
Il nostro Sistema Qualità ha ricevuto la
certificazione di conformità a norme ISO
9002 dal 1998. Da Gennaio 2010 siamo
passatti alla ISO 9001:2008.

Our Quality System was granted the
certification of conformity with ISO 9002
standards as September 1998.
From January 2010 we have switched over to
ISO 9001:2008.

PiccoloTouch®EK315

PiccoloTouch®,
it takes

a finger,
so simple.

USER MANUAL

S E R I E S

PICCOLOTOUCH

2

PiccoloTouch®EK315

PiccoloTouch®,
it takes

a finger,
so simple.

3

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Software Developement System in

a Linux Environment for

Embedded Boards EK315 - Piccolo Touch

Linux Edelin

© 2013/2014 Eurek Elettronica S.r.l.

26/03/15 12.49.54 Rev. 1.01 1 / 27

4

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

This documents is referring to a VirttualBox Working Image provided with the EK315 - Piccolo

Touch board Board Support Package.

26/03/15 12.49.54 Rev. 1.01 2 / 27

5

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Embedded Linux EK315 - Piccolo Touch

Board Support Package

This document is to be intended as a brief explanation set of the most common descriptions of the

available tools and software provided as is in the VirtualBox Image Environment, just to

program/flash the board and to be operatively ready for writing your own firmware.

Technical Specification of board EK340 - Piccolo Touch

PiccoloTouch

Dimensions

• 75 mm x 96 mm

Power

• 9…12V 300mA via power connector or

5V using USB cable

Display

• 3.2” color LCD TFT with LED backlight

Resolution

• 240×320 262k colors

Touch Screen

• Resistive, 4 wires

Processor

• STM32 ARM CORTEX M3

Clock

• 72 MHz

Internal Flash Memory

• 512kB

26/03/15 12.49.54 Rev. 1.01 3 / 27

6

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

PiccoloTouch

External Flash Memory

• 16 MB

Ram Memory

• 64 kB (internal)

• 512 kB (external)

Ferromagnetic EEPROM

• 8k

Temperature Sensor

• LM73CIMK-1

Real Time Clock

• Internal with SUPERCAP backup

Jtag Port

• Available as custom connector

Interfaces

• CAN 2.0B (with selectable terminator)

• I2C (3.3V)

• RS485 (with selectable terminator)

• USB (microUSB connector)

• microSD

Connector

• PHOENIX CONTACT PTSM 8-pin

Available Software

• FreeRTOS

• EcceGUI Library

26/03/15 12.49.54 Rev. 1.01 4 / 27

7

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

PiccoloTouch

File System

• FATfs on microSD

Boot Time

• Less than 1 second

Sound

• Buzzer (for TOUCH Events)

Developer tools

• IDE Eclipse with GCC Compiler and

OCD Debugger

• VirtualBox BSP Image (can be used in

Linux, MacOS X or Windows Operating

Systems and possibly others)

26/03/15 12.49.54 Rev. 1.01 5 / 27

8

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Connectors and indicators available on board EK315 - Piccolo Touch

On the board there are those connectors/indicators:

– Master I/O and Power Supply Connector J6 (serial RS485, CANBus 2.0B, I2C Two-wires

Interface and PowerSupply pins)

– Custom Key SMD

– System Reset Key SMD

– Power Red Led SMD

– User Red Led SMD

– microUSB device type AB

– microSD Connector J3

– LCD Connector J1

– Bus Terminator Selector SW1 (CANBus / RS485)

26/03/15 12.49.54 Rev. 1.01 6 / 27

SUPERCAP

BATTERY

SW1

BUS TERM

J6

RS485, CANBUS,

POWER, GND,

I2C-TWI

S2

USER SWITCH

TEMP

SENSORJ2

microUSB
S1

RESET SWITCH

J3

microSD

J4

JTAG, UART

CIC1

BUZZER

9

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Pin Out Connectors

– Connector J6

1 RS485 - A

2 RS485 - B

3 CAN - L

4 CAN - H

5 +Vcc (5..12V)

6 GND

7 I2C - TWI SCL

8 I2C - TWI SDA

JTAG Connector J 4

1 nTRST

2 Not Connected

3 TDI

4 nRESET

5 TMS

6 GND

7 TDO

8 Not Connected

9 TCK

10 GND

11 GND

12 UART RX

13 +3.3V

14 UART TX

26/03/15 12.49.54 Rev. 1.01 7 / 27

10

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

External Memory

The external flash memory is used mainly as graphic storage for widgets and screens of the GUI.

