
Advice on
Documentation
(Faking it)

Daniel M. Berry

 1996 Daniel M. Berry Software Enginering Faking It Pg. 1



Introduction -1

We are talking about documentation for the
benefit of the designers, programmers,
testers, and maintainers.

We are not talking about documentation for
the user, who gets a user’s manual, which is
an entirely different animal.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 2



Introduction -2

Requirements specifications are
documentation for the designers!

 1996 Daniel M. Berry Software Enginering Faking It Pg. 3



Introduction -3

This advice is derived from

“A Rational Design Process:
How and Why to Fake It”

by David L. Parnas
and Paul Clements .

 1996 Daniel M. Berry Software Enginering Faking It Pg. 4



Rationality -1

Programmers would like to think of
themselves as rational.

Methodologists would like to believe that all
programmers can be taught to be rational.

All would like to believe that rational
programmers write good software!

 1996 Daniel M. Berry Software Enginering Faking It Pg. 5



Rationality -2

Methodologists write papers and books
describing how to use their methods to write
code rationally.

All of these papers and books have examples
of nice, clear, step-by-step rational
developments of code from requirements.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 6



Rationality -3

Funny thing is that these authors probably
revised their examples as much of the rest of
us!

I know; I have written such a monograph.

I revised the requirements as much as I
revised the development that supposedly
followed them.

The same applies to lecturers on software
engineering methods.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 7



Rationality -4

Methodologists would have you believe that
good programmers actually follow some
variation of the waterfall lifecycle or some
such.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 8



Rationality -5

The reality is closer to the hurricane model.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 9



Rationality -6

In both models you get wet, but a hurricane is
much wetter and messier.

In addition, in the eye of the hurricane, there is
a false sense of calm.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 10



Rationality -7

These are the facts of life even in the most
rational of all disciplines, mathematics.

No one discovers theorems as they are
published.

No one discovers proofs in the way they are
published.

There are lots of false starts, errors,
scribbling, comments, proof-reading (in both
senses), revision, etc.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 11



Rationality -8

So the so-called rational software process is
and will always be an idealization!

Why?

Clients do not really know what they want.

Even if all the requirements are known, many
facts needed to complete development are
discovered only during development.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 12



Rationality -9

Even if all the facts are known, humans are
incapable of fully comprehending all the
details that will need to be taken into account.

Even all details are mastered, projects are
subject to change.

Human errors can be avoided only if we do not
use humans, but then who would program?

 1996 Daniel M. Berry Software Enginering Faking It Pg. 13



Rationality -10

We often have preconceived design ideas, and
we invent ideas not obtained rationally.

We would not want to completely avoid the
latter because this is where creativity
happens!

For economic reasons we reuse or share
code, and the reused or shared code is not
ideal for the present use.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 14



Rationality -11

OK, OK, so process is not rational. Nu?

But, there is value to describing the
development of software as if it were rational,
i.e., of faking a rational process.

“I know that I’ve been fakin’ it!”
— Paul Simon

 1996 Daniel M. Berry Software Enginering Faking It Pg. 15



Faking It -1

Write the documentation as if the development
were rational.

Be prepared to modify it, when the
development changes direction as the
developers get too wet in the storm.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 16



Faking It -2

Given this, why bother taking courses like this
one?

You cannot fake it unless you know the ideal
that you are trying to fake.

Also, while being rational over the whole
process is hopeless, being rational over small
pieces of the process is possible and is
helpful.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 17



Faking It -3

Why is it useful to fake it?

Designers need guidance; a good
understanding of the ideal process tells
designers how to proceed, especially if they
have designer’s block.

We will come closer to an ideal process if we
attempt to follow it than if we proceed on an
ad hoc basis.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 18



Faking It -4

In any organization, it pays to have standard
procedures; it is easier to move people, ideas,
and code.

Once you have a standard, it might as well be
ideal.

