist of a 

simple hand calculation, a numerical solution or 

experimental data. In parallel with this, the various 

documents required are developed. The next step is to 

implement the new model into Flownet. 

 

IV.B Model Implementation 

 

The first step of the model implementation phase is to 

investigate the impact the new model has on the existing 

architecture and to update the architectural design 

documentation, if needed. Next the detail design and 

implementation documentation is generated.  

 

Figure 2: Model implementation flow chart. 

 

To ensure code integrity, unit tests for the new model 

are already defined and implemented at this point. The next 

step is the physical implementation of the new model into 

the Flownet source code. Implemented code is submitted to 

stringent design reviews to ensure that the derived models 

have been correctly translated into computer code. At this 

point a preliminary comparison with the stipulated 

benchmark is performed. The outcome of this step could 
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result in refinements to the model or the benchmark. 

Successful preliminary testing leads to the release of 

Flownet for compliance testing (validation).  

 

IV.C Verification and Validation 

 

Verification is performed during the model 

development and implementation phases through the 

design and  peer review processes.  The final step before 

releasing Flownet to the client is to validate the newly 

implemented model against the benchmark specified in the 

model development phase.  

 

Figure 3: Model validation and verification flow chart. 

 

If the results obtained with Flownet are within the 

specified tolerances from the benchmarks, the code is 

deemed acceptable, all relevant documentation is updated 

and Flownet is released to the client. 

 

V. CODE OPTIMISATION 

 

One of the intended end uses of the newly developed 

code is as part of a simulator for training and engineering 

analysis purposes.   

It is imperative that real-time (or faster) simulations 

can be achieved for training simulators.  On currently 

available “general purpose” hardware, simulation times are 

marginally slower than real-time for a realistically sized 

problem.  For this reason an effort was made to increase 

the performance of the program. 

Increasing the performance of any computer program 

can be broadly classified into two categories, namely 

algorithm improvements and code tweaking.   

Algorithm improvements should always be tried first 

when code optimisation is considered.  The reason for this 

is that if one has an algorithm that has a complexity of 

O(n3), and there is another algorithm available that 

essentially solves the same problem but is of complexity 

O(n2), then no amount of code tweaking will provide 

comparable benefits to replacing the algorithm for large 

enough problems (i.e. large enough n).  Thus the first step 

is to make sure that all the algorithms are as efficient as 

possible. 

When it comes to code performance enhancement 

there are two schools of thought.  The first is that one 

designs with efficiency in mind from the outset.  The 

second is that one firstly designs for clarity and 

maintainability and then improves performance of the 

code.  The code that should be considered for performance 

improvements should be identified by actual measurement 

in a representative size problem. 

Donald Knuth4 observed that premature optimisation 

is the root of all evil.  Furthermore, it is generally accepted 

that programmers have a very bad intuition for where 

bottlenecks lurk within their code, thus frequently spending 

hours optimising code that very rarely gets executed. 

Heeding that warning, the approach that was preferred 

in the redesign process was to firstly design for 

maintainability and clarity.  Code speed improvements 

were only attempted on code where performance profiling 

pointed to the existence of a bottleneck(s). 

The first round of profiling pointed to the matrix 

solver as the largest consumer of CPU cycles.  The 

calculation of pressure correction terms in the solution 

algorithm requires the improved accuracy that is associated 

with matrix methods. 

Since a state of the art matrix solver for sparse 

matrices is already used, and the fact that we could not use 

an iterative approach for solving the pressure correction 

equations, it was concluded that the code needed to be 

optimised rather than changing the matrix solution 

algorithm. 

