Real Time weather Information using Labview and Onset HOBO weather station
Kyle Senkevich, Nicholas Lavanda
CDA 4170

April 22, 2009

1. Introduction

Remote weather stations can provide useful information to many people. They can be used to
determine the current weather information for an area and also used to collect data over periods of
time to use for various other researches where differences in the weather would affect things. Most
current weather stations require that data to be manually retrieved from the weather station. This can
be a problem when the data is needed in locations that are not close to the weather station. So this

leads to the problem of how to retrieve real time data from remote weather stations?

.
) i 7
f‘} R5232 Cable —ZE:;-}:Z' ’y
" — o/ \/\/° \! :"! @; /N

E T E 2 Radio Modules 4

. -]
Client 5 Server (DTE) Vieather Station

Internet

Fig 1 — Context Diagram of Real Time Data retrieval from a Weather Station

In order to create a weather station that relays the data to the internet in real time we used a
HOBO weather station and logger. The HOBO weather station was a data logger that connects to
various weather sensors and records the data at preset intervals and stores the information in memory.
The logger is then queried for the information stored. The particular model of HOBO weather station
that we used for the project comes with a wireless RF module. This module connects to the data logger
and relays the information from the logger to a computer through the use of another RF module

connected to the computer through a serial or RS 232 port.

In order to communicate with the data logger we used the Onset remote monitoring software to
setup an auto readout schedule. This automatically queries the data logger for the weather data every
20 seconds and stores this data in an XML file. Once the data is in XML format we used a Java program
to parse the information and store it in our mySQL database. The pseudo code for this program is the

following:

while(true){
open the Xml file;
Read last sensor entry;
Check to see if the last entry is the same timestamp as the new entry
if(new entry Date!=old entry Date){
insert data into mySQL database;

new entry Date= old entry Date;

close the XML file;

}//End Pseudo code

As you can see this from the pseudo code this program runs in a loop. Each pass through the loop the
program opens the XML file and read in the last sensor entry. If this entry is not the same as the last
entry read in by the program then it enters the information into the mySQL database. Then the program

closes the XML file and repeats itself.

Once the information is in a database a PHP website interacts with the database to display the

information via the internet. Figure 2 is a logical diagram of the system.

Sensor

Sensor

Server with
Database

Vireless Hodem Vireless Hodem Data Logger

Sensor

Figure 2 — Logical Diagram of Problem Solution

Since the largest delay in the transfer of the weather data is that the HOBO software only queries the
data logger to retrieve the data every 20 seconds and all of the other processes will be executed quickly
the weather data will be displayed on the internet within approximately 30 seconds. Since the
information that we will be recording, like temperature and humidity, does not change by a large

amount in a short amount of time this system can be considered near real time.

System Flow Diagram

2
I \J/ ™
Sensor Reads

enviromental
information

Sensor
information
stored in data
legger

")

HOBOware
software queries
data logoer for
stored
Linformation

Information sent
to HOBOware
software across
the wireless

network

hs Website Displays
XML generated by most current
HOBOware from mySOL database
information entry
received .

= If new data
Java program read myS0OL database
reads in XML file uplated

Else

Figure 3 — System Flow Diagram

Step 1 —The sensors read the environmental data

Step 2 — The environmental data read by the sensors is stored in the data logger

Step 3 — HOBO software queries the data logger to send the information to it across the

wireless network.

Step 4 — The stored information in the data logger is sent to the HOBO software across the

wireless network.

Step 5 — XML file containing the information received by HOBO software is generated.

Step 6 — The Java program reads in the XML file and checks if the information is new. If it is new

the system goes on to step 7 otherwise if it is not new it returns to step 1

Step 7 — mySQL database is updated by the Java program to contain the new data

Step 8 — Website displays the information stored in the mySQL database. The newest entry in

the mySQL database will be the current weather information.

The Java program to input the data from the data logger into the database for the webpage can
be seen in Appendix B. In this program it opens a file obtained from the HOBO software containing all of
the sensor readings. This file is created by the HOBO software and sent to the computer. Once the Java
program opens this file it parses the readings into variables and transforms the date/time information
into the correct format for the mySQL database. Once this is completed the program creates mySQL
queries to enter the information into the database. The Java program runs in a loop so once the file is
updated it will update the database. This is done in order to keep the current sensor readings stored

into the database.

The database that is created for this project is only 1 table. It is comprised of 4 columns. These

four columns are: timestamp, pressure, temperature, and relative humidity. The timestamp holds the

information about the exact time when the sensor readings were taken. The timestamp column in the
database can only store unique entries, since only unique timestamps are stored there is no need to

handle duplicate entries in the database because there will be none.

Using the information that is stored on the database current weather information is displayed
on the webpage. In order to do this the webpage has to connected to the database and determine the
latest entry based off of the timestamps. This webpage code can be seen in Appendix B. Another way
to display the information stored in the database is through graphs of the data sets. Appendix Cis code
for a webpage that displays a graph for 12 hours worth of data. When this page is first loaded it displays
graphs of the oldest 12 hours in the database but allows a client to select and offset based on hours so

all of the data stored into the database can be selected.

2. Problem Description

For this project we are going to implement an alternative method to view real time weather

information obtained from the HOBO weather station via the internet. Some of the setup will be

the same as the previous example but instead of using a Java program, database, and PHP webpage

we will be using Labview. A diagram of this system can be seen in the figure below.

Sensor

Sensor

Vireless Hodem ¥Vireless Hodem Data Logger

Sensor

Client

Figure 4 — Logical Diagram of Problem

As you can see in the above diagram the right half of the problem solution will be the same as the
previous solution. The part that is different is from the left half from the Labview program to the

clients.

To develop the system to deliver the weather information to the client the program will
need to start from the XML file generated by the Onset HOBOware software. This XML file contains
all of the data obtained from the HOBO data logger. So the system will need to open the XML file
and parse it into a usable form of data. Once the data from the XML file has been converted we will
need to display it on a webpage. Also, all of this needs to be done in real time. Once the
information is on a webpage clients will be able to view the weather data in real time from the

HOBO weather station.

Problem Solution

In order to read in the XML file and generate the webpage we will use Labview. Labview has the
ability to generate embedded applications using data sockets for use in web pages. The applications
are able to be controlled from anywhere via the internet. So we will have the Labview program
open the XML file and parse it into a usable data format. Then it will store the data into a cluster in
order to be able to be used by the Labview software. We will then use the Labview ability to create
an embedded application that will be able to be controlled by the clients over the internet. The
Labview program will display the information in an easily readable format and allow the clients to
view all of the weather data not just the latest data. Below is a system flow diagram of this problem

solution.

iy I
Sensor reads in
environmental data

¢

Sensor information
Stored in data logger

Webpage displays
Embedded
Labview application

: T

Dnset software queries Labview program
data logger for Creates embedded
stored information application

: T

Data sent to the Onset
software via the
wireless modules

¢ T

XML file generated Labview converts
From the data XML data to clusters

: T

Labview program Labview program
Reads in XML file Parses XML data

Labview program
Generates graphs

Figure 5 — System Flow Diagram of problem solution

System Flow

Step 1 —The sensors read the environmental data

Step 2 — The environmental data read by the sensors is stored in the data logger

Step 3 — HOBO software queries the data logger to send the information to it across the

wireless network.