MicroSD Support

Any microSD Card inserted into the connector can be used safely using the FatFS API access. It has

to be formatted with FAT32 FileSystem type. Up to 16Gb can be used. Other sizes could be used

but are not tested.

26/03/15 12.49.54 Rev. 1.01 8 / 27

11

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Board Support Package (BSP)

Along with the board EK315 - Piccolo Touch a VirtualBox Virtual Machine Image is provided: in

this way all software is already included within and no other software is to be installed in your PC.

Simply installing the latest VirtualBox software (https://www.virtualbox.org/wiki/Downloads) in

your PC and importing this VirtualBox Image and in few moments you will be ready to program

you application.

Minimum System Requirements:

CPU : x86 Pentium 4 Dual Core / Quad Core / Eight Core

RAM : 2 GB or more (4 Gb recommended)

VIDEO : 1280x1024 24bit or higher

INTERNET : FLAT Internet Connection

DISCO : at least 100 GigaBytes of free space

The Linux distro is a personalized version of Debian Wheezy 7. It offers high configuration

flexibility and a very big software repositories for any need.

Login:

user name: eurek

password: eurek

26/03/15 12.49.54 Rev. 1.01 9 / 27

12

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

PREPARING THE VIRTUAL MACHINE

Simply go to the VirtualBox site (or if you prefer you can use VMWare too, but this tutorial will

cover only the first one):

https://www.virtualbox.org/wiki/Downloads

Download and install the latest version you can find (we are currently using the 4.3.26) or use your

system packaging tools to install it in the correct way for your Operating .

To import a virtual machine, you need to start VirtualBox. On the host where you installed Oracle

VDI and VirtualBox, on the desktop select the Applications menu, then the System Tools menu,

and then Oracle VM VirtualBox. Alternatively, you can run the VirtualBox command in a

terminal. The Oracle VM VirtualBox Manager is displayed, as shown:

Oracle VM VirtualBox Manager

26/03/15 12.49.55 Rev. 1.01 10 / 27

13

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

In the File menu, select Import Appliance. The Appliance Import wizard is displayed in a new

window, as shown:

Appliance Import Wizard

Click Choose, browse to the USB Stick location containing the virtual image file provided with the

the purchasing of the board-kit Piccolo Touch EK315 and select it.

26/03/15 12.49.55 Rev. 1.01 11 / 27

14

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

This will be the virtual machine you want to import, and click Open. The Appliance Import Settings

step is displayed as shown:

Appliance Import Settings

Make any adjustments you want to the displayed settings (you can also change the settings later)

and click Import. The Appliance Import Wizard is closed and after a few moments, the imported

virtual machine is listed in Oracle VM VirtualBox Manager.

After the import, select the imported virtual machine and in the toolbar click the Settings button.

Review the virtual machine settings to make sure that the virtual machine has the hardware it needs

to operate. Make sure that the virtual machine has a CD/DVD drive.

Once you have reviewed the settings, select the imported virtual machine and in the toolbar click

the Start button. Verify that the virtual machine works.

For your best performance please add as many processors you can give to the Virtual Machine and

install the maximum RAM available to the Virtual Machine to achieve the best tradeoff between

speed and power.

Now you can start to play with the virtual machine Linux Edelin BSP!

26/03/15 12.49.55 Rev. 1.01 12 / 27

15

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

HOW TO CONNECT TO THE DEBUG PORT

ON EMBEDDED SYSTEM EK315 - PICCOLO TOUCH

Step 1: Connect the JTAG Cable to the board on at the connector J4 as shown:

Step 2: Connect the microUSB cable to the microUSB port on the JTAG Key EK206

26/03/15 12.49.55 Rev. 1.01 13 / 27

16

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Step 3: Connect the USB Host Type End to the PC

Step 4: Using the Devices dialog into the VirtualBox Menu, select to connect the:

USB Devices --> Eurek srl Amontec JTAGKey [700]

in this way the USB port is passed thru your PC to the VirtualBox System

Step 5: Simply open a console/terminal and write: minicom ttyJEK0-115200 and you will be

connected to the debug port on the embedded board. Using all minicom shortcuts and commands

you will be able to save your log and so forth...

