Setes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Experiment 12: Electronic Design Automation (EDA) for Digital Design Using VHDL and FPGA
Objectives
1. To understand modern digital design methodology based on VHDL and FPGA.

2. To practice using Electronic Design Automation (EDA) tools including simulation, synthesis, and

implementation for digital design based on VHDL and FPGA.
Background Theory

Due to the advance of the IC technology, digital systems have become very complex. As a result,
digital design has become very involved process and advance tools are required. Modern digital de-
sign relies on a set of software programs collectively called EDA tools by which a model of a digital
system can be simulated or synthesized before being implemented into a real hardware such as
FPGA (Field Programmable Gate Array) chip for testing. A digital system is usually modeled using a
Hardware Description Language (HDL) such as VHDL (which stands for Very-high speed IC HDL) and
Verilog. Figure 12.1 shows an FPGA-based digital system design methodology, which includes the

following steps.

/ . Synthesis
/RTL Description |/ ¥
A
f L T r l 7
. / Delay [/ L
Synthesis [file Netlist

C onfiguration
41 &/ e /S

Ehy_sical Placement& | g e
esign Routing — ,[evice

/ Delay / programming
[file [
"""""""""""""""""""""" S p— i S £)
: simulation | | Gruiation Simulation/ () -FPGA chip
Timing -
analysis
/ Testbench Verification

/

Figure 12.1 FPGA-based digital design methodology

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-1

Setes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Step la: System Modeling Using HDL

The goal in this step is to model the system using a HDL (in our case, we use VHDL). The job of de-
signer is to specify the system and use VHDL to describe it in such a way that it can be synthesized
into a logic-level circuit later. Most of designer’s time should be spent in this step whereas VHDL
programs are produced as needed. Knowledge and skills needed in this step are VHDL, fundamental
digital system, text editor, and problem-solving skills. In this laboratory, we’ll use three digital sys-

tems as examples.

Simulation
Experiment R
P :_ testbench |
. Output observ- | A sti |
A stimulus stimulus generator or Output observer
e.g. signal er test vector generator - VHDL utility |
e e.g. logic | - VHDL utilit . "
generators ; utility routines routines |
anatyzer | - Wave editors - Human
A
| -
A physical | l
o > Circuit Circuit’s A model of |
Circuit’s (hardware) | Circuit’s | input > the hardware
nput output | (e.g. VHDL code) Circuit’s |
output |
-
(a) Testing by experiment (b) Verifying by simulation

Figure 12. 2 Concept of testbench program of verification using simulation

Step 1b: Testbench Program

The goal is this step is to write a VHDL program called “testbench”, which will be used in the func-
tional simulation step. A testbench is a VHDL program in which a design under test (DUT) that is
modeled in Step 1a is instantiated. The input ports of the DUT are fed by a set of test vectors that
either stored or generated inside the testbench. The DUT’s output ports are compared with the cor-

rect responses stored inside the testbench. Figure 12.2 shows the concept of testbench.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-2

Seses King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Step 2: Functional Simulation

The goal in this step is to verify that the designed system (the VHDL model from Step 1a) is working
correctly based on its function specification. For example, if the designed system is a 4-bit binary
adder, it must add two numbers together correctly. This is prepared during the testbench coding in
Step 1b. In other words, the appropriated test vectors must be designed for verifying the system.
Once the test vectors are decided, they are integrated in the testbench. Therefore, in this step, a
designer basically setting up the simulation tool for the design under test, then, compile and run it.
Most works that needs to be done in this step occur when the VHDL codes contain errors, either
compile-time errors or run-time errors. Designer needs to correct the compile-time errors first be-
fore simulating the system. If all results are correct the designed system is good for the next step,
but if there exist error cases, designer needs to go back to Step 1a to correct the errors. These two

Steps should be repeated until no errors exist.

Step 3: Synthesis
The goal in this step is to synthesize the verified system into gate-level (or logic-level) circuit using a
synthesis tool. Unlike the simulation step, the testbench is not required in this step. The resulting
gate-level circuit is called “netllist”, which is usually written in a standard netlist format including
the HDL format.

Step 4: (Optional) Gate-level Simulation

There is a chance that the synthesized gate-level circuit may not work correctly. As a result, it
should be verified by simulation using the same testbench from Step 1b. However, in some cases
where the system is not complicated, we may skip this Step and go directly to the implementation

step.

Step 5: Implementation

In this step, the gate-level circuit will be mapped into the structure of the target hardware. For
FPGA implementation, the first step is to translate the gate-level circuit into FPGA structure, which is
arranged as an array of programmable or configurable logic blocks (CLBs) that are connected via
programmable switching blocks as shown in Figure 12.3. The result from the translation is a circuit
of the programmable units, which in turn will be placed to the target FPGA chip, then routing the
connections. Because of these placing and routing works, this step is also known as the “place and
route” step. The final result is called a configuration file and delay file that provides delay infor-
mation of the system.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-3

Setes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

O00O0O0OO0OO00000O0O0OO0O0

O Programmable 1/O blocks O

g I Y o I g

o |O0o0oooooooo| g

o (0000000000 o :