Guided by the profiling tool and zooming in on the 

detail of the matrix algorithm, it was found that 

considerable CPU time was spent on the setting up of the 

connectivity of the matrix.  This connectivity did not 

change from one pressure correction calculation to the 

next, but the same matrix code was used for solving the 

temperatures in the energy conservation equations.  So the 

storage of the connectivity was therefore encapsulated into 

a matrix class and an instance of the matrix class created 

for each set of equations that needs to be solved.  This 

allowed for the storage of the connectivity data rather than 

recalculation of it at each matrix solution. 
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This approach led to a performance gain of 9.3% in a 

typical large network.  As is the case with most 

engineering solutions a compromise had to be made.  

Using a technique of caching results, so that it can be used 

again, uses more memory in order to gain some speed 

advantage.  A second opportunity for performance 

enhancement was identified as the calculation process of 

Mach numbers at the nodes.  Again the bottleneck was 

identified by the use of a performance profiler. 

In the original code, the Mach-numbers were 

calculated at each node and after each iteration.  There are 

places in the solution algorithm where these Mach numbers 

were used, and they were also printed as part of the results.  

Here the solution was obvious.  Instead of calculating the 

Mach number upfront, the Mach number was invalidated 

after each iteration and then re-calculated as needed.  For 

the majority of the nodes this resulted in the Mach number 

being calculated only once during the printing of the 

results. 

This is a technique known as lazy-evaluation, and in 

this case led to performance improvements of 8.9% for a 

typical large network.  Again there was a compromise of a 

slightly more complex solution but with the benefit of 

performance gains. 

There were various additional situations, all identified 

by actual performance profiling that led to various 

performance gains.  Almost without exception some 

clarity, simplicity and code maintainability were lost for 

the sake of performance.  The benefit, however, is that the 

changes have been introduced where it resulted in 

undisputed benefits. 

In Table 1 the results from a typical network is shown 

before and after the performance enhancements were 

made. 

 

 Procedural 

program  

Before 

optimisation 

After 

optimisation 

With 

graphical 

output 

16.843 26.052 15.820 

Without 

graphical 

output 

16.527 19.033 14.286 

Table 1: Optimisation comparison between procedural and 

object oriented code. 

 

From the table one can see that there has been a 25% 

improvement in simulation times where the solver is 

invoked without output, and a 40% improvement where 

graph plotting is involved.  Furthermore the difference in 

performance between an equivalent procedural program is 

also given.  After optimisation there is a speed 

improvement of 6% when the output is given and 13% 

when the graphs are not plotted. 

It should be pointed out that the graphs for the new 

code is much more feature rich than the procedural code 

that gave rise to a big performance concern.  The 

optimisation of the graphing functionality was not 

discussed in the section on performance enhancements 

since it relates to user interface issues and as such is 

platform specific, but there was significant performance 

gains introduced in the graphing functionality too. 

At this point a realistic question is whether real-time 

simulation have been achieved yet? The answer: “It 

depends”.  In this case it depends on the size of the 

problem and the price of the hardware, but for a 

representative sized problem with higher end generally 

available hardware, real-time simulation can be achieved. 

There is still scope for more performance 

enhancements.  Two options that come to mind are using 

iterative matrix algorithms for the temperature solver and 

parallelization of the code.  These will be addressed in the 

future as the need arises. 

 

VI. CONFIGURATION MANAGEMENT 

 

VI.A Code configuration management (SourceSafe) 

 

The Flownet code configuration management is done 

with the assistance of Visual SourceSafe®, a Microsoft® 

product.  For developers at different locations a web based 

third party software product is used that allows these users 

to access the Flownet source code on the SourceSafe 

server.  The software used has the following capabilities: 

 

• Provides the users with easy to use graphical user 

interfaces for both the server and client applications. 

• It keeps advanced history tracing of all activities 

related to Flownet source code under configuration 

management. 

• It allows multiple user accounts with adjustable levels 

of access rights assigned by the system administrator. 

 

The Flownet release cycle is divided into major and 

minor releases.  Minor releases are usually associated with 

bug fixes while major releases, on the other hand, are 

associated with new model development.  The duration 

between major releases is usually in the order of four to six 

months.   