If there is an ideal process, it is easier to
measure progress and to review products
along the way.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 19



Faking It -5

For each stage of a software development, the
description of the ideal process should tell us

• what to work on next,
• what criteria the work product should

satisfy,
• what kind of persons should do the work,
• what information they should use in the

work.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 20



Requirements Documents -1

We are talking about client-approved
requirements documents.

Why do we need them?

Writing them makes us less likely to make
requirements decisions accidentally.

They help avoid duplication and inconsistency
in descriptions of what the software is to do.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 21



Requirements Documents -2

They help teach programmers the application
area.

They are necessary but not sufficient for
making resource estimates.

They help insure against ill effects of
personnel turn-over.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 22



Requirements Documents -3

They provide a basis for an independent test
plan development, especially the tests of
achievement of functionality.

They provide constraints for future changes to
system.

They can be used to settle arguments among
the developers without having to go back to
the client every time.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 23



Requirements Documents -4

What should be in the requirements
documents?

Basically, they should contain everything you
need to know to write correct software and no
more.

Every statement in them should be correct for
all acceptable products; none should depend
on any implementation decision.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 24



Requirements Documents -5

They should be complete in that if a program
satisfies the documents, the program is
acceptable.

When information is just not known, the
documents should say so rather than just
leaving it out.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 25



Requirements Documents -6

They are organized as reference documents
rather than as introductory narratives about
the system.

Reference documents are designed so that it
is easy to look things up in them.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 26



Requirements Documents -7

Requirements documents should cover the
following topics, all specifications of
properties of the software:

• the machine on which the software runs

• the interfaces with the outside world,
including users

 1996 Daniel M. Berry Software Enginering Faking It Pg. 27



Requirements Documents -8

• for each output, its value as a function of
the software-detectable system state

• for each output, how often or how fast it
must be computed

• for each output, how accurately it must be
computed

 1996 Daniel M. Berry Software Enginering Faking It Pg. 28



Requirements Documents -9

• if the system is likely to change (and which
system is not?), the areas most likely to
change, to provide basis for trade-off
decisions

• responses to undesired events that keep
the software from fulfilling its complete
requirements

 1996 Daniel M. Berry Software Enginering Faking It Pg. 29



Documents for Faking It -1

The documents for faking a rational design
process are

• centered around modules

• supposedly obtained by following a
rational method such as proposed by
Parnas et al.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 30



Documents for Faking It -2

Module documentation:

• module structure
• module uses hierarchy
• module interfaces
• module internal structure

 1996 Daniel M. Berry Software Enginering Faking It Pg. 31



Documents for Faking It -3

Module structure:

includes exported procedures

Module uses hierarchy:

module A uses module B if and only if the
correctness of A depends on the presence
of a correct B in the system

 1996 Daniel M. Berry Software Enginering Faking It Pg. 32



Documents for Faking It -4

Module interfaces:

list of parameter
types
and meanings

and return types

for the module and all of its contained
procedures

 1996 Daniel M. Berry Software Enginering Faking It Pg. 33



Documents for Faking It -5

Module internal structure:

all the design decisions encapsulated by
the module, i.e., the secrets of the module

Note that these are the things that were
deemed likely to change.

So this list should include the list of possible
changes that helped you design the modules.

NOTE: I do not want these secrets in the pre-
goodie!!!

 1996 Daniel M. Berry Software Enginering Faking It Pg. 34



Pre-Goodie

In fact for the pre-goodie, I want only the
externally visible stuff:

NO hidden data
NO private data
NO protected data
NO secrets

Only the stuff the user of the module needs to
know.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 35



Naming Types, Objects, and
Procedures

The following suggestions are based on
making the module descriptions as readable
as possible, making as much of their
semantics immediately apparent so that
additional commentary is less important or
even unnecessary.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 35



Naming of Types

The name of a type should be a singular noun
that describes a single value of the type.