O OoO0OooOO00000 O = Programmable interconnect
O O [= Programmable logic block
g (UO0O0OO0o0ooooon)| g

oD |0OO00DoOooooooO)| g 2Beroe

g I o o o g

o e 1 o e

O O
O0000000000000on

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4.
©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

(a)

C1-C4

£- 4 { 4 4 J: 4
M3 M4 M5 M6
DIN/H2 SR |
1 SR
H1 control

G4 — S Ya
G3—G(G1-G4)| | .] L a Mt
& Py IE—Io,
G1— 1 o
H(F, G, H 1]
(i (B:Gati) l/

M7
(
M12

FL

P L\

F38— F(F1-F4)]

F2 — J

F1—] CLK
M14

K R
(CLK) FF2
D —
M13

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly. ISBN 0-13-186389-4.
©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

(b)
Figure 12.3 (a) General FPGA chip structure and (b) example of programmable or configurable logic
block (CLB)

Step 6: (Optional) Detail Simulation or Timing Analysis

Since the implementation step gives us the actual hardware structure and delay information, we
can simulate the system again to see not only does whether it works correctly or not but also the
timing. Usually, this simulation will take a longer time. Therefore, for small systems, we may skip
the step or in some cases, only the timing is analyzed to see whether or not it meets the require-

ment.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-4

tetes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Step 7: Device Program

In this step, the configuration file is transferred or programmed into the FPGA chip via the JTAG
communication. There are two choices in this step. First, we program the configuration file directly
to the FPGA chip. However, this configuration will disappear when the power is off. Therefore, in
real application of FPGA, the configuration file is stored inn an EEPROM (or flash memory) that con-
nects directly to the JTAG ports of the FPGA chip. Then, whenever the power is turned on, the pre-

stored configuration file will be transferred into the FPGA chip.

o

!
é

Figure 12.4 FPGA Discovery Ill by APEX [2]
Step 8: Hardware Test
The final step is to test whether the actual hardware is working correctly as designed. Usually, a de-
velopment board is required to perform this testing. In other words, the chip that was being pro-
grammed in the previous step is on a development board, which includes input devices such as
switches and output devices such as LED and 7-segment LED display. In testing, we must connect

the input ports of the design to input devices of the board and the output ports to the output de-

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-5

Seses King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

vices. This should be done in the implementation step. Figure 12.4 shows a picture of development
board called “FPGA Discovery IlI” by APEX, Thailand.

Notes
Students are expected to study the attached material entitled “VHDL: A Walkthrough Tutori-

al” and the reference textbook. Also, a brief lecture will be carried out by the lab supervisor at the

beginning of the lab, and there may be a quiz on the topic at the beginning of the lab session.
Attachments

1. Pinit Kumhom, “Xilinx’s ISE and WebPack”, a laboratory note, ENE/EIE 312 Electronic Engineering

Lab., Department of Electronic and Telecommunication, Faculty of Engineering, KMUTT, 2555.

2. APEX, “Discovery Il Development Board User Manual”, a technical manual,
http://www.ailogictechnology.com/download/FPGA%20Discovery%20111%20XC35S200F F4%20Boar
d%20Manual.pdf

References

1. Wakerly, John, “Digital Design: Principle and Practices”, 4th Edition, Pearson International Edition,

2005.

2. Chu, Pong P., “RTL Hardware Design Using VHDL”, 1" edition, Wiley-Interscience, A John Wiley &
Sons, Inc., Publication, 2006.

Equipment and Devices

ltems Quantity
1. A PC computer with Xilinx’s Webpack software installed 1
2. FPGA development board 1
3. Digital Oscilloscope with logic analyzer 1

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-6

Setes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Procedure
Step 1: System Modeling (VHDL Coding) and Testbench program
In this experiment, students will have a chance to go through the design steps of modern digital

system design as shown in Fig. 12.1 using 3 examples as follows.

A B Port Dir Description
4 4 s L bit binarv
AB in 4-bit inputs encoded as 4-bit binary
number
A B Ci in |1-bit catry in
Ci «——Ci 5-bit outputs encoded as binary
S out :
S adderd number where S<=A +B+Ci
2
S
Figure 12.5 Specification of the 4-bit binary adder
A B
% 4 i 4
A B
Ci «——Ci
S adder4
/ ls \
S
A3) B(3) Al2) B(2) Af) 811) AiO) 310)
a b a b a b a b
co FA c< co FA c€ o FA c[< co FA c/€—Ci
S S S s
S{4) $(3) S(2) $(1) S(0)
a ble s co a b
000 (| o o l l
0 01 i 0 = b
s=a®©bSc 010 1 0 <o FA Cle—
co=ab+bc+ac 0 10 | 0 % s
100 | 1 0 il
1 01 0 1
110 0 1
1 4.1 1 1

Figure 12.6 Ripple carry 4-bit binary adder

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-7

tetes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Library ieee;
use ieee.std_logic_1164.all;

entity add4 is

port (
a, b : in std_logic_vector(3 downto @);
cl : in std_logic;
S : out std_logic_vector(4 downto @));
end add4;

architecture struct of add4 is
component FA

port (
a, b, ¢ : in std_logic;
s, CoO : out std_logic);

end component;
signal c : std_logic_vector(4 downto @);
begin -- struct
FA_gen: for 1 in @ to 3 generate
FA_i: FA
port map (
a => a(i),
b = b(i),
c = c(i),
s => s(i),
co => c(i+1l));
end generate FA_gen;
c(@) <= ci;
s(4) <= c(4);
end struct;

Figure 12.7 VHDL code for ripple carry 4-bit binary adder

System 1: A 4-bit Binary Adder
A 4-bit binary adder is a system with two 4-bit inputs coded as binary number for representing natu-
ral number 0 to 15. In addition, another 1-bit input representing an external carry in whose value is
either 0 or 1 is added. The output is a 5-bit that stored the sum of the 3 inputs. Figure 12.5 shows
the specification of the system.

