

MOBY®

MOBY API C-Library

Programming Instructions

Introduction

Installation

MOBY API C-Library

Header Files

Sample Application

Description of Communication to
ASM 424/724/824 with 3964R
Protocol

Programming the SLG U92
Based on Operating System
or 3964R Driver

3964R Procedure

Terms/Abbreviations,
List of Literature

Published in March 2005

1

2

3

4

5

A

D

C

B

Safety Guidelines This manual contains notices you have to observe in order to ensure your
personal safety, as well as to prevent damage to property. The notices
referring to your personal safety are highlighted in the manual by a safety
alert symbol, notices referring to property damage only have no safety alert
symbol. These notices shown below are graded according to the degree of
danger.

!

 Danger

indicates that death or severe personal injury will result if proper
precautions are not taken.

!

 Warning

indicates that death or severe personal injury may result if proper
precautions are not taken.

!

 Caution

with a safety alert symbol, indicates that minor personal injury can
result if proper precautions are not taken.

 Caution

without a safety alert symbol, indicates that property damage can
result if proper precautions are not taken.

 Notice

indicates that an unintended result or situation can occur if the
corresponding information is not taken into account.

 If more than one degree of danger is present, the warning notice
representing the highest degree of danger will be used. A notice warning of
injury to persons with a safety alert symbol may also include a warning
relating to property damage.

Qualified
personnel

 The device/system may only be set up and used in conjunction with this
documentation. Commissioning and operation of a device/system may only
be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are
authorized to commission, ground and label devices, systems and circuits in
accordance with established safety practices and standards.

Trademarks All names identified by ® are registered trademarks of the Siemens AG. The
remaining trademarks in this publication may be trademarks whose use by
third parties for their own purposes could violate the rights of the owner.

Copyright © Siemens AG 2001, 2002, 2003, 2005 All rights reserved
Passing on this document to third parties, reproduction, utilization and
revelation of its contents is not permitted without express permission.
Violators shall be liable for damages. All rights are reserved, in particular
rights created by a patent grant or registration of a utility model or
design.

Siemens AG
Automation and Drives
Special Products, Auromotive Industry Projects, Training
P.O. Box 4848, D-90327 Nuremberg

 Disclaimer of liability
Although we have checked the contents of this manual for agreement
with the actual hardware and software, full agreement cannot be
guaranteed. The information in this manual is checked at regular
intervals and necessary corrections included in the next edition. Your
comments and suggestions are welcome.

Subject to change without prior notice

Siemens-Aktiengesellschaft Order no. (4)J31069-D0137-U001-A5-7618

03/05 Table of Contents

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 1

Table of Contents

1 Introduction ... 6

1.1 Product Overview ... 6
1.2 Serial Link to PC... 6
1.2.1 MOBY Systems for Serial Connection ... 6
1.2.2 C-library - MOBY API for Serial Link to PC.. 7
1.2.3 System Prerequisites for Serial Link to PC .. 9
1.3 Link to Ethernet .. 10
1.3.1 MOBY Systems Which Can Be Connected to Ethernet..................... 10
1.3.2 MOBY API C-Library for Link to Ethernet... 10
1.3.3 System Prerequisites for Link to Ethernet.. 12

2 Installation ... 13

2.1 Files Supplied... 13
2.2 Installation of the C-Library - MOBY API for Serial Link to PC 13
2.2.1 Adjusting the Registry .. 24
2.2.2 Configuration of the 3964R Driver.. 27
2.2.3 Priority Assignment for the 3964R Driver... 29
2.3 Installation of the MOBY API C-Library for Link to Ethernet 30
2.3.1 Parameterizing ASM 480 ... 40

3 MOBY API C-Library.. 43

3.1 General Information on Use of MOBY API C-Library......................... 45
3.1.1 Synchronization.. 45
3.1.2 Matching Response Telegrams ... 45
3.1.3 Unexpected Telegrams .. 45
3.1.4 Connection Monitoring ... 46
3.1.5 Errors.. 46
3.1.6 Opening, Using and Closing Interfaces.. 46
3.1.7 Use of Several Communication Channels ... 47
3.1.8 ERRx.TXT Log File(s) .. 48
3.2 Interface Functions... 49
3.2.1 Function - moby_open for the Serial Interface................................... 49
3.2.2 Function - moby_open for the Ethernet Interface 50
3.2.3 Function - moby_close ... 50
3.3 System Functions... 51
3.3.1 Function - moby_start... 51
3.3.2 Function - moby_stop... 54
3.3.3 Function - moby_next... 54
3.3.4 Function - moby_end.. 55

Table of Contents 03/05

 MOBY API C-Library
2 (4)J31069-D0137-U001-A5-7618

3.3.5 Function - moby_s_end.. 57
3.3.6 Function - moby_setANT.. 59
3.3.7 Function - moby_repeat 1 ... 60
3.3.8 Function - moby_status .. 61
3.3.9 Function - moby_statusU ... 62
3.3.10 Function - moby_anw... 63
3.3.11 Function - moby_diagnose... 64
3.3.12 Function - moby_unexpect... 65
3.4 MDS Functions... 66
3.4.1 Function - moby_read .. 68
3.4.2 Function - moby_getID... 69
3.4.3 Function - moby_write .. 70
3.4.4 Function - moby_init ... 71
3.4.5 Function - moby_statusMDS.. 72
3.4.6 Function - moby_readOTP... 73
3.4.7 Function - moby_writeOTP... 74
3.4.8 Function - moby_s_read... 75
3.4.9 Function - moby_s_getID ... 77
3.4.10 Function - moby_s_write .. 79
3.4.11 Function - moby_s_init ... 81
3.4.12 Function - moby_s_copy .. 83
3.4.13 Function - moby_s_statusMDS .. 85
3.4.14 Function - moby_s_readOTP ... 87
3.4.15 Function - moby_s_writeOTP... 89
3.5 DI/DO Functions... 91
3.5.1 Function - moby_readDE ... 91
3.5.2 Function - moby_writeDA... 92
3.6 Function - moby_version.. 93
3.7 Function Errors... 94
3.7.1 Interface Error as Return Value ... 94
3.7.2 MOBY Status.. 98

4 Header Files ... 102

4.1 Header File – MOBY_API.H... 102
4.2 Header File – 3964R.H... 110
4.3 Header File – MOBY_API_T.H .. 113

5 Sample Application ... 118

5.1 Sample Application in Source Code for Serial Link to PC 118
5.2 Sample Application in Source Code for Link to Ethernet 121

03/05 Table of Contents

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 3

A Description of Communication to the ASM 424/724/824 with
3964R Protocol .. 124

A.1 General... 124
A.2 Protocol Settings .. 124
A.3 LEDs on the 3964R Interface Side of the ASM................................ 125
A.4 General Communication Procedure... 125
A.5 Overview of Commands... 125
A.6 Telegram Layout of the Commands/Acknowledgments to/from

the ASM.. 127
A.6.1 Startup Telegram.. 127
A.6.2 RESET.. 128
A.6.3 WRITE.. 130
A.6.4 READ.. 131
A.6.5 INIT... 131
A.6.6 STATUS ... 132
A.6.7 NEXT.. 133
A.7 MOBY F – Special Features in Read-Only Mode (Only

ASM 824/SLA 81 with MDS F1xx) ... 134
A.8 Mobile Data Memories ... 135
A.9 Status and Error Codes (ASM 424, ASM 724 and ASM 824).......... 137

B Programming the SLG U92 Based on the Operating System
or 3964R Driver .. 139

B.1 General Information on Communication of the SLG U92 139
B.2 MOBY I Call-Compatible (Version 1) ... 141
B.2.1 Telegrams to the SLG U92... 141
B.2.1.1 MDS Functions... 142
B.2.1.1.1 INIT Function.. 142
B.2.1.1.2 WRITE Function ... 143
B.2.1.1.3 READ Function... 144
B.2.1.2 System Functions... 145
B.2.1.2.1 RESET Function... 145
B.2.1.2.2 SLG Status Function (SLG Status/Diagnosis) 146
B.2.1.2.3 L-UEB Function .. 146
B.2.2 Acknowledgments/Messages from the SLG U92 147
B.2.2.1 Acknowledgments to MDS Functions .. 147
B.2.2.1.1 INIT Acknowledgment .. 147
B.2.2.1.2 WRITE Acknowledgment ... 148
B.2.2.1.3 READ Acknowledgment ... 148
B.2.2.2 Acknowledgments to System Functions .. 149
B.2.2.2.1 RESET Acknowledgment ... 149
B.2.2.2.2 SLG-STATUS Acknowledgment (SLG Status) 149
B.2.2.2.3 SLG-STATUS Acknowledgment (SLG Diagnosis I)......................... 151
B.2.2.2.4 SLG-STATUS Acknowledgment (SLG Diagnosis II)........................ 152
B.2.2.2.5 SLG-STATUS Acknowledgment (SLG Diagnosis III)....................... 153

Table of Contents 03/05

 MOBY API C-Library
4 (4)J31069-D0137-U001-A5-7618

B.2.2.2.6 L-UEB Acknowledgment .. 153
B.2.2.3 Messages ... 154
B.2.2.3.1 Startup Message .. 154
B.2.2.3.2 ANW-MELD Message .. 154
B.3 MOBY I Call-Compatible (Version 2) ... 155
B.3.1 Telegrams to the SLG U92... 155
B.3.1.1 MDS Functions... 156
B.3.1.1.1 INIT Function.. 156
B.3.1.1.2 WRITE Function ... 156
B.3.1.1.3 READ Function... 156
B.3.1.1.4 MDS-STATUS Function ... 156
B.3.1.2 System Functions... 157
B.3.1.2.1 RESET Function... 157
B.3.1.2.2 SLG-STATUS Function (SLG Status/Diagnosis) 159
B.3.1.2.3 SET-ANT Function ... 160
B.3.1.2.4 END Function ... 160
B.3.1.2.5 REPEAT Function .. 161
B.3.1.2.6 L-UEB Function .. 162
B.3.2 Acknowledgments/Messages from the SLG U92 163
B.3.2.1 Acknowledgments to MDS Functions .. 164
B.3.2.1.1 INIT Acknowledgment .. 164
B.3.2.1.2 WRITE Acknowledgment ... 164
B.3.2.1.3 READ Acknowledgment ... 164
B.3.2.1.4 MDS-STATUS Acknowledgment ... 164
B.3.2.2 Acknowledgments to System Functions .. 165
B.3.2.2.1 RESET Acknowledgment ... 165
B.3.2.2.2 SLG-STATUS Acknowledgment (SLG Status) 165
B.3.2.2.3 SLG-STATUS Acknowledgment (SLG Diagnosis I)......................... 168
B.3.2.2.4 SLG-STATUS Acknowledgment (SLG Diagnosis II)........................ 169
B.3.2.2.5 SLG-STATUS Acknowledgment (SLG Diagnosis III)....................... 169
B.3.2.2.6 SET-ANT Acknowledgment.. 169
B.3.2.2.7 END Acknowledgment ... 169
B.3.2.2.8 REPEAT Acknowledgment... 169
B.3.2.2.9 L-UEB Acknowledgment .. 169
B.3.2.3 Messages ... 170
B.3.2.3.1 Startup Message .. 170
B.3.2.3.2 ANW-MELD Message .. 170
B.4 MOBY U with Multitag Processing (Version 3)................................. 171
B.4.1 Telegrams to the SLG U92 .. 171
B.4.1.1 MDS Functions... 172
B.4.1.1.1 INIT Function.. 173
B.4.1.1.2 WRITE Function ... 174
B.4.1.1.3 READ Function... 175
B.4.1.1.4 GET Function ... 176
B.4.1.1.5 COPY Function .. 177
B.4.1.1.6 MDS-STATUS Function ... 178
B.4.1.2 System Functions... 179
B.4.1.2.1 RESET Function... 179
B.4.1.2.2 SLG-STATUS Function (SLG Status/Diagnosis) 180
B.4.1.2.3 SET-ANT Function ... 181
B.4.1.2.4 END Function ... 181
B.4.1.2.5 REPEAT Function .. 182
B.4.1.2.6 L-UEB Function .. 183

03/05 Table of Contents

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 5

B.4.2 Acknowledgments/Messages from the SLG U92 184
B.4.2.1 Acknowledgments to MDS Functions .. 185
B.4.2.1.1 INIT Acknowledgment .. 185
B.4.2.1.2 WRITE Acknowledgment ... 186
B.4.2.1.3 READ Acknowledgment ... 187
B.4.2.1.4 GET Acknowledgment.. 188
B.4.2.1.5 COPY Acknowledgment... 190
B.4.2.1.6 MDS-STATUS Acknowledgment ... 190
B.4.2.2 Acknowledgments to System Functions .. 190
B.4.2.2.1 RESET Acknowledgment ... 190
B.4.2.2.2 SLG-STATUS Acknowledgment (SLG Status) 190
B.4.2.2.3 SLG-STATUS Acknowledgment (SLG Diagnosis I)......................... 191
B.4.2.2.4 SLG-STATUS Acknowledgment (SLG Diagnosis II)........................ 191
B.4.2.2.5 SLG-STATUS Acknowledgment (SLG Diagnosis III)....................... 191
B.4.2.2.6 SET-ANT Acknowledgment ... 191
B.4.2.2.7 END Acknowledgment ... 191
B.4.2.2.8 REPEAT Acknowledgment... 191
B.4.2.2.9 L-UEB Acknowledgment .. 192
B.4.2.3 Messages ... 192
B.4.2.3.1 Startup Message .. 192
B.4.2.3.2 ANW-MELD Message .. 192
B.5 Command Chaining.. 193
B.6 Status Byte ... 196

C 3964R Procedure ... 198

D Terms/Abbreviations, List of Literature..................................... 199

D.1 Terms/Abbreviations .. 199
D.2 List of Literature.. 199

Introduction 03/05

 MOBY API C-Library
6 (4)J31069-D0137-U001-A5-7618

1 Introduction

1.1 Product Overview
The MOBY family of products includes a number of identification systems which
are used throughout the world to control and optimize material flow in production,
manufacturing, distribution and logistics.

The identification systems are made up of three components.

• Mobile data memories (MDS)

• Read/write devices (SLG), read/write antennas (SLA) or serial interface
modules (SIM)

• Interface modules (ASM)

These components are available in various models.

A uniform MOBY API C-library is available for user-specific MOBY applications for
communication with the MOBY systems which are linked serially to PC with
Windows 98/NT 4.0/2000/XP or to Ethernet with PC with Windows 98/NT
4.0/2000/XP. It offers a simple and quick system link.

1.2 Serial Link to PC
The serial link of the MOBY systems to the PC with Windows 98/NT 4.0/2000/XP is
provided by ASM, SIM or SLG as shown in table 1-1.

The MOBY components are usually equipped with physical interfaces – RS 232 for
short cables and RS 422 for long cables. The protocol is always 3964R. See
appendix C.

1.2.1 MOBY Systems for Serial Connection

Table 1-1 Components which can be run with MOBY API with serial link to PC

MOBY Product Family Interface Documentation

MOBY E ASM 420 with SLG 7x
ASM 424 with SLG 7x
(one to four SLG 7x on one ASM 424)
ASM 724 with SLA 71
(one to four SLA 71 on one ASM 724)

/01/
/05/

/04/

MOBY F ASM 824 with SLA 81
(one to four SLA 81 on one ASM 824)

/03/

MOBY I
(without filehandler)

ASM 420 with SLG 4x
ASM 424 with SLG 4x
(one to four SLG 4x on one ASM 424)
SIM 41

/01/
/05/

/02/

MOBY U
(without filehandler)

SLG U92 /06/

03/05 Introduction

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 7

1.2.2 C-library - MOBY API for Serial Link to PC

The MOBY API C-library for user-specific MOBY applications runs under Windows
98/NT 4.0/2000/XP. It implements and runs MOBY applications from the following
components.

• C-library MOBY_API.LIB

• MOBY header file MOBY_API.H

• Dynamic link library MOBY_API.DLL

• 3964R driver 3964R.DLL

• Configuration program for 3964R CPL3964R.CPL

• 3964R header file 3964R.H

• Sample application

− Executable EXAMPLE.EXE

− Source code EXAMPLE.CPP

The read/write devices (SLG), read/write antennas (SLA) and the serial interface
modules (SIM) are controlled via the serial interface by transmitting structured
telegrams with the 3964R protocol. The 3964R protocol is a DLL (Dynamic Link
Library).
The telegrams are generated or received by library functions. The library functions
are based on the 3964R driver and provide the interface between MOBY
applications and MOBY systems.

Introduction 03/05

 MOBY API C-Library
8 (4)J31069-D0137-U001-A5-7618

MOBY application 4

...

...

MOBY application 1
with C-library MOBY_API.LIB

Dynamic link library MOBY_API.DLL

3964R driver
Dynamic link library 3964R.DLL

Operating system
Windows 98, NT 4.0, 2000 or XP

ASM 420

ASM 424

ASM 724

ASM 824

One
SLG 4x

or SLG 7x

One to four
SLG 4x or

SLG 7x

One to four
SLA 71

One to four
SLA 81

SIM 41

SLG U92

Figure 1-1 Structure of MOBY API for serial link to PC

The functions are available as DLL in the dynamic link library (MOBY_API.DLL)
and the function calls in the C-library (MOBY_API.LIB).

• Maximum of one application per ASM, SIM, or SLG U92

• One link library for up to four applications

The driver functions must be configured as a CPL file under the system controller
of Windows.

• Configuration program CPL3964R.CPL

A header file with function declarations must be linked to each of the MOBY
applications.

• Header file MOBY_API.H

03/05 Introduction

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 9

The MOBY_API.H header file must be linked to the source code of the application
with preprocessor command "#include." This declares all function calls and
constants. The header file was developed with and for Visual C++. If you want to
use another programming language or a C++ dialect from another company, the
header file may have to be adjusted.
The MOBY_API.H header file requires the include file (3964R.H) from the 3964R
driver.

Sample application

In addition to the C-library, an executable sample application (EXAMPLE.EXE) is
supplied which makes it easy to get started with the implementation of a user
application. It is also available in source code (EXAMPLE.CPP). It can be used as
the basis of your own user application which can be fully linked in and executed.

1.2.3 System Prerequisites for Serial Link to PC

The following prerequisites must be met before the C-library can be used under
WindowsTM.

• Personal computer (PC) AT-compatible PC or PG

• Operating system WindowsTM 98/NT 4.0/2000/XP

• Free serial interface(s) RS 232/RS 422

• Programming regulations The MOBY_API.LIB interface library is
 written in "C" and is compatible with
 Microsoft Visual C++ compiler versions
 ≥ 6.0.
 Other programming languages
 (e.g., Visual Basic) with a wrapper.

Introduction 03/05

 MOBY API C-Library
10 (4)J31069-D0137-U001-A5-7618

1.3 Link to Ethernet
MOBY systems are linked to Ethernet with PC with Windows 98/NT 4.0/2000/XP
via the ASM 480 interface module as shown in Table 1-2. The MOBY system is
connected serially to the ASM 480. The protocol between the ASM 480 and the
MOBY system is always 3964R. The ASM 480 is used as the protocol converter
between the TCP/IP protocol and the 3964R protocol.

1.3.1 MOBY Systems Which Can Be Connected to Ethernet

Table 1-2 Components which can be used with MOBY API with coupling to Ethernet

MOBY Product Family Interface Related Documentation

MOBY U
(without filehandler)

ASM 480 with SLG U92 /06/

1.3.2 MOBY API C-Library for Link to Ethernet

The MOBY API C-library product for user-specific MOBY applications can be
executed under Windows 98/NT 4.0/2000/XP. It is used for the implementation and
execution of MOBY applications with the following components.

• C-library MOBY_API_T.LIB

• MOBY header file MOBY_API_T.H

• Dynamic link library MOBY_API_T.DLL

• Sample applications

− Executable MOBY API.EXE
(stored under EXAMPLE.ZIP, subdirectory "MOBY_API_T")

− Source code of the executable sample application MOBY API.EXE
(stored under EXAMPLE.ZIP, subdirectory "MOBY_API_T")

− Source code for a simple sample application
(stored under EXAMPLE.ZIP, subdirectory "TEST")

Control of the read/write devices (SLGs) is handled on Ethernet via transmission of
structured telegrams which are transferred to the serial interface of the SLG with
the 3964R protocol.
The telegrams are generated or received via library functions. The library functions
are based on the TCP/IP driver (dynamic link library) and provide the interface
between the MOBY applications and the MOBY systems.

03/05 Introduction

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 11

MOBY application 30

...

...

MOBY application 1
with MOBY_API_T.LIB C-library

MOBY_API_T.DLL dynamic link library

Operating system
Windows 98, NT 4.0, 2000 or XP

ASM 480

SLG U92

TCP/IP protocol

3964R protocol

FIgure 1-2 MOBY API structure with link to Ethernet

The functions are available as DLL (Dynamic Link Library) in the
MOBY_API_T.DLL dynamic link library and the function calls in the
MOBY_API_T.LIB C-library.

• Maximum of one application per SLG U92

• One link library for a maximum of 30 applications

A header file with function declarations must be integrated in each MOBY
application.

• Header file MOBY_API_T.H

The header file MOBY_API_T.H must be integrated in the source code of the
application with the preprocessor command "#include." This declares all function
calls and constants. The header file was developed with and for Visual C++. If you
want to use a different programming language or a C++ dialect of another
company, you may have to adjust the header file.

Introduction 03/05

 MOBY API C-Library
12 (4)J31069-D0137-U001-A5-7618

Sample applications

In addition to the C-library, two sample applications are included for an easy
introduction to implementation of a user application.

• Executable application MOBY API.EXE for control of up to four SLG U92
devices with ASM 480 which is also available in source code

• Simple sample application TEST.CPP in source code (VC++6.0) as the basis
for creating your own user application for an SLG U92 with ASM 480. It gives
you an overview of the primary MOBY API functions.

For more information, see also chapter 5.2.

Both sample applications are included in the EXAMPLE.ZIP file.

1.3.3 System Prerequisites for Link to Ethernet

Use of the C-library under Windows™ requires the following prerequisites.

• Personal Computer (PC) AT compatible PC or PG

• Operating system WindowsTM 98/NT 4.0/2000/XP

• LAN connection to PC

• Programming rules The interface library MOBY_API_T.LIB is
 written in "C" and is compatible with
 Microsoft Visual C++ compiler version ≥ 6.0.
 Other programming languages
 (e.g., Visual Basic) via a wrapper

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 13

2 Installation

2.1 Files Supplied
• mobyapi.msi Windows Installer Package with C-library for MOBY

 applications for serial linking to PC.
 Use the Windows installation package (mobyapi.msi) to
 install/deinstall the C-library for MOBY applications.

• mobyapi_t.msi Windows Installer Package with C-library for MOBY
 applications for linking to Ethernet.
 You can use the Windows installation package (mobyapi_t.msi)
 to install or de-install the C-library for MOBY applications.

• InstMsiW.exe Windows Installer for Windows NT

• InstMsiA.exe Windows Installer for Windows 98

 Notice

If the Windows installation package mobyapi.msi or mobyapi_t.msi with
Windows NT or Windows 98 is not indicated as type "Windows Installer Package,"
the Windows Installer must be activated.

The installation of the C-library MOBY API is executed in its own installation sector
depending on the link (interface version).

• Installation for serial link to PC: mobyapi.msi

• Installation for link to Ethernet: mobyapi_t.msi

2.2 Installation of the C-Library - MOBY API for Serial Link
to PC

After starting the Windows installation package (mobyapi.msi), you will be guided
through installation.

1. Start the mobyapi.msi package.
 The first time the C-library is installed, the "Welcome to the MOBY API ...“

screen appears (see figure 2-1). Otherwise the "Select whether you want to
repair or remove MOBY API ...“ screen is opened (see figure 2-6).

 Notice

The MOBY API C-library should never be partially or completely installed/de-
installed manually. This may cause problems during installation/deinstallation with
mobyapi.msi.

Installation 03/05

 MOBY API C-Library
14 (4)J31069-D0137-U001-A5-7618

New installation

2. Activate the installation of the C-library

Figure 2-1 Activating installation of the C-library (serial link to PC)

Click "Next" to activate installation. The screen "Select Installation Folder“ appears
(see figure 2-2).
"Cancel" terminates installation (with previous confirmation).

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 15

3. Select directory for the C-library MOBY API.

Figure 2-2 Selecting directory for installation (serial link to PC)

The screen "Select Installation Folder“ appears with the standard setting
"C:\Programme\mobyware." Press "Next" to accept this setting. Use the "Folder"
field to change the directory or the "Browse" field to select an existing one (see
figure 2-3).

"Next" accepts the setting, and the screen "Confirm Installation“ appears (see
figure 2-4).

Installation 03/05

 MOBY API C-Library
16 (4)J31069-D0137-U001-A5-7618

4. Select an existing directory.

Figure 2-3 Selecting existing directory (serial link to PC)

You can select an existing directory in the "Browse for Folder" screen. An existing
directory can be accepted or changed in the "Folder" field.

• OK returns you to the "Select Installation Folder" screen with the acceptance of
the directory.

• Cancel also returns you. Your selection is cancelled.

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 17

5. Execute installation of MOBY API software.

Figure 2-4 Executing installation (serial link to PC)

Press "Next" to store the MOBY API software for the creation of applications under
the following subdirectories within the selected directory.

\example example.cpp Sample application in source code
 example.exe Sample application as executable program
\include 3964R.H Include file of 3964R driver for
 MOBY_API.H header file
 MOBY_API.H Header file for user applications
\lib MOBY_API.LIB C-library for user applications

The DLL of the 3964R driver and the DLL MOBY_API and the CPL3964R.CPL
configuration program are copied to the following directory (based on the Windows
system).

• Windows NT 4.0: C:\WINNT\SYSTEM32

• Windows 98: C:\WIN98\SYSTEM

• Windows 2000: C:\WIN2000\SYSTEM32

• Windows XP C:\WINNT\SYSTEM32

The 3964R driver must be configured before the sample application can be used or
a user application can be tested (see chapter 2.2.2). The driver DLL contains
information on existing interfaces and their configuration using the Windows
registry. The entries in the registry for use of the 3964R driver are generated
automatically during installation.

Installation 03/05

 MOBY API C-Library
18 (4)J31069-D0137-U001-A5-7618

6. Installation of the existing MOBY API C-library is complete.

Figure 2-5 Installation completed (serial link to PC)

Use "Close" to conclude the dialog.

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 19

Overwriting an existing C-library

7. Overwrite or deinstall an existing MOBY API C-library.

Figure 2-6 Overwriting existing C-library (serial link to PC)

To overwrite the existing MOBY API C-library, select "Repair MOBY API with driver
3964R," and then start the procedure with Finish (see figure 2-7).

 Notice

Be sure to add the new header files (3964R.H and MOBY_API.H) and the C-library
(MOBY_API.LIB) to the development package.

Installation 03/05

 MOBY API C-Library
20 (4)J31069-D0137-U001-A5-7618

8. Existing MOBY API C-library is overwritten.

Figure 2-7 Screen shown during installation (serial link to PC)

The existing MOBY API C-library is overwritten.

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 21

9. Overwriting of the existing MOBY API C-library is complete.

Figure 2-8 Overwriting completed (serial link to PC)

Use Close to conclude the dialog.

Installation 03/05

 MOBY API C-Library
22 (4)J31069-D0137-U001-A5-7618

Deinstallation

To deinstall the existing MOBY API C-library, select "Remove MOBY API with
driver 3964R" (see figure 2-6), and then start the procedure with Finish (see
figure 2-9).

10. Deinstall existing MOBY API C-library.

Figure 2-9 Screen during deinstallation (serial link to PC)

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 23

11. Deinstallation of existing MOBY API C-library is complete.

Figure 2-10 Deinstallation is completed (serial link to PC)

Use Close to conclude the dialog.

Installation 03/05

 MOBY API C-Library
24 (4)J31069-D0137-U001-A5-7618

2.2.1 Adjusting the Registry

Oddity of Windows 2000, Windows NT and Windows XP: If the driver was installed
by the administrator/generator-owner and a user wants the rights to the 3964R
driver, the following steps must be performed by the administrator/generator-
owner.

1. Start the REGEDT32.EXE program.

2. Set the path "Siemens-741" in the HKEY_LOCAL_MACHINE screen (see
figure 2-11).

Figure 2-11 The HKEY_LOCAL_MACHINE screen

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 25

3. Select "Sicherheit" in the menu bar (see figure 2-11). The
"Registrierungsschlüsselberechtigungen" screen appears. In this screen,
activate the option "Berechtigungen...“ and select the user for whom the rights
are to be added (see figure 2-12).

Figure 2-12 "Registrierungsschlüsselberechtigungen" screen

Installation 03/05

 MOBY API C-Library
26 (4)J31069-D0137-U001-A5-7618

4. Click the "Hinzufügen...“ button. In the screen which appears, change
"Zugriffsart" to "Vollzugriff" (see figure 2-13). Then close all screens with OK.

Figure 2-13 "Benutzer und Gruppen hinzufügen" screen

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 27

2.2.2 Configuration of the 3964R Driver

The 3964R driver is configured with the CPL3964R.CPL configuration program
(see figure 2-14). It must be called under the system control of Windows.

The following parameters must be set as standard values with the configuration
program.

• Data bits 8

• Stop bits 1

• Parity Odd

• Send buffer 255

• Receive buffer 255

• Discard conflict telegrams √ (if 3964R driver is slave)

Figure 2-14 Dialog for configuration of the 3964R protocol

Interface COM 1 to COM 4.

Master or slave depending on
ASM, SLG or SIM (see table 2-1)

Maximum number of repetitions
due to a NAK (negative
acknowledge or parity error)

Maximum number of repetitions of
an STX (telegram start) when
communication partner doesn't
answer

2400 to 115200 Baud depending on
ASM, SLG or SIM (see table 2-1)

Maximum length is 255 bytes
(see table 2-1)

Reset parameters to the original
data specified in the 3964R standard

Reset parameters to the values
which were valid when the
configuration program was called

Installation 03/05

 MOBY API C-Library
28 (4)J31069-D0137-U001-A5-7618

 Notice

With MOBY U the standard parameterization of “Acknowledgement timeout” is
150 msec and “Character timeout” is 50 msec.