In order to ensure that new developments that are 

currently underway do not introduce unwanted anomalies 

into the released code the following system is used: 

Directly after a major release the source code on the 

SourceSafe server are branched into two different sets of 

identical code.  The one is labelled Production Code and 

the other one is labelled Development Code.  The 
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production code is associated with bug fixes and the 

development code is associated with the new 

functionalities that will be introduced during the 

development cycle leading up to the next major release.  

During minor releases, after an anomaly was reported and 

fixed on both the production and development code, the 

production code is taken from the server, built and released 

for testing.  If the tests are successful it is released to the 

client.  By the end of a major release life cycle the 

production code and development code are merged with 

one another, built and released for testing.  If these tests are 

successful a major release is done to the client.  The 

development code on the server is then branched and a new 

development/release cycle starts. 

 

VI.B Anomaly Reporting (AR) and Change Requesting(CR)  

 

In order to streamline these supporting system for a 

code with an international user base, a web based reporting 

system was developed.  This system has the advantage that 

users can track either AR’s or CR’s as they move through 

the system.  The figures below present the flow path for 

these processes. 

 

 

Figure 4: Anomaly reporting flow chart. 

 

 

 

Figure 5: Change requesting flow chart. 

 

VII. RESULTS 

 

Numerous thermal hydraulic simulations were 

conducted with the aid of the Flownet software package on 

a wide variety of networks including both compressible 

and incompressible flow.  These included comparisons 

with the PBMM that was designed using Flownet.   

The validation cases are presented as follows: Firstly a 

short description of the problem that was modelled is 

given.  Secondly the results are compared to results 

obtained with other codes or to experimental data.  Finally 

a short discussion of the results is given.  In all the cases 

the Flownet results are presented by the markers only and 

the results of the validation case by the solid line. 

 

 

 

 

 

 

 

 

VII.A Pipe with pressure waves 

 

This example shows a compressible pipe element with 

an inlet pressure of 300 kPa and an outlet pressure of 100 

kPa.  During a transient event a valve at node 2 (outlet) is 

closed instantaneously.  The comparison between the 

pressures and temperatures calculated with Flownet, an 
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implicit pressure correction method (IPCM) and with an 

explicit code (EX) are shown in Figure 7. 

Figure 6: Flownet graphical presentation of pipe element. 

The system specifications are as follows: 

 

Pipe 1 

Number of Increments 20 

Length [m] 100 

Diameter [mm] 100 

Node 1 

Pressure [kPa] 300 

Node 2 

Pressure [kPa] 100 

Table 2: Pipe system inputs. 

From the comparison it can be seen that the results of 

the two codes compare very well.  The explicit code 

(XNET) that was used to solve the problem is based on a 

4th order Runge Kutta solution algorithm. 

Figure 7: Pressure at the end of a 100 m long pipe due to 

the sudden closure of a valve at the downstream end of thr 

pipe.  

 

 

 

 

Figure 8: Temperature at the end of 100m long pipe due to 

the sudden closure of a valve at the downstream end of the 

pipe. 

 
VII.B Tanks blowing down 

 

This example shows a number of tanks that have been 

pressurized to specific pressures.  Starting at steady state, 

valves at tanks 1, 3 and 4 are opened instantaneously and 

the response of the system are modelled by both Flownet 

(IPCM) and by a code based on an explicit solver (EX).  

The figure below shows the graphical layout of the 

network as presented in the Flownet GUI. 

Figure 9: Flownet presentation of a blow down tank 

system. 

The system specifications are as follows: 

  

Pipe 1 

Number of Increments 20 

Length [m] 100 

Diameter [mm] 100 

Pipe 2 

Number of Increments 20 

Length [m] 100 

Diameter [mm] 100 

Pipe 3 

Number of Increments 20 

Length [m] 100 

Diameter [mm] 100 

Node 1 

Volume [m2] 10 

Pressure [kPa] 300 

Temperature [˚C] 100 

Node 2 

Volume [m2] 10 

Pressure [kPa] 150 

Temperature [˚C] 15 
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Volume [m2] 10 
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Pressure [kPa] 250 

Temperature [˚C] 50 

Node 4 

Volume [m2] 10 

Pressure [kPa] 100 

Table 3:Blow down tank  system inputs. 