Step 4 — The stored information in the data logger is sent to the HOBO software across the

wireless network.

Step 5 — XML file containing the information received by HOBO software is generated.

Step 6 — Labview reads in the XML file

Step 7 — Labview parses the data from the XML file so it can be manipulated

Step 8 — Labview converts data from XML file into clusters so it can use the data

Step 9 — Labview generates graphs for easy display of information from the XML file

Step 10 — Labview generates an embedded application to display the information

Step 11 — Webpage displays the Labview program by using the embedded application

Step 12 — System runs in a loop to update information

Implementation

XML parsing is very difficult in Labview. It is a lot more complex then it needs to be and National

Instruments is working on it always updating XML to make it easier each time with each new

version. Currently if you want to read in an XML file the best way to do this is to use the JKI Easy

XML VI. The Easy XML vi takes an XML string format and parses it into a cluster or array, whichever

you declare. For this project we are using the evaluation version of this vi which is free and can be

obtained from http://jkisoft.com/easyxml/. We open the XML file using Labview just like any

10

http://jkisoft.com/easyxml/�

normal file and send the variable to through the Easy XMl vi. We have the VI output a cluster
containing all of the information that was in the XML file. Since we now have the XML data in a
format that is usable in Labview we can manipulate the data however we would like. We created
graphs displaying all of the data obtained from each sensor and plotted it against the time it was
taken to show how the readings have changed over time. This programs front panel and block
diagram can be seen in Appendix A and a step by step guide on how this program was developed is

in Appendix B.

Once we have our Labview program running correctly we worked on displaying this
information via the web. Labview can host web pages and uses data sockets to display the program
as an embedded application in a webpage. In order to do this we use Labview web publishing tool
which creates a webpage in the hosted folder. This webpage is a simple html webpage that contains
a table with an embedded object that is the embedded application from the vi. Then we are able to
take this code and place it into our own webpage to display the embedded application in any
website that we desire. The simple webpage html code created by the web publishing can be seen

at the bottom of Appendix A.

5. User Manual and Example of Use

5.1 Hardware Configuration

This project uses the Onset HOBO micro weather station. The Onset HOBO micro weather
station consists of a data logger, a temperature sensor, a relative humidity/pressure sensor, and two rf

radio modules. Figure 6 shows the different pieces of the HOBO micro weather station.

11

Pressure and Humidity
Sensor

=

Data Logger

Temperature Sensor

Radio Module

Flaclls Basa Sation—000 Wia
Part Ma. -0

Radio Module (Connects to computer)

Figure 6 — Onset HOBO micro weather station devices

The sensors connect directly to the data logger. Four sensor are able to be plugged into the
data logger at one time. They use a connection much like an Ethernet plug and plug into the data logger
next to the batteries. The larger of the rf radio modules connects to the data logger through a custom
connection. The other rf radio module connects to a computer through a serial port (RS 232). A

diagram of how these pieces are connected is shown in Figure 7.

12

Pressure and Humidity
Sensor

- - —]
Data Logger

Temperature Sensor

Radio Module

—f— s Bane o000 ks
Purta o OEESE

H0B-018PKC-8

e v S Mg

Radio Module (€ to puter)

Figure 7 — Diagram of how Onset HOBO micro station devices connects to each other
5.2 HOBO Software Installation, Configuration, and Use

In order to talk to the weather station we have to use Onset’s software. First install the Onset
Remote Site Manager. To install this program insert the cd-rom and run the setup.exe program, if it

does not auto run. There is no advanced configuration needed for this program, so just remember

13

where you install it to so you can run the program later. The next program that needs to be installed is
Onset’s HOBOware software. To install this software insert the HOBOware cd-rom and run the
setup.exe program, if it does not auto run. HOBOware has no advanced configuration needed, just
remember where it is installed to so it can be run at a later time. The last software needed for this
project besides Labview is the EasyXML Toolkit for Labview. This toolkit was developed by JKI Software
and a free evaluation copy is available to download. In order to install this toolkit you will need to get

their free VI Package Installer which can be obtained at this website (http://www.jkisoft.com/vipm/).

Click on the “Download VI Manager” and fill out the required information. Once downloaded run the
setup and install the VI Package Manager. Once installed run the VI Package Manager program. Now go
to Tools in the top menu and select “Check the Network for Available Packages”. This will update the list
of available packages for you to install. From the list find the one that says “jki_lib_easyxml” and select
it. Now go to the top menu and select Package then install. This will install the toolkit into Labview and

will grant access to the EasyXML vi’s for use. This software is all you will need for this project.

There are two choices for communication with the HOBO, HOBOware and Remote Site
Manager, but for this project we will use both HOBOware and Remote Site Manager. First we need to
setup the data logger to record information from the sensors. In order to do this we will use
HOBOware. Start HOBOware by double clicking on the HOBOware icon. As a result, a screen shown in

Figure 8 appears.

14

http://www.jkisoft.com/vipm/�

M OB i

Fia Device [Vaw Tool Wndow Meb

AS88B- OBIFE RFOA QQEEEE Y ?
¥ Tmat, GMT-0400 Wind Speed, mph. Ran.n Teep, °F
T R TR R LN [TETE ¥ AL ~
S0 TS T 06 PM T AT (11 s 5] m.am
17005 3o 06 PM .90 U LI
08 1705 JAT08 M (% T T -
i ¥
- * —
“ Waquon Bay Reserve
[t nly |
o e Wined Speed & = |1 e :'n.-.l-....l.-.n
= e B, -.-'_
= - ? 'I'“.' . '-v.._..l;‘ -
£ Logoee inta -]
& o Sernor kila - k;"*“’w‘ﬁ |’"
¥ o Deployran Ir
¥ ¥ Series Satintc " -
- ¥
]
"
i
% " B
L - K P mhr s el
< ¥ AR L e Bl ST) AT B By A GRAT- G0 la
h *
—
L'J = 'Lu'l Doey'] N vl & AlieTlitnd. N3 i Convted

Figure 8 — HOBOware starting screen

Now at the top menu from Figure 8, go to device and select “Launch”. This will Launch Logger screen

shown in Figure 9.

15

Launch Logger

Logger Type: HOBO LM 2-013 TempiRHE:tExt
Serial Mumber: 7356486
Deployment & 40

Eattery Level: |17 5.1
Description: | Building &

Channelz to Log: (| Tools
: 171 Tempersture 10K Thermistar L—

K Zcaling...
21 Relative Humidity (Requires Temp Channel 1)

) |CABLE-4-20maA (4-20 mA Input Cable) j.v =4

|:| 47 .TMCx-H.ﬂ« (Wide-Range Temperature) =.V.

39 Logger's Gattery Yoltage v |
Logging Interval: | 0[S He| 08 Min| 102 5es :”::i;:';'g':;E_I?Ii_l"fﬁi:::al:

Logging Duration: 1 Day, 08h Sd4m 40s
[Aoomz. Hae until the
lagger mesory i= il

This walue iz basaed on the logging intencal
and channelis) selected abowe, it does not
account for memaony used by events.

