
CANpie
Controller Area Network Programming Interface Environment
Version 2.00

Users Guide

Document Conventions

Icons on the border of the page are used to mark certain paragraphs in
this document. The following icons are used:

Note
This icon designates a note relating to the surrounding text. It is rec-
ommended to read these sections.

 Tip
This icon designates a helpful tip relating to the surrounding text.

Warning
This icon designates a warning relating to the surrounding text. Please
read these sections carefully.

Keywords Important keywords appear in the border column to help the reader
when browsing through this document.

Syntax, Examples For function syntax and code examples the font face
courier is used.

© MicroControl GmbH & Co. KG, 2006 - 2009

MicroControl GmbH & Co. KG
Lindlaustrasse 2c
53844 Troisdorf
Germay

URL: http://canpie.sourceforge.net
eMail: canpie@microcontrol.net

http://canpie.sourceforge.net

Contents
1. Scope .3

1.1 References .3

1.2 Abbreviations .3

1.3 Definitions .4

1.4 Introduction to CAN .4

1.5 License .5

2. Driver Principle .7

2.1 Message Distribution .8

2.2 Data types .9

2.3 Naming Conventions .9

2.4 Initialization Process .10

3. API Overview .11

3.1 Physical CAN interface .11

3.2 Hardware Description Interface12

3.3 Structure of a CAN message 14

3.4 Bittiming .16

3.5 CAN statistic information 17

3.6 Error Codes .18

4. Core Functions. .19

4.1 CpCoreBaudrate .21

4.2 CpCoreBittiming .22

4.3 CpCoreBufferEnable .23

4.4 CpCoreBufferGetData .24

4.5 CpCoreBufferGetDlc .25

4.6 CpCoreBufferInit .26

4.7 CpCoreBufferRelease .27

4.8 CpCoreBufferSetData .28

4.9 CpCoreBufferSetDlc .29

4.10 CpCoreBufferSend .30

4.11 CpCoreCanMode .31

4.12 CpCoreCanStatus .32

4.13 CpCoreDriverInit .33

4.14 CpCoreDriverRelease .34

4.15 CpCoreHDI .35
CANpie Users Guide 1

Contents
4.16 CpCoreIntFunctions . 36

4.17 CpCoreMsgRead . 37

4.18 CpCoreMsgWrite . 38

4.19 CpCoreStatistic . 39

5. CAN Message Functions . 41

5.1 CpMsgGetData . 42

5.2 CpMsgGetDlc . 43

5.3 CpMsgGetExtId . 44

5.4 CpMsgGetStdId . 45

5.5 CpMsgIsExtended . 46

5.6 CpMsgIsRemote . 47

5.7 CpMsgClear . 48

5.8 CpMsgSetData . 49

5.9 CpMsgSetDlc . 50

5.10 CpMsgSetExtId . 51

5.11 CpMsgSetRemote . 52

5.12 CpMsgSetStdId . 53

A LGPL LICENSE . 55

B Index . 63
2 CANpie Users Guide

References Scope

1

1. Scope

The goal of this project is to define a "Standard" Application Program-
ming Interface (API) for access to the CAN bus. The API provides func-
tionality for ISO/OSI Layer-2 (Data Link Layer). It is not the intention of
CANpie to incorporate higher layer functionality (e.g. CANopen,
J1939, DeviceNet).

Whereever it is possible CANpie is independent from the used hard-
ware and operating system. The function calls are unique for different
kinds of hardware. Also CANpie provides a method to gather informa-
tion about the features of the CAN hardware. This is especially impor-
tant for an application designer, who wants to write the code only
once.

The API is designed for embedded control applications as well as for PC
interface boards.

1.1 References

/ISO11898-1/ ISO 11898-1, Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signaling

/ISO11898-2/ ISO 11898-2, Road vehicles – Controller area network
(CAN) – Part 2: High-speed medium access unit

/DS-301/ CANopen specification DS-301, version 4.1, CAN in
Automation

/ATMEL01/ Datasheet ATMEL microcontroller AT89C51CC01,
CAN controller section

1.2 Abbreviations

CAN Controller area network

CAN-ID CAN identifier

CRC Cyclic redundancy check

LSB Least significant bit/byte

MSB Most significant bit/byte

OSI Open systems interconnection

PLS Physical layer signaling

PMA Physical medium attachment

RTR Remote transmission request
CANpie Users Guide 3

Scope Definitions

1

1.3 Definitions

CAN base frame

message that contains up to 8 byte and is identified by 11 bits as
defined in ISO 11898-1

CAN extended frame

message that contains up to 8 byte and is identified by 29 bits as
defined in ISO 11898-1

CAN-ID

identifier for CAN data and remote frames as defined in ISO
11898-1

1.4 Introduction to CAN

The CAN (Controller Area Network) protocol is an international stand-
ard defined in the ISO 11898 for high speed and ISO 11519-2 for low
speed.

CAN is based on a broadcast communication mechanism. This broad-
cast communication is achieved by using a message oriented transmis-
sion protocol. These messages are identified by using a message
identifier. Such a message identifier has to be unique within the whole
network and it defines not only the content but also the priority of the
message.

The priority at which a message is transmitted compared to another
less urgent message is specified by the identifier of each message. The
priorities are laid down during system design in the form of corre-
sponding binary values and cannot be changed dynamically. The iden-
tifier with the lowest binary number has the highest priority. Bus access
conflicts are resolved by bit-wise arbitration on the identifiers involved
by each node observing the bus level bit for bit. This happens in ac-
cordance with the "wired and" mechanism, by which the dominant
state overwrites the recessive state. The competition for bus allocation
is lost by all nodes with recessive transmission and dominant observa-
tion. All the "losers" automatically become receivers of the message
with the highest priority and do not re-attempt transmission until the
bus is available again.

The CAN protocol supports two message frame formats, the only es-
sential difference being in the length of the identifier. The CAN stand-
ard frame, also known as CAN 2.0 A, supports a length of 11 bits for
the identifier, and the CAN extended frame, also known as CAN 2.0 B,
supports a length of 29 bits for the identifier.
4 CANpie Users Guide

License Scope

1

1.5 License

CANpie is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This code / library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

The license can be found as appendix to this manual.
CANpie Users Guide 5

Scope License

1

6 CANpie Users Guide

Driver Principle

2

2. Driver Principle

One of the ideas of CANpie is to keep it independent from the hard-
ware. This is of course difficult to achieve, due to many different target
platforms:
- CAN interface for embedded control
- CAN interface for PC (without local processor)
- CAN interface for PC (with local processor)

CANpie tries to meet this requirement by providing a two-level API,
consisting of core functions and user functions.

CANpie Structure

User Functions The user functions always call the core functions, they never access the
hardware directly. That means the user functions do not have to be
modified when implementing the CANpie on an existing hardware.

Core Functions The core functions access the hardware directly, so an adaption is nec-
cessary when implementing on a piece of hardware. Core functions
may also be called by the application.

CANpie supports more than one CAN channel on the hardware. The
actual number of CAN channels can be gathered via the Hardware De-
scription Interface (refer to “Hardware Description Interface” on page
12).

User Functions

Core Functions

Application

CAN hardware CAN hardware
CANpie Users Guide 7

Driver Principle Message Distribution

2

2.1 Message Distribution

The message distribution is responsible for reading and writing CAN
messages. The key component for message distribution is the Interrupt
Handler. The Interrupt Handler is started by a hardware interrupt from
the CAN controller. The Interrupt Handler has to determine the inter-
rupt type (receive / transmit / status change).

Message Handler

Interrupt Handler In case of a receive interrupt the handler uses the Receive Message rou-
tine to get the CAN message from the controller and put it into the Re-
ceive FIFO (First-In-First-Out). The Receive FIFO must be initialized by
the application. If the Receive FIFO is full, no further messages will be
queued and an error-signal will be submitted.

In case of a transmit interrupt the Transmit FIFO is checked. If there are
messages in this queue, the Transmit Message routine will write the
next waiting message to the CAN controller. If the Transmit FIFO is
empty and the application puts a CAN message into the queue, the
Transmit Message routine will be called automatically.

Core Functions

CAN hardware

Receive Transmit IRQ

Filter

Receive
FIFO

Transmit
FIFO

Mailbox
Access

Application

Status /
Statistic
8 CANpie Users Guide

Data types Driver Principle

2

Callback Functions The occurence of an interrupt may call a user defined handler function.
Handler functions are possible for the following conditions:

 Receive interrupt
 Transmit interrupt
 Status change interrupt

2.2 Data types

Due to different implementations of data types in the world of C com-
pilers, the following data types are used for CANpie API. The data types
are defined in the header file "compiler.h".

Data Types

2.3 Naming Conventions

As mentioned in chapter 2, CANpie is divided in core and user func-
tions. All functions, structures, defines and constants in CANpie have
the prefix "Cp". The following table shows the used nomenclature:

All constants, defines and error codes can be found in the header file
"canpie.h".

Data Type Definition

_BIT Boolean value, True or False

_U08 1 Byte value, value range 0 .. 28 - 1 (0 .. 255)

_S08 1 Byte value, value range -27 .. 27 - 1 (-128 .. 127)

_U16 2 Byte value, value range 0 .. 216 - 1 (0 .. 65535)

_S16 2 Byte value, value range -215 .. 215 - 1

_U32 4 Byte value, value range 0 .. 232 - 1

_S32 4 Byte value, value range -231 .. 231 - 1

Table 1: Data Type definitions

CANpie Prefix

Core functions CpCore

User functions CpUser

Message access functions CpMsg

Structures _TsCp

Constants / Defines CP

Error Codes CpErr

Table 2: Naming conventions
CANpie Users Guide 9

Driver Principle Initialization Process

2

2.4 Initialization Process

The CAN driver is initialized with the function CpCoreDriverInit(). This
routine will setup the CAN controller, but not configure a certain bi-
trate nor switch the CAN controller to active operation. The following
core functions must be called in that order:

 CpCoreDriverInit()
 CpCoreBaudrate() / CpCoreBittiming()
 CpCoreCanMode()

The function CpCoreDriverInit() must be called before any other core
function in order to have a valid handle / pointer to the open CAN in-
terface.

void MyCanInit(void)
{
 _TsCpPort tsCanPortT; // logical CAN port

 //---
 // setup the CAN controller / open a physical CAN
 // port
 //
 CpCoreDriverInit(CP_CHANNEL_1, &tsCanPortT);

 //---
 // setup 500 kBit/s
 //
 CpCoreBaudrate(&tsCanPortT, CP_BAUD_500K);

 //---
 // start CAN operation
 //
 CpCoreCanMode(&tsCanPortT, CP_MODE_START);

 //.. now we are operational

}

Example 1: Initialization process of the CAN interface
10 CANpie Users Guide

Physical CAN interface API Overview

3

3. API Overview

This chapter gives an overview of the CANpie API. It also discusses the
used structures in detail.

3.1 Physical CAN interface

A target system may have more than one physical CAN interface. The
physical CAN interfaces are numbered from 0 .. N-1 (N: total number
of physical CAN interfaces on the target system). The header file can-
pie.h provides an enumeration for the physical CAN interface (the first
CAN interface is CP_CHANNEL_1). A physical CAN interface is opened
via the function CpCoreDriverInit(). The function will setup a
pointer to the structure _TsCpPort for further operations. The ele-
ments of the structure _TsCpPort depend on the used target system
and are defined in the header file cp_arch.h (which defines data types
and structures for different architectures).

For an embedded application with only one physical CAN interface the
parameter to the CAN port can be omitted. This reduces the code size
and also increases execution speed. This option is configured via the
symbol CP_SMALL_CODE during the compilation process.

/*--*/
/*!
** \struct CpPortLinux_s cp_arch.h
** \brief Port structure for Linux
**
*/
struct CpPortLinux_s {

 /*! logical CAN interface number,
 ** first index is 0, value -1 denotes not assigned
 */
 int slLogIf;

 /*! physical CAN interface number,
 ** first index is 0, value -1 denotes not assigned
 */
 int slPhyIf;

 /*! CAN message queue number,
 ** first index is 0, value -1 denotes not assigned
 */
 int slQueue;
};

.....

typedef struct CpPortLinux_s _TsCpPort;

Example 2: CAN port structure for a LINUX target
CANpie Users Guide 11

API Overview Hardware Description Interface

3

3.2 Hardware Description Interface

The Hardware Description Interface provides a method to gather infor-
mation about the CAN hardware and the functionality of the driver. For
this purpose the following structure is defined:

struct CpHdi_s{
_U16 uwVersionNumber;
_U16 uwSupportFlags;
_U16 uwControllerType;
_U16 uwIRQNumber;
_U16 uwBufferMax;
_U16 uwRes;
_U32 ulTimeStampRes;
_U32 ulCanClock;
_U32 ulBitrate;

};

typedef struct CpHdi_s _TsCpHdi;

The hardware description structure is available for every physical CAN
channel.

Support Flags

Frametype
Bit 0 and Bit 1 of the structure member uwSupportFlags describe the
frame support of the CAN controller. The following values are defined:
0: Standard Frame (11-bit identifier), 2.0A
1: Extended Frame (29-bit identifier), 2.0B passive
2: Extended Frame (29-bit identifier), 2.0B active

FullCAN
If the flag "FullCAN" is set to "1", the CAN controller has more than one
receive buffer and one transmit buffer.

Interrupt Handler
If the flag "IRQHandler" is set to "1", the driver will use a hardware in-
terrupt. If set to "0", no interrupt handler is implemented. This also
means, that no callback functions can be used (polling).

7 6 5 4 3 2 1 0

res. User
Data

Timestam
p

Software
ID-Filter

IRQ-
Handler FullCAN Frametype

(2.0A / 2.0B)
12 CANpie Users Guide

Hardware Description Interface API Overview

3

Software ID-Filter
If the flag "Software ID-Filter" is set to "1", the driver has implemented
the software ID filter for standard frames. If the member is set to "0",
the software filter is not available.

Timestamp
If this flag is set to "1", the CAN driver will set a time stamp to all re-
ceived messages. The time stamp has a resolution of 1 microsecond
(Siehe “Time Stamp” auf Seite 15.).

User Data
If this flag is set to "1", the element ulUserData of the structure
CpCanMsg_s is valid.

Controller Type A constant that identifies the used CAN controller chip. Possible values
for this member are listed in the header file "cp_cc.h".

IRQNumber Defines the number of the interrupt which is used. If the flag "IRQHan-
dler" is set to "0", the value of "IRQNumber" will be undefined.

VersionMajor Holds the major version number of the CANpie driver release.

VersionMinor Holds the minor version number of the CANpie driver release.
CANpie Users Guide 13

API Overview Structure of a CAN message

3

3.3 Structure of a CAN message

For transmission and reception of CAN messages a structure which
holds all necessary informations is used (CpCanMsg_s). The structure is
defined in the header file canpie.h and has the following data fields:

struct CpCanMsg_s{
// identifier field (11/29 bit)
union {

_U16 uwStd;
_U32 ulExt;

} tuMsgId;

// data field (8 bytes)
union {

_U08 aubByte[8];
_U16 auwWord[4];
_U32 aulLong[2];

} tuMsgData;

// Data length code
_U08 ubMsgDLC

// Extended frame / remote frame
_U08 ubMsgCtrl

#if CP_CAN_MSG_TIME == 1
_TsCpTime tsMsgTime;
#endif

#if CP_CAN_MSG_USER == 1
_U32 ulMsgUser;
#endif

};

// typedef for this structure:
typedef struct CpCanMsg_s _TsCpCanMsg;

struct CpTime_s {
_U32 ulSec1970;
_U32 ulNanoSec;

}

14 CANpie Users Guide

Structure of a CAN message API Overview

3

Identifier The identifier field (union tuMsgId) may have 11 bits for standard
frames (CAN specification 2.0A) or 29 bits for extended frames (CAN
specification 2.0B). The three most significant bits are reserved.

Data Fields The data fields (union tuMsgData) may contain up to eight bytes for
a CAN message. If the data length code is less than 8, the value of the
unused data bytes will be undefined.

Data Length Code The data length code field (ubMsgDLC) holds the number of valid
bytes in the data field array. The allowed range is 0 to 8.

Message Control The message control field (ubMsgCtrl) contains information about the
frame type code. The EXT bit (bit 0) defines an Extended Frame (29 bit
identifier) if set. The RTR bit (bit 1) defines a Remote Transmission Re-
quest if set. The OVR bit (bit 2) defines a Overrun during message re-
ception if set.

Time Stamp The time stamp field (tsMsgTime) defines the time when a CAN mes-
sage was received by the CAN controller. The time stamp is an absolute
value, based on Jan 1st 1970 00:00. The lowest possible resolution is
one nanosecond (1 ns). This is an optional field.

The structure CpTime_s is defined similar to struct timeval (head-
er file time.h) in the LINUX kernel

User Data The field user data (ulUserData) can hold a 32 bit value, which is de-
fined by the user. This is an optional field.

It is recommended to access the structure elements via function calls or
macros, rather than dealing with bitmasks. Please refer to “CAN Mes-
sage Functions” on page 41 for a detailed description.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (0) 11-Bit Identifier

res. (0) 29-Bit Identifier

7 6 5 4 3 2 1 0

reserved OVR RTR EXT
CANpie Users Guide 15

API Overview Bittiming

3

3.4 Bittiming

To ensure correct sampling up to the last bit, a CAN node needs to re-
synchronize throughout the entire frame. This is done at the beginning
of each message with the falling edge SOF and on each recessive to
dominant edge.

One CAN bit time is specified as four non-overlapping time segments.
Each segment is constructed from an integer multiple of the Time
Quantum. The Time Quantum or TQ is the smallest discrete timing res-
olution used by a CAN node. The four time segments are:
- the Synchronization Segment
- the Propagation Time Segment
- the Phase Segment 1
- and the Phase Segment 2

The sample point is the point of time at which the bus level is read and
interpreted as the value (recessive or dominant) of the respective bit.
Its location is at the end of Phase Segment 1 (between the two Phase
Segments).

Programming of the sample point allows "tuning" of the characteristics
to suit the bus. Early sampling allows more Time Quanta in the Phase
Segment 2 so the Synchronization Jump Width can be programmed to
its maximum. This maximum capacity to shorten or lengthen the bit
time decreases the sensitivity to node oscillator tolerances, so that low-
er cost oscillators such as ceramic resonators may be used. Late sam-
pling allows more Time Quanta in the Propagation Time Segment
which allows a poorer bus topology and maximum bus length.

In order to allow interoperability between CAN nodes of different ven-
dors it is essential that both - the absolute bit length (e.g. 1µs) and the
sample point - are within certian limits. The following table gives an
overview of recommended bittiming setups.

Bitrate Bittime
Valid range for
sample point location

Recommended
sample point location

1 MBit/s 1 µs 75% .. 90% 87,5%

800 kBit/s 1,25 µs 75% .. 90% 87,5%

500 kBit/s 2 µs 85% .. 90% 87,5%

250 kBit/s 4 µs 85% .. 90% 87,5%

125 kBit/s 8 µs 85% .. 90% 87,5%

50 kBit/s 20 µs 85% .. 90% 87,5%

20 kBit/s 50 µs 85% .. 90% 87,5%

10 kBit/s 100 µs 85% .. 90% 87,5%

Table 3: Recommended bit timing setup
16 CANpie Users Guide

CAN statistic information API Overview

3

The default baudrates defined in table 3 can be setup via the core func-
tion CpCoreBaudrate(). The supplied parameter for the baudrate
selection are taken from the enumeration CP_BAUD (canpie.h).

If the pre-defined baudrates do not meet the requirements, it is possi-
ble to setup the CAN bittiming individually via the CpCoreBittim-
ing() function.

3.5 CAN statistic information

Statistic information about a physical CAN interface can be gathered
via the function CpCoreStatistic(). All counters are set to 0 upon
initialisation of the CAN interface (CpCoreDriverInit()).

struct CpStats_s{

// Total number of received data & remote frames
_U32 ulRcvMsgCount;

// Total number of transmitted data & remote
// frames
_U32 ulTrmMsgCount;

// Total number of state change / error events
_U32 ulErrMsgCount;

};

// typedef for this structure:
typedef struct CpStats_s _TsCpStats;

Baudrate Definition for default baudrate

10 kBit/s CP_BAUD_10K

20 kBit/s CP_BAUD_20K

50 kBit/s CP_BAUD_50K

100 kBit/s CP_BAUD_100K

125 kBit/s CP_BAUD_125K

250 kBit/s CP_BAUD_250K

500 kBit/s CP_BAUD_500K

800 kBit/s CP_BAUD_800K

1 MBit/s CP_BAUD_1M

Table 4: Standard baudrates
CANpie Users Guide 17

API Overview Error Codes

3

3.6 Error Codes

All functions that may cause an error condition will return an error
code. The CANpie error codes are within the value range from 0 to
127. The designer of the core functions might extend the error code
table with hardware specific error codes, which must be in the range
from 128 to 255.

Error Code Description

CpErr_OK No error occured

CpErr_GENERIC Reason is not specified

CpErr_HARDWARE Hardware failure

CpErr_INIT_FAIL Initialisation failed

CpErr_CAN_MESSAGE CAN message format is not valid

CpErr_CAN_ID identifier is not valid

CpErr_CAN_DLC data length code is not valid

CpErr_FIFO_EMPTY FIFO (read or write) is empty

CpErr_FIFO_WAIT message waiting in FIFO (read or write)

CpErr_FIFO_FULL FIFO (read or write) is full

CpErr_FIFO_SIZE not enough memory for FIFO

CpErr_BUS_PASSIVE CAN controller is in bus passive state

CpErr_BUS_OFF CAN controller is in bus off state

CpErr_BUS_WARNING CAN controller is in warning state

CpErr_CHANNEL channel number is out of range

CpErr_REGISTER register address out of range

CpErr_BITRATE bitrate is out of range / not supported

CpErr_BUFFER buffer index is out of range

CpErr_NOT_SUPPORTED the function is not supported

Table 5: CANpie error codes
18 CANpie Users Guide

Core Functions

4

4. Core Functions

The core functions provide the direct interface to the CAN controller
(hardware). Please note that due to hardware limitations maybe certain
functions are not implemented. A call to an unsupported function will
always return the error code ’CpErr_NOT_SUPPORTED’.

Function Description

CpCoreAcceptance() Setup acceptance filter

CpCoreAutobaud() Start automatic baudrate detection

CpCoreBaudrate() Set the bitrate of the CAN controller via pre-
defined values

CpCoreBittiming() Set the bitrate of the CAN controller via the bit
timing registers / constant value

CpCoreCanMode Set the mode of CAN controller

CpCoreCanState() Retrieve the mode of CAN controller

CpCoreDriverInit() Initialize the CAN driver

CpCoreDriverRelease() Stop the CAN driver

CpCoreHDI() Read the Hardware Description Information
(HDI structure)

CpCoreIntFunctions() Install callback functions for different CAN con-
troller interrupts

CpCoreMsgRead() Get a received message out of the CAN con-
troller and put it into the Read FIFO

CpCoreMsgWrite() Get a message from the Write FIFO and put it
into the CAN controller (transmit)

CpCoreStatistic() Get statistical information

Table 6: Basic core functions
CANpie Users Guide 19

Core Functions

4

For a "FullCAN" controller (i.e. a CAN controller that has several mes-
sage buffers) an extended set of powerful functions is provided.

Because the core functions are highly dependent on the hardware en-
vironment and the used operating system, the CANpie source package
can only supply function bodies for these functions.

Function Description

CpCoreBufferEnable() Temporarily enable / disable a message buffer

CpCoreBufferGetData() Get message data from buffer

CpCoreBufferGetDlc() Get data length code from buffer

CpCoreBufferInit() Initialize message buffer in a FullCAN controller

CpCoreBufferRelease() Release messge buffer in a FullCAN controller

CpCoreBufferSetData() Set message data

CpCoreBufferSetDlc() Set data length code

CpCoreBufferSend() Send message out of specified buffer

Table 7: Core functions for buffer manipulation
20 CANpie Users Guide

CpCoreBaudrate Core Functions

4

4.1 CpCoreBaudrate

Syntax _TvCpStatus CpCoreBaudrate(
_TsCpPort * ptsPortV
_U08 ubBaudSelV)

Function Set Baudrate of CAN controller

This function initializes the bit timing registers of a CAN controller to
pre-defined values. The values are defined in the "canpie.h" headerfile
(enumeration CP_BAUD). Please refer to “Bittiming” on page 16 for a
detailled description of common bittiming values.

Parameters ptsPortV Pointer to CAN port handle

ubBaudSelV Baudrate selection (enumeration CP_BAUD)

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.

Example

void MyCanInit(void)
{
 _TsCpPort tsCanPortT; // logical CAN port

 CpCoreDriverInit(CP_CHANNEL_1, &tsCanPortT);

 //---
 // setup 500 kBit/s
 //
 CpCoreBaudrate(&tsCanPortT, CP_BAUD_500K);

 //.. now we have a new baudrate setting

}

Example 3: Setup of baudrate
CANpie Users Guide 21

Core Functions CpCoreBittiming

4

4.2 CpCoreBittiming

Syntax _TvCpStatus CpCoreBittiming(
_TsCpPort * ptsPortV
_TsCpBitTiming *ptsBitrateV);

Function Set bittiming of CAN controller

This function directly writes to the bit timing registers of the CAN con-
troller. Usage of the function requires a detailed knowledge of the used
CAN controller hardware.

Parameters ptsPortV Pointer to CAN port handle

ptsBitrateV Pointer to bit timing structure

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.

Example

void SetCustomBaudrate(void)
{
 _TsCpPort tsCanPortT; // logical CAN port
 _TsCpBitTiming tsBitTimeT;

 CpCoreDriverInit(CP_CHANNEL_1, &tsCanPortT);

 //---
 // setup Btr0 and Btr1 with user defined values
 //
 tsBitTimeT.ubBtr0 = 0x3F;
 tsBitTimeT.ubBtr1 = 0x1C;

 CpCoreBittiming(&tsCanPortT, &tsBitTimeT);

 //.. now we have a new baudrate setting

}

Example 4: Setup of user-defined bittiming
22 CANpie Users Guide

CpCoreBufferEnable Core Functions

4

4.3 CpCoreBufferEnable

Syntax _TvCpStatus CpCoreBufferEnable(
_TsCpPort * ptsPortV
_U08 ubBufferIdxV,
_U08 ubEnableV)

Function Enable / Disable a message buffer

The functions enables or disables a message buffer for reception and
transmission of messages. The message buffer has to be configured by
CpCoreBufferInit() in advance.

In contrast to the CpCoreBufferRelease() function the contents
message buffer is not deleted, but message reception and transmission
can be suppressed by setting ’ubEnableV’ to 0.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

ubEnableV Flag to enable/disable message buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
CANpie Users Guide 23

Core Functions CpCoreBufferGetData

4

4.4 CpCoreBufferGetData

Syntax _TvCpStatus CpCoreBufferGetData(
_TsCpPort * ptsPortV
_U08 ubBufferIdxV,
_U08 * pubDestDataV)

Function Get data from message buffer

The functions copies 8 data bytes from the FullCAN message buffer de-
fined by ’ubBufferIdxV’. The destination buffer must have space for
8 bytes. The buffer has to be configured by CpCoreBufferInit() in
advance.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

pubDestDataV Pointer to destination buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
24 CANpie Users Guide

CpCoreBufferGetDlc Core Functions

4

4.5 CpCoreBufferGetDlc

Syntax _TvCpStatus CpCoreBufferGetDlc(
_TsCpPort * ptsPortV,
_U08 ubBufferIdxV,
_U08 * pubDlcV)

Function Get DLC of specified buffer

This function retrieves the Data Length Code (DLC) of the specified
buffer ’ubBufferIdxV’.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

pubDlcV Pointer to destination buffer for DLC

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
CANpie Users Guide 25

Core Functions CpCoreBufferInit

4

4.6 CpCoreBufferInit

Syntax _TvCpStatus CpCoreBufferInit(
_TsCpPort * ptsPortV
_TsCpCanMsg * ptsCanMsgV,
_U08 ubBufferIdxV,
_U08 ubDirectionV)

Function Initialise a message buffer (mailbox) in a FullCAN controller

This function initialises a message buffer in a FullCAN controller. The
number of the message buffer inside the FullCAN controller is specified
via the parameter ’ubBufferIdxV’. A message buffer can be relased
via the function CpCoreBufferRelease().

Parameters ptsPortV Pointer to CAN port handle

ptsCanMsgV Pointer to a CAN message structure

ubBufferIdxV Index of message buffer

ubDirectionV Direction of message (receive or transmit)
CP_BUFFER_DIR_RX: receive
CP_BUFFER_DIR_TX: transmit

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return CpErr_OK.

Example

void MyAllocationFunction(_TsCpPort * ptsCanPortV)
{
 _TsCpCanMsg tsMyCanMsgT; // temporary CAN message

 //---
 // set message buffer 1 as transmit buffer,
 // ID = 120, DLC = 2

 CpMsgSetStdId(&tsMyCanMsgT, 120); // ID = 120
 CpMsgSetDlc(&tsMyCanMsgT, 2);
 CpCoreBufferInit(ptsCanPortV, &tsCanMsgT,
 CP_BUFFER_1, CP_BUFFER_DIR_TX);

}

Example 5: Allocation of a message buffer
26 CANpie Users Guide

CpCoreBufferRelease Core Functions

4

4.7 CpCoreBufferRelease

Syntax _TvCpStatus CpCoreBufferRelease(
_TsCpPort * ptsPortV
_U08 ubBufferIdxV)

Function Release message buffer of FullCAN controller

The function releases the allocated message buffer specified by the pa-
rameter ’ubBufferIdxV’. Both - reception and transmission - will be
disabled on the specified message buffer afterwards.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
CANpie Users Guide 27

Core Functions CpCoreBufferSetData

4

4.8 CpCoreBufferSetData

Syntax _TvCpStatus CpCoreBufferSetData(
_TsCpPort * ptsPortV
_U08 ubBufferIdxV,
_U08 * pubSrcDataV)

Function Set data in message buffer

This function copies 8 data bytes into the message buffer defined by
the parameter ’ubBufferIdxV’. The message buffer has to be config-
ured by CpCoreBufferInit() in advance. The source data pointer
’pubSrcDataV’ must point to an array of 8 bytes length.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

pubSrcDataV Pointer to source data buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.

_U08 aubDataT[8]; // buffer for 8 bytes

aubDataT[0] = 0x11; // byte 0: set to 11hex
aubDataT[1] = 0x22; // byte 1: set to 22hex

//--- copy the data to message buffer 1 ----------
CpCoreBufferSetData(ptsCanPortV, CP_BUFFER_1, &aubDataT);

//--- send this message --------------------------
CpCoreBufferSend(ptsCanPortV, CP_BUFFER_1);

Example 6: Manipulation of data in message buffer
28 CANpie Users Guide

CpCoreBufferSetDlc Core Functions

4

4.9 CpCoreBufferSetDlc

Syntax _TvCpStatus CpCoreBufferSetDlc(
_TsCpPort * ptsPortV
_U08 ubBufferIdxV,
_U08 ubDlcV)

Function Set Data Length Code (DLC) of specified message buffer

This function sets the Data Length Code (DLC) of the specified message
buffer ’ubBufferIdxV’. The DLC value ’ubDlcV’ must be in the range
from 0 to 8. The message buffer has to be configured by a call to Cp-
CoreBufferInit() in advance.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

ubDlcV DLC value

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
CANpie Users Guide 29

Core Functions CpCoreBufferSend

4

4.10 CpCoreBufferSend

Syntax _TvCpStatus CpCoreBufferSend(
_TsCpPort * ptsPortV
_U08 ubBufferIdxV)

Function Send message from message buffer

This function transmits a message from the specified message buffer
’ubBufferIdxV’. The message buffer has to be configured by a call to
CpCoreBufferInit() in advance.

Parameters ptsPortV Pointer to CAN port handle

ubBufferIdxV Index of message buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
30 CANpie Users Guide

CpCoreCanMode Core Functions

4

4.11 CpCoreCanMode

Syntax _TvCpStatus CpCoreCanMode(
_TsCpPort * ptsPortV
_U08 ubModeV)

Function Set operating mode of CAN controller

This function changes the operating mode of the CAN controller. Pos-
sible values for mode are defined in the CP_MODE enumeration. At
least the modes CP_MODE_STOP and CP_MODE_START are supported.
Other modes depend on the CAN controller capabilities.

Parameters ptsPortV Pointer to CAN port handle

ubModeV New CAN controller mode

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.

Parameter "ubModeV" Description

CP_MODE_STOP set controller into ’Stop’ mode

CP_MODE_START set controller into ’Operational’ mode

CP_MODE_LISTEN_ONLY set controller into ’Listen Only’ mode

CP_MODE_SLEEP set controller into sleep mode
CANpie Users Guide 31

Core Functions CpCoreCanStatus

4

4.12 CpCoreCanStatus

Syntax _TvCpStatus CpCoreCanState(
_TsCpPort * ptsPortV
_U08 * pubStateV)

Function Retrieve state of CAN controller

This function retrieved the present state of the CAN controller. Possible
values are defined in the CP_STATE enumeration. The state of the CAN
controller is copied to the variable pointer ’pubStateV’.

Parameters ptsPortV Pointer to CAN port handle

pubStateV Pointer to CAN controller state variable

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.

Possible state values Description

CP_STATE ACTIVE CAN controller is active, no errors

CP_STATE STOPPED CAN controller is in stopped mode

CP_STATE_SLEEPING CAN controller is in Sleep mode

CP_STATE_BUS_WARN Warning level is reached

CP_STATE_BUS_PASSIVE CAN controller is error passive

CP_STATE_BUS_OFF CAN controller went into Bus-Off

CP_STATE_PHY_FAULT General failure of physical layer detected

CP_STATE_PHY_H Fault on CAN-H (Low Speed CAN)

CP_STATE_PHY_L Fault on CAN-L (Low Speed CAN)
32 CANpie Users Guide

CpCoreDriverInit Core Functions

4

4.13 CpCoreDriverInit

Syntax _TvCpStatus CpCoreDriverInit(
_U08 ubPhyIfV,
_TsCpPort * ptsPortV)

Function Initialize the CAN driver

Parameters ubPhyIfV CAN channel of the hardware

ptsPortV Pointer to CAN port handle

Return value Error code defined in the "canpie.h" headerfile. Possible return values
are:

• CpErr_HARDWARE
Hardware failure occured, initialisation is not possible

• CpErr_INIT_FAIL
Software failure occured, initialisation is not possible

• CpErr_OK
Function returned without error condition
CANpie Users Guide 33

Core Functions CpCoreDriverRelease

4

4.14 CpCoreDriverRelease

Syntax _TvCpStatus CpCoreDriverRelease(
_TsCpPort * ptsPortV)

Function Release the CAN driver

Parameters ptsPortV Pointer to CAN port handle

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
34 CANpie Users Guide

CpCoreHDI Core Functions

4

4.15 CpCoreHDI

Syntax _TvCpStatus CpCoreHDI(
_TsCpPort * ptsPortV
_TsCpHdi * ptsHdiV)

Function Get Hardware Description Information

This function retrieves information about the used hardware.

Parameters ptsPortV Pointer to CAN port handle

ptsHdiV Pointer to the "Hardware Description" structure

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
CANpie Users Guide 35

Core Functions CpCoreIntFunctions

4

4.16 CpCoreIntFunctions

Syntax _TvCpStatus CpCoreIntFunctions(
_TsCpPort * ptsPortV,
_U08 (* pfnRcvHandler) (_TsCpCanMsg *, _U08),
_U08 (* pfnTrmHandler) (_TsCpCanMsg *, _U08),
_U08 (* pfnErrHandler) (_U08)

Function Install callback functions

This function will install three different callback routines in the interrupt
handler. If you do not want to install a callback for a certain interrupt
condition the parameter must be set to NULL.

The callback functions for receive and transmit interrupt have the fol-
lowing syntax:

_U08 Handler(_TsCpCanMsg * ptsCanMsgV,
_U08 ubBufferIdxV)

The callback function for the CAN status-change / error interrupt has
the following syntax:

_U08 Handler(_U08 ubStateV)

Parameters ptsPortV Pointer to CAN port handle

pfnRcvHandler Pointer to callback function for receive interrupt

pfnTrmHandler Pointer to callback function for transmit interrupt

pfnErrHandler Pointer to callback function for error interrupt

Return value Error code defined in the "canpie.h" headerfile.

_U08 MyCanReceive(_TsCpCanMsg * ptsCanMsgV, _U08 ubBufferIdxV)
{
 switch(CpMsgGetStdId(ptsCanMsgV))
 {
 case 0x022:
 // do something with ID 0x022
 break;
 }
}

main()
{
 //....
 CpCoreIntFunctions(&tsCanPortT, MyReceiveFunc, 0L, 0L);
 //...
}

Example 7: Install a callback for receive interrupt
36 CANpie Users Guide

CpCoreMsgRead Core Functions

4

4.17 CpCoreMsgRead

Syntax _TvCpStatus CpCoreMsgRead(
_TsCpPort * ptsPortV,
_TsCpCanMsg * ptsBufferV,
_U32 * ulBufferSizeV)

Function Read CAN message from queue

This function reads up to ulBufferSizeV number of CAN messages
from the receive queue of the CAN driver and stores it into the location
pointed by ptsBufferV. The parameter ulBufferSizeV holds the
size of the buffer (in number of messages) before the function is called
and the actual number of messages copied in the buffer after the func-
tion is called.

Parameters ptsPortV Pointer to CAN port handle

ptsBufferV Pointer to buffer for CAN messages

ulBufferSizeV Size of the message buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.

#define RCV_BUFFER_SIZE 64

static _TsCpCanMsg atsRcvBufferS[RCV_BUFFER_SIZE]

_U08 MyCanRead(_TsCpPort * ptsCanPortV)
{
 // maximum receive buffer size
 _U32 ulBufferSizeT = RCV_BUFFER_SIZE;

 CpCoreMsgRead(ptsCanPortV, atsRcvBufferS, &ulBufferSizeT);

 if(ulBufferSizeT == 0)
 {
 // ... no messages in the receive queue
 }
 else
 {

 }
}

Example 8: Message read operation
CANpie Users Guide 37

Core Functions CpCoreMsgWrite

4

4.18 CpCoreMsgWrite

Syntax _U08 CpCoreMsgWrite(
_TsCpPort * ptsPortV,
_TsCpCanMsg * ptsBufferV,
_U32 * ulBufferSizeV)

Function Write CAN message to queue

This function gets the next CAN message out of the Transmit FIFO and
writes it to the appropriate registers of the CAN controller.

Parameters ptsPortV Pointer to CAN port handle

ptsBufferV Pointer to buffer for CAN messages

ulBufferSizeV Size of the message buffer

Return value Error code defined in the "canpie.h" headerfile. If no error occured, the
function will return ’CpErr_OK’.
38 CANpie Users Guide

CpCoreStatistic Core Functions

4

4.19 CpCoreStatistic

Syntax _TvCpStatus CpCoreStatistic(
_TsCpPort * ptsPortV,
_TsCpStats * ptsStatsV)

Function Get statistic information from CAN controller

This function copies statistic information into the structure _TsStats,
which is passed via the pointer ptsStatsV.

Parameters ptsPortV Pointer to CAN port handle

ptsStatsV Pointer to CAN statistic structure

Return value Error code defined in the "canpie.h" headerfile. Possible return values
are:

• CpErr_CHANNEL
Channel number is out of range

• CpErr_SUPPORTED
Function is not supported

• CpErr_OK
Function returned without error condition
CANpie Users Guide 39

Core Functions CpCoreStatistic

4

40 CANpie Users Guide

CAN Message Functions

5

5. CAN Message Functions

Access to the members of the CAN message structure CpCanMsg_s
shall be performed via macros or functions calls. This ensures - upon
change of the CAN message structure - that the application does not
have to be adopted.

The CAN message functions are implemented as conventionell func-
tions as well as macros. The symbol CP_CAN_MSG_MACRO defines
which implementation is used.
CANpie Users Guide 41

CAN Message Functions CpMsgGetData

5

5.1 CpMsgGetData

Syntax _U08 CpMsgGetData(
_TsCpCanMsg * ptsCanMsgV,
_U08 ubPosV)

Function Read data bytes from CAN message

This function retrieves the data of a CAN message. The parameter ’ub-
PosV’ must be within the range 0 .. 7.

Parameters ptsCanMsgV Pointer to CAN message structure

ubPosV Zero based index of byte position

Return value Data value at specified position.

void MyDataRead(_TsCpCanMsg * ptsCanMsgV)
{
 _U08 ubByte0T;

 //---
 // read first data byte from CAN message, check
 // the data length code (DLC) first
 //
 if(CpMsgGetDlc(ptsCanMsgV) > 0)
 {
 ubByte0T = CpMsgGetData(ptsCanMsgV, 0);

 }

}

Example 9: Get data byte from CAN message structure
42 CANpie Users Guide

CpMsgGetDlc CAN Message Functions

5

5.2 CpMsgGetDlc

Syntax _U08 CpMsgGetData(
_TsCpCanMsg * ptsCanMsgV)

Function Read DLC value from CAN message

This function retrieves the data length code (DLC) of a CAN message.

Parameters ptsCanMsgV Pointer to CAN message structure

Return value Data length code

void MyDataRead(_TsCpCanMsg * ptsCanMsgV)
{
 _U08 ubByte0T;

 //---
 // read first data byte from CAN message, check
 // the data length code (DLC) first
 //
 if(CpMsgGetDlc(ptsCanMsgV) > 0)
 {
 ubByte0T = CpMsgGetData(ptsCanMsgV, 0);

 }

}

Example 10: Check data length code from CAN message structure
CANpie Users Guide 43

CAN Message Functions CpMsgGetExtId

5

5.3 CpMsgGetExtId

Syntax _U32 CpMsgGetExtId(
_TsCpCanMsg * ptsCanMsgV)

Function Read extended identifier

The function retrieves the value for the identifier of an extended frame
(CAN 2.0B).

Parameters ptsCanMsgV Pointer to CAN message structure

Return value Value for extended identifier in the range 0 .. 1FFFFFFFh
44 CANpie Users Guide

CpMsgGetStdId CAN Message Functions

5

5.4 CpMsgGetStdId

Syntax _U16 CpMsgGetStdId(
_TsCpCanMsg * ptsCanMsgV)

Function Read standard identifier

The function retrieves the value for the identifier of a standard frame
(CAN 2.0A).

Parameters ptsCanMsgV Pointer to CAN message structure

Return value Value for standard identifier in the range 0 .. 7FFh
CANpie Users Guide 45

CAN Message Functions CpMsgIsExtended

5

5.5 CpMsgIsExtended

Syntax _U08 CpMsgIsExtended(
_TsCpCanMsg * ptsCanMsgV)

Function Test for extended frame

Parameters ptsCanMsgV Pointer to CAN message structure

Return value TRUE on extended frame, FALSE on standard frame.
46 CANpie Users Guide

CpMsgIsRemote CAN Message Functions

5

5.6 CpMsgIsRemote

Syntax __U08 CpMsgIsRemote(
_TsCpCanMsg * ptsCanMsgV)

Function Test for remote frame

Parameters ptsCanMsgV Pointer to CAN message structure

Return value TRUE on remote frame, FALSE on data frame.
CANpie Users Guide 47

CAN Message Functions CpMsgClear

5

5.7 CpMsgClear

Syntax void CpMsgClear(
_TsCpCanMsg * ptsCanMsgV)

Function Clear CAN message structure

The function clears the elements of a CAN message structure.

Parameters ptsCanMsgV Pointer to CAN message structure

Return value None
48 CANpie Users Guide

CpMsgSetData CAN Message Functions

5

5.8 CpMsgSetData

Syntax void CpMsgSetData(
_TsCpCanMsg * ptsCanMsgV,
_U08 ubPosV,
_U08 ubValueV)

Function Write data bytes to CAN message

This function sets the data of a CAN message. The parameter ’ub-
PosV’ must be within the range 0 .. 7.

Parameters ptsCanMsgV Pointer to CAN message structure

ubPosV Zero based index of byte position

ubValueV Data value for CAN message

Return value None
CANpie Users Guide 49

CAN Message Functions CpMsgSetDlc

5

5.9 CpMsgSetDlc

Syntax _U08 CpMsgSetDlc(
_TsCpCanMsg * ptsCanMsgV,
_U08 ubDlcV)

Function Set DLC value of CAN message

This function sets the data length code (DLC) of a CAN message. The
value must be within the range 0 .. 8.

Parameters ptsCanMsgV Pointer to CAN message structure

ubDlcV Data length code value

Return value None

_TsCpCanMsg tsMyCanMsgT; // temporary CAN message struct.

//---
// clear message and setup CAN-ID = 100h and DLC = 4
CpMsgClear(&tsMyCanMsgT);
CpMsgSetStdId(&tsMyCanMsgT, 0x0100); // set ID = 0x0100
CpMsgSetDlc(&tsMyCanMsgT, 4); // set DLC = 4

Example 11: Setup the data length code
50 CANpie Users Guide

CpMsgSetExtId CAN Message Functions

5

5.10 CpMsgSetExtId

Syntax void CpMsgSetExtId(
_TsCpCanMsg * ptsCanMsgV,
_U32 ulExtIdV)

Function Set 29-bit identifier value

Parameters ptsCanMsgV pointer to CAN message structure

ulExtIdV extended identifier value

Return value None
CANpie Users Guide 51

CAN Message Functions CpMsgSetRemote

5

5.11 CpMsgSetRemote

Syntax void CpMsgSetRemote(
_TsCpCanMsg * ptsCanMsgV)

Function Set RTR bit

This function sets the remote transmission bit (RTR) in the CAN mes-
sage structure.

Parameters ptsCanMsgV Pointer to CAN message structure

Return value None
52 CANpie Users Guide

CpMsgSetStdId CAN Message Functions

5

5.12 CpMsgSetStdId

Syntax void CpMsgSetStdId(
_TsCpCanMsg * ptsCanMsgV,
_U16 uwStdIdV)

Function Set 11-bit identifier value

Parameters ptsCanMsgV pointer to CAN message structure

uwStdIdV standard identifier value

Return value None
CANpie Users Guide 53

CAN Message Functions CpMsgSetStdId

5

54 CANpie Users Guide

LGPL LICENSE

A

A LGPL LICENSE

 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library
Public License, version 2, hence the version number 2.1.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software -- to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages-
-typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use
it too, but we suggest you first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Li-
censes are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or
to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recip-
ients all the rights that we gave you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide complete object files to the recipients,
so that they can relink them with the library after making changes to the library and recompiling it. And
you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what they
have is not the original version, so that the original author's reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive li-
cense from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.
CANpie Users Guide 55

LGPL LICENSE

A

When a program is linked with a library, whether statically or using a shared library, the combination of
the two is legally speaking a combined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's freedom
than the ordinary General Public License. It also provides other free software developers Less of an ad-
vantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be al-
lowed to use the library. A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so
we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in non-
free programs enables many more people to use the whole GNU operating system, as well as its variant,
the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that
the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention
to the difference between a "work based on the library" and a "work that uses the library". The former
contains code derived from the library, whereas the latter must be combined with the library in order to
run.

GNU LESSER GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

Section 0

This License Agreement applies to any software library or other program which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the terms of this
Lesser General Public License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright
law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications
and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a
library, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are
56 CANpie Users Guide

LGPL LICENSE

A

outside its scope. The act of running a program using the Library is not restricted, and output from such
a program is covered only if its contents constitute a work based on the Library (independent of the use
of the Library in a tool for writing it). Whether that is true depends on what the Library does and what
the program that uses the Library does.

Section 1

You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer war-
ranty protection in exchange for a fee.

Section 2

You may modify your copy or copies of the Library or any portion of it, thus forming a work based on
the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and

the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms

of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an applica-

tion program that uses the facility, other than as an argument passed when the facility is invoked,
then you must make a good faith effort to ensure that, in the event an application does not supply
such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-de-
fined independent of the application. Therefore, Subsection 2d requires that any application-sup-
plied function or table used by this function must be optional: if the application does not supply it,
the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in them-
selves, then this License, and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contestyour rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

Section 3

You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version
CANpie Users Guide 57

LGPL LICENSE

A

than version 2 of the ordinary GNU General Public License has appeared, then you can specify that ver-
sion instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

Section 4

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the
complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute
the source code, even though third parties are not compelled to copy the source along with the object
code.

Section 5

A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative
of the Library (because it contains portions of the Library), rather than a "work that uses the library". The
executable is therefore covered by this License. Section 6 states terms for distribution of such executa-
bles.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether
this is true is especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is unrestrict-
ed, regardless of whether it is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also fall under Section 6, whether
or not they are linked directly with the Library itself.

Section 6

As an exception to the Sections above, you may also combine or link a "work that uses the Library" with
the Library to produce a work containing portions of the Library, and distribute that work under terms
of your choice, provided that the terms permit modification of the work for the customer's own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice for the Library among them,
as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:
58 CANpie Users Guide

LGPL LICENSE

A

a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and
2 above); and, if the work is an executable linked with the Library, with the complete machine-read-
able "work that uses the Library", as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified Library. (It is un-
derstood that the user who changes the contents of definitions files in the Library will not necessarily
be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (1) uses at run time a copy of the library already present on the user's computer system, rather
than copying library functions into the executable, and (2) will operate properly with a modified ver-
sion of the library, if the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials
to be distributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the execut-
able runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that
do not normally accompany the operating system. Such a contradiction means you cannot use both
them and the Library together in an executable that you distribute.

Section 7

You may place library facilities that are a work based on the Library side-by-side in a single library to-
gether with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities
is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

Section 8

You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Li-
brary is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long as
such parties remain in full compliance.

Section 9
CANpie Users Guide 59

LGPL LICENSE

A

You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and all its terms and con-
ditions for copying, distributing or modifying the Library or works based on it.

Section 10

Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients' exercise of
the rights granted herein. You are not responsible for enforcing compliance by third parties with this
License.

Section 11

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the bal-
ance of the section is intended to apply, and the section as a whole is intended to apply in other circum-
stances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in re-
liance on consistent application of that system; it is up to the author/donor to decide if he or she is will-
ing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

Section 12

If the distribution and/or use of the Library is restricted in certain countries either by patents or by cop-
yrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

Section 13

The Free Software Foundation may publish revised and/or new versions of the Lesser General Public Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and con-
ditions either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published by the
Free Software Foundation.
60 CANpie Users Guide

LGPL LICENSE

A

Section 14

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

 NO WARRANTY

Section 15

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO
THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Section 16

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY
OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.
CANpie Users Guide 61

LGPL LICENSE

A

62 CANpie Users Guide

Index

I

B Index

B

Baudrate
function call 21

C

CpCanMsg_s
tuMsgId 15
ulMsgId 15

CpCoreBaudrate 21, 22
CpCoreBufferGetData 23, 24
CpCoreBufferGetDlc 25
CpCoreBufferInit 26
CpCoreBufferRelease 27
CpCoreBufferSend 30
CpCoreBufferSetData 28
CpCoreBufferSetDlc 29
CpCoreCanMode 31
CpCoreCanState 32
CpCoreDriverInit 33
CpCoreDriverInit() 10
CpCoreDriverRelease 34
CpCoreHDI 35
CpCoreMsgReceive 37
CpCoreMsgTransmit 38
CpCoreRegWrite 39

S

Structure
_TsCpCanMsg 14
_TsCpHdi 12
CpCanMsg_s 14
CpHdi_s 12
CpTime_s 14
CANpie Users Guide 63

Index

I

64 CANpie Users Guide

MicroControl reserves the right to modify this manual and/or
product described herein without further notice. Nothing in this
manual, nor in any of the data sheets and other supporting doc-
umentation, shall be interpreted as conveying an express or im-
plied warranty, representation, or guarantee regarding the
suitability of the products for any particular purpose. MicroCon-
trol does not assume any liability or obligation for damages, ac-
tual or otherwise of any kind arising out of the application, use of
the products or manuals.

The products described in this manual are not designed, intend-
ed, or authorized for use as components in systems intended to
support or sustain life, or any other application in which failure of
the product could create a situation where personal injury or
death may occur.

© 2009 MicroControl GmbH & Co. KG, Troisdorf
CANpie Users Guide MicroControl Version 1.00 Page 65

MicroControl GmbH & Co. KG
Lindlaustraße 2c
D-53842 Troisdorf
Fon: +49 / 2241 / 25 65 9 - 0
Fax: +49 / 2241 / 25 65 9 - 11
http://www.microcontrol.net

��������	�
��

�	���������
	��

http://www.microcontrol.net
http://www.microcontrol.net
http://www.microcontrol.net

	1. Scope
	1.1 References
	1.2 Abbreviations
	1.3 Definitions
	1.4 Introduction to CAN
	1.5 License

	2. Driver Principle
	2.1 Message Distribution
	2.2 Data types
	2.3 Naming Conventions
	2.4 Initialization Process

	3. API Overview
	3.1 Physical CAN interface
	3.2 Hardware Description Interface
	3.3 Structure of a CAN message
	3.4 Bittiming
	3.5 CAN statistic information
	3.6 Error Codes

	4. Core Functions
	4.1 CpCoreBaudrate
	4.2 CpCoreBittiming
	4.3 CpCoreBufferEnable
	4.4 CpCoreBufferGetData
	4.5 CpCoreBufferGetDlc
	4.6 CpCoreBufferInit
	4.7 CpCoreBufferRelease
	4.8 CpCoreBufferSetData
	4.9 CpCoreBufferSetDlc
	4.10 CpCoreBufferSend
	4.11 CpCoreCanMode
	4.12 CpCoreCanStatus
	4.13 CpCoreDriverInit
	4.14 CpCoreDriverRelease
	4.15 CpCoreHDI
	4.16 CpCoreIntFunctions
	4.17 CpCoreMsgRead
	4.18 CpCoreMsgWrite
	4.19 CpCoreStatistic

	5. CAN Message Functions
	5.1 CpMsgGetData
	5.2 CpMsgGetDlc
	5.3 CpMsgGetExtId
	5.4 CpMsgGetStdId
	5.5 CpMsgIsExtended
	5.6 CpMsgIsRemote
	5.7 CpMsgClear
	5.8 CpMsgSetData
	5.9 CpMsgSetDlc
	5.10 CpMsgSetExtId
	5.11 CpMsgSetRemote
	5.12 CpMsgSetStdId

	A LGPL LICENSE
	B Index
	B
	C
	S

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