One way to design this 4-bit binary adder is to decompose the system into 4 1-bit adders,
called full adders, connected in cascade as shown in Figure 12.6. The VHDL program that model
this design is shown in Figure 12.7 in which the FA component is the full adder whose VHDL code is

shown in Figure 12.8.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-8

Setas King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

library ieee;
use ieee.std_logic_1164.all;

entity FA is

port (
a, b, ¢ : in std_logic;
s,co : out std_logic);
end FA;

architecture truth_table of FA is

signal fa_in : std_logic_vector(2 downto @);
begin -- struct

-- prepare inputs

fa_in <=a & b & c;

-- The FA truth table implmentation

process (fa_in)

begin -- process
case fa_in is

when "000" => -- abc = 000
s <= '0";
co <= '0';

when "001" => -- abc = 001
s <= "1";
co <= '0';

when "010" => -- abc = 010
s <= "1";
co <= '0';

when "@11" = -- abc = 011
s <= '0";
co <= "1";

when "100" => -- abc = 100
s <= "1";
co <= '0';

when "101" = -- abc = 101
s <= '0";
co <= "1";

when "110" = -- abc = 110
s <= '0";
co <= '1";

when others => -- abc= 111
s <= "1";
co <= "1";

end case;

end process;
end truth_table;

Figure 12.8 A VHDL code for full adder

Notice that the first design of the 4-bit binary adder has the longest propagation delay equal to 4
(the number of bits). This is not good if the number of bits increases. This problem can be solved
with the “carry-look-ahead unit” or “fast-carry unit” that generates the carry of every bit. Fortunate-
ly, in some FPGA chips, such fast carry chain unit is integrated inside the chip. The first design may
not use the fast-carry chain because we synthesize (decompose) the system to be the ripple-carray
system. Therefore, to use the fast-carry unit, we will let the software tool does the synthesis by
modeling the system with high-level HDL as shown in Figure 12.9.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-9

tetes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity add4 1is

port (
a, b : in std_logic_vector(3 downto 9);
cl : in std_logic;
S : out std_logic_vector(4 downto 0));
end add4;

architecture beh of add4 is
signal a_u, b_u, s_u : unsigned(5 downto @),

begin -- beh
a_u <= unsigned('9'&a &'1'); -= a_u = 0 a(3)a(2)a(l)a(@) 1
b_u <= unsigned('@'&b &ci); -= b_u = 0 b(3)b(2)b(1)b(@) ci
S_U <= a_u + b_u; -~ S_U=a_u+ b_u
s <= std_logic_vector(s_u(5 downto 1)); -- ignore bit @

end beh;

Figure 12.9 High-level VHDL code for 4-bit binary adder

Testbench for 4-bit binary adder

To verify whether a VHDL model of a system work correctly or not, we design a VHDL testbench

probram that includes the unit under test (UUT), the input vectors, and output monitoring. Figure
12.10 shows an example of testbench for the 4-bit binary adder.

The first part in the testbench is the instantiation of the unit under test, which must be de-
clared as component in the archtecture’s declaration area.

The second part involves the test vectors. Notice that the input signals are declared as a, b,
ci and the output signals are s and co. Then, the test vectors, a, b and ci, are declared as constants
a v, b v,and ci v, which are array of 8 values of a, b, and ci respectively. Also the corresponding
correct results are declared as constant s_v. In other word, in this example, we choose to store the
test vectors instead of generating them. Since we need to store a and b which is the
std logic_vector(3 downto 0), we declare user-defined type as “input_array” and declared array of
s v as the “output array”.

The third part is the running mechanism using the process statement. In each round of the
process (each index value of index i), the input vectors are set (a => a v(i), b => b (i), c => ci_v(i)).

Then, the statement “wait for 100 ns” means that the time scale moves 100 ns. Then, the output s

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-10

King Mongkut’s University of Technology Thonburi

Faculty of Engineering
l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

is compared with s_v(i) which is the correct answer. If the answer is not correct, the simulation will

stop, using the “assertion statement”; otherwise, the simulation continues.