Launch Cptians: Moy () 201005 3:19:50 Ph GMT-05:00

| &t Interval: O 21105 3:20:00 Ph GMWT-05:00
Delaved: () [2i11/05 2lpate 4:19:14 P

Maximum delay: 194 days 4 hours 20 min 15 sec
Tricger: Cf' Push Logger Button for 3 Seconds

Loggerwill launch according to

Cancel I I Status... Launch
the launch option selected abowe I [

G|
| Time

Figure 9 — Launch Logger screen from HOBOware

On this screen under “Channels to Log” make sure all of the desired sensors that you want to log are
checked. It is recommended to select all of the sensors. Now select how often you would like the data
logger to log sensor information by changing the “Logging Interval”. For this project we select 1 minute.
Once the Logging interval is selected we need to decide on a Launch option. Select the radial next to
“Now” to start logging information immediately. Once you have done this, click on the “Launch” button

at the bottom of the screen. Now the program will take some time to configure the data logger. Once

16

the data logger is launched, which is indicated by the appearance of a status bar, you may close

HOBOware, by selecting Exit menu choice from the screen as shown in Figure 6.

Now start up the Onset Remote Site Manager, by double clicking on the Remote Site Manager icon. As a

result a screen shown in Figure 10 should appear.

= Remote Site Manager

File Operate Help

| Contact Remote site || Set Up Remote Site Profiles | Status Ready

~Auto-Readout Schedule
i | [] Activate

Mame Connection Route § Location Freguency Successes Mext Readout

Figure 10 — Onset Remote Site Manager startup screen

17

Once the Remote Site Manager is running we need to create a remote site. In order to do this click on

the “Set up remote site profiles” button and a screen will appear, as shown in Figure 11.

m’ Remote Profiles

Remote Sites | add Site: |

|Cu:unneu:t| Edit I Delete I

5 Mame Connection Route
- haobo COM 1

Prefixfes)

Location

Done

=101

Auko-Readout Schedule

once a minuke

Figure 11 — Remote Profile page from Remote Site Manager program

18

From the Remote Profile Screen, as shown in Figure 11, select the “Add Site” tab. A screen like Figure 12

will appear.

m; Remote Profiles P] 1

Remote Sites Add Site |

Connection Route: f-)'l Local Port

* mlame (10 Char Max.): Hobo
A

#* COM Pork: r)'l COM 1

Location (10 Char Mazx,

— fuko-Readout Schedule

[Utilize scheduls
DO HH: MM

Fead out new data every ELISTOM -z vI oo0:o0:o
Skart Time ﬁMMEDIP.TE vI 042202 05:00 FM

* Datafile path: Iﬁrl q CA\Documents and SettingsihobolDeskioptHobo'lexample

| Set Up Email and FTP Data Transfers I

* Requirad Feld

0K CANCEL

Figure 12 — Remote Site Manager software Add Site page

At this screen, as shown in Figure 12, you will need to give the site a name where it says “* Name”.
Then from the choices for “Connection Route” select “Local Port”. Now where it says “* COM Port”
select “COM 1” or which serial port that you have connected the radio module to. The Auto-Readout
Schedule will need to be setup in order for the program to auto readout. To setup the auto readout
select the checkbox next to “Utilize Schedule”. Next change the “Read out new data every” and select
“CUSTOM”. This will allow you to select how often you would like it to sample in the column

“DDD:HH:MM”. Change this value to 1 minute. Now where it says “* Datafile path” select where you

19

would like to save the XML file containing the sensor data that this software is generating. Once you
have these parameters filled out click “OK” button. From this screen click “Connect” and a screen like
Figure 13 will appear. This page is attempting to connect to the data logger and it should connect if the

parameters are correct.

Fleld2

Modkal: HOE0 Wingthie Logoor
£2) 2001 Orent Comouter Coneration

Sordl 1 TALITO Parl 3 HOLO01
Duglonrert: 26 Mermory (e 512
Demripton: Moot bunch
Srats: Laesnthed and kogoing dats every 30000
eriaiti

Logoer Bxttory: |) SR o o 50N

Moo Battery: Prienary Porasr

| concosnext how (comseree baltery poser) |

Figure 13 — Remote Connection page from Remote Site Manager

If the parameters are not correct it will tell you that it is not connected. If this is the case, edit your
parameters to the correct ones. Once you have the remote site connected to, close the screen, Figure
13. Now you will be back at a screen like Figure 8. Here you should see the site you just created in the

“Auto-Readout Schedule”. Click on the “activate” box and select the correct remote site to activate.

5.3 Labview Software Operation

Once the Remote Site Manager is running an auto-readout you need to run the Labview program. All

respective user actions are described in the following steps.

Step 1 - Open up the Labview program and you will see a screen like in Figure 14.

20

t Panel
ect Operate Tools Window Help

Figure 14 — Labview User program front panel screen

Step 2 - Now you need to select where you told the Remote Site Manager software to output the data

to. To do this change the “XML File Path” to the correct location where the XML file is.

Step 3 - Now to get the application to be displayed on a webpage select Tools -> Web Publishing Tool

from the Labview screen. This will bring up a screen shown in Figure 15.

21

{3 Web Publishing Tool

Select VI and Viewing Options

VI name Preview
hobo__EasyXML2.vi [w]| Title of Web Page
Text that is going to be displayed before the _
Viewing Mode T -
© Embedded

|| Embeds the front panel of the VI so clients can view and
control the frent panel remotely

Request control when connection is established a
) Snapshot

-_I =

i - i Text that is going to be displayed after the VI
Displays a static image of the front panel in a browser test

|| () Monitar
Displays a snapshot that updates continuously
0 Seconds between updates

Preview in Browser

Show border [Start Web Server]

< Back Mext =] [Cancel] l Help l §

Figure 15 — Labview Web Publishing Tool

Step 4 - At this screen select the correct VI where it says “VI name”.

Step 5 - Once the correct VI is selected, change the viewing mode to “Embedded” and select the

“Request control when connection is established.”

Step 6 - Now click the Next button once located at the bottom of the screen and you have the option to

customize the default webpage that Labview will be hosting.

Step 7 — Once that is done, click the Next button again. On the screen, which appears, when it asks for

the directory to save the webpage make sure it is in the root folder. Labview will give you a notification

if it is not.

Step 8 - Once you have it setup how you would like it, select “Start Web Server.”

22

Step 9 — Press the “Save to Disk” button to save the webpage.

Step 10 — This will bring up a notification and give two options. Select the “Connect” button to connect
to the webpage to ensure that it is working properly. If this screen does not appear open up Internet
explorer and go to the URL where the webpage is hosted to make sure everything is working correctly.

Step 11 — The webpage should look like the one shown in Figure 16. On this webpage locate the file

folder next to the “XML File Path” text box and click it.

/& Title of Web Page - Windows Intemet Explorer

(L=t
—_—
@'\Jv [E http:/192168.0.12/hobo__EasyXML2.html [42] x || Live search 2 .
File Edit View Favorites Tools Help
Links g Customize Links
) - . F
UL Gpf | &8 Title of Web Page "';h - [] v |y Page v (Cf Tools +
XML File Path hoboData -
D:\UKT\Products\EasyXML\ = info Pressure plot0 RN |
8 |Customer Tests\test.xml
|¢attr|butes 30.04 -
=" 3002
desc 30+
@
,— T
29.98-
zone
[29.96-
juicne) B.w,‘ I I I I 1 1 I I
0 10 20 30 40 S50 60 70 80
Time
start
end
,— Temparature Plot 1 m I
775+
sensor
“ d
A2 [eatributes w
name . 7637
b
5 76
. a
units 75.5-
SN =
74'51 1 I I 1 [[I [
0 10 20 30 40 50 60 70 80
d Time

Figure 16 — Simple Webpage with Labview Embedded Application

Step 12 — A screen will appear asking where you saved the XML file generated by the Remote Site

Manager. Find where you saved this XML file and select it. Then click the “Open” button.