26/03/15 12.49.55 Rev. 1.01 14 / 27

Terminal-Console

Icon

Click twice

17

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

BUILDING AN EXAMPLE APPLICATION

In this section we will teach you how to open an Eclipse ® Project and how to build an example

application on PC and eventually flash the same application into the embedded board to test its

capabilities.

First of all select the Eclipse Kepler icon to startup the Integrated Development Environment

IDE:

After few seconds it will appear a so-called splash screen and a dialog:

The dialog will ask you to select which workspace to use for the IDE Session, so simply press OK.

During developing various project it will be useful to adapt workspaces for every project so to keep

the environment clean for each build. In our case only the default workspace is configured, so

please keep this behaviour in mind if change something.

26/03/15 12.49.55 Rev. 1.01 15 / 27

Eclipse Kepler

Icon

Click twice

18

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

On the left panel please select Demo_Termostato and after click-the-right button of the mouse and

select Open Project.

Now select the target system you want to test this firmware: let us begin with a PC POSIX

emulation, just to see how hard is to develop and build a simple application with this system!

After that, you can build the executable code, pressing the hammer icon on the left side of the

command tools and awaiting the finishing of the compiling job.

And now, simply pressing the RUN ICON and selecting DEBUG_PC_POSIX watch our

application running on the PC screen!!

26/03/15 12.49.56 Rev. 1.01 16 / 27

BUILD

JOB

RUN

JOB

19

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

In the same way you can select a Build Configuration for EK315 - Piccolo Touch (STM32 CPU)

and test the same application in the real board!!!

And in the same way press the hammer icon to build for the targeted processor/board...

In this way the building process will take a little longer due to the toolchain (cross-compiling) but

after few moments (depends on the real CPU power of your system) the executables will be ready

to be passed to the board.

Now opening the right panel Make Target select the progflashall entry. With this command you

will erase and flash all internal and external flash to ensure the proper application data and code to

be flashed into storage memories.

26/03/15 12.49.56 Rev. 1.01 17 / 27

20

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

Now the process will be time consuming due to the slowiness of the emulation USB side of the

VirtualBox System, but nevertheless it worth the awaiting... You can check-out what is happening in

the lower window of Eclipse...

After that you can see on the terminal (minicom) window all messages coming from the debug port

and using your finger, you can activate / deactivate icons and numbers!!

There is a Doxygen documentation on the desktop, so try to look at the API Library of the EcceGui.

Easy?

26/03/15 12.49.56 Rev. 1.01 18 / 27

21

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

RS485 UART port on EK315 - Piccolo Touch

Example on how accessing the RS485 uart on the Piccolo Touch board:
// --- ECCEGUI INCLUDES ---
#include "ec/types.h"
#include "ec/input_event.h"
#include "ec/platform.h"
#include "ec/layers.h"
#include "ec/version.h"
#include "ec/touch_screen.h"

#include <string.h>

#include "bsp_board.h"
#include "bsp_uart.h"
#include "dbg_usart.h"
#include "errorcodes.h"

#include "version.h"

#include <string.h>

//Do not modify the following values!
//They could lead the program to crash!!
const int ec_gui_main_stack_size = 512;
const int ec_gui_main_priority = 2;
const int ec_init_log_level = 7;
const uint32_t ec_init_log_mask = DBG_MASK_MAIN|DBG_MASK_PLATFORM;
const int ec_event_queue_size = 8;

static int uart_setup(int baudrate, int bits, int stop, t_parity parity)
{

struct uart_params par;
int uart_fd = uart_open(1);
MY_DBG(1, DBG_MASK_MAIN, "Opening uart\n");
if (uart_fd < 0)
{

MY_DBG(0, DBG_MASK_MAIN, "Error open uart\n");
ec_critical_error(0, "Error open uart device");

}
else
if (uart_fd != fd_dev_uart1)

ec_critical_error(uart_fd, "Error Bad Uart fd!");

par.delay_before_send = 10; //100usec
par.delay_after_send = 10; //100usec
par.flags = RS485_MODE_RXEN;
par.baudrate = baudrate;
par.bits = bits;
par.stop = stop;
par.parity = parity;
uart_setparams(uart_fd, &par);
return uart_fd;

}

static void uart_end(int fd)
{

26/03/15 12.49.56 Rev. 1.01 19 / 27

22

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

if (fd >= 0)
uart_close(fd);