For example,

stack stack_of_integers
character word
line page

are good type names.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 36



The name of a type should not describe the
set that is the type, i.e. be a plural noun.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 37



For example, do not use

stacks
characters
words
lines
pages

unless a single value of the type is a collection
of individual items.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 38



In this case, however a better name for the
type would be the singular name of the type of
collection it is, e.g.,

set_of_stacks_of_integers
list_of_characters
bunch_of_words
series_of_lines
folio_of_pages

 1996 Daniel M. Berry Software Enginering Faking It Pg. 39



Why the insistence on singular nouns?

A singular noun allows you to declare a
variable with the type name and to read it
aloud properly.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 40



Read
s: stack_of_integers

as
declare s to be a stack_of_integers

and
p: page

as
declare p to be a page

and
sos: set_of_stacks_of_integers

as
declare sos to be a set_of_stacks_of_integers

 1996 Daniel M. Berry Software Enginering Faking It Pg. 41



Naming of Objects

Ordinary program variables will tend to be
short such as the examples on the previous
slides, but these variables are not exported
and would therefore not show up in the
module documentation. So we are talking
about objects that are important enough to the
abstractions that they are exported.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 42



Usually exported objects are constants, but a
module itself can be an abstract variable.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 43



For example, in Parnas’s KWIC example,

line_storage
circular_shifts
alphabetized_circular_shifts

are all abstract variables for which we must
use only exported operations for updating and
reading parts of its value.

These names should be nouns that are as
descriptive as possible.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 44



The same holds for constants, such as

empty_stack

in a stack abstraction.

A difficulty is that nouns are used for both the
type and objects and one often gets into a
situation in which the same noun is
reasonable for both a type and a variable of
that type.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 45



In such a case, reserve the general noun for
the type and use a particularizing adjective or
article to make the object, e.g.,

the_stack
stack_at_hand the_stack_at_hand
first_page the_first_page
current_page the_current_page

 1996 Daniel M. Berry Software Enginering Faking It Pg. 46



Naming Procedures

Procedure names should be imperative
sentences with the objects and predicates
clearly stated.

For example,

push_element_into_stack
sort_input_in_ascending_order_to_produce_output
sort_input_in_nodecreasing_order_to_produce_output

 1996 Daniel M. Berry Software Enginering Faking It Pg. 47



Note that

sort_input_to_produce_output

is not good because it neglects to mention
how the input is being sorted.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 48



There should be a strong enough link between
the name and the formal parameter indications
to make it clear which parameter is what in the
description of the functionality, e.g.,

void push_element_into_stack
(element,*stack)

void push_e_into_s
(element /*e*/,*stack /*s*/)

procedure push_e_into_s
(e:element; s:var stack)

 1996 Daniel M. Berry Software Enginering Faking It Pg. 49



Naming Functions

Function names should should indicate what
value is returned.

For example,

get_last_element_that_was_inserted

 1996 Daniel M. Berry Software Enginering Faking It Pg. 51



It is not even necessary to make it an
imperative sentence, but rather just a
description of the value returned, e.g.,

the_last_element_that_was_inserted
top_of_stack

 1996 Daniel M. Berry Software Enginering Faking It Pg. 52



Doing so allows the function call to be used in
the middle of a statement and be readable,
e.g.,

t = top_of_stack(s);

 1996 Daniel M. Berry Software Enginering Faking It Pg. 53



In the case of a Boolean function, it’s nice to
make the name be what is grammatically
called a predicate so it can be used after the if
in a conditional, e.g.

is_empty
stack_is_empty
is_last_element
reached_end_of_file

 1996 Daniel M. Berry Software Enginering Faking It Pg. 54



so that you can say

if reached_end_of_file(f) then ...

 1996 Daniel M. Berry Software Enginering Faking It Pg. 55



Abbreviations

The suggestions above can result in very long
names and inconvenience for invokers.