 Notice

If the checkbox "Apply configuration immediately" is checked, all data changes are
applied immediately in the configuration even when the port needs to be closed
and opened (e.g., when the baud rate changes). Otherwise, only the data which do
not affect interface parameters are accepted (e.g., timeout values).

Table 2-1 SLG, ASM or SIM-dependent driver parameters

SLG/ASM/SIM ASM or SIM
Dependent Driver

Parameter ASM 824 ASM 724 ASM 424 ASM 420 SIM 41 SLG U92

Protocol 3964R
slave

3964R
slave

3964R
slave

3964R
master
or slave

3964R
master
or slave

3964R slave

Baud rate 9600, 19200 or 38400 baud 2400, 4800,
9600, 19200
or
38400 baud

2400, 4800
or 9600 baud

19200,
38400,
57600 or
115200 baud

Send buffer 200 bytes 242 bytes 242 bytes 255 bytes 255 bytes 255 bytes

Receive buffer

The size of the send buffer and the receive buffer is determined by the telegram
header and the command-specific data.

Telegram header length:

• 4 bytes with ASM 824, ASM 724 and ASM 424 (see appendix A.5)

• 3 bytes with SLG U92, ASM 420 and SIM 41

 Notice

The MOBY user data may not exceed 248 bytes for the data transmission. This
means that the maximum length of the data to be read from the MDS or to be
written to the MDS is 248 bytes (see chapter 3.4).

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 29

2.2.3 Priority Assignment for the 3964R Driver

The Windows operating system may not exceed the times "Acknowledgment
timeout" and "Character timeout" during communication between the PC and the
SLG, ASM or SIM. Otherwise communication is terminated and started again.
Depending on the CPU load and data memory accesses this may affect
communication. This means that the above times are exceeded. To bypass or
minimize this problem the thread priority for communication is set to 2 when the
MOBY API C interface is installed.

Thread priority 2 means: Maximum priority only during communication
 This setting is made for every COM interface used by
 the 3964R driver before the COM interface is opened.

If you reset the thread priority to its original value or you want to change it, make
the setting in the registry with the following key.

\\ HKEY_LOCAL_MACHINE\Software\Siemens-741\3964r\COMx\ThreadPriority

Installation 03/05

 MOBY API C-Library
30 (4)J31069-D0137-U001-A5-7618

2.3 Installation of the MOBY API C-Library for Link to
Ethernet

After the Windows installation package (mobyapi_t.msi) starts, you are guided
through installation.

1. Starting the mobyapi_t.msi package
 The first time the C-library is installed, the screen for activating the C-library

installation (figure 2-15) appears. Otherwise the screen for overwriting and de-
installing an existing MOBY API C-library (figure 2-20) appears.

 Notice

The MOBY API C-library should never be manually installed or de-installed either
partially or completely. This might cause problems during the installation or de-
installation with mobyapi_t.msi.

New installation

2. Activating installation of the C-library

Figure 2-15 Activation of the installation of the C-library (link to Ethernet)

"Next" activates the installation. The screen for selecting the directory for the
MOBY API C-library (figure 2-16) appears.
"Cancel" terminates the installation (with previous confirmation).

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 31

3. Selecting the directory for the MOBY API C-library

Figure 2-16 Selection of the directory for the installation (link to Ethernet)

The screen "Select Installation Folder" appears with the standard setting
"C:\Program Files\MOBY API." This setting can be accepted with "Next." The
setting can be changed in the "Folder" box or an existing directory can be selected
with the Browse box (see figure 2-17).

The setting is accepted with "Next" and the screen "Confirm Installation"
(figure 2-18) appears.

Installation 03/05

 MOBY API C-Library
32 (4)J31069-D0137-U001-A5-7618

4. Selecting an existing directory

Figure 2-17 Selection of an existing directory (link to Ethernet)

An existing directory can be selected in the screen "Browse for Folder," and
accepted and changed in the "Folder" box.

• Press the OK button to return to the "Select Installation Folder" screen with
acceptance of the directory.

• Press the Cancel button to return and cancel your selection.

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 33

5. Executing the installation of the MOBY API software

Figure 2-18 Execution of installation (link to Ethernet)

With "Next" the MOBY API software is stored for the preparation of applications
under the following subdirectories within the chosen directory.

\example EXAMPLE.ZIP Sample applications

\include MOBY_API_T.H Header file for user applications

\lib MOBY_API_T.LIB C-library for user applications

The DLL of the dynamic link library MOBY_API_T is copied to the following
directory, depending on which Windows system you are using.

Windows NT 4.0: C:\WINNT\SYSTEM32

Windows 98: C:\WIN98\SYSTEM

Windows 2000: C:\WIN2000\SYSTEM32

Windows XP: C:\WINNT\SYSTEM32

Installation 03/05

 MOBY API C-Library
34 (4)J31069-D0137-U001-A5-7618

6. Procedure for installing an existing MOBY API C-library is concluded.

Figure 2-19 Installation complete (link to Ethernet)

"Close" concludes the dialog.

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 35

Overwriting an existing C-library

7. Overwriting or de-installing an existing MOBY API C-library

Figure 2-20 Overwriting an existing C-library (link to Ethernet)

If the existing MOBY API C-library is to be overwritten, select "Repair MOBY API
with driver TCP/IP" and then start the procedure with "Finish" (see figure 2-21).

 Notice

Remember to accept the new header file MOBY_API_T.H and the
MOBY_API_T.LIB C-library in the development project.

Installation 03/05

 MOBY API C-Library
36 (4)J31069-D0137-U001-A5-7618

8. Overwriting an existing MOBY API C-library

Figure 2-21 Screen during the "overwrite" installation procedure (link to Ethernet)

The existing MOBY API C-library is overwritten.

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 37

9. Overwriting an existing MOBY API C-library is complete (link to Ethernet).

Figure 2-22 Overwrite procedure is complete.

"Close" concludes the dialog.

Installation 03/05

 MOBY API C-Library
38 (4)J31069-D0137-U001-A5-7618

De-installation

When the existing MOBY API C-library is to be de-installed, select "Remove MOBY
API with driver TCP/IP" (see figure 2-20) and then start the procedure with "Finish"
(see figure 2-23).

10. De-installation of an existing MOBY API C-library

Figure 2-23 Screen during de-installation (link to Ethernet)

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 39

11. De-installation of an existing MOBY API C-library is complete.

Figure 2-24 De-installation is complete (link to Ethernet).

"Close" concludes the dialog.

Installation 03/05

 MOBY API C-Library
40 (4)J31069-D0137-U001-A5-7618

2.3.1 Parameterizing ASM 480

The SLG is connected to Ethernet with the ASM 480 interface module.
Communication between the application on the PC (client) and the SLG (server via
the ASM 480) will only function with unique address assignment.

• The physical address (MAC-ID - Media Access Control Identity) is specified by
the manufacturer for each ASM 480.

• In addition, each ASM 480 requires a logical address (IP address - Internet
Protocol) with which it is addressed on the network.

The IP address may only be present once in the network. It must be parameterized
on the ASM 480. In the user application on the PC, the IP address is specified in
the moby_open function as a character string during the establishment of the
connection.

The IP address always consists of 32 bits and is presented in decimal format
(value range from 0 to 255). It is thus a character string with four number values in
ASCII format, each separated by a period.

The subnet mask is required to determine the network. The subnet mask is similar
to the IP address. It consists of four numbers separated by a period (value range
from 0 to 255).

Example: IP address "157.163.170.12;" subnet mask "255.255.0.0"

IP address
157.163.170.12

IP address
157.163.170.13

Ethernet / TCP/IP protocol

Socket

Port

Transmission Control Protocol
(TCP)

Internet Protocol (IP)

Application
PC (client)

Socket

Port

Internet Protocol (IP)

Application
ASM 480 (server)

Transmission Control Protocol
(TCP)

Figure 2-25 TCP/IP connection

03/05 Installation

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 41

When communication is network-overlapping between different network addresses,
the IP address of the standard gateway must also be parameterized on the
ASM 480. Without this information, IP functionality remains limited to the local
subnetwork.

TCP/IP configuration: Setting the IP address, subnetwork mask and IP address of
the standard gateway on the ASM 480

The TCP/IP configuration is set directly on the ASM 480 with the aid of the
following.

• The four arrow keys Up, down, right, left

• The two menu keys ESC, OK

• The LC display

The ASM 480 must be supplied with 24 V for the configuration.

1. Setting the IP address

a) Press OK key. Indication: "Menu; Trace"

b) Press "down" arrow key once. Indication: "Menu; Parameter"

c) Press OK key. Indication: "Parameter; 3964R.1"

d) Press "down" arrow key twice. Indication: "Parameter; IP_SETUP"

e) Press OK key. Indication: "IP Addr Byte0:; xxx"

f) Press OK key. Use the "up/down" arrow keys to enter the
number and the "right/left" keys to enter the
decimal position of the particular part of the
address.
Confirm your entry with the OK key.

2. Setting the subnet mask

After the IP address is set, the 4 bytes of the subnet mask (Net Mask:) are entered
as described under f) for setting of the IP address.

3. Setting the standard gateway address

After the subnet mask is set, the 4-byte gateway address (Gateway:) is entered as
described under f) for setting the IP address.

After all entries have been made, return to the main menu with the ESC key. Press
the ESC key again to exit input mode.
The changes are stored when you press the OK key in answer to the query "Save
Parameter and Restart?".

Installation 03/05

 MOBY API C-Library
42 (4)J31069-D0137-U001-A5-7618

Setting the serial interface on the ASM 480

SLG U92 models can be run on the ASM 480 with the RS 232 or RS 422 interface.
Depending on the SLG U92 model, the serial interface type must be parameterized
on the ASM 480.

• Menu "Parameter/3964R.1": Parameter "RTS-Control": RS232 RTS off
 or
 RS422 RTS off

The standard setting of the ASM 480 is the interface type RS 232 (RS232 RTS
OFF)

 Notice

The following parameters may not be changed on the ASM 480.

• Menu "Parameter/TCP": Parameter "CR0 Socket Type" "Server"

• Menu "Parameter/3964R.1": Parameter "Baudrate" 38400
 (or 19200)

• Menu "Parameter/3964R.1": Parameter "DataBits" 8

• Menu "Parameter/3964R.1": Parameter "Stopbits" 1

• Menu "Parameter/3964R.1": Parameter "Parity" Odd

Other parameters for the 3964R (menu "Parameter/3964R.1":) include:

• Priority 3964R, high

• Idle time (msec) 0

• Receive mode Byte telegram

• Send mode Word telegram, MSB/LSB

• Error SCC Set/clear

• Send repetition 5

• Receipt delay 150

• Character delay 50

 Notice

The parameter "CR0 Port Number" is parameterized with the default value 8000
and must be specified for the moby_open function under "Parameter sPort" (see
chapter 3.2.2).

• Menu "Parameter/TCP": Parameter "CR0 Port Number" 8000

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 43

3 MOBY API C-Library

A variety of functions which can handle the entire communication are available in
the C-libraries for use with the SLG or SLA on the ASM and SIM.

• MOBY_API.LIB (for serial link to PC)

• MOBY_API_T.LIB (for link to Ethernet)

C-library functions are divided into the following four function groups.

• Interface functions

• System functions

• MDS functions

• DI/DO functions

In addition, the moby_version function is available to determine the version of the
dynamic link library (MOBY_API.DLL or MOBY_API_T.DLL).

The following table lists the functions and their use with SLG/ASM/SIM.

Table 3-1 Use of the library functions with SLG/ASM/SIM

ASM 424
with ...

ASM 420
with ...

Function ASM 724
with
SLA
71

ASM 824
with
SLA
81 SLG

7x
SLG
4x

SLG
7x

SLG
4x

SIM
41

SLG
U92

ASM 480
with
SLG
U92

Interface functions

moby_open x x x x x x x x x

moby_close x x x x x x x x x

System functions

moby_start x x x x x x x x x

moby_stop x x x x x x x x x

moby_next x – x x x x x – –

moby_end – – – – – – – x –

moby_s_end – – – – – – – x x

moby_setANT – – – – – – – x x

moby_repeat – – – – – – – x 1 x 1

moby_anw – – – – – – – x x

moby_status x x x x x x x – –

moby_statusU – – – – – – – x x

moby_diagnose – – – – – – – x x

moby_unexpect x x x x x x x x x

1 In preparation

MOBY API C-Library 03/05

 MOBY API C-Library
44 (4)J31069-D0137-U001-A5-7618

Table 3-1 Use of the library functions with SLG/ASM/SIM

ASM 424
with ...

ASM 420
with ...

Function ASM 724
with
SLA
71

ASM 824
with
SLA
81 SLG

7x
SLG
4x

SLG
7x

SLG
4x

SIM
41

SLG
U92

ASM 480
with
SLG
U92

MDS functions

moby_read x x x x x x x x –

moby_getID x x x – x – – x –

moby_write x x x x x x x x –

moby_init x x x x x x x x –

moby_statusMDS – – – – – – – x –

moby_readOTP – – – – – – – x –

moby_writeOTP – – – – – – – x –

moby_s_read – – – – – – – x x

moby_s_getID – – – – – – – x x

moby_s_write – – – – – – – x x

moby_s_init – – – – – – – x x

moby_s_copy – – – – – – – x x

moby_s_statusMDS – – – – – – – x x

moby_s_readOTP – – – – – – – x x

moby_s_writeOTP – – – – – – – x x

DI/DO functions

moby_readDE – – – – x x x – –

moby_writeDA – – – – x x x – –

Version scan

moby_version x x x x x x x x x

The system, MDS and DI/DO functions generate telegrams to the SLG, ASM or
SIM and always expect a response telegram from the SLG, ASM or SIM. However,
they do not wait directly for the response telegram. The functions are continued
after the telegram was sent successfully without errors or terminated with errors.
The application must then wait for the response telegram using an initialized
Windows event which must be included when the function is called. As soon as the
response telegram is received, the event is set. This signals the application that the
function is finished.
This procedure ensures that all functions which affect SLG, SIM or ASM do not
block each other.

 Notice

• With ASM 424, ASM 420 with SLG 4x and SIM 41: MDS functions with ECC
offset are possible.

• The Windows event must be generated with CreateEvent.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 45

3.1 General Information on Use of MOBY API C-Library

3.1.1 Synchronization

Every routine, which generates a response telegram from the SLG, ASM or SIM
(MOBY device) to the host after the command is concluded, must be synchronized.
To do this, each of these routines has a type "HANDLE" parameter. This parameter
must point to an initialized Windows event which was created with CreateEvent.
When one of these routines is called, the calling thread is blocked until the
appropriate action is started (i.e., until a telegram is completely sent to the SLG,
ASM or SIM). The calling routine then returns without waiting for a response
telegram.
As soon as the response telegram is received by the SLG, ASM or SIM, the
appropriate event is set to signal the calling thread that the function has now been
completely concluded. Any error information in the response telegram is written to
a memory word which was specified when the routine was called.

3.1.2 Matching Response Telegrams

Arriving telegrams must be matched with previous command telegrams. This is
done by command numbers in the sequence of FIFO (first in, first out).

3.1.3 Unexpected Telegrams

Unexpected telegrams may sometimes be received by the SLG, ASM or SIM. A
few examples of unexpected telegrams:

• Startup message “02 00 0F” hex

• Telegrams after MOBY DLL was reset which come back from SLG, ASM or SIM
but whose entry was deleted from the match buffer

The calling process handles these telegrams. A callback routine can be specified
which is to be called when an unexpected (i.e., unmatched) telegram arrives.
Unexpected telegrams can also be ignored (see chapter 3.3.12).

MOBY API C-Library 03/05

 MOBY API C-Library
46 (4)J31069-D0137-U001-A5-7618

3.1.4 Connection Monitoring

With an Ethernet link, the connection between the MOBY DLL and the individual
SLG is monitored at the telegram level. When more than 3 seconds pass after the
last telegram from the SLG, the MOBY DLL automatically sends a monitoring
telegram to the SLG and expects the SLG's reply within 10 seconds. When a
telegram is still not received from the SLG within these 10 seconds, the connection
to the SLG is considered interrupted. The MOBY DLL closes the connection. A
queued telegram is terminated with an error. When no telegrams are queued, the
error does not occur until the next telegram. Before communication can be
resumed, the application must start the connection again with moby_open and
moby_start.

3.1.5 Errors

Telegrams from the SLG, ASM or SIM may sometimes have errors or not be
completely received. "Moby_stop" is then called implicitly (i.e., use of the interface
is blocked and all waiting jobs are terminated with an error message). Before the
interface can be used again, "moby_start" must be executed (i.e., a RESET of the
SLG, ASM or SIM).

 Notice

All potentially affected interfaces are blocked when an error cannot be definitely
related to an open interface (e.g., hardware error on an ASM 824/724/424
channel).

 Notice

If Windows exceeds the monitoring time during the sending procedure, an
unexpected telegram may occur depending on where the telegram was interrupted.
The callback routine will report this telegram if you have called the moby_unexpect
function. Ignore the telegram.

3.1.6 Opening, Using and Closing Interfaces

Before an SLG, ASM or SIM (MOBY device) can be addressed with MOBY API,
the appropriate interface must be opened and initialized. This is done with the
"moby_open" and "moby_start" commands. The interface can then be accessed
with read and write commands. Before the end of the program, the programmer
must deactivate the interface with "moby_stop" and then close it with
"moby_close." This procedure is illustrated graphically in figure 3-1.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 47

moby_close

moby_read/write/...

moby_start

moby_stop

Start

moby_open

Interface
ready and initialized

Interface
opened

End

Serious
error

Error
N

Y

Figure 3-1 Function sequence when MOBY API is used

Figure 3-1 also shows what happens when a serious communication error or an
error of line monitoring occurs. The "moby_stop" command is automatically given
which returns the interface to a defined but inactive state.

 Notice

When an application is terminated externally (e.g., with CRTL-ALT-DEL) and the
application is used by the MOBY API C-library and has at least one channel open,
it may sometimes happen under Windows 95/98 that system resources are not
enabled correctly. This may cause problems when MOBY API programs are
executed later. If this happens, start the system again.

3.1.7 Use of Several Communication Channels

The MOBY API C-library permits the use of several communication channels on
one physical interface. This can be done by repeated use of the "moby_open"
command. Make sure that all communication channels of a physical interface are
to be opened by the same process (i.e., by the same application).

MOBY API C-Library 03/05

 MOBY API C-Library
48 (4)J31069-D0137-U001-A5-7618

3.1.8 ERRx.TXT Log File(s)

When the application with TCP/IP is used, the system generates an ERRx.TXT log
file with a maximum length of 7 kbytes for each connection (i.e., communication
channel). x stands for the channel number.
The log file(s) is/are stored under the path from which the application was called.
The log file contains internal system diagnostic data.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 49

3.2 Interface Functions
The interface functions moby_open and moby_close open and close the
communication channel for communication via:

• the serial interface or

• the Ethernet interface

At this time, the Ethernet interface can only be used for MOBY U with the SLG U92
as MOBY type "MOBY_Uc" (see chapter 3.3.1) with MOBY U commands for
single-tag or multitag operation.

3.2.1 Function - moby_open for the Serial Interface

mobyErr_t moby_open (char *comStr, int channel, mobyHandle_t *handle);

This function opens the specified MOBY device with the help of the driver. If the
command is concluded successfully, the "handle" parameter is used to return a
handle to the opened MOBY device. This handle must be included with all
subsequent calls which access this device. Do not forget that an opened MOBY
device must be parameterized and initialized beforehand with "moby_start."

Parameter Type Description

comStr char * Character string with the name of the serial
interface
COM1, COM2, COM3 or COM4

channel int Channel number under which the SLG, SIM, or
SLA is addressed.
1 to 4 for SLA or SLG 4x on ASM 424 or 0 if
SLG U92, SLG xx on ASM 420 or SIM 4x.

handle mobyHandle_t * Pointer to the handle of the serial interface and
the channel number (response value after
successful function). The returned handle is
used for all other functions as the input
parameter to identify the serial interface and the
channel number.

Return value:

≥ 0 No error, command executed.
< 0 Windows is unable to open the serial interface (see chapter 3.7.1).

 Notice

The channel number is automatically added for each function which is related to
this interface.

MOBY API C-Library 03/05

 MOBY API C-Library
50 (4)J31069-D0137-U001-A5-7618

3.2.2 Function - moby_open for the Ethernet Interface

mobyErr_t moby_open (char *comStr, int channel, mobyHandle_t *handle,
 unsigned short sPort);

This function opens the specified MOBY device with the aid of the driver. The
"handle" parameter is used to return a handle to the opened MOBY device when a
command is successfully concluded. This handle must be transferred with all
subsequent calls which access this device. An open MOBY device must be
parameterized before with "moby_start" and initialized, however.

Parameter Type Description

comStr char * IP address of the ASM 480 as character string
(see chapter 2.3.1)
Example: “157.163.170.12”

channel int Channel number under which the SLG is
addressed
0 for SLG U92

handle mobyHandle_t * Pointer to the handle of the Ethernet interface
(return value after erroneous function
execution). The returned handle is used for all
other functions as the input parameter for
identification of the Ethernet interface.

sPort unsigned short Port number under which the ASM 480 is
addressed (see chapter 2.3.1).

Return value:

≥ 0 No error, command executed.
< 0 Windows is unable to open the Ethernet interface (see chapter 3.7.1).

3.2.3 Function - moby_close

mobyErr_t moby_close (mobyHandle_t handle);

This function closes the specified MOBY device with the help of the driver. The
MOBY device can then no longer be accessed. This routine is required for
communication with the MOBY device with "moby_start" (see chapter 3.3.1).
However, it is not used until after the user calls "moby-stop" (see chapter 3.3.2).
Otherwise, an error is returned.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

Return value:

≥ 0 No error, command executed.
< 0 Windows is unable to close the serial interface or the Ethernet interface
 (see chapter 3.7.1).

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 51

3.3 System Functions
The system functions are used to control communication with an SLG or SLA on an
ASM or a SIM. They provide the function framework for the MDS functions (see
chapter 3.4) but do not affect the MDS directly.

Table 3-2 Assignment of the system functions to the interfaces

Function Serial Interface Ethernet Interface

moby_start X X

moby_stop X X

moby_next X –

moby_end X –

moby_s_end X X

moby_setANT X X

moby_repeat X X

moby_status X –

moby_statusU X X

moby_anw X X

moby_diagnose X X

moby_unexpect X X

3.3.1 Function - moby_start

mobyErr_t moby_start (mobyHandle_t handle, mobyTypeee_t type,
 BOOL eccON, mobyParameters_t *param,
 HANDLE sync, mobyErr_t *err);

This function parameterizes and initializes an already opened MOBY device.
Among others, a RESET telegram (with or without parameter transfer) is also sent
to the SLG, ASM or SIM. Not until this telegram is concluded (successfully or not)
is the interface ready for other telegrams.
When this function is to be called again after successful execution, the moby_stop
function must be executed first.
The parameters for the RESET telegrams are transferred with a union-data
structure (see chapter 4.1 for MOBY_API.H header file or chapter 4.3 for
MOBY_API_T.H header file). Evaluation of the union-data structure is based on a
constant with which the MOBY type (system) is specified.

MOBY API C-Library 03/05

 MOBY API C-Library
52 (4)J31069-D0137-U001-A5-7618

Table 3-3 Constants for the MOBY type

Interface Constant
(See Type
Parameter)

MOBY Type
Serial Ethernet

Commentary

"MOBY_E" SLG 7x on ASM 420
or
SLA 7x on ASM 724

X –

"MOBY_F" SLA 8x on ASM 824 X –

"MOBY_I" or
"MOBY_Ia"

SIM 41,
SLG 4x on ASM 420
or
SLG 4x on ASM 424

X – When the option with parameter is
used, the RESET telegram is always
used to set the interval parameters.

"MOBY_Ib" SIM 41,
SLG 4x on ASM 420
or
SLG 4x on ASM 424

X – When "MOBY_lb" is specified, the
second parameter version - use of
extra parameters (e.g., LED Settings) -
is used.

"MOBY_Ua" SLG U92 X – Short RESET telegram
(MOBY I call-compatible, no
multitagging)

"MOBY_Ub" SLG U92 X – Long RESET telegram
(MOBY I call-compatible, no
multitagging)

“MOBY Uc” SLG U92 X –

 SLG U92 on
ASM 480

– X

Long RESET telegram
(MOBY U commands for single-
tagging or multitagging operation)
• Value in param = 1 (single-tagging)
• Value in param > 1 (multitagging)

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 53

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

type mobyTypeee_t Character string with the name of the MOBY
system
 "MOBY_E"
 "MOBY_F"
 "MOBY_I"
 "MOBY_Ia"
 "MOBY_Ib"
 “MOBY_Ua”
 “MOBY_Ub”
 “MOBY_Uc”

eccON BOOL Boolean value for MDS functions with or without
ECC offset
 FALSE = No ECC offset
 TRUE = ECC offset

param mobyParameters_t * Pointer for parameter transfer
NULL = No parameter transfer (standard
 RESET) or
pointer to the buffer in which the parameters to
be transferred are located (RESET parameters)

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

For RESET parameters, see the documentation of your MOBY.

• SLG U92 See appendices B.2.1.2.1, B.3.1.2.1 and B.4.1.2.1.

• SLG U92 on ASM 480 See appendix B.4.1.2.1.

• SLG on ASM 420 See /01/

• SIM 41 See /02/

• SLA 8x on ASM 824 See appendix A.6.2

• SLA 7x on ASM 724 See appendix A.6.2

• SLG 4x on ASM 424 See appendix A.6.2

With MOBY E and I, the moby_start function corresponds to the RESET telegram
with or without parameter transfer.

MOBY API C-Library 03/05

 MOBY API C-Library
54 (4)J31069-D0137-U001-A5-7618

3.3.2 Function - moby_stop

mobyErr_t moby_stop (mobyHandle_t handle);

This function resets communication with an SLG or SLA on an ASM or SIM and the
MOBY DLL. After its execution, no further commands can be sent to the device
until another "moby_start." Still queued commands are terminated and the waiting
threads are informed accordingly.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

This routine does not send telegrams to the SLG, ASM or the SIM.

3.3.3 Function - moby_next

mobyErr_t moby_next (mobyHandle_t handle, HANDLE sync,
 mobyErr_t *err);

If the last processed MDS is still in the field, you can already activate processing of
the next MDS after this function.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 55

3.3.4 Function - moby_end

mobyErr_t moby_end (mobyHandle_t handle, unsigned char mode,
 HANDLE sync, mobyErr_t *err);

This function is used to deactivate the standby time (parameterized in RESET
telegram) of the MDS which was last processed and is still in the field of the SLG.
This is done to reduce the current consumption of the MDS.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

mode unsigned char 00 hex = Processing of the MDS is finished
and the parameterized standby time
is to be deactivated. No more
communication with this MDS is to
take place. The MDS will exit the
field of the SLG.
The SLG removes the MDS from
the processing list but retains the
MDS in the presence list until the
MDS leaves the field of the SLG.

01 hex = There is a pause in MDS processing
and the parameterized standby time
is to be deactivated. The MDS has
not yet departed the field of the
SLG. Communication with the MDS
will take place at least one more
time.
The SLG keeps the MDS in both the
processing list and the presence list.

sync HANDLE Handle for synchronization with the response
telegram. Initialized Window event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
is to be stored with possible error code and
interface error. See chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
56 (4)J31069-D0137-U001-A5-7618

 Notice

The END command may only be sent to the SLG after the command moby_write,
moby_read, moby_init or moby_status and no command may be queued on the
SLG. The antenna must be on. If not an error message occurs.
If the MDS has already left the field of the SLG and the mode is 01, an error
message is generated. If, however, another MDS has entered the field of the SLG
and the mode is 01, an error message is also generated.

 Notice

The command can only be used with MOBY U (type MOBY_Ua or MOBY_Ub –
see table 3-3). This is MOBY U without multitagging.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 57

3.3.5 Function - moby_s_end

mobyErr_t moby_s_end (mobyHandle_t handle, uInt *idData,
 unsigned char mode, HANDLE sync,
 mobyErr_t *err);

This function is used to "specifically" or "non-specifically" ignore the standby time
(parameterized in the RESET telegram) of an MDS that is in the antenna field of
the SLG U92.

• A "specific" read call means that the call is sent with the ID number of the MDS.
More than one MDS may be located in the antenna field. You can determine the
ID number of the MDS with the GET function.

• A "non-specific" read call means that the call is sent without the ID number of
the MDS. Only one MDS may be located in the antenna field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value of 20 to 232 - 1 ID number of MDS
0 Only one MDS is

located in the field and
a "non-specific" read
call is to be used.

mode unsigned char 00 hex = Processing of the MDS is finished
and the parameterized standby time
should be ignored. No more
communication is to take place with
this MDS. The MDS will exit the field
of the SLG. The SLG removes the
MDS from the processing list but
keeps the MDS in the presence list
until the MDS has actually exited
the field of the SLG.

01 hex = There is an MDS processing pause
and the parameterized standby time
is to be ignored. The MDS hasn't left
the field of the SLG yet. At least one
further communication with the MDS
is to take place. The SLG continues
to keep the MDS in the processing
list and in the presence list.

sync HANDLE Handle for synchronization with the response
telegram. Initialized Window event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
is to be stored with possible error code and
interface error. See chapter 3.7.2).