}

/* A single string must be received within 3 seconds @ 115200 */

#define TIMEOUT_MS 3000
#define KEY_STRING "Command RX"

static void serial_demo(void)
{

int baudrate = 115200;
int stop = 1;
int bits = 8;
t_parity parity = BSP_PARITY_NONE; /* BSP_PARITY_ODD, BSP_PARITY_EVEN */
int fd;
int ret, len;
unsigned int rx_idx;
static char rx_buffer[256];
bool found;
unsigned int j;
unsigned int counter = 0;

fd = uart_setup(baudrate, bits, stop, parity);

// Clear/Reset all FIFOs (TX/RX)
uart_tcdrain(fd);
uart_tcflush(fd, true /* flush_rx */, true /* flush_tx */);

// This program waits on receiving from UART RS485 for a given string
// then write back a known answer back to the caller

for (;;)
{

rx_idx = 0;
len = ArraySize(rx_buffer) - rx_idx - 1;
// read with timeout of 3 seconds
ret = uart_read_tm(fd, (uint8_t *)&rx_buffer[rx_idx], &len,

TIMEOUT_MS);

if (ret == OK)
rx_idx += len;

rx_buffer[rx_idx] = '\0';
if (rx_idx > 0)
{

// Looking for a given KEY_STRING length
len = strlen(KEY_STRING);
MY_DBG(3, DBG_MASK_MAIN, "* Buffer:\n%s\n *\n", rx_buffer);

//Looking for keystring
found = false;
for (j = 0; j < rx_idx - len && !found; j++)
{

MY_DBG(4, DBG_MASK_MAIN, "Compare (%d):\n%s\n%s\n", j,
KEY_STRING, &rx_buffer[j]);

if (strncmp(&rx_buffer[j], KEY_STRING, len) == 0)

26/03/15 12.49.56 Rev. 1.01 20 / 27

23

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

found = true;
}

MY_DBG(2, DBG_MASK_MAIN, "Found = %d\n", found);
if (found)
{

// if command is found write on serial
const char *tx = "COMMAND EXECUTED";
MY_DBG(1, DBG_MASK_MAIN, "Command sent\n");
len = uart_write(fd, (const unsigned char *) tx,

strlen(tx));
}
else
{

// Increase errors' counter
counter++;
MY_DBG(0, DBG_MASK_MAIN, "Unknown command!\n");

}
}
if (counter > 10)
{

MY_DBG(0, DBG_MASK_MAIN, "Too much errors. Quitting\n");
break;

}
}
// When finshing release fd for uart and exit...
uart_end(fd);

}

void ec_gui_main(void *unused)
{

int major, minor;

(void)unused;

//dump on serial debug the EcceGui Library version
ec_get_version(&major, &minor);
MY_DBG(1, DBG_MASK_MAIN, "EcceGui Version: %d.%02d\n", major, minor);
MY_DBG(1, DBG_MASK_MAIN, "Board %s-%d\n", BOARD_NAME, BOARD_REV);
MY_DBG(1, DBG_MASK_MAIN, "SW Version: %s\n", get_version_str());

ec_post_task_init();
post_app_initialize();

ec_enable_touch_tick(true);

ec_enable_timertick(true);

DBG_SETMASK(DBG_MASK_MAIN|DBG_MASK_PLATFORM);
DBG_SETLEVEL(4);

// serial_demo exit on error(s)
serial_demo();

ec_platform_exit(EXIT_POWER_OFF);
}

26/03/15 12.49.56 Rev. 1.01 21 / 27

24

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

CANBUS port on EK315 - Piccolo Touch

Example on how accessing the CANBUS on the Piccolo Touch board:

// --- ECCEGUI INCLUDES ---
#include "ec/types.h"
#include "ec/input_event.h"
#include "ec/platform.h"
#include "ec/layers.h"
#include "ec/version.h"
#include "ec/touch_screen.h"

#include <string.h>

#include "bsp_board.h"
#include "bsp_canbus.h"
#include "dbg_usart.h"
#include "errorcodes.h"

#include "version.h"

#include <string.h>

//Do not modify the following values! They could lead the program to crash!!
const int ec_gui_main_stack_size = 512;
const int ec_gui_main_priority = 2;
const int ec_init_log_level = 7;
const uint32_t ec_init_log_mask = DBG_MASK_MAIN|DBG_MASK_PLATFORM;
const int ec_event_queue_size = 8;

static int canbus_setup(int bitrate)
{

struct can_params par;
int can_fd = can_open(1);
MY_DBG(1, DBG_MASK_MAIN, "Opening canbus\n");
if (can_fd < 0)
{

MY_DBG(0, DBG_MASK_MAIN, "Error open can\n");
ec_critical_error(0, "Error open can device");

}

par.bitrate = bitrate;
if (can_setparams(can_fd, &par) != OK)
{

can_close(can_fd);
can_fd = -1;

}
return can_fd;

}

static void canbus_end(int fd)
{

if (fd >= 0)
can_close(fd);

}

26/03/15 12.49.56 Rev. 1.01 22 / 27

25

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

static int canbus_tester(int can_fd)
{

unsigned long checksum_r;
int i, rval;
int nrmsg;
struct can_frame tcf, rcf;

assert_param(can_fd >= fd_dev_can1 &&
can_fd <= fd_dev_can1 + BSP_CAN_NUM);

nrmsg = 0;
checksum_r = 0L;

MY_DBG(6, DBG_MASK_CANBUS, "Waiting for messages...\n");

while (1)
{

int k;

for (k = 0; k < 200; k++)
{

i = can_read(can_fd, &rcf, sizeof(rcf));
if (i > 0)

break;
else

ec_delay(10);
}
if (i == 0)
{

// Nothing to receive...
// At least once?
if (nrmsg > 0)
{

break;
}
else
{

// No message received, never!
// Awaiting some more...
MY_DBG(8, DBG_MASK_CANBUS, "Nothing to receive\n");

}
}
else
if (i != sizeof(rcf))
{

MY_DBG(0, DBG_MASK_CANBUS, "Error on reading\n");
}
else
{

if (rcf.can_id == 0x100 && rcf.can_dlc == 8)
{

if (rcf.data[2] == 0xff &&
rcf.data[3] == 0x00 &&
rcf.data[4] == 0xaa &&
rcf.data[5] == 0x55 &&
rcf.data[6] == 0x01 &&
rcf.data[7] == 0xff)

26/03/15 12.49.56 Rev. 1.01 23 / 27

26

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

{
// Message received. Do checksum calculation
checksum_r += rcf.data[0];
checksum_r += rcf.data[1];
nrmsg++;

}
else
{

MY_DBG(0, DBG_MASK_CANBUS, "Bad DATA in msg ");
}

}
else
{

// This message is not for us...
MY_DBG(7, DBG_MASK_CANBUS, "Message not for us\n");

}
}

}

MY_DBG(6, DBG_MASK_CANBUS, "n.RX: %4d --> Sending message...\n", nrmsg);
// Send the calculated checksum with the rcv message
tcf.can_id = 0x101;
tcf.data[0] = checksum_r / 256;
tcf.data[1] = checksum_r % 256;
tcf.data[2] = 0xff;
tcf.data[3] = 0x00;
tcf.data[4] = 0xaa;
tcf.data[5] = 0x55;
tcf.data[6] = 0x01;
tcf.data[7] = 0xff;
tcf.can_dlc = 8;
i = can_write(can_fd, &tcf, sizeof(tcf));
if (i != sizeof(tcf))
{

MY_DBG(0, DBG_MASK_CANBUS, "Error on writing (canbus_write)\n");
rval = -1;

}
else
{

uint32_t key;

MY_DBG(6, DBG_MASK_CANBUS, "Awating for key...\n");
// Awating the message from ID 0x102
while (1)
{

int k;

for (k = 0; k < 50; k++)
{

i = can_read(can_fd, &rcf, sizeof(rcf));
if (i > 0)

break;
else

ec_delay(10);
}
if (i == sizeof(rcf))
{

26/03/15 12.49.56 Rev. 1.01 24 / 27

27

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

if (rcf.can_id == 0x102)
{

MY_DBG(6, DBG_MASK_CANBUS, "Received!!!\n");
break; // message ok, so exit while-loop...

}
else
{

//message is not for us, drop it...
MY_DBG(7, DBG_MASK_CANBUS, "Drop\n");

}
}

}

// Check the correctness of the key (0xdeadbeef)
key = (uint32_t)rcf.data[0] << 24 |

(uint32_t)rcf.data[1] << 16 |
(uint32_t)rcf.data[2] << 8 |
(uint32_t)rcf.data[3] << 0;

MY_DBG(7, DBG_MASK_CANBUS, "Verifying 0x%08lx\n",
(unsigned long) key);

if (key == 0xDEADBEEF)
{

MY_DBG(6, DBG_MASK_CANBUS, "Correct Key received OK\n");
rval = 0;

}
else
{

MY_DBG(6, DBG_MASK_CANBUS, "Wrong Key received ERROR\n");
rval = -1;

}
}

return rval;
}

static void canbus_demo(void)
{

int counter;
int can_fd = canbus_setup(125000);

if (can_fd >= 0)
{

for (;;)
{

if (canbus_tester(can_fd))
counter++;

if (counter > 10)
break;

}
canbus_end(can_fd);

}
}

void ec_gui_main(void *unused)
{

int major, minor;

26/03/15 12.49.56 Rev. 1.01 25 / 27

28

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

(void)unused;

//dump on serial debug the EcceGui Library version
ec_get_version(&major, &minor);
MY_DBG(1, DBG_MASK_MAIN, "EcceGui Version: %d.%02d\n", major, minor);
MY_DBG(1, DBG_MASK_MAIN, "Board %s-%d\n", BOARD_NAME, BOARD_REV);
MY_DBG(1, DBG_MASK_MAIN, "SW Version: %s\n", get_version_str());

ec_post_task_init();
post_app_initialize();

ec_enable_touch_tick(true);

ec_enable_timertick(true);

DBG_SETMASK(DBG_MASK_MAIN|DBG_MASK_PLATFORM);
DBG_SETLEVEL(4);

// canbus_demo exit on error(s)
canbus_demo();

ec_platform_exit(EXIT_POWER_OFF);
}

26/03/15 12.49.56 Rev. 1.01 26 / 27

29

BSP – Edelin Eurek Elettronica S.r.l. © 2013/2014

From now you are invited to understand the source code, apply changes you want and obviously

write your own killer-application from scratch!

Hint: To build your own project into workspace, simply clone any existing project and change the

Makefile accordingly (mainly for adding and removing source C code and H headers)...

Please feel-free to contact us for any comment, questions or anything regarding this document and

typo errors...

That 's al l f o lks!

26/03/15 12.49.56 Rev. 1.01 27 / 27

30

31

Eurek s.r.l.
Via Celletta 8/b
40026 Imola (BO) - Italy
www.eurek.it

Tel: 0542 609120
Fax: 0542 609212
P.IVA: 00690621206
CF: 04020030377

TECHNICAL FEATURES*

PiccoloTouch, Great performances. Minimal amount of space.

JEK-KEY-EK206 USB JTAG Emulator with debug UART

Box (Optional) BX315

Dimensions 81 mm x 128 mm h. 30 mm (max)

Material ABS

Color Warm white

ACCESSORIES

*
so

gg
et

to
 a

 m
od

ifi
ch

e
se

nz
a

pr
ea

vv
is

o
//

 s
ub

je
ct

 to
 c

ha
ng

e
w

ith
ou

t n
ot

ic
e

Dimensions 75 mm x 96 mm

Power 9...12V 300mA via power connector or 5V using USB cable

Display 3.2” color LCD TFT with LED backlight

Resolution 240x320 262k colors

Touch Screen Resistive, 4 wires

Processor STM32 ARM CORTEX M3

Clock 72 MHz

Flash Memory 512kB (internal)
16 MB (external)

Ram Memory 64 kB (internal)
512 kB (external)

Fram 8k

Temperature Sensor LM73CIMK-1

Real Time Clock Internal with SUPERCAP backup

Jtag Port Yes with custom connector

Interfaces CAN 2.0B (with selectable terminator)
I2C (3.3V)
RS485 (with selectable terminator)
USB (microUSB connector)
microSD

Connector PHOENIX CONTACT PTSM 8-pin

Real-Time OS YES, FreeRTOS

File System YES, FATfs

Graphics Library YES, ECCE GUI

Bootloader USB mass storage emulation (includes internal flash, external flash, SD-CARD)

Boot Time Approx 1 sec

Sound Buzzer

Developer tools IDE Eclipse with GCC Compiler and OCD Debugger
Emulation on PC with Linux or Windows