Two philosophies:

g Too bad! It’s for your own good.

g OK, make shorter names but use
comments.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 56



For example, in a stack module

void push(*stack_of_integers /*s*/,int /*i*/)
// push i into s

or
void push_i_into_s(*stack_of_integers /*s*/,int /*i*/)

but not

void push(*stack_of_integers, int)
or

void push_i_into_s(*stack_of_integers, int)

the last failing to explain what i and s are.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 57



Examples

Below are two examples of satisfactory
documentations for the KWIC example of
Parnas.

The first is in Ada and uses short names with
commentary.

The second is in C and uses long names with
less commentary!

 1996 Daniel M. Berry Software Enginering Faking It Pg. 58



package LINE_STORAGE is
-- abstract object providing storage of all
-- of the lines to be indexed

procedure setchar (l,w,c:INTEGER;
d:CHARACTER);

-- set the c-th character of the
-- w-th word of the l-th line to d

-- for all l, w, and c, char(l,w,c)
-- is defined only after doing
-- setchar(l,w,c,d) for some d

 1996 Daniel M. Berry Software Enginering Faking It Pg. 59



function char (l,w,c:INTEGER)
return CHARACTER;

-- return the c-th character of the
-- w-th word of the l-th line

-- the following are defined ONLY after
-- setchar been executed to fill the
-- LINE_STORAGE

function chars (l,w:INTEGER)
return INTEGER;

-- return the number of characters
-- in the w-th word of the l-th line

 1996 Daniel M. Berry Software Enginering Faking It Pg. 60



function words (l:INTEGER)
return INTEGER;

-- return the number of words in the
-- the l-th line

function lines return INTEGER;
-- return the number of lines

-- error handling exceptions

 1996 Daniel M. Berry Software Enginering Faking It Pg. 61



-- SECRETS:
-- The characters are packed four to a
-- machine word, and an otherwise unused
-- character is used to indicate the end
-- of an input word. An index is kept to
-- show the start of each line.

end LINE_STORAGE;

 1996 Daniel M. Berry Software Enginering Faking It Pg. 62



with LINE_STORAGE;
use LINE_STORAGE;
package CIRCULAR_SHIFTS is
-- abstract object providing storage of
-- all of the circular shifts of the
-- lines to be indexed

procedure cssetup;
-- initialize CIRCULAR_SHIFTS from
-- LINE_STORAGE

-- the following are defined ONLY after
-- cssetup is done

 1996 Daniel M. Berry Software Enginering Faking It Pg. 63



function cschar (l,w,c:INTEGER)
return CHARACTER;

-- return the c-th character of the
-- w-th word of the l-th cs-line

function cschars (l,w:INTEGER)
return INTEGER;

-- return the number of characters
-- in the w-th word of the l-th
-- cs-line

 1996 Daniel M. Berry Software Enginering Faking It Pg. 64



function cswords (l:INTEGER)
return INTEGER;

-- return the number of words in the
-- the l-th cs-line

function cslines return INTEGER;
-- return the number of cs-lines

-- error handling exceptions

 1996 Daniel M. Berry Software Enginering Faking It Pg. 65



-- SECRETS:
-- It prepares an index which gives
-- the address of the first character
-- of each circular shift, and the
-- original index of the line in the
-- array made up by module 1. It leaves
-- its output in core with words in pairs
-- (original line number, starting address)

end CIRCULAR_SHIFTS;

 1996 Daniel M. Berry Software Enginering Faking It Pg. 66



with CIRCULAR_SHIFTS;
use CIRCULAR_SHIFTS;
package ALPHABETIZED_CIRCULAR_SHIFTS is
-- abstract object providing storage of
-- alphabetized list of the circular
-- shifts of the lines to be indexed

procedure alph;
-- create alphabetized circular
-- shifts from CIRCULAR_SHIFTS

 1996 Daniel M. Berry Software Enginering Faking It Pg. 67



function ith(i:INTEGER)
return INTEGER;

-- index in CIRCULAR_SHIFTS of
-- i-th in alphabetical ordering

-- error handling exceptions

 1996 Daniel M. Berry Software Enginering Faking It Pg. 68



-- SECRETS:
-- It produces an index in the same
-- form as that produced by
-- CIRCULAR_SHIFTS. In this case,
-- however, the circular shifts are
-- listed in alphabetical order.