MOBY API C-Library 03/05

 MOBY API C-Library
58 (4)J31069-D0137-U001-A5-7618

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The moby_s_end command may only be sent to the SLG after the command
moby_s_write, moby_s_read, moby_s_init or moby_s_statusMDS and no
command may be queued yet on the SLG. The antenna must be on. If not, an error
message is generated.
If the MDS that is "specifically" called with the specified ID number is not in zone 1,
the command is terminated with an error. If the MDS has already left the field of the
SLG and mode = 0 was selected, an error message is generated. If, however,
another MDS has entered the field of the SLG and mode = 01 was selected, an
error message is also generated. If more than one MDS is located in zone 1 and a
"non-specific" call occurs, the command is terminated with an error.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 59

3.3.6 Function - moby_setANT

mobyErr_t moby_setANT (mobyHandle_t handle, unsigned char
mode, mobyErr_t *err);

This function is used to turn the antenna of the read/write device (SLG) on or off.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

mode unsigned char 01 hex = Turn on antenna
02 hex = Turn off antenna

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte
and any error code and interface errors are to
be stored. See chapter 3.7.2.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The moby_setANT command may only be sent to the SLG when no command is
still queued on the SLG.
An MDS may already be present in the field of the SLG at the time the antenna is
turned on.
When an MDS is located in the field of the SLG when the antenna is turned off, it is
reported as "not present" if the presence check is being used.

MOBY API C-Library 03/05

 MOBY API C-Library
60 (4)J31069-D0137-U001-A5-7618

3.3.7 Function - moby_repeat 1

mobyErr_t moby_repeat (mobyHandle_t handle, unsigned char mode,
 HANDLE sync, mobyErr_t *err);

This function is used to repeat the command which was executed last.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

mode unsigned char 00 hex = Repeat last command until
moby_repeat is finished with
mode = 01.

01 hex = Conclude repetition. A started
command will be executed until the
end.

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte
and any error code and interface errors are to
be stored. See chapter 3.7.2.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The command with mode = 0 may only be sent when a command is queued for
execution (e.g., moby_read).

1 In preparation.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 61

3.3.8 Function - moby_status

mobyErr_t moby_status (mobyHandle_t handle, mobyStatus_t *status,
 HANDLE sync, mobyErr_t *err);

This function is used to query the status of an SLG or SLA on an ASM or SIM.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

status mobyStatus_t * Pointer to the structure in which the read status
information is to be stored

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

Only one waiting status-telegram is permitted. Status queries which are sent when
a status query is still waiting to be answered are rejected with an error message.
Status information varies depending on the particular MOBY. The data do not
become valid until the synchronization handle signals receipt of the response
telegram. For content and meaning, see documentation /01/ to /05/ of your MOBY
or also appendix A.6.6 for ASM 424/724/824.

MOBY API C-Library 03/05

 MOBY API C-Library
62 (4)J31069-D0137-U001-A5-7618

3.3.9 Function - moby_statusU

mobyErr_t moby_statusU (mobyHandle_t handle,
 mobyStatusU_t *status,
 HANDLE sync, mobyErr_t *err);

This function is used to poll the status of an SLG U92.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

status mobyStatusU_t * Pointer to the structure in which the status and
diagnostic information of the response telegram
is to be stored.

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte
of the response telegram and any error code
and interface errors are to be stored. See
chapter 3.7.2.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

Only one queued status telegram is permitted at a time. All status queries which
are issued at a time when a status query is still unanswered will be rejected as an
error.
The status information is specific to MOBY. The data are not valid until the
synchronization handle signals the receipt of the response telegram. For content
and meaning, see appendix B.2.2.2.2.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 63

3.3.10 Function - moby_anw

mobyErr_t moby_anw (mobyHandle_t handle, moby_AnwCallback_t
cbroutine);

This function is used to report the presence of the MDS in the field of the SLG. The
presence message is sent asynchronously by the SLG and is called as a callback
routine.

When "operation with presence check" was set in the RESET telegram, the SLG
sends a telegram with the number of MDSs in the field after each change in
presence in the SLG's field. If one MDS leaves the field and another MDS enters
the field at the same time, two telegrams are sent. If several MDSs enter the field
simultaneously, each MDS creates a presence message. The same applies when
MDSs leave the field. The transfer value and the number of MDSs in the field are
defined with "typedef void (CALLBACK *moby_AnwCallback_t)(unsigned char
anwstatus);" in the header file MOBY_API.H or MOBY_API_T.H. See also
chapter 4.1 or chapter 4.3.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

cbroutine Moby_AnwCallback_t Callback routine for the presence message
from the SLG. MDS has arrived or MDS has
departed.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

If the moby_anw function does not exist in the user program and "operation with
presence check" is set in the RESET telegram, each presence message is handled
as an unexpected telegram. See chapter 3.3.12 (moby_unexpect function).

MOBY API C-Library 03/05

 MOBY API C-Library
64 (4)J31069-D0137-U001-A5-7618

3.3.11 Function - moby_diagnose

mobyErr_t moby_diagnose (mobyHandle_t handle, unsigned char
mode, mobyDiagnose_t *diagnose, HANDLE
sync, mobyErr_t *err);

This function is used to read the diagnostic data from the SLG.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

mode unsigned char 02 hex = Request last n function calls
03 hex = Request last n error messages
04 hex = Request last n identified MDSs

diagnose mobyDiagnose_t * Pointer to the structure in which the read
diagnostic information is to be stored

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte
and any error code and interface errors are to
be stored. See chapter 3.7.2.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

Only one unanswered diagnostic telegram is permitted at a time. Any diagnostic
query which is sent when an unanswered diagnostic query still exists is rejected
with an appropriate error.
The moby_diagnose command may be sent to the SLG at any time. It is executed
immediately. When an MDS command such as moby_write, moby_read or
moby_init is queued on the SLG, it is retained.
The diagnostic information is MOBY U-specific. The data do not become valid until
the synchronization handle signals the receipt of the response telegram. For
content and meaning, see appendices B.2.2.2.3 to B.2.2.2.5.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 65

3.3.12 Function - moby_unexpect

mobyErr_t moby_unexpect (mobyHandle_t handle,
 moby_UnexpCallback_t cbroutine);

This function is used to specify how unexpected messages are to be handled. If
the parameter "cbroutine" is NULL, all unexpected messages are ignored after this
routine is called. If not NULL, this parameter must be the address of a valid
callback routine. This routine is jumped to when unexpected messages arrive so
that the user program can react to this event. When the callback routine is
triggered, the first 3 bytes of the unexpected telegram and the actual telegram
length are transferred. These transfer values are defined in the MOBY_API.H or
MOBY_API_T.H header file as "typdef void (CALLBACK
*moby_UnexpCALLback_t) (unsigned char ch1, unsigned char ch2, unsigned char
ch3, int laenge);" (see chapter 4.1 or chapter 4.3).

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

cbroutine moby_UnexpCallback_t Callback routine for unexpected telegrams from
SLG, ASM or SIM

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

Unexpected telegrams which can clearly be interpreted as error messages (e.g.,
occurrence of an invalid telegram) are evaluated as errors and handled as
described in chapter 3.1.4.

MOBY API C-Library 03/05

 MOBY API C-Library
66 (4)J31069-D0137-U001-A5-7618

3.4 MDS Functions
MOBY API offers MDS functions in two versions.

• "Non-specific" MDS functions

• "Specific" MDS functions

The "non-specific" MDS functions are listed below.

− moby_read

− moby_getID

− moby_write

− moby_init

− moby_statusMDS

− moby_readOTP

− moby_writeOTP

These functions can be used to read data from any MDS or write data to any MDS.
Since you cannot call a specific MDS, only one MDS may be located in the field of
the antenna at the time the function is called and executed. Multitagging is not
possible.

These functions are executed based on the eccON parameter (with or without ECC
offset) specified in the moby_start function. See chapter 3.3.1).

See documentation /01/ to /06/ or also appendix A.8 for ASM 424/724/824 for
which address areas on the MDS can be read and written by the individual MOBY
systems.

See table 3-1 and chapters 3.4.1 to 3.4.6 for which functions can be used with
which parameterizations with the MOBY systems.

 Notice

The “non-specific” MDS functions can only be used via the serial interface (not via
the Ethernet interface).

The "specific" MDS functions are listed below.

− moby_s_read

− moby_s_getID

− moby_s_write

− moby_s_init

− moby_s_copy

− moby_s_statusMDS

− moby_s_readOTP

− moby_s_writeOTP

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 67

These functions can be used to read data from a certain MDS or write data to a
certain MDS. They can select a certain MDS by its MDS identification number
(serial number). If you don't specify an MDS number for these functions (except for
moby_s_getID and moby_s_copy), they behave as "non-specific" function calls.

The moby_s_getID function determines the identification number/numbers of the
MDS/MDSs located in the antenna field. You can process several MDSs in the
antenna field. Multitagging is possible. In addition, the moby_s_copy function lets
you copy data from one MDS (source) to another MDS (destination) without having
to use the application.

The "specific" MDS functions (i.e., multitag mode is possible) can only be used with
MOBY U. With the moby_start function the parameter "type" must be set to
MOBY_Uc (MOBY U with commands with single-tag and multitag capability). See
table 3-1 and chapters 3.4.7 to 3.4.15 for which functions can be used with which
parameterization with MOBY U.

Table 3-4 Assignment of the MDS functions to the interfaces

Function Serial Interface Ethernet Interface

moby_read X –

moby_getID X –

moby_write X –

moby_init X –

moby_statusMDS X –

moby_readOTP X –

moby_writeOTP X –

moby_s_read X X

moby_s_getID X X

moby_s_write X X

moby_s_init X X

moby_s_copy X X

moby_s_statusMDS X X

moby_s_readOTP X X

moby_s_writeOTP X X

MOBY API C-Library 03/05

 MOBY API C-Library
68 (4)J31069-D0137-U001-A5-7618

3.4.1 Function - moby_read

mobyErr_t moby_read (mobyHandle_t handle, uInt mdsAddress,
 unsigned char *data, uInt length, HANDLE sync,
 mobyErr_t *err);

The moby_read function is used to read data from the MDS located in the antenna
field of the SLG, SLA or SIM. It is an "unspecific" read call since the MDS cannot
be identified by an ID number.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

mdsAddress uInt Start address of the data to be read from the
MDS
≥ 0 0 to maximum length of the user data
 minus 1. The address plus the data
 length must be less than the end
 address on the MDS.

data unsigned char * Pointer to the buffer in which the read data are
to be stored

length uInt Number of bytes to be read
> 0 1 to maximum of 248 bytes

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The read data are stored in the buffer specified by the "data" and "length"
parameters. These data do not become valid until the synchronization handle
signals that the response telegram has arrived with the read data.
With ASM 724/ASM 424, only a maximum of 234 bytes can be read with one
telegram. With ASM 824, up to 192 bytes can be read with one telegram.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 69

3.4.2 Function - moby_getID

mobyErr_t moby_getID (mobyHandle_t handle, unsigned char *idData,
 uInt idLength, HANDLE sync, mobyErr_t *err);

The moby_getID function is used to read the identification number (serial number)
of the MDS. This is only possible with the MDSs of MOBY E, MOBY F and
MOBY U.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

idData unsigned char * Pointer to the buffer in which the read ID
number is to be stored

idLength uInt Length of the ID number of the MDS in bytes:
> 0 Length of the ID number:
• MOBY E: ID length = 4 bytes
• MOBY F, MDS F1xx: ID length = 5 bytes
• MOBY F, MDS F4xx: ID length = 4 bytes
• MOBY U: ID length = 4 bytes

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The start address of the ID on the MDS is handled internally.

• MOBY E: Start address = 1FF0 Hex

• MOBY F, MDS F1xx: Start address = 0000 Hex

• MOBY F, MDS F4xx: Start address = 0000 Hex

The read data are stored in the buffer specified by the parameters "idData" and
"idLength." These data do not become valid until the synchronization handle
signals that the response telegram has arrived with the read data.

MOBY API C-Library 03/05

 MOBY API C-Library
70 (4)J31069-D0137-U001-A5-7618

3.4.3 Function - moby_write

mobyErr_t moby_write (mobyHandle_t handle, uInt mdsAddress,
 unsigned char *data, uInt length, HANDLE sync,
 mobyErr_t *err);

The moby_write function is used to write the data to the MDS located in the
antenna field of the SLG, SLA or SIM. It is an unspecific write access.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

mdsAddress uInt Start address on the MDS for the data to be
written.
≥ 0 0 up to maximum length of the user
 data minus 1. Address plus data length
 must be less than the end address on
 the MDS.

data unsigned char * Pointer to the buffer in which the data to be
written are stored

length uInt Number of bytes to be written
> 0 1 to maximum of 248 bytes

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

With ASM 724/ASM 424, only a maximum of 234 bytes can be written with one
telegram. With ASM 824, a maximum of 192 bytes can be written with one
telegram.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 71

3.4.4 Function - moby_init

mobyErr_t moby_init (mobyHandle_t handle , unsigned char setVal,
 uInt mdsLength, HANDLE sync, mobyErr_t *err);

The moby_init function is used to initialize (write the entire MDS with one byte) the
MDS located in the antenna field of the SLG, SLA or SIM. It is an unspecific
initialization call.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

setVal unsigned char 1 byte in hex format with which the entire MDS
is to be written
00 hex to FF hex

mdsLength uInt Number of bytes to be deleted on the MDS. For
the number of bytes to be deleted (length of the
user data), see the technical description.

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

When the number of bytes to be deleted is less than the length of the user data of
the MDS, the memory of the MDS is written with the specified byte from address 0
to address (length - 1). The rest of the memory is not changed.

MOBY API C-Library 03/05

 MOBY API C-Library
72 (4)J31069-D0137-U001-A5-7618

3.4.5 Function - moby_statusMDS

mobyErr_t moby_statusMDS (mobyHandle_t handle, mobyStatusMDS_t
*statusMDS, unsigned char mode, unsigned
char cweek, unsigned char year, HANDLE
sync, mobyErr_t *err);

This function is used to request status and diagnostic data of an MDS.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

statusMDS mobyStatusMDS_t * Pointer to the structure in which the status and
diagnostic information of the response telegram
are to be stored

mode unsigned char 00 hex = Request status and diagnostic
 data of an MDS

cweek unsigned char 01 to 35 hex = Current calendar week
 (1 to 53) for determination of
 remaining battery life

FF hex = No determination of remaining
 battery life

year unsigned char 01 to 63 hex = The last two positions of the
 current year (starting with 01)
 for determination of remaining
 battery life

FF hex = No determination of remaining
 battery life

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte
and any error code and interface errors are to
be stored. See chapter 3.7.2.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 73

 Notice

The function sequence is dependent on the fields cweek and year.
a) If the value in the two fields is within the value range, the remaining battery
 life is output in the response telegram.
b) If the two fields contain FF hex, the remaining battery life cannot be
 calculated. It is specified as FFFF hex days. The status data of the MDS
 are output anyway.
After the call, the buffer contains the status and diagnostic data of the MDS. For
the format, see the MOBY U documentation /06/.

3.4.6 Function - moby_readOTP

mobyErr_t moby_readOTP (mobyHandle_t handle, unsigned char *data,
HANDLE sync, mobyErr_t *err);

This function can be used to read the OTP (One Time Programmable) memory
with a block of 16 bytes (= 128 bits).

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

data unsigned char * Pointer to the buffer in which the data read from
the OTP memory are to be stored
The buffer must have a length of at least
16 bytes.

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte of
the response telegram and any error code and
interface errors are to be stored. See
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The OTP memory has a length of 16 bytes (= 128 bits) and can only be read once
as a whole. This means that the moby_read OTP function always reads 16 bytes.
The buffer for the read data must have a minimum length of 16 bytes. Otherwise
the memory area is overwritten.

MOBY API C-Library 03/05

 MOBY API C-Library
74 (4)J31069-D0137-U001-A5-7618

3.4.7 Function - moby_writeOTP

mobyErr_t moby_writeOTP (mobyHandle_t handle, unsigned char *data,
HANDLE sync, mobyErr_t *err);

This function is used to write the OTP (One Time Programmable) memory once
with a block of 16 bytes (= 128 bits).

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

data unsigned char * Pointer to the buffer in which the data to be
written to the OTP memory are stored. The
buffer must have a length of at least 16 bytes.

sync HANDLE Handle to synchronization with the response
telegram. Initialized Windows event which the
application uses to wait for the response
telegram.

err mobyErr_t * Pointer to a structure in which the status byte of
the response telegram and any error code and
interface errors are to be stored. See
chapter 3.7.2.

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The OTP memory has a length of 16 bytes (= 128 bits) and can only be written
once as a whole. This means that the moby_write OTP function always writes
16 bytes.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 75

3.4.8 Function - moby_s_read

mobyErr_t moby_s_read (mobyHandle_t handle, uInt *idData,
uInt mdsAddress, unsigned char *data,
uInt length, HANDLE sync, mobyErr_t *err);

You can use this function to "specifically" or "non-specifically" read data from an
MDS which is located in the antenna field of the SLG U92.

• With a "specific" read call the call contains the identification number of the MDS.
More than one MDS may be located in the antenna field. The identification
number of the MDS can be determined with the GET function.

• With a "non-specific" read call the call does not contain the identification
number of the MDS. Only one MDS may be located in the antenna field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value of 20 to 232 - 1 ID number of MDS
0 Only one MDS is

located in the field and
a "non-specific" read
call is to be used.

mdsAddress uInt Start address of the data on the MDS to be
read

≥ 0 0 to maximum length of user data
minus 1
The address plus data length must be
less than the end address on the MDS.

data unsigned char * Pointer to the buffer in which the read data are
to be stored

length uInt Number of bytes to be read
> 0 1 to maximum of 244 bytes

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
76 (4)J31069-D0137-U001-A5-7618

 Notice

The MOBY_s_read command may only be sent to the SLG U92 when no
command is queued yet on the SLG U92. The antenna must be on. Otherwise an
error message is generated.
The command is terminated with an error if the MDS with the specified
identification number that is "specifically" called is not located in zone 1.
If no MDS is located in zone 1 and a "non-specific" call occurs, the command waits
until an MDS moves into zone 1 or the RESET command arrives.
If more than one MDS is located in zone 1 when a "non-specific" call arrives, the
command is terminated with an error.

 Notice

The data that were read are stored in the buffer specified by the "data" and "length"
parameters. These data do not become valid until the synchronization handle
signals that the response telegram has arrived with the read data.

 Notice

With SLG U92 with ASM 480 (TCP/IP), a maximum of only 228 bytes can be read
with one telegram.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 77

3.4.9 Function - moby_s_getID

mobyErr_t moby_sgetID (mobyHandle_t handle, mobyMtget_t *getInfo,
int address, uInt length, HANDLE sync,
mobyErr_t *err);

You can use this function to query which MDSs are located in the field. At the same
time you can read data from these MDSs.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

getInfo mobyMtget_t * Pointer to the structure in which the number of
polled MDSs, the ID numbers of the MDSs and,
if necessary, the read MDS data are to be
stored.

address int Start address of the data on the MDS to be
read

≥ 0 0 to maximum length of the user data
minus 1
The address plus data length must be
less than the end address on the MDS.

- 16 = FFF0 hex
Start address of the OTP memory

length uInt Number of bytes to be read

≥ 0 0 to maximum length x
x = (242 – (4 * bunch size)) / bunch size

16 Length of the OTP memory

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The moby_s_getID command may only be sent to the SLG U92 when no command
is yet queued on the SLG U92. The antenna must be on. Otherwise an error
message is generated.

MOBY API C-Library 03/05

 MOBY API C-Library
78 (4)J31069-D0137-U001-A5-7618

 Notice

The 128 bits of user information in the OTP memory are addressed with the start
address -16 (FFF0 hex). The 128 bits of user information are written to the MDS
with the WRITE command. All 128 bits of information must be requested with the
GET call.

 Notice

With the SLG U92 with ASM 480 (TCP/IP), a maximum of only 226 bytes (MDS ID
numbers and user data) can be read with one telegram. This means:
parameter length = x = (226 – (4 * bunch size)) / bunch size.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 79

3.4.10 Function - moby_s_write

mobyErr_t moby_swrite (mobyHandle_t handle, uInt *idData,
uInt mdsAddress, unsigned char *data,
uInt length, HANDLE sync, mobyErr_t *err);

You can use this function to "specifically" or "non-specifically" write data to an MDS
which is located in the antenna field of the SLG U92.

• A "specific" call to write contains the identification number of the MDS. More
than one MDS may be located in the antenna field. You can determine the ID
number of the MDS with the GET function.

• A "non-specific" call to write does not contain the identification number of the
MDS. Only one MDS may be located in the antenna field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value from 20 to 232 - 1 Identification number
of the MDS

0 When there is only one
MDS in the field and a
"non-specific" write call
is to be made

mdsAddress uInt Start address on the MDS for the data to be
written

≥ 0 0 to maximum length of the user data
minus 1
The address plus data length must be
less than the end address on the MDS.

data unsigned char * Pointer to the buffer in which the data to be
written are to be stored

length uInt Number of bytes to be written

≥ 0 1 to maximum of 244 bytes

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
80 (4)J31069-D0137-U001-A5-7618

 Notice

The MOBY_s_write command may only be sent to the SLG U92 when no
command is queued yet on the SLG U92. The antenna must be on. Otherwise an
error message is generated.
The command is terminated with an error if the MDS with the specified
identification number that is "specifically" called is not located in zone 1.
If no MDS is located in zone 1 and a "non-specific" call occurs, the command waits
until an MDS moves into zone 1 or the RESET command arrives.
If there is more than one MDS in zone 1 and a "non-specific" call occurs, the
command is terminated with an error.

 Notice

With the SLG U92 with ASM 480 (TCP/IP), a maximum of only 228 bytes can be
written with one telegram.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 81

3.4.11 Function - moby_s_init

mobyErr_t moby_sinit (mobyHandle_t handle, uInt *idData,
unsigned char setVal, uInt mdsLength,
HANDLE sync, mobyErr_t *err);

You can use this function to "specifically" or "non-specifically" initialize an MDS
with a bit pattern. The MDS is located in the antenna field of the SLG U92.

• An initialization call is "specific" when the call contains the identification number
of the MDS. Several MDSs may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

• An initialization call is "non-specific" when the call does not contain the
identification number of the MDS. Only one MDS may be located in the antenna
field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value from 20 to 232 - 1 Identification number
of the MDS

0 When an MDS is
located in the field and
a "non-specific"
initialization call is to be
performed

setVal unsigned char 1 byte in hex format with which the entire MDS
is to be written

00 hex to FF hex

mdsLength uInt Number of bytes on the MDS to be deleted
For the number of bytes to be deleted (length of
the user data) see the technical description.

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
82 (4)J31069-D0137-U001-A5-7618

 Notice

The MOBY_s_init command may only be sent to the SLG U92 when no command
is queued yet on the SLG U92. The antenna must be on. Otherwise an error
message is generated.
The command is terminated with an error if the MDS with the specified
identification number that is "specifically" called is not located in zone 1.
If no MDS is located in zone 1 and a "non-specific" call occurs, the command waits
until an MDS moves into zone 1 or the RESET command arrives.
If there is more than one MDS in zone 1 and a "non-specific" call occurs, the
command is terminated with an error.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 83

3.4.12 Function - moby_s_copy

mobyErr_t moby_s_copy (mobyHandle_t handle, uInt idData1, uInt addr1,
uInt idData2, uInt addr2, uInt len, HANDLE sync,
mobyErr_t *err);

You can "specifically" copy data with this function. One data area or the contents of
the entire data carrier can be copied from one MDS to another. This function
permits data to be written (i.e., copied) directly via the user program from one MDS
(source) to another MDS (destination).

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData1 uInt Value from 20 to 232 - 1 Identification number
of MDS 1 (source)
which is to be copied

addr1 int 0 to maximum length of user data minus 1
Start address of the data to be copied from
MDS 1
Address plus data length must be less than the
end address.

idData2 uInt Value from 20 to 232 - 1 Identification number
of MDS 2 (destination)
to which the data are to
be copied

addr2 int 0 to maximum length of user data minus 1
Start address of the data to be copied from
MDS 2
Address plus data length must be less than the
end address.

len uInt Number of the bytes to be copied
1 to maximum length of the user data

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
84 (4)J31069-D0137-U001-A5-7618

 Notice

The moby_s_copy command may only be sent to the SLG U92 when no command
is yet queued on the SLG U92. The antenna must be on. Otherwise an error
message is generated.
If the two specified MDSs are not located in zone 1, the command is terminated
with an error.

 Notice

The OTP memory cannot be copied with the moby_s_copy command.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 85

3.4.13 Function - moby_s_statusMDS

mobyErr_t moby_s_statusMDS (mobyHandle_t handle, uInt *idData,
mobyStatusMDS_t *statusMDS,
unsigned char mode, unsigned char cweek,
unsigned char year, HANDLE sync,
mobyErr_t *err);

You can use this function to "specifically" or "non-specifically" query status and
diagnostic data from an MDS which is located in the antenna field of the SLG U92.

• A read call is "specific" when the call includes the identification number of the
MDS. More than one MDS may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

• A read call is "non-specific" when the call does not include the identification
number of the MDS. Only one MDS may be located in the antenna field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value from 20 to 232 - 1 Identification number
of the MDS

0 When only one MDS is
located in the field and
a "non-specific" status
query is to be made

statusMDS mobyStatusMDS_t * Pointer to the structure in which the status and
diagnostic information of the response telegram
are to be stored

mode unsigned char 00 hex = Request status and
 diagnostic data of an MDS

cweek unsigned char 01 to 35 hex = Current calendar week
 (1 to 53) for determination of
 remaining battery life

FF hex = No determination of
 remaining battery life

year unsigned char 01 to 63 hex = The last two positions of the
 current year (beginning with
 01) for determination of
 remaining battery life

FF hex = No determination of
 remaining battery life

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

MOBY API C-Library 03/05

 MOBY API C-Library
86 (4)J31069-D0137-U001-A5-7618

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The antenna must be on. Otherwise an error message is generated.

Function sequence depends on the two fields "cweek" and "year."

a) If the value in both fields is within the value range, the remaining battery
 life is output in the response.

b) If one of the values is outside the specified value range, the remaining
 battery life cannot be calculated and the function is terminated with an
 error.
 If both values are specified as "FF hex" days, the remaining battery life
 cannot be calculated and the battery life is indicated in the
 acknowledgment as FFFF hex.

If the MDS that is "specifically" called with its identification number is not located in
zone 1, the command is terminated with an error.
If the call is "non-specific" and no MDS is located in zone 1, an error message is
generated.
If the call is "non-specific" and more than one MDS is located in zone 1, the
command is terminated with an error.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 87

3.4.14 Function - moby_s_readOTP

mobyErr_t moby_s_readOTP (mobyHandle_t handle, uInt *idData,
unsigned char *data, HANDLE sync,
mobyErr_t *err);

You can use this function to execute a one-time "specific" or "non-specific" read
access to the OTP memory (One-Time Programmable) with a length of 16 bytes
(= 128 bits).

• A read call is "specific" when the call includes the identification number of the
MDS. More than one MDS may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

• A read call is "non-specific" when the call does not include the identification
number of the MDS. Only one MDS may be located in the antenna field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value from 20 to 232 - 1 Identification number
of the MDS

0 When only one MDS is
located in the field and
the read call is to be
"non-specific"

data unsigned char * Pointer to the buffer in which the data read from
the OTP memory are to be stored
The buffer must have a minimum length of
16 bytes.

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
88 (4)J31069-D0137-U001-A5-7618

 Notice

The moby_s_readOTP command may only be sent to the SLG U92 when no
command is yet queued on the SLG U92. The antenna must be on. Otherwise an
error message is generated.
If the MDS with the identification number specified by the "specific" call is not
located in zone 1, the command is terminated with an error.
If there is a "non-specific" call and no MDS is located in zone 1, the command
waits until an MDS enters zone 1 or the RESET command arrives.
If there is a "non-specific" call and more than one MDS is located in zone 1, the
command is terminated with an error.

 Notice

The 128 bits of user information are written to the MDS with the WRITE command.
Read accesses must request all 128 bits of information.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 89

3.4.15 Function - moby_s_writeOTP

mobyErr_t moby_s_writeOTP (mobyHandle_t handle, uInt *idData,
unsigned char *data, HANDLE sync,
mobyErr_t *err);

You can use this function to execute a one-time "specific" or "non-specific" write
access to the OTP memory (One-Time Programmable) with a length of 16 bytes or
128 bits.

• A write call is "specific" when it includes the identification number of the MDS.
More than one MDS may be located in the antenna field. You can determine the
identification number of the MDS with the GET function.

• A write call is "non-specific" when it does not include the identification number
of the MDS. Only one MDS may be located in the antenna field.

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number or the Ethernet interface

idData uInt * Value from 20 to 232 - 1 Identification number
of the MDS

0 When only one MDS is
located in the field and
the write call is to be
"non-specific"

data unsigned char * Pointer to the buffer in which the data to be
written to the OTP memory are stored
The buffer must have a minimum length of
16 bytes.

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

MOBY API C-Library 03/05

 MOBY API C-Library
90 (4)J31069-D0137-U001-A5-7618

 Notice

The moby_s_writeOTP command may only be sent to the SLG U92 when no
command is yet queued on the SLG U92. The antenna must be on. Otherwise an
error message is generated.
If the MDS with the identification number specified by the "specific" call is not
located in zone 1, the command is terminated with an error.
If there is a "non-specific" call and no MDS is located in zone 1, the command
waits until an MDS enters zone 1 or the RESET command arrives.
If there is a "non-specific" call and more than one MDS is located in zone 1, the
command is terminated with an error.

 Notice

The OTP memory can only be written once. This write access must contain all
128 bits of information. A second attempt to write access this memory is rejected
with an error message.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 91

3.5 DI/DO Functions
The DI/DO functions moby_readDE and moby_writeDA can be used to read (scan)
digital inputs (DI) and write (set) digital outputs (DO). They can only be used with
the SLG on the ASM 420 and SIM 41.

3.5.1 Function - moby_readDE

mobyErr_t moby_readDE (mobyHandle_t handle, mobyDEDA_t *deda,
 HANDLE sync, mobyErr_t *err);

This function reads digital inputs (DI).

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

deda mobyDEDA_t * Pointer to the structure in which the read signal
states are stored

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

After the call, the signal states of the digital inputs are available in the buffer.
The number and type of representation vary depending on the particular MOBY
system. See documentation /01/ or /02/ of your MOBY.