Library ieee;
use ieee.std_logic_1164.all;

entity add4_tb 1is
end add4_tb;

architecture beh of add4_tb 1is
component add4

port (
a, b : in std_logic_vector(3 downto 9);
cil : in std_logic;
s : out std_logic_vector(4 downto @));

end component;
signal a, b : std_logic_vector(3 downto @);
signal ci : std_logic;
signal s : std_logic_vector(4 downto 0);
-- Test vectors
type input_array is array (natural range <) of std_logic_vector(3 downto @);
type output_array is array (natural range <) of std_logic_vector(4 downto @);
constant a_v : input_array(@ to 7) := ("0000","0010","0100","0110","1000","1010","1100","1110");
constant b_v : input_array(@ to 7) := ("0001","0011","@101","0111","1001","1011","1101","1111");
constant ci_v : std_logic_vector(@ to 7) := "01010101";
constant s_v : output_array(@ to 7) := ("00001","00110","01001","01110","10001","10110","11001","11110");
begin -- beh
-- Unit Undet Test instantiation
uut: add4
port map (

a =>a,

b = b,

cl => ci,

s =>5);

-- Test loop
process
begin -- process
for 1 in @ to 7 loop
-- set the inputs
a <= a_v(i);
b <= b_v(1);
cl <= ci_v(i);
-- wait
wait for 100 ns;
assert s = s_v(i) report "Output is not correct!!" severity failure;
end loop; -- 1
end process;

end beh;

Figure 12.10 Testbench for “add4”, the 4-bit binary adder

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-11

Setas King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

r— |
| |
| |
| 14 I
| 4 4 |
| 4-bit Q—+] >4
q-reg
| X Incrementer Y | 8
| a +—o Seg_disp

I y=x+1 b
| | ¢ b——
| | bin2seg ‘ci
| | N —

g
| | p—r
| |
| |
L] S | S — J

count clk rst_n

4-bit binary counter
Figure 12.11 Functional block diagram of 4-bit binary counter
Library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity count4 1is

port (
clk, rst_n : in std_logic;
count : in std_logic;
q : out std_logic_vector(3 downto 0));

end count4;

architecture beh of count4 1is
signal q_reg, gq_next, g_inc : unsigned(3 downto 9@);
begin -- struct
-- 4-bit register
process (clk, rst_n)
begin -- process
if rst_n = '@' then -- asynchronous reset (active low)
q_reg <= (others => '9'); -- set all output to '@’
elsif clk'event and clk = '1" then -- rising clock edge
q_reg <= q_next;
end if;
end process;
-- 1incrementer
g_inc <= q_reg + 1;
-- 2-to-1 MUX
g_next <= g_inc when count = '1' else
q-reg;
-= Output
q <= std_logic_vector(q_reg);

end beh;

Figure 12.12 VHDL code for the 4-bit binary counter

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-12

Setas King Mongkut’s University of Technology Thonburi

KM. Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

System 2: 4-bit Counter

Counter is an important sequential module because it can be used as timer, which is required in
many applications. The basic functional block of a binary counter consists of a register, an incre-
menter and a multiplexor (MUX) as shown in Figure 12.11. A VHDL program of a 4-bit binary counter
(cyclically count 0 to 15) is shown in Figure 12.12.

Library ieee;
use ieee.std_logic_1164.all;

entity count4_tb 1is
-- entity without ports = a test bench
end count4_tb;

architecture beh of count4_tb 1is
component count4

port (
clk, rst_n : in std_logic;
count : in std_logic;
q : out std_logic_vector(3 downto @));
end component;
signal clk : std_logic := '0'; -- initialize to '@' or '1';

signal rst_n, count : std_logic;
signal q : std_logic_vector(3 downto @);
begin -- struct
-= Unit Under Test
uut: count4
port map (clk, rst_n, count, q);

-- Clock generator for simulation

process -- infinite loop

begin -- process
wait for 50 ns; -- wait for half cycle
clk <= not clk; -~ flip clk value

end process;

-- Control mechanism (changing the control signals (rst_n and count))
-- No output checking = monitor the output by human

process -- infinite loop
begin -- process
rst_n <= '0"; -~ activate reset
count <= '9'; -~ deactivate count
wait for 100 ns;
rst_n <= '1"; -- deactivate reset
wait for 200 ns; -- no count for 2 clocks
count <= '1"; -- activate count
wait for 500 ns; -~ count for 5 clocks
count <= '0"; -~ deactivate count
wait for 300 ns; -- no count for 3 clocks
count <= '1"; -~ activate count
wait for 1500 ns; -~ count for 15 clocks

-- go back to the beginning
end process;

end beh;

Figure 12.13 Testbench code for simulating the 4-bit binary counter

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-13

Setes King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Testbench for the 4-bit counter

Verifying a counter is to check that it counts correctly. Figure 12.13 shows an example of such

testbench. Again, the unit under test (“count4” component) must be instantiated. Unlike the adder
testbench, we generated all input signals, including the clock signal (clk), the reset signal (rst_n) and
count control (count). Notice that we use one process to generate clock and the other to generate

rst n and count.