end ALPHABETIZED_CIRCULAR_SHIFTS;

 1996 Daniel M. Berry Software Enginering Faking It Pg. 69



with ALPHABETIZED_CIRCULAR_SHIFTS;
use ALPHABETIZED_CIRCULAR_SHIFTS;
procedure KWIC is

procedure input is separate;
procedure output is separate;
null;

-- does input, alph, and then output
end KWIC;

 1996 Daniel M. Berry Software Enginering Faking It Pg. 70



with LINE_STORAGE,TEXT_IO;
use LINE_STORAGE,TEXT_IO;
separate(KWIC);
procedure input is
begin

null;
-- input lines into LINE_STORAGE;
end input;

 1996 Daniel M. Berry Software Enginering Faking It Pg. 71



with ALPHABETIZED_CIRCULAR_SHIFTS,
CIRCULAR_SHIFTS,TEXT_IO;

use ALPHABETIZED_CIRCULAR_SHIFTS,
CIRCULAR_SHIFTS,TEXT_IO;

separate(KWIC);
procedure output is
begin

null;
-- output ALPHABETIZED_CIRCULAR_SHIFTS
-- in sophisticated way using
-- CIRCULAR_SHIFTS
end output;

 1996 Daniel M. Berry Software Enginering Faking It Pg. 72



line_storage.h

/* abstract object providing storage of all of the lines
to be indexed */

void set_a_char_in_a_word_of_a_line
(int /*line_index*/, int /*word_index*/,
int /*char_index*/, char /*c*/);

/* for all l, w, and c,
get_a_char_in_a_word_of_a_line(l,w,c)
is defined only after doing
set_a_char_in_a_word_of_a_line(l,w,c,d)
for some d */

 1996 Daniel M. Berry Software Enginering Faking It Pg. 73



char get_a_char_in_a_word_of_a_line
(int /*line_index*/, int /*word_index*/,
int /*char_index*/);

/* the following are defined ONLY after
set_a_char_in_a_word_of_a_line
has been executed to fill the
line_storage */

int no_of_chars_in_a_word_of_a_line
(int /*line_index*/, int /*word_index*/);

int no_of_words_in_a_line (int /*line_index*/);
int no_of_lines();

 1996 Daniel M. Berry Software Enginering Faking It Pg. 74



/* SECRETS:
The characters are packed four to a machine
word, and an otherwise unused character is
used to indicate the end of an input word. An
index is kept to show the start of each line. */

/* end LINE_STORAGE */

 1996 Daniel M. Berry Software Enginering Faking It Pg. 75



circular_shifts.h

#include line_storage.h
/* abstract object providing storage of all of the
circular shifts of the lines to be indexed */

void set_up_circular_shifts_of_lines_from_line_storage();

/* the following are defined ONLY after
set_up_circular_shifts_of_lines_from_line_storage

has been executed to fill the circular_shifts */

 1996 Daniel M. Berry Software Enginering Faking It Pg. 76



char get_a_char_in_a_word_of_a_cs_line
(int /*cs_line_index*/, int /*word_index*/,
int /*char_index*/);

int no_of_chars_in_a_word_of_a_cs_line
(int /*cs_line_index*/, int /*word_index*/);

int no_of_words_in_a_cs_line (int /*cs_line_index*/);
int no_of_cs_lines();

 1996 Daniel M. Berry Software Enginering Faking It Pg. 77



/* SECRETS:
It prepares an index which gives the address
of the first character of each circular shift, and
the original index of the line in the array made
up by module 1. It leaves its output in core
with words in pairs (original line number,
starting address) */