MOBY API C-Library 03/05

 MOBY API C-Library
92 (4)J31069-D0137-U001-A5-7618

3.5.2 Function - moby_writeDA

mobyErr_t moby_writeDA (mobyHandle_t handle, mobyDEDA_t *deda,
 HANDLE sync, mobyErr_t *err);

This function sets (writes) the digital outputs (DO).

Parameter Type Description

handle mobyHandle_t Handle of the serial interface and the channel
number

deda mobyDEDA_t * Pointer to the buffer in which the signal states
to be written are stored

sync HANDLE Handle for synchronization with the response
telegram. Initialized Windows event due to
which the application is waiting for the response
telegram.

err mobyErr_t * Pointer to the structure in which the status byte
of the response telegram with any error codes
and interface errors is to be stored (see
chapter 3.7.2).

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

 Notice

The buffer contains the signal states of the digital outputs to be set and the related
conditions. The number and type of representation vary depending on the
particular MOBY system. See documentation /01/ or /02/ of your MOBY.

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 93

3.6 Function - moby_version
mobyErr_t moby_version (int *major, int *minor);

The moby_version function is used to scan the version of the dynamic link library
MOBY_API.DLL or MOBY_API_T.DLL. The version number is returned in two
parts - the main number xx and the subnumber yy. It is combined as "xx.yy."

Parameter Type Description

major int * Memory word for the value xx of the version
number

minor int * Memory word for the value yy of the version
number

Return value:

≥ 0 No error, command executed.
< 0 Interface error. See chapter 3.7.1.

Example: Version 1.0 appears as xx = 1 and yy = 0.

MOBY API C-Library 03/05

 MOBY API C-Library
94 (4)J31069-D0137-U001-A5-7618

3.7 Function Errors

3.7.1 Interface Error as Return Value

The interface errors supplied as return values by the described functions are listed
below.

• Errors directly from the MOBY_API or MOBY_API_T DLL

• Errors from the 3964R driver (only serial link to PC)

• Errors from the SLG, ASM with SLG or SLA or SIM

The errors from the 3964R driver are divided into two classes.

• Status error messages: These messages signal status errors which
 occur while telegrams are being transferred.
 They are usually related to the interface or local
 system resources.

• System error messages: These messages indicate that call functions
 malfunctioned. They usually mean a fatal error
 in the system and/or the configuration settings.

The return value is type "long integer" and is always negative. Its layout is shown
below.

Return value = Error code OR error block OR error number

The values of error code, error block and error number are OR-linked and may
assume the following values.

Error code: 0x80 00 00 00

Error block: 0x1 00 00 Error directly from the MOBY_API DLL

 0x2 00 00 Error from the 3964R driver

 0x3 00 00 Error from the SLG, ASM with SLG or
 SLA or SIM

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 95

Error numbers:

• MOBY_API or MOBY_API_T
 0x00 00 Fatal error
 0x00 01 Wrong device handle
 0x00 02 Wrong parameter
 0x00 03 Wrong/unsuitable response telegram
 0x00 04 Response telegram has wrong length.
 0x00 05 Match buffer full
 0x00 06 Wrong MDS type
 0x00 07 No other handle available
 0x00 08 Windows system error
 0x00 09 Command terminated with "moby_stop"
 0x00 0A No ID numbers with MOBY I
 0x00 0B Handle still open
 0x00 0C Command terminated by error
 (implicit "moby_stop")
 0x00 0D Channel already open
 0x00 0E Channel already started
 0x00 0F Channel not yet started
 0x00 10 Last status query not yet concluded
 0x00 11 This number (MOBY_ERR_NOTSUPPORTED) stands
 for functions not covered by the selected interface
 (e. g., moby_s_getID, when there is no MOBY U SLG)
 0x00 12 Wrong IP address assigned
 0x00 13 Error in socket handle
 0x00 14 Error in TCP/IP connection establishment
 0x00 15 Invalid device ID

 When one of the error numbers 0x00 00, 0x00 01, 0x00 02, 0x00 05, 0x00 07,
0x00 12, 0x00 13, 0x00 14 or 0x00 15 is reported, the applicable interface must
be closed with moby_close (if the interface is open) and then reopened with
moby_open.

MOBY API C-Library 03/05

 MOBY API C-Library
96 (4)J31069-D0137-U001-A5-7618

• 3964R driver
 Status error messages
 0x80 01 Too many jobs, sending queue full
 0x80 02 Attempt to establish connection failed (send)
 0x80 04 Telegram transfer failed (send)
 0x80 08 Receiving buffer too small for receipt
 0x80 10 Block check error while receiving
 0x80 20 Timeout during connection establishment (send)
 0x80 40 Timeout during a telegram (receive)
 0x80 80 Timeout during connection disconnection (send)
 0x81 00 COM message: break
 0x82 00 COM message: parity error
 0x84 00 COM message: framing error
 0x88 00 COM message: Overrun
 0x90 00 Duplex conflict (send)
 0xC0 00 Unknown system error
 System error messages
 0xA0 00 No error
 0xA0 02 Transferred handle invalid
 0xA0 03 Not enough memory available
 0xA0 04 No room in the sending buffer
 0xA0 05 Buffer overflow
 0xA0 06 Error during operation on a global event
 (OS error)
 0xA0 07 Interface already open
 0xA0 08 Interface not open
 0xA0 09 Not used at this time
 0xA0 0A Not used at this time
 0xA0 0B Not used at this time
 0xA0 0C Not used at this time
 0xA0 0D Not used at this time
 0xA0 0E Not used at this time
 0xA0 0F Not used at this time
 0xA0 10 Not used at this time
 0xA0 11 Message parameter invalid
 0xA0 12 Not used at this time
 0xA0 13 Faulty receive job
 0xA0 14 Faulty send job
 0xA0 15 Not used at this time
 0xA0 16 Not used at this time
 0xA0 17 NAK while sending a telegram
 0xA0 18 Character received while sending a telegram
 (not NAK)
 0xA0 64 Interface initialization error
 0xA0 65 Problems with thread or with opening/closing the
 COM interface
 0xA0 66 Not used at this time
 0xA0 67 Not used at this time
 0xA0 68 Not used at this time
 0xA0 69 Not used at this time
 0xE0 01 Addressed port not configured
 0xE0 02 Error while accessing the Windows registry
 0xE0 03 No more ports to open

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 97

• SLG, ASM or SIM For possible error numbers, see chapter 3.7.2 under
 MOBY error codes.

 Notice

When Windows interrupts communication between PC and the ASM, SLG or SIM
because a monitoring time is exceeded (see chapter 2.2.3), error 0x000C can
occur on the MOBY API C interface or error 0xA017 can occur directly on the
3964R driver. An unexpected telegram may also occur which is not reported unless
the callback routine is used. See chapters 3.1.3 and 3.3.12. This unexpected
telegram must be rejected.

• After error 0x000C has occurred the moby_start function must be called and the
failed function must then be repeated. The moby_stop function is not
necessary. If you call this function anyway, error 0x000F occurs.

• Following error 0xA017 the command during which the error occurred can be
repeated directly without moby_stop and moby_start.

If an error occurs during moby_start, close the COM interface with moby_close and
then open it again.

MOBY API C-Library 03/05

 MOBY API C-Library
98 (4)J31069-D0137-U001-A5-7618

3.7.2 MOBY Status

After a MOBY function is executed (response telegram has arrived), the MOBY
status byte of the response telegram is stored under the "mobyErr_t" union
addressed with the "status" pointer. The status byte can be addressed as

• Structure "mobyStatus_t" or

• Long integer variable "error"

(See chapter 4.1 for header file MOBY_API.H or chapter 4.3 for header file
MOBY_API_T.H.)
The error and status information can be read from the individual structure
parameters (by bit) or as a unit (see also error numbers from the ASM or SIM with
SLG or SLA in chapter 3.7.1).

"mobyStatus_t" structure

Table 3-2 Structure parameters of MOBY status

Structure Parameter (Variable) Meaning

error Error identifier

dummy In reserve

busyASM MDS command on ASM active/no MDS on ASM active

anwMDS Presence message

batMDS Status of MDS battery voltage (battery 1)

diagBatMDS507 Status of battery voltage, MDS 507/407 E (battery 2)

eccDone ECC offset status on MDS

errorCode MOBY error code

error

Error identifier
 1: Error: "errorCode" > 0
 0: No error

dummy

Area in reserve (bits)

busyASM

MDS command on ASM active/no MDS command on ASM active (corresponds to
bit 0 in ANW/Busy byte)
 1: MDS command on ASM active
 0: No MDS command on ASM active

anwMDS

The presence message corresponds to bit 1 in the ANW/Busy byte. It indicates
whether an MDS is located in the field of the SLG/SLA.
 0: No MDS in the field
 1: MDS in the field

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 99

batMDS

The battery voltage status corresponds to bit 7 of the status byte (battery 1). It
indicates the status of the dialog battery on the MDS.
 1: Battery on MDS has dropped below threshold value.
 This bit is always set for MDS types with EEPROM memory.

diagBatMDS507

The dialog battery status on the MDS corresponds to bit 6 of the status byte
(battery 2). It only applies to MDS 507/407 E.
 1: Battery under threshold value
 With other MDSs, the bit can be "0" or "1."

eccDone

The ECC offset status corresponds to bit 5 of the status byte. It only applies when
"with ECC offset" was specified for the moby_start system function.
 1: ECC offset was performed.
 (The data in the result telegram are okay.)

errorCode

The MOBY error code corresponds to bits 0 to 4 in the MOBY status byte.

Table 3-3 MOBY error code

Assignment to ASM/SIM/SLG Error
(Hex)

Meaning
ASM 824 ASM 724 ASM 424 ASM 420 SIM 41 SLG U92

00 No error. Response
telegram correct.

x x x x x x

01 ANW error: MDS left field
while command active

x x x x x x

02 ANW error: MDS passed
SLG without command

x x x x x –

 A queued MDS command
was terminated by the “turn
off antenna” command.

– – – – – x

03 Error in connection to the
SLG/SIM/SLA

x x x x x –

04 Error in memory of MDS
(not initialized)

x x x x x x

05 Command from SLG/ASM
cannot be interpreted.

x x x x x x

06 Field interference on
SLG/SIM/SLA

x x x x x x

07 Too many sending errors x x x x x –

08 MDS reports CRC errors
very frequently

x x x – x –

09 INIT: CRC error x x x x x –

0A INIT: MDS cannot be
initialized.

x x x x x –

MOBY API C-Library 03/05

 MOBY API C-Library
100 (4)J31069-D0137-U001-A5-7618

Table 3-3 MOBY error code

Assignment to ASM/SIM/SLG Error
(Hex)

Meaning
ASM 824 ASM 724 ASM 424 ASM 420 SIM 41 SLG U92

INIT: Timeout during
initialization

x x x x x – 0B

MDS memory cannot be
read correctly

– – – – – x

INIT: Write error during
initialization

x x x x x x 0C

Repeated storing on
OTP memory

– – – – – x

0D Address error x x x x x x

0E ECC mode: Data on MDS
are wrong.

x x x x x –

0F RESET message after
return of power

x x x x x –

10 NEXT command is illegal. x x x x x x

11 Short circuit or overload on
the digital outputs

x x x – – –

12 Internal firmware error x x x – – –

Watchdog x x x – – – 13

There is not enough buffer
space on the SLG to store
the command.

– – – – – x

14 Firmware error x x x – – x

 Watchdog message from
SLG U

– – – – – x

15 Parameter assignment
error

x x x – – x

16 Unsuitable connection
configuration

x x x – – –

17 Protocol error x x x – – –

18 Only RESET command
permitted

x x x – – x

Previous command is
active.

– – – x x x 19

Buffer overflow, telegram
buffer full

x x x – – –

1A 3964R error (connection
interrupted)

x x x – – –

1B Sending job on SLG
repeated too often.
Data loss possible.
RESET command
required.

– – – – – x

1C Turn antenna on/off – – – – – x

03/05 MOBY API C-Library

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 101

Table 3-3 MOBY error code

Assignment to ASM/SIM/SLG Error
(Hex)

Meaning
ASM 824 ASM 724 ASM 424 ASM 420 SIM 41 SLG U92

Not enough RAM on the
MDS

– – – x – – 1D

Number of MDSs > bunch – – – – – x

1E Wrong number of
characters in the telegram

x x x x x x

1F SLG/ASM command
deleted with RESET

x x x x x x

Long integer variable "error"

When the error and status information is read as a long integer value, the individual
pieces of information must be evaluated by masking.

Header Files 03/05

 MOBY API C-Library
102 (4)J31069-D0137-U001-A5-7618

4 Header Files

The header file

• MOBY_API.H for serial link to PC or

• MOBY_API_T.H for link to Ethernet

must be integrated with the “#include” preprocessor command. This declares all
function calls and constants.

4.1 Header File – MOBY_API.H

// Headerfile for the MOBY API
//
// Version 4.40 / 14. June 2002
//
// Include this header file in any MOBY application
// Please make sure that the include path is set correctly

#ifndef MOBYAPIDEFINED
#define MOBYAPIDEFINED

///
// Includes

#include <3964r.h>

///
// Im- and Export definitions for prototypes

#ifdef DLLROUTINE
#undef DLLROUTINE
#endif

#ifdef DLLDECL
#undef DLLDECL
#endif

#ifdef __MOBY_DLL_IMPL
#define DLLROUTINE __declspec(dllexport)
#else
#define DLLROUTINE __declspec(dllimport)
#endif

#define DLLDECL WINAPI

///
// Constants

#define MAXCHANNEL 4

///
// Type definitions

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 103

//...
// general definitions

typedef unsigned int mobyHandle_t;
typedef unsigned int uInt;
typedef int mobyType_t;

//...
// error and status type

typedef struct mobyStatus_d
{
 unsigned int errorCode : 5;
 unsigned int eccDone : 1;
 unsigned int diagBatMDS507 : 1;
 unsigned int batMDS : 1;
 unsigned int anwMDS : 1;
 unsigned int busyASM : 1;
 unsigned int dummy : 21;
 unsigned int error : 1;
} mobyStatus_t;

typedef struct mobyStatusU_d
{
 mobyStatus_t status;
 unsigned char s_info;
 unsigned char hw_type;
 unsigned short int hw_ver;
 unsigned short int boot_ver;
 unsigned char fw_type;
 unsigned short int fw_ver;
 unsigned char drv_type;
 unsigned short int drv_ver;
 unsigned char interf;
 unsigned char baud;
 unsigned char dili;
 unsigned char mtag;
 unsigned char fcon;
 unsigned char ftim;
 unsigned char sema;
 unsigned char ant;
 unsigned char standby;
 unsigned char anw;
} mobyStatusU_t;

typedef struct mobyStatusMDS_d
{
 mobyStatus_t status;
 unsigned long int mds_no;
 unsigned char mds_type;
 unsigned long int strz;
 unsigned short int ssmz;
 unsigned short int mcod;
 unsigned short int rbld;
 unsigned char sleep_time;
} mobyStatusMDS_t;

typedef union mobyErr_d
{
 long error;
 mobyStatus_t status;
} mobyErr_t;

Header Files 03/05

 MOBY API C-Library
104 (4)J31069-D0137-U001-A5-7618

//...
// definitions for moby_diagnose (for MOBY U only)

#define MOBY_U_MAXFUNC 33

typedef struct funcDesc_d
{
 unsigned char data[7];
} funcDesc_t;

typedef struct mobyDiagnoseCall_d
{
 mobyStatus_t status;
 unsigned int num;
 funcDesc_t functions[MOBY_U_MAXFUNC];
} mobyDiagnoseCall_t;

#define MOBY_U_MAXERR 233

typedef unsigned char errDesc_t;

typedef struct mobyDiagnoseErr_d
{
 mobyStatus_t status;
 unsigned int num;
 errDesc_t error[MOBY_U_MAXERR];
} mobyDiagnoseErr_t;

#define MOBY_U_MAXMDS 24

typedef struct mdsDesc_d
{
 unsigned char data[4];
} mdsDesc_t;

typedef struct mobyDiagnoseMDS_d
{
 mobyStatus_t status;
 unsigned int num;
 mdsDesc_t mds[MOBY_U_MAXMDS];
} mobyDiagnoseMDS_t;

typedef struct mobyDiagnoseRepeat_d
{
 unsigned int num;
} mobyDiagnoseRepeat_t;

typedef union mobyDiagnose_d
{
 mobyDiagnoseCall_t diagCall;
 mobyDiagnoseErr_t diagErr;
 mobyDiagnoseMDS_t diagMDS;
 mobyDiagnoseRepeat_t diagRepeat;
} mobyDiagnose_t;

//...
// parameters for MOBY I (without multi-channel support)

typedef struct mobyReset_d
{
 // information to set / read LEDs
 BOOL red, green, TxD, RxD, setLED;

 // information to set / read driver
 BOOL dialogOn, moreEC, timeout, eeprom, anwControl, scanFlag, mobyV_On,
 setTreiber;

 // bit field for the DIL switches
 unsigned char dilSwitch;
} mobyReset_t;

typedef struct mobyInterval_d
{
 short int timebase;
 short int timeval;
 BOOL dialogOn;
 BOOL mobyV_On;

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 105

} mobyInterval_t;

//...
// parameters for MOBY (with multi-channel support)

typedef struct mobyChannelasm_abta_f_d
{
 unsigned char timeval : 6;
 unsigned char timebase : 2;
} mobyChannelasm_abta_f_t;

typedef union moby_channelasm_abta_d
{
 unsigned char raw;
 mobyChannelasm_abta_f_t fields;
} mobyChannelasm_abta_t;

typedef struct mobyChannelasm_param_f_d
{
 unsigned char mode : 4;
 unsigned char res : 1;
 unsigned char anw : 3;
} mobyChannelasm_param_f_t;

typedef union mobyChannelasm_param_d
{
 unsigned char raw;
 mobyChannelasm_param_f_t fields;
} mobyChannelasm_param_t;

typedef struct mobyChannelasm_opt_f_d
{
 unsigned char res1 : 1;
 unsigned char clear_led : 1;
 unsigned char timeout : 1;
 unsigned char tst_on : 1;
 unsigned char res2 : 1;
 unsigned char res3 : 1;
 unsigned char res4 : 1;
 unsigned char res5 : 1;
} mobyChannelasm_opt_f_t;

typedef union mobyChannelasm_opt_d
{
 unsigned char raw;
 mobyChannelasm_opt_f_t fields;
} mobyChannelasm_opt_t;

typedef struct mobyChannelasm_d
{
 mobyChannelasm_abta_t abta;
 mobyChannelasm_param_t param;
 mobyChannelasm_opt_t opt;
} mobyChannelasm_t;

Header Files 03/05

 MOBY API C-Library
106 (4)J31069-D0137-U001-A5-7618

typedef struct mobyUreset_d
{
 unsigned char standby;
 unsigned char param;
 unsigned char option1;
 unsigned char dili;
 unsigned short mtag;
 unsigned char fcon;
 unsigned char ftim;
} mobyUreset_t;

typedef union mobyParameters_d
{
 mobyChannelasm_t channelasm;
 mobyReset_t extended;
 mobyInterval_t interval;
 mobyUreset_t Ureset;
} mobyParameters_t;

//...
// structure for multitag GET

#define MOBY_MTGET_MAXMDS 12
#define MOBY_MTGET_MAXDATA 250

typedef struct mobyMtget_data_d
{
 uInt mds;
 unsigned char data[MOBY_MTGET_MAXDATA];
} mobyMtget_data_t;

typedef struct mobyMtget_d
{
 int numMds;
 mobyMtget_data_t mobyMtget_data[MOBY_MTGET_MAXMDS];
} mobyMtget_t;

//...
// type for accessing DE/DA (when available)

typedef struct mobyDEDA_d
{
 BOOL bitDA0,bitDA1,bitDA2,bitDA3,bitDE0,bitDE1,bitDE2,bitDE3;
} mobyDEDA_t;

typedef void (CALLBACK *moby_UnexpCallback_t) (unsigned char ch1,
 unsigned char ch2,
 unsigned char ch3, int laenge);
typedef void (CALLBACK *moby_AnwCallback_t) (unsigned char anwstatus);

///
// Interface of the MOBY API

#if defined(__cplusplus)
extern "C"
{
#endif

DLLROUTINE mobyErr_t DLLDECL moby_open (LPCSTR com_name, int channel,
 mobyHandle_t *handle);
DLLROUTINE mobyErr_t DLLDECL moby_close (mobyHandle_t handle);
DLLROUTINE mobyErr_t DLLDECL moby_start (mobyHandle_t handle, mobyType_t type,
 BOOL eccOn, mobyParameters_t *param,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_stop (mobyHandle_t handle);
DLLROUTINE mobyErr_t DLLDECL moby_next (mobyHandle_t handle, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_status (mobyHandle_t handle, mobyStatus_t *stat,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_statusU (mobyHandle_t handle, mobyStatusU_t *stat,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_diagnose (mobyHandle_t handle, unsigned char mode,
 mobyDiagnose_t *diagnose, HANDLE sync,
 mobyErr_t *err);

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 107

DLLROUTINE mobyErr_t DLLDECL moby_read (mobyHandle_t handle, uInt mdsAddress,
 unsigned char *data, uInt length,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_read (mobyHandle_t handle, uInt *idData,
 uInt mdsAddress, unsigned char *data,
 uInt length, HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_getID (mobyHandle_t handle, unsigned char *idData,
 uInt idLength, HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_getID (mobyHandle_t handle, mobyMtget_t *getInfo,
 int address, uInt length, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_write (mobyHandle_t handle, uInt mdsAddress,
 unsigned char *data, uInt length,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_write (mobyHandle_t handle, uInt *idData,
 uInt mdsAddress, unsigned char *data,
 uInt length, HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_init (mobyHandle_t handle, unsigned char setVal,
 uInt mdsLength, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_init (mobyHandle_t handle, uInt *idData,
 unsigned char setVal, uInt mdsLength,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_readDE (mobyHandle_t handle, mobyDEDA_t *deda,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_writeDA (mobyHandle_t handle, mobyDEDA_t *deda,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_unexpect (mobyHandle_t handle,
 moby_UnexpCallback_t cbroutine);
DLLROUTINE mobyErr_t DLLDECL moby_anw (mobyHandle_t handle,
 moby_AnwCallback_t cbroutine);
DLLROUTINE mobyErr_t DLLDECL moby_version (int *major, int *minor);
DLLROUTINE mobyErr_t DLLDECL moby_end (mobyHandle_t handle, unsigned char mode,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_end (mobyHandle_t handle, uInt *idData,
 unsigned char mode, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_repeat (mobyHandle_t handle, unsigned char mode,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_setANT (mobyHandle_t handle, unsigned char mode,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_statusMDS (mobyHandle_t handle,
 mobyStatusMDS_t *statusMDS,
 unsigned char mode, unsigned char cweek,
 unsigned char year, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_statusMDS (mobyHandle_t handle, uInt *idData,
 mobyStatusMDS_t *statusMDS,
 unsigned char mode, unsigned char cweek,
 unsigned char year, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_writeOTP (mobyHandle_t handle, unsigned char *data,
 HANDLE sync, mobyErr_t *err);

DLLROUTINE mobyErr_t DLLDECL moby_s_writeOTP (mobyHandle_t handle, uInt *idData,
 unsigned char *data, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_readOTP (mobyHandle_t handle, unsigned char *data,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_readOTP (mobyHandle_t handle, uInt *idData,
 unsigned char *data, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_copy (mobyHandle_t handle, uInt idData1,
 int addr1, uInt idData2, int addr2,
 uInt len, HANDLE sync, mobyErr_t *err);

#if defined(__cplusplus)
}
#endif

///
// Moby channels

#define MOBY_CHANNEL1 1
#define MOBY_CHANNEL2 2
#define MOBY_CHANNEL3 3
#define MOBY_CHANNEL4 4

Header Files 03/05

 MOBY API C-Library
108 (4)J31069-D0137-U001-A5-7618

#define MOBY_NOCHANNEL 0

///
// Moby types

#define MOBY_I 0
#define MOBY_Ia 0 /* MOBY I with intervall reset */
#define MOBY_Ib 1 /* MOBY I with extended reset */
#define MOBY_F 2
#define MOBY_E 3
#define MOBY_L 4
#define MOBY_Ua 5 /* MOBY U with small set of parameters */
#define MOBY_Ub 6 /* MOBY U with large set of parameters */
#define MOBY_Uc 7 /* MOBY U with multitag support */

///
// Constants for specific moby types

#define MOBY_CHANNEL_PARAM_RESET {{{{0}},{{0}},{{0}}}}

//...
// working modes for channeled ASMs

// general

#define MOBY_CHANNEL_ALL_RESETPARAM_MODE_IGNORE 0x0 // all ASMs

// for MOBY F

#define MOBY_CHANNEL_F_RESETPARAM_MODE_MDS_F1xx 0xA // ASM 424/824
#define MOBY_CHANNEL_F_RESETPARAM_MODE_MDS_F4xx 0xB // ASM 424/824
#define MOBY_CHANNEL_F_RESETPARAM_MODE_MDS_F2xx 0xC // ASM 424

// for MOBY I

#define MOBY_CHANNEL_I_RESETPARAM_MODE 0x1 // ASM 424
#define MOBY_CHANNEL_I_RESETPARAM_MODE_MDS507 0x4 // ASM 424

// for MOBY V

#define MOBY_CHANNEL_V_RESETPARAM_MODE 0x9 // ASM 424

// for MOBY E

#define MOBY_CHANNEL_E_RESETPARAM_MODE 0x1 // ASM 724

// for MOBY U

#define MOBY_U_DIAG_LASTCALL 0x02
#define MOBY_U_DIAG_LASTERR 0x03
#define MOBY_U_DIAG_LASTMDS 0x04
#define MOBY_U_DIAG_LASTREPEAT 0x05

//...
// ANW control for channeled ASMs

#define MOBY_CHANNEL_RESET_PARAM_ANW_NO 0x0
#define MOBY_CHANNEL_RESET_PARAM_ANW_DETECT 0x1
#define MOBY_CHANNEL_RESET_PARAM_ANW_CONTROL 0x2

///
// Error and status numbers

#define MOBY_DLL_FEHLER 0x80000000
#define SET_MOBY_ERROR(block,fehler) (MOBY_DLL_FEHLER | block | fehler)

#define MOBY_OK 0x0000

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 109

#define MOBY_ERRB_API 0x10000
#define MOBY_ERRB_TREIBER 0x20000
#define MOBY_ERRB_ASM 0x30000

#define ERR_MACRO(block,nummer) ((long) (MOBY_DLL_FEHLER | block | nummer))

// API error numbers

#define MOBY_ERR_FATAL ERR_MACRO(MOBY_ERRB_API, 0)
#define MOBY_ERR_HANDLE ERR_MACRO(MOBY_ERRB_API, 1)
#define MOBY_ERR_PARAM ERR_MACRO(MOBY_ERRB_API, 2)
#define MOBY_ERR_RESPONSE ERR_MACRO(MOBY_ERRB_API, 3)
#define MOBY_ERR_LAENGE ERR_MACRO(MOBY_ERRB_API, 4)
#define MOBY_ERR_FULL ERR_MACRO(MOBY_ERRB_API, 5)
#define MOBY_ERR_MDSTYP ERR_MACRO(MOBY_ERRB_API, 6)
#define MOBY_ERR_NOHANDLE ERR_MACRO(MOBY_ERRB_API, 7)
#define MOBY_ERR_SYSTEM ERR_MACRO(MOBY_ERRB_API, 8)
#define MOBY_ERR_ABORT ERR_MACRO(MOBY_ERRB_API, 9)
#define MOBY_ERR_NOID ERR_MACRO(MOBY_ERRB_API,10)
#define MOBY_ERR_STILLOPEN ERR_MACRO(MOBY_ERRB_API,11)
#define MOBY_ERR_IMPLABORT ERR_MACRO(MOBY_ERRB_API,12)
#define MOBY_ERR_ALREADYOPEN ERR_MACRO(MOBY_ERRB_API,13)
#define MOBY_ERR_STARTED ERR_MACRO(MOBY_ERRB_API,14)
#define MOBY_ERR_NOTSTARTED ERR_MACRO(MOBY_ERRB_API,15)
#define MOBY_ERR_STATUSPENDING ERR_MACRO(MOBY_ERRB_API,16)
#define MOBY_ERR_NOTSUPPORTED ERR_MACRO(MOBY_ERRB_API,17)

#endif /* MOBYAPIDEFINED */

Header Files 03/05

 MOBY API C-Library
110 (4)J31069-D0137-U001-A5-7618

4.2 Header File – 3964R.H

// header file for the 3964R/Lauf driver
//
// Version 4.40 / 14. June 2002
//
// This header file has to be included into any program source code,
// that intends to use the driver API

///
// definition of the export and import interface

#ifdef __3964R_TREIBER_IMPL
#define DLLROUTINE __declspec(dllexport)
#else
#define DLLROUTINE __declspec(dllimport)
#endif

#define DLLDECL __cdecl

/*
#ifdef __cplusplus
#define DLLROUTINE extern "C"
#else
#define DLLROUTINE extern
#endif
*/

#include "windows.h"

///
// type definitions

typedef signed short int comInt;
typedef comInt comHandle_t;

typedef struct _devConfig_t
{
 int baud,databit,paritaet,stopbit;
 int prot;
 int sswh,swh,zt,qt,to,uew;
 int empf,send;
 BOOL drop;
 int priority;
} devConfig_t;

typedef devConfig_t *devConfig_p;

typedef void (CALLBACK *comNotifCall)(int event, int status, comHandle_t handle,
int userID);

///
// interface for the 3964R driver
// mostly adopted from the ECCOM interface (available for Win 3.1)

#if defined(__cplusplus)
extern "C"
{
#endif

DLLROUTINE comInt DLLDECL ComOpen (LPCSTR com_name, int read_number,
 int write_number, HWND hwnd);
DLLROUTINE comInt DLLDECL ComRead (comHandle_t com_handle,
 void FAR *read_data, int read_number,
 long option);
DLLROUTINE comInt DLLDECL ComWrite (comHandle_t com_handle,
 void FAR *write_data, int write_number,
 long option);
DLLROUTINE comInt DLLDECL ComEnableEvent (comHandle_t com_handle, int com_event,
 int user_id, int msg);
DLLROUTINE comInt DLLDECL ComDisableEvent (comHandle_t com_handle, int com_event);
DLLROUTINE comInt DLLDECL ComGetNotify (WPARAM wParam, LPARAM lParam,
 int FAR *user_id_ptr, int FAR *event_ptr,
 int FAR *state_ptr, int FAR *handle_ptr);

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 111

DLLROUTINE comInt DLLDECL ComClose (comHandle_t com_handle);
DLLROUTINE comInt DLLDECL ComGetVersion (char FAR *ver_string);
DLLROUTINE comInt DLLDECL ComString (char FAR *errs, comInt error, comInt typ);
DLLROUTINE comInt DLLDECL ComGetReadState (comHandle_t com_handle);
DLLROUTINE comInt DLLDECL ComGetWriteState (comHandle_t com_handle);

// New extension to the API (beyond the old ECCOM interface)
// -> configuration
// -> option to use callback based event handler instead of Windows messages

DLLROUTINE comInt DLLDECL ComReadConfig (LPCSTR devName, devConfig_p conf);
DLLROUTINE comInt DLLDECL ComWriteConfig (LPCSTR devName, devConfig_p conf,
 BOOL force);
DLLROUTINE comInt DLLDECL ComSetNotification (comHandle_t com_handle,
 comNotifCall p_callback, int userID);

#if defined(__cplusplus)
}
#endif

// comment:
//
// This interface is adopted from the ECCOM driver package available for
// Windows 3.1. However, the calling semantics have changed slightly for
// some calls. This is necessarry to accomodate the modified driver
// specification.