=

XOR
4 4
Network 7 D QH— = 4
shifting
p st
T 4-bit register
clk rst_n

(a) Block diagram of a 4-bit LFSR

%\\

q(3) q(2) q(1) q(0)
D-FF ‘ D-FF | D-FF D-FF
—D Q D Q D Q D Q
P CLR ”> CLR |’> CLR |’> PR
(&) (@) T T
clk rst_n

(b) Gate-level circuit of the 4-bit LFSR
Figure 12.12 (a) Block diagram of the 4-bit LFSR (b) Gate-level circuit

System 3: d-bit Linear Feedback Shift Register (LSFR)

Linear feedback shift registers (LSFR) are used mostly for implementing error-correcting codes.
Moreover, another major application of LFSR is to generate uniform pseudorandom numbers. Figure
12.12 shows the functional block diagram of the 4-bit LSFR that can generate 15 non-zero numbers
that look like random numbers. The VHDL code for the 4-bit LFSR is shown in Figure 12.13 with ad-

dition of inserting the zero so that all 16 numbers are generated and the count control (count).

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-14

Setas King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Since the ports of the “lfsrd” and “countd4” are the same and they both are a kind of counters,

they testbench is the same except the unit under test part of the testbench.

Library ieee;
use ieee.std_logic_1164.all;

entity lfsr4 is

port (
clk, rst_n : in std_logic;
count : in std_logic;
q : out std_logic_vector(3 downto @));
end 1fsr4;

architecture beh of 1fsr4 is
constant SEED : std_logic_vector(3 downto @) := "0001"; -- non-zero initial value
signal q_reg, gq_next : std_logic_vector(3 downto 9@);
signal fb, zero, fzero : std_logic;
begin -- struct
-- 4-bit register
process (clk, rst_n)

begin -- process
if rst_n = '@" then -- asynchronous reset (active low)
q_reg <= SEED; -- set output to a random seed
elsif clk'event and clk = '1' then -- rising clock edge
q_reg <= q_next;
end if;

end process;
-- XOR network

fb <= q_reg(®) xor q_reg(l);

-- Insert "0000" when gq_reg(3 downto 1) = "0001"

zero <= '1' when q_req(3 downto 1)="000" else
o'

fzero <= fb xor zero;

-- Shifting

q_next <= fzero & q_reg(3 downto 1);

-= Qutput

q <= std_logic_vector(q_reg);

end beh;

Figure 12.13 VHDL code for 4-bit LFSR with zero insertion and count control

Experiment 1: 4-bit ripple-carry binary adder

Function Simulation

1. Create a new directory in drive D with the name “S<m>G<n>" where m is chosen from 1, 2, 3 or
| depending on your class session and n is the number of your group; e.g. SIG1A = session 1
group 1A.

2. Open the Xilinx’s ISE program. Then, choose the “Create new project” menu to create a new
project. A pop-up menu similar to Figure 12.14 appears. Enter “ripple-adder” as the name and

click on the “..” on the right of the Location line to browse to the directory created in Step 1.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-15

King Mongkut’s University of Technology Thonburi

Faculty of Engineering
l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Create New Project

Specify project location and type.
Enter a name, locations, and comment for, the project
Name: ripple-adder
Location: D:\51G1AYipple-adder

Working Directory: |D:\S1G1AVipple-adder

Description:

Select the type of top-level source for the project

Top-evel source type:
HDL

[vex

Figure 12.14 Example of the “Create new project” pop-up menu

@ & New Project Wizard

Project Settings

Specify device and project properties.

Select the device and design flow for the project
Property Name Value
Evaluation Development Board None Specified E
Product Category All E
Family Spartan3 E
Device XC35200 [~]
Package TQ144 [+
Speed -4 E
Top-Level Source Type HDL
Synthesis Tool XST (VHDL/Verilog) E
Simulator 1Sim (VHDL/Verilog) E
Preferred Lanquage VHDL E
Property Specification in Project File Store all values E
Manual Compile Order (]
VHDL Source Analysis Standard VHDL-93 B
Enable Message Filtering =

o (o]

Figure 12.15 Example of the “Project setting” pop-up menu

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-16

King Mongkut’s University of Technology Thonburi

KM. Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Click “Next. Then, the “Project setting” pop-up menu as shown in Figure 12.15 appears. Choose
the setting to be the same as those shown in Figure 12.15. After clicking “Next”, the summary
menu will show up. Click “Finish”.

File Edit View Project Source Process T
= | s .\

iD;SHH”»Iabw.X|K)Gl
Design <08 X]
[| View: @ ﬁ)} Implementation () Simulaﬁon
(Z] | Hierarchy =
%] E ripple-adder N
— | B £ xc3s50-5tql44 2

o L
ki Empty View
_=J The view currently contains no files.

You can add files to the project

”' using the toolbar at left, commands

[« from the Project menu, and by
—; using the Design, Files, and

m Libraries panels. .

Figure 12.16 The “Add copy files” button
3. Click on the icon “Add copy of files” (see Figure 12.16) for adding source files of the project, the
pop-up menu similar to Figure 12.17 appears.