Step 13 — At the top of the embedded application click the menu “Operate” and select “Run”. The

webpage will read in the information in the XML file now.

23

Step 14 — If a popup appears click the button that says “Continue Evaluating”.

Step 15 — Once the data has been parsed by the Labview program you can look at the overall data for

each of the sensors on the three graphs on the right. Each graph is for a specific sensor and is labeled.

Step 16 — The box “hoboData” contains all of the information parsed form the XML file. Here you can
see the basic information about the data logger and the start time and ending time of the data that was

gathered from the sensors. Also, it tells you the interval between measurements of the data.

Step 17 — Under “hoboData” there is another box that is labeled “sensor”. The numeric control next to

this box allows you to switch between the three sensors by selecting 0, 1, or 2.

Step 18 — At the bottom of each of the sensor boxes there is a section labeled “d”. This is the individual

data measurements. To scroll through them change the numeric control to the left of the text box.

6. Conclusion

This project has been a success creating a system that will display the information online in real
time using Labview. The system might not display the information in true real time but it display the
information once every minute. This was decided that once a minute was a short enough interval
that it can be considered real time since weather information does not change by large amounts in
short periods of time. The project would still need some more work mostly on displaying the
information on the front panel in order to be a true finished project. Other things could be changed
on the front panel to make viewing the specific sensor information easier. Also timestamps could be

added to each sensor reading display so you can tell exactly what time the information was taking

24

instead of having to figure it out by the starting time and how many intervals you are past the

starting time.

25

Appendix A: Labview Program

Screen Shot of Block Diagram of Labview program

| hoboData : I _____
@ Pressure
sEnsor & E

e

26

Appendix A: Continued

Webpage Code: Created by Labview Web publishing tool

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Draft//EN">
<HTML>

<HEAD>

<TITLE>Title of Web Page</TITLE>

</HEAD>

<BODY >

<H1>Title of Web Page</H1>

Text that is going to be displayed before the VI panel image.<P>
<TABLE BORDER = 1 BORDERCOLOR = #000000><TR><TD>

<OBJECT ID="LabVIEWControl" CLASSID="CLSID:A40BOAD4-B50E-4E58-8A1D-8544233807AF" WIDTH=1434 HEIGHT=843
CODEBASE="ftp://ftp.ni.com/support/labview/runtime/windows/8.5/LVRunTimeEng.exe">

<PARAM name="LVFPPVINAME" value="hobo____EasyXML2.vi">
<PARAM name="REQCTRL" value=true>

<EMBED SRC=".LV_FrontPanelProtocol.rpvi85" LVFPPVINAME="hobo___EasyXML2.vi" REQCTRL=true TYPE="application/x-labviewrpvi85"
WIDTH=1434 HEIGHT=843 PLUGINSPAGE="http://digital.ni.com/express.nsf/bycode/exck2m">

</EMBED>

</OBJECT>

</TD></TR></TABLE>

<P>

Text that is going to be displayed after the VI panel image.
</BODY>

</HTML>

Appendix B: Creation of Labview Program

Step 1: Select “Blank VI” from under New on the Labview startup screen

Step 2: Add a file path control to the front panel and label it “XML File Path”. The file path control can
be found under Express->Text Control. The front panel should now look like it does in Figure Al.

=T -
9 Untitled 3 Front Panel * ‘
| Eile Edit View Project Operate Tools Window Help

Mﬁ 15pt Application Font |~ |[fo~][4~ |[E2~][€5~]

Figure Al — File path control added to Labview blank program

Step 3: Add a cluster and label it “hoboData”. This can be seen in Figure A2.

28

;& Untitled 3 Front Panel *

File Edit View Project Operate Tools Window Llelp

"I@ i@ III 15pt Application Font h‘@@@m

Evaluation | «

Figure A2 — Cluster added to program

Step 4 — Create another cluster inside of the cluster that you have just created and label it index. The
result should look like the screen as shown in Figure A3.

29

4 Untitled 3 Front Panel *

File Edit View Project Operate Tools Window Llelp

Figure A3 —info cluster added

Step 5 — Create another cluster inside of the info cluster. Label this new cluster #attributes. The result
can be seen in Figure A4.

;% Untitled 3 Front Panel *

File Edit View Project Operate Tools Window Llelp

"I@ @ ||I 15pt Application Font |"|=m_"|£'

Evaluation | ¢

30

Figure A4 - #attributes cluster added

Step 6 — Add a string indicator inside of the info cluster. Label this string indicator “sn”. The result can
be seen in Figure A5.

Step 7 — Add a string indicator inside of the info cluster but below the sn string indicator. Label this
string indicator “desc”. The result can be seen in Figure A5.

Step 8 — Add a string indicator inside of the info cluster but below the desc string indicator. Label this
string indicator “zone”. The result can be seen in Figure A5.

Step 9 — Add a string indicator inside of the info cluster but below the zone string indicator. Label this
string indicator “interval”. The result can be seen in Figure A5.

;& Untitled 3 Front Panel *

Eile Edit View Project Operate Tools Window Help

Evaluation | <

Figure A5 — string indicators added to the #attributes cluster

Step 10 — Under the info cluster but inside the hoboData cluster add a string indicator and label it
“start”. This can be seen in Figure A6.

31

File Edit View Project Operate Tools Window Help

M@ (] ||I 15pt Application Font |vlm|ﬂl&lm

Evaluation | «

— = =

Figure A6 — start string indicator added inside the hoboData cluster

Step 11 — Under the start string indicator add another string indicator and label this one end. This can
be seen in Figure A7.

32

Eile Edit View Project Operate Tools Window Help

— = =

Figure A6 — end string indicator added

Step 12 — Inside of the hoboData and under the end string indicator add an array. The result should be
like the screen shown in Figure A7.

33

Eile Edit View Project Operate Tools Window Help

]2 8][5t Appcaionport <[] 5]

Figure A7 — array added to the hoboData cluster

Step 13 — Create a cluster inside of the sensor array. Label this cluster sensor. The result should look like
it does in Figure A8.

34

Figure A8 — sensor cluster added to sensor array

Step 14 — Create a cluster inside of the sensor cluster. Label this cluster #attributes. The result should
look like it does in Figure A9.

35

Figure A9 - #attributes cluster added to the sensor cluster in sensor array

Step 15 — Add a string indicator to the #attributes cluster. Label the indicator “name”. This can be seen
in Figure A10.

Step 16 — Add a string indicator to the #attributes cluster under the name string indicator. Label the
indicator “units”. This can be seen in Figure A10.

Step 17 — Add a string indicator to the #attributes cluster under the units string indicator. Label the
indicator “SN”. This can be seen in Figure A10.

Figure A10 — string indicators added to the #attributes cluster

Step 18 — Add an array to the sensor cluster in the sensor array. Make sure not to add it to the
Hattributes cluster. Label this array “d”. The result can be seen in Figure Al11l.