///
// Error and status codes (according to ECCOM)

#define COM_OK 0x0000

#define COM_ST_FREE 0x0000
#define COM_ST_BUSY 0x0001
#define COM_ST_SUCCESS 0x0003

#define COM_ST_ERROR 0x8000
#define COM_ST_2MANY 0x8001
#define COM_ST_NO_CON 0x8002
#define COM_ST_NO_TRA 0x8004
#define COM_ST_2SMALL 0x8008
#define COM_ST_BCCERR 0x8010
#define COM_ST_TIMCON 0x8020
#define COM_ST_TIMTRA 0x8040
#define COM_ST_TIMQUI 0x8080
#define COM_ST_SCC_BR 0x8100
#define COM_ST_SCC_PY 0x8200
#define COM_ST_SCC_FR 0x8400
#define COM_ST_SCC_OR 0x8800
#define COM_ST_SNDRCV 0x9000
#define COM_ST_SYSERR 0xC000

#define COM_DLL_ERROR 0xA000
#define COM_HANDLE_FALSE 0xA002
#define COM_NO_MEMORY 0xA003
#define COM_2MANY 0xA004
#define COM_2SMALL 0xA005
#define COM_DOS_ERROR 0xA006
#define COM_ALREADY_OPEN 0xA007
#define COM_NOT_OPEN 0xA008
#define COM_NO_TIMER 0xA009
#define COM_ERROR_WRITE_OLD 0xA00A
#define COM_COM_BUSY 0xA00B
#define COM_ERROR_POSTMESSAGE 0xA00C
#define COM_CLOSE_ERROR 0xA00D
#define COM_FREE_ERROR 0xA00E
#define COM_CLFR_ERROR 0xA00F
#define COM_UNKNOWN_ID 0xA010
#define COM_UNKNOWN_EVENT 0xA011
#define COM_OPEN_ERROR 0xA012
#define COM_READ_ERROR 0xA013
#define COM_WRITE_ERROR 0xA014
#define COM_SNR_ERROR 0xA015
#define COM_CNF_ERROR 0xA016
#define COM_WRITE_NAK 0xA017
#define COM_WRITE_WRONG 0xA018

Header Files 03/05

 MOBY API C-Library
112 (4)J31069-D0137-U001-A5-7618

#define COM_DDFINI_ERROR 0xA064
#define COM_FRDPAR_ERROR 0xA065
#define COM_FOPPAR_ERROR 0xA066
#define COM_FRDINI_ERROR 0xA067
#define COM_STRINI_ERROR 0xA068
#define COM_OPENSTR_ERROR 0xA069

#define COM_NO_CONFIG 0xE001
#define COM_REGISTRY 0xE002
#define COM_NO_HANDLE 0xE003

#define COM_ERROR 0xFFFF

///
// further constants

#define COM1 "COM1"
#define COM2 "COM2"
#define COM3 "COM3"
#define COM4 "COM4"

#define COM_NO_OPTION 0L

#define COM_OPEN_STD_BUF -1

#define COM_GET_EVENT 0x0000
#define COM_READ_EVENT 0x0001
#define COM_WRITE_EVENT 0x0002

#define COM_STR 0
#define COM_STR_OPEN 1
#define COM_STR_RDWR 2
#define COM_STR_STATE 3
#define COM_STR_EVENT 4
#define COM_STR_VERSION 5
#define COM_STR_CLOSE 6

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 113

4.3 Header File – MOBY_API_T.H

// Headerfile for the MOBY API TCP
//
// Version 1.00 / 22. August 2003
//
// Include this header file in any MOBY application
// Please make sure that the include path is set correctly

#ifndef MOBY_API_T_H//MOBYAPIDEFINED
#define MOBY_API_T_H//MOBYAPIDEFINED

///
// Includes

#include <windows.h>
//#include <winsock.h>

///
// Im- and Export definitions for prototypes

#ifdef DLLROUTINE
#undef DLLROUTINE
#endif

#ifdef DLLDECL
#undef DLLDECL
#endif

#ifdef __MOBY_DLL_IMPL
#define DLLROUTINE __declspec(dllexport)
#else
#define DLLROUTINE __declspec(dllimport)
#endif

#define DLLDECL WINAPI

///
// Type definitions

//...
// general definitions

typedef unsigned int mobyHandle_t;
typedef unsigned int uInt;
typedef int mobyType_t;

//...
// error and status type

typedef struct mobyStatus_d
{
 unsigned int errorCode : 5;
 unsigned int eccDone : 1;
 unsigned int diagBatMDS507 : 1;
 unsigned int batMDS : 1;
 unsigned int anwMDS : 1;
 unsigned int busyASM : 1;
 unsigned int dummy : 21;
 unsigned int error : 1;
} mobyStatus_t;
typedef struct mobyStatusU_d
{
 mobyStatus_t status;
 unsigned char s_info;
 unsigned char hw_type;
 unsigned short int hw_ver;
 unsigned short int boot_ver;
 unsigned char fw_type;
 unsigned short int fw_ver;

Header Files 03/05

 MOBY API C-Library
114 (4)J31069-D0137-U001-A5-7618

 unsigned char drv_type;
 unsigned short int drv_ver;
 unsigned char interf;
 unsigned char baud;
 unsigned char dili;
 unsigned char mtag;
 unsigned char fcon;
 unsigned char ftim;
 unsigned char sema;
 unsigned char ant;
 unsigned char standby;
 unsigned char anw;
} mobyStatusU_t;

typedef struct mobyStatusMDS_d
{
 mobyStatus_t status;
 unsigned long int mds_no;
 unsigned char mds_type;
 unsigned long int strz;
 unsigned short int ssmz;
 unsigned short int mcod;
 unsigned short int rbld;
 unsigned char sleep_time;
} mobyStatusMDS_t;

typedef union mobyErr_d
{
 long error;
 mobyStatus_t status;
} mobyErr_t;

//...
// definitions for moby_diagnose (for MOBY U only)

#define MOBY_U_MAXFUNC 33

typedef struct funcDesc_d
{
 unsigned char data[7];
} funcDesc_t;

typedef struct mobyDiagnoseCall_d
{
 mobyStatus_t status;
 unsigned int num;
 funcDesc_t functions[MOBY_U_MAXFUNC];
} mobyDiagnoseCall_t;

#define MOBY_U_MAXERR 233

typedef unsigned char errDesc_t;

typedef struct mobyDiagnoseErr_d
{
 mobyStatus_t status;
 unsigned int num;
 errDesc_t error[MOBY_U_MAXERR];
} mobyDiagnoseErr_t;
#define MOBY_U_MAXMDS 24

typedef struct mdsDesc_d
{
 unsigned char data[4];
} mdsDesc_t;

typedef struct mobyDiagnoseMDS_d
{
 mobyStatus_t status;
 unsigned int num;
 mdsDesc_t mds[MOBY_U_MAXMDS];
} mobyDiagnoseMDS_t;

typedef struct mobyDiagnoseRepeat_d
{
 unsigned int num;
} mobyDiagnoseRepeat_t;

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 115

typedef union mobyDiagnose_d
{
 mobyDiagnoseCall_t diagCall;
 mobyDiagnoseErr_t diagErr;
 mobyDiagnoseMDS_t diagMDS;
 mobyDiagnoseRepeat_t diagRepeat;
} mobyDiagnose_t;

typedef struct mobyUreset_d
{
 unsigned char standby;
 unsigned char param;
 unsigned char option1;
 unsigned char dili;
 unsigned short mtag;
 unsigned char fcon;
 unsigned char ftim;
} mobyUreset_t;

typedef union mobyParameters_d
{
 mobyUreset_t Ureset;
} mobyParameters_t;

//...
// structure for multitag GET

#define MOBY_MTGET_MAXMDS 12
#define MOBY_MTGET_MAXDATA 250

typedef struct mobyMtget_data_d
{
 uInt mds;
 unsigned char data[MOBY_MTGET_MAXDATA];
} mobyMtget_data_t;

typedef struct mobyMtget_d
{
 int numMds;
 mobyMtget_data_t mobyMtget_data[MOBY_MTGET_MAXMDS];
} mobyMtget_t;

typedef void (CALLBACK *moby_UnexpCallback_t) (unsigned char ch1,
 unsigned char ch2,
 unsigned char ch3, int laenge);
typedef void (CALLBACK *moby_AnwCallback_t) (unsigned char anwstatus);

///
// Interface of the MOBY API

#if defined(__cplusplus)
extern "C"
{
#endif

DLLROUTINE mobyErr_t DLLDECL moby_open (char *comStr, int channel,
 mobyHandle_t *handle,
 unsigned short sPort);
DLLROUTINE mobyErr_t DLLDECL moby_close (mobyHandle_t handle);
DLLROUTINE mobyErr_t DLLDECL moby_start (mobyHandle_t handle,
 mobyType_t type, BOOL eccOn,
 mobyParameters_t *param,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_stop (mobyHandle_t handle);
DLLROUTINE mobyErr_t DLLDECL moby_statusU (mobyHandle_t handle,
 mobyStatusU_t *stat,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_diagnose (mobyHandle_t handle,
 unsigned char mode,
 mobyDiagnose_t *diagnose,
 HANDLE sync, mobyErr_t *err);

Header Files 03/05

 MOBY API C-Library
116 (4)J31069-D0137-U001-A5-7618

DLLROUTINE mobyErr_t DLLDECL moby_s_read (mobyHandle_t handle, uInt *idData,
 uInt mdsAddress,
 unsigned char *data, uInt length,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_getID (mobyHandle_t handle,
 mobyMtget_t *getInfo, int address,
 uInt length, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_write (mobyHandle_t handle, uInt *idData,
 uInt mdsAddress,
 unsigned char *data, uInt length,
 HANDLE sync, mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_init (mobyHandle_t handle, uInt *idData,
 unsigned char setVal,
 uInt mdsLength, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_unexpect (mobyHandle_t handle,
 moby_UnexpCallback_t cbroutine);
DLLROUTINE mobyErr_t DLLDECL moby_anw (mobyHandle_t handle,
 moby_AnwCallback_t cbroutine);
DLLROUTINE mobyErr_t DLLDECL moby_version (int *major, int *minor);
DLLROUTINE mobyErr_t DLLDECL moby_s_end (mobyHandle_t handle, uInt *idData,
 unsigned char mode, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_setANT (mobyHandle_t handle,
 unsigned char mode, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_statusMDS (mobyHandle_t handle, uInt *idData,
 mobyStatusMDS_t *statusMDS,
 unsigned char mode,
 unsigned char cweek,
 unsigned char year, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_writeOTP (mobyHandle_t handle, uInt *idData,
 unsigned char *data, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_readOTP (mobyHandle_t handle, uInt *idData,
 unsigned char *data, HANDLE sync,
 mobyErr_t *err);
DLLROUTINE mobyErr_t DLLDECL moby_s_copy (mobyHandle_t handle, uInt idData1,
 int addr1, uInt idData2, int addr2,
 uInt len, HANDLE sync,
 mobyErr_t *err);

#if defined(__cplusplus)
}
#endif

///
// Moby channels

#define MOBY_CHANNEL1 1
#define MOBY_CHANNEL2 2
#define MOBY_CHANNEL3 3
#define MOBY_CHANNEL4 4

#define MOBY_NOCHANNEL 0

///
// Moby types

#define MOBY_Ua 5 /* MOBY U with small set of parameters */
#define MOBY_Ub 6 /* MOBY U with large set of parameters */
#define MOBY_Uc 7 /* MOBY U with multitag support */

///
// Constants for specific moby types

#define MOBY_CHANNEL_PARAM_RESET {{{{0}},{{0}},{{0}}}}

//...
// working modes for channeled ASMs

// general

#define MOBY_CHANNEL_ALL_RESETPARAM_MODE_IGNORE 0x0 // all ASMs

03/05 Header Files

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 117

// for MOBY U

#define MOBY_U_DIAG_LASTCALL 0x02
#define MOBY_U_DIAG_LASTERR 0x03
#define MOBY_U_DIAG_LASTMDS 0x04
#define MOBY_U_DIAG_LASTREPEAT 0x05

//...
// ANW control for channeled ASMs

///
// Error and status numbers

#define MOBY_DLL_FEHLER 0x80000000
#define SET_MOBY_ERROR(block,fehler) (MOBY_DLL_FEHLER | block | fehler)

#define MOBY_OK 0x0000

#define MOBY_ERRB_API 0x10000
#define MOBY_ERRB_TREIBER 0x20000
#define MOBY_ERRB_ASM 0x30000

#define ERR_MACRO(block,nummer) ((long) (MOBY_DLL_FEHLER | block | nummer))

// API error numbers

#define MOBY_ERR_FATAL ERR_MACRO(MOBY_ERRB_API, 0)
#define MOBY_ERR_HANDLE ERR_MACRO(MOBY_ERRB_API, 1)
#define MOBY_ERR_PARAM ERR_MACRO(MOBY_ERRB_API, 2)
#define MOBY_ERR_RESPONSE ERR_MACRO(MOBY_ERRB_API, 3)
#define MOBY_ERR_LAENGE ERR_MACRO(MOBY_ERRB_API, 4)
#define MOBY_ERR_FULL ERR_MACRO(MOBY_ERRB_API, 5)
#define MOBY_ERR_MDSTYP ERR_MACRO(MOBY_ERRB_API, 6)
#define MOBY_ERR_NOHANDLE ERR_MACRO(MOBY_ERRB_API, 7)
#define MOBY_ERR_SYSTEM ERR_MACRO(MOBY_ERRB_API, 8)
#define MOBY_ERR_ABORT ERR_MACRO(MOBY_ERRB_API, 9)
#define MOBY_ERR_NOID ERR_MACRO(MOBY_ERRB_API,10)
#define MOBY_ERR_STILLOPEN ERR_MACRO(MOBY_ERRB_API,11)
#define MOBY_ERR_IMPLABORT ERR_MACRO(MOBY_ERRB_API,12)
#define MOBY_ERR_ALREADYOPEN ERR_MACRO(MOBY_ERRB_API,13)
#define MOBY_ERR_STARTED ERR_MACRO(MOBY_ERRB_API,14)
#define MOBY_ERR_NOTSTARTED ERR_MACRO(MOBY_ERRB_API,15)
#define MOBY_ERR_STATUSPENDING ERR_MACRO(MOBY_ERRB_API,16)
#define MOBY_ERR_NOTSUPPORTED ERR_MACRO(MOBY_ERRB_API,17)

#define MOBY_ERR_WRONTIPADR ERR_MACRO(MOBY_ERRB_API,18)
#define MOBY_ERR_INVALIDSOCK ERR_MACRO(MOBY_ERRB_API,19)
#define MOBY_ERR_CONNECT ERR_MACRO(MOBY_ERRB_API,20)
#define MOBY_ERR_KENNUNG ERR_MACRO(MOBY_ERRB_API,21)

#endif /* MOBYAPIDEFINED */

Sample Application 03/05

 MOBY API C-Library
118 (4)J31069-D0137-U001-A5-7618

5 Sample Application

To make it even easier to get started with the implementation of a user application,
we have also included a sample application in source code in addition to the
C-library for each type of link (serial and Ethernet). The sample applications can
also be used as an executable program.

5.1 Sample Application in Source Code for Serial Link to PC
The sample application is an executable program for the SLA 81 on the ASM 824
as READ system with MDS F4xx. The ASM 824 must be run on the COM2
interface, and the SLA 81 must use channel 4 of the ASM 824.
In addition, the source code of this sample application can be used as the READ
system for SLA 81 on ASM 824 with MDS F1xx or SLA 71 on ASM 724 by adding
the appropriate define instruction.

// Example code for MOBY API
// Simple open/start/read/stop/close/stop sequence

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>
#include <moby_api.h>

mobyHandle_t comdev1;
typedef DWORD MDS_address;

typedef unsigned char zeichen;

// default test: MOBY F and MDS F4xx

// enable the next line to test with MOBY E
//#define USE_MOBY_E

// enable the next line to test with MOBY F and MDS F1xx
//#define USE_MDS_F1xx

// callback routine for unexpected telegrams
// we don't expect any -> i.e. error -> i.e. stop communication

void __stdcall unex_cb(unsigned char c1,unsigned char c2, unsigned char c3, int len)
{
 printf("Got unexpected telegramm\n");
 moby_stop(comdev1);
}

// start and synchronize read request

int MOBY_read(int comdev,FAR void* data, MDS_address MDS, int length, void (*(CALLBACK
status(int))))
{
 HANDLE sync;
 mobyErr_t err1,err2;

 sync=CreateEvent(NULL,FALSE,FALSE,NULL);

 err1=moby_read(comdev, MDS, (zeichen *) data, length, sync, &err2);
 if (err1.error==MOBY_OK)
 {
 WaitForSingleObject(sync,INFINITE);
 err1.error=(volatile int) err2.error;
 }

 CloseHandle(sync);

 return err1.error;

03/05 Sample Application

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 119

}

// start and synchronize reset/start

int MOBY_reset(int comdev, void (*(CALLBACK status(int))))
{
 HANDLE sync;
 mobyErr_t err1,err2;
 mobyParameters_t param=MOBY_CHANNEL_PARAM_RESET;
 // This initialization should be done to avoid
 side effects

 sync=CreateEvent(NULL,FALSE,FALSE,NULL);

 // As param has been initialized, only necessary fields have to be set now

#ifdef USE_MOBY_E
 param.channelasm.param.fields.mode=MOBY_CHANNEL_E_RESETPARAM_MODE;
#else
 param.channelasm.param.fields.anw=MOBY_CHANNEL_RESET_PARAM_ANW_DETECT;
#ifdef USE_MDS_F1xx
 param.channelasm.param.fields.mode=MOBY_CHANNEL_F_RESETPARAM_MODE_MDS_F1xx;
#else
 param.channelasm.param.fields.mode=MOBY_CHANNEL_F_RESETPARAM_MODE_MDS_F4xx;
#endif
 param.channelasm.opt.fields.clear_led=1;
#endif

 // change the parameters in the following call to adapt to
 // other MOBY types

#ifdef USE_MOBY_E
 err1=moby_start(comdev, MOBY_E, FALSE, ¶m, sync, &err2);
#else
 err1=moby_start(comdev, MOBY_F, FALSE, ¶m, sync, &err2);
#endif

 if (err1.error==MOBY_OK)
 {
 WaitForSingleObject(sync,INFINITE);
 err1.error=(volatile int) err2.error;
 }

 CloseHandle(sync);

 return err1.error;
}

void main()
{
 int err2,major,minor;
 mobyErr_t err,merr2;
 unsigned char buf[300];

 // request the version

 err=moby_version(&major,&minor);

 printf("Moby DLL Version: %i.%i\n",major, minor);

 // open COM interface

 printf("Open\n");

 // adapt the line below to open other interface
 // and to use other channels

 err=moby_open("COM2",MOBY_CHANNEL4,&comdev1);
// err=moby_open("COM3",MOBY_NOCHANNEL,&comdev1);

 // do reset/start

 printf("done - now doing start after open returned with %x\n",err.error);

 err.error=MOBY_reset(comdev1,NULL);

 printf("done\n");

Sample Application 03/05

 MOBY API C-Library
120 (4)J31069-D0137-U001-A5-7618

 printf("Opened device1: %x with error %x\n",comdev1,err.error);

 // register callback for reset telegramms

 moby_unexpect(comdev1,unex_cb);

 // read

 printf("Read Nr, length %i: ",4);
#ifdef USE_MDS_F1xx
 err2=MOBY_read(comdev1,&buf,0,5,NULL);
#else
#ifdef USE_MOBY_E
 err2=MOBY_read(comdev1,&buf,0,4,NULL);
#else
 err2=MOBY_read(comdev1,&buf,64,4,NULL);
#endif
#endif
 printf("Result : %x - %02x %02x %02x %02x\n",err2,buf[0],buf[1],buf[2],buf[3]);

 // stop

 merr2=moby_stop(comdev1);
 printf("Stop : %x \n",merr2.error);

 // close

 merr2=moby_close(comdev1);
 printf("Close: %x \n",merr2.error);

}

03/05 Sample Application

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 121

5.2 Sample Application in Source Code for Link to Ethernet
A sample application in source code - TEST.CPP (VC++ 6.0) - is available for a
simple READ application for the SLG U92 on the ASM 480. Before the application
is compiled, the IP address "157.163.170.2" predefined in TEST.CPP must be
adjusted to the actual IP address.

// Example code for MOBY API T
// Simple open/start/read/stop/close/stop sequence

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>
#include "moby_api_t.h"

mobyHandle_t comdev1;
typedef DWORD MDS_address;

typedef unsigned char zeichen;

// callback routine for unexpected telegramms
// we don't expect any -> i.e. error -> i.e. stop communication

void __stdcall unex_cb(unsigned char c1,unsigned char c2, unsigned char c3, int len)
{
 printf("Got unexpected telegramm\n");
 moby_stop(comdev1);
}

// start and synchronize read request

int MOBY_read (int comdev,FAR void* data, MDS_address MDS, int length,
 void (*(CALLBACK status(int))))
{
 HANDLE sync;
 mobyErr_t err1,err2;
 unsigned int mdsID[2];
 unsigned int adress=0;
 mdsID[0] = 0;

 sync = CreateEvent(NULL,FALSE,FALSE,NULL);

 err1 = moby_s_read(comdev,&mdsID[0],adress,(zeichen *) data,length,sync,&err2);
 if(err1.error==MOBY_OK)
 {
 WaitForSingleObject (sync,INFINITE);
 err1.error = (volatile int) err2.error;
 }

 CloseHandle (sync);

 return err1.error;
}

// start and synchronize reset/start

int MOBY_reset(int comdev, void (*(CALLBACK status(int))))
{
 HANDLE sync;
 mobyErr_t err1,err2;

 mobyParameters_t ResetParam;
 unsigned int moby_str;
 // This initialization should be done to avoid side effects

 sync = CreateEvent(NULL,FALSE,FALSE,NULL);

 ResetParam.Ureset.standby = 0x00;
 ResetParam.Ureset.param = 0x26;

Sample Application 03/05

 MOBY API C-Library
122 (4)J31069-D0137-U001-A5-7618

 ResetParam.Ureset.option1 = 0x00;
 ResetParam.Ureset.dili = 0x05;
 ResetParam.Ureset.mtag = 0x0002;
 ResetParam.Ureset.fcon = 0x00;
 ResetParam.Ureset.ftim = 0x00;
 moby_str = MOBY_Uc;

 err1 = moby_start(comdev, moby_str, FALSE, &ResetParam, sync, &err2);

 if (err1.error==MOBY_OK)
 {
 WaitForSingleObject (sync,INFINITE);
 err1.error = (volatile int) err2.error;
 }

 CloseHandle(sync);

 return err1.error;
}

void main()
{
 int err2,major,minor;
 mobyErr_t err,merr2;
 unsigned char buf[300];
 unsigned short port_nr = 8000;
 #define IP_ADRESSE "157.163.170.2"

 // request the version

 err = moby_version(&major,&minor);

 printf("Moby DLL Version: %i.%i\n",major, minor);

 // open COM interface

 printf("Open\n");

 // adapt the line beloew to open other interface
 // and to use other channels

 err = moby_open(IP_ADRESSE,0,&comdev1,port_nr);

 // do reset/start

 printf("done - now doing start after open returned with %x\n",err.error);

 err.error = MOBY_reset(comdev1,NULL);

 printf("done\n");

 printf("Opened device1: %x with error %x\n",comdev1,err.error);

 // register callback for reset telegramms

 moby_unexpect(comdev1,unex_cb);

 // read

 printf("Read Nr, length %i: ",4);

 err2 = MOBY_read(comdev1,&buf,64,4,NULL);

 printf("Result : %x - %02x %02x %02x %02x\n",err2,buf[0],buf[1],buf[2],buf[3]);

 // stop

 merr2 = moby_stop(comdev1);
 printf("Stop : %x \n",merr2.error);

 // close

03/05 Sample Application

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 123

 merr2 = moby_close(comdev1);
 printf("Close: %x \n",merr2.error);

}

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
124 (4)J31069-D0137-U001-A5-7618

A Description of Communication to the
ASM 424/724/824 with 3964R Protocol

This appendix is written for users who want to place their application directly on the
operating system or driver level and do not want to use the MOBY API C-library.

For more information on the 3964R driver level, see also the user's manual on
using the 3964R protocol under Windows NT 4.0/95 (included as PDF file on the
MOBY software CD).

A.1 General
The ASM 424/724/824 interface modules use a Baud rate of 9.6 kBaud,
19.2 kBaud or 38.4 kBaud. The Baud rate is recognized automatically.
The data format consists of 1 start bit, 8 data bits, 1 parity bit (parity supplements
to give an odd total number of ones), and 1 stop bit.
After the module is turned on (startup), the ASM attempts to send a startup
telegram during which the 3 different Baud rates are tested up to two times.
When the telegram is sent successfully, that Baud rate is considered "recognized."
If not, the ASM waits for a telegram (STX) and then acknowledges with DLE during
the second STX when the Baud rate is found. The Baud rate cannot be changed
during operation.

 Notice

When a telegram cannot be sent due to a transmission error, all four channels are
reset (i.e., the commands are deleted).

A.2 Protocol Settings
The ASM is permanently parameterized to master when an initialization conflict
occurs.
The 3964R driver of the ASM uses the following settings.

• Attempts to establish the connection: 3

• Attempts to make block transmission: 6

• Acknowledgment delay time: 2 sec

• Character delay time: 220 msec

• Block wait time: 10 sec

• Wait time for subsequent telegrams to be sent: 10 to 20 msec

The type of interface can be set with the parameterization switch (8).
 Up: RS 422
 Down: RS 232

The other parameters are transferred with the RESET command.

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 125

A.3 LEDs on the 3964R Interface Side of the ASM
Table A-1 LEDs on the ASM

LED Remarks

ON (green) Power-on LED
(ASM is powered.)

ACT (green) This LED flashes once briefly to indicate that a command has been
executed successfully (not for status commands).

SF/BF (red) • Continuously on during startup
• Off when telegram is correctly received or sent
• Flashes (once to twice per second) when a send or receive error

occurs (telegram could not be transmitted in acc. w. 3964R
protocol).

A.4 General Communication Procedure
The ASM will not accept a command unless the previous command has been
concluded. The only exceptions are the RESET and status commands. These two
commands may occur simultaneously. RESET and status commands are
processed immediately.

 Notice

When two status commands are sent in succession but there is no
acknowledgment response message from the first command, only one
acknowledgment for the last status command is output. With the RESET
command, you should always wait for the acknowledgment before sending a new
command.

A.5 Overview of Commands
Table A-2 List of the commands

Command Code Description

RESET 00 Resets both the active command and all other unprocessed
commands in the buffer of the affected channel (command
termination). Default setting of the ASM mode.
In detail
• Operation with or without ANW or presence control
• MOBY operating mode (E/F or I)

READ
WRITE
INIT

50
51
18

Read data from MDS (40: with ECC)
Write data to MDS (41: with ECC)
Initialize data memory (1A: with ECC)

STATUS 01 Status query of ASM
• Presence. Command active.
• Status of ASM

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
126 (4)J31069-D0137-U001-A5-7618

Table A-2 List of the commands

Command Code Description

NEXT 07 NEXT command
The SLG has finished processing the command for the MDS in its
field. The next MDS entering the field is processed with command
started after NEXT. Prerequisite: presence control is activated.

 Notice

ECC mode can only be used with MOBY I with the ASM 424.

General telegram layout

Byte
Telegram header

0 1 2 3 n

CHN AB Command Stat. Command-specific data

Channel number (CHN)
The channel (i.e., the read/write device (SLG) or the read/write antenna (SLA)) is coded on
the ASM with byte 0 = "CHN" in the telegram.
- Channel number = 0: Basic module of ASM
- Channel number = 1, 2, 3 or 4: SLG 1/SLA 1 to SLG 4/SLA 4

The command-specific data are discussed on
the next few pages.
Max. data length is 237 bytes.

Status byte
The status byte must always be 00 for command output.

Commands
The implemented commands are shown on the next few pages.