Add Copy of Source .
K9\)% | « BxE312Digitallab3 » sic » binaryadder » ripple v |4 Searchrippe P
Organize v New folder =~ 0 @
@ Documents - Name = Date modified Type Size
J‘ Music =
2] | add4_ripple 11/9/2012 4:05PM Text Document
[=| Pictures
B via || add4_tb 11/9/20126:48PM Text Document
L (Eira 11/3/2012634PM Text Document
+& Homegroup
1% Computer r
&, Local Disk (C:)
ca data (D:)
a Local Disk (E:)
ca Local Disk (K:)
~ | I m | »
File name: "FA" "addd_ripple" "add4_tb" v [Sourcs(*bdt *.vhd *.vhdl *v % VI
[Open] [Cancel]

Figure 12.17 Example of the “Add copy of files” pop-up menu
From the pop-up window, browse to the directory
“<shared directory>\src\binaryadder\ripple\” in the shared folder. Then, choose all files in the di-
rectory (see Figure 12.16). Click “Open”, then notice the change in the ISE.
4. Choose the “Simulation” view (see Figure 12.18). Then, compile the “addd tb.vhd”. If there ex-
ists syntax errors correct them.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-17

KM’

King Mongkut’s University of Technology Thonburi

Faculty of Engineering
l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Edit View Project Source Process Tools Window Layout Help
lD2EF L snbxvwal 2R 2RI spcP)Q
Il[)esign N xl —. | & Design Overview ’ A
i | View: O {8} Implementation @[3 Simulation = B Summary I B
D rf;'- = B @ D IOB Properties Project ripple-_ Parser Errors: No Errors
&l Behavioral [Module Level Utilization File: adder. xise
Hierarch : iming Constraints Module |add4 Implementation |New
g [Piereery) Timing Consirg =
S & opte sader Select the des 9n to be process || |name: State:
an | & £ xc3s50-5tql44] [Clock P‘EPPK " ||| Target xc3s50-5t « Errors: !
= % addd._tb - beh (addd_tb.vhd) o @ Static Timing Device: |g144 =
& (=} Errors and Warnings .
= 8 Parsr Mesessas Product |ISE 14.3 « Warnings:
g =
E [Synthesis Messages ye
@ infid [Translation Messages | | | Design Balanced * Routing
= Design Window [0 Map Messages - pe—.
| D Place and Route Messages Design Xilinx * Timing B
) [Timing Messages Strategy: |Default Constrain
: €2 No Processes Running Compile [] Bitgen Messages {unlocked) ts:
- ompil sk
Ff: | Processes: addé_tb - beh = Deta%d‘;"el’zft':me"tat'°" _H[e « Final
: | o) Detailed Rep i
E’t =3 1Sim Simulator = = ent: Timing
2 ; Design Properties Score:
= -~ €2 Behavioral Check Syntax i Enable M Filteri
A [Simulate Behavioral Model D e gr erng
— Optional Design Summary Contents
H e Show Clock Report Detailed -
T \Slmulate D oI Reports | =
ovial |an A Report |Status Genera |Errors|Warning |Infos
% g:ow\évammgs Name ted =
ow Errors
Process Window Synthesi
s Report =
& Start I E1d Design mj Files |[E Libran‘es“ = Design Summary B8 l
Console 08 X
4y INFO:HDLCompiler:1061 - Parsing VHDL file "D:/SlGlA/ripple—adder/addé_ripple.vhd" into library work -~
J) INFO:HDLCompiler:1061 - Parsing VHDL file "D:/SlGlA/ripple—adder/addé_tb.vhd" into library work
J) INFO:ProjectMgmt - Parsing design hierarchy completed successfully. =
< (T |)

Console [_6 Errors I_A Warnings I!ﬁ FmdinFIesResults|

Figure 12.18 ISE’s Simulation View
5. Run the ISE simulation to simulate the “add4 tb’. After the simulation is loaded, many windows
including the “Instance and Process”, the “Simulation objects”, the “waveform” and the “Con-
sole” windows show up inside the same frame. The “waveform” window (the one with the black
background) plots signal values against the hardware time (the horizontal axis), which is an imagi-
nary time under which the hardware under test is assumed to be working.
type restart <enter> in the “command” window (the one with “#lsim” cursor), which
order the simulation to reset the hardware time to zero (current time = 0). Then
type run <Max_time> <enter> for running the simulation, where “Max time” is the
hardware time for the simulation to progress from the current time. For example, run 1000 ns

to order the simulation to execute until the hardware time reaches “current time” + 1000 ns.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-18

King Mongkut’s University of Technology Thonburi

[\ i//] Faculty of Engineering
W Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

2.2 [Sim (P.40xd) - [Defaultwefg
[File Edit View Simulation Window Layout Help
DAL XDEX®|w o | &
Instances and Processes + O & X | [Objects 08 x| #
nng].n-g]. Simulation Objects for add4_tb
insancendProcesiome | ALMUAIBIBI0) & |
Q add4_tb Object Name Value | 1101 111
W std_logic 1164 25 aB:0) 0100 | b G
)6 bla - 2101 | %] 0110 [[01001 01110 11001 11110 000C
?& 5[40] 01001

R§ avio7) 0000, 001(
R b_vio:7) 0001, 0013
2§ civo7] 01010101 |
B svio:7) 00001, 001
i

‘ it » y |«
£ Instanc. Memory l E} q i v ||

Console <08 X
15im does not yet support tracing of constant and generic multi-dimensional arrays.

Simulator is doing circuit initialization process.

Finished circuit initialization process.

ISim> restart

1Sim> run 1000 ns

Simulator is doing circuit ni na\zano n process.