36

Figure A11 — Array added to the sensor cluster

Step 19 — Add a numeric indicator to the d array. The result should look like it does in Figure A12.

Figure A12 — numeric indicator added to d array

Step 20 — Select the whole sensor array and go to the top menu and select “Edit”. Then go down and
select “copy”.

Step 21 — Now go to “Edit” and select “paste”. This will copy the sensor array.

Step 22 — Change the label on the new sensor array to “calc”. Move this array to be under the sensor
array but inside of the hoboData cluster. It should look like the screen in Figure A13.

37

Figure A13 — calc array added to the hoboData cluster

Step 23 — Add a waveform graph to the front panel. Label this graph as “Pressure” and label the Y axis
as “Hg”. The X axis should be left labeled as “Time”. This step can be seen in Figure Al14.

38

! exvi Front Panel *

File Edit View Project Operate Tools Window Help

@|15pmpphmnnnmt «|[5e][] [65

hoboData

XML File Path
4 |

Fattributes

Pressure Plot0 m |

sn

zone

interval

sensor

4
.

Figure A14 — Pressure Waveform Chart added to the front panel

Step 24 — Add a waveform graph to the front panel under the pressure graph. Label this graph as

“Temperature” and label the Y axis as “Degrees F”. The X axis should be left labeled as “Time”. This
step can be seen in Figure A15.

B} ex.vi Front Panel *

File Edit View Project Operate Tools Window Help

EllEptApphcatlun Font |+

to-][]]
hoboData
XML File Path info
IIIIIIII 4‘& Plot 0
£ Fattributes Pressure £ m |
sn
desc
zone
interval
| start
| end
Temperature Plot1 m |
T1.5-
SENSOr
fa' 77-
")IE #attributes
name w
o
l
units =l
SN

39

Figure A15 — Temperature waveform graph added to the front panel

Step 25 — Add a waveform graph to the front panel under the Temperature graph. Label this graph as

“Relative Humidity” and label the Y axis as “Percent %”. The X axis should be left labeled as “Time”. This
step can be seen in Figure Al6.

) exvi Front Panel *

Eile Edit View Project Operate Tools Window Help
|H‘>|@| lEHlEptApph(atlDﬂ Font Y“:;Y ||T|E|:Y”&Y|

interval

| start

| end

Temperature Plot1 m I
TI54
sensor
fa' 77
-’_) 2 #attributes

name

Degree F

units

75
SN
L e e e N R N
0 10 20 30 40 50 60
Time

calc
N
DJ a #attributes

name
units

SM

Figure A16 — Relative Humidity waveform graph added to the front panel

Step 26 — Now go the block diagram for this VI. To do this go to “Window” at the top menu and select
“Show block diagram”. A screen like in Figure A17 will appear.

40

-y s i,
File Edit View Project Operate Tools Window Help J
M@ @E l.u]lﬁ.]uj | 18pt Application Font |v||;mvl|7u:vl ":'-K
XML File Path
= |
hoboData

Pressure

LE
Temperature

’E
o. o

DE!

m

Relative Humidity

ELE

Figure A17 — Block diagram of VI

Step 27 — Add the “Easy Read XML File” to the block diagram. This can be found under the Functions-
>JKI Toolkits->JKI EasyXML. The result should look like Figure A18.

41

ﬂ exvi Block Diagram * E@Ig

File Edit View Project Operate Tools Window Help |@
@ ©|E| b [T uj]|18ptAppIicat\on Font |VI|:,;.vl|'-T]:vl | 3

XML File Path

.

hoboDat,
i:::ﬂ? ata -] Functions Q Search]
s bﬁ Express 3
=]

Fa.
(&

K|

nput Signal Analysis Output

» M H B’E’
B @ I e

Sig Manip Exec Control Arith & Com...

Favorites 4
User Libraries L4
Selecta VI... E
T.x Functions L4
Udreolis |

OpenG 2] JKI Toolkits

v

' Context He
] JKI EasyXML
JKI EasyXML Easy Read XML File

] a5y [
i X

Eo
&

Easy Generat... Easy Parse ... o
|| bas [1.3]
i) 1
Easy Write X... Easy Read X... :

4 1 I

) & 1| to conver

Figure A18 — Easy Read XML File function added to the block diagram

Step 28 — Now connect the XML file path to the path input on the Easy Read XML File function. The
result will look like Figure A19.

XML File Path

EF‘ufh i
=

|

Figure A19 — XML file path connected to Easy Read XML File function

Step 29 — Add the “Variant to Data” function. The result will look like Figure A20.

42

43 exvi Block Diagram *

Eile Edit View Project Operate Tools Window Help
@ @IEI ba | [of | 18pt Application Font |'I|=m"|7]:"
XML File Path
=
=

hoboData

Pressure

Temperature

B
[

e

Relative Humidity

g
o. -

E DL

Figure A20 — Variant to Data function added

Step 30 — Connect the “Easy Read XML File” function data output to the “Variant to Data” Function data
input. Also connect the “Easy Read XML File” function error output to the “Variant to Data” Function
error input. The result will look like Figure A21.

1 i3 exvi Block Diagram *

File Edit View Project Operate Tools Window Help

@ @IE ko | |od |18ptAppIication Font |YI|:;|Y'

v [#9-]

XML File Path

hoboData

43

Figure A21 — “Easy Read XML File” function connected to “Variant to Data” function
Step 31 — Select the hoboData cluster and go to the top menu and select “Edit” then copy.
Step 32 — Go to the top menu and select “Edit” then paste. This will create a second hoboData cluster.

Step 33 — Now right click on the second hoboData cluster and select “Change to constant”. The result
should look like Figure A22.

§3 exwi Block Diagram * =NN= A
File Edit View Project Operate Tools Window Help J
@@ C)I@ ko | [oF |18ptAppIication Font '”;m'”"—IJ:'l =

XML File Path

hoboData

= o
=

Pressure

i
Temperature
0]
Ho] -
Relative Humidity
e]

Figure A22 — A constant hoboData cluster is created

Step 34 — Connect the new constant hoboData cluster to the “Easy Read XML File” function Labview
data type input. This will look like Figure A23.

44

{3 exvi Block Diagram *

File Edit View Project Operate Tools Window Help

@ ©|E| ba S |oft | 18pt Application Font |+ ”3;.'”'-7]:"

XML File Path

hoboData
i

o=l

Pressure

Temperature

= l
oE
DE!

Relative Humidity

m

Figure A23 — Connected the constant to the data type input for the Easy Read XML File function

Step 35 — Connect the new constant hoboData cluster to the “Variant to Data” function Labview data

type input. This will look like Figure A25.

45

i3 exwi Block Diagram *

Eile Edit View Project Operate Tools Window Help

|:{>I{§}I ©|E ||IN:|I|E|.'||:|1} | 18pt Application Font | = l

XML File Path

hoboData
Pressure
o |
Relative Humidity
| o]
S

Figure A24 - Connected the constant to the data type input for the Variant to Data function

Step 36 — Connect the “Variant to Data” data output to the hoboData cluster. The result will look like
Figure A25.