The graphs below shows the pressure and temperature 

response of the system as calculated by both Flownet and 

the explicit solver. 

Figure 10: Pressure transient in a blow down tank system. 

Figure 11: Temperature transient in a blow down tank 

system. 

VII.C Temperature transient in a recuperator 

 

In this example a recuperator with a total heat transfer 

area of 300 m2 and a thermal capacitance of 9 kJ/K is 

considered.  The hydraulic diameter and cross flow area of 

both conduits are 0.5 m and 0.1963 m2 respectively. Both 

the hot and cold fluids are helium at an inlet pressure of 

700 kPa and an outlet pressure of 670 kPa. Initially the 

total inlet temperature of both streams is 300 ˚C. Starting at 

steady-state conditions, the total inlet temperature of the 

hot stream is stepped to 500 ˚C at time t = 0  s.5 

Figure 12: Recuperator exit temperature due to a 

temperature step at the inlet of the hot stream for a counter 

flow configuration. 

 

Figure 12 shows the outlet temperatures with time of 

the hot and cold streams for a counter flow arrangement. 

The results of the IPCM are compared to that of the two-

step Lax-Wendroff (LW) method. 

Figure 13: Recuperator exit temperature due to a 

temperature step at the inlet of the hot stream for a 

parallel flow configuration. 

The LW method shows a fluctuation in the hot outlet 

temperature shortly after the beginning of the transient.  

After about 0.03 s the curve becomes smooth with a very 

good agreement between the IPCM and the LW method. 

Figure 13 shows the outlet temperatures with time of 

the hot and cold streams for a parallel flow arrangement. 

Again the agreement between the IPCM and the LW 

method is very good apart from the temperature fluctuation 

of the LW method at the start of the transient5. 
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the PBMM.  The drawing below shows the graphical 

layout of the model. 

 

 

Figure 14: Pebble Bed Micro model graphical layout. 

 

During start-up the inline valve (IV) is closed and the 

start-up blower system (SBS) is used to circulate the gas 

through the cycle. The SBS is a positive displacement 

device, thus the flow-rate remains essentially constant.  

Heat is then added to the gas in the heater.  This energy is 

converted in the turbines into shaft work to power the 

compressors.  For start-up, the power to the heater is kept 

constant at about 180kW. As the system heats up, the 

outlet temperature of the heater rises as the inlet 

temperature rises and the pressure increase across the IV 

drops. The cycle spirals towards self sustained circulation 

and the SBS is disengaged when the pressure drop over the 

valve is 0 kPa.  At this condition the cycle is said to have 

bootstrapped.  

The exit temperature of the heater is probably the most 

important determinant of the bootstrap point as the energy 

that the turbines can deliver, depends on the inlet gas 

temperature. An estimation of the bootstrap temperature 

was made by calculating with Flownet the pressure 

increase over the IV as function of heater outlet 

temperature.  In Figure 14 a comparison between the 

calculated and measured variables can be seen.6  

Figure 15: Pressure difference across the inline valve as a 

function of the heater outlet temperature. 

 

VIII. CONCLUSION 

 

This paper presented the architectural design, new 

model development and validation and verification 

required during the redevelopment of Flownet, a thermal 

fluid tool that is used to solve complex thermal fluid 

systems.  Advanced optimisation techniques was used to 

improve the solution time to such an extent that real-time 

simulation of realistic networks are possible.  In order to 

successfully manage a code based in a large development 

team, a number of practical procedures needs to be used to 

ensure proper configuration management.  The newly 

developed code was validated against a number of 

benchmarks.  These comparisons proved to be extremely 

good. 
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