Finished dircuit initialization

1Sim> i

@ console |[=] CompiationLog] @ Ereakpoints [Lu Find in Files Results l‘n Search Results

Sim Time: 1,000,000 ps

Figure 12.19 Example of the ISim’s window display
If the simulation exits before it reaches the 1000 ns time, it means that there exists a wrong re-
sult at the time the simulation exit; otherwise, all results are corrected. An error can be either
that the “wrong answer” is stored or that the output response is wrong. If no error is found, click
the “full view” button (Move the mouse pointer to a button to see what it is. The “full view”
button is in the middle of the window). Figure 12.19 shows the full view of the simulation results
of the “add4” after the run 1000 ns command when there is no error.

Synthesis and Implementation

6. Choose the “Implementation” button on the top of the “ISE” window. The ISE window should
change to something similar to Figure 12.20.

7. In the process window, expand the “User constraints” button in the window. Then, double click
to run the “I/O Pin Planning (PlanAhead) — Pre Synthesis”. The PlanAhead’s window similar to
Figure 12.21 should show up. (You might need to wait for quite a long time.) Edit the Ports’ site
of all ports to the appropriate pins, which must be planned ahead by consulting the develop-
ment board’s manual (Attachment 2). For the pin setup that shows in Figure 12.21, we use the
“DIP” switch number 1, 2, 3, 4 for the input port “a”, the “DIP SW” number 5 — 8 for the input
port “b”, the “PB1” switch for the input port “ci”, and the LED number L7, L3, L2, L1, LO for the
output port “s”.

8. Run the “Synthesis”. If there is no error, record the synthesis report especially the “device’s utili-
zation” part.

9. Run the “Implement”. If there is no error, record the device’s utilization again. Compare it with
one from the synthesis step.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-19

King Mongkut’s University of Technology Thonburi

Faculty of Engineering
Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

Edit View Project Source Process Tools Window Layout Help =& %
D.?,;%M * X|oa| » 3 BB DS FRPELQ
Design 1 1library ieee; -
7] | View: @ {8} implementation ©) [Simulation ; 2 [
] | Hierarch = S
@ Yy 4 entity add4_tb is
& i8] ripple-adder i 5
=@ tqldd 6 end addé_tb;
& 7
2 8 architecture beh of add4_tb is
—_— Q9 component add4 =
A 10 port (
% 11 a, b : in st vector (3 downto 0);
= 12 ci :in std_
A 13 s : out std_. or (4 downto 0));
% 14 end component;
= 35 signal a, b : (3 downto 0):
\,) 16 signal ci :
P | T2 NoProcesses Running) 17 signal s : ctor (4 downto 0):
= 2—| 18 -- Test ve
l?t Processes: add.d»struct 19 type input_array is array (natural range <>) of st
S X Design Summary/Reports 20 type output_array is array (natural range <>) of :
& g Design Utilities 21 constant a_v : input_array(0 to 7) ("o000",
Al User Constraints 22 constant nput_array(0 to 7) (" "
T ®} Create Timing Constraints = 23 constant vector (0 to 7) "
/O Pin Planning (PlanAhead) - Pre-Synthesis 24 constant s_v : output_array(0 to 7) :i= ("0 "
/O Pin Planning (PlanAhead) - Post-Synthesis B egin — b
Floorplan Area/I0/Logic (PlanAhead) 26 2 Test instantiation
@ 8 Synthesize - XST L 27 wut
@ €2 Implement Design 28 port map (
T2 Generate Programming File an A~ =~ - b
19 Confiaure Target Device 4 < il E
& Start | B3 Design |U[] Files IE Libraries‘ X Design Summary B8
Console 08 X
Waiting for 2 sub-compilation(s) to finish... -
Compiled 7 VHDL Units
Built simulation executable D:/S1GlA/ripple-adder/add4_tb_isim beh.exe =
Fuse Memory Usage: 110940 KB —
O T — o »
[E] console |@ Errors [A\ Warmings [ig8 Findin Fies Results |
Ln32Col16 VHDL

Figure 12.20 Example of the ISE Implementation view

File Edit Tools Windody Layout View Help

BloaE X &% @ K| G |23 o Planning e\
Elaborated Design * 5

RTL Netlist = P [Package X @ Device X o x
59 Donl IF

= |El

FA_gen[0].FA_i
FA_gen[1].FA_i
FA_gen[2].FA_i (FA
FA_gen[3].FAi (FA

1/0 Port Properties _ O x
« » &5
Dd

Name: d

General | Attributes | Configure

& Properties | @ Clock Regions

1/0 Ports = RN

Q| Name Direction Neg Diff Pair Site Fixed Bank 1/0std Veco Vref Drive Str

= |=-E Allports (14

Z|=-® Alports (1

= [ERENC Input default (LVCMOS25) 2.500

o @ a[3] Input P52] 5 default (LVCMOS25) 2,500

= 2 a[2] Input P53) 5 default (LVCMOS25) 2.500

> 2 al1] Input P55 v 4 default (LVCMOS25) 2,500

2 a0 Input PS6) 4 default (LVCMOS25) 2.500

2% b (4 Input 4 default (LVCMOS25) 2.500
& b[3] Input PSS) 4 default (LVCMOS25) 2.500
& b[2] Input P60) 4 default (LVCMOS25) 2.500
& b[1] Input P63) 4 default (LVCMOS25) 2.500
& b[0] Input P68 7} 4 default (LVCMOS25) 2.500
2@ s Output default (LVCMOS25) 2.500

@ s[4] Output P78 & 3 default (LVCMOS25) 2,500
<@ s[3 Output P76) 3 default (LVCMOS25) 2.500
< s[2] Output P69) 4 default (LVCMOS25) 2.500
< s[1] Output P77) 3 default (LVCMOS25) 2.500
< s[o] Output P70) 4 default (LVCMOS25) 2.500
Scalar ports (1.