Number of bytes
Amount of user data in telegram (= no. of characters without AB byte und CHN)
Minimum: AB = 2
Maximum: AB = 239 (depends on length of specified data blocks in command)

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 127

A.6 Telegram Layout of the Commands/Acknowledgments
to/from the ASM

The maximum length of the telegram is 241 bytes, including the 7-byte telegram
header.

Data format

When not otherwise noted, all numbers are specified in hex format.

Channel number - CHN

Byte 0 = CHN of the telegram contains the channel on the ASM. The channel is
actually the read/write device (SLG) or the read/write antenna (SLA).

• Channel number = 0: Basic module of the ASM

• Channel number = 1, 2, 3 or 4: SLG 1/SLA 1 to SLG 4/SLA 4

A.6.1 Startup Telegram

Byte
0 1 2 3

CHN 02 00 0F

CHN 00 Hex = Basic module of the ASM

The startup telegram arrives as an automatic "acknowledgment" after the hardware
starts up. The CHN is 0 since it is only sent once by the "total device" and not by
each channel.

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
128 (4)J31069-D0137-U001-A5-7618

A.6.2 RESET

Command

Byte
0 1 2 3 4 5 6

CHN 05 00 00 ABTA PARAM Option 1

7 6 5 4 3 2 1 0

Res. Res. Res. Res. TST_ON Time-
out

CLR_LED Res.

Bit
7 6 5 4 3 2 1 0

ANWSTEU Res. MOBY oper. mode

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
ABTA Setting of the scanning time for MOBY I-Long-Range with ASM 424
PARAM ANWSTEU
 000 = Operation without ANW control, without ANW monitoring
 001 = Operation without ANW control, with ANW monitoring 1)
 010 = Operation with ANW control and ANW monitoring via the
 firmware 2)

1) Operating modes with MDS F1xx (MOBY F, read only) must always be parameterized
with ANW monitoring.

2) ANW control only applies to ASM 424. Do not use for ASM 824 with MDS F1xx and
ASM 724.

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 129

 MOBY operating mode

 The following MOBY operating modes can be set on your ASM.

 MOBY I, ASM 424:

 1 = MOBY I/MOBY E (SLG 7x)
 2 = Reserved
 4 = MOBY I with MDS 507
 8 = Reserved for MOBY I dialog
 9 = Reserved for MOBY V
 A = MOBY F: with MDS F1xx
 B = MOBY F: with MDS F4xx
 C = MOBY F: with MDS F2xx

 MOBY E, ASM 724:

 0 = All parameters in the RESET telegram are
 ignored (default setting).
 1 = MOBY E (SLA 71)

 MOBY F, ASM 824:

 0 = All parameters in the RESET telegram are
 ignored (default setting).
 A = MOBY F (SLA 81) and MDS F1xx (read only)
 B = MOBY F (SLA 81) and MDS F4xx (read/write)

Option 1

 TST_ON = 1:

 ASM responds with error if field interference on SLG
 (only for ASM 424).

 Timeout = 1:

 ASM responds with error if no MDS is in its field
 (only for ASM 424).

 CLR_LED = 1:

 ERROR_LED (channel-specific) is cleared.

 Notice

The parameters in the RESET telegram are only used for the first telegram after
power ON (i.e., parameter changes do not take effect until the power is turned off
and on again).
All channels must be parameterized with the same MDS. Mixing is not possible.

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
130 (4)J31069-D0137-U001-A5-7618

Acknowledgment

Byte
0 1 2 3 4 5 6

CHN 05 00 Status High Low In res. 1

or

0 1 2 3

CHN 02 00 Status

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
Status MOBY status
High Firmware status in ASCII
Low Firmware status in ASCII
Res. 1 Reserved

A.6.3 WRITE

Command

Byte
0 1 2 3 4 5 6 Starting with 7

CHN AB 51*) 00 ADR H ADR L Length Data

*) With ECC: Command = 41
CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
AB Number of subsequent characters in the telegram
ADR H Start address on MDS (more significant portion of address)
ADR L Start address on MDS (less significant portion of address)
Length Length of the data block (max. of 234 bytes)
Data Data to be written

Acknowledgment

Byte
0 1 2 3

CHN 02 51*) Status

*) With ECC: Command = 41
CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
Status MOBY status

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 131

A.6.4 READ

Command

Byte
0 1 2 3 4 5 6

CHN 05 50*) 00 ADR H ADR L Länge

*) Mit ECC: Befehl = 40
CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
ADR H Start address on MDS (more significant portion of address)
ADR L Start address on MDS (less significant portion of address)
Length Length of the data to be read (max. of 234 bytes)

Acknowledgment

Byte
0 1 2 3 4 5 6 7 to ...

CHN AB 50*) Status ADR H ADR L Length Data

*) With ECC: Command = 40
CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
AB Number of subsequent characters in the telegram
Status MOBY status
A ADR H Start address on MDS (more significant portion of address)
ADR L Start address on MDS (less significant portion of address)
Length Length of the data block (data which were read)
Data Data which were read

A.6.5 INIT

Command

Byte
0 1 2 3 4 5 6 7

CHN 06 18*) 00 INIT pattern 00 ADR H ADR L

*) With ECC: Command = 1A

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
132 (4)J31069-D0137-U001-A5-7618

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
INIT pattern During initialization, the MDS is written with the value
 "INIT pattern."
ADR H Amount of memory to be allocated (more significant
 portion of the address)
ADR L Amount of memory to be allocated (less significant
 portion of the address)

Acknowledgment

Byte
0 1 2 3

CHN 02 18*) Status

*) With ECC: Command = 1A
CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
Status MOBY status

A.6.6 STATUS

Command

Byte
0 1 2 3

CHN 02 01 00

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4

Acknowledgment

Byte
0 1 2 3 4 5 6 7

CHN 06 01 Status ANW/Busy In
res.

In
res.

In
res.

7 6 5 4 3 2 1 0
0 0 0 0 0 0 ANW Busy

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
Status ERR_LED indicator
ANW Data memory in field
Busy Command being processed
Res. 00 Hex (n reserve)

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 133

A.6.7 NEXT

Command

Byte
0 1 2 3

CHN 02 07 00

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4

Acknowledgment

Byte
0 1 2 3

CHN 02 07 Status

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
Status MOBY status

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
134 (4)J31069-D0137-U001-A5-7618

A.7 MOBY F – Special Features in Read-Only Mode
(Only ASM 824/SLA 81 with MDS F1xx)

The RESET, STATUS and READ commands are only permitted in a certain format
for read-only use.
As with READ/WRITE operation, only one command is possible at a time but
RESET and STATUS can always be issued. After a startup and RESET command,
all data memories are read and stored in the telegram buffer (maximum of
50 telegrams) if not already fetched with a READ command.
When the buffer is full, all other data memories are ignored. The last telegram
contains an error message.

When a new data memory (with different data) is read, the next telegram can be
fetched from the ASM.

Command

READ Command to trigger send of ASM 824

Byte
0 1 2 3 4 5 6

CHN 05 50 00 00 00 05

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4

Acknowledgment

Byte
0 1 2 3 4 5 6 7 8 9 10 11

CHN 0A 50 Status HR/ANW Counter 05 ID number

HR/ANW

Bit
7 6 5 4 3 2 1 0
0 0 0 0 0 0 HR ANW

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 135

CHN 01, 02, 03 or 04 Hex = SLG 1/SLA 1 to SLG 4/SLA 4
Status MOBY status
HR Historical read. There was just enough time to generate
 the data (e.g., due to high-speed data memory).
ANW 0 = MDS not present
 1 = MDS present
Counter Is incremented by 1 for each new telegram
 (00 to FF Hex)
ID number Identification number of MDS F1xx (5 bytes)

The next command is not a normal READ command as described in A.6.4. This
command is used to control data flow. The data were acquired automatically with
the ASM and must be read in with this command.
This command can be used to fetch an existing read-only telegram. If no telegram
exists, the ASM sends one as soon as a new one arrives.

A.8 Mobile Data Memories

Types of memories

Mobile data memories with different memories are available to the user.

Table A-3 Types and sizes of memory

System Memory Size
Normal

Memory Size
with ECC

Memory Type MDS Type

MOBY I 62 bytes 42 bytes* RAM Ex.: MDS 114

MOBY I 128 bytes 112 bytes* EEPROM Ex.: MDS 213 E

MOBY I 2 Kbytes 1,7 bytes* RAM Ex.: MDS 302

MOBY I 8 Kbytes 7 Kbytes* FRAM Ex.: MDS 401

MOBY I 32 Kbytes 28 Kbytes* RAM Ex.: MDS 506

MOBY E 752 bytes –1 EEPROM MDS E6xx

MOBY F 5 bytes –1 Fixed code MDS F1xx

MOBY F 32 bytes –1 EEPROM MDS F2xx

MOBY F 256 bytes –1 EEPROM MDS F4xx

* Net capacity in ECC mode

1 ECC mode cannot be used with MOBY E/F.

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
136 (4)J31069-D0137-U001-A5-7618

The following table lists the address areas of the individual MDS models.

Table A-4 Address area of MDS

Hexadecimal, 16 Bits Fixed Point Number, 16 Bits Addressing
Normal With ECC Normal With ECC

MOBY I 62-byte data memory with RAM
Start address 0000 0000 +0 +0
End address 003D 0029 +61 +41
MOBY I 128-byte data memory with EEPROM
Start address 0000 0000 +0 +0
End address 007F 006F +127 +111
MOBY I 2-Kbyte data memory with RAM
Start address 0000 0000 +0 +0
End address 07FC 06F1 +2044 +1777
MOBY I 8-Kbyte data memory with EEPROM
Start address 0000 0000 +0 +0
End address 1FFC 1BF1 +8188 +7153
MOBY I 32-Kbyte data memory with RAM
Start address 0000 0000 +0 +0
End address 7FFC 6FF1 +32764 +28657
MOBY E 752-byte data memory with EEPROM
Start address 0000 –1 +0 –1
End address 02EF –1 751 –1
Read serial number for MOBY E *
Start address 1FF0 –1 8176 –1
Length 4 –1 4 –1
MOBY E 5-byte MDS F1xx (fixed code)
Start address 0000 –1 +0 –1
End address 0004 –1 +4 –1
MOBY F 32-byte MDS F2xx EEPROM
Start address 0010 –1 +16 –1
End address 001F –1 +31 –1
ID no. (can only be read as a whole)
Start address 0000 –1 +0 –1
Length 4 –1 +4 –1
MOBY F 192-byte MDS F4xx EEPROM
Start address 0040 –1 +64 –1
End address 00FF –1 +255 –1
ID no. (can only be read as a whole)
Start address 0000 –1 +0 –1
Length 4 –1 +4 –1

* Data representation in DATDB: 1st byte = MSB, 4th byte = LSB

1 ECC mode cannot be used with MOBY E/F.

The data memories are addressed as shown in the table.

03/05 Description of Communication to the ASM 424/724/824 with 3964R Protocol

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 137

A.9 Status and Error Codes (ASM 424, ASM 724 and
ASM 824)

Table A-5 Status and error codes of ASM 424/724/824

Error Code
(Hex)

Flashing LED
(per Channel)

Description

00
–
01

02

03
04
05
06
07
08
09
0A
0B
0C
0D

0E
0F
10
12
13
14

15
16
17
18
19

1A
1E
1F

00
01
02

02

03
04
05
06
07
08
09
10
11
12
13

14
01
16
18
19
20

21
22
23
–
25

–
30
–

No error
Same as 0F
Presence error. Command only partially executed.
With ASM 824 (MDS F1xx): 2 data memories in field at once
Presence error. Data memory wasn't processed.
Timeout for command execution (MDS on field boundary).
Error in connection to SLG/SLA
MDS RAM error (not initialized)
Unknown command
Field interference on SLG (MOBY F SLA 81: INIT error)
Too many sending errors
CRC send error
CRC error during acknowledgment receipt (only during initialization)
MDS refuses initialization.
Timeout during initialization
MDS memory cannot be written.
Address error on MDS
MDS on boundary of field
ECC error
Startup message
NEXT command not possible or not permitted
Internal firmware error
Watchdog
Firmware error (checksum error telegram, stack overflow, change in
program code, timeout for channel connections, and so on)
Parameterization error
Connection configuration unsuitable
Protocol error
Only RESET command permitted
Buffer overflow, entire telegram buffer full.
Previous command(s) active.
PROFIBUS or 3964 error (bus link was interrupted)
Telegram structure is wrong.
Command or commands were terminated with RESET.

20
(binary

xx1x xxxx)

32 Not an error message!
Only occurs when enabled ECC driver is being used. It indicates that
the driver has detected a 1-bit error and corrected it. The read or
write data are okay.

Description of Communication to the ASM 424/724/824 with 3964R Protocol 03/05

 MOBY API C-Library
138 (4)J31069-D0137-U001-A5-7618

Table A-5 Status and error codes of ASM 424/724/824

Error Code
(Hex)

Flashing LED
(per Channel)

Description

40
(binary

x1xx xxxx)

64 Not an error message!
This bit is usually always set. It is reserved for indication of the status
of a 2nd battery on the MDS

80
(binary

1xxx xxxx)

128 Not an error message!
Battery voltage of the MDS has dropped below the threshold value.
We recommend replacing the MDS immediately.
With MDS types with EEPROM, this status bit is always set.
With SINUMERIK, the battery message does not have the ID “F” in
IDENTIFICATION. To detect a weak battery, the “fnr” field can be
evaluated at some point in the total system.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 139

B Programming the SLG U92 Based on the Operating
System or 3964R Driver

For whom is this appendix written?

This appendix is written for users who place their applications directly on the
operating system or the 3964R driver level and do not use the MOBY API C library.
Additional information on the 3964R driver level is available from the user's guide
"3964R protocol under Windows NT 4.0/95" (see PDF file on the "Software MOBY"
CD) /07/.

 Notice

For applications which are not based on the MOBY API C interface and are not
directly based on the 3964R driver of the MOBY API C library, an appropriate
3964R driver for the target hardware (serial link) must be used which meets the
requirements of the SLG U92. For the behavior of the 3964R driver on the
SLG U92, see MOBY U documentation /06/.

B.1 General Information on Communication of the SLG U92
MDS and system functions are available for communication with the mobile data
memories (MDS U313, MDS U315, MDS U524, MDS U525 and MDS U589) and
for control of the system behavior of the SLG U92. Management of the data on the
mobile data memories (MDS U313, MDS U315, MDS U524, MDS U525 and
MDS U589) uses byte addressing with absolute addresses (“normal addressing”).

You can choose between three versions of the system control.

1. MOBY I call-compatible

− Read/write distance up to 1.5 m ⇒ Range limited to 1.5 m
 (fixed setting)

− Bunch/multitag = 1 ⇒ Bunch set to 1 (fixed)

− Without proximity switch operation
The SLG U92 does not evaluate the digital inputs on the service interface.

− Without SLG synchronization

2. MOBY I call-compatible with expanded commands

− Read/write distance of 0.5 m up to maximum of 3.5 m, can be set in
increments of 0.5 m.

− Bunch/multitag = 1 ⇒ Bunch set to 1 (fixed)

− Proximity switch possible

− SLG synchronization possible

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
140 (4)J31069-D0137-U001-A5-7618

3. MOBY U whith multitag processing

− Read/write range adjustable in 0.5-m increments from 0.5 m to maximum
3.5 m

− Bunch/multitag ≤ 12

− Proximity switch possible

− SLG synchronization possible

You can select which version by making the appropriate setting in the RESET
system telegram (see appendices B.2.1.2.1, B.3.1.2.1 and B.4.1.2.1).

The functions are sent to the SLG U92 as telegrams with the 3964R protocol.
An acknowledgment with or without user data is returned by the SLG U92 for
each telegram received. In addition, messages may arrive non-cyclically from the
SLG U92.
The telegrams are always comprised of a telegram header and, depending on the
function, no user data or up to 251 bytes of user data. A telegram can have up to
254 bytes.

Telegram structure
 Telegram Header User Data (Max. of 251 Bytes)

Byte 0 1 2 3 to max. of 253 bytes

 AB Com-
mand

Status User data

 [hex] [hex] [hex] [hex]

AB = Telegram length in bytes without the AB byte
Command = Function ID
Status = Status field "Status"
User data = Parameters to write data to MDS, …,

read data from MDS, diagnostic data, status data, …

The 3964R driver must be configured as shown below for communication with the
SLG U92.

• Data bits 8

• Stop bits 1

• Parity Odd

• Send buffer 255

• Receive buffer 255

• Baud rate 19200, 38400, 57600 or 115200 baud

• SLG U92 Slave with automatic baud rate recognition

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 141

B.2 MOBY I Call-Compatible (Version 1)

B.2.1 Telegrams to the SLG U92

MDS functions

• INIT Initialize MDS

• WRITE Write data block

• READ Read data block

System functions

• RESET Reset SLG

• SLG-STATUS SLG status/diagnosis

• L-UEB Cable monitoring

The RESET command resets the SLG U92 to a defined state. You determine how
the SLG U92 system reacts by specifying the parameters of this command.

Telegram overview

 Telegram Header User Data (Max. of 251 Bytes)
Byte 0 1 2 3 to max. of 253 bytes

Telegrams AB Com-
mand

Status User data

(Function) [hex] [hex] [hex] [hex]

INIT 06 03 00 Date 00 Length

WRITE ABL 01 00 Address Length Data

READ 05 02 00 Address Length

RESET 05 00 00 Standby Param. 00

SLG-STATUS 06 04 00 Mode 00 00 00

L-UEB 02 FF 00

AB = Telegram length in bytes without the AB byte
ABL = Variable telegram length in bytes without the AB byte,
 depending on the length parameter ⇒ 5 + length

 Notice

The data are shown in the telegram overview and in the following individual
telegram presentations in hexadecimal format (hex).

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
142 (4)J31069-D0137-U001-A5-7618

B.2.1.1 MDS Functions

The MDS functions INIT, READ and WRITE read or write data from/to the MDS.

B.2.1.1.1 INIT Function

The INIT function is used to initialize with a bit pattern the MDS which is located in
the antenna field of the SLG U92. It is an "untargeted" initialization call since the
MDS is not identified with the ID number.

Byte 0 1 2 3 4 5 6

Parameter 06 03 00 Date 00 Length

Date Binary value Bit pattern 00 hex up to FF hex, with which the data carrier is
to be initialized (written).

Length Binary value 32768 = Length in bytes of the data memory
MDS U524, MDS U525 and MDS U589

 2048 = Length in bytes of the MDS U313 and
MDS U315 data memory

The INIT command may only be used for the SLG U92 and only when no
command is queued on the SLG U92. The antenna must be on. Otherwise an error
message is generated.
When more than one MDS is located in zone 1, the command is terminated with an
error.
When no MDS is located in zone 1, the command waits until an MDS enters zone 1
or the RESET command arrives.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 143

B.2.1.1.2 WRITE Function

The WRITE function is used to write data to the MDS which is located in the
antenna field of the SLG U92. It is an "untargeted" write call since the MDS is not
identified by the ID number.

Byte 0 1 2 3 4 5 6 Up to 253

Parameter ABL 01 00 Address Length Data

ABL Binary value 1 to 253 = Telegram length in bytes without the AB byte
Address Binary value 0 to maximum length of the user data minus 1.

Start address on the MDS for the data to be written. The
address plus data length must be less than the end address.

 - 16 = FFF0 hex
Start address of the OTP memory

Length Binary value 1 to 248 = Length of the user data to be written. Start
address + length must be less than value of
the memory length of the MDS in bytes
minus 1.

 16 = Length of the OTP memory
Data Binary info User data to be written to the MDS

The WRITE command may only be used for the SLG U92 and then only when no
command is queued on the SLG U92. The antenna must be on. Otherwise an error
message is generated.
When more than one MDS is located in zone 1, the command is terminated with an
error.
When no MDS is located in zone 1, the command waits until an MDS enters zone 1
or a RESET command arrives.

 Notice

The 128 bits of user information in the OTP memory are addressed with the start
address –16 (FFF0 hex). The OTP memory can only be written once. The write
command must transfer all 128 bits of information at one time. A second write
attempt is rejected with an error message.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
144 (4)J31069-D0137-U001-A5-7618

B.2.1.1.3 READ Function

The READ function is used to read data from the MDS which is located in the
antenna field of the SLG U92. It is an "untargeted" command since the MDS is not
identified by the ID number.

Byte 0 1 2 3 4 5

Parameter 05 02 00 Address Length

address Binary value 0 to maximum length of user data minus 1.
Start address of the data to be read from the MDS. The
address plus data length must be less than the end address.

 - 16 = FFF0 hex
Start address of the OTP memory

length Binary value 1 to 248 = Length of the user data to be read. Start
address + length must be less than the value
of the memory length of the MDS in bytes
minus 1.

 16 = Length of the OTP memory

The READ command may only be used for the SLG U92 and then only when no
command is queued on the SLG U92. The antenna must be on. Otherwise an error
message is generated.
When more than one MDS is located in zone 1, the command is terminated with an
error.

When no MDS is located in zone 1, the command waits until an MDS enters zone 1
or a RESET command arrives.

 Notice

The 128 bits of user information in the OTP memory are addressed with the start
address –16 (FFF0 hex). The 128 bits of user information are written to the MDS
with the WRITE command. With the READ command, all 128 bits of information
must be requested at one time.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 145

B.2.1.2 System Functions

B.2.1.2.1 RESET Function

The RESET command is used to reset the SLG U92 to a defined state. You
determine system behavior of the SLG U92 by specifying the necessary
parameters.

Standard settings:

• Read/write distance up to 1.5 m

• Bunch/multitag = 1

• Without proximity switches. The SLG U92 does not evaluate the digital inputs
on the service interface.

Byte 0 1 2 3 4 5

Parameter 05 00 00 Standby Param. 00

 ⇓

Bit 7 6 5 4 3 2 1 0

Standby Binary value Time in which the MDS is to remain in standby after an
executed MDS command. This means that, during this time,
the MDS remains "awake" so that the next command which
must arrive within this standby time can be processed without
delay. The value doesn't specify the time directly. Instead it
gives a 7 msec factor.
For example, a value of 10 means 10 x 7 msec = 70 msec.

 0 = No standby time. After each communication
with the MDS, the MDS "goes to sleep" again.

 1 to 200 = 7 msec to 1400 msec
Param. Bit pattern Parameter
 Bit 7 to 6 = 0
 Bit 5 =

=
0 Operation without presence check
1 Operation with presence check
 (see ANW-MELD acknowledgment
 telegram)

 Bit 4 = 0 In reserve
 Bit 3 to 0 = 5 hex Operation mode MOBY U ⇒

 MOBY I-commands without
 expansions

The RESET command may always be sent to the SLG U92 and is executed
immediately. If another command is waiting, it is terminated.
After execution of the RESET command, the antenna of the SLG U92 is turned on.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
146 (4)J31069-D0137-U001-A5-7618

B.2.1.2.2 SLG Status Function (SLG Status/Diagnosis)

This function is used to poll the status of the SLG U92 or to read the diagnostic
data from the SLG U92.

Byte 0 1 2 3 4 5 6

Parameter 06 04 00 Mode 00 00 00

Mode Binary value 01 hex = SLG status
 02 hex = SLG diagnosis I:

Request last n function calls
 03 hex = SLG diagnosis II:

Request last n error messages
 04 hex = SLG diagnosis III:

Request last n identified MDSs

The SLG-STATUS command may always be sent to the SLG U92 and is executed
immediately. When a command such as READ, WRITE or INIT is queued on the
SLG U92, it is retained.

B.2.1.2.3 L-UEB Function

This function is used to monitor the connection to the SLG U92 at the logical level.

Byte 0 1 2

Parameter 02 FF 00

The L-UEB command may always be sent to the SLG U92 and is answered
immediately. If no return message is received, the connection to the SLG U92 is
disconnected (due to a malfunction). When a command such as READ, WRITE or
INIT is queued on the SLG U92, it is retained.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 147

B.2.2 Acknowledgments/Messages from the SLG U92

Telegram overview

 Telegram Header User Data (Max. of 251 Bytes)
Byte 0 1 2 3 to max. of 253 bytes

Acknowledg-
ment/message

AB
[hex]

Com-
mand
[hex]

Status
[hex]

User data
[hex]

INIT 02 03 00

WRITE 02 01 00

READ ABL 02 00 Address Length Data

RESET 05 00 00 FW 00

SLG-STATUS
(SLG status)

1B 04 00 S info Status information

SLG-STATUS
(Diagnosis I)

ABL 04 00 S info Diagnostic information

SLG-STATUS
(Diagnosis II)

ABL 04 00 S info Diagnostic information

SLG-STATUS
(Diagnosis III)

ABL 04 00 S info Diagnostic information

L-UEB 02 FF 05

Startup 02 00 0F

ANW-MELD 04 0F 00 00 ANW-S

AB = Telegram length in bytes without the AB byte
ABL = Variable telegram length in bytes without the AB byte, depends
 on the variable user data length

B.2.2.1 Acknowledgments to MDS Functions

B.2.2.1.1 INIT Acknowledgment
Byte 0 1 2

Parameter 02 03 Status

Status Bit pattern For status, see appendix B.6.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
148 (4)J31069-D0137-U001-A5-7618

B.2.2.1.2 WRITE Acknowledgment
Byte 0 1 2

Parameter 02 01 Status

Status Bit pattern For status, see appendix B.6.

B.2.2.1.3 READ Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 4 5 6 to max. of 253

Parameter ABL 02 Status Address Length Data

ABL Binary value 1 to 253 = Telegram length in bytes without AB byte
Status Bit pattern 00 hex
Address Binary value 0 to value: Memory length in bytes minus 1

-16 (FFF0 hex) after OTP memory is read
Length Binary value 1 to 248 = Length of user data read
Data Binary info User data read by MDS

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2 3 4 5

Parameter 05 02 Status Address Length

Status Bit pattern For status, see appendix B.6.
Address Binary value Start address on the MDS as specified in the function call
Length Binary value Length of the data to be read from the MDS as specified in the

function call

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 149

B.2.2.2 Acknowledgments to System Functions

B.2.2.2.1 RESET Acknowledgment
Byte 0 1 2 3 4 5

Parameter 05 00 Status FW
status

00

 ⇓

Byte VersH VersL

Status Bit pattern For status, see appendix B.6.
VersH Binary value 00 hex to FF hex = Firmware status (high)
VersL Binary value 00 hex to FF hex = Firmware status (low)
 Example: 01 (high) and 0A (low) = version 1.10

B.2.2.2.2 SLG-STATUS Acknowledgment (SLG Status)

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 4 5 6 7 8 9 10 11

Parameter 1B 04 Status S info HW HW-V Url-V FW FW-V

 12 13 14 15 16 17 18 19 20 21 22

 TR TR-V SS Baud 00 00 00 dili mtag fcon

 23 24 25 26 27

 ftim Sema ANT Standby ANW

Status Bit pattern 00 hex
S info Binary value 01 hex = SLG status mode
HW ASCII HW version
HW-V Binary value HW version

00 hex to FF hex
00 hex to FF hex

=
=

Version (high byte)
Version (low byte)

Url-V Binary value Bootstrap loader version
 00 hex to FF hex

00 hex to FF hex
=
=

Version (high byte)
Version (low byte)

FW ASCII format FW version
FW-V Binary value FW version

00 hex to FF hex
00 hex to FF hex

=
=

Version (high byte)
Version (low byte)

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
150 (4)J31069-D0137-U001-A5-7618

TR ASCII format Driver version
‘1’ = 3964R

TR-V Binary value Driver version
 00 hex to FF hex

00 hex to FF hex
=
=

Version (high byte)
Version (low byte)

SS Binary value RS 232 / RS 422
 01 hex = RS 422
 02 hex = RS 232
Baud Binary value Baud rate
 01 hex = 19.2 Kbaud
 02 hex = 38.4 Kbaud
 03 hex = 57.6 Kbaud
 05 hex = 115.2 Kbaud
dili Binary value Distance limit
 05 hex = 0.5 m
 0A hex = 1.0 m
 0F hex = 1.5 m
 14 hex = 2.0 m
 19 hex = 2.5 m
 1E hex = 3.0 m
 23 hex = 3.5 m
mtag Binary value Number of MDSs in the antenna field which can be processed

(multitag / bunch)
= 1

fcon Binary value Proximity switch (field ON control)
 00 hex = Mode 1: No prox. switches
 01 hex = Mode 2: 1 or 2 prox. switches

The proximity switches are OR-linked. The
field is on while the 1st and/or 2nd proximity
switch is on. Otherwise off.

 02 hex = Mode 3: 1 or 2 prox. switches
The 1st proximity switch turns the field on and
the 2nd turns the field off.

 When two proximity switches exist and one proximity switch is
parameterized, the field is automatically turned off when the
2nd proximity switch does not switch within this proximity switch
time.
If the 2nd proximity switch does not exist, one proximity switch
time must be parameterized. After this time, the field is
automatically turned off.

ftim Binary value Proximity switch time (field ON time)
 0 = No proximity time (see proximity switch mode)
 1 to 255 = 1 to 255 seconds
Sema Binary value Semaphore control (synchronization with SLG)
 01 hex = Yes
 02 hex = No

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 151

ANT Binary value Status of antenna
 01 hex = Antenna on
 02 hex = Antenna off
Standby Binary value Time after an executed MDS command for standby of MDS
 0 = No standby. After each time communication

with the MDS occurs, the MDS "goes to
sleep." The MDS cannot be read or written
until after the "sleep time."

 1 to 200 = 7 msec to 1400 msec
ANW Binary value Presence (see RESET)
 00 hex = Operation without presence check
 01 hex = Operation with presence check (see

ANW-MELD acknowledgment)

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 04 Status

Status Bit pattern For status, see appendix B.6.

B.2.2.2.3 SLG-STATUS Acknowledgment (SLG Diagnosis I)

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 4 5 to 4 + 7 to 4 + 7 * n

Parameter ABL 04 Status S info n 1st FKT (n = 1) nth FKT (n = max.)

ABL Binary value Telegram length in bytes without AB byte
4 + 7 * n 0 < n < 33
4 to max. of 236

Status Bit pattern 00 hex
S info Binary value 02 hex = SLG diagnosis I mode
n Binary value Number of functions called last

0 to 33
1st FKT Binary value 1st function: Function data with length of 7 bytes
„ „ „
nth FKT Binary value nth function: Function data with length of 7 bytes

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 04 Status

Status Bit pattern For status, see appendix B.6.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
152 (4)J31069-D0137-U001-A5-7618

B.2.2.2.4 SLG-STATUS Acknowledgment (SLG Diagnosis II)

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 4 4 + 1

Parameter ABL 04 Status S info n 1st FM (n = 1)

 4 + n

 nth FM (n = max.)

ABL Binary value Telegram length in bytes without AB byte
4 + n 0 < n < 233
4 to max. of 238

Status Bit pattern 00 hex
S info Binary value 03 hex = SLG diagnosis II mode
n Binary value Number of error messages that occurred last

0 to 233
1st FM Binary value 1st error message (number) – 1 byte
„ „ „
nth FM Binary value nth error message (number) – 1 byte

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 04 Status

Status Bit pattern For status, see appendix B.6.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 153

B.2.2.2.5 SLG-STATUS Acknowledgment (SLG Diagnosis III)

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 4 5 to 4 + 4

Parameter ABL 04 Status S info n 1st MDS no. (n = 1)

 to 4 + 4 * n

 nth MDS no. (n = max.)

ABL Binary value Telegram length in bytes without AB byte
4 + 4 * n 0 < n < 24
4 to max. of 100

Status Bit pattern 00 hex
S info Binary value 04 hex = SLG diagnosis III mode
n Binary value Number of MDSs identified last

0 to 24
1st MDS no. Binary value 1st MDS number (4 bytes)
„ „ „
nth MDS no. Binary value nth MDS number (4 bytes)

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 04 Status

Status Bit pattern For status, see appendix B.6.

B.2.2.2.6 L-UEB Acknowledgment
Byte 0 1 2

Parameter 02 FF 05

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
154 (4)J31069-D0137-U001-A5-7618

B.2.2.3 Messages

B.2.2.3.1 Startup Message
Byte 0 1 2

Parameter 02 00 0F

The SLG U92 sends a startup telegram after the SLG U92 is powered up.

B.2.2.3.2 ANW-MELD Message
Byte 0 1 2 3 4

Parameter 04 0F Status 00 ANW-S

Status Bit pattern For status, see appendix B.6
ANW-S Binary value Presence status = Number of MDSs in the field (zone 1)

0 to 12

When the "presence check" bit is set in the RESET telegram, the SLG U92 sends a
telegram with the number of MDSs in the field each time "presence" changes in the
field (zone 1). When one MDS leaves the field at the same time as another MDS is
entering the field, 2 ANW-MELD messages are sent. If several MDSs enter the
field simultaneously, each MDS generates an ANW-MELD message. The same
applies when the field is exited.

The presence message is sent asynchronously by the SLG U92.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 155

B.3 MOBY I Call-Compatible (Version 2)

B.3.1 Telegrams to the SLG U92

MDS functions

• INIT Initialize MDS

• WRITE Write data block

• READ Read data block

• MDS-STATUS MDS status/diagnosis

System functions

• RESET Reset SLG

• SLG-STATUS SLG status/diagnosis

• SET-ANT Turn antenna on/off

• END Conclude communication with MDS

• REPEAT Repeat last command

• L-UEB Line monitoring

The RESET command is used to reset the SLG U92 to a defined state. You
determine the reaction of the SLG U92 by setting the applicable parameters.

Telegram overview

 Telegram Header User Data (Max. of 251 Bytes)
Byte 0 1 2 3 to max. of 253 bytes

Telegram AB Com-
mand

Status User data

(Function) [hex] [hex] [hex] [hex]

INIT 06 03 00 Date 00 Length

WRITE ABL 01 00 Address Length Data

READ 05 02 00 Address Length

MDS-STATUS 05 0B 00 Mode Cweek Year

RESET 0A 00 00 Standby Param. 00 dili 01 fcon ftim

SLG-STATUS 06 04 00 Mode 00 00 00

SET-ANT 03 0A 00 Mode

END 03 08 00 Mode

REPEAT 03 0D 00 Mode

L-UEB 02 FF 00

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
156 (4)J31069-D0137-U001-A5-7618

AB = Telegram length in bytes without the AB byte
ABL = Variable telegram length in bytes without the AB byte,
 depending on the length parameter ⇒ 5 + length

 Notice

The data in the telegram overview and the following individual presentations are
shown in hexadecimal (hex) format.

B.3.1.1 MDS Functions

The MDS functions INIT, WRITE and READ are used to read or write data from/to
the MDS. The MDS function MDS-STATUS is used to poll the status and
diagnostic data of the MDS.

B.3.1.1.1 INIT Function

See appendix B.2.1.1.1.

B.3.1.1.2 WRITE Function

See appendix B.2.1.1.2.

B.3.1.1.3 READ Function

See appendix B.2.1.1.3.

B.3.1.1.4 MDS-STATUS Function

This function is used to obtain the status and diagnostic data of the MDS that is
located in the antenna field of the SLG U92. It is an "untargeted" call since the
MDS is not identified by the ID number.

Byte 0 1 2 3 4 5

Parameter 05 0B 00 Mode Cweek Year

Mode Binary value 00 hex = Request status and diagnostic data of an MDS
Cweek Binary value 1 to 53 = Current calendar week
Year Binary value 1 to 99 = Current year (starting with 1 for 2001)

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 157

The MDS-STATUS command may only be sent to the SLG U92 when no
command is queued on the SLG U92.

The antenna must be on. Otherwise an error message is generated.
If there is no MDS in zone 1, an error message is sent.
When more than one MDS is located in zone 1, the function is terminated with an
error.
The function sequence depends on the fields "cweek" and "year."

a) If the values in both fields are within the value range, the remaining battery life
 is output in the response.

b) If one of the values is not within the specified value range, remaining battery life
 cannot be calculated and the function is terminated with an error.

c) If both values contain FF hex days, remaining battery life is not calculated and
 battery life is specified in the acknowledgment as FFFF hex.

B.3.1.2 System Functions

B.3.1.2.1 RESET Function

The RESET command is used to reset the SLG U92 to a defined state. You
determine the system reaction of the SLG U92 by specifying the appropriate
parameters.

Standard setting:

• Bunch/multitag = 1
Byte 0 1 2 3 4 5 6 7 8 9 10

Parameter 0A 00 00 Standby Param. 00 dili 00 01 fcon ftim

 ⇓

Bit 7 6 5 4 3 2 1 0

Standby Binary value Standby time which the MDS is to wait after an executed MDS

command. This means that the MDS remains “awake” during
this time so that it will be able to process the next command
which must arrive within this standby time without delay.
The value does not specify the time directly. Instead it gives a
factor of 7 msec (e.g., the value 10 is 10 x 7 msec = 70 msec).

 0 = No standby. The MDS “goes to sleep” after
each communication with the MDS.

 1 to 200 = 7 msec to 1400 msec

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
158 (4)J31069-D0137-U001-A5-7618

Param. Bit pattern Parameter
 Bit 7 to 6 = 0
 Bit 5 =

=
0 No presence check
1 Presence check (see ANW-MELD
 acknowledgment)

 Bit 4 = 0 In reserve
 Bit 3 to 0 = 5 hex Mode MOBY U ⇒ MOBY I

 commands with expansions
dili Binary value Distance limit (zone 1)

The read/write range of the SLG U92 (0.5 to 3 m) can be limited
in increments of 0.5 m. With the maximum distance of 3 m,
3.5 m must the parameterized as the limit.
Together with the range limitation, the sending capacity can be
reduced. For reasons, see the MOBY U manual for
configuration, installation and service.

 Normal sending capacity Reduced sending capacity
 05 hex = 0.5 m 85 hex = 0.5 m
 0A hex = 1.0 m 8A hex = 1.0 m
 0F hex = 1.5 m 8F hex = 1.5 m
 14 hex = 2.0 m 94 hex = 2.0 m
 19 hex = 2.5 m 99 hex = 2.5 m
 1E hex = 3.0 m 9E hex = 3.0 m
 23 hex = 3.5 m A3 hex = 3.5 m
fcon Binary value Proximity switch mode
 00 hex = Mode 1: Without proximity switches or SLG

synchronization
 01 hex = Mode 2: One or two prox. switches

The proximity switches are logically OR-linked.
While the 1st and/or the 2nd proximity switch is
on, the field is on. Otherwise it is off.

 02 hex = Mode 3: One of two prox. switches
The 1st proximity switch turns the field on and
the 2nd proximity switch turns the field off.
If there are two proximity switches and a
proximity switch time is parameterized, the field
is automatically turned off if the 2nd proximity
switch does not activate within this proximity
switch time.
If the 2nd proximity switch is not present, a
proximity switch time must be parameterized.
The field is automatically turned off after this
time expires.

 03 hex = Mode 4: SLG synchronization (see MOBY U
manual for configuration, installation and
service).

ftim Binary value 0 = Proximity switch time = 0 (when proximity
switch mode = 0)

 1 to 255 = Proximity switch time = 1 to 255 seconds

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 159

The RESET command may be sent to the SLG U92 at all times. It is executed
immediately. Any other queued command is terminated.
After the RESET command has been executed, the antenna of the SLG U92 is on.

B.3.1.2.2 SLG-STATUS Function (SLG Status/Diagnosis)

See appendix B.2.1.2.2.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
160 (4)J31069-D0137-U001-A5-7618

B.3.1.2.3 SET-ANT Function

This function is used to turn the antenna of the read/write device (SLG U92) on or
off.

Byte 0 1 2 3

Parameter 03 0A 00 Mode

Mode Binary value 01 hex = Turn on antenna
02 hex = Turn off antenna

The SET-ANT command may only be sent to the SLG U92 when no command is
queued on the SLG U92 yet.
At the time the antenna is turned on, an MDS may already be present in the field of
the SLG U92.
If an MDS is in the field of the SLG U92 when the antenna is turned off, this is
reported as not present if the presence check is being used.

B.3.1.2.4 END Function

This function is used to deactivate the standby time (parameterized in RESET
telegram) of the MDS which was last processed and is still in the field of the
SLG U92. This is done to reduce the current consumption of the MDS.

Byte 0 1 2 3

Parameter 03 08 00 Mode

Mode Binary value 00 hex = Processing with the MDS is concluded. The

MDS will leave the field of the SLG U92
(zone 1). No further communication is to occur
with this MDS.
The parameterized standby time becomes
inactive. The SLG U92 removes the MDS from
the processing list but continues to keep the
MDS in the presence list until the MDS leaves
zone 1.

 01 hex = Pause in processing with the MDS. The MDS
doesn't leave the field of the SLG U92 (zone 1)
yet. At least one further communication with the
MDS is planned. The parameterized standby
time becomes inactive. The SLG U92 continues
to keep the MDS in both the processing list and
the presence list (e.g., READ command, pause
and then WRITE command).

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 161

The END command may only be sent to the SLG U92 after a READ, WRITE or
INIT command. No command may be waiting on the SLG U92. The antenna must
be on. Otherwise an error message is generated.

This command refers to the last processed MDS.
If the MDS has already left zone 1 and mode 01 was selected, an error message is
sent. Similarly, if another MDS enters zone 1 and mode 01 was selected, an error
message is also created.

B.3.1.2.5 REPEAT Function

This function is used to automatically repeat an MDS command (MDS function) or
a command chain (MDS functions) as soon as an MDS enters the antenna field.

• MDS command: INIT, WRITE, READ and MDS-STATUS

 The END command cannot be automatically repeated.

• Command chain: Chain of MDS commands INIT, WRITE, READ and
 MDS-STATUS and the END command

 The END command may only be located at the end of
 the command chain.

This function repeats the MDS command transferred or executed last or the
command chain transferred or executed last.

Byte 0 1 2 3

Parameter 03 0D 00 Mode

Mode Binary value 00 hex = Repeat until this command arrives with
mode = 1

 01 hex = Stop repeating. A started command will be
processed until the end.

The MDS command to be executed or the command chain to be executed must
contain correct parameters or have already been executed once without errors.

If the MDS command or the command chain is to be used on different types of
MDSs (2-kbyte or 32-kbyte), the area to be addressed must be adhered to since
otherwise an 0D hex error might occur.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
162 (4)J31069-D0137-U001-A5-7618

 Notice

When the REPEAT function is triggered after a RESET, SLG-STATUS, SET-ANT
or END command, the function is rejected with an error status.

When automatic command repetition is activated and an SLG-STATUS is called,
the SLG-STATUS is executed asynchronously. Automatic command repetition
remains active.

When an additional MDS enters the antenna field while the command is being
executed, command execution is terminated with error 1D hex. This means that,
with a command chain, every telegram from this time on is acknowledged with an
error status. When only one MDS is still located in the field, the command or the
command chain is executed on this MDS.

When the MDS command or the command chain without the END command was
executed on an MDS located in the antenna field and then another MDS enters the
field, the MDS command or command chain to be executed is terminated with error
1D hex. This means that, with a command chain, each telegram is acknowledged
with an error status.

!

Caution

No check is made to determine whether OTP memory was addressed in a write
command. With automatic repetition, each MDS would receive the same OTP
memory content.

B.3.1.2.6 L-UEB Function

See appendix B.2.1.2.3.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 163

B.3.2 Acknowledgments/Messages from the SLG U92

Telegram overview

 Telegram Header User Data (Max. of 251 Bytes)
Byte 0 1 2 3 to max. of 253

Acknowledg-
ment/message

AB
[hex]

Com-
mand
[hex]

Status
[hex]

User data
[hex]

INIT 02 03 00

WRITE 02 01 00

READ ABL 02 00 Address Length Data

MDS-STATUS 12 0B 00 MDS no. MDS type Sum of subframe
accesses

 Sum of
search
mode
accesses

Σ MCOD Remain.
batt.

ST

RESET 05 00 00 FW 00

SLG-STATUS
(SLG status)

1B 04 00 S info Status information

SLG-STATUS
(diagnosis I)

ABL 04 00 S info Diagnostic information

SLG-STATUS
(diagnosis II)

ABL 04 00 S info Diagnostic information

SLG-STATUS
(diagnosis III)

ABL 04 00 S info Diagnostic information

SET-ANT 02 0A 00

END 02 08 00

REPEAT 02 0D 00

L-UEB 02 FF 05

Startup 02 00 0F

ANW-MELD 04 0F 00 00 ANW-S

AB = Telegram length in bytes without AB byte
ABL = Variable telegram length in bytes without AB byte,
 depending on the variable length of the user data

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
164 (4)J31069-D0137-U001-A5-7618

B.3.2.1 Acknowledgments to MDS Functions

B.3.2.1.1 INIT Acknowledgment

See appendix B.2.2.1.1.

B.3.2.1.2 WRITE Acknowledgment

See appendix B.2.2.1.2.

B.3.2.1.3 READ Acknowledgment

See appendix B.2.2.1.3.

B.3.2.1.4 MDS-STATUS Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 to 6 7 8 to 11 12 13

Parameter 12 0B Status MDS no. MDS
type

Sum of
subframe
accesses

Sum of search
mode
accesses

 14 15 16 17 18

 MCOD Remain. batt. ST

Status Bit pattern 00 hex
MDS no. Binary value Value of 20 to 231
MDS type Binary value 84 Hex = MDS with 2 Kbytes with ECC
 86 Hex = MDS with 32 Kbytes with ECC
Sum of
subframe
accesses

Binary value Sum of subframe accesses,
32 bits

Binary value Sum of search mode accesses Sum of
search
mode
accesses

 16 bits = Upper 16 bits of a 32-bit value indicating the
number of search accesses before the sleep
time changed last

MCOD Binary value Date of last time sleep-time was changed
 16 bits =

=
byte 14: Calendar week
byte 15: Calendar year (without century)

 If the sleep-time has not changed, calendar week 01 and
calendar year 01 are output.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 165

Remain.
batt.

Binary value 16 bits = Remaining battery life as percentage

ST Binary value Sleep-time: Value set on MDS
 0 = 20 msec +/- 6.7 msec
 1 = 40 msec +/- 13.3 msec
 2 = 80 msec +/- 26.7 msec
 3 = 160 msec +/- 53.3 msec
 4 = 320 msec +/- 106.7 msec (default)
 5 = 640 msec +/- 213.3 msec
 6 = 1280 msec +/- 426.7 msec
 7 = 2560 msec +/- 853.3 msec
 Statistically, tolerance range of each MDS is equally

distributed.

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 0B Status

Status Bit pattern For status, see appendix B.6.

B.3.2.2 Acknowledgments to System Functions

B.3.2.2.1 RESET Acknowledgment

See appendix B.2.2.2.1.

B.3.2.2.2 SLG-STATUS Acknowledgment (SLG Status)

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 4 5 6 7 8 9 10 11

Parameter 1B 04 Status S info HW HW-V Url-V FW FW-V

 12 13 14 15 16 17 18 19 20 21 22

 TR TR-V SS Baud 00 00 00 dili mtag fcon

 23 24 25 26 27

 ftim Sema ANT Standby ANW

Status Bit pattern 00 hex

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
166 (4)J31069-D0137-U001-A5-7618

S info Binary value 01 hex = SLG status mode
HW ASCII HW version
HW-V Binary value HW version

00 hex to FF hex
00 hex to FF hex

=
=

Version (high byte)
Version (low byte)

Url-V Binary value Bootstrap loader version
 00 hex to FF hex

00 hex to FF hex
=
=

Version (high byte)
Version (low byte)

FW ASCII format FW version
FW-V Binary value FW version

00 hex to FF hex
00 hex to FF hex

=
=

Version (high byte)
Version (low byte)

TR ASCII format Driver version
‘1’ = 3964R

TR-V Binary value Driver version
 00 hex to FF hex

00 hex to FF hex
=
=

Version (high byte)
Version (low byte)

SS Binary value RS 232 / RS 422
 01 hex = RS 422
 02 hex = RS 232
Baud Binary value Baud rate
 01 hex = 19.2 Kbaud
 02 hex = 38.4 Kbaud
 03 hex = 57.6 Kbaud
 05 hex = 115.2 Kbaud
dili Binary value Distance limit
 Normal sending capacity Reduced sending capacity
 05 hex = 0.5 m 85 hex = 0.5 m
 0A hex = 1.0 m 8A hex = 1.0 m
 0F hex = 1.5 m 8F hex = 1.5 m
 14 hex = 2.0 m 94 hex = 2.0 m
 19 hex = 2.5 m 99 hex = 2.5 m
 1E hex = 3.0 m 9E hex = 3.0 m
 23 hex = 3.5 m A3 hex = 3.5 m
mtag Binary value Number of MDSs in the antenna field which can be processed

(multitag / bunch)
= 1

fcon Binary value Proximity switch (field ON control)
 00 hex = Mode 1: Without proximity switches or SLG

synchronization
 01 hex = Mode 2: 1 or 2 prox. switches

The proximity switches are OR-linked. The
field is on while the 1st and/or 2nd proximity
switch is on. Otherwise off.

 02 hex = Mode 3: 1 or 2 prox. switches
The 1st proximity switch turns the field on and
the 2nd turns the field off.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 167

 03 hex = Mode 4: SLG synchronization (see MOBY U
manual for configuration, installation and
service).

 When two proximity switches exist and one proximity switch is
parameterized, the field is automatically turned off when the
2nd proximity switch does not switch within this proximity switch
time.
If the 2nd proximity switch does not exist, one proximity switch
time must be parameterized. After this time, the field is
automatically turned off.

ftim Binary value Proximity switch time (field ON time)
 0 = No proximity time (see proximity switch mode)
 1 to 255 = 1 to 255 seconds
Sema Binary value Semaphore control (synchronization with SLG)
 01 hex = Yes
 02 hex = No

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
168 (4)J31069-D0137-U001-A5-7618

ANT Binary value Status of antenna
 01 hex = Antenna on
 02 hex = Antenna off
Standby Binary value Time after an executed MDS command for standby of MDS
 0 = No standby. After each time communication

with the MDS occurs, the MDS "goes to
sleep." The MDS cannot be read or written
until after the "sleep time."

 1 to 200 = 7 msec to 1400 msec
ANW Binary value Presence (see RESET)
 00 hex = Operation without presence check
 01 hex = Operation with presence check (see

ANW-MELD acknowledgment)

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 04 Status

Status Bit pattern For status, see appendix B.6.

B.3.2.2.3 SLG-STATUS Acknowledgment (SLG Diagnosis I)

See appendix B.2.2.2.3.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 169

B.3.2.2.4 SLG-STATUS Acknowledgment (SLG Diagnosis II)

See appendix B.2.2.2.4.

B.3.2.2.5 SLG-STATUS Acknowledgment (SLG Diagnosis III)

See appendix B.2.2.2.5.

B.3.2.2.6 SET-ANT Acknowledgment
Byte 0 1 2

Parameter 02 0A Status

Status Bit pattern For status, see appendix B.6.

B.3.2.2.7 END Acknowledgment
Byte 0 1 2

Parameter 02 08 Status

Status Bit pattern For status, see appendix B.6.

B.3.2.2.8 REPEAT Acknowledgment
Byte 0 1 2

Parameter 02 0D Status

Status Bit pattern For status, see appendix B.6

B.3.2.2.9 L-UEB Acknowledgment

See appendix B.2.2.2.6.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
170 (4)J31069-D0137-U001-A5-7618

B.3.2.3 Messages

B.3.2.3.1 Startup Message

See appendix B.2.2.3.1.

B.3.2.3.2 ANW-MELD Message

See appendix B.2.2.3.2.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 171

B.4 MOBY U with Multitag Processing (Version 3)

B.4.1 Telegrams to the SLG U92

MDS functions

• INIT Initialize MDS

• WRITE Write data block

• READ Read data block

• GET Get MDS

• COPY Copy data from MDS 1 to MDS 2

• MDS-STATUS MDS status/diagnosis

System functions

• RESET Reset SLG

• SLG-STATUS SLG status/diagnosis

• SET-ANT Turn antenna on/off

• END End communication with MDS

• REPEAT Repeat last command

• L-UEB Line monitoring

You can use the RESET command to reset the SLG U92 to a defined state. By
setting the parameters you can specify the system behavior of the SLG U92.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
172 (4)J31069-D0137-U001-A5-7618

Telegram overview

 Telegram Header User Data (Max. of 251 Bytes)
Byte 0 1 2 3 to max. of 253

Telegram AB Com-
mand

Status User data

(Function) [hex] [hex] [hex] [hex]

INIT 0A 03 00 MDS no. date 00 length

WRITE ABL 01 00 MDS no. address length data

READ 09 02 00 MDS no. address length

GET 06 0C 00 mode address length

COPY 10 07 00 MDS no. 1 address1 length MDS no. 2 address2

MDS-
STATUS

09 0B 00 MDS no. mode cweek year

RESET 0A 00 00 standby param 00 dili mtag fcon ftim

SLG-
STATUS

06 04 00 mode 00 00 00

SET-ANT 03 0A 00 mode

END 07 08 00 MDS no. mode

REPEAT 03 0D 00 mode

L-UEB 02 FF 00

AB = Telegram length in bytes without the AB byte
ABL = Variable telegram length in bytes without the AB byte,
 depending on the length parameter ⇒ 5 + length

 Notice

The data in the telegram overview and the following individual presentations are
shown in hexadecimal (hex) format.

B.4.1.1 MDS Functions

• You can use the MDS functions INIT, READ and WRITE to read or write data to
and from the MDS.

• You can use the GET function to find out which MDS is located in the field. You
can also read data from this MDS at the same time.

• You can use the COPY function to copy data. You can copy one data area or
the entire contents of a data carrier from one MDS to another.

• You can use the MDS-STATUS function to query status and diagnostic data
from an MDS.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 173

B.4.1.1.1 INIT Function

You can use the INIT function to "non-specifically" or "specifically" initialize with a
bit pattern an MDS that is located in the antenna field of the SLG U92.

• An initialization call is "non-specific" when the call does not include the
identification number of the MDS. Only one MDS may be located in the antenna
field.

• An initialization call is "specific" when the call includes the identification number
of the MDS. More than one MDS may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

Byte 0 1 2 3 to 6 7 8 9 10

Parameter 0A 03 00 MDS no. date 00 length

MDS no. Binary value 0 = When an MDS is located in the antenna

field and a "non-specific" initialization
call is to be executed

 Value 20 to 232 -1 = MDS no. of the MDS that is to be
initialized

Date Binary value Bit pattern (00 hex to FF hex) with which the data carrier is to
be initialized (written)

Length Binary value 32768 = Length in bytes of the data memories
MDS U524, MDS U525 and MDS U589

 2048 = Length in bytes of data memory
MDS U313 and MDS U315

The INIT command may only be used on the SLG U92 when no command is yet
queued on the SLG U92. The antenna must be on. Otherwise an error message is
generated.
If the call is "non-specific" and there is more than one MDS in zone 1, the
command is terminated with an error.
If the call is "non-specific" and there is no MDS in zone 1, the command waits until
an MDS moves into zone 1 or the RESET command arrives.
If the call is "specific" and the MDS with the specified MDS no. is not located in
zone 1, the command is terminated with an error.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
174 (4)J31069-D0137-U001-A5-7618

B.4.1.1.2 WRITE Function

You can use the WRITE function to "non-specifically" or "specifically" write data to
an MDS that is located in the antenna field of the SLG U92.

• A write call is "non-specific" when the call does not include the identification
number of the MDS. Only one MDS may be located in the antenna field.

• A write call is "specific" when the call includes the identification number of the
MDS. More than one MDS may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

Byte 0 1 2 3 to 6 7 8 9 10 to max. of 253

Parameter ABL 01 00 MDS no. address length data

ABL Binary value 1 to 253 = Telegram length in bytes without the
AB byte

MDS no. Binary value 0 = When an MDS is located in the
antenna field and a “non-specific” write
call is to be performed

 Value 20 to 232 -1 = MDS no. of the MDS which is to be
written

Address Binary value 0 to maximum length of user data minus 1
Start address on the MDS of the data to be written
The address plus data length must be less than the end
address..

 - 16 = FFF0 hex
Start address of the OTP memory

Length Binary value 1 to 244 = Length of the user data to be written
 16 = Length of the OTP memory
Data Binary

information

User data to be written to the MDS

The WRITE command may only be used on the SLG U92 when no command is yet
queued on the SLG U92. The antenna must be on. Otherwise an error message is
generated.
If the call is "non-specific" and there is no MDS in zone 1, the command waits until
an MDS moves into zone 1 or the RESET command arrives.
If the call is "non-specific" and there is more than one MDS in zone 1, the
command is terminated with an error.
If the call is "specific" and the MDS with the specified MDS no. is not located in
zone 1, the command is terminated with an error.

 Notice

The 128 bits of user information in the OTP memory are addressed with the start
address –16 (FFF0 hex). The OTP memory can only be written once. The write call
must contain all 128 bits of information. A second attempt to write is rejected with
an error message.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 175

B.4.1.1.3 READ Function

You can use the READ function to "non-specifically" or "specifically" read data from
an MDS that is located in the antenna field of the SLG U92.

• A read call is "non-specific" when the call does not include the identification
number of the MDS. Only one MDS may be located in the antenna field.

• A read call is "specific" when the call includes the identification number of the
MDS. More than one MDS may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

Byte 0 1 2 3 bis 6 7 8 9

Parameter 09 02 00 MDS no. address length

MDS no. Binary value 0 = When an MDS is located in the
antenna field and a "non-specific" read
call is to be performed

 Value 20 to 232 -1 = MDS no. of the MDS which is to be
read

Address Binary value 0 to maximum length of user data minus 1
Start address on the MDS of the data to be read
The address plus data length must be less than the end
address.

 - 16 = FFF0 hex
Start address of the OTP memory

Length Binary value 1 to 244 = Length of the user data to be read
 16 = Length of the OTP memory

The READ command may only be used on the SLG U92 when no command is yet
queued on the SLG U92. The antenna must be on. Otherwise an error message is
generated.
If the call is "non-specific" and there is more than one MDS in zone 1, the
command is terminated with an error.
If the call is "non-specific" and there is no MDS in zone 1, the command waits until
an MDS moves into zone 1 or the RESET command arrives.
If the call is "specific" and the MDS with the specified MDS no. is not located in
zone 1, the command is terminated with an error.

 Notice

The 128 bits of user information in the OTP memory are addressed with the start
address –16 (FFF0 hex). The 128 bits of user information are written to the MDS
with the WRITE command. The read call must request all 128 bits of information.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
176 (4)J31069-D0137-U001-A5-7618

B.4.1.1.4 GET Function

You can use the GET function to determine which MDS is located in the field. At
the same time you can read these data from this MDS.

Byte 0 1 2 3 4 5 6

Parameter 06 0C 00 mode address length

Mode Binary value 0 = Don't read data from MDS.
 1 = Read data from MDS.
Address Binary value 0 = If no data on MDS
 0 to maximum length of user data minus 1

Start address of the data to be read on the MDS
The address plus data length must be less than the end
address..

 - 16 = FFF0 hex
Start address of the OTP memory

Length Binary value 1 to x = Length of the user data to be read
x = (242 – (4 * bunch size)) / bunch size

 16 = Length of the OTP memory

The GET command can only be used on the SLG U92 when no command is yet
queued on the SLG U92. The antenna must be on. Otherwise an error message is
generated.

If there are more MDSs in zone 1 than are permitted by the "bunch" parameter in
the RESET telegram, the number of MDSs are reported without ID numbers in an
error message. The reported MDSs can then not be processed.

 Notice

The 128 bits of user information in the OTP memory are addressed with start
address –16 (FFF0 hex). The 128 bits of user information are written to the MDS
with the WRITE command. A GET call must include all 128 bits of user information.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 177

B.4.1.1.5 COPY Function

You can use the COPY function to "specifically" copy the following data from one
MDS to another.