/* end CIRCULAR_SHIFTS */

 1996 Daniel M. Berry Software Enginering Faking It Pg. 78



alphabetized_circular_shifts.h

#include circular_shifts.h
/* abstract object providing storage of alphabetized
list of the circular shifts of the lines to be indexed */

void
create_alphabetized_circular_shifts_from_circular_shifts

();
int

index_in_circular_shifts_of_ith_in_alphabetical_ordering

(int i);

 1996 Daniel M. Berry Software Enginering Faking It Pg. 79



/* SECRETS:
It produces an index in the same form as that
produced by CIRCULAR_SHIFTS. In this case,
however, the circular shifts are listed in
alphabetical order. */

/* end ALPHABETIZED_CIRCULAR_SHIFTS */

 1996 Daniel M. Berry Software Enginering Faking It Pg. 80



input.h

#include line_storage.h
#include <stdio.h>
void input_lines_into_line_storage();

 1996 Daniel M. Berry Software Enginering Faking It Pg. 81



output.h

#include alphabetized_circular_shifts.h
#include <stdio.h>
void

output_alphabetized_circular_shifts_in_sophisticated_way

();

 1996 Daniel M. Berry Software Enginering Faking It Pg. 82



kwic.h

#include alphabetized_circular_shifts.h
#include input.h
#include output.h
void main();

 1996 Daniel M. Berry Software Enginering Faking It Pg. 83



Global Module

One thing that people do is definitely a No No.

I am referring to a module, often called
global.h, that defines problem-related
constants that are needed at various places in
the program.

The idea is that by putting all of these in the
same module, they can all be included by
saying only #include "global.h"

For example:

 1996 Daniel M. Berry Software Enginering Faking It Pg. 85



global.h

typedef int bool;
#define TRUE 1
#define FALSE 0

#define MAXWORDLENGTH 100
#define MAXLINELENGTH 1024
#define MAXPAGELENGTH 200

 1996 Daniel M. Berry Software Enginering Faking It Pg. 86



What is Wrong?

With the definitions of bool, TRUE, and
FALSE, nothing. These are not problem-
related and they are for getting around
restrictions in the programming language.

However, the various MAX__LENGTH
constants are very much problem related,
defining constants needed by the word, line,
and page abstractions.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 87



Mainly, they split the abstraction module into
two pieces, both of which are needed;
someone taking only the word module is
surprised to learn that MAXWORDLENGTH is
undefined.

Each constant belongs in its own module so
that taking the one module takes everything
that is needed.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 88



But, what about the convenience of a single
#include for all such constants?

The convenience is an illusion.

In any case, one cannot use
MAXWORDLENGTH except in a module in
which the word module has been included. If
MAXWORDLENGTH is defined in the word
module, then #include "word" suffices to bring
in MAXWORDLENGTH.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 89



Therefore, putting each constant in its own
logical module makes the constant visible
only where it is needed! This is better than
with the #include "global.h".

 1996 Daniel M. Berry Software Enginering Faking It Pg. 90



Recording Design Decisions

According to Colin Potts and Glenn Bruns,
there are two kinds of design documentation:

g documentation of the process
(deliberation or rationale)

g documentation of design results
(artifacts)

 1996 Daniel M. Berry Software Enginering Faking It Pg. 84



Up to now we have discussed only
documentation of the design results, showing
how the artifacts can be written to be self-
documenting with minimal additional
comment and describing the necessary
additional comments.

Now we consider documenting design
rationale.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 85



Why Document Rationale?

Showing rationale shows why the final artifact
is the way it is by showing reasons for it being
that way and reasons it is not another way.

Without this information, maintainers, when
considering alternative ways to achieve
particular changes, might repeat the mistakes
that were made in the past.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 86



One important class of decisions that should
be documented is that of encapsulation itself,
why what is encapsulated is and why what is
not is not.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 87



Conclusion

So, remember, do what you must to to get
those requirements and other documents.

Do not worry if the way you get this
information is messy.

Then fake the documentation to look like you
got those requirements in a systematic way.

 1996 Daniel M. Berry Software Enginering Faking It Pg. 88