3 exviBlock Diagram *

il

File Edit View Project Operate Tools Window Help

o |{§}| ©|E |I.Q|IE"|DJ} | 18pt Application Font |~ ” ;,,—_.vi 7|:|:v| |C§7~'|
XML File Path
hoboData
! -_“

Pressure
8-
e
Temperature
H

o] =

Figure A25 — “Variant to Data” function output connected to hoboData cluster

Step 37 — Add a “simple error handler” function to the block diagram. The result will look like it does in
Figure A26.

47

File Edit View Project Operate Teols Window Help

|'£|>I@I @IE |'*:II'EI.|EI’ | 18pt Application Font |v|| !mvll'.T]:vl |$vl

XML File Path

hoboData

Pressure

%
.

0 Relative Humidity

7]

min 4

Figure A26 — Simple error handler added to the block diagram

Step 38 — Connect the “Variant to Data” function error output to the “simple error handler. The result
will look like it does in Figure A27.

48

e e e
— - e

File Edit View Project Operate Teols Window Help

o |@| @@lhllﬁ'luﬂ | 18pt Application Font |~ || :;.v||7|]:v| |¢v|

XML File Path

Pressure

Figure A27 — Simple error handler connected to error output

Step 39 — Add an “Unbundle by Name” function to the block diagram. This is a function to use only a
part of a cluster.

Step 40 — Connect the “Unbundle by Name” function data input to the output from the “Variant to
Data” function. This will look like it does in Figure A28.

49

S

File Edit View Project Operate Tools Window Help

= |@| @)E |l|ullﬁ|'|uj} | 18pt Application Font |~ ” :;.v”ﬁ]:vl |C§'lvi

#MIL File Path

hoboData

Pressure

Error
b |

Relative Hurnidity

.
0 wn 4D

— [

Figure A28 — “Unbundle by Name” connected to the “Variant to Data” output

Step 41 — Now we need to configure what the “Unbundle by Name” function selects. To do this right
click on the “Unbundle by Name” function and click on “Select Item”. This will bring up another menu
and click on “sensor”. The result can be seen in Figure A29.

50

1:& exwi Block Lhagram ©

File Edit View Project Operate Tools Window Help

= |@| @)@ |l|ullﬁ|'|uj} | 18pt Application Font |~ ” :;.v”ﬁ]:vi |f§'lv|

#ML File Path

hoboData

Pressure

Error
7

Figure A29 — Unbundle by Name function edited to select the “sensor” data

Step 42 — Add an “Index Array” function to the block diagram. This should be placed to the left of the
Pressure wave graph. The result can be seen in Figure A30.

51

e =

File Edit View Project Operate Tools Window Help

@ @IE Lo iF uj‘llSptApplication Font |v||$mvl|7ﬂ:v”ﬂ;vl

XML File Path

hoboData

|

==

Pressure

Figure A30 — Index Array function added

Step 43 - Add another “Index Array” function to the block diagram. This one should be placed to the left
of the Temperature wave graph. The result can be seen in Figure A31.

52

P — PO

o '

File Edit View Project Operate Tools Window Help

fg} @IE La @ uﬂllﬂptﬁpplication Font |v||!mvl|”|]:v”$v'

XML File Path

Fath|
| 0

hoboData

Pressure
F

=+ [sensor Eﬂf o ¢
=ree

M

Temperature
EE
Pu- i
=

Figure A31 — Index Array function added to the left of Temperature wave graph

Step 44 - Add another “Index Array” function to the block diagram. This one should be placed to the left

of the Relative Humidity wave graph. The result can be seen in Figure A32.

53

e =

File Edit View Project Operate Tools Window Help

@ @IE ba | [of |18ptAppIication Font |'||$;|"|7|]:'”$'|

XML File Path

hoboData

Pressure

-\
0. -

==

Temperature

ErroF

21
1]
=t O L s

o | ey

Relative Hurmidity

-
’“ D

— =]

i
L
Eﬁ%ﬂ

Figure A32 — Index Array function added to the left of Relative Humidity wave graph

Step 45 — Connect the “Unbundle by Name” function output to the input of the “Index Array” function
to the left of the Pressure wave graph. The result can be seen in Figure A33.

54

File Edit Wiew Project Operate Tools Window Help

@ @@ ba | of | 18pt Application Font |+ || fev][<a~] [£9~]

XMIL File Path

hoboData

Pressure

e
%. i

inE

Errar
Ky

Temperature

Relative Humidity

e
P|| Y

DE|

Figure A33 — Index Array function connected to the Unbundle by Name function

Step 46 — Connect the “Unbundle by Name” function output to the input of the “Index Array” function
to the left of the Temperature wave graph. The result can be seen in Figure A34.

55

T i

File Edit View Project Operate Tools

Window Help

@ @IE' ba | [of |18ptAppIication Font |v”:,;.v””|]:v”¢v|

HMIL File Path

hoboData

Pressure

Error
M

Figure A34 — Index Array function connected to the Unbundle by Name function

Step 47 — Connect the “Unbundle by Name” function output to the input of the “Index Array” function
to the left of the Relative Humidity wave graph. The result can be seen in Figure A35.

56

.__lIII

Eile Edit View Project Operate Tools Window Help

|'f|>|@| @@ |h;|||ﬁ'|ui? | 18pt Application Font |vl| :nvllfﬁ:v' |C§;v|

XML File Path

hoboData

[——m]
= o
=

SENSOr

Errar
2

Fo |

&5 3 @ =

=l
=
m
w
n
c
5
m

iiill

|
o
I
|

Temnperature

Eiill

I
=
o

Il

Relative Humidity

Figure A35 — Index Array function connected to the Unbundle by Name function

Step 48 — Add three Numeric Constants to the block diagram. Place these to the left of the three Index
Array functions. These numeric constants are used as indexes for the Index Array function to get data

for each sensor graph. The result should look like Figure A36.

57

{3 exwi Block Diagram *

Eile Edit View Project Operate Tools Window Help

'-JPI@I @IEI |'¢q||E’|uﬁ | 18pt Application Font |~ ” ;mv"ﬁ]:vl |E§'}v|

XML File Path

hoboData
= o
=
Pressure
H
Sy e S 5
T
21
@- Temperature
| 5
el
Relative Humnidity

Fo]

Figure A36 — Numeric Constants added

Step 49 — Change the second from the top numeric constant to the value of 1 by double clicking on the
number and entering the new value. Also, change the third from the top numeric constant to the value
of 2 by double clicking on the number and entering the new value. The result can be seen in Figure A37.

58

{3 exvi Block Diagram *

File Edit View Project Operate Teols Window Help

o |{§}| @)@ |hullﬁ'|uﬁ | 18pt Application Font |~ I| :D'”TU:YI |f§"vi

XML File Path

hoboData

m

Error’
i)

T SENSOF |

=52

Figure A37 — Numeric constants are given values

Pressure

Step 50 — Connect the top numeric constant with the value of 0 to the Index Array to the left of the

Pressure Wave graph. This result can be seen in Figure A38.

59

i3 exwi Block Diagram *

File Edit Wiew Project Operate Tools Window Help

=Y |{§}| @@ |I.;QJIE|'Juﬁ | 18pt Application Font Y_” :m"JFI]:"J |C§TYJ

XMIL File Path

hoboData

[}_______
-

Figure A38 — Numeric Constant connect to Index Array

Step 51 — Connect the second from the top numeric constant with the value of 1 to the Index Array to

the left of the Temperature Wave graph. This result can be seen in Figure A39.