T I -+ | @ | ldefautvovoss] 2500l
‘ i =

/5 Td Console | 5 Package Pins [1/0 Ports

Figure 12.21 PlanAhead’s window for editing the Pin’s assignment for the 1/0 ports

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-20

Seses King Mongkut’s University of Technology Thonburi

KM . Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

10. Run “Generate Programming File”. The configuration file named as <design name>.bit (e.g.
add4.bit) should be generated inside the project’s directory.

11. Run “Manage Configuration Project (iIMPACT)”. The window similar to Figure 12.22 appears after
doubling on the “Boundary Scan”. Using the right click on the right sub-window to select “Initial-
ize the Chain”, we get the JTAG chain as shown in Figure 12.23. (Choose cancel when there is a
pOp-Up Menu appears).

12. Right click on the “XC3S200” device. Then, choosing the “Assign new configuration file”, the
window similar to Figure 12.24 appear. Browse to the project directory to chose the
<deign_name>.bit file. Click “OK”.

13. After the configuration has been assigned, right click on the “XC35200” again. This time choose
“Program” to program the configuration file to the chip. After some time the “Program Success-
ful” should appear. If the program is failed consult the Lab’s supervisor.

14. Perform the experiment to test whether or not the hardware is working correctly.

Experiment 2: 4-bit binary adder (high-level VHDL code)
Repeat Step 2 - 14 but name the project “high-level-adder” and use the source files from the di-

rectory “<shared directory>\src\binaryadder\high-level\” instead.

Experiment 3: 4-bit binary counter
Repeat Step 2 - 14 but name the project “counter” and use the source files from the directory

“<shared directory>\src\counter\” instead.

Experiment 4: 4-bit LFSR
Repeat Step 2 - 14 but name the project “lfsr” and use the source files from the directory

»

“<shared directory>\src\lfsr\” instead.
Points of Discussion
1. Explain in your own words what you have learnt from this set of experiments in term of
VHDL modeling, design methodology, EDA tools, development boards, etc.
Discuss the differences between the simulation and the actual testing of hardware.
Discuss the differences between the simulation and synthesis.

Discuss the differences between the synthesis results and the implementation results.

bk N

Consult the manual of the XC35200 to learn more about the FPGA chip using in this experi-

ment, and discuss it in the report.

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom 12-21

King Mongkut’s University of Technology Thonburi
Faculty of Engineering

l ' I I Department of Electronic and Telecommunication Engineering

ENE/EIE 312 Electronic Engineering Laboratory,

for 3rd year students of the Electrical Communication and Electronic Engineering Curriculum

1% ISE iMPACT (P.40xd) - [Boundary Scan] . a e —

Edit View Operations

==

Output Debug Window Help

PELC IR TP

[iMPACT Flows

08 X

2% Boundary Scan
[=] SystemACE

|=] WebTalk Data

|=] Create PROM File (PROM File Format...

Right click to Add Device or Initialize JTAG chain

||IMPACT Processes

08 X

Available Operations are:

Boundary Scan

Console

08 X

< [l

B console [@ TErmors [AN Warnings |

|No Cable Connection |No File Open F r [—

Figure 12.22 Example of the IMPACT window

' @ ISE iIMPACT (P.40xd) - [Boundaly u ‘ =D=M !

@ File Edit View Operations Output Debug Window Help Hlﬂ[ﬂ
DPEYRBXEEnxu/Boisen
iMPACT Flows 08 X
[+ 3@ Boundary Scan
~[2] SystemACE
- |=] Create PROM File (PROM File Format...
2] WebTalk Data oI —&x
|
' xcfols xc3s200
|[IMPACT Processes 08 X Bynass bycss
/| Available Operations are: TDO.
/| = Get DeviceID
!l = Get Device Signature/Usercode
: =) Read Device Status @ o
E Console 08 X
'1': : Manufacturer's ID = Xilinx xcf0ls, Version : 0

3y INFO:iMPACT:1777 -
Reading D:/Xilinx/14.3/ISE_DS/ISE/xcf/data/xcfOls.bsd...

Added Device xcf0ls successfully.

i J) INFO:iMPACT:501 - '1':

done.

Elapsed time =

<

PROGRESS_END - End Operation.

0 sec.

[cosoe (OB wam

|Configuration |Parallel I |200 KHz |— LPT1

Figure 12.23 The iIMPACT window showing the JTAG chain of the Discovery Il board

In-charge Faculty Staff: Asst. Prof. Dr. Pinit Kumhom

12-22