• A data area or

• The complete contents of a data carrier

This function can be used to write (i.e., copy) data directly via the user program
from one MDS as the source to another MDS as the destination.

Byte 0 1 2 3 bis 6 7 8 9 10 11 bis 14 15 16

Parameter 10 0C 00 MDS no. 1 address1 length MDS no. 2 address2

MDS no. 1 Binary value Value 20 to 232 - 1 = MDS no. of MDS 1 which is to be
copied

Address1 Binary value 0 to maximum length of user data minus 1
Start address of the data to be copied from MDS 1
The address plus data length must be less than the end
address.

Length Binary value Number of bytes to be copied:
1 to maximum length of the data memory

MDS no. 2 Binary value Value 20 to 232 - 1 = MDS no. of MDS 2 to which data are
to be copied

Address2 Binary value 0 to maximum length of the user data minus 1
Start address on MDS 2 starting at which the data are to be
written
The address plus data length must be less than the end
address.

The COPY command may only be used on the SLG U92 when no command is yet
queued on the SLG U92. The antenna must be on. Otherwise an error message is
generated.

If the two specified MDSs are not located in zone 1, the command is terminated
with an error.

 Notice

The OTP memory cannot be copied with the COPY command.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
178 (4)J31069-D0137-U001-A5-7618

B.4.1.1.6 MDS-STATUS Function

You can use this function to "non-specifically" or "specifically" determine the status
and diagnostic data of an MDS which is located in the antenna field of the
SLG U92.

• A read call is "non-specific" when the call does not include the identification
number of the MDS. Only one MDS may be located in the antenna field.

• A read call is "specific" when the call includes the identification number of the
MDS. More than one MDS may be located in the antenna field. You can
determine the identification number of the MDS with the GET function.

Byte 0 1 2 3 to 6 7 8 9

Parameter 09 0B 00 MDS no. mode cweek year

MDS no. Binary value 0 = When an MDS is located in the antenna
field and a "non-specific" status query is to
be performed

 Value 20 to 232 -1 = MDS no. of the MDS which is to be
queried

Mode Binary value 00 hex = Request status and diagnostic data of an
MDS

Cweek Binary value 1 to 53 = Current calendar week
Year Binary value 1 to 99 = Current year (beginning with 1 for 2001)

The MDS-STATUS command may only be issued to the SLG U92 when no
command is queued on the SLG U92.

The antenna must be on. Otherwise an error message is generated.
When the call is "non-specific" and there is no MDS in zone 1, an error message is
generated.
When the call is "non-specific" and there is more than one MDS in zone 1, the
command is terminated with an error.
When the call is "specific" and the MDS with the specified MDS no. is not located in
zone 1, the command is terminated with an error.

The function sequence depends on the fields "cweek" and "year."

a) If the value in both fields is within the value range, the remaining battery life is
 output in the response.

b) If one of the values is outside the specified value range, the remaining battery
 life cannot be calculated and the function is terminated with an error.

c) If both values are "FF hex" days, the remaining battery life cannot be calculated
 and FFFF hex is given in the acknowledgment as the battery life.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 179

B.4.1.2 System Functions

B.4.1.2.1 RESET Function

You can use the RESET command to reset the SLG U92 to a defined state and
specify the system behavior of the SLG U92 by setting the parameters
appropriately.

Standard setting:

• Bunch/multitag = 1

Byte 0 1 2 3 4 5 6 7 8 9 10

Parameter 0A 00 00 standby param 00 dili mtag fcon ftim

 ⇓

Bit 7 6 5 4 3 2 1 0

standby Binary value Standby time during which MDS is to assume standby mode

after an MDS command is executed. This means that the MDS
remains "awake" so that it can process the next command
(which must arrive during this standby time) without delay.
The value specifies a factor of 7 msec and not the direct time.
For instance, the value 10 corresponds to 10 x 7 msec =
70 msec.

 0 = No standby mode. The MDS "goes to sleep"
again after each communication with the MDS.

 1 to 200 = 7 msec to 1400 msec
param Bit pattern Parameter
 Bit 7 to 6 = 0
 Bit 5 =

=
0 Operation without presence
1 Operation with presence
 (see ANW-MELD acknowledgment)

 Bit 4 = 0 In reserve
 Bit 3 to 0 = 6 hex Operating mode MOBY U ⇒ multitag

 processing/bunch
dili Binary value Range limitation (zone 1):

The read/write range of the SLG U92 (0.5 to 3 m) can be limited
in increments of 0.5 m. 3.5 m must be parameterized for the
maximum distance of 3.5 m.
Together with the range limitation, the sending capacity can be
reduced. For reasons, see the MOBY U manual for
configuration, installation and service.

 Normal sending capacity Reduced sending capacity
 05 hex = 0.5 m 85 hex = 0.5 m
 0A hex = 1.0 m 8A hex = 1.0 m
 0F hex = 1.5 m 8F hex = 1.5 m
 14 hex = 2.0 m 94 hex = 2.0 m

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
180 (4)J31069-D0137-U001-A5-7618

 19 hex = 2.5 m 99 hex = 2.5 m
 1E hex = 3.0 m 9E hex = 3.0 m
 23 hex = 3.5 m A3 hex = 3.5 m
mtag Binary value Multitag/bunch
 1 to 12 = Number of MDSs (multitag/bunch) that can be

processed in the antenna field (zone 1).
fcon Binary value Proximity switch mode
 00 hex = Mode 1: Without proximity switches or SLG

synchronization
 01 hex = Mode 2: One or two proximity switches

The proximity switches are logically OR-linked.
While the 1st and/or 2nd proximity switch is/are
on, the field is on. Otherwise it is off.

 02 hex = Mode 3: One or two proximity switches
The 1st proximity switch turns the field on. The
2nd proximity switch turns the field off.
When there are two proximity switches and a
proximity switch time is parameterized, the field
is automatically turned off when the 2nd
proximity switch does not switch within this
proximity switch time.
When there is no proximity switch, a proximity
switch time must be parameterized. After this
time the field is automatically turned off.

 03 hex = Mode 4: SLG synchronization (see MOBY U
manual for configuration, installation and
service).

ftim Binary value 0 = Proximity switch time = 0
(when proximity switch mode = 0)

 1 to 255 = Proximity switch time = 1 to 255 seconds

The RESET command may be used on the SLG U92 at all times. It is executed
immediately. If another command is queued, it is terminated.
After the RESET command is executed, the antenna of the SLG U92 is on.

B.4.1.2.2 SLG-STATUS Function (SLG Status/Diagnosis)

See appendix B.3.1.2.2.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 181

B.4.1.2.3 SET-ANT Function

You can use this function to turn the antenna of the read/write device (SLG U92)
on or off.

Byte 0 1 2 3

Parameter 03 0A 00 mode

ode Binary value 01 hex = Turn on antenna.
02 hex = Turn off antenna.

The SET-ANT command may only be used on the SLG U92 when no command is
yet queued on the SLG U92.
At the time the antenna is turned on, one or more MDSs may already be located in
the field of the SLG U92.
If one or more MDSs are located in the field of the SLG U92 when the antenna is
turned off, each individual MDS is reported as "not present" when presence mode
is being used.

B.4.1.2.4 END Function

You can use this function to reduce MDS power consumption by deactivating the
standby time (parameterized in the RESET telegram) of an MDS located in the
antenna field.

Byte 0 1 2 3 to 6 7

Parameter 07 08 00 MDS no. mode

MDS no. Binary value 0 = When an MDS is located in the antenna

field and a "non-specific" call is to be
performed

 Value 20 to 232 -1 = MDS no. of the MDS for which the
standby time is to be deactivated

Mode Binary value 00 hex = Processing with the MDS is finished.
The MDS will exit the field of the
SLG U92 (zone 1). No more communi-
cation is to take place with this MDS.
The parameterized standby time is
deactivated. The SLG U92 removes the
MDS from the processing list but retains
the MDS in the presence list until the
MDS actually exits zone 1.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
182 (4)J31069-D0137-U001-A5-7618

 01 hex = Processing pause with the MDS. The
MDS doesn't exit the field of the
SLG U92 (zone 1) yet. At least one
other communication with the MDS is
planned.
The parameterized standby time is
deactivated. The SLG U92 retains the
MDS in the processing list and in the
presence list.
Example: READ command, pause, and
then WRITE command

The END command may only be used on the SLG U92 after the READ, WRITE or
INIT command. No command may be queued on the SLG U92. The antenna must
be on. Otherwise an error message is generated.

If there is a "non-specific" call and there is more than one MDS in zone 1 or the last
processed MDS has left zone 1 and mode 01 was selected, the command is
terminated with an error.

When the call is "specific" and the MDS with the specified MDS no. is not located in
zone 1, the command is terminated with an error.

B.4.1.2.5 REPEAT Function

This function is used to automatically repeat an MDS command (MDS function) or
a command chain (MDS functions) as soon as an MDS enters the antenna field.

• MDS command: INIT, WRITE, READ and MDS-STATUS

 The GET, COPY and END commands cannot be
 automatically repeated.

• Command chain: Chain of MDS commands INIT, WRITE, READ and
 MDS-STATUS and the END command

 The END command may only be located at the end of
 the command chain.

This function repeats the MDS command last transferred or executed or the
command chain last transferred or executed.

With the MDS command(s) to be executed, the MDS no. must be preassigned with
zero. No MDS no. may be entered.
The REPEAT function is possible when:

• Bunch = 1 is parameterized and an MDS is located in the antenna field or

• Bunch > 1 is parameterized and only one MDS is located in the antenna field.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 183

Byte 0 1 2 3

Parameter 03 0D 00 mode

Mode Binary value 00 hex = Repeat until this command returns mode = 1
 01 hex = Conclude repetition. An already started

command is processed until the end.

The MDS command to be executed or the command chain to be executed must
contain correct parameters or have already been executed once without errors.

If the MDS command or the command chain is to be used on different types of
MDSs (2-kbyte or 32-kbyte), the area to be addressed must be adhered to since
otherwise an 0D hex error might occur.
Repeat mode is also retained even after an error occurs.

 Notice

When the REPEAT function is triggered after a RESET, SLG-STATUS, SET-ANT,
GET, COPY or END command, the function is rejected with an error status.

When automatic command repetition is activated and an SLG-STATUS is called,
the SLG-STATUS is executed asynchronously. Automatic command repetition
remains active.

When an additional MDS enters the antenna field while the command is being
executed, command execution is terminated with error 1D hex. This means that,
with a command chain, every telegram from this time on is acknowledged with an
error status. When only one MDS is still located in the field, the command or the
command chain is executed on this MDS.

When the MDS command or the command chain without the END command was
executed on an MDS located in the antenna field and then another MDS enters the
field, the MDS command or command chain to be executed is terminated with error
1D hex. This means that, with a command chain, each telegram is acknowledged
with an error status.

Caution

No check is made to determine whether OTP memory was addressed in a write
command. With automatic repetition, each MDS would receive the same OTP
memory content.

B.4.1.2.6 L-UEB Function

See appendix B.2.1.2.3.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
184 (4)J31069-D0137-U001-A5-7618

B.4.2 Acknowledgments/Messages from the SLG U92

Telegram overview

 Telegram Header User Data (Max. of 251 Bytes)
Byte 0 1 2 3 to max. of 253

Acknowledg-
ment/message

AB
[hex]

Com-
mand
[hex]

Status
[hex]

User data
[hex]

INIT 06 03 00 MDS no.

WRITE 06 01 00 MDS no.

READ ABL 02 00 MDS no. address length data

GET ABL 0C 00 Number of
MDSs

1st MDS no. … nth MDS
no.

 address length data MDS 1

 … data MDS n

COPY 0A 07 00 MDS no. 1 MDS no. 2

MDS-STATUS 12 0B 00 MDS no. MDS type Σ Subframe access

 Σ Search
mode

access

Σ MCOD Remain.
batt.

ST

RESET 05 00 00 FW 00

SLG-STATUS
(SLG status)

1B 04 00 S info Status information

SLG-STATUS
(diagnosis I)

ABL 04 00 S info Diagnostic information

SLG-STATUS
(diagnosis II)

ABL 04 00 S info Diagnostic information

SLG-STATUS
(diagnosis III)

ABL 04 00 S info Diagnostic information

SET-ANT 02 0A 00

END 06 08 00 MDS no.

REPEAT 02 0D 00

L-UEB 02 FF 05

Startup 02 00 0F

ANW-MELD 04 0F 00 00 ANW-S

AB = Telegram length in bytes without the AB byte
ABL = Variable telegram length in bytes without the AB byte,
 depending on the variable length of the user data

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 185

B.4.2.1 Acknowledgments to MDS Functions

B.4.2.1.1 INIT Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 03 status MDS no.

Status Bit pattern 00 hex
MDS no. Binary value Value 20 to 232 -1 = MDS no. of the initialized MDS

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 03 status MDS no.

Status Bit pattern For status, see appendix B.6.
MDS no. Binary value Value 20 to 232 -1 = MDS no. of the not initialized MDS

(“specific” initialization call with error)
 0 = “Non-specific” initialization call with

error

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
186 (4)J31069-D0137-U001-A5-7618

B.4.2.1.2 WRITE Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 01 status MDS no.

Status Bit pattern 00 hex
MDS no. Binary value Value 20 to 232 -1 = MDS no. of the written MDS

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 01 status MDS no.

Status Bit pattern For status, see appendix B.6.
MDS no. Binary value Value 20 to 232 -1 = MDS no. of the not written MDS

(“specific” write call with error)
 0 = “Non-specific” write call with error

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 187

B.4.2.1.3 READ Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 to 6 7 8 9 10 to max. of 253

Parameter ABL 02 status MDS no. address length data

ABL Binary value 1 to 253 = Telegram length in bytes without the

AB byte
Status Bit pattern 00 hex
MDS no. Binary value Value 20 to 232 - 1 = MDS no. of the read MDS
Address Binary value 0 to value: Memory length in bytes minus 1

-16 (FFF0 hex) after reading the OTP memory
Length Binary value 1 to 244 = Length of the read user data
Data Binary

information

User data read from the MDS

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 01 status MDS no.

Status Bit pattern For status, see appendix B.6.
MDS no. Binary value Value 20 to 232 -1 = MDS no. of the not read MDS

(“specific” read call with error)
 0 = “Non-specific” read call with error

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
188 (4)J31069-D0137-U001-A5-7618

B.4.2.1.4 GET Acknowledgment

Acknowledgment without error (status = 00 hex)

Depending on the function call and whether MDSs are located in the antenna field
(zone 1), the acknowledgment has the following structure.

GET function with mode = 0 (without MDS data) and no MDS in the field

Byte 0 1 2 3

Parameter 03 0C status Number of MDSs

Status Bit pattern 00 hex
Number of
MDSs

Binary value 0 = No MDS in the field

GET function with mode = 0 (without MDS data) and at least 1 MDS in the
antenna field (zone 1)

Byte 0 1 2 3 4 to 3 + 4 * n

Parameter ABL 0C status Number of MDSs 1st MDS no. ... nth MDS no.

ABL Binary value Telegram length in bytes without the AB byte
 7 to 3 + 4 * n 1 < n ≤ 12;

n = Number of MDSs in the antenna
field (zone 1)
4 bytes for each MDS no.

Status Bit pattern 00 hex
Number of
MDSs

Binary value 0 to 12 = Number of MDSs in the antenna field
(zone 1) = n

1st MDS
no.

Binary value Value 20 to 232 -1 = MDS no. of the 1st MDS

...
nth MDS
no.

Binary value Value 20 to 232 -1 = MDS no. of the nth MDS

GET function with mode = 1 (with MDS data) and no MDS in the field

Byte 0 1 2 3

Parameter 03 0C status Number of MDSs

Status Bit pattern 00 hex
Number of
MDSs

Binary value 0 = No MDS in the field

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 189

GET function with mode = 1 (with MDS data) and at least 1 MDS in the
antenna field (zone 1)

Byte 0 1 2 3 4 to 3 + 4 * n

Parameter ABL 0C status Number of
MDSs

1st MDS no. ... nth MDS no.

 4 + 4 * n to 5 + 4 * n 6 + 4 * n

 address length

 7 + 4 * n to 6 + 4 * n + length * n

 data MDS 1 … data MDS n

ABL Binary value Telegram length in bytes without the AB byte
 14 to 6 + 4 * n +

length * n
 1 < n ≤ 12;

n = Number of MDSs in the
antenna field (zone 1)
4 bytes for each MDS no.

Status Bit pattern 00 hex
Number of
MDSs

Binary value 0 to 12 = Number of MDSs in the antenna
field (zone 1) = n

1st MDS no. Binary value Value 20 to 232 -1 = MDS no. of the 1st MDS
...
nth MDS no. Binary value Value 20 to 232 -1 = MDS no. of the nth MDS
Address Binary value See GET function, appendix B.4.1.1.4
Length Binary value See GET function, appendix B.4.1.1.4
Data MDS 1 Binary

information

User data read from 1st MDS

…
Data MDS n Binary

information

User data read from nth MDS

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2

Parameter 02 0C status

Status Bit pattern For status, see appendix B.6.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
190 (4)J31069-D0137-U001-A5-7618

B.4.2.1.5 COPY Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 to 6 7 to 10

Parameter 0A 07 status MDS no. 1 MDS no. 2

Status Bit pattern 00 hex
MDS no. 1 Binary value Value 20 to 232 -1 = MDS no. of the read MDS (source)
MDS no. 2 Binary value Value 20 to 232 -1 = MDS no. of the written MDS

(destination)

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2 3 to 6 7 to 10

Parameter 0A 07 status MDS no. 1 MDS no. 2

Status Bit pattern For status, see appendix B.6.
MDS no. 1 Binary value Value 20 to 232 -1 = MDS no. of the not read MDS

(source)
 0 = MDS no. 1 not processed
MDS no. 2 Binary value Value 20 to 232 -1 = MDS no. of the not written MDS

(destination)
 0 = MDS no. 2 not processed

B.4.2.1.6 MDS-STATUS Acknowledgment

See appendix B.3.2.1.4.

B.4.2.2 Acknowledgments to System Functions

B.4.2.2.1 RESET Acknowledgment

See appendix B.2.2.2.1.

B.4.2.2.2 SLG-STATUS Acknowledgment (SLG Status)

See appendix B.3.2.2.2.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 191

B.4.2.2.3 SLG-STATUS Acknowledgment (SLG Diagnosis I)

See appendix B.2.2.2.3.

B.4.2.2.4 SLG-STATUS Acknowledgment (SLG Diagnosis II)

See appendix B.2.2.2.4.

B.4.2.2.5 SLG-STATUS Acknowledgment (SLG Diagnosis III)

See appendix B.2.2.2.5.

B.4.2.2.6 SET-ANT Acknowledgment

See appendix B.3.2.2.6.

B.4.2.2.7 END Acknowledgment

Acknowledgment without error (status = 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 08 status MDS no.

Status Bit pattern 00 hex
MDS no. Binary value Value 20 to 232 -1 = MDS no.

Acknowledgment with error (status not equal 00 hex)
Byte 0 1 2 3 to 6

Parameter 06 08 status MDS no.

Status Bit pattern For status, see appendix B.6.
MDS no. Binary value Value 20 to 232 -1 = MDS no.

(“specific” call with error)
 0 = MDS no. not processed

(“non-specific” call with error)

B.4.2.2.8 REPEAT Acknowledgment

See appendix B.3.2.2.8.

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
192 (4)J31069-D0137-U001-A5-7618

B.4.2.2.9 L-UEB Acknowledgment

See appendix B.2.2.2.6.

B.4.2.3 Messages

B.4.2.3.1 Startup Message

See appendix B.2.2.3.1.

B.4.2.3.2 ANW-MELD Message

See appendix B.2.2.3.2.

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 193

B.5 Command Chaining
Command chaining can be used to speed up processing of large and/or different
address areas on the MDS.

Normally the SLG U92 stores only one MDS command in its memory and executes
this command. This means that a maximum of 248 bytes (without multitagging) or
244 bytes (with multitagging) can be read or written with one command. Another
command cannot be issued until the previous command is acknowledged.

To speed up reading or writing more than 248 bytes (without multitagging),
244 bytes (with multitagging) and/or different address areas, several commands
can be chained and sent to the SLG U92 and stored on the SLG U92.

For processing large and/or different data areas, different functions can also be
chained together.

The commands of the command chain are identified by a bit in the upper 4 bits of
the command byte (2nd byte = byte 1). Bit 6 is set to "1" and bits 4, 5 and 7 must
be "0." In the last command in the command chain bit 6 must equal "0." This
signals the end of the chain. The lower 4 bits of the command byte contain the
function ID. This means that all the commands that are chained together must have
the command type 4x hex. The last command in a chain must have type 0x hex.

The command chain can already be sent to the SLG U92 before the MDS to be
processed is located in the field of the SLG U92. As soon as the MDS enters the
field and is detected by the SLG U92, the SLG begins executing the chained
commands and returns the acknowledgments with data. If the processing of the
command chain can already be started while the command chain is being sent to
the SLG U92, the first acknowledgments may arrive during the sending procedure.

 Notice

The maximum length of a command chain may not exceed 150 commands.

Possible chaining variations

a) n x WRITE

b) n x READ

c) MDS commands in any order: INIT, WRITE, READ and/or MDS-STATUS

d) MDS commands in any order: a), b) or c) plus END command

e) RESET command, followed by versions a), b), c) or d)

f) SET-ANT (EIN), plus followed by versions a), b), c) or d)

g) Versions a), b), c), d), e) or f) plus SET-ANT (AUS)

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
194 (4)J31069-D0137-U001-A5-7618

h) Version a), b), c), d) or f) plus SET-ANT (AUS) with SLG-STATUS in any
 position

i) RESET command, plus followed by versions a), b), c) or d) with SLG-STATUS
 in any position after the RESET

Commands which are not permitted in the command chain or illegal chaining

• COPY, GET and REPEAT are not permitted in the command chain
(COPY and GET only with multitagging)

• RESET within or at the end of a command chain

• END at the beginning or within a command chain

• END without preceding MDS command

• SET-ANT (AUS) at the beginning or before the last MDS command or before
the END

Example of chained MDS commands

• 3 READ commands, chained (506 bytes in one data block)

AB Com-
mand

Status Address Length 1st command

05 42 00 00 00 F8 Read 248 bytes

AB Com-
mand

Status Address Length 2nd command

05 42 00 00 F8 F8 Read 248 bytes

AB Com-
mand

Status Address Length 3rd command
(last command)

05 02 00 01 F0 0A Read 10 bytes

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 195

• 3 READ commands, chained (3 unrelated data blocks)

AB Com-
mand

Status Address Length 1st command

05 42 00 00 00 14 Read 20 bytes

AB Com-
mand

Status Address Length 2nd command

05 42 00 00 F0 1F Read 31 bytes

AB Com-
mand

Status Address Length 3rd command
(last command)

05 02 00 02 01 A5 Read 165 bytes

All types of MDS commands can be chained. In addition the chain can be
concluded with the END command. This command may not be located within a
chain.

• INIT, WRITE and READ command, chained

AB Com-
mand

Status Date Length 1st command

06 43 00 00 00 80 00 Initialize MDS

AB Com-
mand

Status Address Length Data 2nd command

05 41 00 00 F0 05 31 37 33 39 30 Write 5 bytes

AB Com-
mand

Status Address Length 3rd command
(last command)

05 02 00 02 01 1F Read 31 bytes

Programming the SLG U92 Based on the Operating System or 3964R Driver 03/05

 MOBY API C-Library
196 (4)J31069-D0137-U001-A5-7618

B.6 Status Byte
The structure of the status byte in acknowledgments and messages from the SLG
is described below. Possible error codes which may occur in the acknowledgments
and messages are also listed.
 Status byte

Bit 7 6 5 4 3 2 1 0

Status Bit pattern Bit 7 to 6 = 0
 Bit 5 = 0 (ECC is always on)
 Bit 4 to 0 = Status code (00 hex to 1F hex)
 00 No error

Function executed correctly. Message without
errors.

 01 Presence error: MDS out of field while command
still active

 02 A queued MDS command was terminated by the
“turn off antenna” command.

 03 –
 04 Error in MDS memory
 05 Unknown command/

wrong parameter/
function not permitted

 06 Field interference on SLG
> The MDS left the field during communication.
> Communication between SLG and MDS was
 terminated by external interference.

 07 –
 08 –
 09 –
 0A –
 0B Memory of MDS cannot be read correctly.
 0C Memory of MDS cannot be written.
 0D Error in specified address (address error)

> The specified address does not exist on the
 MDS.
> The command must be checked and
 corrected in telegram setup.
> The MDS is not the right type.

 0E –
 0F –
 10 NEXT command not permitted

03/05 Programming the SLG U92 Based on the Operating System or 3964R Driver

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 197

 11 –
 12 –
 13 SLG doesn’t have enough buffer to store the

command.
 14 Watchdog message from SLG U92
 15 Wrong parameter in RESET function
 16 –
 17 –
 18 Only RESET command permitted
 19 Previous command still active
 1A –
 1B Sending job on SLG repeated too often /

Data loss possible /
RESET command required

 1C Antenna is already off. /
Antenna is already on. /
Mode in SET-ANT command is unknown. /
Antenna is off and the MDS command cannot be
executed.

 1D Illegal number of MDSs in the field
> Greater than 1
 For normal addressing: MOBY I
 call-compatible (versions 1 and 2)
> Greater than bunch specified in RESET
 command

 1E Wrong number of characters in telegram
 1F Running command terminated by RESET

command

3964R Procedure 03/05

 MOBY API C-Library
198 (4)J31069-D0137-U001-A5-7618

C 3964R Procedure

The 3964R procedure offers secure data transmission with a point-to-point
connection. Secure data transmission is ensured with block transmission using
parity, block check character (BCC) and receipt acknowledgment. A data block
may contain all characters from 00 hex to FF hex.

Character frame

Transmission: Asynchronous
Baud rate: 9600, 19200, 38400, 57600, 115200 Baud
Data bits: 8
Parity: Odd
Stop bit: 1

Control character in the 3964R procedure

Table C-1 Control characters in the 3964R procedure

Character Code (Hex) Meaning
STX
DLE ETX
DLE
NAK

DLE DLE

02
10 03
10
15

10 10

Initialization of a send job (request to send)
End of a transmission block
Ready to receive (or DLE doubling in data flow)
Negative response message for block check error or unrecognized
start character
DLE doubling in data block. Is used when the value 10 hex appears
in the data flow.

Block transmission procedure

Sender Sender
STX DLE

DLE ETX
BCC

1st byte of user data
2nd byte of user data
.
.
.
Last byte of user data

Data block

tZ = Monitoring time on ASM

DLE

tZ
300 msec

.

.

.

03/05 Terms/Abbreviations, List of Literature

MOBY API C-Library
(4)J31069-D0137-U001-A5-7618 199

D Terms/Abbreviations, List of Literature

D.1 Terms/Abbreviations
ASM Interface module

CHN Channel number

DI Digital inputs

DO Digital outputs

ECC Error Correction Code

ID Identification

IP Internet Protocol

MDS Mobile data memory

NAK Negative Acknowledge

PC Personal Computer

SIM Serial Interface Module

SLA Read/write antenna

SLG Read/write device

SW Software

TCP/IP Transmission Control Protocol/Internet Protocol

D.2 List of Literature
/01/ ASM 420 Interface Module Technical Description
 6GT2 097-3AF00-0DA2

/02/ SIM Serial Interface Module Technical Description
 6GT2 097-3AD00-0DA2

/03/ MOBY F Manual on Configuration, Installation and Service
 6GT2 497-4BA00-0EA2

/04/ MOBY E Manual on Configuration, Installation and Service
 6GT2 397-4BA00-0EA2

/05/ MOBY I Manual on Configuration, Installation and Service
 6GT2 097-4BA00-0EA2

/06/ MOBY U Manual on Configuration, Installation and Service
 6GT2 597-4BA00-0EA2

/07/ MOBY user's guide "3964R protocol under Windows NT 4.0/95"
 (Included on the MOBY Software floppy disk)

Terms/Abbreviations, List of Literature 03/05

 MOBY API C-Library
200 (4)J31069-D0137-U001-A5-7618

	Title
	Table of Contents
	1 Introduction
	1.1 Product Overview
	1.2 Serial Link to PC
	1.3 Link to Ethernet

	2 Installation
	2.1 Files Supplied
	2.2 Installation of the C-Library - MOBY API for Serial Link to PC
	2.3 Installation of the MOBY API C-Library for Link to Ethernet

	3 MOBY API C-Library
	3.1 General Information on Use of MOBY API C-Library
	3.2 Interface Functions
	3.3 System Functions
	3.4 MDS Functions
	3.5 DI/DO Functions
	3.6 Function - moby_version
	3.7 Function Errors

	4 Header Files
	4.1 Header File – MOBY_API.H
	4.2 Header File – 3964R.H
	4.3 Header File – MOBY_API_T.H

	5 Sample Application
	5.1 Sample Application in Source Code for Serial Link to PC
	5.2 Sample Application in Source Code for Link to Ethernet

	A Description of Communication to the ASM 424/724/824 with 3964R Protocol
	A.1 General
	A.2 Protocol Settings
	A.3 LEDs on the 3964R Interface Side of the ASM
	A.4 General Communication Procedure
	A.5 Overview of Commands
	A.6 Telegram Layout of the Commands/Acknowledgments to/ from the ASM
	A.7 MOBY F – Special Features in Read-Only Mode
	A.8 Mobile Data Memories
	A.9 Status and Error Codes (ASM 424, ASM 724 and ASM 824)

	B Programming the SLG U92 Based on the Operating System or 3964R Driver
	B.1 General Information on Communication of the SLG U92
	B.2 MOBY I Call-Compatible (Version 1)
	B.3 MOBY I Call-Compatible (Version 2)
	B.4 MOBY U with Multitag Processing (Version 3)
	B.5 Command Chaining
	B.6 Status Byte

	C 3964R Procedure
	D Terms/Abbreviations, List of Literature
	D.1 Terms/Abbreviations
	D.2 List of Literature