Pressure

e
'uu R

—[E—

Temperature

60

{8 exvi Block Diagram *

File Edit View Project Operate Tools Window Help

= |{§}| ©|E| |l.ullﬁ|'|uj} | 18pt Application Font |~ ” ;mvufﬂvl |C§7"|

XMIL File Path

Figure A39 — Numeric Constant connect to Index Array

Pressure

Step 51 — Connect the bottom numeric constant with the value of 2 to the Index Array to the left of the

Relative Humidity Wave graph. This result can be seen in Figure A40.

61

{3 exvi Block Diagram *

Eile Edit View Project Operate Tools Window Help

2 |{§}| @IE |L'QIIE"|;|:} | 18pt Application Font |~ || :,,—_.v“ﬁ]:vl |Q§7'|

XML File Path

Eth-
=

hoboData

Error
k|

Fo |

Ho] o

Figure A40 — Numeric Constant connect to Index Array

Pressure

]

Step 52 — Add three “Unbundle by Name” functions to the block diagram. One to the left of each of the

wave graphs. This can be seen in Figure A41.

62

{3 exvi Block Diagram *
Eile

Edit View Project Operate Tools Window Help

@ @)E bg & |oF |18ptﬁ\pp|ication Font |vl|;mvl|fﬂv”$v|

XML File Path

hobaoData

Pressure
P8 | cBLT [E
Error Ei
Ky
Temperature
Sy &
il SR
e

Figure A41 — Three unbundled by name functions are added

Step 53 — Connect the three “Unbundle by Name” functions that you just added to the “Index Array”
functions output that are to the left of each function. The result can be seen in Figure A42.

63

{3 exvi Block Diagram *

5] |t S

File Edit View Project Operate Tools Window Help
r{)l@l ©|E||bullﬁ"|uﬁ |18ptAppIicati0n Font |« ' =3

XML File Path

EPuth-
=

hoboData

= o
=

o |

Figure A42 — Unbundle by Name functions are connected to the Index Array functions

Pressure

m

Step 54 — Click on where it says “#attributes” on each of the three Unbundle by Name functions that you
just connected to the Index Array functions and select “d” from the menu that appears. Make sure you

do this for all three of the “Unbundle by Name” functions. The result is as shown in Figure A43.

64

i3 exwi Block Diagram * = | [(i
File Edit View Project Operate Tools Window Help ‘{

|':'|>I@I ©|E||l..u|lﬁ|'|uj} |18ptAppIication Font |vl|=m'"'-_|f|:v| =

XML File Path

hoboData

Pressure
F

Fo |
ERelati\.re I-Eumidity E
F

Fo | '

Figure A43 — Unbundle by Name function values changed to “d”

Step 55 — Now connect each of the three “Unbundle by Name” functions output to the waveform graphs
input to the right of them. The result is shown in Figure A44.

65

] {3 exvi Block Diagram *

File Edit View Project Operate Tools Window Help

& I@l OIE ||..u|lﬁ|‘|uj} | 18pt Application Font |~ l

XML File Path

EPuth-
=

hoboData

Pressure

o]

m

Relative Humidity

IE]

Figure A44 — Unbundle by Name functions connected to their corresponding graphs

Step 56 — Run the VI and make sure everything is working correctly. Now you are finished with this VI.

66

Appendix C: Java program to enter results into database

O©CoO~NOOUDMWNE

import java.sql.*;
import java.io.*;
import java.util.*;

public class hobo {
public static void main(String[] args) throws

Connection conn = null;

String
String
String
String
String
String
String
String
String
String

try {

dateTime;

RH;

temp;
pressure;
text;

month;

day;

year;

time;
tempTime =""";

SQLException {

Class.forName (“'com.mysql.jdbc.Driver')._newlnstance ();

conn =

DriverManager.getConnection(*"jdbc:mysql://mysql .spoatacus.com/okeen_hobo", "okeen" ,

"2CbhJul#");

System.out.printIn(*'Database Connection Established");

catch(Exception x){
System.out.printIn("Unable to load the driver class!");

hs
try {

BufferedReader in = new BufferedReader (new
FileReader(*'C:\\Documents and Settings\\Kyle\\My Documents\\hobo\\test_1.txt"));

text = in.readLine();
text = in.readLine();
text = in.readLine();
text = in.readLine();
text = in.readLine();

while (in.ready()) {
text = in.readLine();

System.out.printin(text);
StringTokenizer st = new StringTokenizer(text, "\t');
dateTime = st.nextToken();
new StringTokenizer(dateTime, "/

StringTokenizer token

month = token.nextToken();
day = token.nextToken();
year = token.nextToken();
time = token.nextToken();
dateTime = year + "/" + month + "/" + day + " " + time;
pressure = st.nextToken();
System.out.printin(pressure);

temp = st.nextToken();
RH = st.nextToken();

Statement stmt = conn.createStatement();

ResultSet rs;

. rs = stmt.executeQuery(""'SELECT timestamp FROM sensor_temp
ORDER BY timestamp DESC LIMIT 1');

stmt.executeUpdate(*" INSERT
e

pressure, temperature, rh) VALUES (\""'+ dateTime+

)";

b
i

n.close();

catch (Exception e){

System.out.printin(e);

3

INTO sensor_temp (timestamp,

"+ pressure+

", +temp+', "+RH+"

67

it (conn = null)

try
{

conn.close);
System.out.println (“'Database connection terminated");

catch (Exception e) { /* ignore close errors */ }

68

Appendix D: index.php

O©oO~NOOUOOMWNDNEPR

27.
28.
29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

<html>

<head>

<link rel="stylesheet" type="text/css" href="style.css" />
<title> Sample Weather Information </title>

</head>

<body>
<div class="outer">
<div id="banner'>

.
HOBO Weather Station
. </div>
. <div id="menu">

Home</1i>

Graphs

About</l1i>

Contact us

. </div>

. <?php

. $dbhost = "mysqgl.spoatacus.com”;

. $dbuser = "okeen”;

. $dbpass = "2CbhJulL#";

- $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die ("Error

connecting to mysql*®);

$dbname = “okeen_hobo";
mysql_select_db($dbname) ;
>

<?php

$query = "SELECT timestamp, pressure, temperature, rh FROM sensor_temp ORDER BY timestamp
DESC LIMIT 1%;

$result = mysql_query($query);

$row = mysql_fetch_array($result, MYSQL_ASSOC);

echo ""<h3> Current Weather Station Sensor Reading</h3>";
echo "Time : {$row["timestamp]}
" .
"Pressure : {$row["pressure"]}
" .
"Temperature : {$row["temperature®]}
" .
"Relative Humidity : {$row["rh"]}
";
?>
</div>
</body>

</html>

69

Appendix E: graph.php

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43.

44.
45.
46.
47.
48.
49.
50.

51.

52.

1.<?php
$time =
$time =
/* Conn
$link =
or

/* Sele
mysql_s

$ GET["time"];

$time*60;
ect to the MySQL Database Server */

mysqgl_connect("mysql .spoatacus.com', "okeen', "2CbhJulL#")
die('Could not connect : " . mysql_error(Q));

ct Database*/
elect_db("okeen_hobo" ,$1ink) or die("'Could not select database™);

/* Performing SQL query for Product X*/
$query = "Select distinct timestamp, temperature FROM sensor_temp ORDER BY timestamp

DESC'";

$resultl = mysql_query($query) or die("Query failed :

- mysql_error());

$query = "Select distinct timestamp, pressure FROM sensor_temp ORDER BY timestamp
DESC™;

$result2 = mysql_query($query) or die("Query failed : " . mysql_error(Q));

$query = "Select distinct timestamp, rh FROM sensor_temp ORDER BY timestamp DESC";

$result3 = mysql_query($query) or die('Query failed : " . mysql_error(Q));

/* Construct HTML page containing Line Graph Applet*/

print "<html>\n"";

print ‘“<head>\n"; ?>

<link rel="stylesheet" type="text/css" href="style.css" />
<?php

print "<title>Sensor Reading Graphs</title>\n";

print "</head>\n";

print "<body>\n"';

print "<div class="outer®>\n";

print "<div id="banner®>\n";

print "
HOBO Weather Station\n";

print "</div>\n"";

print "<div id="menu®>\n";

print "\n";

print "Home</1i>\n"";

print "Graphs\n"";

print "About\n"";

print "Contact
us\n"";

print "\n";

print "</div>\n"";

print “
\n";

print “"<form>\n";

print "Displace the graph by hours (displays 12 hours of data): <input type="text"
name="time" />\n";

print “<input type="submit® />";

print "</form>\n"';

print “
\n";

print "<div id="graphContent">\n"";

print "<applet code="LineGraphApplet.class®™ width="600" height="420">\n"";

print " <!-- Start Up Parameters -->\n";

print " <PARAM name="LOADINGMESSAGE" value="Line Graph Loading - Please Wait.">
<I-- Message to be displayed on Startup -->\n";

print " <PARAM name="STEXTCOLOR®" value="0,0,100">
<l-- Message Text Color-->\n"';

print " <PARAM name="STARTUPCOLOR®" value="255,255,255">

<!-- Applet Background color -->\n"';

70

53. print " \n";

54. print " <I-- Property file -->\n";

55. print " <PARAM name="chartproperties® value="lineproperties.php?time="_%time."">\n"";

56. print " \n";

57. print " <I-- Chart Data --> \n"';

58.

59.

60. $data_num = 1;

61. $count = 1;

62. while ($line = mysqgl_fetch_array($resultl, MYSQL_ASSOC)) {

63. if(($data_num ==1 && ($data_num>=$time)) || ($data_num®%60 == 0 &&
($data_num>=$time))){

64. print "<param name="data'.$count."seriesl”
value="""_$line["temperature]."">\n";

65. $count = $count + 1;

66. }

67.

68. $data_num = $data_num +1;

69. }

70.

71. print " \n";

72. print "</applet>\n";

73. print " \n";

74. print "
\n";

75. print "<applet code="LineGraphApplet.class® width="600" height="420">\n"";

76. print " <I-- Start Up Parameters -->\n";

77. print " <PARAM name="LOADINGMESSAGE" value="Line Graph Loading - Please Wait.">
<!-- Message to be displayed on Startup -->\n"';

78. print " <PARAM name="STEXTCOLOR" value="0,0,100">
<I-- Message Text Color-->\n"';

79. print " <PARAM name="STARTUPCOLOR" value="255,255,255">
<I-- Applet Background color -->\n"';

80. print " \n";

81. print " <!-- Property file -->\n";

82. print " <PARAM name="chartproperties”
value="lineproperties2.php?time="_.$time."">\n";

83. print " \n";

84. print " <I-- Chart Data --> \n";

85.

86.

87. $data_num = 1;

88. $count = 1;

89. while ($line = mysqgl_fetch_array($result2, MYSQL_ASSOC)) {

90. if(($data_num ==1 && ($data_num>=$time)) || ($data_num%60 == 0 &&

($data_num>=$time))){

91. print "<param name="data'.$count."seriesl”
value="""_$line["pressure]."">\n";

92. $count = $count + 1;

93. }

94.

95. $data_num = $data_num +1;

96. }

97.

98. print " \n";

99. print "</applet>\n";

100. print " \n";

101. print "
\n";

102. print "<applet code="LineGraphApplet.class® width="600" height="420">\n"";

103. print " <I-- Start Up Parameters -->\n"";

104. print " <PARAM name="LOADINGMESSAGE®" value="Line Graph Loading - Please
Wait. "> <I-- Message to be displayed on Startup -->\n"';

105. print " <PARAM name="STEXTCOLOR" value="0,0,100">

<I-- Message Text Color-->\n";

?>

106.

107.
108.
109.

110.
111.
112.
113.
114.
115.
116.
117.

118.

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.

print " <PARAM name="STARTUPCOLOR" value="255,255,255">
<I-- Applet Background color -->\n"';

print " \n";

print " <!-- Property file -->\n"';

print " <PARAM name="chartproperties”
value="lineproperties3.php?time=""_%$time."">\n";

print " \n";

print " <I-- Chart Data --> \n"';

$data_num = 1;
$count = 1;
while ($line = mysql_fetch_array($result3, MYSQL_ASSOC)) {
if(($data_num ==1 && ($data_num>=$time)) || ($data_num%60 == 0 &&
($data_num>=$time))){
print "<param name="data'.$count.''seriesl”
value=""_$line["'rh™]."">\n";
$count = $count + 1;

}

$data_num = $data_num +1;

}

print " \n";

print "</applet>\n";
print "</div>\n"";
print "</div>\n"";
print "</body>\n"';
print "</html>\n"";

/* Free resultset */
mysql_free_result($resultl);

/* Closing connection */
mysql_close($link);

72

7 References

[1]XTend Developer Kit (900 Mhz). (2007). http://www.maxstream.net/products/xtend/dev-kit.php

MaxStream, Inc.

[2] XTend OEM RF Module — Product Manua. (2007).
http://www.maxstream.net/products/xtend/product-manual XTend OEM RF-Module.pdf. MaxStream,
Inc.

[3] XTend OEM RF Module (900 Mhz). (2007). http://www.maxstream.net/products/xtend/oem-rf-
module.php. MaxStream, Inc.

[4] MaxStream Product Family at ConLab. (2007). http://www.conlab.com.au/maxstream/. Conlab.

[5]High Performance Wireless Research and Education Network.(2007).
http://hpwren.ucsd.edu/news/20070130/. University of California, San Diego. (2000).

[6]High Performance Wireless Research and Education Network.(2007).
http://hpwren.ucsd.edu/news/20070130/. University of California, San Diego. (2000).

[7]EasyXML Toolkit for LabVIEW — JKI Software. (2008). http://jkisoft.com/easyxml/. JKI.

73

http://www.maxstream.net/products/xtend/dev-kit.php�
http://www.maxstream.net/products/xtend/product-manual_XTend_OEM_RF-Module.pdf�
http://www.maxstream.net/products/xtend/oem-rf-module.php�
http://www.maxstream.net/products/xtend/oem-rf-module.php�
http://www.conlab.com.au/maxstream/�
http://hpwren.ucsd.edu/news/20070130/�
http://hpwren.ucsd.edu/news/20070130/�
http://hpwren.ucsd.edu/news/20070130/�
http://hpwren.ucsd.edu/news/20070130/�
http://hpwren.ucsd.edu/news/20070130/�
http://hpwren.ucsd.edu/news/20070130/�
http://jkisoft.com/easyxml/�

