

	Safety Considerations
Approved operation	Series BIS C-60_1 processors along with the other BIS C system components comprise an identification system and may only be used for this purpose in an industrial environment in conformity with Class A of the EMC Law.
Installation and Operation	Installation and operation should be carried out by technically trained personnel only. Unauthorized access and improper use will lead to loss of warranty and liability claims.
	When installing the processor, consult the section on wiring diagrams carefully. Special caution must be used when wiring the processor to external controllers, particularly with respect to selection and polarity of the signals and power supply.
	Only approved power supplies may be used with the processor. See the section on Technical Data for details.
Use and Checking	The relevant safety procedures must be followed when using the Identification System. In particular, steps must be taken to ensure that no danger to persons or equipment can arise should a fault occur in the Identification System.
	This includes maintaining the published ambient operating conditions and regular checking of the functionality of the Identification System with all its associated components.
Fault Conditions	As soon as there is evidence that the Identification System is not functioning properly, it should be taken out of service and protected against unauthorized use.
Scope	This description is valid for series BIS C-6001-02303-KL2 processors and both the ST8 and ST9 versions of series BIS C-6021-023-050-03-ST
	INTERBUS is a registered trademark of the Phoenix Corporation.

Control Function	The processor writes data from the host syster carrier through the read/write head and prepar include:	m to the data carrier or reads data from the es it for the host system. Host systems may			
	 a host computer (e.g. industrial PC) or a programmable logic controller (PLC) 				
Data checking	When sending data between the read/write head and the data carrier a procedure is required for recognizing whether the data were correctly read or written.				
	The processor is supplied with standard Balluff procedure of double reading and comparing. In addition to this procedure a second alternative is available: CRC_16 data checking.				
	Here a test code is written to the data carrier, a time or location.	allowing data to be checked for validity at any			
	Advantages of CRC_16	Advantages of double reading			
	Data checking even during the non-active phase (CT outside read/write head zone).	No bytes on the code tag need to be reserved fo storing a check code.			
	Shorter read times since each page is read only once.	Shorter write times since no CRC needs to be written.			
	Since both variations have their advantages de select which method of data checking he wish	epending on the application, the user is free to es to use (see Parametering on \Box 26 and \Box 32).			
Ś	It is not permitted to operate the system using b	oth check procedures!			

11	
	BUS interface: INTERBUS
	Address setting is done on the module (not on the I/O modules, i.e. not on the BIS C-60_1 processor). There are two types of addressing possible:
	 logical addressing, and physical addressing.
Logical Addressing	Logical addressing permits free addressing of each module. Advantage: high security and flexibility; Disadvantage: more difficult at setup.
	I/O Module Type IDENT-No. IN-Address (Byte) OUT-Address (Byte) Processor BIS C-60_1 03 16 16
Physical Addressing	Physical addressing is rigidly fixed to the system configuration. The address of each module depends on its location in the system. Advantage: easy to configure at setup; Disadvantage: changes in module location when power was off are recognized upon initialization, but are not made known to the user.
	BALLUFF E 11

		buller, Coll	nguration and Explanation
Description of Output buffer	Sub- address	Meaning	Function Description
(continued)	02 Hex	Start address	Address at which reading from or writing to the data carrier begins.
	or	Start address (Low Byte)	Address for the Auto-Read function, starting at which the data carrier is to be read. The value is stored in the EEPROM. (The Low Byte covers the address range from 0 to 255).
	or	Program No	Number of the program to be stored in the EEPROM in conjunction with command ID 06Hex for Mixed Data Access function.
	or	Program No.	Number of the program stored in the EEPROM for read or write operations in conjunction with command ID 21 _{Hex} or 22 _{Hex} for the Mixed Data Access function.
	or	Configuration 2 80 _{Hex}	nd byte Default value (factory setting) Changes depending on the configuration.
	or	Data	for writing to the data carrier.
	(continue	ed next 🗅	
Please note the basic procedure on			
13 and 2835			

	Functior Input Bu	n Dese Iffer, C	criptic Config	on uratio	n and	Explar	nation				
Configuration of the input buffer for one (1) Read/Write head	Subaddress	Bit No.	7	6	5	4	3	2	1	0	
(i) neua, mite neua	00 _{Hex} = Bit He	eader	BB	HF	TO	IN	AF	Æ	AA	CP	Bit Name
	01нех		Error	code	or	Da	ata	or	Config.	1st byte	1
	02Hex				Data			or	Config.	2nd byte	1
	03нех				Data			or	Config.	3rd byte	1
	04нех	04 _{Hex} Data					or	Config.	4th byte	1	
	05Hex	Data						or	Config.	5th byte	1
	06Hex				Data			or	Config.	6th byte	[
	07нек			2nd Bit	Header (a:	s above)		or	D	ata	
Description of Input buffer	Sub- address	Bit Name	Meanir	ıg	Functio	on Descr	iption				
	00 Hex	BB	Ready		The BI	S Identif	ication §	System is	s in the F	Ready st	ate.
	Bit Header	HF	Head E	rror	Cable break from read/write head or no read/write head connected.						
Please note the basic procedure on 1 3 and 2835 and the examples on pages 1 3655.	TO Tog		Toggle- nued on	-Bit Out next 🗋	for rea for writ	d: BIS ha te: BIS is	as new/ ready t	additiona o accept	al data re t new/ad	eady. ditional (data.
									BAL	LUFF	E 21

	Function	n Deso uffer, C	cription Configurat	ion	and Explanation
Description of Input buffer (continued)	Sub- address	Bit Name	Meaning		Function Description
	00 _{Hex} Bit Header	(contir IN	nued) Input		If the parameter "Input IN" is 1, this bit indicates the state of the Input.
		AF	Command E	rror	The command was incorrectly processed or aborted.
		AE	Command e	nd	The command was finished without error.
		AA	Command st	tart	The command was recognized and started.
		CP	Codetag Pre	sent	Code tag present within the active zone of the read/write head.
	Sub- address	Meaning	g Fun	ction	Description
	01 _{Hex}	Error co	de Error	num	ber is entered if command was incorrectly processed
		01 _{Hex}	Read in the	ding c acti	or writing not possible because no data carrier is presen ve zone of a read/write head.
		02Hex	Read	d erro	r.
		U3Hex	Data	carri I while	e it was being read.
	1	04 _{Hex}	Write	e erro	r.
Please note the		05 _{Hex}	Data	carri	er was removed from the active zone of the read/write
basic procedure on		07 _{Hex}	AV b	it is s	et but the command designator is missing or invalid.
and the examples on			or Num	ber o	of bytes is 00 _{Hex} .
pages 🗋 3655.		(continu	ed on next 🗅)		

	Function Input E	on Descripti Buffer, Config	on guration and Explanation
Description of Input buffer	Sub- address	Meaning	Function Description
(continued)	02 Hex	Configuration 2 80 _{Hex}	2nd byte Default value (factory setting). Does not change!
	or	Data	Data which was read from the data carrier.
	03 _{Hex}	Configuration 3 00 _{Hex}	Brd byte Default value (factory setting). Changes depending on the configuration.
	or	Data	Data which was read from the data carrier.
	04 _{Hex}	Configuration 4 82 _{Hex}	Ith byte Default value (factory setting). Changes depending on the configuration.
	or	Data	Data which was read from the data carrier.
	05 _{Hex}	Configuration 5 00 _{Hex}	oth byte Default value (factory setting). Changes depending on the configuration.
	or	Data	Data which was read from the data carrier.
[06 _{Hex}	Configuration 6 00 _{Hex}	6th byte Default value (factory setting). Does not change!
Please note the	or	Data	Data which was read from the data carrier.
and the examples on	07 Hex	2nd Bit header	The data are valid if the 1st and 2nd bit headers are in agreement.

31		
		Function Description Processing data carrier
	Copying from Head 1 to Head 2	A copying command requires that there be a data carrier in front of both read/write heads (even if dynamic mode is configured). The read is performed with simultaneous data transmission (even if simultaneous data transmission is not configured).
		The entire process is controlled with the bit header from Head 1. The start address and number of bytes apply both for reading on Head 1 and writing on Head 2. The copy command is handled essentially the same as for reading with simultaneous data transmission. In addi- tion, the data which are sent to the input buffer are written at the same time from Head 2 to the data carrier.
		The AE-bit is only set once the write procedure on Head 2 has been successfully concluded.
		If the GR-bit is set while a copy command is running, both read/write heads are placed in the base state.
		BALLUFF (E) 31

32		
	Function De Processing	escription J data carrier
CRC initial	To be able to us identifier 12 _{Hex} (s rejected (with an contain the corre diately be progra	se the CRC check, the data carrier must first be initialized with the command (see \square 36). The CRC initialization is used like a normal write job. The latter is in error message) if the processor recognizes that the data carrier does not rect CRC. Data carriers as shipped from the factory (all data are 0) can immerammed with a CRC check.
	If CRC_16 data of whenever a CRC	a checking is activated, a special error message is output to the interface IC error is detected.
	If the error mess more memory ce	usage is not caused by a failed write request, it may be assumed that one or cells on the data carrier is defective. That data carrier must then be replaced.
	If the CRC error in order to conti	r is however due to a failed write request, you must reinitialize the data carrier tinue using it.
	The checksum is 'lost', i.e., the pa of page size see	is written to the data carrier as a 2-byte wide datum. Two bytes per page are bage size becomes 30 bytes or 62 bytes depending on data carrier type (setup e □ 16). This means that the actual usable number of bytes is reduced:
	Data carrier type	e Usable bytes
	128 bytes	= 120 bytes
	256 bytes	= 240 bytes
	511 bytes *)	*) = 450 bytes
	1023 bytes *)	*) = 930 bytes
	2047 bytes *)	*) = 1922 bytes
	2048 bytes	= 1984 bytes
	8192 bytes	= /938 bytes
	*) The last data carr	rrier page for these EEPROM-based data carriers is not available.
32 E	BALLUFF	

34				
	Function Description Processing data carrier			
Mixed Data Access	The following shows the structure of	a program:		
()	Program structure	Subaddress	Value	Range
	Command designator	01 _{HEX}	06 _{Hex}	
	 Program record Program number 1st data record: 	02 _{Hex}	01 _{Hex}	01 _{Hex} to 0A _{Hex}
	Start address Low Byte Start address High Byte	03Hex 04Hex		
	Number of bytes Low Byte Number of bytes High Byte 2nd data record:	05hex 06hex		
	 25th data record: Start address Low Byte Start address High Byte Number of bytes Low Byte Number of bytes High Byte Terminator	03Hex 04Hex 05Hex 06Hex FFHex FFHex		
	To store a second program, repeat th	nis process.		
	The procedure for writing these setti	ngs to the EEPRON	V is described	d in the 10th example on
	Replacing the EEPROM is described	l on 🗋 69 for BIS C-	-6001 and on	180 for BIS C-6021.
34 E BALLUFF	1			

	Function Description Processing data carrier
Read from data carrier, with program	The command identifier 21_{Hex} can be used to read out the program records stored in the program from the data carrier. The user must document exactly which data are to be read from where and with what number of bytes for the respective program (see example 11 on 151).
Write to data carrier, with program	The command identifier 22_{Hex} can be used to write the program records stored in the program to the data carrier. The user must document exactly which data are to be written from where and with what number of bytes for the respective program (see example 12 on \Box 52).
	BALLUFF (E) 35

	Function Description Examples for protocol sequence	e
Example No. 1 (continued)	Host: 7) Process subaddresses of the output buffer:	BIS C-60_1 Identification System:
For configuring with double bit header !	0106Hex Enter the remaining data byte 00Hex/07Hex Invert TI-Bit	Of Process databases of the output summer Of Copy the remaining data byte Process subaddress of the input buffer. On Process subaddress of the input buffer.
	9.) Process subaddresses of the output buffer: 00 _{He/} V07 _{Hex} Reset AV-Bit	OD/Hav/OFHav Out n2- bit 10.)Process subaddresses of the input buffer: 00/Hav/O7Hav 00/Hav/O7Hav Reset AA-Bit and AE-Bit
	<u> </u>	

	Function Example	n Description es for protocol sequence	•			
Example No. 3 like 2nd example but	Read 17 b (data carrie	ytes starting at data carrier add er type with 32 byte block size):	ress 10,	with	simultaneous data transmission	
with simultaneous data transmission	While the r are sent. T	ead job is being carried out and a he AE bit is not set until the "Read	s soon a: I" operati	s the i on is o	nput buffer is filled, the first data completed by the processor.	
For configuring with double bit header!	The reply " exact time controller."	Job End" = AE bit is reliably set no depends on the requested data a This is indicated in the following b	o later tha mount, th y the not	an bef ne inpi e Set .	ore the last data are sent. The ut buffer size and the timing of the AE-Bit (in italics).	
	Host:		BIS (C-60_	1 Identification System:	
	1.) Process order sh	 Process subaddresses of the output buffer in order shown: 		 Process subaddresses of the input buffer in ord shown: 		
	01 _{Hex}	Command designator 01 _{Hex}	00 _{Hex} /	/07 _{Нек}	Set AA-Bit	
	02 _{Hex}	Start address Low Byte 0AHex	010	6Hex	Enter first 6 bytes of data	
	03 _{Hex}	Start address High Byte 00 Hex	00 _{Hex} /	/07 _{Нек}	Invert TO-Bit	
	04 _{Hex}	No. of bytes Low Byte 11 Hex	00 _{Hex} /	/07 _{Нек}	Set AE-Bit	
	05 _{Hex}	No. of bytes High Byte 00 Hex				
	00Hex/07Hex	CT-Bit to 0 (32 Byte block size), set AV-Bit				
	3.) Process	subaddresses of the input buffer:	4.) Pr	4.) Process subaddresses of the input buffer:		
	0106 _{Hex}	Copy first 6 data bytes	010	6 _{Hex}	Enter the second 6 data bytes	
	Process	subaddress of the output buffer:	00 _{Hex} /	/07 _{Нек}	Invert TO-Bit	
	00Hex/07Hex	Invert TI-Bit	00Hex/	/07нек	Set AE-Bit	
	Continued or	n next 🗅.				

40			
	Function Description Examples for protocol sequence		
Example No. 3 (continued)	Host: 5.) Process subaddresses of the input buffer:	BIS C-60_1 6.) Process	1 Identification System: subaddresses of the input buffer:
like 2nd example but with simultaneous data transmission	0106нех Copy second 6 data bytes Process subaddress of the output buffer: 00не//07нех Invert TI-Bit Invert TI-Bit	0105 _{Hex} 00 _{Hex} /07 _{Hex} 00 _{Hex} /07 _{Hex}	Enter the remaining 5 data bytes Invert TO-Bit Set AE-Bit
For configuring with double bit header !	7.) Process subaddresses of the input buffer: 0105Hax Copy the remaining 5 data bytes Process subaddress of the output buffer: 00Hav/07Hax Reset AV-Bit	8.) Process 00 _{Hev} /07 _{Hex}	subaddresses of the input buffer: Reset AA-Bit and AE-Bit
40 E BALLUFF			

	Functio Example	n Description es for protocol sequence		
Example No. 4	Read 30 b (data carrie	ytes starting at data carrier addr er type with 64 byte block size):	ess 10 with	read error
For configuring with	Host:		BIS C-60_	1 Identification System:
double bit header !	1.) Process order sh	subaddresses of the output buffer in the own:	2.) Process order sh	subaddresses of the input buffer in the own:
	01 _{Hex}	Command designator 01 _{Hex}	If an err	or occurs right away:
	02 _{Hex}	Start address Low Byte 0AHex	00 _{Hex} /07 _{Hex}	Set AA-Bit
	03 _{Hex}	Start address High Byte 00 Hex	01 _{Hex}	Enter error number
	04 _{Hex}	No. of bytes Low Byte 1E _{Hex}	00 _{Hex} /07 _{Hex}	Set AF-Bit
	05 _{Hex}	No. of bytes High Byte 00 Hex		
	00 _{Hex} /07 _{Hex}	Set CT-Bit to 1 (64 Byte block size), set AV-Bit		
	3.) Process	subaddress of the output buffer:	4.) Process	subaddresses of the input buffer:
	01 _{Hex}	Copy error number	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AF-Bit
	Process	subaddress of the output buffer:		
	00Hex/07Hex	Reset AV-Bit		
			-	

	Example	n Description es for protocol sequence		
Example No. 7	Write 16 by size):	ytes starting at data carrier addre	ess 20 (data o	carrier type with 32 byte block
For configuring with	Host:		BIS C-60_	1 Identification System:
double bit header!	1.) Process s order sho	subaddresses of the output buffer in the own:	 Process subaddresses of the input buffer in the order shown: 	
	01 _{Hex}	Command designator 02 _{Hex}	$00_{\text{Hex}}/07_{\text{Hex}}$	Set AA-Bit, invert TO-Bit
	02 _{Hex} /03 _{Hex}	Start address 14 _{Hex} / 00 _{Hex}		•
	04 _{Hex} /05 _{Hex}	No. of bytes 10 _{Hex} / 00 _{Hex}		
	00Hex/07Hex	CT-Bit to 0 (32 Byte block size), set AV-Bit		
	3) Process	- de a dalera e constata e da la de		
	J. 1100633 3	subaddresses of the output buffer:	Process	subaddresses of the output buffer:
	0106 _{Hex}	subaddresses of the output buffer: Enter the first 6 data bytes	4.) Process 0106 _{Hex}	Subaddresses of the output buffer: Copy the first 6 data bytes
	0106 _{Hex} 00 _{Hex} /07 _{Hex}	Enter the first 6 data bytes Invert TI-Bit	4.) Process 0106 _{Hex} Process	Subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer:
	0106 _{Нех} 00 _{Нех} /07 _{Нех}	Enter the first 6 data bytes	4.) Process 0106 _{Нех} Ргосезз 00 _{Неи} /07 _{Нех}	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit
	0106нех 00нех/07нех 5.)	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer:	4.) Process 0106 _{Hex} Process 00 _{Hex} /07 _{Hex} 6.) Process	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer:
	0106нех 00нех/07нех 5.) Process s 0106нех	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes	4.) Process 0106 _{Hex} Process 00 _{Hex} /07 _{Hex} 6.) Process 0106 _{Hex}	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes
	0106нех 00нех/07нех 5.) Process s 0106нех 00нех/07нех	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit	4.) Process 0106 _{Hex} Process 00 _{Hex} /07 _{Hex} 6.) Process 0106 _{Hex} Process	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddress of the input buffer:
	0106нех 00нех/07нех 5.) Process s 0106нех 00нех/07нех	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit	4.) Process 0106Hex Process 00Hex/07Hex 6.) Process 0106Hex Process 00Hex/07Hex	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddress of the input buffer: Invert TO-Bit
	0106нех 00нех/07нех 5.) Process s 0106нех 00нех/07нех	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit subaddresses of the output buffer:	4.) Process 0106 _{Hex} Process 00 _{Hex} /07 _{Hex} 6.) Process 0106 _{Hex} Process 00 _{Hex} /07 _{Hex} 8.) Process	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddress of the input buffer. Invert TO-Bit subaddresses of the output buffer:
	0106Hex 00Hex/07Hex 5.) Process : 0106Hex 00Hex/07Hex 7.) Process : 0104Hex	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the remaining 4 data bytes Enter the remaining 4 data bytes	 4.) Process 0106нах Process 00на/07нах 6.) Process 0106нах Process 00на/07нах 8.) Process 0104нах 	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the remaining 4 data bytes
	0106Hex 00Hex/07Hex 5.) Process : 0106Hex 00Hex/07Hex 7.) Process : 0104Hex 00Hex/07Hex	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the remaining 4 data bytes Invert TI-Bit	 4.) Process 0106Hax Process 00Har/07Hax 6.) Process 0106Hax Process 00Har/07Hax 8.) Process 0104Hax Process 	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the remaining 4 data bytes subaddress of the input buffer:
	0106нах 0106нах 00нах/07нах 5.) Process s 0106нах 00нах/07нах	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the remaining 4 data bytes Invert TI-Bit	 4.) Process 0106_{Hax} Process 00_{Har}/07_{Hax} 6.) Process 0106_{Hax} Process 00_{Har}/07_{Hax} 8.) Process 0104_{Hax} Process 00_{Har}/07_{Hax} 	subaddresses of the output buffer: Copy the first 6 data bytes subaddresses of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddresses of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the remaining 4 data bytes subaddress of the input buffer: Set AE-Bit
	0106нах 00на/07нах 5.) Process s 0106нах 00на/07нах 7.) Process s 0104нах 00на/07нах	Enter the first 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the second 6 data bytes Invert TI-Bit subaddresses of the output buffer: Enter the remaining 4 data bytes Invert TI-Bit subaddresses of the output buffer:	4.) Process 0106Hat. Process 00Har/07Hat 6.) Process 0106Hat. Process 00Har/07Hat 8.) Process 00Har/07Hat 8.) Process 00Har/07Hat 9.0 Process 00Har/07Hat 10.04Hat Process 00Har/07Hat 10.)Process	subaddresses of the output buffer: Copy the first 6 data bytes subaddress of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the second 6 data bytes subaddresses of the input buffer: Invert TO-Bit subaddresses of the output buffer: Copy the remaining 4 data bytes subaddresses of the input buffer: Set AE-Bit subaddresses of the input buffer:

	Functio Example	n Description es for protocol sequence	•	
Example No. 8	Copy 17 b (data carrie	ytes starting at data carrier add er type with 32 byte block size):	ress 10	
For configuring with double bit header!	Data from tion in the carrier in fr	the data carrier in front of Head 1 data carrier in front of Head 2. Dat ront of Head 1 is still being read. T	are read and w ta transmissior 'his is indicated	ritten to the same memory loca- can start even while the data d by the TO-bit in the input buffer.
	The bytes mission ("t on Head 2 AF-bit in th	which are read are written to the d oggling" TI-bit/TO-bit), and only th is successfully concluded. Any en the bit header for Head 1.	lata carrier in fi nen. The AE-bit rors which occ	ront of Head 2 during data trans- is not set until the write procedur ur on Head 2 are indicated by the
	Host:		BIS C-60_	1 Identification System:
	1.) Process order sh	subaddresses of the output buffer in own:	2.) Process shown:	subaddresses of the input buffer in ord
	1.0.1	0 11 1 1 11	00/07	
	01 _{Hex}	Command designator 11Hex	UUHex/U/Hex	Set AA-Bit
	01 _{Hex}	Start address Low Byte 0A _{Hex}	0106нек	Enter first 6 bytes of data
	01 _{Hex} 02 _{Hex} 03 _{Hex}	Start address Low Byte 0A _{Hex} Start address High Byte 00 _{Hex}	00Hex/07Hex 0106Hex 00Hex/07Hex	Enter first 6 bytes of data Invert TO-Bit
	01Hex 02 _{Hex} 03 _{Hex} 04 _{Hex}	Start address Low Byte 0A _{Hex} Start address High Byte 00 _{Hex} No. of bytes Low Byte 11 _{Hex}	00Hex/07Hex 0106Hex 00Hex/07Hex	Ser AA-Bit Enter first 6 bytes of data Invert TO-Bit
	01Hex 02 _{Hex} 03 _{Hex} 04 _{Hex} 05 _{Hex}	Command designator 11Her Start address Low Byte 0AHer Start address High Byte 00Her No. of bytes Low Byte 11Her No. of bytes High Byte 00Her	00Hex/07Hex 0106Hex 00Hex/07Hex	Set AA-bit Enter first 6 bytes of data Invert TO-Bit
	01Hex 02Hex 03Hex 04Hex 05Hex 05Hex 00Hex/07Hex	Command designator 11 _{Hax} Start address Low Byte 0A _{Hax} Start address High Byte 00 _{Hax} No. of bytes Low Byte 11 _{Hax} No. of bytes High Byte 00 _{Hax} CT-Bit to 0 (32 Byte block size), set AV-Bit	0106Hex 0106Hex 00Hex/07Hex	Enter first 6 bytes of data Invert TO-Bit
	01Hex 02Hex 03Hex 04Hex 05Hex 00Hex/07Hex 3.) Process	Command designator 11Hax Start address Low Byte 0AHax No. of bytes Low Byte 10Hax No. of bytes Low Byte 11Hax No. of bytes High Byte 00 Hax CT-Bit to 0 (32 Byte block size), set AV-Bit subaddresses of the input buffer:	00нес/07нес 0106нех 00нес/07нех 4.) Process	Enter first 6 bytes of data Invert TO-Bit subaddresses of the input buffer:
	01Hex 02Hex 03Hex 04Hex 05Hex 00Hex/07Hex 3.) Process 0106Hex	Command designator 11Hex Start address Low Byte 0AHex Start address High Byte 00 Hex No. of bytes Low Byte 11Hex No. of bytes High Byte 00 Hex CT-Bit to 0 (32 Byte block size), set AV-Bit subaddresses of the input buffer: Copy first 6 data bytes	4.) Process	Set Av-Bit Enter first 6 bytes of data Invert TO-Bit subaddresses of the input buffer: Enter the second 6 data bytes
	01Hex 02Hex 03Hex 04Hex 05Hex 00Hex/07Hex 00Hex/07Hex 106Hex Process	Command designator 11Hex Start address Low Byte 0AHex Start address High Byte 00Hex No. of bytes Low Byte 11Hex No. of bytes High Byte 00Hex CT-Bit to 0 (32 Byte block size), set AV-Bit subaddresses of the input buffer: Copy first 6 data bytes subaddress of the output buffer:	4.) Process	Set Ar-Bit Enter first 6 bytes of data Invert TO-Bit subaddresses of the input buffer: Enter the second 6 data bytes Invert TO-Bit
	01Hex 02Hex 03Hex 04Hex 04Hex 05Hex 00Hex/07Hex 00Hex/07Hex Process 00Hex/07Hex	Command designator 11Hex Start address Low Byte 0AHex Start address High Byte 00 Hex No. of bytes Low Byte 11Hex No. of bytes Low Byte 11Hex CT-Bit to 0 (32 Byte block size), set AV-Bit subaddresses of the input buffer: Copy first 6 data bytes subaddress of the output buffer: Invert TI-Bit	00Hex/07Hex 0106Hex 00Hex/07Hex 4.) Process 0106Hex 00Hex/07Hex	Set Ar-Bit Enter first 6 bytes of data Invert TO-Bit subaddresses of the input buffer: Enter the second 6 data bytes Invert TO-Bit

	Function Example	n Description es for protocol sequence			
Example No. 9	Programming start address 75 (data carrier type with 32 byte block size):				
with Auto-Read	Host:		BIS C-60_	1 Identification System:	
For configuring with	1.) Process order she	subaddresses of the output buffer in the own:	2.) Process subaddresses of the input buffer:		
double bit header!	01 _{Hex}	Command designator 07Hex	00 _{Hex} /07 _{Hex}	Set AA-Bit and AE-Bit	
	02 _{Hex}	Start address Low Byte 4B _{Hex}		· · · · · · · · · · · · · · · · · · ·	
	03 _{Hex}	Start address High Byte 00 Hex			
	00 _{Hex} /07 _{Hex}	CT-Bit to 0 (32 Byte block size), set AV-Bit			
	3.) Process	subaddresses of the output buffer:	4.) Process	subaddresses of the input buffer:	
	00 _{Hex} /07 _{Hex}	Reset AV-Bit	00нек/07нек	Reset AA-Bit and AE-Bit	

	Function Description Examples for protocol sequence
Example No. 10	Storing a program for reading out 3 data records:
Mixed Data Access For configuring with	1st data record Start address 5 Number of bytes 7 2nd data record Start address 75 Number of bytes 3 3rd data record Start address 312 Number of bytes 17
double bit header!	Total number of bytes exchanged in the operation: 27 bytes
	All 104 bytes are written for the programming. Host: 1.) Process subaddresses of the output buffer in the 2.) Process subaddresses of the input buffer:
	01Hex Command designator 06Hex 00Hex/07Hex Set AA-Bit, invert TO-Bit 02Hex Program number 01Hex 00Hex/07Hex Set AA-Bit, invert TO-Bit 00Hex/07Hex CT-Bit to 0 or 1 (depending on block size), et Al/UC CT-Bit to 0 or 1
	 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the input buffer:
	01Hex. 1st start address (Low Byte) 05Hex. 00Hex/07Hex Invert TO-Bit
	03нах 1st number of bytes (Low Byte) 07нах 04нах (High Byte) 00нах
	05 _{Hax} 2nd start address (Low Byte) 4B _{Hax} 06 _{Hax} (High Byte) 00 _{Hax}
48 E BALLUFI	Continued on next].

9	L					
	Function Example	n Description es for protoc	n ol sequence			
Example No. 10	5.) Process subaddresses of the output buffer:			6.) Process subaddresses of the input buffer:		
(continued)	01 _{Hex} 02 _{Hex}	2nd number of bytes	(Low Byte) 03 _{Hex} (High Byte) 00 _{Hex}	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
For configuring with	03 _{Hex} 04 _{Hex}	3rd start address	(Low Byte) 38 _{Hex} (High Byte) 01 _{Hex}			
double bit header!	05нех 06нех	3rd number of bytes	(Low Byte) 11 _{Hex} (High Byte) 00 _{Hex}			
	00 _{Hex} /07 _{Hex}	Invert TI-Bit	autaut huffan	0) Dresses	auto ad duce a constatuto in a uto ta form	
	7.) Process	subaddresses of the	output buffer:	8.) Process	subaddresses of the input buffer:	
	01 _{Hex} /02 _{Hex}	lerminator	FFHex/FFHex	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
	03Hex/04Hex	(not used)	FFHex/FFHex			
	05Hex/06Hex	(not used)	FFHex/FFHex			
	UUHex/U7 Hex	Invert II-Bit				
	Fill all unuse	d start addresses an	d number of bytes w	rith FFHex!	Continued on next 1.	
					BALLUFF (E) 49	

50		
	Function Description Examples for protocol sequence	e
Example No. 10 Mixed Data Access	9.) Process subaddresses of the output buffer: 01 _{Hex} /02 _{Hex} (not used) FF _{Hex} /FF _{Hex}	10.)Process subaddresses of the input buffer: 00Haw/07Hax Set AE-Bit
For configuring with	03Hev/04Hex (not used) FFHev/FFHex 05Hev/06Hex (not used) FFHev/FFHex 00Hev/07Hex Invert TI-Bit	
double bit header!	11.)Process subaddresses of the output buffer:	12.)Process subaddresses of the input buffer:
	00Hex/07Hex Reset AV-Bit	00 _{Hev} /07 _{Hex} Reset AA-Bit and AE-Bit
CF	We recommend that you carefully document in number of bytes for writing/reading the desired	which parameters are used for start addresses and d data records.
	The data are sequenced in the exact order sp	ecified in the program.
50 E BALLUFF		

51		L				
		Function Example	n Description es for protocol sequence			
	Example No. 11	Read data carrier using Program No. 1 (data carrier type with 32 byte block size):				
	Mixed Data Access For configuring with double bit header!	Host: 1.) Process subaddresses of the output buffer in the		BIS C-60_ 2.) Process	1 Identification System: subaddresses of the input buffer in the	
		01Hex	Command designator 21 _{Hex}	0040/0740	Set AA-Bit	
		02 _{Hex}	Program number 01 _{Hex}	0106Hex	Enter first 6 bytes of data	
		00 _{Hex} /07 _{Hex}	CT-Bit to 0 (32 byte block size),	00нек/07нек	Set AE-Bit	
		3.) Process	subaddresses of the input buffer:	4.) Process	subaddresses of the input buffer:	
		U1UbHex	Copy first 6 data bytes	0106нек	Enter the second 6 data bytes	
		FIDCess	Subaddress of the output bullet.	00 _{Hex} /07 _{Hex}	Invert TO-Bit	
		A total o For the ren	f 27 bytes of data are exchanged. nainder of the procedure, see Exam	ple 2 on 🗅 38		
	(F)	Dynamic r	node is turned off while the Mixed Da	ta Access pro	gram is being run.	
					BALLUFF E 51	

	Function Example	n Description es for protocol sequence		
Example No. 12 Mixed Data Access	Write data Host:	a carrier using Program No. 1 (dat	a carrier type BIS C-60_	with 32 byte block size): 1 Identification System:
For configuring with	1.) Process order sho	subaddresses of the output buffer in the own:	2.) Process order sh	subaddresses of the input buffer in the own:
	01 _{Hex} 02 _{Hex} 00 _{Hex} /07 _{Hex}	Command designator 22 _{Hex} Program number 01 _{Hex} CT-Bit to 0 (32 byte block size), set AV-Bit	00 _{Hev} /07 _{Hex}	Set AA-Bit, invert TO-Bit
	3.) Process	subaddresses of the output buffer:	4.) Process	subaddresses of the output buffer:
	0106 _{Hex}	Enter first 6 bytes of data	0106Hex	Copy the first 6 data bytes
	$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit	Process	subaddress of the input buffer:
	A total o For the rem	of 27 bytes of data are exchanged. nainder of the procedure, see Exam	ple 7 on 🗋 44	
(F	Dynamic r	mode is turned off while the Mixed Da	ta Access pro	gram is being run.
52 (E) BALLUFF				

53						
		Function Description Examples for protocol sequenc	e			
	Example No. 13	Put the relevant read/write head into grou	und state:			
	For configuring with	Both read/write heads can be independently set to the ground state.				
	double bit header!	Host:	BIS C-60_1 Identification System:			
		1.) Process subaddresses of the output buffer:	2.) Go to ground state; Process subaddresses of the input buffer:			
		00 _{Hev} /07 _{Hex} Set GR-Bit	00Hex/07Hex Reset BB-Bit			
		3.) Process subaddresses of the output buffer:	4.) Process subaddresses of the input buffer:			
		00 _{Hex} /07 _{Hex} Reset GR-Bit	00Hex/07Hex Set BB-Bit			
			BALLUFF E 53			

Example No. 14 Program configuration data: Configuration data can be programmed in both buffers - for Head 1 and Head 2 - as desired. For configuring with double bit header! Host: BIS C-60_1 Identification System: 1.) Process subaddresses of the output buffer in the order shown: 0.14ex Outmand designator 04Hex 0.14ex Command designator 04Hex 0.04ex/07Hex Set AA-Bit, invert TO-Bit 0.14ex/07Hex Enter the 6 configuration bytes 0.14ex/07Hex Enter the 6 configuration bytes 0.14ex/07Hex Enter the 6 configuration bytes 0.14ex/07Hex Enter the 6 configuration bytes 0.14ex/07Hex Invert TI-Bit 0.14ex/07Hex AE-Bit setzen 5.) Process subaddresses of the output buffer: 0.14ex/07Hex Reset AA-Bit and AE-Bit 00Hex/07Hex Reset AV-Bit 00Hex/07Hex Reset AA-Bit and AE-Bit		Function Example	n Description es for protocol sequence				
For configuring with double bit header! Host: BIS C-60_1 Identification System: 1. Process subaddresses of the output buffer in the order shown: 01Hex 0. Process subaddresses of the input buffer in the order shown. 01Hex Command designator 04Hex 00He//07Hex Set AV-Bit 3.) Process subaddresses of the output buffer: 0.Hex//07Hex Set AA-Bit, invert TO-Bit 01Hex Enter the 6 configuration bytes 0.Hex//07Hex Enter the 6 configuration bytes 00Hex//07Hex Invert TI-Bit Process subaddresses of the input buffer: 00Hex//07Hex AE-Bit setzen 5.) Process subaddresses of the output buffer: 00Hex//07Hex AE-Bit and AE-Bit 00Hex//07Hex Reset AA-Bit and AE-Bit	Example No. 14	Program c Configurati	onfiguration data: on data can be programmed in both	n buffers - fo	or Head 1 and Head 2 - as desired.		
 Process subaddresses of the output buffer in the order shown: Command designator 04_{Hex} Command designator 04_{Hex} Command designator 04_{Hex} Set AV-Bit Process subaddresses of the output buffer: Process subaddresses of the input buffer: 	For configuring with double bit header!	Host:		BIS C-60 1 Identification System:			
01Hex Command designator 04Hex 00He//07Hex Set AA-Bit 00He//07Hex Set AV-Bit 00He//07Hex Set AA-Bit 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the output buffer: 0106Hex Enter the 6 configuration bytes 00He//07Hex Invert TI-Bit DHe//07Hex Enter the 6 configuration bytes 0.) Process subaddresses of the output buffer: 00He//07Hex Enter the 6 configuration bytes 00He//07Hex Invert TI-Bit Process subaddresses of the input buffer: 0.) Process subaddresses of the output buffer: 00He//07Hex AE-Bit setzen 5.) Process subaddresses of the output buffer: 00He//07Hex Reset AV-Bit 00He//07Hex Reset AV-Bit 00He//07Hex Reset AA-Bit and AE-Bit		1.) Process order sho	subaddresses of the output buffer in the own:	2.) Process order sh	subaddresses of the input buffer in the own.		
00Hstr/07Hax Set AV-Bit 3.) Process subaddresses of the output buffer: 4.) Process subaddresses of the output buffer: 0106Hax Enter the 6 configuration bytes 00Hstr/07Hax Invert TI-Bit 5.) Process subaddresses of the output buffer: 0.) Process subaddresses of the input buffer: 00Hstr/07Hax Reset AV-Bit 00Hstr/07Hax Reset AV-Bit		01 _{Hex}	Command designator 04 _{Hex}	00 _{Hex} /07 _{Hex}	Set AA-Bit, invert TO-Bit		
 3.) Process subaddresses of the output buffer: 0106_{Hax} Enter the 6 configuration bytes 00_{Hay}/07_{Hax} Invert TI-Bit 5.) Process subaddresses of the output buffer: 00_{Hay}/07_{Hax} Reset AV-Bit 4.) Process subaddresses of the output buffer: 0106_{Hax} Enter the 6 configuration bytes Process subaddresses of the input buffer: 00_{Hay}/07_{Hax} Reset AV-Bit 00_{Hay}/07_{Hax} Reset AA-Bit and AE-Bit 		$00_{\text{Hex}}/07_{\text{Hex}}$	Set AV-Bit				
0106Hex Enter the 6 configuration bytes 0106Hex Enter the 6 configuration bytes 00Hex/07Hex Invert TI-Bit Process subaddress of the input buffer: 0.) Process subaddresses of the output buffer: 0.) Process subaddresses of the input buffer: 0.) Process subaddresses of the output buffer: 6.) Process subaddresses of the input buffer: 00Hex/07Hex Reset AV-Bit 00Hex/07Hex Reset AA-Bit and AE-Bit		3.) Process	subaddresses of the output buffer:	4.) Process	subaddresses of the output buffer:		
00-tex/07 tex Invert TI-Bit Process subaddress of the input buffer: 00-tex/07 tex AE-Bit setzen 5.) Process subaddresses of the output buffer: 6.) 00-tex/07 tex Reset AV-Bit 00-tex/07 tex 00-tex/07 tex Reset AV-Bit 00-tex/07 tex		0106нек	Enter the 6 configuration bytes	0106нек	Enter the 6 configuration bytes		
00+ter/07+tex AE-Bit setzen 5.) Process subaddresses of the output buffer: 6.) Process subaddresses of the input buffer: 00+ter/07+tex Reset AV-Bit 00+ter/07+tex Reset AV-Bit		$00_{\text{Hex}}/07_{\text{Hex}}$	Invert TI-Bit	Process	subaddress of the input buffer:		
5.) Process subaddresses of the output buffer: 6.) Process subaddresses of the input buffer: 00-Hex/07Hex Reset AV-Bit 00-Hex/07Hex Reset AV-Bit				$00_{\text{Hex}}/07_{\text{Hex}}$	AE-Bit setzen		
00 _{Hex} /07 _{Hex} Reset AV-Bit 00 _{Hex} /07 _{Hex} Reset AA-Bit and AE-Bit		5.) Process	subaddresses of the output buffer:	6.) Process	subaddresses of the input buffer:		
		00Hex/07Hex	Reset AV-Bit	00 _{Hex} /07 _{Hex}	Reset AA-Bit and AE-Bit		

	Function Description Examples for protocol sequence								
Example No. 15	Read-out programmed configuration data:								
For configuring with double bit header!	Host: 1.) Process subaddresses of the output buffer in the order shown:	BIS C-60_1 Identification System: 2.) Process subaddresses of the input buffer in the order shown:							
	01 _{Hex} Command designator 05 _{Hex} 00 _{Hex} /07 _{Hex} Set AV-Bit	00 _{Hex} /07 _{Hex} Set AA-Bit 0106 _{Hex} Enter the 6 configuration bytes							
	3.) Process subaddresses of the input buffer:	4.) Process subaddresses of the output buffer:							
	Process subaddress of the output buffer. 00Her/07Hex Reset AV-Bit								

	Read/Write Time	es							
Read times from	For double read and compare:								
data carrier to	Data carrier with 32 byte	blocks	Data carrier with 64 byte	e blocks					
static mode	No. of bytes	Read time [ms]	No. of bytes	Read time [ms]					
(parametering:	from 0 to 31	110	from 0 to 63	220					
without CRC_16 data check)	for each additional 32 bytes add	120	for each additional 64 bytes add	230					
	from 0 to 255	= 950	from 0 to 2047	= 7350					
Write times from processor to data carrier in static mode (parametering: 2nd byte, bit 5 = 0, without CRC_16 data check)	Including readback and Data carrier with 32 byte	d compare: blocks	Data carrier with 64 byte	blocks					
	No. of bytes	Write time [ms]	No. of bytes	Write time [ms]					
	from 0 to 31	110 + n * 10	from 0 to 63	220 + n * 10					
	for 32 bytes or more	y * 120 + n * 10	for 64 bytes or more	y * 230 + n * 10					
	n = number of contiguous I y = number of blocks to be Example: 17 bytes fror The blocks 5 and 6 wil address 203 in block 6	bytes to write a processed n address 187 have to l be processed since 1 . $t = 2 * 120 + 17 * 7$	b be written. Data carrier wi the start address 187 is in l 10 = 410 ms	ith 32 bytes per block. block 5 and the end					
(F	The indicated times ap recognized, an addition nized must be added.	ply after the data carrie al 45 ms for building the	er has been recognized. If the required energy field until the	e data carrier is not yet data carrier is recog-					

Read times from	Read times within th	e 1st block for dual re	ad and compare:					
data carrier to			au and compare.					
brocessor in dynamic mode parametering: 2nd byte, bit 5 = 1, without CRC_16 data check)	The indicated times apply after the data carrier has been recognized. If the data carrier is not yet recognized, an additional 45 ms for building the required energy field until the data carrier is recognized must be added.							
	Data carrier with 32 byt	e blocks	Data carrier with 64 byte blocks					
,	No. of bytes	Read time [ms]	No. of bytes	Read time [ms]				
	from 0 to 3	14	from 0 to 3	14				
	for each additional byte add	3.5	for each additional byte add	3.5				
	from 0 to 31	112	from 0 to 63	224				
	Formula: t = (m + 1) [,] Example: Read 11 by This corres	^r 3.5 ms tes starting at address ponds to 70 ms.	9, i.e. the highest address	to be read is 19.				

	Technical Data								
Dimensions, Weight	Housing Dimensions with read/write head BIS C-652 Dimensions with adapter BIS C-650 Weight	Plastic PS approx. 169 x 90 x 35 mm approx. 184 x 90 x 35 mm approx. 400 g							
Operating Conditions	Ambient Temperature	0 °C to +60 °C							
Connections	Terminal Block Cable Entry for supply voltage for INTERBUS, in-/output Cable Diameter Wire gauge	19-pin 1 x PG 9 fitting (metal) 2 x PG 11 fittings (metal) 4 to 8 mm for PG 9 5 to 10 mm for PG 11 0.14 to 1 mm ²							
Enclosure Rating	Enclosure Rating	U.25 to U.34 mm ²							
Electrical Connections	Supply Voltage V _s , input Ripple Current Draw INTERBUS, In-/ and Outputs	DC 24 V ± 20 % ≤ 10 % ≤ 400 mA serial interface for remote bus station, Ident-No. 03, 16 bytes IN, 16 bytes OUT							
	Digital Input (+IN, -IN) Control voltage active Control voltage inactive Input current at 24 V Delay time, typ.	Terminal block, Optocoupler isolated 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms							

	BIS C-6001 Ordering Information
Ordering Code	BIS <u>C</u> -6001-02303-KL
	Balluff Identification System
	Type C Read/Write System
	Hardware Type
	Software Type
	Read/Write Head 000 = no read/write head 651 = with read/write head Type 651 (with circular antenna on top) 652 = with read/write head Type 652 (with circular antenna on front) 653 = with read/write head Type 653 (with rod antenna) 650 = with two connections for external read/write heads BIS C-3 (except BIS C-350 and C-352) 670 = with offset connection for an external read/write head BIS C-350 or BIS C-352
	InterfaceBUS versions
	User Connection — KL2 Clamp connection via 1 x PG 9 and 2 x PG 11

75	
	BIS C-6021 Interface Information / Wiring Diagrams
	To make the connections for the InterBus, the supply voltage and the digital input, connect the pre-assembled cable to the processor. For additional wiring information, see the following 1. Connect the read/write heads to the terminals for Head 1 and Head 2.
Connecting remote bus installation r	on the or The BIS C-6021ST8 processor is intended for use on the installation remote bus, which provides the supply voltage over the bus. The BIS C-6021ST9 processor is intended for use on the remote bus, whereby the supply voltage for the processor is brought in through X1.
bus	Connect the incoming INTERBUS cable to the INTERBUS input X3. Connect the outgoing INTERBUS cable to the INTERBUS output X2.
	If this remote bus station is the last one on the bus, the INTERBUS output X2 must be closed off with a threaded cap to maintain the enclosure rating.
	Please note the load capacity of the INTERBUS cable and verify during operation that the supply voltage is maintained at the processor (see Technical Data for specifications).
	BALLUFF (E) 75

	BIS C-6021 Technical Data	
Dimensions, weight	Housing Dimensions Weight	Metal 190 x 120 x 60 mm 80 n c
Operating conditions	Ambient temperature	0 °C to +60 °C
Connection type	Integral connector X1 Integral connector Head 1, Head 2 Round connector for X2 Round connector for X3 Integral connector X4	5-pin (male) 4-pin (male) 9-pin (female) 9-pin (male) 4-pin (male)
Enclosure	Protection class	IP 65 (when connected)
Electrical connections	Supply voltage V s Ripple Current draw	DC 24 V ± 20 % ≤ 10 % ≤ 400 mA
	Connections for supply voltage \mathbf{V}_{s} with installation remote bus with remote bus	at INTERBUS input X3, output X2 at input X1
	Output X2, input X3, INTERBUS	serial interface for remote bus station, Ident-No. 03, 16 bytes IN, 16 bytes OUT (with BIS C-621 mode: 8 Byte IN, 8 Byte OUT)
	Head 1, Head 2, Read/Write Head	via integrated adapter with 2 x 4-pin connec- tors (male) for all read/write heads BIS C-3 with 4-pin connector (female), excluding BIS C-350 and BIS C-352

	Technical Data		
Electrical Connections (continued)	Digital input X1 (+IN, -IN) Control voltage active Control voltage inactive Input current at 24 V Delay time, typ		galvanically isolated (optocoupler) 4 V to 40 V 1.5 V to -40 V 11 mA 5 ms
	Service interface X4		RS 232
Function Displays	BIS operating states (LED in housing)	LED red / green LED green / yellow LED green / yellow	Ready / Bus active CT1 Present / Operating CT2 Present / Operating
	INTERBUS state (LED on side of housing)	LED green LED green LED green LED yellow	Reset Cable Check Bus active Remotebus Disable
	The CE-Mark EC-Guideline	is your assurance that o	ur products are in conformance with the
		89/336/EEC (EMC	C-Guideline)
	and the EMC Law. Testing Testing of Electromagnetic EMC requirements of the	g in our EMC Laboratory c Compatibility, has con Generic Standard	, which is accredited by the DATech for firmed that Balluff products meet the
	EN 61000-6-4	4 (Emission) and EN 610	00-6-2/3/4/5/6 (Noise Immunity).

84

x Control Code Ctrl @ Ctrl @ Ctrl A Ctrl B Ctrl C	ASCII NUL SOH	mal 22	Hex	Code	ASCII	Deci	· 1102		LUNCI-								
Ctrl @ Ctrl A Ctrl A Ctrl B Ctrl C	NUL SOH	22	16			mai	пех	ASCII	mal	Hex	ASCII	mal	Hex	ASCII	mal	Hex	ASCII
1 Ctrl A 2 Ctrl B 3 Ctrl C	SOH		10	Ctrl V	SYN	44	2C	,	65	41	А	86	56	V	107	6B	k
2 Ctrl B 3 Ctrl C	OTV	23	17	Ctrl W	ETB	45	2D	-	66	42	В	87	57	W	108	6C	Ι
3 Ctrl C	51X	24	18	Ctrl X	CAN	46	2E		67	43	С	88	58	Х	109	6D	m
	ETX	25	19	Ctrl Y	EM	47	2F	/	68	44	D	89	59	Y	110	6E	n
Ctrl D	EOT	26	1A	Ctrl Z	SUB	48	30	0	69	45	Е	90	5A	Z	111	6F	0
5 Ctrl E	ENQ	27	1B	Ctrl [ESC	49	31	1	70	46	F	91	5B	[112	70	р
6 Ctrl F	ACK	28	1C	Ctrl \	FS	50	32	2	71	47	G	92	5C	\	113	71	q
' Ctrl G	BEL	29	1D	Ctrl]	GS	51	33	3	72	48	Н	93	5D]	114	72	r
3 Ctrl H	BS	30	1E	Ctrl ^	RS	52	34	4	73	49		94	5E	٨	115	73	S
) Ctrl I	HT	31	1F	Ctrl _	US	53	35	5	74	4A	J	95	5F	_	116	74	t
A Ctrl J	LF	32	20		SP	54	36	6	75	4B	K	96	60	`	117	75	u
3 Ctrl K	VT	33	21		!	55	37	7	76	4C	L	97	61	а	118	76	v
CtrlL	FF	34	22			56	38	8	77	4D	М	98	62	b	119	77	W
Ctrl M	CR	35	23		#	57	39	9	78	4E	N	99	63	С	120	78	х
Ctrl N	SO	36	24		\$	58	ЗA	:	79	4F	0	100	64	d	121	79	у
Ctrl O	SI	37	25		%	59	3B	;	80	50	Р	101	65	е	122	7A	Z
) Ctrl P	DLE	38	26		&	60	3C	<	81	51	Q	102	66	f	123	7B	{
1 Ctrl Q	DC1	39	27		'	61	3D	=	82	52	R	103	67	g	124	7C	
2 Ctrl R	DC2	40	28		(62	3E	>	83	53	S	104	68	h	125	7D	}
3 Ctrl S	DC3	41	29)	63	3F	?	84	54	Т	105	69	i	126	7E	~
Ctrl T	DC4	42	2A		*	64	40	@	85	55	U	106	6A	j	127	7F	DEL
	Chi F Chi G Chi N Chi O Chi O Chi G Chi G Chi G Chi G Chi G Chi S Chi S	Ctrl F ACK Ctrl G BEL Ctrl H BS Ctrl J HT Ctrl J LF Ctrl K VT Ctrl N SO Ctrl N SO Ctrl N SO Ctrl N SO Ctrl Q DC1 Ctrl Q DC1 Ctrl R DC2 Ctrl R DC3 Ctrl R DC3 Ctrl R DC3	Oth F ACK 28 Cth G BEL 29 Cth H BS 30 Cth I HT 31 A Cth J LF 32 Cth I HT 33 Cth I FF 34 Oth M CR 35 Cth N SO 36 Cth O SI 37 Cth P DLE 38 Cth Q DC1 39 Cth R DC2 40 Cth S DC3 41 Cth T DC4 42	Ctrl F ACK 28 1C Ctrl G BEL 29 1D Ctrl H BS 30 1E Ctrl I HT 31 1F Ctrl J JE 22 20 Ctrl K VT 33 21 Ctrl J JE 34 22 Ctrl K VT 33 21 Ctrl M CR 35 23 Ctrl N SO 36 24 Ctrl O SI 37 25 Ctrl P DLE 38 26 Ctrl Q DC1 39 27 Ctrl R DC2 40 28 Ctrl S DC3 41 29	Oth F ACK 28 1C Chrl I Ctrl G BEL 29 1D Chrl I Ctrl H BS 30 1E Chrl I Ctrl H BS 30 1E Chrl I Ctrl J LF 32 20 Ctrl J LF 32 20 Ctrl L FF 34 22 Ctrl M CR 35 23 Ctrl N SO 36 24 Ctrl O SI 37 25 Ctrl Q DC1 39 27 Ctrl R DC2 40 28 Ctrl S DC3 41 29 Ctrl T DC4 42 2A	Oth F ACK 28 1C Oth F FS Oth G BEL 29 1D Oth F FS Oth G BEL 29 1D Oth F FS Oth G BEL 29 1D Oth F FS Oth H BS 30 1E Oth - FS Oth J LF 32 20 SP SP Oth L FF 34 22 * Oth M CR 35 23 # Oth M CR 35 23 # Cth O SP Oth M CR 35 23 # SP SP SP	Chrl F ACK 28 10 Chrl / FS 50 Chrl G BEL 29 1D Chrl / FS 51 Chrl H BS 30 1E Chrl / FS 52 Chrl H BS 30 1E Chrl / RS 52 Chrl H T 31 1F Chrl / US 53 A Chrl J LF 32 20 SP 54 A Chrl J LF 32 20 SP 54 Chrl J LF 32 20 SP 54 Chrl J LF 34 22 " 56 Chrl L FF 34 22 " 56 Chrl N SO 36 24 \$68 58 Chrl O SI 37 25 96 59 Chrl P DLE 38 26 & 60 Chrl Q <td< td=""><td>Oth F ACK 28 1C Oth F FS 50 32 Oth G BEL 29 1D Oth I FS 50 32 Oth G BEL 29 1D Oth I GS 51 33 Oth H BS 30 1E Oth - RS 52 34 Oth I HT 31 1F Oth - RS 53 35 A Oth J LF 32 20 SP 54 36 A Oth J LF 32 20 SP 54 36 C Oth L FF 34 22 * 56 38 O th M CR 35 23 # 57 39 C th O SI 37 25 % 59 38 C th O SI 37 25 % 59 38 C th P DLE 38 26 & 60</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	Oth F ACK 28 1C Oth F FS 50 32 Oth G BEL 29 1D Oth I FS 50 32 Oth G BEL 29 1D Oth I GS 51 33 Oth H BS 30 1E Oth - RS 52 34 Oth I HT 31 1F Oth - RS 53 35 A Oth J LF 32 20 SP 54 36 A Oth J LF 32 20 SP 54 36 C Oth L FF 34 22 * 56 38 O th M CR 35 23 # 57 39 C th O SI 37 25 % 59 38 C th O SI 37 25 % 59 38 C th P DLE 38 26 & 60	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $