(
[|
hitexs

DEYLLOPMIONT TGOLEG

An Introduction T
On The C166 Farh

1 |H-

A Short Course In The Fundamentals Of
C166 Microcontroller Family Programming,
Application And Tools.

Hitex (UK) Ltd.
University of Warwick Science Park
Coventry, CV4 7EZ
Tel: 024 7669 2066
Fax: 024 7669 2131
info@hitex.co.uk
http://www.hitex.co.uk

© copyright Hitex (UK) Ltd. 1997, 2002.
All Rights Reserved.

n
No Part of this publication may betransmitted, transcribed, stored in aretrieval system, trandated into any
language, in any form, by any meanswithout the written permission of Hitex (UK) Ltd.
All trademarksand registered names are acknowledged to bethe property of their owners.)

Contents

L. OVEIVIBIW ..ttt sttt b et e et s b b e e bt bt e Rt e Rt e st e s e e b e AR e e b e e bt e bt e bt e Rt e st et et e s benbenbeebenreeneenens 6
I RO 1= = g 11T [o' o R 6
1.2 Basic Objective IN CL166 ProgramiMingecceeeeieeresieseesieseesseessesseesseesseseesseessessessssssssssesssesnsenns 6
1.3 COUISE SCREAUIE ...ttt b et e st e st et e e ae e b e e eeereesae e e e 7
2. Setting Up The C166 COoMPIlEr SYSEEM........ccvciiiie ettt s ne e 10
2.1 C166' S EnVIronment VariahleSooueiiiieice et 10
2.2 Multiple Include File SEarch PathS............cooieiiiie et 10
3. Creating A NEW PrOJECLoouiiieiiieieeeee ettt bttt et e bbbt nse e e 11
3.1 Background Information On CLE66 PrOJECESccceiieiieieeiieiie et eee et et ne e 11
3.1.1 BaSiC DA TYPES IN CLOOcoueeueeuieieiesiesie sttt st b et e e n e sn e bbb s e 11
3.1.2Basc Terms Used [N C166 ProgramiMingeceeeeeieeseesieseesreesiesseesseessesseesseessessesssesssessesssesnseens 12
3.1.3 Memory Map Of EVA167 Board And Example Program............ccceveeeiienieciee st 12
3.2 Setting Up The Directory Structure For The Example Project (Worked Solution)cccevevereneeneee 13
3.2.1 Necessary FIleSTO BUIlA A PrOGraM........ccueiiiiie ettt st sne e 13
3.2.2 Laying Out A C166 Program Module (SOUrCE FIlE)eeveriiiieieseeree e 15
3.2.3 L166 LiNKEr INPUL FILES ...ttt sttt s e s ne et e eneenne e e e 16
3.3 Creating A Project With The UVISION2 Workbench...........coceeieiiiececececec e 16
3.3 L UVISIONZ OVEINVIEW ..ottt s et sttt e s e s e stessestessesseeseenseseessessessestesseaseenenneennens 16
3.3.2 IMPOortant UVISIONZ FEAIUIEScccuviiiiiieiiee sttt ba s s b b e snbe e snbe e e nnneas 17
3.3.3 Setting Up The BasiC PrOJEC SITUCIUNEcveiiiriiiieeieeeee ettt 18
3.3.4 Setting The TOO! OPLIONSeeveieeeiieeiieeeseete et et e e s e steete e sse e s e s e e s seesesseesseeseeneesseensesneesseenseans 20
The Target TAD EXPIAINGDc..ooiie ettt et e e e e sae e sabe e sreeenreennee s 20
3341 TheLising Tabh EXPANEccoveieieecee sttt sttt st sreene s ne e ens 21
3.34.2The Output Tab EXPIAINEcooveiieeieieee ettt et e sreene e 21
3.34.3The C166 Tah EXPIAINEcceeeeieieieiese ettt sttt sne e sreeneeneeneeneens 22
O B N GG I o TSP 26
3.34.5 THELL66 LOCAE TADciuiieieieeiieieieie ettt ettt sbe st s s se e e ssestesaesbesseeseenennenneens 27
G I N G g T I GG T 1= o S 28
34 Building New ProjeCtS FOr ThE FIrS TIME ...c.vecieieie ettt ne e 29
35 Making Use Of The Multiple Target FaCilitycccooereierieieeese s 29
3.6 The Specia CLO7 INSITUCHIONScciuieiieieeieeiecee st este s e steete e sre e e s e e s seeeesseesreeseesaesseesesneesseenseans 30
3.7 Regiger Masks And Globa Register OptimiZation...........ccoueiiuieiieiiiee e 31
4. Using The HITOP MoNitor-Baset DEDUGQESccveoveiiieiieieecieerieeie st st esre e e e sneesseennesnee s 33
= R (O S 00 0 S 34
5. Using uVISION And HITOP In Program DeveElOpMENcceeiieiiieeiieciee et 35
R (O S 1 35
6. Configuring The C Environment To Your CPU and HardWare...............ooeveiirenececeeeeseeseeeee 43
6.1 CPU-SPECITIC INCIUAE FIIES ...ttt s e s ne e e ens 43
6.2 Configuring STARTUP.AGE ANA STARTIG7.ABEccceiuieieieiesiesiesiesteseeseseesee e sse e e ssessessesneens 44
6.2.1 Configuring STARTUPRLABGceeeeuiieieieieitestesteste st eeesaestestesae e ssesseeseessessessessesseesesseeseeneens 44
6.2.2 CoNfigurNGg STARTLE7.ABE.........ccoeruireeieieie ettt sttt st sbe et e stesaesbesbesbesseeneeneens 46

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 2

6.2.3 Specid Note On The CAN Pin Assignments On The CLE7CS..........ooooviienenenenieerese e 49

6.3 ThE TWO STBCKS TN CLBBceieiieiiesiieieeiieieie ettt sttt st st st sb e b b et e e e e e e nbesbenbenresne e 50
6.3.1 Setting The SIze Of TRE USEN SEBCKcvviiiiieieeie e s 50
6.3.2 Advanced Technique - Placing The User Stack IN On Chip RAMoocieeiecece e 52
6.3.3 THE SYSEEM SEBCK ...ttt sttt ettt et st e besbeebe e st e s e e e s e nteseenbenreene e 53
6.4 Setting Up The BUSCONX ADDRSELX REJISIENSc.coiuiriiriiriieieieie ettt 54
6.5 Specid Notes ON The SKATUP FIIESoovieeceeceee e 56
6.6 EVA16C Board CPU Setup Requirements (viaBUSCONO and chip saect 0) ...ooceeveeeneeniccienienne 57
EXERCISE 20 EX2 ..ttt bbbttt bbbttt et b e b b 58
6.7 Configuring The RUNIME ENVIFONMENc..oiiiiiiiie et nne e 59
6.7.1 Adapting printf() TO Other OUIPUL DEVICES........cceitiririirierieeieee ettt e 59
6.7.2 Configuring scanf() FOr Other DEVICESccivieiiiiie et 60
R (O S) 61
A 10 1Y oo (V1 L= I g e o= PR 62
7.1 Anlnteligent Include File Method That Will Avoid Many Program Build EITorsccccceeeveieniennene 62
8. The C166 Data Page-Addressing And Code SEgmENntationcooevererereneneseeeeseeseesre e 64
8.1 The DataPage POINIEISccviiece ettt sttt st ae e e beeseesseesreensesneenseeneenneenns 64
8.1.1 A Fast Way of Addressing alLarge Data Memory SPaCe........cccevvveieeiieeiieesee et siee e e 64
8.1.2 The DPPs expressed diagrammMBEtiCallYcocoiiriiiiininieieeee e 64
8.1.3 EXamMpPle Of USING DPPS.........coiicieiieiteee ettt st s se e eneesteeaesaeesneennesnnenseennesnnenns 65
8.2 USING TREDPPS ...ttt bt a et e e b e s bt e bt eb e e bt e bt e e e e e e e b e b e benreene e 65
EXERCISE 4 \EX4 ..ottt st b e bttt bbbt bbbttt et e b b ens 67
8.3 CODE "SEGMENTS ...ttt sttt et st esbesbeebeese e st e e e e e ntessenbenreene e 68
8.4 DPP USBOE SUMIMAIYveeteeutietiesteetesiee st et sse s s sseessessesse e besasesaeesseesseameenbeeanenaeesneennesneenreennennne e 68
9. C166 Compiler MEMOIY MOOEISocuiiiiiiiieeeiet ettt 69
9.1 Summary Of C166 Type Qudifiers That Determine Placement Of Datacccccevveeeveeiecceesieecie s 70
9.1.1 Default Data Object Placement OVETIAINGc..eocveeiieiiiiecie et 70
9.1.2 C166'SType QUAITIEIS SUMIMBIYccueiuieiieieiesie ettt st e b e ne e 71
I O0 0 10 1 [10/o [@0lg's r= g 0l DL v- S 73
= R (O S i SO 74
0.3 SEtiNG UP TREDPPS......coiiiciecieee ettt st e e sre e seesseeseesaeeseesseesseensesneenseeneennnenns 74
9.3.1 Specid Allocation Of DPP' s To Create Customised Memory ModelS.........c.oooeviieviecieccee e 75
9.3.2 Specid Memory Maps Possible With C166 V3.00ccoeviririeiiienie e 76
9.4 AUtoMatiC PlacemMENt Of Dal@.........ccoeerririeieiiiesie ettt sttt sbe e sne e 77
9.5 CLASSESANI SECTIONSottt st e ettt e st e besseeseeseeseeaensensessensessensenns 77
9.5.1 How Type Qudifiers Relate TO Class NamMES IN CLB6..........ccuveveeveerieeieeeeseeie e eee e 77
9.6 The Difference Between NDATAO AN NDATA ..ottt sttt sbesre e 78
9.6.1 TN NOINIT HDIAOIMELeeeieiteriesieeieeieeeee ettt sttt e et b s e e e e s b e sb e bt st e e et e s e b e sbenbesbenne e 78
9.7 Modules And SECTIONSs - Placing Things At Absolute AddresseS........covceeveeiecee v 79
9.7.1 Specia Note On WINdowsO5 @ NTZoiiiiiiireeeee e 81
9.8 Coping With The Specid Sections"?C_CLRMEMSEC" And "2C_INITSEC".cccooieiiririnierenienn 81
9.9 Placing Real Data At FIXEO AGOIESSESc..vi ittt et r e ere e nre e 82
R (OIS G T 84
9.10 Using The RENAMECLASS CONMIOlcueiierieriirieriesiesieseseeseeseeseesee e ssessessessessesseessessessessessessenes 85
9.11 SUMMARY OF PLACING OBJECTS AT FIXED ADDRESSESWITH THE LINKER. 85

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 3

EXERCISE 7: EXT7 e 86

9.12 THE ORDER PRAGIMA ...ttt sttt ettt ettt st sbesteeseeaeens e e etensesaestesseeneeneeneennens 86
.13 The ASSIGN LINKESr CONIOLc.eiiieiiieiiesieeie sttt sttt st b e e sae e s re s s eesbeebesaeesre e e e 87
9.14 The #pragma pPack(L) CONMLIO.........ccouiiirerirere et 87
9.15 Using "SECTIONS" With The C167CR CAN Peripherd.......cccooooviiirininiseeese e 88
9.16 Congtructing A Memory Map For Smal C167CR SySEMSccccvieiieiiiieiie e 89
9.16.1 A Typica Small SySEM MEMONY MEDcc.oiviriiriiierieeeeeree et 90
9.16.2 Congtructing LinkKer INPUE FILEoeeeeeeie ettt e enne e 91
9.17 Relocating FUNCLIONS INMTO RAM ...ttt 96
EXERCISE 9: EXO .ottt sttt b e bttt ettt b b e b s 98
EXERCISE 8: X8 ...ttt sttt sse et e et st et e seese e st e st e sensenbesaeebeaneenenneenean 101
10. NON-1SO/ANSI Code SaVING THICKSviiiieiieciece ettt et re e nre e enre e 102
EXERCISE 10: EXL0 ...ttt sttt e s e stesaeebeeseeseeseessesaensessesseasensenneenennnnn 102
10.1 Special Note ONn BitS N SIUCIUIES..........ocueeiicie ettt ae e s se e reeaeeneesneenne e 103
10.2 Bit FIEldS AND FagSIN CLBB.......c.ceeeeeieieiesie ettt sttt sre e sse st snesbesne e eneeneas 103
10.3 SIMPIEBIT FAOS. ... cueeueeieieie sttt b e bbbttt et e bbb e b e ne e e 104
104 The testset () And _testclear () INtiNSCFUNCLONS.......cocvieiiie e 105
O S i I Gt OSSPSR 105
10.5 INMIINSIC FUNCHIONS ...ttt bbbttt bbbt et et e e et et e st e e benbeeneeneennan 105
10.6 TheVOIaile KEYWOITcceiiieeiiece ettt et e e e sae e e teesaeeenneesneeenreenns 107
11. AcCeSSING ADSOIUIE AGOIESSES.......cveiueieieieeie ettt st bttt e et bbb se e 108
11.1 The MVAR @A MARRAY MECIOSccuveieriiiiesiesiesiesiieieeesiessestessessessessessessesssessessessessessessessennens 108
11.1.1 Things To Be Aware Of With THISMENOUc.coiiiiiiieiecse s 108
EXERCISE 12: EXL2 ...ttt sttt bbbttt ettt st et e st s e neeneas 109
2 o1 1= £ 1 I 4 L S 110
12.1.1 The VariouS POINEEIS TN CLBBGcccirieriirieiie ettt sie et s ns e sre e see e 110
12.1.2 Summary Of POINEEr DECIAIGHONSc.coiviriiieiriisiesieeiieeeee et 110
12.1.3 Special Note On #pragmaMOD167 FOr CLE7/5 USEN'Sccveiueeeeiieiecieeseesee e sie e 110
12.2 Variable Pointers TO ADSOIULE AQOIESSEScc.eeiiiiieece e e 11
12.3 Placing The POINEr [TSET ..o bbb 112
EXERCISE 14: EXLA ...ttt sttt ettt bbb se et e st e e ntenbesaeebenneenennennean 113
12.4 Jumping TO Variable AQOrESSES.coiiieieee ettt 115
12.5 Pointer Casting ANA CONVEISIONSccviiuieiieiesieesieeieeseestesaesseesseeeesseessesseesseensessesssesssessessseessenns 115
12.6 POINIEIS TO LOCE DAcueeviiieiiiesieeiesiee ettt sttt sae et st e sbeeeeeneesre e e e 117
12.7 Addressing The C167CR CAN Peripheral VIaPOINIESScccooiiiiiiireneeeeeese e 118
13. Using Peripherals With Zero Software INtEVETIONcoveeeieriirie s 119
EXERCISE 15: EXLS ...ttt sttt bbbttt ettt et st b e nbeene e e eneas 120
14. The Generd Purpose Registers, Register Variables And Registerbanks..........cocveveieiiiiiiicneneces 121
14.1 The CONEXE SIWITCN ..ottt s b e b esbe e e aeesre e e e 121
14.2 INEEIMTUPLS TN CLOG ..ottt et sr e e e e e e n e e e e e e sreen e 122
14.3 The VECTAB LiNKEr COMIOlccieieieieiiesiesieste et st sbe st sse st st b s sneeneas 123
14.4 Macros That Smplify The Setting Of Interrupt Prioritiesc.ccocceevieiieececeece e 123
EXERCISE 16: EXLEoecieieieiie ettt sttt aestesteebesseeseeneena e sensentesneatesneeneennenean 125
EXERCISE 16 (FOR C165: EX16 .165)ccveiieriisiisiisiesiesiieeeeesieseeseestesse e ssesesesssessessessessessessessessens 127

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 4

14.4.1 Application Example - 32-Bit CuUIEScccuieiieiieeiie ettt sreeenre e 131

14.5 The INterrupt-Driven PEC SYSIEIM. ..ot 132
14.5.1 Setting The PEC Channel NUMDENooiiiiiiie ettt st snre e 132
14.5.2 Setting UP The PEC SYSIEM ...ttt 133
14.5.3 Specia C166 Language PEC FeatureS EXplaiNedcccoveevieiiecieie e 133
EXERCISE 17: EXLT ..ottt sttt se sttt e st et st e e beateeseese e e enaensentesnennenneas 135
EXERCISE 18: EXL8 ... oottt ettt sttt se e e st et e tessesbeeseeneeneensensensentesnennenneas 136
14.6 Switching RegIEEDanKS IN C.......o.eoiiee et 137
14.6.1 TNEUSING CONMIOLeeveeieeieiesieeiestiesieeeesseesteeeesseeseesseesseesseessesseesseeseesseesseansesseessesnsssseessennsens 137
14.6.2 ShariNg REJISEN BANKScoiiieiecieciee ettt sttt aesre et e e s neesteeneesneenseennens 137
EXERCISE 19: EX1O ... ittt sttt e te st besteesaese e e enaensentessennennens 138
EXERCISE 20: EX20 ...ttt ettt sttt ssa e e e st e tastessesaeeseeseeneensensensensesnennenneas 140
14.7 When Your C166 CPU Keegps Flying Off 1nt0o SPace...ceevevviieiiii e 141
AT LTRETIAPC FIE ..ot b et e et e b e enis 141
14.7.2 Common Reasons For Getting To UNeXpected Trasoovevveeiereesieeiieseesieeeesee e sseesneessesnens 142
14.7.3 New Control for INterrupt FUNCHIONSc.ooiiiiiiieiieccie ettt snre e 142
14.8 Advanced Technique - Smulating Static Register Variables ... 142
14.9 Fixing Register Banks At ADSOIUIE ACOIESSESeecuiieie e 144
14.10 Controlling the CP directly -Some Tricks With Registerbankscoovenirininicicncseccee 144
14.11 Specia Note On idata (classes IDATAOQ, IDATA) FOr CLE5/7cveveviniiieninesieee e 145
14.12 Bit AJUrESSADIE DEA.c.veeeerieeiieeesiee ittt sttt be e b e e sbe et e s beenbeeneesaeenseeneens 146
14121 SPECial FUNCHON BILScueiuieiieieie ettt sttt b e 146
14.12.2 Noteon declaring an Sit S EXIEINAoccviiiii i 146
15. Assembler Interfacing - IN-iN@ ASSEMDIEYoovieie e 147
15.1 Cdling Assembler FUNCHONS FIOM CLBBc.coiuieiiieiieiieeciee ettt e e sreesnre e 147
15.1.1 Coping With Start Addresses And ParameEtersoooveiereneeeeieesese e 147
15.1.2 Pointer Passing TO ASSEMDIEr FUNCHONS.........cuiiiieiiiciie ettt snre e 149
15.2 Using C166 To Write ASSEMDIEr FUNCLIONScoviiiiiieiiesiesieeeeee et 149
16. The Part 2.0B CAN MOUUIEc.ooiiiiieiieiceeieee ettt st sbe e s stesnesbenneanis 151
T R O AN (Nl 0 T =SS 151
16.1.1 Bit TIME CACUIBIION......ccueeuieieeieesie ettt s b et e et e seesbenreens 154
16.1.2 RESYNCIIONIZALION ..ottt b e bbbt et e e e e e e e b e naeens 155
A 1= SS-= 0 oY @ o] = £ SO 156
16.2.1 Using The SECTIONS Control To Access The C167CR CAN Peripherdccooevveieeieecnnne 159
16.3 Setting Up The CAN Module Baudrate And Sampling POINtccoooveiinineninineeee e 161
EXERCISE 30: EXB0 ...itiitiiiieiieieiese ettt sttt sttt et st be st s se e st e e et e nsentessennennens 161
16.4 Configuring The CAN Module FOr TranSMitcooeriiiienireeieeeee s 164
EXERCISE 3L: EXBL ..ttt bbbttt bbbttt be et et st enbenaenbenne s 164
16.5 Configuring The CAN ModUIe FOr RECEIVEcocuiiiiieiie ettt 168
EXERCISE 32 EX32 ..ttt sttt ettt st et sa s e st et e tesseeteaseeseeneensensensentesnennenneas 168
16.6 Configuring The CAN Module For ReEMOte REQUESLcoovveiiiicieciie et 170
(O 1S i C TSSO SSN 170
16.7 CAN Module Bit Timing Calculation SPreadsheetcoovveeeiieieee e 172

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 5

1. Overview

1.1 Course Introduction

This course isintended as a basic introduction to C166 microcontroller programming. It will teach you the
basic skills and techniques required to produce efficient C166 programs and give you some ideas how the
powerful periphera set can be employed. A learning-by-doing approach will be taken so that you will have a
chance to try new language features straight away. A working C167CR-based microcompuiter is provided,
equipped with our HiTOP source level debugger with which programs can betested. Many examples make
use of the C167's powerful and innovative peripheral set so that you will gain an appreciation of how they can
be applied in your own projects.

It is assumed that you are familiar with the fundamentas of the C language and have some experience of
assembler programming, preferably on the C166 family. We make no gpologies for showing some of the
underlying assembler produced by the C166 compiler in those cases where misuse of compilation controls can
cause program problems.

Each language feature is covered by a programming exercise. Y ou have the choice of creeting the program
from the pecification given or usng the “shell” modules, which have the basic framework of the required
program aready mapped out. Y ou will find complete working versonsin the SOLUTION subdirectories
from which you can take idess, or use asisl The outlines of the examples can be found the WORK sub-
directories for you to complete.

The content is based on the most common questions asked by C166 users and our own experience of what
redly countsin C166 programming. It isunlikely that you will remember everything once you start usng
C166 for red but what you will find isthat you'll be able to refer back to the notes should anything difficult
crop up. You will not end the course as a C166 expert but you will be in apostion to start amgjor devel op-
ment, armed with the basic knowledge to ensure its success.

Wewill usethe Kell uVI1SION Windows integrated devel opment environment as the means of creating and
compiling the exercises and Hi TOP to debug them. The built-in uVison editor is an entirely main-stream
Windows programming editor, with automatic error and syntax highlighting and should be familiar to anybody
who has used a Windows word processor, Codewright or PFE. Hitex's HiTOP is aflexible source-leve
debugger for the C166 family, being used here in its monitor verson.

1.2 Basic Objective In C166 Programming
To acheive the fastest possible execution by using only the C language, leading to...

=> Fastest system response to red time events
=> dmpler, more maintainable code

=> chegper EPROMs & RAMSs

=> gmdler buswidth.

=> |owest system cost

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 6

1.3 Course Schedule

The course will run in approximately the following order:

Courseintroduction
Aimsof course
Equipment and resources provided

An overview of the Semens C166 microcontroller architecture
CPU desgn
Periphera set
Memory map(s)

Setting up the compiler system
Basic concepts and procedures to be understood before using the tools

Creating a project
TheuVISION “Project” manager
Basic terminology used in C166 programming
Fundamenta compiler controls
Components of a C166 program

Using theHiTOP debugger
A quick driving lesson in Hitex sHiTOP

Exercise EXO: Congtruct a project from supplied software components, to run on EVA16C
development board.

Exercise EX1: Practice using the controls and featuresof uVISION and HiTOP with an
example program.

Adapting the ANSI C languageto the C167 hardware
CPU-gpecific include files
Configuring the C167 bus interface in START167.A66

Exercise EX2: Modify START167.A66 to set up user stack, system stack and BUSCONL to suit
EVA167 hardware.

Globd regigter optimization

The two C167 stacks

Redirecting formatted 10 (printf() scanf()) etc.

Exercise EX3: Redirect redirect print() to LCD display to print a seconds counter to the LCD.

Congtructing C166 programs
The“indudefile’ method

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 7

Under standing the internal structure of the C166 core
Expediting data accesses via DPPs (Data-Page Pointers)

Exercise EX4: Working out physical addresses from DPP and EXTS examples
Specid C keywords for different C167 memory areas
C166 Compiler memory models and memory management
Methods for putting specific code and data items at appropriate addresses
Linker controls and keywords
CLASSes and SECTIONSs
Exercise EX5: Rtfdlswhen creating pointers to constant objects!

Cusgtomising memory modds for efficiency
Coping with non-volatile RAM and memory-mapped 10 devices

Exercise EX6: Usng the NOINIT and SECTIONS control to address memory-mapped 1O
Exercise EX7: Using the NOINIT and RENAMECLASS control to address memory-mapped 1O
Typicd memory maps for smdl, high performance sysems

Exercise EX8: Condructing alinker control file for atypica C167 system

Exercise EX9: Reocating functionsinto idatafor execution - checksumming ROMs

Non-ANSI code saving tricksand ideas
Squeezing extra performance from C by using assembly-programming tricks!

C pointersin C166
How C’s pointer types are adapted to the C166 architecture
Accessing fixed addresses

Exercise EX12: Usethe“HVAR” macro to access a memory-mapped DIL switch on chip sdect 4
and print vadueto LCD display.

Obscure embedded C problems - placing the pointer itsalf
Using variable address pointers for red programming tasks

Exercise EX14: Perform amemory test over the RAM from 0x50000 to Ox5FFFF and print results
to LCD digplay.

Using C167 Peripheralsin C

Using peripherdsto perform tasks with near-zero software intervention

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 8

Exercise EX15: Configure generd purpose timer block 1 (GPT1) to measure speed and direction
of quadrature-encoded input.

Interrupts in C166 - the 100ns context switch
Interrupt sources — the CAPture And COMpare (CAPCOM) unit

Exercise EX16: Make a 16-hit period & frequency measurement of square wave on P2.3 using
the CAPCOM unit or optiondly with the GPT1 timer2 on P3.7 (C165 users)

Exercise EX16A: Generating a periodic waveform with the CAPCOM unit on P2.15 or or
optiondly on P3.3 with the GPT1 timers 3 & 4 (C165 users)

Using the peripherd event controller (PEC) to reduce CPU loading with repetitive tasks.
Exercise EX17: Use the PEC to buffer continuous A/D readings into RAM buffers every 9.7us.

Exercise EX18: Receive a 4800 baud serid bit stream on P2.3 to reconstruct a message using the
CAPCOM unit and timer 3/2.

Exercise EX19: Receive a 4800 baud seria bit stream on P2.3 to reconstruct a message using
just the CAPCOM unit to reduce CPU overhead.

Using the C167 in Controller Area Networks (CAN) - Optional Topic
Basic CAN concepts
Cdculating the bit timing parameters
Choosing the bit timing values
Exercise EX30: Cdculate the bit timing register vaues for 100kbit/s and 75% sampling point.

Transmitting messages across CAN

Exercise EX31: Tranamit the value on potentiometer zero on the 16710 board to the tutor’s CAN
monitoring program, using the supplied message ID..

Recelving messages across CAN

Exercise EX32: Recavethe vaues of the pots. On three neighbouring stations and use them to
control the bightness of three LEDs on the 16710 board.

Using the Remote Request Mode

Exercise EX33: Usethe remote request mode to obtain any one of four short messages string from
the tutor’snode. Thisisarace!

Course Wrap-Up And Questions
Points arising from materia covered.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 9

2. Setting Up The C166 Compiler System

There are a number of basc settings that must be made to dlow the compiler to run correctly.

2.1 C166’'s Environment Variables

To hdp C166 find itsinclude and library files, make sure that the \AUTOEXEC.BAT file on your PC contains
the fallowing:

PATH=C: \ KEI L\ C166\ Bl N, %°ATH%

SET C1661 NC=C: \ KEl L\ C166\ | NC
SET C166LI1 B=C: \ KEl L\ C166\ LI B
SET TMP=C.\ TEMP

Soecial Note On SET C166INC=
() Any indude file given thus
#i ncl ude <regl67. h>

will be searched for firgtly in the current and directory and if not found, in the directoriesindicated by the SET
C166INC= <PATHNAME>

2.2 Multiple Include File Search Paths

The SET:
SET C1661 NC=C \ KEI L\ C166\ | NC, C: \ 166 TRAI N\ HEADERS

will cause C166 to search the \166TRAIN\HEADERS directory aswell. Make sure that the
AUTOEXEC.BAT containsthisas well.

(1) InaC sourcefile, if you enclose the include file name in quotes,
#i ncl ude “regl67.h”

then only the current directory will be searched. If the include file cannot be found, C166 will report an error.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 10

3. Creating A New Project

uVISION operates on the basis of “Projects’ where dl the source files and compiler and linker options are
dored ina“.uUVv2’ file. This fileisthusan important part of the software development process and must be
archived with the source files and C166 compiler verson used. The name of the project is left to the user
but in the examples, the project name is based on the exercise name so that EXERCISEO will use a project
caled EXO.UV2, EXERCISEL will use aproject caled EX1.UV2 and so on.

To explain how the uVISION system is used and how a smple program can be congtructed within it, the
necessary steps will be run through in sequence, with enough detall to proceed to the next stage. Thiswill
form the basis of thefirst exercise, in \166 TRAIN\EXO\SOLUTION.

3.1 Background Information On C166 Pr ojects

3.1.1 Basic Data TypesIn C166

The data types available are:

bi t = 1-bit 0-1

char = 8-bits 0 - +/- 127

unsi gned char = 8-bits 0 - 255

i nt = 16-bits 0 - +/-32768

short = 16-bits 0 - +/-32768

unsi gned int = 16-bits 0 - 65535

unsi gned short = 16-bits 0 - 65535

| ong = 32-bits 0 - +/- 2.147483648x109
unsigned long = 32-bits 0 - 4.29496795x109

f1 oat = 32-bits +/-1.176E-38 to +/-3.4E+38
doubl e = 64-bits +/- 1.7E-308 to +/- 1.7E+308
poi nt er = 16/ 32-bits Vari abl e address

Notes:

- The 16-bit ANS “ short” type equates exactly to int. The latter takesthe“ natural” size of the CPU,
here 16-bits.

- The machine size of the C166 is 16-bits hence int, short or unsigned int, unsigned short should be
used when possible to produce the most compact and efficient code. The use of char and unsigned
char will result in a lot of MOVBZ-type instructions which waste time.

- char and unsigned char: Unless you explicitly want a signed 8-bit number, always use unsigned char.
Char isnormally reserved for ASCII characters which have no sign.

Thus

[*** Define an 8-bit number ***/
unsi gned char byte_ var ;
[*** Define a character string **/

char ASClI_string[] = { “Quten Tag” } ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 11

As the strepy, dtreat

and other gtring functions dl assume “cha”, you will get warnings if you try to

manipulate “unggned char” objects with them.

3.1.2 Basic Terms Used In C166 Programming

Unfortunately, some termswill have to be used to describe how to build the example program which as yet
have not properly been defined. They will of course be fully explained later inthetext. For now, here are
some amplified definitions of terms used which will help you to understand roughly whet is going on!

Compiler-Related Terms

| DATA
NEAR

FAR

Regi sters

R1, R2 etc.
User Stack

System St ack

DPPO, 1,2 & 3 =

Menory Model =

On-chi p RAM at OxFA00 (C166) or OxF600 (Cl67/5)

Area of off-chip RAM whose variables can be accessed in one instruction
(mediumto fast speed access)

Area of off-chip RAM whose variables require several instructions to
access (slow access)

Bank of 16 general purpose word registers used for |ocal (automatic)

vari abl es, function paraneters, internediate calculation results. (Fast est
access of all)

Register within the current register bank

Artificial stack created by Cl66 to hold sonme |ocal variables. Forned
from MOV Rw, [RO+] type instructions. (Sl ow access)

Cl6x’s own proper hardware stack in on-chip RAM with which PUSH and POP
instructions can be used and onto which return addresses are placed during
subroutine calls.

Regi sters which hold the base addresses of regions in mnultiples of 0x4000
(16k), each of which is 0x4000 bytes long. For exanple, DPP3 always
equals 3, indicating a 16kb region from 3 * 0x4000, i.e. OxC000 to OxFFFF.
How the conpiler decides to place its variables, i.e. on-chip or off-chip,
fast or slow access

Linker-Related Terms

CLASSES
SECTI ONS

VECTAB

REGBANK
RESERVE
ClI NI TAB

= Locates the naned |large date or code itens at the stated address

Locates the code or data froma single source file (nodule) at the stated
addr ess

Sets the base address of interrupt vector table area.

Locates the naned registerbank at the stated address.

Prevents any code or data object in the stated address range.

Locates the variable initialisation tables in ROM

3.1.3Memory Map Of EVA167 Board And Example Program

Moni t or EPROVS:
On-chip XRAM RAM
On-chi p | DATA RAM
Of-chip RAM

0x00000 - Ox1FFFF NOT AVAI LABLE
OxOEO00 - OxOE7FF
0xOF600 - OxOFDFF
0x40000 - Ox5FFFF

The off-chip RAM is notiondly split into two ranges. 0x40000 - Ox4FFFF is trested as an EPROM areafor
code and constants and 0x50000 - OX5FFFF is used asa RAM area.

Of chip RAM al | ocati on:
Your interrupt vectors: 0x40000 - Ox403FF

Monitor’'s RAM

Your program start
Your program ends
Your off-chip RAM

0x40400 - Ox41FFF NOT AVAI LABLE
s at: 0x42000
at : Ox4FFFF

0x50000 - Ox5FFFF

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 12

3.2SettingUp TheDirectory StructureFor TheExampleProject (Worked Solution)
3.2.1 Necessary Files To Build A Program
The basic files required to build aworking C166 application are:

(1) Source files containing executable C statements

Extension: .C

(i) Heeder files containing function prototypes and definitions

Ext ensi on: . H

(i) Anoptiond linker input file containing alist of object files and linker controls
Extension: . LIN

In exercise EXO we will use uVISION to control the linker although in ared project alinker control file
would be used.

(iv) A project contral file containing the list of source files in the project and the compiler controls etc.:

Ext ensi on: . W2

C166 will emit the following files types

.0OBJ - Unlocated object file with no absol ute addresses assi gned.

.LST - Alist file containing the original source lines but with any errors or warnings
i ndi cat ed

.SRC - An optional file containing the assenbler code generated by the conpilation process.
This can be assenbled with Al66 to produce the .OBJ file as an alternative to going
straight to a .0BJ file fromthe conpiler.

.ERR - A sunmary of the errors and warnings that occurred during conpilation
The L166 linker will emit the following files:

. <noextension> - Absolute object file in the Si enens extended OW66 fornmat, containing a
bi nary representation of the program plus optionally, debug synbol infornation. It also
hol ds the necessary nake information to allow uVISION to rebuild the program

.M66 - A map file containing the address and length of all classes, sections and
regi st er banks.

.REG - A special file which holds information on all the registernasks generated by every
function in the program By giving this file back to the conpiler, it can be used to allow
gl obal register usage optimsation.

.LNK - A linker control file automatically generated by uVlI SION whi ch contains the user’s own
.LIN linker control file with the object file list prepended to it.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 13

It is assumed that the various files that condtitute the project will be arranged within and off a root
directory of:

\ 166 TRAI N\ EXO\ SOLUTI ON

In the following, thiswill be referred to as the project “ROOT” directory.

While al files could be placed in the root directory of the project and uVISION left to show only those files
which are gppropriate, it is negter to make sub-directories for the different types of file within the project:

ROOT hject files, EXEC. PRJ project file, EXEC LIN linker file
ASM Assenbl er source files

INC Include files (.h)

M SC Control file for SP166KE synbol processor

SRC C source files (.0

In the completed example project, the following files can be found in each sub-directory:

ROOT EXEC. PRJ: Project control file
EXEC. REG dobal register optimsation file
EXEC. LIN: Linker control file
EXEC. LNK: EXEC.LIN with object file |list added automatically by uVlISION
EXEC. LER Linker error report file created by uVlSI ON
EXEC. M66: MAP file showi ng |ocation of every program object
EXEC. Absol ute OWF66 executable file
EXEC. HTX: Code binary file for H TOP166/ WN
EXEC. SYM Synbol database file for H TOP166/ WN
START167. OBJ, MAIN. OBJ, PUTCHAR OBJ, SOFTUART.OBJ object files

\ ASM START167. A66 assenbler source file
\INC SOFTUART.H, |NTMAC.H header files
\M SCSFR _167. CTL Cl167 SFR definitions file for SP1l66KE. EXE synbol processor

\SRC MAIN.C, PUTCHAR C, SOFTUART.C, MAIN LST, PUTCHAR LST, SOFTUART. LST

The project directory should contain the following sub-directory structure from
\166TRAIN\EXO\SOLUTION:

Ek Edl Yew Took Hao

[Za Sohson =] & =l
A4 Foldar:
=+ L0 Ten =]
£ Edl

- fmm -

(3 e

il nc

0 M

500 Ex =
[Fblect]l | 298 Dtk heeapace B

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 14

3.2.2 Laying Out A C166 Program Module (Source File)

Hereis how we suggest you layout your C166 modules. Y ou can find aready made “empty” MAIN.Cin

\166TRAIN\USEFUL dthough there is a suitable one in the EXO directory aready.

Sanmple MAIN. C

#pragma SVALL /* Conpiler controls */
#pragma MOD167

[*** CPU Specific Includes ***/

#i ncl ude <regl67. h>

[*** ANSI Library Includes ***/
#include <stdio. h>

[*** Modul e Specific Includes ***/
/1 not used yet!

/*** Qobal Data Declarations ***/

[*** Function Prototypes ***/

voi d nmai n(voi d)

/*** Executabl e Functions ***/

void main(void) { // Enter here from reset

}
Thisis compiled with:
C166 MAIN. C DEBUG SMALL REGFI LE(EXEC. REG W.(2)

Or:
with the uVISION Project-Compile File command. ! 2

© Copyright Hitex (UK) Ltd 1997

C166 Introduction Page 15

3.2.3 L166 Linker Input Files

Although it is possible to drive L 166 directly from the command line, this can get very tiresome on red pro-
grams. L166 isableto takeitsinput from atext file which usualy has the same file name stem as the execut-
able but with the extenson “.LIN”. Hereisasample one:

EXEC.LIN:

VECTAB(0x40000)

CLASSES(NCODE(0x40400) , NCONST(0x40400) , NDATA(0x48000))

SECTI ONS(?C_CLRVEMSECSTART(0x40400) , ?C_I NI TSEC)

REGFI LE(exec. r eg)

Thisisinvoked with:

L166 @EXEC. LIN

Or: withthe uVISION Project-Build command.

3.3 Creating A Project With The uVISION2 Workbench

3.3.1 uVISION2 Overview

uVISION2 provides an industry-standard Windows interface to the Keil C166 compiler and linker tools. It
is reasonably straightforward to configure and can support large program developments. Its user interface is
gplit into specid windows, as shown below:

TARGET SELECTOR
TOOL B/A R i 7

Sl w. meal s ude s e ..

Wl s T s e e L e n

B b O O | P T Ay il

ariaghabinh

E
bs

......

PROJECT FILE
LIST

_1;]5 i |
1 —
OUTPUT WINDOW

BRI T TR T N | i o=

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 16

UVISION2 consders C166 programs as "PROJECTS' which can be built in different ways to suit different
"TARGETS' - inared development, you may have aset of sourcefilestha are compiled with different
controls for different hardware platforms, that may aso require different memory maps. For example, in the
training exercises, we will be building programsfor a"MONITOR" target that has the code offset by
0x40000, as required by the HiTOP debugger (inthisguise). For such aprogram to run directly from
EPROM on the board, a second target is used which differs only in that is has the code & zero.

3.3.2Important uVISION2 Features

The Toolbar Functions

File Tools: Search Tools
e g o= B R TlhlB &
,g_l; Z g g 2 Last Search L 5
L L L = w Towt T
i3 2= = 2 3
Somda =3 LA
E D ol 4k} c = o
Fo = e ST
m :ﬂ b =
L e £ =
o = E- T
= & e
i 2
2 0
£
Miscellaneous Teols E1.||Id Towls
BE e e b fleae
: 3 L e T e
23 5T 8§
E £ £ = H = =
< = c 2o =
5 E 0 = i o5
3 S=F 5 § P . .
5 8 C%w & & &N Target Options Wizard
o O 5 2 Q e
=-
53 T % E
> = 3 2
Compiler And CPU
Documentation - _
||t pEdt Ve Bofest
Sdect The Ter et Type ===—=—-suw |BEEHOLT
A il 2 , EEEEsum=
@ Rdease kotes '-'_""“_ e —
oL v sion Users Liuide _ 5 “J vl 7
- m Took: User's Buide -. I.Ha SE .|
@ Reease Motes { { e L167o.c
% uy sion? Gelting Starl (2 : @ ':_‘Ek‘ey':
@ 0136 UsetsGuice || | @ Femde
Most uV1SION functions can be R 136 & Utiities User's | | g tz:‘dm
_ 4 : i
accessed from the toolbar. We will use [ﬁg"‘;‘f“t&?“'ﬁ""@ 1 @ wanc
uV1SION2 to produce the al the 4 Fsaaa | 1 @ @ ruchac
example programs, as will be ex- % Inatructor Set Manus| i d IE i
plained in the next few sections. - @ Strt167. 266

Project File Details

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 17

3.3.3 Setting Up The Basic Project Structure

With uVISION dready running... |G dElslEeE
- Select Project-New and navigate to

\166TRAIN\EXO\WWORK. Enter the project name

"EXQ" in the didog box.

- Enter the main project sub-directory and typeinthe “p o= == i3]
project name, here “EXO.UVZ2’. The UV2 fileis DE e v T it o

equivaent to the MAKEFILE in a conventiond sys-
tem. It contains al the make, assembler, compiler and
linker options entered from uVISION’s Options menu.
It therefore has a mgor influence on how the program
is congtructed and must be archived dong with dl the
source files. Click "OK" to exit.

gt e Y 1 SR TE

Next uVISION needs to be told which CPU the pro- [wren LR R g ED

| B e T T o

gram will be built for - the "Select Device For Target =i J e St
1" didog box will gppear automaticaly. Sdect the ST |

Infineon (formerly Siemens) C167CR-LM device Caces L

from the CPU lig. _}' EE% }_;1':;

3% g
b5 3 E 3 i |

Coom | e

uVISION dlows a humber of TARGETSs to be defined. The C167 :
hardware platform to be used here will running a monitor debugger so | '% earstietiad
a TARGET cdled "monitor* will be created. Sdect the "Targets,

Groups, Files' item on the Project menu. Add the target name "moni- _'mhf“d . 3
tor" in the top dialog box and dlick "Add". Click on the existing target S
TARGET1 and click "Remove Target" as this target is no longer R e e
required- "monitor " will now become the current target. Exit the AL L S S

menu with "OK". : ra_

_-[.rq:t:. Groegsr=dd Tar !

- ¥ I
Lo i AL Ted ”l Tawwi=w Eur-m -0 s

PR Bl b e e
S bt S0 L R TR

e IR

it e e e | UVISION dlows files of Smiler types to be collected togther in
A R "Groups'. In the project, al the C source files will be in the exis-

g 1. ing "Source Groupl" group whilst the START167.A66 assembler-

: coded gart-up file will be in a new group "Config". From the

FEd Project menu, sdect the Groups/Add Files tab and enter "config” in

~+—-—— | theddog box. You should end up with two groups , "Source

~————-1 Group 1"and "config" to which we will |ater add program source

" files.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 18

The source filesthat condtitute the project are added by sdlecting first m

[o e el e o I'e[pfl:l:-cd -:mr|_p

Source Group 1 and right-clicking and then choosing "Add Files To
Group " Source Group 1".

Al Tilms to Grop "Soaerre Gonap 1°

._qu.nr It |____hl.'-.n|P J @! r“' r.- _!

N 1 o The C source files for Source Group 1 are added by

- entering the directory "SRC" and double clicking on
the required sourcefiles. In the example, dl source
files are needed. Use "Close" to end the task.

Fiakd Filaz o @ ommp ‘vordig! i i 1] .'
e [T 2l =] IR
! .r |.:"ne:' -'ilzﬂl"':{- ' ol I
Flz w3 e |Lb.'l.l ST SRS ST S S e S e s . "55'-'_.}-'5 Iqmcrllr |i|'|' ; '_: m:_t:'i:;._j
Flzz IE.'I:-B {~ e R el ._1:_| _,_']_“f‘:,__] b ;
A smilar processis required to add the sngle
A66asembler fileto the "config" group. Right click the
config group and select add filesto group ‘config.
Double click START167.A66 and then "Close
To enable uVISION to find the compiler ex- SR : s
ecutable plus header files and libraries, the T : ; : :
Project-Environment Setup menu must be T s S e DOLS I FiT

completed. Thisis smilar to a MS-DOS set 5 L
up that might be entered in AUTOEXE.BAT if - il keder: L ‘et 1bBEINY
the compiler was to be used from a MAKE L ANE Felder |l et o LLUNL e Lihantheades
utility or batch files LIR Filiv [CEeihZIGLID

Al

M
{ ks
e

The example uses a header file INTMAC.H) located in C\166TRAIN\HEADERS <o this path must be
added after a semicolon ddimiter in the "INC Folder" box.

Hint: If you getawarningalongthelinesof “ Error duringparsingLine: #pragma...” then suspect that
this menu has not been properly configured.

Note that you must have previoudy crested a C\TEMP directory - falure to do so could
result in “Out of Workspace “ warnings when compiling.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 19

3.3.4 Setting The Tool Options

The compiler, assembler and linker options are
st through the "OPTIONS' wizard, located a the

top right of the screen. & . The Options for
target menu is solit into eight sections that are

selectable from the tabs at the top of the pand.
Each target specified in the project has its own
target options.

The Target Tab Explained

- Enter the Clock speed as 20MHz. The actual
oscillator frequency is 5MHz but the C167CR
has an internd PLL that multiplies this by 4.

- The M emory Model is' HLarge", the preferred
modd for the mgority of C167 programs. The
M emory model determines how the compiler
will dlocate program to different data aress.
The choice of memory modd is explained in
chapter 9.

- Operating System is' none' in this example

- Although not gtrictly necessary, the XRAM a
OxEOQ0 and the C167CR CAN module are ena-
bled by ticking the "Use On-chip CAN+XRAM"
box.

- Data should be st to "idata 6" so that the com-
piler will place dl data objects of up to 6 bytes in
length will be placed into the on-chip idata area
at OxF600. Thisisaway of making sure that
large objects such as arrays and structures do not
eat up valuable fast on-chip RAM.

- The Near Memory boxes are an advanced
feature and should be left at 16KB RAM and
16KB ROM. Their rea purpose will be ex-
plained later!

- The External Memory boxes dlow you to
specify where the ROM and RAM aress are in the
hardware. For the EVA16C board used in the
example, the user's CODE area starts at 0x42000
and is of length OXEOOO bytes. Use the down
arrow on the "#1" box ans sdlct ROM. The

user's RAM area is from 0x50000 of size 0x10000
and these addresses should be entered in the #2
box.

Opivmns fur Taryeel il 2]
Tarzes | Mgt 1 tig | ro26 | 2186 | LIRR ooa:| 11RM | D
Ikli=e=p 16 LH LM
ek M 1) EH
steacecwb=del |10 wge Tuge dab=, o hore: =] Uze On chip C&Y38M 10200 0£7F7)
psrativn 321w u [Hoe =
Zeta ek
= He=r Wz
[l6 =] <E3iH 6 =] K2Rk
Tkl b ey
Skt tke =3 [S ze
P (3T o] [oomin [14 [Fed =] | [
2 [Fam =] G000 [0S0 e [Rest =] | |
1 | mmji i Eli illm;” |
3 | camd | o |

© Copyright Hitex (UK) Ltd 1999

C166 Introduction Page 20

3.34.1ThelListing Tab Explained
Here the most useful option isthe Generate .LST File after compilation. Thiswill contain the origind source

file with any errors or warnings indicated where they occured. The *Include Symbols’™ option is ussful asit
will ligt dl the function and variable names, dong with thar type information a the base of lid file.

3.3.4.2 TheOutput Tab Explained

This menu specifies the output file names and dlows the HITOP symbol processor to be included in the build
process and a HEXfile to be emitted for FLASH programming.

- Inthe examplethe Name of executable isEXO0 and it will be placed into the .\OBJ directory through the
Select Folder fo Objects... button.

- The HiTOP debugger requires Debug information
- UVISION includes a browser function which is enabled via Browse I nfor mation
- After the make process has completed, aBeep When Complete can be specified

- The HiTOP debugger requires a pecid symboal utility to be run which converts the EXO output file in the
OMF66 format into the .HTX format. Thisrequires Run User Program #1 to be ticked and the line:

spl66ke obj\ex0 -v -s\166train\ex0\work\src -s\166trai n\ex0\work\asm

to be added in the didog box. The -s option alows the full pathname of the source files to be passed to the
utility so that HiTOP can give source level debugging.

0 pbare lor Targst 'merabar’

g Do ial 353 [AT | DISGLeese) L okt | Debua)

| Gels A ade uiJlgzas. I . ez ol Cuzeulalis E:-L .

v PP F s Ll | el

17 Lrsbuglibzendhion 0 T ez 0 it
e e e ST TR = (T e~ S [T
E L E i it I—.L’bl" 11 '}__.&e_ ;D{II _III!_e_E I

| Bodalber, Yok allLIE

(P e et L AR LRI e, R e HHES R e L H R LI

o t“-"' when =l

el ot BT Tizgiars e |1-:\'|:C=:r:- zhive-L v AlEZrartenllomod-tae v lkkbageead-hoo s ik I

r H-” i [...... F A AT o :

SRR S o= Tl e T ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 21

3.3.4.3The C166 Tab Explained

There are three ways of controlling how the C166 compiler and A166 assembler trandate a particular source
file

(i) Viathe command line
C166 MAIN. C DEBUG MODL67 HLARGE
(i) Viathe #pragma keyword:

#pragma MOD167
#pragma HLARGE
#pragma DEBUG

(i) ViauVISION’s Options-C166 Compiler... menu item, covered in detall |ater.

In anything but the smallest of projects, method (i) is not suitable. In practice, it is sometimes used just to
quickly compile something from the MS-DOS command line with an unusud control such as*“SRC”, which
produces a valid assembler/C mixed file. This®“.SRC” file can be useful for assessing code qudity or for
interfacing to assembler-coded functions.

Usudly, acombination of (ii) and (iii) isused. However, the user must decide which controls should be
supplied by uVISION and which should be embedded in the source by the #pragma keyword. Where the
default compiler setting is acceptable, it is not redly necessary to explicitly state the control. Asagenerd rule,
anything which can dter the generated code must be given by a#pragma: dthough uV1SION isunlikey to
lose or dter acontrol over the duration of a project, bitter experience has shown that just prior to release,
something will go astray and some vital control will disgppear, resulting in a subtle change to the code. This
will invaidate any proving work which has been done and may wdl result in unexpected program behaviour.
Therefore you should not rely on an externd tool (i.e. uVISION) to set the really important controld!

If you are using a conventional command-line gpproach with an externd MAKE tility, then the same rules
apply in that your makefile should ideally not supply the “hard controls’. Indl cases, it is acceptable to place
theredly critica controlsin aheeder file, usudly named “PRAGMASH” which contain them.

Evenif you do not intend to use uVISION, it does provide a quick way of putting togther the control key-
words you require as it displays the fina command line in the “Compiler Control String” box. The resulting
string can then be used to congruct the individua #pragma control linesin your source files - in effect,
uVISION acts like an interactive user manua!

Here are some tips as to where to put the controlsin area project:

(i) Compiler Hardwired “HARD CONTROLS’

Generdly anything which can influence the code generator or optimizer - here are afew of the most common:

MOD167 - Enabl e C167 fam |y code generat or
SMVALL - Set the nenory nodel
NODPPSAVE - Do not stack DPP3 on entry to interrupt routines (CL67 only)

OPTI M ZE(x) - Bi as the code generator towards optimum program Sl ZE or SPEED

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 22

WARNI NGLEVEL(X)

Check for C | anguage use and abuse

STATI C - Put | ocals which overflow the available registers into statically
all ocated nenory segnents rather than using the user stack.

CORDER - Pl ace variables in RAM and constants in EPROMin the order in which they
appear in the source file

FLOAT64 - Enabl e the “doubl e” 64 bit float type and use doubl e precision floating
point for all trigononetric and transcendental mathematics library
functi ons.

Note: Other controlsexist which can influence the final code such as RENAMECLASSand NOINIT but
astheserequireadetailed under standing of the structure of a C166 systemto use, they will not be covered
until later in the course.

(i) uVISION Compiler “SOFT CONTROLS’

DEBUG - Enabl e synbol information for debuggers

SRC - Produce an assenbl abl e equi val ent of C source file

LI STI NCLUDE - Expand include files out within .LST file

SYMBOLS - Place listing of nodule’s synbols in the listing file

Here, the options appropriate for the training examples will be given. However these will probably be
auiteble for your own projects as wdl. The settings given in the following will be needed in exercise
EXO to illugrate the compilation and linking of the example program in \166TRAIN\EXO\WORK.
Whilsgt mogt of the controls are best given via #pragma, you can gill sate them in the uVISION C166
compiler options menu. If the controls supplied via the two routes do not match, you will get a “CON-
FLICTING CONTROL” warning.

Optionz lar Tarpet "montos”

Terger] Copan| ising 163 & 30 | L1606 Cocabe | L1066 Mise | Cieb.
a3 F 3 | | E

- Precrozcssn Suwbcl:

Y EN |

Lode'h I

r Lude Uplmezlon
(N |I'| st perpac st in

j w0 g !'-.'-."dur Ye=wld :j
I Eeeava dies ri Lk

T Tiew vber A rsig-ed cha’

I aea UEF un sl kv

r Doub o zice : o Mzotng cairt

Zmahaziz: |I wr meendilin - apes- j
I Eobzl Sacizter Calznimg
I L= S1ate deror, f1 Honeea sar Ao ates

I izs Chackicg or Porks) acoesses I Soa-aTen punas Yo sk u Loa Slack
=l
Faas
iz o
Lotz IP R
Camnd= [HLARGE FC_C DT~ 81 AR HNGLEYZ _ (31 EF JwSE NOLFFSAVE |02 =7 DEBUG CCOZ |
Corha

peitiy |
Shir e

L I Lariel I Lela Ly

- Save DPP on interrupt soptimisesinterrupt service routines. on the C167, DPP3 isalways set to 3 to
indicate the base of the SY STEM area a 0xC000 and DPPO is never changed from its power-up value,
unlessthe user dtersit himself. Therefore, C166 need not stack these two registers on entry to an interrupt
routine, thereby saving two PUSHes and POPs (0.4us @20MHZz).

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 23

Alias checking on pointer access is an advanced option which can acheive asmall code saving on pointer
operations. The NOALIAS control can cause unexpected resultsin when global or static objects are modi-
fied by pointers. In most cases source code that could be upset by this control does not conform to the
MISRA-C guiddines and should therefore not be present anyway. It isrecommended that this control is not
used.

Example
Without NOALIAS

struct { int il;, inti2; } *p_struct ;
int val ;

void funcl(int *p_val) {

p_struct->i1 = val ; /!l Read val

*p_val =0 ; /1 Zero val via pointer
p_struct->i2 = val ; /! Read val again. Nowit is zero
}

voi d func2(void) {
funcl(&val) ;
}

With NOALIAS

struct { int il; inti2; } *p_struct ;
int val ;

void funcl(int *p_val) {

p_struct->i1 = val ; /1 Read val

*p_val =0 ; /1 Zero val via pointer

p_struct->i2 = val ; /! Read val again. Value fromfirst read carried forward
} /!l so zeroing by pointer in previous line is not seen

void func2(void) {
funcl(&val) ;
}

Use static memory for non-register automatics influences how the compiler treats loca variables (auto-
matics). Normally C166 will try to put as many loca variablesinto registers (R1-R15) as possble asthe
MOV Rw,Rw regigter-to-register ingtructions execute in 100ns (@20MHz). All the norma ADD, SUB,

CMP type ingructions are available in the register-to-register variety so that any such operation will take just
100ns. Variablesthat overflow the available loca registers are placed on the “ User Stack”, asin a PC-type
compiler and are addressed viaMOV R1,[RO + #displacement] type ingtructions. AsaRISC CPU, there
are few “stack-relative’ ingructions so that operating on user stack variables usudly takes severd ingructions.

A sgnificant performance advantage for interrupt functions or those with alarge number of locd variables can
therefore be had by forcing the compiler to put locals that cannat fit into registers (R1-R15) into (near) stetic
RAM segments to create a“compiled” stack, asin the C51 compiler. The common ADD, SUB and CMP
indructions al can operate directly on RAM <0 that there is little performance |oss when compared to
reegister variables.

Note tha any functions within modules compiled with this control will no longer be reentrant, thusif enabled
here in the C166 Options menu, no reentrancy will be possble across the entire program which may not be

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 24

acceptable. This contral istherefore better used as a#pragma STATIC with only those modules which
contain functions which can be used non-reentrantly, such as interrupt routines.

Whilst not essentid, the compiler can be forced to make sure that variables are placed in memory in the
order in which they appear in the C source file via the Keep variablesin order option. This can some-
times result in wasted RAM as words (short and int types) cannot be placed on odd addresses by the
L166 linker, resulting in odd bytes being left unused. In most Stuations, this control (ak.a #pragma
ORDER) is best used within a source file whose data must be a a defined address - see section 9.12 for
more details.

The Code Optimisation levd isbest left a maximum, the default which dso meansthat C166 will try to
generae the fastest possible code, even if it meansincreasing code Sze somewhat. Examples of where the
Emphasis option has some effect isin switch() statements where the compiler will produce either afast but
bulky jump table to the case statements, or use a compact but dower “target address calculation” approach.

Double Precision Floating point may be required if you are using floating point numbers, the double
keyword is actudly treated as float by default, i.e. sngle precison (7 sgnificant figures). To make the double
typeinto atrue double precison (13 sgnificant figures) quantity, select this option. Hoat will remain assngle
precison but an(), cos() log() etc. library functions will al become double precision.

Application Note:
Typica Execution Times (20MHz CPU clock)
(i) Sngle Precison Foeting Point

divide = 9-11us approx
sin(x) function = 184-280us

(i) Double Precison Hoating Point

di vide = 13-16us approx
sin(x) function = 220-340us

Treat char asunsigned will force the compiler to do asitsnameimplies. By default, C166 trests the “char”
type as asgned 8-bit quantity. Source code which originated from another compiler may assume that char is
unsigned.

- Global Register Coloring isan optimisation that allowsthe Linker to recompile any source fileswhich
could have their register usage optimised using a different “register mask”. Thisis an iterative process
whereby the linker makes up to nine compile-link-optimize-compile attempts to make the best alocation of
genera purpose registers (R1 - R15) between nested functions. For the purposes of the exercises, leave the
Global Register Coloring item disabled. Asthis feature extends the compile-link time consderably and is
only redlly ussful on larger programs, it is best left in the off state for the example program.

The Warningslevel issat to “Leve 2: detalled” by default so that an dmost PC-lint type capability is ena-
bled within C166. Do not be tempted to turn the warning level down asit will be possble to produce unsafe
code which is however legd C, especidly where pointer use (and misuse) is concerned Y ou have been
warned!

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 25

Tip: If you want to discard any changes you have made, click the Default button to restore the origi-
nal settings.

- Define box dlows any #defines to be passed to the compiler from the command line.

Example Of External #define:

Taget | Jupan| duem CIEE [raresi| L setasae] INEEE P I T |

Ihzprocz e b 5

[E =TT
LAl R I
- L'-.-\..-Jp‘-lio-l-'l - URTI Il,.'a.r LTI :i
SCCOR N T B I =
2 ; TR Pl I Funs S oo i Coke
1 rp e |'u'.-. [E e IT TR | j I Tid e graeald
b s [l R S T
W e e e e L i s Lhn AT fad
(o ST PO TR T T B TS M R AR, S
o ™
-1 [Wr i

*Aeu(F G362 BROAEE R ODPPRGz HOD ! JES1WE _JFTO0. = ITEEL 3

Bl b

[l

L, L S

#ifdef _OPTION_A
cl ock_speed
#el se
cl ock_speed = 20 ;
#endi f

16 ; // This is set fromoutside source file by uvliSION

None are required in the example program!

Misc Controls box can be used to hold any specid controls that will not be used in the main program
development such asthe SRC option. Thisis usudly only used to quickly see what assembler code the
compiler has produced during development of critical code sections. 1t must usudly be removed before the
next full build is performed.

Advanced note: By right clicking on individua source files, the compiler options for asingle file can be s&t.
3.34.4TheAl166 Tab

The A166 assembler is set up in much the same way as the compiler. However there are no specia controls
required for dmost al C166 programs. However, in programs built without uVISION it isimportant that the
assembler knows which memory modd the compiler is using and that a C167 CPU isthetarget . The
"HLARGE" inthe A166 command line SET() control doesthis. Whilst the START167 source file contains
a$SEGMENTED contral, it is sengble to endble it here with the SEGMENTED control. If this contral is not
present, the assembler will only be able to produce programs which can run in the non-segmented CPU
mode which means a memory space limit of just 64K.The complete A166 command line would be:
MOD167 SET (HLARGE) DEBUG.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction ~ Page 26

3.3.45 ThelL166 Locate Tab

The L166 linker is set up in much the same way asthe compiler. However, experience has shown that the
nature of the controls necessary for the linker in ared project are best placed in a conventional ASCII text
file, here named EXO.LIN. This contains only the controls necessary to |locate the program at the correct
addresses, i.e. the CODE in the EPROM and the DATA in the RAM!

EXEC.LIN From Example Program

[/ Linker Input File For The HLARGE Mbde
I
[/ Shift user's interrupt vectors (inc. reset) to 0x40000
vect ab(040000h)
[/ Prevent User's Program Using Mnitor's RAM
reser ve(Of 200h- Of 5f f h)
/1 Move user's C nmin registerbank above nonitor's
REGBANK(Of d0OOh)
/'l Fix classes for HLARCE nodel in free RAM
CLASSES(| CODE(042000H)
FCODE(044200H) ,
NCONST(044200H 047FFFH) ,
HCONST(044200H) ,
NDATA(050000H 053FFFH) ,
NDATAO(050000H 053FFFH) ,
FDATA(050000H),
FDATAO(050000H) ,
HDATA(050000H) ,
HDATAO(050000H) ,
XDATA(050000H) ,
XDATAQ(050000H))
[/l Put startup code sections into free RAM
Cl NI TAB(44200h)

However for the example we will let the Target Tab's ROM and RAM boxes provide the necessary
location information ingtead of an externd .LIN contral file , i.e. where the ROM and RAM are on the
EVA16C board. Click the Use Memory Layout From Target Dialog to do this.

| there are special SECTIONS or CLASSES that need to go at particular addresses, they can be entered
in the User Classes or Use Sections boxes. There are none required in the example.

Dptews Iy Tamgel ‘wribn’

B3 U-.Ai_l,,n'.lL'I.-'i. -:1I.L- Jsaanr}LL_-h eL-..l

- i
v --'!“L'!"’L _,;_-:-[:tr__:n;_nt le:-; ILI.I'-w:\I-j'uH :bcn :bE: Lt AL id 3
l"'-"\!"‘.'j """" '-'-_--'-.--T----_'---_--____'__:_._.'_-_:‘!.i-
'_.'_Pf:.'s.-. r:l,i,_; | FETE A ER 0§ A ey JF \H | EE S ‘i
'_'._-_‘___:ﬁ:::::::::':::L:::::::::"i
Joitps G| L Lt s DLULE DAL MLESARE) L LK LML i i
fidteh F‘v:- :-n:ulxn:-:-d*:F'Fan:’u:-ns"cuxuc i i 1
B PR 8
-------------------------------------- =t
| i W i
|_1,_:u:‘.u i
j 1
I
el
R e
] i a2l
IES =118
Se i il
1} BES I bR RIEUR IEnTLET I
bkt T +p.-u'r il
iy -_3"”'.‘;3: FRIHTI ; :vd:lﬂ: IE 333”!}[) hKIMﬁ'CE-E[Er 'ltlil:‘:wl,F"FFl = 1

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 27

3.3.4.6 TheL166 Misc Tab

The >v3.xx L166 linker is able to detect type mismatches between modules. For example, if a variable
is declared as “unggned char x ;” in module A and then in module B, it is externdly referenced as “short
x ;" , then L166 will flag a warning. Earlier L166 versgons did not do this, with the consequence that a
“word access to odd address’ trgp occured at run time, usualy with embarassing results. In 99% of
cases, a linker warning indicates a potential run time problem which may become an error just before a
release date. The Ignore Warnings should not be selected without long and careful consideration and
preferably only after counsdling.

For the EVA16C board, the interrupt table must be shifted to the base of the user's code area at
0x40000. Thisis acheived by entering the address in the Interupt Table Vector Address box.

In the C167CR, the area from OxF200 to OxF5FF is reserved, according to the data book so this address
range must be entered into the Reser ve box.

e el [
M. égilr T
L
e

-A110 l

i

Ll

===

E—]

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 28

3.4 Building New Projects For TheFirst Time

Now that al the configuration steps for the example program have been taken, the program must be
compiled and linked.

Normally, the source files within the program will not dready exist and so the usud approach would be
to select File-New and then type in the source lines. From the Project menu, the Make: Compile File
option would be taken to compile the file. Any erors or warnings found during compilation will result
in a secondary ".ERR" window being crested which gives brief detals of the error. To view the source
lines containing the problem, just double click the error message within the red bar and the editor will
drop you onto the offending line.

To build the program, sdlect Project-Build or click the Iil: button on the toolbar. This will compile al

changed files, link the objects and run the SP166KE.EXE_symboI processor. Subsequent builds of the
project can be made by clicking the Project-Rebuild icon in the toolbar.

3.5MakingUseOf TheMultipleTarget Facility

This project so far has been built to run under the HiTOP monitor. At some point the program will need
to run standaone from FLASH ROM. This represents a new target which can be defined via the Tar-
gets, Groups, Files menu, accessible by right clicking on the
exiging monitor target in the fileswindow. Add the target name
FLASH and click "copy al settings from current target”.

I nrgets. Liroupa. ile) [7]
When running the program directly from FLASH, the user's Tatez [etk bis]
code area needs to be moved to 0x0000, athough the RAM ' '
address can remain the same at 0x50000. Tas i

Dpdione lor Target ‘TLASI®

Tunt! in:u::ul Luna| 2130 | & 06 | L CoLlezare | L C3Mc| Do

Cisrrens CICTZ0- 1
120k K| iI-J

Mo P oo IIILa'ge "wege o 18t ez | [_soUr o _aMsHSE [LELUD ke FE|
Up s et [Hens

Setal el
S

e Hven

[15 = sana [13 = -wno-

ERETIE B (ER]

HES BT] vioml

il Rk = ENIIII‘ |||--||| 4 |Fw.1l|| |

u [Fepd x| [B |||.1|| 1 v R 7 I |
1% nm =] | [T3 e = | |

I 4 J LA 1 I

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 29

Toutust| Gnrper | Licitee |10 €50 [& &5 | 16 e -|-:135':|E'-‘_-.!D:\.L-.r.| i

Distiures fur Tayes FLASH' K E

B p R g e —_—
[T ™ ___] ndkiar gl | il
PR e o T a]
| Y T T s ; i
3 iEl] .
s ke] E ok 2] e T |
I fream Fosoaiake Qupur Tl w25 o . I arpr g i gkdimig) 00
":11 I i
FHCS Tt
Haia | M TH R :
M e LR B
SO TR =
NN R : i s
L R TR0 e T TR Y L e -
alag - il el e t -

The interrupt vector table addresswill adso need to be moved to 0x0000 in the L166 Misc Tab.

Finaly, the new target can be sdlected from the Target box at the top right of the screen.

3.6 The Special C167 Instructions

Asthe C167CR is being used in the examples, enable the C167 code generator with Enable 80C167 in-
gructions. Thiswill dlow the compiler to use the EXTP and EXTS ingructions when addressing objectsvia
pointers to increase efficiency. Only C166 users should cancel this option - dl other C16x family members
can use the C167 ingtruction set.

Note: Usng the EXTS ingruction will make the C167 behave more like a conventiond CPU as whilst the
access to far objectswill be made smpler, any interrupts will be locked out. This point must be borne in mind
in systems where determinigtic interrupt latency times are important.

Example of EXTS sequence used for a huge pointer:

*huge_ptr = 0x55 ;
; SOURCE LINE # 19
MV RG6, #85
MOV R5, WORD huge_ptr +2
MOV R4, WORD huge_ptr
EXTS RS, #1
MV [R4],R6

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 30

3.7 Register Masks And Global Register Optimization

As has been mentioned, C166 will attempt to place locd datainto registersto improve speed by making best
use of the 100ns MOV Rw,Rw typeingructions. It will only do thisin a particular function, provided that no
further functions are cdled. Thislimitation exigts asthereis no way that the compiler can know whether the
called function will use registers that are dready used by the cdler. Thusto play safe, the calling function is
not alowed to use register variables at dl!

Fortunately, C166 uses the REGISTERMASK concept to overcome thislimitation. These “masks’ are
generated in the ligt file by the compiler in the form of a code string, prefixed with ‘@', within which is con-
tained coded information on each function’ s register usage. This new information can then be attached to the
function prototypesto tell the compiler in advance about which registers any subsequently-caled functions use
and hence dlow caling functions to use register variables themsdves.

; FUNCTION | ocate_trigger_point (BEGN RMASK = @x6DFF)
; SOURCE LINE # 165
OOF0 F68E2C03 R MoV trigger_count, ZERCS
; SOURCE LINE # 166
00F4 F68E0200 R MoV trigger_offset, ZERCS
; SCQURCE LI NE # 168
00F8 EOOA MoV R10, #00H

Asan exampleif function main() cals function funcO() only usesregisers R8 and R9, then its register mask
can tell the compiler this so thet it is free to use the remaining registers for locads withinmain(). Thisprinciple
can be extended so that dl the functions aong a particular calling chain can pass back information on what
regaters are used further down theline. The net effect is that each function gets the maximum number of
registers possible so that execution speed will be optimised. As has been said, it is crucid to getting best
performance from a C166 family device that the maximum useis made of regigers.

Up to C166 v2, it was up to the user to take the register mask from the list file, attach it to the appropriate
function prototype and re-compile manudly. Now in v2xx and v3.xx the L166 linker will teke dl the
registermasks for al functions and place them in the regfile, EXEC.REG. The new uVISI ON make function
will automaticdly take the register masks for dl functionsin asystem out of EXEC.REG and recompile any
source file which could have its local register varigble usage improved. Thisis why when we compile, the
REGFILE(EXEC.REG) command is given. In effect, this compiler/linker sysem has a feedback path! This
can result in automatic multiple-compile-link-compile cycles during which the overal sze of the program will
reduce noticeably after each pass.

With assembler coded functions, the user should manualy work out the register mask and add it to the assem-
bler function’s prototype at the top of the C sourcefile.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 31

oo 3 'ART T AT L RABG

R10,11,12 + R8,9 + R5,6.7 + R3

_ R8,9 + R56,7 +R3
torzui)

R5,6,7 + R3

C166's Allocation Of {
Registers From main(}

R3

toro2 i)

Functions written in assembler are assumed to have the worst case register usage and so any C functions
cdling assembler will not have any registers avalable to them. It isthus up to the user to manualy generate the
register mask and attach it to the function prototype that the calling module sees.

extern void asmfuncO(void) @x0010 ; // The assenbler function uses only R4
extern void asmfuncl(void) @x0018 ; // The assenbler function uses R4 & R3
extern void asmfunc2(void) @x0000 ; // The assenbler function uses all registers

Here is how to work out the register mask for your own assembler functions:

Bit Allocations|n Register M ask

- DPP:lMDX R12 R11|R10 Ra RBIR? REJTR5 R4 R3 | R2 | R1 lJPPU

A oneinthe variousfiddsin aregister mask indicate the following:

MDX => Your assembler function uses the multiply/divide unit
R12-R1 => Your assembler function uses a genera purpose register

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 32

4. Using The HITOP Monitor-Based Debugger

Whilgt Kell’'s DScopel66 isafarly reasonable monitor debugger, the Hitex HITOP debugger is much easier
touse. HiTOP has atrue Windows user interface which makes it easier to get to know. Like any monitor
debugger, there are certain things that you must be aware of to be able to use it successfully. Always bear in
mind that thisis not an in-circuit emulator and if your program crashes, it will probably take the monitor with
it...

(i) You must dways make sure that the globd interrupt flag is enabled. HiTOP rdies on usng the
serid port O interrupt to get control of the monitor after the user has typed “GO”.

(i) 'You may not use the serid port O or overwrite itsinterrupt vector.

(i) Only the full in-circuit emulation verson of HiTOP will support bit varigbles. Attempting to look
a them with the monitor verson in the watch window will result in a “parameter error”. You must then
delete the contents of the watch window and perform a system reset (SR button on toolbar) to clear this.

(iv) The monitor occupies the following memory on the EVA167 board:
EPROM 0 - Ox1ffff

On-chip RAM Oxfa00 - Oxfa3f

Ext ernal RAM 0x40200 - Ox41fff

You must make sure that your program never tramples on these aread If you enure that any linker input
file you use in the exercises has the following controls a the end of file, you will avoid accidentaly
doing this.

[/ Linker Input File For The HLARGE Model

Il

[/ Shift user's interrupt vectors (inc. reset) to 0x40000
vect ab(040000h)

/] Prevent User's Program Using Mnitor's RAM
reser ve(Of 200h- Of 5f f h)

/1 Move user's C main registerbank above nonitor's
REGBANK(Of dOOh)

/1l Fix classes for HLARGE nodel in free RAM
CLASSES(| CODE(042000H) ,
FOODE(044200H)
NCONST(044200H 047FFFH)
HCONST(044200H) ,
NDATA(050000H 53FFFH) ,
NDATAQO(050000H 053FFFH) ,
FDATA(050000H)
FDATAO(050000H)
HDATA(050000H) ,
HDATAO(050000H)
XDATA(050000H) ,
XDATAO(050000H))

/] Put startup code sections into free RAM
SECTI ONS(?C_I NI TSEC(044200h) , ?C_CLRVENMSEC)

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 33

EXERCISE 0: EXO
Subdirectory \166 TRAIN\EXO\WORK
Objectives

To practice using the uVISION, compiler and linker controls, build the example program in example 0. This
ample gpplication prints messages to the LCD display.

Procedure
Go back to section 3.3 and perform the previoudy described steps to build the program. Once you have

successfully built it, including the running of the SP166K E.EXE symbol processor, sart HITOP by dicking
onitsicon. Sdect fileload, TR and then RUN, viathe greeen traffic light button on the HiTOP tool bar.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 34

5. Using uVISION And HiTOP In Program Development

The graphics on the next few pages show atypica edit/compile/debug sesson using uVISION and HiTOP.
Thisincludes using the tool bar buttons to compile, build and update projects.

EXERCISE 1. EX1

Using the (annoying!) example C166 program in "\166TRAIN.WIN\EXT\SOLUTION" to practice usng
uVISION and HITOP. Follow the steps shown in the frames one-by-one!

1. uVISION'sAnd HiTOP's Toolbar Buttons

These are the most important features and you will need to use these repeatedly during the course - first
uVISION....

ﬁrl Edit File Save File

% Compile File- Compilefile being edited

Update Project - Compilefile that has been edited since last build

Build Project - Compiledl filesand link

Enable Editor's Syntax Colouring

...and secondly HiTOP...

EI Load the program E Reset the C167CR
EI Start the program @ Stop the program
@ Sngle gep one"C" line 201 Step one assembler statement

E. Go until the cursor pogition Single gep into afunction

@ Go until-asymbol- Step out, back to caller

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 35

2. Open A Project

' Select The Project "\166TRAIN.IWN\EXT\SOLUTION\EXEC.PRJ'
from the Project Pull-Down

INAEREC PRI
WTBET RN/ NAE <OV ORKAEXE C PRI

ZCABETRAIN WINSEXASOLUTIONAEREC. PRI
ACNBETRAIN WINSEXMASOLUTIONAEREC PRI

3. Compiling The Currently Open File

Click the Compile Icon and uVision will compiler the current file, MAIN.C

™ pVision/166 - EXFC.PRJ
File Edit Project Bun '

i =

T MAIN.C
fidefine MAIN /* Define

f 3 36 36 3 6 I 6 36 I I 6 I IE I IE I IE I IE I IE 3 I3 I I IEHEEA

4. Update The Project

.CI ick the Update Project Icon and uVision will report that project is up-to-date

‘!:l"- p¥ision/166 - EXEC.Phs
File Edit Project Bun Dphions

D|=]=] an]

Wol: window Hel

ENE [

HIMAIN.C
bidefine MAIN_ /% Define hor
'

i Project Status ([EXEC.PRJ)

Noeditshavebeenmade = rouMng wooo
g. nce I w bui I d. . Status: The project is cumrent.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 36

5. Compile Only Changed Files

Add some text to the comment line above main()...

o
i

p¥ision/166 - EXEC.PRJ
File Edit Project Bun Options Tools ‘window Elp

EE = I EANE :

/*%x Hain Program Loop - THIS TEXT JUST ADDED? fexxs

void main{void) {
init_led() ; /* Initialised LCD panel

init_keypad{); /= Initialise keypad

..now click on the Project Update Icon and uVision will recompile and build...

TX uvisien/166 - EXEC.PRJ
File Edit Project “Memegptions Tools Window |

Note: The Update function auto-
matically saves the modified file

6. HITOP's Debugging Windows

Now that you have built a program, you can now debug it using the HITOP
debugger. Click onthe HiITOP iconto start it...

. =) [_[51x]
| nstructl On o Andyze Setp Optiors Loca Pane Windaw Hep
1 1 | = 51 2 B 3 3 e B e
Window : <
e p—
/% Initial: 40 PSW = 0008 | HLDEN = O
Register — o -
Window e
/* LED pin B RI3 Fe3h
8 List
Source BP | PC| Line #) Source
\ 57 amit_led() ; 7% Initialised LCD panel +/
Window N)mypanm /* Intetalice keypaa */
Breakpo| nt [P ——
K| 14
[SowcetieMANG [Adireos: 0x043750 | Total Linest170 |
o nE—" Tioc:on [vatied

7. Accessing C167CR Peripherals (ADC)

HiTOP is used to load the new program into the EVA16C for debugging
and running. It can also be used to access the C167CR's peripherals...

Instucion
difece KPS

Wetch KP4
Memory KPS
Register KPS
stack. KP7
Evpression kP8

CAPCOM1 register
i CAPCOM2 reister
Symbol Manager... AI+F9 Timer T0/T1, T2/T4. T7/T8
T TinaT3
Timer T5/T6
FEC and PWM channels and S50

Command Line:

Hie

SYSCON and serial interface S0

Select "View-User-A/D converter" to show the 10-bit A/D converter window...

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 37

... and then the ADST =
field, choosing "set" to | uysiee
start the convertor run- |

ning. It will convert | “icr ==
every 9.7us indefinitely. |
Theanalogvaluecanbe
read from the ADDAT
field...

8. The A/D Converter Window

Thisiseffectively the control panel onthe C167CR'sA/D converter. Thevoltage

of the potentiometers on the training board can be measured...

4/D converter control
Chamnel selection
Hode selection
Start state
Busy state
Wait for read control
Channel injection

ADCRG ¢ no reques

Converter result ADDATZ : O0DD

Valus ADRESZ: DOD
Channel CHNEZ i ANO
Port 5 2227

overrun error

Interrupt control ADEIC : 0080
Interrupt request ADEIR : yes
Interrupt state ADEIE : disablel
Prioricy level ADEILVL : O
Group prisrity ADEGLVL : O
PEC Channel ADE_PEC : 0

[No register currently selected |

...Test whether the potentiometer on analog channel 0 isworking...

9. Start A Conversion Of Channd 0

...clickthe"AMD" field and choose " single channel continuous" mode...

o3y 2ingls Ghamel Pancimous "]
Start state

: in progress

20

: disabled ADCRQ :

Vait for read control
Channel injection

Channel

il i Change
| ——— Lo
| Cancel |

Symbol...
Br

HiTOP can be made to read the latest value by pressing "ALT-F12"

© Copyright Hitex (UK) Ltd 1999

10. HiITOP's Toolbar Buttons

Load the program Reset the C167CR

Start the program

Single step one"C" line Step one assembl er statement

Stop the program

Go until the cursor position Single step into afunction

Go until asymbol Step out, back to caller

C166 Introduction

Page 38

11. Loading The Program Into HiITOP

Click the icon and then ...

File Load B=
Directory IC:\1 EETRAIN.WINAEX1ASOLUTION

Filename... | UEX]_HTX _ILuad

File type |0bject j‘ Cancel |

symbol...
Help

...click LOAD to load proaram...

12. Running The Program

Now click the icon to reset the program...

...and the click the icon. Type/"mai n" into the address box...

Zeup Options Local Pane Window Help

Go Until

|

Symbol...

111100 MOV DPP1, 00110 /

click "Go Until" to run the program to main()...

13. Single Stepping The Program

Click the icon to single step the call to "int_lod()"...
To drop into the function "int_keypad()", use the icon...

...oncein the function, use to get backr‘to/line#gl...

(Theyeliow arrow [_=8hows the curr

ntprog

© Copyright Hitex (UK) Ltd 1997

e
= 57 init_ledn : /* Initistfoed LCD panel */
89 init_keypad(); T Initialise keypad +
51 init_T3Q) : /% Provide timehese for user imterface */ H
a3 init_contraller(] : /7 Set up controller awd start drive)
55 LED6_DP = 1 ; /% LED pin Fz.6 is output */
97 LED7DP = 1 ; /% LED pin P2.7 i3 oucput 7/ B
< jld
[Source file: MAIN.C ["Address: INVALID [Total Lines: 170 |

C166 Introduction Page 39

14. Debugging The Program - Breakpoints

Use the scroll bars on the right
side of the List window to
look down the function

[wm until line#113 isvisible.
BF | PC Line #| Source

while{1] {

113 keypress = getkey() :

Toseta
breakpointon |
thisline, click i
the "BP" column
at the left side of
the window.

N -1
12 Sol
i s -0 .
5 5
[Soures fie: AN [Tow tnesii70

15. Debugging - Run To A Breakpoint

LOG: Off | Halted
-~~...____..’b B List
BF | PC Line # Source

while (1] {

= 113 keypress = getkey() :
115 if{{unsigned char)keypress < 5) {
116 AD_channel = keypress

The yellow arrow shows that the program has reached
the breakpoint and stopped

16. Debugging - Running/Stopping

To rehbve the breakpoint, click again in the"BP" column on the breakpoint...

..torunthe programinreal time, click the icon again...

to stop the program click the icon.
Y ouwill probably have stopped inthe keypad driver...

BP | PC Line # Source

= 125 mh:lackextgdan == -1} { : }

127 return kely_down.
128}

Y ou will need to look at the main loop
and run until alinewithinit...

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 40

17. Debugging - Looking At Other .C Files

To get back to the main loop, click in the List window
ansselect Local pull-down...

Origir!
setPCl CukP

.andselect "Address'... B m s aee

Watchl Duw
aa Moy Yaue. Oy
expressialll Cuk

oo RET: edifile. CHkf
DP7 =1 ; /% Enshble
ES0100 MOV DP7, #0001

...typethelinein main (#115)

which you want to run to... B
Address

i 1]

...and click "OK".

18. Debugging - Running To The Cursor Position

The List window will now show line#115.
. ...runtothe cursor at line #116...

BP| PC [Source
115 if((unsigned char)Reypress < 5) {

118 AD_channel = keypress

\ 118 switch(AD_channel] {

...by clicking in the"PC" column-note the new "GOTO arrow" mouse pointer!

"1" and the program should stop at the line #116...

BF | PC|__Line#| Source
while(1

113 keypress - getkey()
115 iF{{unsigned char)keypress < 5) {
= 116 AD_channel = keypress ;

19. Debugging - Looking At Variable Values

The variable” AD_channel" will soon be set to the value of the key just pressed...

...tolook at thisvalue, double-click thevariablein line #118 and then
select Local pull-down and Watch...
= e i o

Line #| Source \
115 if ((unsigned char|keypress < 5) |
= 116 AD_chammel = keypress :

118

AD_channel will now be in the Watch window, with its value displayed...

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 41

© Copyright Hitex (UK) Ltd 1999

20. Debugging - Looking At Variable Values

0
Execute asingle step of line#116 with the [==] icon...

D_channel isnow =1, the value of the key you pressed...

q
a1 A Valia
11W1 AT chanmel Ox01 1 "1' 00000001y

) E__
3
)|
|

[

/* oan
115 if { (unsigned char)keypress < 5) |
116 iD_channel = keypress ;
= 118 awitchi 1

FlEgefine VWiew Go Analyze Setup Options Local Pane ‘window Help

JC_STARTUP ASSALSA

CSP:0xzZz04 DABE3FZD BFLDL BUICOND,#3FH, #2DH
CHEP:0xZ2Z08 14860012 BFLDH BUSCONO, #1ZH,#00
CHP:0x220C 1AGS40FF EBFLDH SYSCON,#DFFH,#QDH]
CEP:0x2210 DAB98400 BFLDL SYSCOM, #54H, #00
COP:0x2zl4 EGBALEDG MOV BUSCON1, #04AEH
CEP:0xZZ 15 EBOCOE04E MOV ADDRSELL, #0406KH
CHP:0x221C EGODASCFE MOV STECOV, $0FBECH
CEP:0x2zz0 EBDO0DOO MOV DPPO, #0000

22. Returning TouVISION For Next Edit-Build

To release the symbol file, select uNload from the File menu...

HiTOP/win (C167)

Load
Save.
oG,

e, Mnermonic
Info. DISUDT
BFLDL BUSCONOD, #3FH,
Extensions.
Wser SFR. © 14860012 BFLDH BUSCONO, #12H, . .
daiaive - wssaorr sruon svscawsorrm, ...NOW Click in the uVISION

0 DAB9B400 BFLDL SYSCOMN, #84H,§ . .
s 1CON tO return to it for

edl. .
ADDRSEL1, #0410

& E60CO604 MOV

Compile. it 1
k. fic EGOABCFE MOV STKOV, #OFBACI the next edit-build
ke 0 E6000000 MOV DPPO, #OOO0
QUEHITOP.. AtFa [4 ES011100 MOV DRP1,#0D11H WCl €.
TIU26 E6021200 MOV DPPZ, 40012H
CSF:0x202C E60820FC MOV CP, §OFCZOH

CH5F:0x2030 BS4ABSBS EINIT

[HiTOP/win [C167) iquwsmms!zxsc PR

And that isal you need to know to use HiTOP!

C166 Introduction

Page 42

6. Configuring The C Environment To Your CPU and Hardware

6.1 CPU-SpecificlncludeFiles

TheKell C compiler comeswith aset of include filesfor al the C166 and C167 variants Asthereisonly one
register (seria port) more on the C165, thisis not amgor problem. Theinclude files define the specid
function regigter set for agiven variant.

Thesefilesare dl stored in the \KEIL\C166\INC directory and may be directly included in your C program as
shown below

#i ncl ude <regl67. h>
It is through these files that C166 knows the addresses of the on-chip specid function registers.

Extract Of regl67.h:

[* (c) Copyright KEIL ELEKTRONIK GiwbH. 1993, Al rights reserved. */
/* Register Declarations for 80Cl67 Processor */

/* A D Converter */

sfr ADCI C = OxFF98;
sfr ADCON = OxFFAQ;
sfr ADDAT = OxFEAQ;
sfr ADEI C = OxFF9A;
sfr ADDAT?2 = OxFOAO;
shit ADST = ADCO\M7;
shit ADBSY = ADCON'S;
shit ADWR = ADCONNM9;
shit ADC N = ADCONM10;
shit ADCRQ = ADCO\M11;
[* Timer O, Tinmer 1, Timer 7, Tiner 8 */
sfr cQ = OxFE80;
sfr CcQl C = OxFF78;
sfr CC1 = OxFE82;
sfr CCll C = OxFF7A;
sfr cc2 = OxFE84;
sfr cc2l C = OxFF7C,
sfr CC3 = OxFES86;
sfr Ccc3l C = OxFF7E;

For the C167CS, aheader file caled "c167cs.h" should be used.

Example Of Use

tenperature = ADDAT & Ox3ff ; // get A/Dvalue into ‘C variable

if(O { /1 Check the CPUs carry flag in the PSW

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 43

6.2 ConfiguringSTARTUP.A66ANd START 167.A66

These files contain the code that gets you from the RESET vector a 0x00000 to the beginning of your C
program at main().

Besides providing the RESET vector, they are used to initialise

the C runtime environment and the CPU’ s fundamentd registers

such as SY SCON, BUSCON and any ADDRSELx and L JEER LA

BUSCONX registers being used. STARTUP.A66 is used for R DL LA DR R
the C166 and START167.A66 caters for the C165 and C167.
In the case of the C166, a default STARTUP.AG6 is autometi-
cdly linked in that will provide a“safe’ combination of run time
settings and CPU configuration. C167/5 users must dways link
START167.0BJ as the last object filein the EXEC.LIN file.
For any CPU, if the startup object file is not the last in the 9 L Kb 1 | 002 TV L |64 st
object filelist, you may find some datais not initalised correctly. a

EOFTTTD IS OIS - TR T

The next sections cover in detail what is controlled by these
files

11 s ELH
6.2.1 Configuring STARTUP.A66 . -

The mgority of these operations refer to the SY SCON register.

(i) Enableor disasble WATCHDOG - default DISABLED

TR B
i

(i) Enable/disable clearing of program varigbles at Sartup via
the"CLR_MEMORY" and "INIT_VARS' SETs - defaullt: j

ENABLED

(iii) Enable/disable initidisation of program variables before main() isreached - default: ENABLED.

Note: if you have avariable declared:

int x =1 ;

This control decides whether the ‘1" iswrittento ‘X’ during the Sart up.

(iv) Configure the CPU registersthat control the bus mode, waitstates etc..

MCTC - memory cycletime

Default : 1 wait Sate inserted

Setting 0-15 in this field will result in the CPU insarting the same number of waitdtates being inserted. If the

RDYEN is enabled, setting 0-7 waitstates will result in 0-7 waitstates being inserted after READY inan
asynchronous mode goes low. If 8-15 waitdtates are programmed, the READY s treated as synchronous

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 44

and 0-7 waitdtates are inserted after the READY pin goeslow. Thischangeinthe MCTC fied was intro-
duced at the BA step of the C166.

RWDC - Read/Write delay

Default: dday time of 0.5 satesenabled. Thisisusudly only required in some multiplexed bus mode designs.
Not needed in non-multiplexed designs at dl.

MTTC - Memory tristatetime

Default: No trigtate time inserted.

Thisis only required where the memory device has adatafloat timethat istoo long for the C166. Thisisthe
time that the device drives the bus after the /RD pin has gone high. It isunusud for thisto be set and about
10% CPU performance increase can be had by switching if off (set to 1).

Bus Type- Bustype

These bits are usudly left in the Sate set by the EBCO and EBC1 pins on the CPU. Whilst they can be
changed in software, is not reglly recommended!

CLKEN - Clock output pin
Default: disabled

If thishit is s&t, the CPU clock will be emitted on the CLKOUT pin, provided that you have previoudy set
this pin to be an output in the appropriate DP register.

BYTDIS - byte high enable
Default: Enebled

Enabling this bit will dlow the BHE pin to emit asgna which can be used to enable the high bytesin aword-
wide memory system. A0 is used to enable the low byte device and BHE the high byte device.

SGTDIS- Disable segmented CPU mode
Default: Disabled

Unlessthe TINY modd isused, thishit is clear so that the CPU runs in sesgmented mode i.e.; port 4 emits the
A16-A17 addresslines,

RDYEN - RDYEN - Enableready
Default: disabled

Setting this bit will cause the CPU to look for the READY pin going low to show that the last memory access
cycle has been completed.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 45

BTYP_ENABLE - Allow softwar e to modify the BTYP field and hence change the bus mode.
Default: Disabled; the bustypeis set by the EBC pins.
BTYPO - External Bus Configuration Control

These bits determined the bus mode used by the CPU when in single-chip mode.

8-Bit Non Multipl exed

8-Bit Miltiplexed

16-Bit Non Milti pl exed

16-Bit Miltiplexed <—- default node

0
1
2
3
EXT_RAM

Default: Enabled

Causesthe /WR pin to be st to output so that externa RAM can be written.

STKSZ - Set system stack size

Default: 256 words

The required system stack Sizeis set by the two bitsin thisfied.

BUSCONVADDRSEL 1

These two registers control a bus region which can have different characteristics to that set by SY SCON and
the EBC pins. It isbest to configure them using extra assembler ingtructions added after the set up of

SYSCON. Itisimportant that they are setup before the sectionswhich initidise data. Thisis because any
data contained in the ADDRSEL 1 region will not be accessible until these registers have been set up.

6.2.2 Configuring START167.A66

These controls operate on SY SCON and BUSCONO. The functions of the C166's SY SCON are shared
between these two registers on the C165/7.

MCTCO - memory cycletime

Default : 1 wait sate inserted. Setting 0-15 in this field will result in the CPU inserting the same number of
waitdates being inserted. If the RDYEN is enabled, setting 0-7 waitstates will result in O-7 waitstates being
inserted after READY in an asynchronous mode goeslow. If 8-15 waitstates are programmed, the READY
istreated as synchronous and 0-7 waitstates are inserted after the READY pin goeslow. Thischangeinthe
MCTC field was introduced at the BA step of the C166.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 46

RWDC - Read/Write delay

Default: delay time of 0.5 sates enadbled. Thisisusudly only required in some multiplexed bus mode designs.
Not needed in non-multiplexed designs at all.

MTTC - Memory tristatetime

Default: No trigtate time inserted. Thisis only required where the memory device has adatafloat time thet is
too long for the C166. Thisisthe time that the device drives the bus after the /RD pin has gone high. Itis
unusud for thisto be set and about 10% CPU performance increase can be had by switching if off (set to 1).
BTYP_ENABLE - Allow software to modify the BTYP field and hence change the bus mode.
Default: Disabled; the bus type is set by the pull-down resistors on pins POL6 and POL 7.

BTYPO - External Bus Configuration Control

These bits determined the bus mode used bythe CPU when in single chip mode.

8-Bit Non Miltipl exed
8-Bit Miltiplexed
16-Bit Non Miltipl exed
16-Bit Ml tipl exed

0
1
2
3
ALECTLO - ALE Lengthening Contral Bit.

Default; Dissbled

If set, this bit will cause the ALE signd to be lengthened by 0.5 state times.
BUSACTO - Bus active control bit

Default: Enabled

When enabled, the CPU will fetch ingtructions from externd memory i.e., the bus will emit addresses and
read/write data.

RDYENO - Enable ready
Default - disabled

Setting this bit will cause the CPU to look for the READY pin going low to show that the last memory access
cycle has been completed.

RDY_AS - Decide whether /READY input is synchronous or asynchronous.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 47

Note: Thishitisonlyvalidif RDYEN == 1.

_RDY_AS-if sstto 1, /READY input is treated as synchronous otherwise /READY is asynchronous.
WRCFG - Write configuration control bit.

Default: Dissbled (0)

If disabled, /WR and /BHE will operate as norma otherwise, /WR acts as/WRL (write for low byte device)
and /BHE becomes /WRH (write for high byte device). Thisis useful when two 8-bit RAMs are used to
produce a 16-bit memory.

CLKEN - Clock output pin

Defauilt: dissbled (0

If this bit is enabled, the CPU clock will be emitted on the CLKOUT pin, provided that you have previoudy
st this pin to be an output in the gppropriate DP register.

BYTDIS- byte high enable
Default: Enabled (0)

Enabling (clearing) this bit will alow the BHE pin to emit asigna which can be usad to enable the high bytesin
aword-wide memory system. A0 is used to enable the low byte device and BHE the high byte device.

XPEN - XRAM enable control
Default: Disabled (0)

SGTDIS - Disable segmented CPU mode
Default: Disabled (0)

Unlessthe TINY modd is used, thisbit is clear so that the CPU runs in ssgmented mode i.e.; port 4 emitsthe
A16-A17 address lines.

STKSZ: Maxi mum System Stack Size selection (SYSCON 13 .. SYSCON. 15)

_STKSz EQU O ; System stack sizes
; ; 0 = 256 words (Reset Val ue)
1 = 128 words
2 = 64 words
; 3 = 32 words
;4 = 512 words
;5 = not inplenented
6 = not inplenented
7 = no wapping (entire internal RAM use as STACK)

This startup file is to be used for the C165 and C167. Unlike the C166, you cannot rely on the linker to pull
in asuitable default START167.A66 so you must dways includeit in your linker input file, EXEC.LIN.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 48

6.2.3 Special Note On The CAN Pin AssignmentsOn The C167CS

Although the configuration of the CANRX and Tx pinsis not strictly spesking associated with
START167.A66, they do come under the classfication of "hardware setup”, which must be considered at an
early gagein anew desgn.

With the sandard C167CR, the single CAN module uses address line A21 (P4.5) asthe tranamit line and
A22 (PA4.6) astherecelve. This hasthe sde-effect of limiting the C167CR to using just 20 addresslines.
However thenewer C167CS-LM has been upgraded such that it has two CAN modules whose IO pins can
be redllocated to other pins.

Thenew three-bit wide IPC field in the PCIR register alows the user to assign the two CAN module as
folows

IFC Fisld (PCIR[10..08]) CAN1 CANZ soLm Y Comununt
00 TxD=P4 & TuD =P4.7 TxD =P4.7 DefAull values of
FxD = P4.5 RxD=P4.4 Rxl = P4.4 |foermer cerivatives
01 TeD=P&ag T«D=P48 TxD =P4.7
FxD=P4.7 ReD =P4.7 ReD = P4.6
o0 T = P& A TxD = P31 TeD = B&.0
HxD =P80 HxD = FB.0D Hzll = P8
011 TeD=P8.3 T«D=P5.1 TxD =F8.2
HxD = P82 HxlD = FB.D Hxl = Pd.3
10 e A Hesrrerd Hpasarvin i mnt nisa
104 Mesarved Resarved Reserved Do nat use
110 Resoerved Reserved Reserved Do naot use
1117 [¥03 = O 1x0 = Qff 4l = O
HxlD = ldle Hxl = Idle FxD = idle
W piee ipporet by anaout pronmssor SOGF TS — A AA DD = B4 1)

Resar Conflgurathan, | e all Intefacas dlsaonnectad

One mgor problem for users upgrading from the C167CR is that the default (RESET) date of the IPC fidd is
binary '111', meaning that al CAN interfaces are disconnect. Thus C167CR programs will not run unmodi-
fied on aC167CS To give competibily, do the following:

#define Set_Default _CAN 1O OxF8FF /* Required to set up CAN io pins on Cl67CS */

/* Set Up CANL 1O Pins (Cl67CS) */

[e e e eeeeeao o * [
CAN1_Control _Status | = CCE ; /1 Enable access to bit tining register (and | PC field)
CANL_Interrupt & Set_Default _CAN 10 ; // Use standard CL67CR Rx & Tx pin allocations on P4
CANL _Control _Status = 0 ; /1 End of CAN nobdule initialisation

Where CAN_Interrupt isthe CAN interrupt register at OXEFO2 for CANZ2 or OXEEQ2 for CAN2.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 49

6.3 The Two StacksIn C166

The basic design of the C166 was ddiberately biased towards alowing structured languages like C run more
efficiently than on older CPUs. The most useful ingtruction set feature is the provison of in effect, 16 stack
additiond stack pointers. These are aresult of the MOV [Ri+], mem ingtructions which are ided for creating
local stacks.

In redity, C166 uses just one of the 16 potentia stack pointers (i.e. genera purpose registers), namely RO.
The stack created by RO is placed in apecia section in NDATA caled 2C_CUSERSTACK. The*user
gtack” with RO asits user stack pointer is used by C166 for parameter passing and local automatic variables.
When afunction is called, any variables or other data that cannot be fitted into registers are “pushed” on to the
user stack by the MOV [RO-], parameter ingtruction. The “R0-" causes RO to point at the next free location
on the user sack. Oncein the called function, the parameter is moved off the user stack by the inversein-
gruction “MOV reg,[RO+]”. Note that the RO+ moves the user stack pointer. Aswith the true system stack
pointer SP, every MOV [RO-], xxxx is matched with aMQOV xxx, [RO-] o that the user stack pointer is
aways restored to its origind vaue after afunction call.

6.3.1 Setting The Size Of The User Stack

Due to C166 placing up to 8 parameters and 15 localsin registers, it isfairly rare for the user stack to be
used at dl. If the optimizer is disabled, you will ingantly see alarge number of MOV [-R0O],R11 typein-
sructions as C166 garts to move things onto the user stack.

Warning: If C166'soptimization isdisabled, the user stack sizeisincreased massively!

; FUNCTION interp_sub (BEG N RMASK = @x2030)
unsi gned char interp_sub(unsigned char x, unsigned char vy,
; SOURCE LINE # 11
MV [-R0O],Rll <—this all ends up on user stack
MOV [-R0], R1O
MV [-R0], RO
MOV [-RO],R8
SUB RO, #2
unsigned int n, unsigned int d) {
unsi gned char t ;

i f(y>x)
; SOURCE LINE # 15
MOVB RL5, [RO+#2] ; X?00 <—very slow
MOVB RL4, [RO+#4] ; y?00

CVWPB RL4, RL5
JMP cc_ULE, ?7C0001

{
; SOURCE LINE # 16

t =y-x;
; SOURCE LINE # 17
MOVB RL5, [RO+#2] ;X200

Note: thishabit of pushing everything on the user stack iswhy conventional processorslikethe 68000
and 8086 have relatively poor performancein C.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 50

C166’ sregister variablesreducing theload on the user stack to zero and proof of why Keil producethe
best C166 compiler you can get!

; FUNCTION interp_sub (BEG N RVASK = @x2070)
unsi gned char interp_sub(unsigned char x, unsigned char y
; SOURCE LINE # 11
;— Variable *d?00° assigned to Register ‘R11’ —
;— Variable ‘n?00° assigned to Register ‘RI0O’ —
;— Variable *y?00° assigned to Register ‘RO’ —
;— Variable ‘x?00° assigned to Register ‘R8" —
;—Variable ‘t?01' assigned to Register ‘RL6'" —
; unsigned int n, unsigned int d) {
unsi gned char t ;

if(y>x)
; SOURCE LINE # 15

MV R5,R8 <
MOV R4, RO
CMPB RL4, RL5
JW cc_ULE, 2C0001

{

This can make the maximum extent of the user stack a greet dedl lower than might be expected. However,
C166 will only useregigersif the optimisation isa maximum. As can be seen, if the optimization is disabled,
the user stack will suddenly grow and may well exceed the dlocated space, resulting in a program crash.

Very fast, 100ns

The default user stack size is 1000H bytes and this is adequate for very large programs - the Szeis set inthe
dartup.a66 file. It issengbleto leave the stack at this size until the bulk of your program has been written and
then to examine the actual worst-case stack used. If you are using the registerbanks and register mask prop-
erly, you should be able to reduce thisto 100H or less. This can be estimated by working out the maximum
function/interrupt nesting and adding up the total number of MOV [RO-]s possible. Alternatively, the
teletest32/166 in-circuit emulator can be used to monitor activity in the desgnated 2C_USERSTACK area

As was mentioned in the section on setting C166 compiler options, variables that end up on the user stack are
considerably dower to access as there are no ADD, SUB or CMP ingtructions which can use the Rw,[RO +
#offset16] addressng mode. In other words, variables on the user stack must be moved off the stack into a
register, operated upon and then moved back onto the stack.

A sgnificant performance advantage for interrupt functions or those with alarge number of locd variables can
therefore be had by forcing the compiler to put locals that cannot fit into registers (R1-R15) into (near) Setic
RAM segments to create a“compiled” stack, asin the C51 compiler. The common ADD, SUB and CMP
ingructions al can operate directly on RAM o thet thereislittle performance loss when compared to register
varigbles. Use static memory for non-register automatics in the C166 Options menu will do this.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 51

Example Of STATIC Usage:

The entry to the example INTERP.C function shown above becomes as follows when the STATIC control is
used. Note how the user stack instructions have disappeared...

?ND?i nt er p?I NTERP SECTI ON DATA WORD ‘ NDATA'
ORG 00H
y_break_point 1?7046 DSW 1
y_break_poi nt 2?2047 DSW 1
map_x1y2?049 DSW 1
result_y1?054 DSW 1
Xx_tenpl?056 DSW 1
y_tenp2?058 DSW 1
?ND?i nt er p?I NTERP ENDS

REGDEF RO - R15

?PR?I NTERP SECTION CODE WORD ‘ NCODE
line 1. #pragma MOD167
; line 2:
; line 3: /*** NMbdul e-Specific Include File ***/
o line 4:
line 5: #include <regl67.h>
line 6: #include <interp.h>
o line 7:
 line 8:
; line 9: /*** Main Interpol ation Routine ***/
line 10: unsigned int interp(unsigned int x_val ue,

interp PROC NEAR

PUBLIC interp
; FUNCTION interp (BEG N RVASK = @x3FFE)

PUSH R13

PUSH R14

PUSH R15
;— Variable ‘map_base’ assigned to Register ‘RI0’ —

MOV R2, R8
;—Variable ‘x_value' assigned to Register ‘'R’ —
;—— Variable ‘map_x2yl1?050’° assigned to Register ‘Rl1’ —
;— Variable ‘result?053 assigned to Register ‘R12" —
;— Variable 'y offset?043 assigned to Register '‘R13 —
;—Variabl e ' x_tenp2?057° assigned to Register ‘Rl4 —
;—Variable ‘map_x1y1?048' assigned to Register ‘R15 —

line 11: unsi gned int y_val ue,

; line 12: unsi gned int *map_base) {

Pease note however, that any functions within modules compiled with this control will no longer be reentrant,
i.e. the same function cannot be cdled both from an interrupt and a background function. In this case, the
values acquired by “gatic” variablesin the background call would be destroyed by those originating from the
interrupt function. This contral is best used as a#pragma STATIC with only those modules which contain
functions which can be used non-reentrantly, such asinterrupt routines.

6.3.2 Advanced Technique - Placing The User Stack In On Chip RAM

As has been said, the user stack isfixed in a section named 2C_CUSERSTACK, part of the NDATA class.
However, it is quite Smple to move it to other memory spaces. The most common actionisto placeit inthe
IDATA class so that it can be on-chip. Asthe user stack isrardly very large, IDATA should be able to
contain it quite happily. However it is most usud these days fro it to be necessary to move the userstack on-
chip.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 52

A small modification is required to START167.A66 to achieve this, as shown below:
START167.A66 Modified To Put User Stack In On-Chip RAM
Here are the modifications you will need to make if you ever want to move the USER STACK on-chip:

Upper part of START166.A66 at line #479
?C_USERSTACK SECTI ON DATA PUBLI C ' NDATA'
Should be modified to:

?C_USERSTACK SECTI ON DATA PUBLI C ' | DATA

... and further down thefile...

USTSZ: User Stack Size Definition
Defines the user stack space available for automatics. This stack space is
accessed by RO. The user stack space nmust be adjusted according the actual
requi renents of the application.

USTSZ EQU 100H; set User Stack Size to 40H Bytes.

... and even further down the file, after the EINIT instruction at line #700...

Make RO be loaded with DPP3 for an on-chip USER STACK, rather than DPP2, as at present...

$IF (NOT TINY)
MOV RO, #DPP3: ?C_USERSTKTOP ; This was DPP2: 2C_USERSTKTOP
$ENDI F
$IF TINY
MOV RO, #?C_USERSTKTOP
$ENDI F

If your have forgotten to reduce the Sze of the user stack to something smdl enough to fit in the on-chip RAM
- the default 1000H bytes will cause L166 to issue awarning about the "IDATA class being out of group

range’.

Important: you must use the USERSTACKDPP3 and NOFIXDPP C166 compiler controls if the userstack
ismoved on-chip. Thisisto dlow the compiler to correctly produce pointersto datathat is on this stack.
Failure to do thiswill result in undefined results. See section 12.6 for more details on the
USERSTACKDPP3 control.

6.3.3 The System Stack
With the user stack taking care of function parameters and loca variables, the system stack is used for storing
return addresses, the current PSW and CP plus any genera purpose registersin the current register bank used

for local register variables. This stack is dways located on-chip and defaults to 256 words in length
(80C166) at Oxfbff down to OxfaD0. The required stack Szeisset inthe START167.A66 file. Vauesof 32,

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 53

64, 128 and 256 words can be selected via SY SCON. The CPU register “SP’ hasits top 5 bits hard-wired
to ‘1, the stack isaways in the range 0xf800 to Oxfffe, i.e. on-chip.

Setting The System Stack Size

; STKSZ: Maxi mum System Stack Size selection (SYSCON 13 .. SYSCON 14)
_STKSZ EQU O ; System stack sizes

; ; 256 words (Reset Val ue)

128 words

64 words

32 words

0
1
;2
;3

The C166 is endowed with two specid registers, STKOV and STKUN, which set the top and bottom limits
of the stack. The default value of STKOV (Stack overflow) is OXFAOO whilst STKUN (Stack underflow)
defaults to OxFOO0O, in-line with the default 256 words.

The address of the stack is defined by loading the STKOV regigter is startup.abb

Setup Stack Overflow

_TOS EQU OFCOOH ;top of system stack
_BOS EQU _TCS - (512 >> _STKSZ) ; bott om of system stack
PUBLI C ?C_SYSSTKBOT

?C_SYSSTKBOT EQU _BOCS

MOV STKOV, #(_BCOS+6* 2) ; NI TIALI ZE STACK OVFL REG STER

L 166 automaticaly reserves the gppropriate on-chip memory and so no specid actions are required by the
user.

6.4 Setting Up The BUSCONx ADDRSEL x Registers

The operation of BUSCONZ2,3,4 and ADDRSEL 2,3,4 on the C165/7 isidentical to the BUSCON1 and
ADDRSEL 1 onthe C166. The big differenceto the C166 is that thereis achip sdect pin for each
ADDRSEL. Thus, if an addressis accessed in aregion covered by an ADDRSELX/BUSCONKX pair, the
corresponding chip select (CSx) pin goes low to enable the appropriate memory (or other) device. Thisisa
ussful way of reducing the glue logic in a C165/7 system.

The most important thing to say about these registersis that you mugt initidise the ADDRSELX regigters
before the corresponding BUSCONX. Thisis to some extent common sense; the BUSCONX contains a
BUSACT (bus active) bit which activates the bus characteristics over the preset ADDRSEL range.

Unexpected results can occur if you setup the BUSCONK first for the following reasons.

(i) The C167/5 data book warns that no two ADDRSEL registers must describe an overlapping region. As
al the ADDRSEL s are st to zero when coming out of RESET, enabling two BUSCONs will cause an over-
lgpping condition.

(i) The BUSCONX region bus characteristics may differ from those of the background SY SCON. If the
BUSCONKX is enabled while the ADDRSELX is set to zero, the area currently executing could be changed.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 54

The code to initialise the BUSCONx and ADDRSELx must be placed in the startup.a66 or start167.a66, just
after the BFLDH and BFLDL ingtructions that set up BUSCONO. It is not sensible to put the BUSCONX set
up in C asany RAM areas described by a BUSCONX will not enabled and hence be zeroed or otherwise

initidlised by the C_STARTUP code in STARTUP.A66 or START167.A66.

Thelntegral Chip Sdlects

Base Addr = 0x80000
Length = 4k

~—

Base Addr = 0x40000

Length = 128k ———4

167

8 Bit Non-Multiplex Bus
1 Waitstates

—_—
~

lBUSCON2 = 0x040E |
|

>~

&

4
/CS2

| ADDRSEL2 = 0x0400 |

—_—_————

16 Bit Non-Multiplex Bus

0 Waitstates

/CS1

UART

/CE

RAM

| BUSCON1 = Ox04EF
IADDRSELl = 0x0405 I

|

|
|
/
|

I BUSCONO = 0x04EF

/CS0

/CE

JAICE

Isyscon=ox00s0 | fe ‘f“’
o

(
\

-

© Copyright Hitex (UK) Ltd 1997

o
3

)

X

N

o]

e

S
L3
i1

I

Oy B S

- T
o
o

5
N
N

EPROM

C166 Introduction Page 55

?C RESET PROC TASK C_STARTUP | NTNO RESET = 0

?C_STARTUP:
$I F (WATCHDOG = 0)
DI SWOT Di sabl e wat chdog ti ner
$ENDI F
BCONOL SET (_MITQ0 << 5) OR (_RWDCD << 4) OR ((NOT _MCTC0) AND OFH)
BCONOL SET BCONOL AND (NOT (_RDYEND << 2))
BCONOL SET BCONOL OR (_RWDQO0 << 4) OR (_MITQD << 5)
BCONOH SET (_ALECTLO << 1) OR (_BUSACTO << 2) OR (_RDYEND << 4)

BFLDL BUSCONO, #3FH, #BCONOL
BFLDHBUSCONO, #17H, #BCONOH

;o **** Add ADDRSEL and BUSCON setups here! ****

MOV ADDRSEL1, #421H
MOV ADDRSEL2, #421H

MOV BUSCONL, #421H
MOV BUSCONZ, #421H
SYS H SET (_STKSZ << 5) OR (_ROWBL << 4) OR (_SGTEN << 3)

SYS H SET SYS H OR (_ROMEN << 2) OR (_BYTDIS << 1) OR _CLKEN
; Setup SYSCON Regi ster

6.5 Special Notes On The Startup Files

START167.0BJand STARTUP.A66 must be last in the list of object filesinthe .LIN linker input file! If nat,
any initidised datawill fall to be initidised properly!

When assembling these files, you must indicate the memory modd of the C program with the command line
parameter:

A166 STARTUP. A66 SET(SVALL)

Fallure to do so will result in the linker issuing atype-mismeatch in the symbol "main” between MAIN.C and
START167.A66.

The standard STARTUP.A66 and START167.A66 files are stored in \C166\LIB. If you need to modify
them, make alocal copy of it in your working directory and add startup.obj or start167.0bj to the linker line.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 56

EVA16C Memory Map With HITOP

Ox5FFFF

128k x 16 RAM Yaur program code
and data

Ox40000

GAP

Ox1FFFF

128k x 16 EPROM
Manitor Kernel

[RAM And SFRs

OxDODGG

6.6 EVA16C Board CPU Setup Requirements (via BUSCONO and chip select 0)

EPROM: 0-Ox3FFFF START167.A66 CONSTANT

2 waitstates _MCTCO0=2

1 memory trigtate time _MTTC0=0

No read/write delay _RWDCO0=1

No /READY _RDYENO=0

Bus type sdected externaly by pull-down resistors on Port POL6/7. _BTYP ENABLE=0

No ALE lengthening _ALECTLO=0

Norma operation of /WR and /BHE WRCFG_ENABLE=0
_WRCFG=0

Stack size 64 words STK_SIZE=2

XRAM enabled _XPEN=1

Segmentation enabled _SGTDIS=0

Watchdog disabled WATCHDOG =0

(NB: We are usng the HLARGE modd)

RAM: 0x40000-0x5FFFF (via ADDRSEL 1/BUSCON1 and chip select 1)

1 waitstate _MCTC1=1
16 bit non-multiplexed bus _BTYP1=2
No /READY _RDYEN1=0
0 memory trigate time _MTTC1=1
Read/write delay enabled _RWDC1=0
No ALE lengthening _ALECTL1=0
Chip sdlect 1 active _BUSACT1=1
BUSCON1=1
Chip select 1 isan address chip sdlect _CSREN1=0

_CSWEN1=0

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 57

EXERCISE 2: EX2
Objective:
Configure the START167.A66 file to suit the EVA16C development board.

Procedure:

The program in EX2WORK isfrom the EXO\SOLUTION and will form the basisfor thisexercise. The
"clean" START167.A66 has been copied directly from C\KEIL\C166\LIB. Your task isto modify it as
follows

(1) The user stack size will need to be reduced from 1000H to 040H bytes.
(i) The default system stack size needs to be reduced to 64 words.

Extract From START167.A66 - Setting The User And System Stack Size

; STKSZ: Maxi mum System Stack Size selection (SYSCON 13 .. SYSCON. 15)
Defines the system stack space which is used by CALL/ RET and PUSH POP
instructions. The system stack space nust be adjusted according the
actual requirenents of the application.
$SET (STK SIZE = 0) <---- Edit this
; System st ack si zes:
0 = 256 words (Reset Val ue)
128 words
64 words
32 words
512 words
not i npl enent ed
not i npl enent ed
7 = no wapping (entire internal RAM use as STACK, set size with SYSSZ)
; If you have selected 7 for STK SIZE, you can set the actual system stack size
; with the follow ng SSTSZ statenent.
SSTSZ EQU 200H ; set System Stack Size to 200H Bytes
USTSZ: User Stack Size Definition
Defines the user stack space available for automatics. This stack space is
accessed by RO. The user stack space nust be adjusted according the actual
requirenents of the application.
USTSZEQU 1000H; set User Stack Size to 1000H Bytes. <---- Edit this

OO0~ WNE

(iif) The EVA16C memory map has the RAM which holds your program code and data on chip select 1
(CS1#4). You will need to set BUSCON1 and ADDRSEL 1 to map this chip sdect and hence the RAM to
0x40000 for alength of 128kb. There are some EQU’sin START167.A66 that will help you do this - see

page 57:

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 58

Extract From START167.A66

; BUSCON1/ ADDRSEL1 .. BUSCON4/ ADDRSEL4 Initialization

;. BUSCON1/ ADDRSEL1
; —Set BUSCONL = 1 to initialize the BUSCONL/ ADDRSEL1 registers

$SET (BUSCONL = 0) <---- Edit this

; Define the start address and the address range of Chip Select 1 (CS1l#)
; This values are used to set the ADDRSEL1 register

%®EFI NE (ADDRESS1) (100000H) ; Set CS1# Start Address (default 100000H) <---- Edit this
YDEFI NE (RANGE1) (1024K) : Set CS1# Range (default 1024K = 1MB) <---- Edit this

; MCTCL: Menory Cycle Time (BUSCONL.O .. BUSCONL. 3):

; Note: if RDYENL == 1 a maxi num nunber of 7 waitstates can be sel ected

_MCTC1L EQU 1 ; Menory wait states is 1 (MCTCL field = OEH). <---- Edit this

; RWDCl: Read/Wite Signal Delay (BUSCONL.4):
_RWDbCL EQU O ; 0 = Delay Tine 0.5 States <---- Edit this

Other modifications required concern the number of waitstates ("memory cycle time"), reed-write delay etc..
Set up the START167.A66 to match the EVA 167 hardware configuration given in section 6.6.
Further edit START167.A66 to achieve this.

Hint! 1f you want to knowwhat BUSCON1 and ADDRSEL 1 should be, usethe* BUSCON" window
in HITOP and enter the configuration and take the values HiTOP calculates...

6.7 Configuring The Runtime Environment
6.7.1 Adapting printf() To Other Output Devices

The printf() on a PC compiler prints to the PC screen. On an C166, there is no such device. To meet the
ANS standard, afull printf() is provided which is directed to serid port O on the C166. To dlow other
output devices such as LCD screens to be driven from printf(), the source code for putchar() is supplied in the
libraries directory. It isviathe putchar() function that printf() ultimately transfers characters to be transmitted
to ared output device. By adapting the supplied putchar(), you can attach printf() to the output device in your
sysem. The only other step to takeisto link the new putchar() into the program by placing it in the project
filelist (see Project-Edit Project in uVISION). A typica gpplication might be to alow floating point numbers
to be conveniently written to an LCD pand using printf()’s smple-to-use data formatting features.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 59

|

printf"Hi!"} 1)

Acapoting putchon)
1o Your Hardware

YT52 Terminal LCD Panel

Note! Wehave cheated somewhat asto accessthe LCD display in exercise 0, amodified putchar () was
used!

Example:
A modified putchar() which writes printf()’s output to an LCD display regigter.

char far *LCD DATA REG = 0x38000 ;
char putchar(char c) {
*LCD_DATA REG = ¢ ;
return(c) ;

}
If you are puzzled about the pointer to the imaginary LCD, do not worry as we will cover absolute address
pointers later on...
6.7.2 Configuring scanf() For Other Devices
In the same way that printf() writesto red devices via putchar(), scanf() derivesitsinput from afunction caled
_getkey(). The standard getkey() expectsto get itsinput from serid port 0 and thisis what the default librar-
iessupply. We have supplied amodified getkey() in \166TRAIN.WIN\SOFTUART.

The principles behind adapting scanf() to your hardware are identica to those used for printf() so we will not
dwdl on them further.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 60

EXERCISE 3: EX3

Objective:

Direct printf() to LCD pand to print out the value of a seconds counter, created by Timer 7 (T7).
Procedure:

The supplied PUTCHAR.C is the default one from Keil. Any program which calls printf() and which does
not have aPUTCHAR.C in the project file list will useasmilar PUTCHAR.C that is Stored in the ANSI
library and is directed to serid port O.

Y ou mugt edit this PUTCHAR.C to modify the putchar() function to use the "write lcd()" and "read Icd()" to
drivethe LCD display. We have dready removed the contents of putchar() that were directed to the 167's
serid port tranamit registers, SOTBUF. Remember to add it to thefile ligt in the project otherwise the default
putchar() will ill be used!

Here are the functions for the LCD that you will need to put into putchar():

(@ When the character ‘¢’ received by putchar() is newline ‘\n’ then move cursor back to home postion:

wite_ | cd(0x02, LCD REG; /1 Move print position back to top left corner by witing
/1 0x02 to LCD data register

(b) If the character is not anewline \n', print character to current cursor position on LCD:
wite_ | cd(c, LCD DATA); /1 Print character to LCD data register

(©) In MAIN.C, function main(), use timer T7 to generate aone second interva between printing of the
seconds count to the LCD

- Use the C167 data book to work out value that must be written to T78CON register to make timer T7

increment a arate of 1/512 of the 20MHz CPU oscillator frequency to give an overflow every 1.6777 sec-
onds.

- Usethe T7REL register to make the T7IR overflow flag become set once per second. The vaue to use will
be 1/1.6777*65536 . Note that as T7 always counts up, you must negate the result before putting it into
T7REL.

- Stat T7 by stting the T7R (“timer 7 run”) flag.

-The"while(!' T7IR) { ; }" loopwill stop the printf() to the LCD occurring more than once per
second.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 61

7. Inter-Module Linkage

Sooner or later you will want to use a procedure or globd variable that is defined in another module. This
externa quantity is made accessible by the "extern” keyword.

Example of Usage

extern unsi gned char tenp; /1 A char variable defined in another nodul e
extern void schedul e(void); // A function defined in another nodule

So inagiven module, you need to add dl the externd globas and procedures you are going to use. Y ou then
run the linker which will resolve dl the externa symbols This leaves ample room for someredly greet errord
Thereis a better way.

7.1 Anintelligent IncludeFileM ethod That Will Avoid Many Program Build Errors

The most common error in defining externd globd is mismatching types. Even though L166 v3.xx will flag a
warning if any mismatches occur, it is best to prevent them happening in thefirst placel With the large number
of specid keywordsin C166, having everything defined only once will make maintenance easier should, for
example, a variable need to be moved from sdata to idata.

Module main.h

unsi gned char tenp;
Moduletimer_0.h

extern unsigned int tenp;

Y ou have a 50% chance here of creating a class B hardware trap (word access to odd address) if t enp
ends up an odd address This sort of problem can be prevented by only defining the object in one include file
asfollows,

Intelligent Include File

File: nodul ea. h

#i fdef _MODULEA

unsi gned char far tenp = 0;
int test_function(char *)
#el se

extern unsigned char far tenp;
extern int test_function(char *) ;

#endi f

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 62

Source M odules

Hle man.c

#define _MAIN_
#i ncl ude <nodul ea. h>

void main(void {

File moduleac

#define _MODULEA
#i ncl ude <nodul ea. h>

int test_function(char *s) {
int x ;

return(x) ;

}

Any other module that uses modulea.c's globals or functions can then include the modulea.h header file but
snce the defined module name is different the externd versons of the definitions will be visble to the compiler.

Note! This program construction method guarantees that there is only one real definition of each
individual dataobject and onefunction prototypefor each function. Thusmany potential typingerrors
will beinstantly eliminated. Thisapproach makesprogram maintenance and modification very much
easier, especially on large systems. Asan example, if thetypequalifier for a particular global variable
hasto be changed, only one .h file needsto be edited. uVISION'sMAKE will spot which sourcefiles
include the edited .h file and re-compile them automatically.

Whilst we recommend that you use this program congtruction method, it is not compulsory!

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 63

8. The C166 Data Page-Addressing And Code Segmentation

To go any further, we redly ought to examine the way in which the C166 addressesits 256k or 16MB ad-
dress space. Whilst it is possible to write C166 programs without any detailed knowledge of this, the serious
166 user cannot redly avoid getting to know the most important CPU addressing feature, the four data page
pointers (DPPs).

8.1 The Data Page Pointers

8.1.1 A Fast Way of Addressing a L arge Data Memory Space

Asaword machine, the C166 can ded with 16-bit quantities very efficiently, regardless of whether it involves
emitting an address or reading an item of data. Inthe NONSEGMENTED mode, the CPU only has to work
with 16-bit addresses, 64k being the limit of this mode. However, to address the full 256kb or (16mb of the
C167 and C165), 18- or 24-bit addresses must be generated.

To keep data and opcode access times in the C166 to a minimum, a segmented or “paged” addressing ar-
rangement is employed. For opcode accesses, 64kb segments are used, smilar to the CS: segments familiar
to 8086 users. For data accesses in the C166, the memory space is divided into 16kb data segments or
pages which are controlled by four Data Page Pointers (DPPs). In contrast to the 8086's ES: SS: and DS.
registers, there are 4 DPPsin the C166. These are used in an ingenious way to dlow the entire 256k (or
16MB for C165/7) memory space to be addressed.

Summary:

i 8086 : SABB0CL166

CS = Code segment : CSP = Code segment pointer

DS = Data segnent : DPPO = Data page pointer O

SS = Stack segnent : DPP1 = Data page pointer 1

ES = Extra segnent : DPP2 = Data page pointer 2
: DPP3 = Data page pointer 3

8.1.2 The DPPs expressed diagrammatically

o . i SABS0C " 66 Addross Bus
TnR R L ooofouowo®o oy ox 5 o 3omod

:“—ﬁ-.—"—:n--l-\.'\-.:-.v -
o R T S

DPPZ

DPPZ

OPP1

2-4 Dacodar

OPPD

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 64

Put smply, any 18-bit data address is actually formed from a combination of 14-bit address offset with re-
spect to asingle Data Page Pointer. The data page pointer effectively drives the top four address lines (A14-
A17) inaC166 and thetop 12 linesin aC167. This dlows afast generation of the address as the C166 only
has to manipulate 14-bit address, even though 18- or 24-bits of memory may be being accessed.

8.1.3 Example Of Using DPPs

Get data from location OxC001

MOV DPP2, #03 ; Set DPP2 to page 3 (page base address = 3 * 16k
NOP ; Allow change of DPP to take effect

MOV RO, #08001H ; Load address into RO

MOVB R1, [RO] ; Use indirect addressing relative to DPP2

Real 18 bit address = DPP2 * Page Size + RO & Ox3FFF
Where Page Size = 16k (0x4000)

Thisisthe bass of al C166 off-chip data addressing. Note that the C167 has aternative modes, based on
the EXTS ingruction.

8.2 Using The DPPs

With the memory space being addressed via Data Page Pointers with a 16kb range, some strategy is required
to allow data at any address in the 16MB range to be accessed. After reset, the DPPsare set 10 0,1,2,3
respectively, meaning that no address outside the first 64kb can be addressed. The DPP vaues can be
modified fredy by the user to dlow higher addresses to be accessed.

The fact that a 16kb range can be addressed without changing a DPP, suggests that one class of data objects

could be placed in afixed 16kb range. By way of an example, take an address range at 0x4000. By setting
DPP2 to 0x0001, a 16kb range from 0x4000 to Ox7FFF can now be addressed without changing the DPP2.

To get data from address 0x4010 into R1:

Coming out of rest...
MOV DPP2, #01

In program...

MOV RL, DPP2: 4010H ;

Any of the 16kb in the range can be addressed without any DPP vaue being changed. Thisisobvioudy a
very efficient method of addressing data.

To cover the entire 16MB address range though, requires the DPP value (i.e. the page in which the datalies)
to be reca culated before each access. Here' s an example, using DPPO as the page pointer:

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 65

To get data from address 0x14000 into R1:

MOV DPPO, #PAG 0x14000) ; Put the page no. of 0x14000 into
; DPPO (i.e. find page = 0x14000/ 0x4000)
MOV R1, DPPO: 0x14000

Accessing the on-chip specia function registers at OxffO0 is usudly done viaDPP3: at reset, this DPPis set to
3, meaning that it covers the range of page 3, i.e. Oxc000-0xffff. Data outside the 16kb range covered by
DPPO at anyone time can be accessed by recal culating the value of DPPO before each access.

Thusfar, we have alocated DPP2 to point at 0x4000, DPP3 to 0xC000 and DPPO to cover all addressesin
the memory space. Infact, thisis exactly how C166 uses the four DPPs:

Variable datain a 16kb range that is addressed via a fixed DPP2 is termed “near”

Data covered by DPP3 (page 3) istermed “system”

Data accessed viaa congantly recaculated DPPO istermed “far”, “huge’ or “xhuge’ (166 only)
Variable datain a 16kb range that is addressed via afixed DPP2 istermed “near”

Congtant datain a 16kb range that is addressed viaafixed DPP1 is dso termed “near”

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 66

EXERCISE 4: \EX4

Which physical addresses will be accessed in the following examples? Y ou need to be able to understand
addresses presented in the following formats to debug C166 code.

Note: MOV reg,reg isaWORD move (16 bits)
MOVB regreg isaBYTE move (8 bits)

Assume that the DPPs are set up asfollows:

DPPO = 08
DPP1 = 01
DPP2 = 04
DPP3 = 03

(i) Assume DPP1=01

MOV R1, DPP1: 02010H ADDRESS =

(i) Assume R4 = 0x8002 ;

MV R, [R4] ADDRESS =

(iif) Assume R4 = OxFFO0

MV R, [R4] ADDRESS =

(iv) Assume DPP2 = Ox4

MOV R4, DPP2: 00000H ADDRESS =

(V) Assume R4 = 0x4202

MOV RL,[R4] ADDRESS =

(vi) Assume R4 = 0x0102,R5 = Ox4

EXTS R5, #1
MV R2, [R4] ADDRESS =

(vii) Assume R5 = 0x0201

MV RL,[R5] ADDRESS =

Bonus Question:

Why will the access (vii) fail? What will hgppen?

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 67

8.3 Code" Segments"

While data accesses are made via DPPs, opcode fetches are made on the basis of 64k segments. Thus when
aCALL or JUMP is made in assembler, if the cal iswithin the current segment then the destination addressis
amply a 16 hit offset from the current segment base, held in the CSP (code segment pointer) register. If no
segment number is given, execution speed isfagter. 1t dso means that subroutines (i.e. C functions) must be
grouped together in segments, unlessthey are cdled usng a*“segmented” cal. (CALLYS).

Functions which are outside the current code segment are called with a CALLS and must be terminated with a
RETS. Such functions are termed “far” in C166.

Example

Cal afunction at 0x18000, i.e. 0x8000 offset in code segment 0x01:

CALLS 01, 08000H ;

Functions which are called without giving a destination segment number are termed “near”.

It is how C166 mixes the foregoing classes of data and function types that is the basis of the memory models.

The amount or ROM and RAM in your system, plus the balance between code and data will largely deter-
mine which modd is the best choice.

Definitions

near functions - functions can only be caled from within the same segment

far functions - functions can be called across 64kb segment boundaries

near data - datain asingle 16kb range, addressed by a single DPP (DPP2) which never changes.

far data - data anywhere in 256kb (or 16MB) memory space but no single object may be over 16kb.
huge data - data anywhere in the memory space but no single object may be over 64kb in size
xhuge - data anywhere in the memory space of unlimited sze.

Type qualifier - Specid keyword which when included in a data object definition can influence where it ends
up in memory.

8.4 DPP Usage Summary

DPPO - Far/ Huge/ Xhuge
DPP1 - Near constants
DPP2 - Near data

DPP3 - System RAM SFRs

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 68

9. C166 Compiler Memory Models

Choosing which memory modd to use in your project is perhaps the first and most decison to make. Itis
wiseto give it careful consderation as changing modes hafway through a project can be quite tricky and time
consuming. However, if aprogram sill runs correctly after amodel change, then it is probably fairly solid,
especidly asregards its use of pointers.

The term “modd” amply refers to how you want C166 to group together data objects and whether it isto use
segmented or non-segmented function cals. To understand why different memory models are required, it is
essentid to understand the underlying structure of the C166 family, covered in the previous section.

However, to choose amodd, you can use the following guiddinesto help:

Definitions

default memory space - area (near or far) where data declared without type quaifier will end up:

CLASS - physica memory region occupied by data which share the same type qudifier; i.e near, far or huge.

Example:
int test_var ; I/l Variable will go into near, far or huge space, depending on
nenory nodel .
int far test_var ; [/ Variable will go into far data area, regardless of
prevailing menory nodel.
TINY:

In this modéd, the CPU runsin segmented mode (SGTDIS = 0in SYSCON). This meansthat al program
and data must lie within the first 64K. A16 and A17 are inactive and can be used assmple 10 pins. The
DPP regigters stay at their reset values of:

DPPO = 0O
DPP1 = 1
DPP2 = 2
DPP3 = 3

All function calls must be within the same segment i.e. near. The TINY modd isrardy used, being reserved
for true single-chip FLASH 166 designs which cannot exceed 32KB in Size.

SMALL.:

The CPU runsin segmented mode so that A16 and A17 are active. All function calls are within segment
“near” and dl data defaultsto “near” and thusiswithin a16kb range. Code sizeis effectively limited to 64kb
and data limited to 16kb variables and 16kb constants. However, by using the far and huge keywordsin data
declarations, overdl data sSize can be expanded to any size.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 69

MEDIUM:

The CPU runs in segmented mode o that address lines above A15 are active. All function cdls are now “far”
and dl dataiswithin a 16kb range and defaults to “near”. Code sizeis unlimited and data limited to 16kb
variables and 16kb constants. However, by using the far and huge keywords in data declarations, overal
data size can be expanded to any size. Thisis perhaps the most useful model asiit gives no redtriction on code
dzes but data still defaultsto fast “near” addressing.

COMPACT:
Thisisthereverse of MEDIUM as data defaults to “far” and functions default to near. Thisis useful for
programs with smal amounts of code but large data.

LARGE:
Thismodd treats dl function calsas “far” and data objects likewise. It suitslarge applications and is perhaps
the safest choiceif the final program characteristics are not easly estimated.

HLARGE:

Only available with MOD167. It isthe same as LARGE but the default for variable declarationsis huge. In
C166 v3.xx, huge addressing is handled more efficiently than far and so this modd isto be preferred to
LARGE in C167 applications.

HCOMPACT:

Only with MOD167. It isthe same as COMPACT but the default for variable declarationsis huge. In C166
v3.xx, huge addressing is handled more efficiently than far and so this modd isto be preferred to COM-
PACT.

Note: For C167 applicationswith large amounts of data, the HLARGE model combined with the HOLD
control to force small objects (char, int, short, long) into the NEAR or IDATA areas gives the easiest
development route. This is particularly true of programs ported from 16-bit PC compilers as the
characteristcs of the default huge pointer type are identical.

9.1 Summary Of C166 Type QualifiersThat Deter mine Placement Of Data

9.1.1 Default Data Object Placement Overriding

The chosen memory model determines the location of data objects. However, in many cases, it isuseful to
override this default placement. An exampleina SMALL modd program might be to put alarge aray into
the huge data area so that dl the fast near dataareais not used up. The “huge’ type qudifier is used to
achevethis. The syntax for usng type qudifiersis

<type> <typequalifier> <objectnane> = <initialisation val ue>

Example

int huge exanmple_var =0

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 70

9.1.2 C166's Type Qualifiers Summary
(i) near

Purpose: Allow data to be forced into reasonably fast access area.
Ovedl size of al near datac 16kb

Largest single object: 16kb

CLASS name: NDATA, NDATAO

Example 1
int near near_var = 0 ;
(i) far

Purpose: Allow alarge number of smdl arrays to be grouped together. This keyword is best replaced by huge
on the C167 asfar isless efficient for handling arrays and other large objects.

Ovedl szeof dl far datac 16MB
Largest single object: 16kb
CLASS name FDATA, FDATAO

Example 2

int far big_array[0x2000] ;

(iii) huge

Purpose: Allow use of large data objects
Overdl szeof dl hugedata 16MB

Largest single object: 64kb
CLASS name: HDATA, HDATAO

Example 3

int huge very_bi g_array[0x8000] ;

(iv) xhuge

Purpose: Allow very large data objects to be utilised
Overdl| szeof dl xhuge data: 16MB

Largest single object: 16MB
CLASS name: XDATA, XDATAO

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 71

Example 4
i nt xhuge hunongous array[0x40000] ;
(v) idata

Purpose: Force datainto on-chip RAM. ThisRAM is aways addressed at full speed, regardless of the
external bus type or wait-states etc..

Overdl sze of dl idata objects: determined by CPU type
Largest single object: 16kb but not redisable in practice
CLASS name IDATA, IDATAO

Example 5

int idata fast_data = 0 ;
(vi) bdata

Purpose: Combined word and bit-addressable data. Can be used in conjunction with shit control to alow bit
addressing of individud bitsin anint.

Overdl sze of dl bdata objects. 256b

Largest single object: 256b

CLASS name BDATA, BDATAO

Example 6

int bdata bit_flag word = 0 ;

(vii) sdata

Purpose: Force datainto the area between Oxc000 and Oxffff, to be addressed via DPP3 which is always set
to page 3. Useful for addressing PEC pointers and memory-mapped 10 at 0xc000. On the C167CD/SR,
sdata objects can be used to fill the XRAM area.

Overal sze of dl sdata objects. 0x3000 approx.

Largest sSingle object: 0x3000 approx.

CLASS name: SDATA, SDATAO

Example 7

int sdata fast_data = 0 ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 72

9.2 Controlling Constant Data

To date, we have redlly only talked about variable data that will end up in RAM. Of course, in any embedded
system, substantia amounts of constant data will be required. This can range from look-up tables to character
grings used in printf (“Hello”) statements. Naturdly, constant data should be placed into ROM in atrue
embedded system.

Congtant data can be near, far and huge like variables and the memory mode controls which is used in the
sameway. Thusa SMALL modd program will have al its constant data placed into a near congtant area and
aLARGE program haveit in afar congant area.

Aswith varidbles, it is possble to override the default placement of congtants:

Example 1

#pragnma LARCE

int near const constant_data = O0x20 ; // Put this in the NCONST cl ass
Example 2

#pragma SMALL

int const far constant_array[] = { 0x20,0x20,0x34,0x89... } ; // Put this in FCONST cl ass

Example 3

#pragma SVALL

int const far constant_array[] = { 0x20,0x20,0x34,0x89... } ; // Put this in FCONST cl ass

The most common use of congt isto define congtant strings and look-up tables. Notethat any stringina
printf(“ string”) statement will end up in the near (NCONST) or far (FCONST) area, depending on the

memory mode.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 73

EXERCISE 5: EX5
Objective:

(i) Nlugtrate how congtant dataiin C166 behaves differently to that on PC and other C platforms.
(i1) Specid points to note when overriding default data placement with far keyword and using strepy() and
other library functions.

Procedure:

Open the project in \166TRAIN.WIN\EX5\WORK and edit MAIN.C. Create a global pointer called
"*cong_ptr* and make it point to a constant string, "message(]”. Usethe "far” keyword to make thisafar
gring, overruling the default for the SMALL modd being used. Creete a buffer in RAM called
message_buffer|].

char const nessage[] = { "\nHello Wrld" } ; // A string in EPROM
char const * const_ptr = &nessage[O0] ; [/ A pointer that points to the string

char message_buf f er [0x20]

Use the strepy() library function to copy the string into the RAM buffer and then printf() it via the putchar()
modified to output to the LCD, asin exercise EX3.

strcpy(nmessage_buffer, const_ptr) ; /1 Get message
printf("%", nessage_buffer) ; /1 Transmt nessage

Congder especidly how you will get the *congt_ptr itself into EPROM as this requires an obscure aspect of
C! Do not ignore any warnings emitted by the compiler asthey usudly indicate trouble.

9.3 Setting Up The DPPs

The user does not have to take any stepsto set up the DPP registers as they are taken care of during the
startup phasein STARTUP.A66 or START167.A66

START167.A66 Extract

EXTRN?C_PAGEDPP1 : DATALG6
EXTRN?C_PACGEDPP2 : DATA16

MOV DPP1, #?C_PAGEDPP1 7 NEAR CONST PACE
MOV DPP2, #?C_PAGEDPP2 ; NEAR DATA PACE

Hereis how they are dlocated:

DPPO isleft at itsreset vaue (0) asit is dways recd culated before use.

DPP1 is st to the base address of the near constant area (NCONST class)
DPP2 is st to the base address of the near data area (NDATADO class)
DPP3 is st to the base address of the system or “sdata’ area (SDATA class)

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 74

9.3.1 Special Allocation Of DPP’sTo Create Customised Memory Models

The standard allocation of DPP1 to NCONST, DPP2 to NDATA can be overridden by the DPPUSE
control in L166 v2.54 or later. Applicationsfor this might be to creste aNCONST area of above 16kb for
large look-up tables, destined for EPROM etc. This can be acheived by the redlocation of DPPO: In the
C167 and C165, DPPO is not used for far/huge/xhuge data accesses as the EXTx ingtructions are to be
preferred. Thus DPPO could be combined with DPPL1 to give a 32k linearly addressible region, here from
0x38000 to Ox3ffff.

DPPO = OxOE => address 0x38000 - Ox3bfff (NCONST)
DPP1 = OxOF => address 0x3c000 - Ox3ffff (NCONST)
DPP2 = 0x04 => NDATA at 0x10000- Ox13fff

DPP3 = 0x03 => SDATA at 0xc000- Oxffff

L 166 Input File For 32kb NCONST:

mai n. obj ,

start 167. obj

to exec

DPPUSE(0=NCONST(0x38000- Ox3f f f f) , 2=NDATA(0x10000))

Taken to extremes, in the C167 with its 4k on-chip RAM, the NDATA and SDATA areas could be com-
bined, starting from 0xf000, leaving DPPO-2 available to create a 48k linear NCONST area.

DPPO 0x0E => address 0x34000 - Ox37fff (NCONST)
DPP1 OxOF => address 0x38000 - Ox3bfff (NCONST)
DPP2 = 0x04 => address 0x3c000 - Ox3ffff (NCONST)

DPP3 = 0x03 => SDATA at 0xc000 - Oxffff

L 166 Input File For 48kb NCONST:

mai n. obj ,

start 167. obj

to exec

DPPUSE(0=NCONST(0x34000- Ox3f f f f) , 3=NDATA(0x10000))

DPPUSE() Syntax:

DPPUSE(<dppnr >=<gr oupnane>(range), <dppnr>=<groupnane>(range))
<dppnr> isthe number of a DPP register (0 for DPPO, 1 for DPPL, 2 for DPP2, 3 for DPP3).

<groupname> isthe name NDATA for the NEAR DATA group or NCONST for the NEAR CONST
group.

<range> is the address range where the group should be placed.

Examples:

DPPUSE(0=NDATA (18000H 23FFFH), 3=NCONST (0C000H OEFFFH))

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 75

In this example you are using DPPO, DPP1, and DPP2 for accessing the NDATA group. DPPO is|oaded
with the vaue 6 pointing to address 18000H. DPPL1 isloaded with the value 7 pointing to the address
1CO00H. DPP2isloaded with the vaue 8 pointing to address 20000H. With these DPP values, the address
range 18000H - 23FFFH may be accessed with short (16-bit) addresses rather than using afar or huge
addressing. For the NCONST group, the DPP3 register isused. For efficent accessto 166/167 SFR
registers of the 166/167 this register must be loaded with 3. This accesses in the range 0CO00H - OFFFFH.

DPPUSE (1=NDATA (18000H 1BFFFH), 2=NCONST (8000H OEFFFH))

In this example the register DPPL is used to access the NDATA addresses. The register DPPL istherefore
loaded with the value 6 for the address range 18000H - 1BFFFH. The DPP2 and DPP3 registers are used
for accessng NCONST addresses. DPP2 isloaded with the vaue 2 pointing to address 08000H. DPP3is
loaded with the value 3 pointing to address 0CO00H. This alows the address range 8000H - OEFFFH to be
used for NCONST objects.

Notes:

(i) The L166 generates a proper initilization for all DPP registers. The DPP registers are assigned in
ascending order to the named groups. L166 always assigns for an address range several DPP registers
if the range does not fit within one 16KB PAGE.

(it) The DPP3register must alwayscontainthevalue3. Whenever theDPP3register isusedfor theNDATA
or NCONST group, the address range must fit into PAGE 3 of the 166 address space (address range
OCOQOH - OFFFFH).

(iif) An addressrange for NDATA and NCONST must always be stated. It isnot possibleto re-assign just
one group.

(iv) The DPPUSE control also ensures that correct CLASS definitions for NDATA and NCONST are
generated and eliminates the need for the CLASSES statement to include NCONST and NDATA.

9.3.2 Special Memory Maps Possible With C166 v3.00

The sze of the near and near congt areas permitted by the default C166 memory models can be modified by
the use of the DPPUSE() contral in the L166 linker. C167/5 users have a grester degree of flexibility in this
respect as DPPO is not used for far/huge/xhuge accesses. Perhaps the commonest use for this featureisto
increase the Size of the fast-access near (NDATA class) area. In many applications, 16kb is not large enough
and so DPP1 can be reallocated to NDATA, dongside the default DPP2 to create a 32k NDATA - DPPO
can then be assigned to NCONST to give adefault 16k region.

EXERCISE 5A: \EX5A

The \EXS\WORK\ directory contains the files"MODO0.C" and "MOD1.C" which generate about 30k of near
congtant data. The file MAIN.C holds some simple statements which access thisdata. Use the DPPUSE()
control to produce alinker input file, "EXEC.LIN" which will locate the program to make a 32k near constant
(NCONST) areawhich can run onthe EVA167CR. Use HiTOP to verify that DPPO and DPP1 have
consequetive vauesto give a 32k linear area.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 76

9.4 Automatic Placement Of Data

The HOLD Directive

By using the individud type qudifiers, the default memory spaces for data can be overridden. C166 can
provide some help with this task viathe HOLD() directive. One of the advantages of the COMPACT and
LARGE modelsis that code can be added without regard to which segment functionsarein asdl cdls are far.
Thedownsdeisthat dl dataisfar and hence dower to access.

The HOLD directive dlows the user to tell C166 to put al objects of less than a stated Size into a particular
memory space.

Example:

InaLARGE modd program, al the chars, intsand longs areto be placed into the faster near dataclass. Thiswill
leave dl large objects like structures, arrays etc. in the far data area.

#pragma LARCE

#pragma HOLD(near,4) // Put all objects of 4 bytes in length or under into the
near data class.

9.5 CLASSES And SECTIONS

Classes are groups of like data objects. All the near data objects from all modules (source files) in an entire
program are collected together into asngle block and given a CLASS name like “NDATA”. Thisnameis
handle by which the user may control the address at which the data objects will be placed by the linker.
9.5.1 How Type QualifiersRelate To ClassNames|n C166

near objects

NDATA - near datawhichisnot initidised by C166's startup phase
NDATAO - near datawhich is zeroed out by C166's startup phase

far objects

FDATA - far datawhichisnot initidised by C166's startup phase
FDATAO - far datawhich is zeroed out by C166's startup phase

huge objects

HDATA - huge datawhichisnot initidised by C166's Sartup phase
HDATAQO - huge datawhich is zeroed out by C166's startup phase

xhuge objects

XDATA - xhuge datawhich isnot initidised by C166's startup phase

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 77

XDATADO - xhuge datawhich is zeroed out by C166’ s startup phase
idata objects

IDATA - idatadatawhichisnot initidised by C166's startup phase
IDATAOQ - idata datawhich is zeroed out by C166's Sartup phase

bdata objects

BDATA - bdatadatawhich isnot initidised by C166's startup phase
BDATAO - bdata datawhich is zeroed out by C166’ s startup phase

9.6 The Difference Between NDATAO And NDATA

9.6.1 TheNOINIT #pragma

As may be gathered, C166 will create two varieties of each dataclass, NDATA and NDATAO plus FDATA
and FDATAOQ etc. These should aways be placed by the user at the same addresses as the basic NDATA
and FDATA classes. Thereason for the digtinction isthat the “0” suffixed classes are cleared to zero and
initidlised by STARTUP.A66 before main() isreached. The CLRMEM congtant in START167.A66 deter-
mines whether this clearing occurs or not.

START167.A66 Extract

; The follow ng code is necessary to set RAMvariables to 0 at start-up
; (RESET) of the C application program

$I F (CLR_MEMORY = 1)

EXTRN?C_CLRMEMSECSTART @ WORD
Cr_Menory:

Theinitidisation condgts of ether dearing to zero or the writing of Sart values given in avariable s declaration,
ie:

int far xvar = 0x02 ;

Objects destined for the FDATA and NDATA classes are those declared whilst a#pragma NOINIT control
isinforce. Thisisusualy done where the datais held in non-volatile memory from the last time the program
Was run.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 78

For example:
MODULE = MAIN

int far var ; /'l Zeroed before main()
int far varl = 2 ; /[l "2 witten into variable before main()

#pragma NONT // Inhibit zeroing/initialisation
int far nonvol var ; /1 Not zeroed before main
#pragma INNT // Restore zeroing/initialisation

int ordinary_var ;

SECTIONS and CLASSES Produced As A Result Of This

(i) nonvolvar ends up in SECTION ZFDMAIN%FDATA
(ii) var and varl end up in SECTION ?FDO?MAIN%FDATAO

The precise address at which the classes are located is determined by the CLASSES and SECTIONS con-
trolsin L166. Wewill cover thisin detail in the next sections.

9.7 Modules And SECTIONSs - Placing Things At Absolute Addresses

SECTIONs alow the data from individua modules (source files) to be placed by the linker. Thus the near
constant data (NCONST class) from a certain module can be precisaly placed at a user-defined address.
Thisisuseful for placing alook-up tablein a FLASH EPROM, remote from the main program EPROM.

Congder the following example:

A far integer is declared in amodule MAIN.C:

int far testvar;

This causes C166 to create a“ SECTION” caled 7FDO”MAIN%FDATAO. Asmay be gathered, the
section name is constructed as per:

?<cl assshort nane>?>nodul e name>%cl assname>.
The <classshortname> is an abbreviation for the full class names as per:

d ass Nane Short Nane At Fil e/ Modul e Level

NDATAQ NDO
FDATAQ FDO
NDATA ND
NCODE PR
FCODE PR
NCONST NC
FOONST FC
And soon...

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 79

Note that the section names generated for the executable code is dways “PR”. The converson to NCODE
and FCODE is made by the linker, depending on which memory modd is current.

Example
A "huge' integer is declared in amodule MODA.C:

int huge testvarl ;

The resulting section is HDO?MODA%HDATAO. To fix the program's classes a the correct addresses, the
CLASSES contral is used when running L 166:

For example:
EXEC.LIN Linker Input File (non-uVison):

nai n. obj , &

noda. obj &

to exec &

CLASSES(HDATA(0x8000) ,
HDATAO(0x8000))

Thisfixes the huge data (HDATA & HDATAO) classes at 0x8000. A further level of control over placement
is possible using the SECTIONS() command. This alows the addresses of a particular modul€ s own data
and code classes to be fixed within the host classes range.

For example:

nmai n. obj , &
noda. obj &
to exec &
CLASSES(HDATA(0x8000) ,
HDATAO(0x8000)) &
SECTI ONS(?HDO? MODA%HDATAO(0XA000))

Note: The" host class' hereisHDATA

This puts the huge data class at 0x8000 but puts the huge data objects from module MAIN.C a 0xA0QQ.
L 166 will then arrange huge data objects from other modules automaticaly so as to leave OxA0Q0 free.

On the C167/5 with their 16M B address space, it often desirable to split HDATA and FCODE classes
across severd ranges. This might be required if you have for example, two ROM devices at different ad-
dresses. Commonly, this might be a 32k boot EPROM at 0x0000 and a 128k application FLASH EPROM
at 0x40000. The CLASSES control can be used to alow the linker to fill both regions thus:

nai n. obj , &

noda. obj &

to exec.abs &

CLASSES(FCODE(0- 0x7f f f, 0x40000- Ox5f fff),
HDATA(0x8000) ,
HDATAO(0x8000)) &

SECTI ONS(?HDO? MODA%HDATAO(0xA000))

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 80

In the same way, HDATA can dso be split. Be aware though that splitting the near code (NCODE) can be
risky and you must make sure that you do not try to split it across a 64k segment boundary. As near function
calls have no built-segment number, your program will crash!

9.7.1 Special Note On Windows95 and NT4

Windows95 and NT4 dlow file names that can be more than 8 characters long and contain spaces. As C166
uses the module (i.e. filename) to form the SECTION name, you must not use these types of filename! Please
gtick to usng MS-DOS compatible filenames at al times.

9.8 CopingWith TheSpecial Sections" ?C_CLRMEMSEC" And" ?C_INITSEC".

These are specid sections created by C166 to hold the initial values of RAM varigbles. When you declare a
variableint x = 0x80, the 0x80 is actudly placed in ROM-based look up table. During the startup.a66, this
ROM dataistransferred to its final resting place in RAM. Left to its own devices, L166 will place these near
the bottom of memory, on the assumption that this must be EPROM. On systems where the program is &,
for example, 0x40000, as might happen on an EVA167/5, it is up to the user to put these into the correct
area.

Thisissmply achieved by using the sections control in L166. They are best kept together; the only point to
watch isthat the Sze of the two sectionswill vary according to how much initidised deta there isin your
program. Thus, it is quite possble that they will grow such that they will overlgp. The linker will issue a
warning to which you must respond. If you ignore the warning, you may find someinitidised datafails to be
st up properly before you reach main().

Example:

mai n. obj

start 167. obj

to exec

VECTAB(0x40000)

CLASSES(NCCDE(0x40400) , NCONST(0x40400) , NDATA(0x48000))
SECTI ONS(?C_CLRMEMSEC(0x42400) , ?C_| NI TSEC)

REGFI LE(exec. reg)

Alternativly the new CINTTAB control can be used.
Example:

mai n. obj ,

start 167. obj

to exec

VECTAB(0x40000)

CLASSES(NCCDE(0x42000) , NCONST(0x44000) , NDATA(0x50000))
ClI NI TTAB(0x42400)

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 81

9.9 Placing Real Data At Fixed Addresses

Example Of Usng The SECTIONS() Control

A common Situation where the sections control can be used iswhen a structure or array needsto be placed a
aparticular address. For example, a structure describing the registersin a memory-mapped redl time clock a
Ox5ff00 can be placed over the appropriate addresses by the following method:

(i) Dedare structurein a specid module RTCdef.c which contains nothing else:

#pragma NON T

struct tine { int hours ;
int mnutes ;
int second ; } ;

struct tine far RTC ;

(i) Use the sections command to fix structure over red time clock when linking.

EXEC.LIN Linker Input File

RESERVE(0x04- 0x 1FF)
VECTAB(0x40000)
SECTI ONS(?FD?RTCDEFY%DATA(0x5f f 00))

The RTC structure will now be at address Ox5FF00, the base address of the redl time clock chip. Note that
any section that isto follow ZFD?RTCDEF in memory is Ssmply gppended after acomma.

The SECTIONSs contral will alow far, huge and xhuge sections to be located outside the range of any
CLASSES control for FDATA, HDATA and XDATA asthese types of data have no restriction on where
they arelocated. Sectionsfrom IDATA, SDATA, NDATA, NCONST and BDATA cannot be located
outsde the classrange, and a L 166 linker error will result.

Note: The sections control can also be thus:

SECTI ONS(S1(0x40000) , S2, S3, S4, S6(0x50000) , S7, S8)

Where S1, S2, S3 etc. are section names in ascending address order.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 82

How to work out the SECTION name...

Variable Name

Section Name

Filename: MODA.C

unsigned short huge hvarl ;

THDO?MODA%HDATAD

Abbreviated Class Name: HDO Filename:

To give a section name of!

Class Name:

7abbreviated class name?FILENAME%CLASSNAME

© Copyright Hitex (UK) Ltd 1997

C166 Introduction Page 83

EXERCISEG: EX6
Objective:

Usethe L166 linker's SECTION() control to place a structure representing the data registersin an imaginary
red time clock chip at Ox5FF00 so that the physical registers are digned with the C variables of the same
name. Thusthe structure dement "seconds’ will have the same address as the seconds register in the redl
time clock. In addition, the red time clock chip has 128 bytes of RAM, offset by 128 from the base address
of the time regigters.

RTC Device Memory Map

0x00 - Ox1F: RTC time and control registers
0x80 - OxFF: Non-volatile RAM area

Note the entire clock is offset to Ox5FFO0.
Asthe datain the clock's registers and RAM must not be cleared a power-up, the datainitidisation must be
inhibited.

Procedure

(1) The"inteligent include fil€" method has been used to congtruct the example. Edit NONVOL.H to add a
gructure with the correct attribute (idata, huge, far etc.) to dlow it to be accessed, even though it is not near
the norma program datainthenear area

(i1) In addition, use the #pragma NOINIT control in NONVOL.H to prevent C166 from zeroing the stored
time data after reset. In RAM.H, use this control to make sure that the non-volatile variables are o pre-
served.

(iii) Edit the L 166 tab to add the new SECTIONSs produced by NONVOL.C and RAM.C to the "User
Sections' box. Note: you cannot have more than one SECTIONS() in the linker file. The SECTION con-
taining the time registers needs to be located at Ox5FF00 and that holding the RAM variables at Ox5FF80.
Remember that the sections control can be thus:

SECTI ONS(S1(0x40000) , S2, S3, S4, S6(0x50000) , S7(0x60000) , S8)

Where S1, S2, S3 etc. are section names in ascending address ordey....
Thereisno need to edit MAIN.C asthisis complete.

(iv) Once the program has been built, load it into HiTOP and go until main().

(v) Usethe Examine function to confirm that the structure is at Ox5FFO0.

(vi) Now run the program by clicking the green traffic light button

(vii) Pressthe RESET onthe EVA167 board and then click the SR (Setup-System reset) toolbar button
iNHiTOP to re-establish communication with the monitor.

(viii) Reoad the program, run until main() and check that the data you put in the ructure is ill there...

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 84

9.10 Using The RENAMECLASS Control

An dternative gpproach is to use the RENAMECLASS control to produce a specia class which converts
FDATAO to anew classname such asRTC_ADDR. The new classislocated at the required address by the
adding it to the existing CLASSES contral.

Example:

(i) Declare sructurein a gpecid module RTCdef.c which contains nothing else:

#pragma RENAMECLASS(FDATA=RTC ADDR) // G ve subsequent FDATA objects a new class nanme
#pragma NONT

struct time { int hours ;
int mnutes ;
int second ; } far RTC ;

Note: (i) The memory model must be stated before the RENAMECLASS pragma.
(ii) Asthedataclassisnot to becleared duringinitialisation, theclassnameisFDATA not
FDATAO.

(i) Usethe CLASSES command to fix structure over the red time clock when linking.
EXEC.LIN Linker Input File

VECTAB(0x40000)
CLASSES(RTC_ADDR(0x5f f 00))

The RENAMECLASS gpproach is better for those instances where a number of modules will each be defin-
ing data objects that must al be collected together and placed in anon-volatile RAM, for example.

9.11 Summary Of Placing Objects At Fixed Addresses With The Linker:

MOCULET MOCULEZ MODULEZ using REG1 using REGZ2

SECTIGONS SECTIONS 3ECTICONS

b J
v v
CLASSES REGSBAMK
¢
v

Ab=zolute Address

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 85

EXERCISE 7: EX7
Objective:
Modify the previous exercise to make use of the "#pragma RENAMECLASS' approach.

0x00 - Ox1F: RTC time and control registers
0x80 - OxFF: Non-volatile RAM area

Asthe datain the clock's registers and RAM must not be cleared a power-up, the datainitidisation must be
inhibited. The address of the clock is OxX5FF00 and the RAM area Ox5FF80.

Procedure:

The program isvery smilar to EX6. However, in NONVOL.H and RAM.H , you will need to add the
RENAMECLASS control to creste the new classes called "RTC_ADDR" and "NONVOLRAM" respec-
tively. Edit the EX7.LIN to add the new class names to the existing CLASSES() control.

Thereisno need to edit MAIN.C asthisis complete.

Once the program has been built, load it into HiTOP and go until main().

Use the Examine function to confirm that the structure is at OxSFFOO.

Now run the program by clicking the green traffic light button

Pressthe RESET button on the EVA167 board and then click the SR (Setup-System reset) tool bar
buttonin Hi TOP to re-establish communication with the monitor.

5. Rdoad the program, run until main() and check that the data you put in the structureis il there...

dPwWDNPE

9.12 The ORDER Pragma

In the case where data is being declared which will exist in a non-volatile memory or a memory-mapped 10
device, it isuseful if the pogtion of the particular dataitem islocated in the same place asit gppearsinthe C
sourcefile, i.e. the order in memory matches the order in the sourcefile.

Example

Module TUNEO.C

#pragma ORDER
int const near pressure_sensor_gain = 0x1101 ;

int const near pressure_sensor_offset = 0x7123 ;
int const near pressure_sensor_tenp_coeff_offset = 0x4280 ;
Linker Input Fle

SECTI ONS(?NC?TUNEOYNCONST(0x100000)) // Base constants at 0x100000

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 86

In EPROM Memory:

Addr ess Si gni fi cance

0x100000 - pressure_sensor_gain

0x100002 - pressure_sensor_of fset

0x100004 - pressure_sensor_tenp_coeff_of fset

9.13 The ASSIGN Linker Control

Where the previoudy described methods of fixing data objects at defined addresses are not suitable, it is
possible to assign an absolute address to a public symbol using the ASSIGN control. This generatesa
typeless public symbol which can be used by C166.

Example

ASSI G\(pr essur e_sensor _gai n(0x100000)) /] Generate a synbol at 0x100000

9.14 The#pragma pack(1) Control

The basic word-orientated structure of the 166 means that word (unsigned short) eements will lways be on a
word boundary. However, if the 166 is communicating with, for example, a486 PC's ISA bus through dual-
port RAM, any C structures could be byte aligned. Thus, aword element could start at an odd address, asis
possible in x86 processors. The pack(1) directive forces the compiler to place word eements at such an
address. It isimportant to be aware that the compiler will generate considerably more code when ng
Structures when this control isin effect and so it should only be used on those Structures that redlly need it!

Example:

#pragma pack(1) /* alignnent is BYTE for the follow ng structures */

struct s1 {

int i1; // i1l has offset O
char c1; /1 c1 has offset 2
int i2; /1 12 has offset 3
char c2; /1 c2 has offset 5
int i3; /!l 13 has offset 6
char z1, /1l z1 has offset 8

s

#pragma pack() /* reset to default: WORD alignnent */

struct s2 {
int i1; /!l il has offset O
char cl; /!l cl1 has offset 2
int i2; /1 12 has offset 4
char c2; /!l c2 has offset 6
int i3; // i3 has offset 8

char z1; /1 z1 has offset 10
}s

Note: If the gpplication contains struct pointers to byte-aligned structures crested with #pr agnma
pack(1l),youmus dsousethe#pr agma BYTEALI GN directive.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 87

Example:

#pragma pack(1) /* alignment is BYTE for the follow ng structures */
#pragma BYTEALI GN

struct s1 {

int i1; // i1l has offset O
char c1; // cl has offset 2
struct s2 {
int i2; /] 12 has offset 3
char c2; /1l c2 has offset 5
int i3; // i3 has offset 6
} s2;
char z1; /1 z1 has offset 8
} sl

struct s2 *s2p;

void main (void) {
s2p = &sl.s2; [/l this is a pointer to a bytealign struct
s2p->i 2 = 0; /1 this is an access to a bytealign int

}
9.15Using" SECTIONS" With TheC167CR CAN Peripheral

The CAN periphera at OXEFOO can be addressed via C variables Stuated over the red control and data
regigers. This can be acheived with the following souce file, used in conjunction with the given linker
input file. As dready explained, the advantage of this gpproach is that unlike the pointer-based
method used later, L166 physicaly places these data objects at OXEFOO, so preventing anything else
accidentally end up there and causing problems. CAN_REGS.C and CAN_REGS.H can be found in the
\166TRAIN.WIN\USEFUL directory, in case you need them later.

How It Works

The ORDER control tells C166 and L166 to place the objects in memory in the order in which they
appear in the source file. The NOINIT control stops START167.A66 from zeroing out the CAN
peripherd, which could have undesrable side effects Findly, the RENAMECLASS control alows
the sdata keyword to produce a CLASS with a digtinctive name that L166 can place at the appropriate
address.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 88

CAN_REGSC

#pr agma ORDER
#pragma NO NI T
#pr agma RENAMECLASS(SDATA = CAN_REGS)

#defi ne CAN_REGS C
#i ncl ude “can_regs. h”

unsi gned short vol ati | e sdat a CAN_Cont r ol _St at us;
unsi gned char sdata CAN_I nt errupt;

static unsigned char sdata reserved,;

unsi gned short sdata CAN_Bit_Ti m ng;

unsi gned short sdat a CAN_d obal _Mask;

unsi gned short sdat a CAN_Upper _G obal _Mask;

unsi gned short sdat a CAN_Lower _d obal _Mask;

unsi gned short sdat a CAN_Upper _Last _Mask;

unsi gned short sdata CAN_Lower _Last _Mask;

struct MESSAGE _OBJECT sdata CAN_Object[15];

CAN_REGSH

struct MESSAGE _OBJECT { unsigned short volatile control;
unsi gned short upper_arb;
unsi gned short | ower_arb;
unsi gned char config;
unsi gned char volatile data[8

EXEC.LIN Linker File

CLASSES(| CODE(0x200) ,
NCCDE(0x1000) ,
NOONST(0x2000) ,
SDATA(0XE000) ,
SDATAO(0xE000) ,
NDATA(0x40000) ,
NDATAO(0x40000))
SECTI ONS(?SD?CAN_REGS%CAN_REGS(0xEF00))

9.16 Constructing A Memory Map For Small C167CR Systems

With increasing use of the C167CR in high volume products, the commonest memory configuration isa

C167CR plusjust asingle 16-bit FLASH EPROM. The 4k of on-chip RAM means that with careful soft-
ware design, no little or no externa RAM isrequired. Here wewill have alook a how C166 and L166 can
best be used to populate the memory space of this type of minimal design with code and data

© Copyright Hitex (UK) Ltd 1997

C166 Introduction Page 89

0x20800

\

0x20000 0x20100 ASIC_RAM

/

0x20000 ASIC_REGS

NCONST

0x18000 OXOFFFF

OxOFDFF SFRs

FCOD 0x0F600 IDATA RAM

0x0F200 Reserved

S

0x0F000 Extended SFRs

0x0EF00 CAN Peripheral
0x00000 O0XOE800 GAP_CONST

0x0EO00 XRAM RAM

/

0x00Q000 SYS_CONST

FCODE

0x00000

-EPROM Area

9.16.1 A Typical Small System Memory Map

The example C167CR system consists of the CPU, a FLASH EPROM and an ASIC. The ASIC has 0x100
bytes of specid function registers plus 0x100 bytes of RAM. Overdl, the system has the following memory
map:

EPROM 0- Ox1FFFF

XRAM RAM OxO0EO00 - OxOE7FF
| DATA RAM 0x0F600- 0xOFDFF
ASI C registers 0x20000-0x20100
ASI C RAM 0x20100- 0x201FF

Inevitably in ano RAM system, there will be no variable area of anything like the 16k maximum for NDATA.
Asthewhole gpplication is very time-critical, accesses to dl data must be asingle indruction. In this particular
example, there is around 32k of congtant data in the form of look-up tables which had to be in PROM. As
this data has to be accessed frequently from fast interrupt routines, the whole of this constant areais trested as
near (NCONST). In thefind gpplication, this region represents the calibration data for the system and is

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 90

likely to subject to regular field updates. Idedly, it should be kept separate from another group of “system”
congtants which are only set by the programmer.

tenmp = near_const _val ;
MOV R1, DPPO: #near _const_val ; A near access
tenp = far_const_val

MOV R4, SEG #f ar_const _val ; A far access
MOV R5, SOF #far_const _val

EXTS #1, R4

MV R, [R5]

The important point is that this type of fast, Sngle instruction data access can occur in any region covered by a
DPP.

Experienced C166 users may be wondering how a 32k near constant area can be created when the usua
near limitis16k. In verson 3.00 onwards, the flexible redlocation of DPP vaues alows consequentive
DPPs to be set to consequentive vaues, with the result that linear areas of greater than asingle 16k page size
can be created.

One peculiaity of the desgn isthat thereis an area of RAM in an ASIC which isfar removed from the
IDATA and XRAM but which gtill needs to be accessed by single ingtructions.

9.16.2 Constructing Linker Input File
Ultimatdly the linker input file determines where everyting ends up and we will now go through thisin detall:
(i) The Constant Areas

The 32kb near constant areais based at 0x18000. The constant dataiis created by ordinary statements such
as:

int const near map_0 O[] = {
0,1,2,3,4,5,6,7,8, 9,10, 11, 12, 13, 14, 15,
o,1,2,3,4,5,6, 7,8, 9,10, 11, 12, 13, 14, 15,
o,1,2,3,4,5,6,7,8, 9, 10, 12, 12, 13, 14, 15,
}os

The sum total of such statementsis just under 32kb. Normally, DPP1 would be set to 0x18000/0x4000 = 6
by setting the NCONST classes entry to 0x18000. Here, the DPPUSE() control in the linker inpuit file forces
DPPO and DPP1 to 6 and 7 respectively to create a 32K linear area. The SECTIONS() control is used to
prevent the NCONST from the two modules that declare the data spilling over a page boundary - C166
x2.90 cannot generate more than 16k of NCONST per module athough v3.00 can.

& /] Create a 32k near constant area wi th DPPO, DPPl1
DPPUSE(0=NCONST(0x18000- Ox1f f f f) , 2=NDATA(0x20000- 0x23f f f))
&
SECTI ONS(?C_| NI TSEC(000400h) ,

?NC? MODOYNCONST(0x18000) ,

?NC?MODLYNCONST(0x1c000), . . .

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 91

Dueto aquirk in the C167CR on-chip memory map, thereis aregion from 0x0C000 to OxODFFF which is
within scope of DPP3, set to its default of 3. There isasecond smaller gap between the top of the XRAM at
OXxOE7FF and the bottom of the CAN periphera a OxOEFOO, although it should be noted that this could
be used in future CPU versionsfor additional XBUS devices. As both these areas are occupied by
EPROM, they can be used as additiona congtant areas. The fact that DPP3 covers this area means that
sngle ingruction near access can be made. Thetrick isto declare the constant objects as“congt” but use the
RENAMECLASS control to rename the NCONST data produced to a custom name, here“SYS CONST”.
This contral is of the generd format:

#pragna RENAMECLASS(OLD_CLASS=NEW CLASS)

MCDULE: SYSCONST. C

#ipragna RENAMECLASS(NCONST=SYS_CONST)

/*** Constants Destined For OxCOO0 - OxDFFF ***/

char const test0 = 0x1000 ;
char const thermistor_map[] ={ 2,2,1,1,1,1,1} ;

The new classisthen placed a 0xOCOQ0 by the linker line:

& /! Fix classes for SMALL nodel

&

CLASSES(| DATA(0xF600) ,
| CODE(000600H) ,
NCODE(000800H) ,

SYS_CONST(000Q000H) ,
The smdl gap just above the XRAM isfilled in asmilar manner....

MODULE: GAP. C
#pragma RENAVECLASS(NOONST=GAP_CONST)
/*** Place constants between XRAM and CAN Peripheral ***/

char const testl = 0x1000 ;
char const gap_map[] = { 2,2,1,1,1,1,1 } ;

...and placed with...

& /! Fix classes for SMALL nodel
CLASSES(| DATA(0xF600),
| CODE(000600H) ,
NCODE(000800H) ,
SYS_CONST(00C000H) ,
GAP_CONST(00E800H), . . .

(i) Allocating The RAM Areas
The XRAM islocated at OxOEOOO and thus within the range of DPP3. Data destined for thisregion are

known generaly as“SDATA” and the sdata keyword is used to tell C166 to generate single ingtruction
accesses via DPP3, as shown below:

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 92

MODULE: XRAM C

#pr agma RENAMECLASS(SDATA = XRAM DATA)
#pragma NONT

/*** Variabl es Destined For XRAM At OxOE000 ***/

int sdata XRAMvarO ;
int sdata XRAM varl ;
int sdata XRAMvar2 ;
int sdata XRAMvar3 ;
int sdata XRAMvar4 ;

As before, the classes control is used to fix these objectsin the XRAM:

CLASSES(| DATA(0xF600) ,
| CODE(000600H) ,
NOCDE(000800H) ,
SYS_CONST(00C000H)
GAP_CONST(00ES00H) ,
XRAM DATA(0x0e000- 0x0e7f))

So far, DPPO and DPPL1 have been set to cover the area from 0x18000 to Ox1FFFF and DPP3 is covering
the XRAM and congtant areas. Normally, DPP2 would cover the near data (NDATA) region and in this
example, it isused to accessthe ASIC registers and RAM at 0x20000.

& /| Create a 32k near constant area w th DPPO, DPP1
DPPUSE(0O=NCONST(0x18000- Ox1f f f f), 2=NDATA(0x20000- 0x23fff))

Like before, the RENAMECLASS control is used to convert NDATA objectsinto, in this case, the ASIC
regisers. Theam isto make sure that the ASIC specid function registers are overlaid by appropriately
named varigbles. To make sure that the order of the variables corresponds with the physical locations in the
ASIC, the #pragma ORDER control isused. In addition, as these registers are not to be zeroed at power-up,
the #pragma NONIT control is added.

MODULE: ASIC REG C

#pragma ORDER
#pragma NONT
#pr agma RENAMECLASS(NDATA = ASI C_REGS)

/** These Variabl es Need To Be Physically Placed Over The Real ASIC Registers ***/

int volatile asic_REQ ;
int volatile asic_REGL ;
int volatile asic_RE® ;
char asic_REQR ;

| ong asic_RE&S ;

int volatile asic_REGh ;
int volatile asic_REGS ;
int volatile asic_REG/ ;
int volatile asic_REGB[0x08] ;
int volatile asic_RE® ;
int volatile asic_REGA ;
int volatile asic_REGB ;
int volatile asic_RECC ;

The volatile keyword is used to stop the C166 optimizer from removing references to these registersin the
source code - it servesto tell the compiler that “this variable may change without any direct CPU action”.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 93

The data detined for the ASIC RAM is declared as straight forward NDATA. Inthe design, the ASIC
RAM contents is preserve through power-down and is thus non-volatile. The NOINIT control preventsit

being cleared and the ORDER control ensures that between successve program builds, the variables remain
fixed.

MODULE: ASIC. C

#pragma NON T
#pragma ORDER

[*** Data Destined For ASIC RAM ***/

int near asic_varO ;
int near asic_varl ;
int near asic_var2 ;

To prevent the ASIC RAM objects from entering the ASIC regs area, both the SECTIONS and CLASSES
linker controls are used to keep them apart:

SECTI ONS(?C_I NI TSEC(000400h) ,
?NC?MODOYINCONST(0x18000) ,
?NC?MOD1YINCONST(0x1c000) ,
?ND?AS|I CREG¥ASI C_REGS(0x20000)
) &
&
& I/l Fix classes for SMALL nodel
CLASSES(| DATA(0xF600) ,
| CODE(000600H) ,
NCODE(000800H)
SYS_CONST(00C000H) ,
GAP_CONST(00E800H) ,
NDATA(0x20100- 0x201ff),
XRAM DATA(0x0e000- 0x0e7ff)) &

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 94

Finaly, the .M66 file shows where everything actualy ended up:

DPP REGQ STERS RE- ASS| GNED

DPP VALUE Cl66 GROUP

0 0006H NCONST

1 0007H NOCONST

2 0008H NDATA

Cl66 GROUP START STOP

NCONST 018000H O1FFFFH

NDATA 020000H 023FFFH
MEMORY MAP OF MODULE: EXEC (MAIN)
START STOP LENGTH TYPE ALIGN TGR GRP COMB CLASS SECTI ON NAME
000000H 000003H 000004H — — — — * |NTVECTOR TABLE *
000400H 000405H 000006H HDATA WORD - — A — ?2C_| N TSEC
000600H 000633H 000034H CODE WORD — — PRV |CODE ?C STARTUP_CODE
000800H 000885H 000086H CODE WORD — 1 PUBL NCCDE ?PR?MAI N
00C000H 00C007H 000008H DATA BYTE — 3 PUBL SYS CO R2NC?SYSCONST
OOEOOOH O00E009H 00000AH DATA WORD - 2 PUBL XRAM D |?SD?XRAM ——
OOESOOH 00ES807H 000008H DATA BYTE — 3 PUBL GAP CO |?NC?GAP
O00F200H O00F5FFH 000400H — — — — * RESERVED MENORY *
O00F600H 00F651H 000052H DATA WORD - 2 PUBL | DATA PID?MAIN
O00F652H 00F691H 000040H DATA WORD — — PWBL |IDATA |?C USERSTACK
O0FAOOH O0OFBFFH 000200H — — — — * SYSTEM STACK| *
OOFDOOH OOFDLFH 000020H DATA WORD — — — *REG ?C_MAI NREQ STER$
018000H 01BDFFH 003EOOH DATA WORD — 3 PUBL NCONST |?NC?MODO
01C000H O01FDFFH 003EOOH DATA WORD — 3 PUBL NCONST |?NC?MODL
020000H 02002FH 000030H DATA WORD — 4 PUBL ASIC R |?ND?ASI CREG
020100H 02011FH 000020H DATA WORD — 4 PUBL NDATA [?ND?ASIC
From SYCONST.C
From XRAM.C
From GAP.C
From AS CREG.C
From ASIC.C

© Copyright Hitex (UK) Ltd 1997

C166 Introduction Page 95

9.17 Relocating FunctionsInto RAM

Traditiondly C166 programs have been completdly static in that al the addresses of variables and functions
are defined at the linking stage. However the needs of FLASH EPROM programming require the user to
take specia steps which require some rather obscure techniques!

One of the basic characteristics of FLASH isthat ingructions cannot be fetched from it whilst it is being
programmed. In those cases therefore where an application placed in FLASH on the production line needs to
be updated in the field, some meansis required of temporarily executing instructions from some other memory
deviceisrequired. Another common example would be where a FLASH needsto be checksummed. Itis
very rare for an emdedded system to contain two norma ROM devices so invariably this " other memory
device' will be an externd RAM or more usudly the C167's own on-chip idata RAM at OxF600.

In C166 v4.06 onwards, a specia mechanism has been added to dlow particular functions to be stored in the
ROM in the usua way at for example 0x1000 but to be constructed o that they can be executed at an ad-
dress such as OxF600 in the idataarea. The exact procedureis:

(i) Writefunction in the normd way in just the one module (file)

(i) Configurethe SECTIONS statement in the linker to set the execution address to be OxF600

(i) Usethe SROM_PS() macro to work out the base address of the function in ROM and its degtination
address in RAM, plusitslength

(iv) Qopy thefuxtionusingthemencpy() with the above addresses as parameters to the target
address

(v) Cdl thefunction in the usud way

Function Relocation Example:

Copy afunction stored in ROM at 0x1000 into RAM at 0xF600 and then cdl it. Do not reserve any
goace in the RAM for the function so that it just overwrites whatever was there.

Module containing function destined for RAM: IDFUNC.C
Module containing copying process for function destined for RAM: MAIN.C
MAIN.C

#i ncl ude <srom h> /1 Contains macros for function relocation process

/] Create external reference to address of code SECTION in | DFUNC. C via nacro

SROM _PS(| DFUNC) /1 Needed for macros used in hnentpy() bel ow

/] Copy function(s) in nodule IDFUNC.C into the idata RAM

hnmentpy(SROM PS_TRG | DFUNC), SROM PS_SRC(1 DFUNC), SROM PS LEN(IDFUNC)) ; // Copy code in

/] IDFUNC.Cinto
/] idata

Where the parameters to hmemcpy() are:

SROM PS_TRE | DFUNC) /1 Find the TaRGet address in RAMfor the copy of the function in | DFUNC
SROM PS_SRC(| DFUNC) /1 Find SouRCe address in ROMfor the copy of the function in | DFUNC
SROM _PS_LEN(| DFUNC) /1 Find the LENgth of the code in ROMto copy of the function in | DFUNC

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 96

IDFUNC.C

void idata_relocated_function(void) // This function stored in ROM but runs in RAM

/1 Enmpty function!!
}

Findly, in the linker contral file add:

SECTI ONS(?PR?1 DFUNCY%-CCDE (0xF600) [! 0x1000]) // Store function in IDFUNC.C to ROM at 0x1000
/1 with destination address as 0xF600. Do not
/1 reserve space at OxF600 for it. (ROM address
/1 does not need to be stated)

In this case, no space was reserved in the RAM for the function due to the '!" control in the square brackets.
Generalised Form Of The SECTIONS Control For Function Relocation

SECTI ONS(secti on name (runtine address)[<!> storage address]

If it is necessary to reserve space in the RAM for the copied function, the SECTIONS control becomes:

SECTI ONS(?PR?I DFUNC%-CCDE (0xF600) [0x1000]) // Store function in IDFUNC.C to ROM at 0x1000
/1 with destination address as OxF600.
/'l Reserve space at OxF600 for it. (ROM address
/1 does not need to be stated)

Note: SECTIONS that are manipulated in thisway are dways placed into a specid CLASS cdled SROM,
athough this does not have any specid significance in practice. It could be used though for grouping all
relocated functions in ROM together into a block which can then be located using something like
"CLASSES(SROM 0x1000)) ". Thefunctioniscdledinthe normd way. Any symbol informetion
required for debugging the function will be correcty digned with the destination addressin RAM

How to work out the SECTION name...

Filename: MODA.C

Variable Name unsigned short huge hvarl ;

Section Name THDO?MODA%HDATAO

Abbreviated Class Name: HDO Tilename; MODA Class Name: HDATAO

1o give a section name of.

?abbreviated class name?FILENAME%CILASSNAME

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 97

EXERCISE 9: EX9
Objective:

It isrequired to perform a 16-bit checksum on the FLASH ROM devices fitted to the EVA16C training
board. The checksumming function must be executed from the C167CR IDATA RAM a 0xF600, dthough
it will be stored at 0x43800. Location Ox7FFFE has been pre-programmed with the correct checksum vaue
of OxAB91. If the checksum caculated does not match this value, wait in aloop forever otherwise return to
the cdler.

Procedure:

The 16-bit checksum is calculated by summing up al the locations in FLASH area, one word (two bytes) a a
time:

{

checkum += *ROM ptr++ ; // Add up all the locations, one word at a tine

}

Where ROM _pt r isapointer to the FLASH which isincremented after each addition.

The FLASH is split into two ranges, separated by the C167CR's on-chip RAM and SFRs.

0x00000 | engt h 0x0CO00
0x10000 | engt h 0x30000

These ranges are stored in a structure which contains two arrays that represent the start and end addresses of
the areas.

struct FLASH { unsigned | ong base_addresses[No_Of_FLASH Areas] ;
unsi gned long area_l ength[No_Of _FLASH Areas] ; } ;

struct FLASH const FLASH Map = { { 0x00000, 0x10000 }, /1 Addresses suitable for CL67CS-LM
{ 0x0C000, 0x30000 } }

Afunctioni dat a_rel ocated_functi on(voi d) iscopiedinto IDATA RAM inmai n() usng:
hmenmcpy(SROM PS_TRE fi |l enane.c), SROM PS SRC(fil ename.c), SROM PS LEN(filenane.c)) ;

where "filename.c” is the name of thefile that contains the checksumming function. The address of executable
code SECTION of filename.c containing the function has been made known to thehnmencpy() via

SROM _PS(fi | enane. c)

which appears above main(), whereinthehnmentpy () islocated.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 98

When cdled, the function sums up the words over the two FLASH ranges and then compares the result
with a pre-calculated checksum at OX7FFFE - see the DA-C flowchart overlesf.

idata_rel ocat ed_f unction
inction that is stored i
M, copied to RAM and th

execut ed

The section name is
?PR? RAMFUNCY%~CODE

code

Cl ear
checksum

l

Perform
Checksum
Test Over
Al'l Flash
Ar eas

=0 ¢

No-
Of _FLASH_Ar
eas ; i +

i <

Get current
word from
FLASH

!

Scan across
the various
FLASH ar eas

—

i =0 ; j <
ILASH_Map. a-
rea_l e-
ngth[i]/2 ;

j++

]

Accumul at e
checksum
val ue

=

Do Checksum
Check

Does
cal cul ated

checksum
match the
one stored

Checksum
error
detected -
OM is fault

Checksum i s
wong - stog
ere forever

I

© Copyright Hitex (UK) Ltd 1997

The linker control file SECTIONS control places the function at 0x43800 but
setsits run time address to OxF600:

SECTI ONS(// CODE SECTIONS to be rel ocat ed
?PR?f i | ename%-CCDE (OxF600) [! 0x43800])

Exercise EX9 Checklist
MAIN.C:

(i) Make sure the header file containing the macros required for the hmemcpy()
target and source address caculationsis present.

(i1) Create externa referencesto the target and source addresses and length of
the SECTION in RAMFUNC.C that contains the function to be relocated.

(iii) Complete the hmemcpy() to include the above target and source addresses
and length so that the copy will take place.

RAMFUNC.C:

(iv) Do nothing - it iscomplete! The actud function that is relocated iswritten in
an entirdy normd fashion.

EX9.LIN:

(V) Complete the SECTIONS control to store the function in RAMFUNC to
0x43800, setting the run time address to OxF600. Refer to page 99 in the notes
for arefresher on how to work out the Code SECTION name for
RAMFUNC.C. Do not reserve space at OxF600 for it though. Build the pro-
gram.

(vi) Load the program into Hitop and run it until mai n() . Open amemory
window a address OxF600 and then run the program until the cdl to

idata_rel ocated function(void). Checkthat the destination
address of the call isOxF600. Single step into the function and run it until the line:

i f (*ROM checksum ! = checksun)

Single step this and see what happens!

Checksumming function as a flowchart
- produced with the DA-C

C166 Introduction Page 99

Clock

OX7FFFF

RAM

0x50000

OX43FFF

?FD?NONVOL(0x80000) —»
Typical C Language Data Declaration - LINKER CLASS NAME
unsi gned short xhuge vbi g_array[0x10000] ; XDATA >
HDATA >
unsi gned short huge bi g_array[0x8000] ;
unsi gned short near nediumto_fast_var ; NDATA > -
FCODE »
HCONST 1
sfr T2 = OXFES0 ; SFRs 0x10000
unsi gned char bdata flag_byte ; bit flag ; BDATA 8§8IEED%%
unsi gned short idata on_chip ; IDATA
0x0F600

RESERVE(0x0F200-0x0F5FF) —»

Ext SFRs
*(unsi gned short sdata *) OXEFOO ; _5 0x0F000
(et) o CAN OXOEF00

unsi gned short sdata xramvar ; XRAM OXOE7FF
SDATA 0x0E000
0x0C000
FCODE »
Ox07FFF
unsi gned short const near fast_const = 1 ; NCONST
0x04000
FCODE >
?C_CLRMEMSEC, ?C_CINITSEC >
(Code from START167. A66) ICODE »
Interrupt Vectors _—>
0x00000

© Copyright Hitex (UK) Ltd 1999

0x40000

Hidden
EPROM

.
Emmm EPROM

Hidden EPROM

C166 Introduction

EPROM

0x00400
0x00200

Page 100

EXERCISE 8 EXS8
Objective:

Practice making linker control files (.LIN) to suit typica memory maps found in C167CR designs.

Procedure:

Congruct alinker file to match the memory map shown. The example program is based on that from exercise
EX3 but it is only the linker control file EXEC.LIN that you need to edit. MAIN.C contains some data
declarations which will make sure that each of the dasses will have something in them!' The class namesyou
will need to include in your CLASSES() control are given in the centre column of the diagram.

unsi gned short xhuge vbi g_array[0x10000] ; // 20000 byte array

unsi gned short huge big_array[0x8000] ; /1 10000 byte array
unsi gned short near nediumto_fast_var ; // Near data

unsi gned char const near fast_cont = 1 ; // Near constant object
unsi gned short bdata flag_word = 0 ; /1 16 flag bits

unsi gned short idata on_chip = 0 ; [/ Data in on-chip | DATA RAM

unsi gned short const sdata extra_const = 2 ; // Mre near constants in sdata area
shit flag_ X = flag_word”"8 ; /Il A special flag bit in "flag_word"
bit flagd0 = 0 ; /1l A single bit flag

Note that there isared-time clock chip at 0x80000 asin exercises 6 and 7. Use the gppropriate entry in the
SECTIONS control to locate it at 0x80000.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 101

10. Non-1SO/ANSI Code Saving Tricks

It is possible to save code by using the CPU'’ s Carry flag directly as a check for the result having exceeded
the capacity of aninteger. If the sum of two integersis > OxFFFF, the C flag will be set and this can be
checked in C and action taken.

Example

unsigned int z ;
unsi gned int x
unsigned int y

0x8000 ;
0x8000 ;

Z =X +y;
[*** |f Sum > Oxffff then limt to Oxffff **x/
if(Q {
z = Oxffff ;
}

A smilar trick can be performed with the overflow flag and amultiply to check if the product of two intsis
over OXFFFF;

EXERCISE 10: EX10

Perform the calculation
unsigned int = (unsigned int * unsigned int)/unsigned int, i.e. a=(x*y) [/ z;

and check the result.
Usethesevaues x =0x100; y =0x100; z=0x100

The correct I1SO/ANS Cway to perform this caculation is:

int x,y,z ;

z = ((unsigned long)x * (unsigned long)y)/(unsigned |ong)z ;

In current versons of C166, the following code will result:

a = ((unsigned long)x * (unsigned long)y)/(unsigned long)z ;
; SOURCE LINE # 20

MV R5 WORD y

MOV R4, WORD x

MULU R4, R5

MOV R6, WORD z

Dl VLUR6

MOV R4, MDL

MOV WORD a, R4

C166 spots that thisis a 16-bit scaling cadculation and performs dl operationsin line.

If the following is used, alot more code results and what’s more, it does not work.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 102

a = (unsigned long)(x * y)/z ;
; SOURCE LINE # 16
MV R5, WORD y
MOV R4, WORD X
MULU R4, R5
MOV R4,MDL <—1Io0ss of high word data!
MOV R6, R4
MOV R7, #0
MOV R4, WORD z
MOV MDL, R6
MOV MDH, R7
Dl VLUR4
MOV R4, MDL
MOV WORD a, R4

The mord of thisisthat in any mgor caculation it pays to check the .SRC file to see exactly what the com-
piler has done!

10.1 Special Note On BitsIn Structures

From C166 v3.06, it is possible to have a bit flag as part of astructurein C166. Thisis covered in the next
section with ISO/ANSI C bitfields.

10.2 Bit Fields And FlagsIn C166

Bit fields can be very ussful in embedded C programming, especidly when dealing with serid data. In C166
v3.06 it is possible to put bit fields into the bdata memory so that the compiler can use bit intructions to access
the data.

Hereis an example of usang abit sructure: Serid datais shifted into the bit structure viaa pointer. The
second part moves the various bit fields into discrete bits and words for later processing. The single bit
quantities field0 and field1 are accessed via bits while field2 and field3 require word operations.

MAIN.C

#pragma MOD167
#i ncl ude <regl67. h>

/[*** Create bit structure that has four fields ***/

struct bf { unsigned int fieldO :
unsigned int fieldl :
unsigned int field2 :
unsigned int field3 : 1

[alF N

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 103

struct bf bdata indata ; // Ceate bit structure in bit-addressible area

unsigned int *buffer_ptr ; // Ceate an int pointer to bit structure
bit fieldo = 0 ;

bit fieldl = 0 ;

unsigned int field2 =0 ;

unsigned int field3 =0 ;

voi d mai n(void) {

[*** Put data into serial buffer fromserial port ***/

buffer_ptr = (unsigned int *) & ndata ; // Point at structure
while(!SORIR) { ; }
SORIR = 0 ;
*puf fer_ptr = (unsigned int) SORBUF ; /1 Move data fromserial port to bit structure
while(1l) {
fieldoO indata.field0 ; // BExtract bit that constitutes fieldO
fieldl indata.fieldl ; // Extract bit that constitutes fieldl

field2
field3

}

indata.field2 ; // Extract nibble that constitutes field2
indata.field3 ; // Extract 10 bits that constitute field3

Asyou can see, C166 makes a pretty good job at breaking the bit fields into individual parts

SRC File:

; line 29: while(1) {

?C0007:

; line 30: fieldO = indata.field0 ; // Extract bit that constitutes fieldO
BMOV fiel dO,indata

line 31: fieldl = indata.fieldl ; // Extract bit that constitutes fieldl

BMOV fieldl,indata+l

; line 32: field2 = indata.field2 ; // Extract nibble that constitutes field2
MOV R5, WORD i ndat a
MOV R4, R5
SHR R4, #2
AND R4, #15

MOV WORD fiel d2, R4

10.3 Simple Bit Flags

To implement generd flags, the use of bitsis recommended as these make direct use of the BDATA RAM
area.

A smplehit flag can be declared as.
bit test _flag = 0 ;
and may be ether globa or locdl.

In al respects, they can treated exactly as per normal data types.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 104

10.4 The testset () And _testclear () Intrinsic Functions

The C166 has a useful set of bit-orientated functions, the most powerful of which isthe INBS bit,rel instruc-
tion. Thisjumpsif abit isclear then setsit. C166 will ordinarily not use this but by using the _testset ()
intringc function, C166 can be forced to useit. The opposgite of thisingruction isthe JBC bit,rd which has
the corresponding intringic function _testclear ().

Example Of _testset ():

#include <intrins.h>
bit test_flag ;
voi d mai n(void) {
/* Use Normal Approach */
test flag = 0 ;
if(test_flag == 0) {
test _flag = 1 ;

P5 = Oxff
}

/* Use Intrinsic Function */
test flag = 0 ;
if(_testset (test _flag)) { // If bit clear, set it and set P5 to OxFF

P5 = Oxff
}
}

EXERCISE 11: EX11

Enter the above program and compile with the SRC switch to see how the _testset () function has been used.

10.5 Intrinsic Functions

There are anumber of specid 80C166 assembler ingtructions which are not normaly used by C166. For the
sake of speed, it is sometimes useful to get direct access to these but putting them as in-line code.

As an example, unlike the norma C166 ‘>>" functions, _irol_() allows direct usage of an 80C166 ingtruction
<t fegture, in this case the ROL (rotate left) ingtruction. Thisyields a much faster result than would be ob-
tained by writing one using bits and the norma >> operator. Therearedso _crol_and _Iror_intringc func-
tions for char and long data as well.

Intring ¢ functions are inherently non-portable but as they are normaly only used in very time-criticd interrupt
functions, thisisnot ared problem.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 105

Other Intringc Functions

hop()

Adds an in-line NOP ingtruction to generate a short and predictable time delay. The only extra step necessary
isto include “intrinsh” in the C166 sourcefile.

idle()
Puts theC167CR into idle mode by putting an IDLE ingruction in-line.
pwrdn()

Puts the C167CR into power down mode.

_srvwdt _()

Generates an in-line SRVWDT ingtruction to service the on-chip watchdog timer.
_sof _()

This function converts a DPP.offset address in the first 64kb into a single 16-bit pointer. Thisis primarily used
to initidise PEC pointers.

trap()

Thisforcesa TRAP ingructionin-line. If the parameter is 0, the SRST (software reset) ingruction is gener-
ated.

di swdt()
Causes the DISWDT ingruction to bein-line,

einit()

Forcesthe EINIT ingruction in-line. Notethat an EINIT isaready contained in START167.A66 so this
must be removed! Thisintringc function is usudly used for bootstrap loader programs.

iror()
Usesthe ROR ingruction to perform aright rotate on the given integer.

atomc()

If the MOD167 #pragma contral isin force, thisyidds anin-line ATOMIC ingtruction to inhibit dl interrupts
for anumber of ingtructions. This function is most often used to ensure coherent 32-bit reads.

Example Of _atomic_(): Our dua timer method of making a 32-bit input capture measurement of adow
pulsatrain is used to generate an unsigned long vaue't | me_f or 180" in the CCO interrupt service rou-
tine. Thisvaueisto be used by a background loop routine. A locad copy of variable will be made by the
latter so that if the CCO interrupt occurs during the routine, the top word of datawill be coherent with the

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 106

lower word. Asthe 166 isa 16-bit machine, the 32-bit data moves required could be invalid if
"time_for_180" changed between reading the top and bottom words. The _atomic () function can
guarantee this will not happen:

#i nclude <intrins. h>
atomc(2) ; /1 The next line takes two instructions

/1 - no interrupt can get in here.
tine_for_180_snapshot = tine_for_180 ; // Now an indivisible 32-bit instruction

NOTES

_bfld ()

Allows direct access to the BFLDL and BFLDH C166 ingtructions.
These are very useful for setting and clearing Sngle or groups of bitsin aword.

bfld(address, OR nask , AND nask) ;

Bitsthat are set in the OR mask can be set to vaues specified by bitsin AND mask
Exanple O _bfld_()

/1 Set CAPCOM channel 3 to -ve edge triggering on tiner 1

bfld(Ccw, 0xF000, 0xC000) ;

/1 Set CAPCOM channel O to +ve edge triggering on tinmer O

bfld(COMD, O0xO000F, 0x0001) ;

10.6 Thevolatile Keyword

The registersin a memory-mapped real-time clock chip can change without the CPU taking any action. C166
will assume that if alocation has not been operated on in C then it cannot have changed. This can cause the
optimizer to remove data accesses that it condders redundant! In the case where a clock register is being
continualy checked, the optimizer may remove some accesses with undesirable Sde-effects.

Example:
unsigned int far *mlliseconds = 0x38000; /'l Pointer to RTC register
tine = *mlliseconds ; ->(1) // Get RTC register value

X = array[tinme++] ;

tine = *mlliseconds ; ->(2) // Second register access optinized out!
y = array[tinme++] ;

The example fails because the compiler’ s optimiser assumes that because no write occurred between (1) and
(2), *millisec cannot have changed. Hence al the code generated to make the second accessto *millisecis
optimised out! The solution is declare *milliseconds as “voldile’ thus

unsigned int volatile far *m|liseconds = 0x8000 ;

Now, the optimiser will not try to remove subsegquent accessesto the register as volatile indicates that the data
at thelocation may change automaticaly and so inhibitsits normd action.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 107

11. Accessing Absolute Addr esses

11.1 The MVAR and MARRAY Macros

UARTS, ports and real-time clock devices are often added to 80C166' s as memory-mapped devices. The
registers of the different devices will appear at fixed locations in the far data space.

The smplest way of mapping variables to absolute locations in C166 is by the use of the MVAR and
MARRAY macros. These macros are used as follows:

#i ncl ude “absacc. h”
#define rtc_seconds MAR(int, 0x3f000)

the symbol may then be used asfollows:

current _time[4] = rtc_seconds;

Alternatively, MVAR may be used thus:
unsi gned int val ue ;

val ue = MVAR(unsi gned i nt, 0x3f 000) ;

The only requirement is that the header file “aosacc.h” must be included at the top of the source file as shown
above. This contains the prototype for the macros.

MVAR isintended for accessng memory-mapped 10 that isin arange covered by a DPP. In most casess,
such 10 will be located high in the address space where it is unlikely that NDATA or NCONST will be.
Therefore the HVAR macro is more useful asit is based on huge accesses and so can point to any address.

#def i ne HVAR(obj ect, addr) (*((object volatile huge *) (addr)))

11.1.1 ThingsTo Be Aware Of With ThisMethod

There are two mgor problems with the MVAR and MARRAY meacros that limit their use to very smple
gtuations:

() They areredly just caststo a pointer except thet it is not obvious how they work by looking at the
source,
ie:

#defi ne MVAR(obj ect, addr) (*((object volatile *) (addr)))

(i) They are only suitable for accessng absolute addresses that are fixed a compile time and will not have
fo
change at run time.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 108

EXERCISE 12: EX12

Objective:

Read the vaue of the memory-mapped DIL switch and print it to the LCD digplay.

Procedure:

The 8-bit DIL switch is enabled by the 167's chip select 4 (/C4). To read it, the chip select 4 must be
configured to become active low when the 167 emits address 0x100000 so that the DIL switch isable to
drive the DO-D7 datalines. Thusthe vaue of the switch can be used by software.

(i) START167.A66 must be modified to set up BUSCON4 and ADDRSEL 4 to make /C34 become active
from 0x100000 to Ox100FFF, using an 8-bit non-multiplexed bus. Three waitstates must be used on this 4kb
memory region. All other settings such as MTTC4, RWDCA4 can be ignored.

(i) In MAIN.C, use the HVAR macro from ABSACC.H to create a means of addressing the switch at
0x100000. We have provided '#define DI L_Swi tch ... " forthispurpose

(iif) Read the value of the memory-mapped DIL switch and print it to the LCD display. Note that the neces-
sary modified PUTCHAR.C isdready in place to dlow printf() to drive the LCD.

Note: Generd form of Macro = HVAR (type, address)

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 109

12. Pointersin C166

Like variables, pointers too are influenced by the underlying paged data addressing. Pointersto data in the
near data area unsurprisingly caled termed "near pointers’. They may point at any object in the near data area
and as might be expected from the 16k pages, no single object may be over 16k. A near pointer in C166is
itself 16-hits, with the top two bits fixed at 02 to indicate DPP2.

12.1.1 TheVariousPointersin C166

far pointers are lessrestricted in that the object being pointed at can be at any 18- or 24-bit address but the
sze of the object being pointed at must be limited to 16kb. Asthe vaue of DPPO is calculated each time the
pointer is used, far pointers are thus somewhat dower than near pointers. The 16kb limit only causes prob-
lemsif you try to increment a pointer over this range, as might happen when using a pointer to accessalarge
aray. Thereason for the limit is that when incrementing a far pointer, when the offset exceeds Ox3fff, the
DPPO is not incremented and the offset Smply wraps-around to zero again. Far pointers occupy 32-bits (two
words)

huge pointers (and objects) can be up to 64k in Sze asthe overflow into the next page is not catered for.
However, as C166 does not dlow an overflow from a 16- to 24-bit offset, huge pointers will just wrap-
around once they have been incremented more than 64kb from their sart-point.

xhuge pointers remove the 64kb limitation and alow objects of any sze to be addressed without restriction.
They are however relaively dow, unless you are usng the C167/5.

Thefind pointer type, sdata, isvery much C166 family-specific. Thisisa pointer which is dways points into
the system areg, indicated by DPP3, between 0xc000 and Oxffff. sdata pointers are 16-bitsin size and are
best used for pointing a internd RAM objects or 10 mapped into the OxCOOO region.

Performance Hint! [f you areusing a global pointer in aloop, alwaystry to make a local copy of the
pointer; C166 will put thisinto a register and consequently execution speed will be much higher.

12.1.2 Summary Of Pointer Declarations

Declare a near pointer:

int near *near_ptr ;
Declare a far pointer:
int far *far_ptr ;
Declare a sdata pointer:

int sdata *s_ptr ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 110

12.1.3 Special Note On #pragma MOD167 For C167/5 Users

The #pragma MOD167 can be used to speed up huge pointer accesses especidly by using the EXTS seg,off
ingruction. Hereisan example of the sandard DPPx-related approach and the EXTS verson with MOD167:

MOD167 Huge Pointer Access

*hptr = 0x55 ;
; SOURCE LINE # 19
MOV R6, #85
MOV R5, WORD hptr +2
MOV R4, WORD hptr
EXTS R5, #1
MOV [R4],R6

R5 holds the 64kb segment number and R6 holds the offset into the segment. In effect, thisafull 32-bit access
being equivdent to MOV [R5:R4],R6.

Normal Huge Pointer Access

*hptr = 0x55 ;
; SOURCE LINE # 15
MOV R4, #85
MV R3, WORD hpt r +2
MOV R2, WORD hptr
CALLAcc_UC, ?C_HSTOREI

Note that the MOD167 version eliminates the library function call an consequently improves speed
greatly.

12.2 Variable Pointers To Absolute Addr esses

Pointersin RAM are useful for accessing addresses which are only known at run time or which are liable to
change dynamically. They areto be preferred to the MVAR() gpproach. Asdecreed by ANSI C, pointers
can be defined and intidised in asingle statement at file leve (i.e. outside any function) or declared and then
initidised at run time, within the body of a function.

The convention is:

<type> <const/vol atil e> <typequal i fier> * <datananme> = (<type> <const/vol atil e>) <address>;

Example:

[*** Define and initialise pointer in single statenent - file level ***/
char far *pointer = (char far *) 0x30000 ;

[*** Define pointer only - file level ***/

char far *pointer ;

/1 at run time...

pointer = (char far*) 0x30000 ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 111

The <typequdifier> beforethe*’ determines what the pointer is able to point at. The use of the program
congtruction method outlined previoudy can help prevent this.

/*** Define Far Array In FDATAQO ***/

char far fararray[] = { “Hello fromfar data” } ;
[*** Define near pointer ***/

char near *near_ptr ;

/*** Make near Pointer Point At Far (bject ***/

near_ptr = fararray ; // This will fail as a near pointer cannot point at a far object.
Warning! Mismatches between far and near objects do not alwaysimmediately show themselvesasa
lucky combination of DPPx values can allow the erroneous pointer to work. Suddenly changing the

addressof host class of thetarget object or altering the memory model will often show up thisproblem.
However, the appearance of the " pointer truncation” warning will always indicate a problem.

12.3 Placing The Pointer Itself

Pointers defined with nothing between the **’ and the <dataname> are located by default in the data class
determined by the memory modedl. It isentirely possible to force the pointer itself into a specific memory
gpace. By putting atype and typequdifier after the **’, the pointer can be placed. Thisis most frequently
required when is desired to put a pointer into EPROM, i.e. acongtant class. Jump tables or tables of function
pointersfal into this category aso.

Example 1 - Put a far constant pointer to a constant string into EPROM itself

char const far * const fixed_string[] ={ “String in EPROM“ } ;

Example 2 - Put a far constant pointer to a ram variableinto EPROM

char far ramvariable = 1 ; // Variable in far RAM
char far * const fixed_string[] = &amvariable ; // Set up a pointer in EPROMto ram
vari abl e

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 112

EXERCISE 14: EX14

Objective:

[llustrate important points when using pointers to do memory tests and checksums etc..
Procedure:

The program conggts of two files which you must modify. MAIN.H contains the declaration of a pointer
("*mem_ptr") which will be made to point a the base of the test areaof 0x50000. Y ou must ensure thet it
has the atributes that will alow it to scan across the 128k memory test areg, and that it is not itsef within the
range of the test!

In MAIN.C, you must make * mem_ptr point to 0x50000. Y ou must then make it write 0x5555 into each
location and then read it back again to ensure that the data has not been corrupted by afaulty RAM. If the
data read does not match that written, abit flag caled "error_fl" must be set. The write and read of a pattern
to each location should be within afor() loop which makes 0x10000 loops. Thisis because the memory
pointer isto aword (short), it will be incremented by two on each loop. At the end of the memory test [oop,
printf() apass or faill message to the LCD display.

Notes:

(i) Make sure that your DATA classes are not in this area otherwise the memory test will destroy its own
varigblest *mem ptr is epecidly at risk from overwriting.

(i1) Ensure that the compiler's optimizer does not remove the read back of the test data: the compiler assumes
that if it writes deta, it will not change. Therefore, as the data is read back immediately, it will optimize out the
read operation completely!

(iif) Ensure that the Storage class qudifier (near, far etc.) that you use when declaring the pointer is able to scan
over 128k locations.

BEWARE: We have laid sometrgps for you....pay particular attention to the attributes and location of
*mem_ptr!

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 113

Memory Test Outline

voi d nmai n(void) {

unsigned long i ;
unsi gned short tenp, nemcontents ;

init_lcd() ;

IEN = 1 ; // Needed for H TOP167

mem ptr = (unsigned short *) 0x50000 ;
for(i =0 ; i < 0x10000 ; i++) { // 0x10000 words!

*mem ptr = 0x5555 ;
temp = *memptr ;

if(tenp !'= 0x5555) {

error_fl =1 ;

}

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 114

12.4 Jumping To Variable Addresses

In the same way that data pointers can be set to addresses at runtime, so can function pointers. This can be
useful when cadling functions which reside in a different C166 program in the same system, as could be found
in FLASH EPROM + boot EPROM designs.

Example:

Generate acdl to a constant address:

((void (far*) (void)) 0x8000) () ; /] Call to a constant address
Jump to variable address:

unsi gned int junp_addr ; /1 A variable holding intended junp address
j unp_addr = 0x8000 ; /] Set up target address
((void (far*) (void)) junp_addr) () ; // Call to a variable address

Here is a useful macro which will cast any congtant or variable to a function pointer:

#define LTOF(func) ((void (far*) (void)) func)

Example

#define LTO-(func) ((void (far*) (void)) func)
junmp_addr = 0x50000 ;

LTOR(junp_addr) () ; // Call 0x50000

LTOF(0x50000) () ;
. SOURCE LINE # 68
MOV R4, #0
MOV RS, #5
CALL ?C SCALLI

}

Caution! Duetothelimitation that near functionsmust bewithin thecurrent segment, jumpslikethese
should always be cast asfar.

12.5 Pointer Casting And Conversions

It isentirdy possible to turn asmple C datatype (int, long) into apointer. However, you must be aware of
the number of bytes required to form the pointer in each case:

near pointers

One word carrying information on offset from DPP2 page number, 0-Ox3fff

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 115

far, huge, xhuge pointers

Two words carrying information on the page number in the upper word and offset from page base in the
lower.

sdata pointers
One word carrying information on offset from page number 3 (DPP3), OxCO00-OxFFFF
To make anear pointer, an unsigned int can be used:

Example

int near near_address = 0x4000 ;
int y = 0x8000 ;

y = *(unsigned char near *) near_address ;

Y ou must make very sure though with conversions to near pointers that the addressis actudly in the near data
areal

To make afar pointers, the source data must be of type long as only this type has sufficient bytes to accom-
modate the pagenumber:offset informetion.

Example

unsi gned | ong address = 0x38010 ;
unsi gned char test ;

test = *(unsigned char far *) address

Be warned though that this on-the-fly casting from long to pointer is very inefficient and it is dways better to
use a proper pointer type, as the following shows:

int var ;

unsi gned | ong faddr = 0x30010 ;
int far *fptr = (int far *) 0x30010 ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 116

Use a proper pointer type:

var = *fptr ;
MOV R5, WORD fptr+2
MOV DPPO, R5
MOV R4, WORD fptr
MOV R4, [R4]
MOV WORD var, R4

Cadt from long to pointer:

var = *(int far*) faddr ;
MOV R4, WORD f addr
MOV R5, WORD f addr +2
ADD R4, R4

ADDC R5, R5

ADD R4, R4

ADDC R5, R

MOV DPPO, RS

SHR R4, #2

MOV RS, [R4]

MOV DPPO, #12

Note! The conversion from long to a pointer is not like Microsoft C (MSC) for the 80x86. The
calculation of the 166’s page number is made during the cast at run-time, hence all the extra code
produced above. In MSC, the long must have the segment number already in theright place. Inthe
above example, rather than containing 0x30010, thelong would haveto have held 0x3000 0010! This
could cause problems when converting MSC programs to the 166.

12.6 Pointers To Local Data

It ispossible to creste pointersto loca data (i.e. automatics), dthough it is not realy good practice. If the
user stack has been moved into the IDATA on-chip RAM, you must use the USERSTACKDPP3 compila-
tion control. Thiswill force C166 to use DPP3 as the base for the pointer so that it can happily point to the
user stack in IDATA rather than via DPP2 into the NDATA area.

#pragma USERSTACKDPP3 /'l Force conpiler to use DPP3 when finding
/'l address of local array

void funcl(char a, char b) {

char rx_buffer[0x20] ; // This array will be on user stack
char *rx_ptr ;

rx_ptr = & x_buffer[a] ; // Point to ath object in local array

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 117

12.7 Addressing The C167CR CAN Peripheral Via Pointers

The slandard REG167.H does not contain any mention of the CAN modul€ sregisters. Whilst the CAN

registers superficidly appear to be sfr's like TO, CC1, SOTBUF etc. they are in fact memory-mapped 10

ports by virtue of the fact that they are not addressed by SFR addressing modes. This distinction may be

somewhat academic but they are usually addressed via congtant pointers to SDATA, rather like the PEC

SRCP and DSTP pointers - SDATA is the 16k region covered by DPP3 from 0xc000 to Oxffff.

The following include file uses SVAR macros to produce congtant SDATA pointers to the CAN registers. It

has taken from the RTX166 operating system CAN library and can be found in the USEFUL subdirectory.

CAN167.H Header File

/* Siemens 80C167C CAN regi ster |ayout */
/* 22-JUL-94 | EG */

/* Addresses of CAN General Registers */
e

/* Control/Status Regi ster */

#def i ne ADR_CAN_CTL_STAT O0xEF00
/* Interrupt Register */

#def i ne ADR_CAN_I NTI D OxEF02
/* Bit Timng Register */

#define ADR_CAN_BI T_TI M NG OxEF04
/* dobal Mask Short */

#def i ne ADR_CAN_MASK_SHORT OxEF06
/* Upper G obal Mask Long */

#def i ne ADR_CAN_UMASK_LONG OxEF08
/* Lower G obal Mask Long */

#def i ne ADR_CAN_LMASK_LONG OxEFOA
/* Upper Mask of Last Message */

#define ADR_CAN_UMASK_LAST OXEFOC
/* Lower Mask of Last Message */

#define ADR_CAN_LMASK_LAST OXEFOE

/* Masks for control/status reg (ADR_CAN_CTL_STAT)
/* Attention: apply for WORD reads of this reg only !

#define BOFF_MSK 0x8000
#def i ne EVRN_MSK 0x4000
#define RXOK_MSK 0x1000
#def i ne TXOK_MBK 0x0800
#defi ne LEC_MSK 0x0700
#define CCE_MsK 0x0040
#def i ne El E_MSK 0x0008
#def i ne SI E_MsSK 0x0004
#def i ne 1 E_MsK 0x0002
#defi ne I NI T_MSK 0x0001
#define RES_ALLCTL 0x5555

/* Masks for field ‘msg_ctl’ of the 15 CAN objects */

#define | NTPND_MASK 0x0001
#def i ne RXI E_MASK 0x0004
#define TXI E_MASK 0x0010
#def i ne MSGVAL_VASK 0x0040
#def i ne NEWDAT_MASK 0x0100
#define MSGLST_MASK 0x0400
#def i ne CPUUPD_MASK 0x0400
#define TXRQ_MASK 0x1000
#def i ne RMTPND_MASK 0x4000

/* Masks for field ‘nsg_cfg’
#define XTD_MASK
#define DI R_MASK

of the 15 CAN objects */
0x0004
0x0008

/* Structure for a single CAN object */
/* Atotal of 15 such object structures exists (starting at EF10H) */
struct t_can_obj {

unsigned int msg_ctl;

unsigned long arbitr;

unsi gned char nsg_cfg;

unsi gned char nsg[8] ;

unsi gned char dummy;

#define SVAR(object, addr) (*((object sdata *) (addr)))
#defi ne SARRAY(object, base) ((object sdata *) (base))

/* end of header file */

© Copyright Hitex (UK) Ltd 1999

*/
*/

MAIN.C Test SourceFile

#incl ude <regl67. h>
#i ncl ude <canreg. h>

#define CAN (SARRAY (struct t_can_obj, OxEF10))

Structure for CAN nessage area */

main () {
int i;

i = SVAR (int, ADR_CAN_CTL_STAT);
SVAR (int, ADR_CAN.BIT_TIMNG = i;
CAN[O] .nBg_cCtl = 1i;

CAN[1] .arbitr = 0x12345678;

C166 Introduction

Page 118

|

13. Using Peripherals With Zero Softwar e I nter vention

It isquite possible to set up a C167 periphera to perform a complete function with no CPU activity required
to complete the task. Thisis particularly true of genera purpose timer blocks 1 and 2 (GPT1 and GPT2).

These units comprise smple building blocks of timers, output and input pins which can be used to automeate
pulse measurement or generation tasks.

As an example, we will consider how GPT 1 can be used to implement a decoder for a quadrature shaft
encoder, as might be used to measure the speed and direction of an AC motor drive. Register T4 will dways
contain the value of the input gpeed + 0x8000. Subtracting this number from T4 will yield a number repre-
senting the speed, including its direction, i.e. pogitive implies forwards and negative implies reverse. A com-
mon trick used hereisto feed one of the quadrature channds into two pins of the C167, namely T4IN and
T3EUD.

4 y
0x7C00

I | I | |—‘ Channel A
|
| | | | | \ Channel B
==L I\
/c—ﬂ \, | \
Reload /A" ™\ \ Iy
4\ LN L e %) o Iy
| lw \ o \ w 1O 5 0 I\
I/ TR T \\ 1l rrH I_rH m |l \
8400 ;@ | @ O\ W o S| o AN
II T T TR WA T T 1 n \ X T4IN
L 2 1B NER N N \ *IT3EUD
\\ = (W=} Vg 1l / Il \\
v e\l Lo 3) ;\ o N
TF3—-X \ —=—>T2IN I~
i \ ©
ol o\
4 = \ e BN y i
1] 1 \ »
o\ ol \ \,
] [\ N\
\
I I N

N
~_ Capture
N~

| SPEED
SPEED

I Channel B

(reverse)

Hereishow it isdone:

() T4IN loadsthe contents of T4 into free running timer 3 with 0x8000 on every edge of channd A. Thus
T3 keeps counting either up or down from 0x8000 on every cycle.

(i) T3EUD, dso on channe A, causes T3 to count up when channel A is high and down when channd
Aislow.

(li) T2IN captures value of T3, on channel B +ve edge, 90 degrees after T3 was set to 0x8000 by T4IN.

Thus T2 contains a signed number representing the instantaneous speed, when 0x8000 is subtracted
from it.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 119

EXERCISE 15: EX15
Objectives

Implement the quad decoder, as described above. Use it to measure the speed in Hz of the quadrature signal
being generated by the C515C CPU on the 16710 board.

Procedure

1. Configure Timer 4 to rdload T3 on ether arisng or fdling edge on the T4IN pin.
Preload Timer 4 with 0x8000.

2. Configure Timer 2 to capture T3 on arisng edge on the T2IN pin

3. Compilethe program and run it under HiTOP.

4. TheLCD display will report the measured speed and direction of theinput signd. What isthe
frequency? Isit running forwards or backwards?

Note: Put the C515C DIL switch to position ‘00000001 to start the quadrature generator and make sure

that link LK2 on the training board is inserted.

K < B F

Advanced Feature
We have provided a mechanism to cause the speed measured to go to zero if the quadrature input

disappears. if Timer 3 ever overflows, the input edges must have been absent for a considerable time
and so we consider the the encoder to have stopped.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 120

14. The General Purpose Registers, Register Variables And
Registerbanks

One of the fundamental features of the C166 CPU core are the general purpose registers and the concept of
register banks. The 1kb (or 2kb) internal RAM can be viewed as aseriesof single words or dternatively as
acollection of 64, 16 word-long registerbanks. These registerbanks can start at any address in the interna
RAM area. The base of the current registerbank is indicated by the CP (context pointer) register.

14.1 The Context Switch

The C166 includes a*“ switch context” instruction which causes the current registerbank base addressheld in
the CP regigter to be stacked and anew CP value inserted. This dlowsthe current registerbank to be
changed in asingle cycle and can be very useful for providing afresh set of working registers to an interrupt
function, whilst leaving the background loop’ s registerbank in tact. Once the interrupt has completed, the
origina CP vaueis restored and the interrupted program can continue.

The current register bank forms the scratch-pad memory for loca data and function parameters. Like a good
assembler programmer, C166's optimiser will try to keep intermediate data vaues in registers to prevent the
loss of speed caused by moving working data off-chip - any data accessed viathe MOV Rw, Rw type
ingtructions are guaranteed to be 100ns. C166 thereforetriesto alocate dl loca datato registers, up to a
limit of 15 regigters per function. This gives a huge increase in performance and you should try to keep as
much data local as possble, even down to making local copies of globa datathat isto be frequently

accessed. There are some very devious tricks that you can do to make automatics (locals) appear to be static
which we will cover later.

The dlocation of variablesto regigersis entirdy autometic and whilst the ANSI type qudifier “regiser” is
compiled, it has no effect. You just have to trust the compiler’s judgement on this onel

C166 permits the user to exercise consderable control over how the registerbanks can be used viathe US
ING and REGBANK controls.

14.1.1 Useful Definitions Concer ning Register banks

Registerbank - agroup of 16 word locations in the internal RAM whose base address is contained in the
Context Pointer register (CP).

Automatic data - Variables which are created on entry to afunction and destroyed on exit. They are
defined at the top of the function which uses them and no other function may access them.

L ocal data - as per automatic.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 121

14.2 Interruptsin C166

It is possible to write interrupt functions directly in C166 without the need to use assembler entry and exit
code. Theinterrupt function typeisthe key to this. By adding this keyword to interrupt function definitions,
C166 will ensure that the current registerbank is stacked on entry, restored on exit and a RETI placed at the
end of the function. These actions condtitute a“stack frame’. The interrupt vector necessary to get to the
service function is generated automaticaly - the numerical argument to the interrupt keyword will cause the
compiler to generate a IMPS at an address given by:

vector location = n * 0x4 + offset,

where n is the number gppearing after the interrupt keyword, here “0x10” and offset is the argument to the
VECTAB contral inthelinker. This offsat defaultsto zero if no VECTAB() contral isgiven at link time.

void timerO_int(void) interrupt 0x10 {
}

Hereis an example of a stack frame:

timerO_int PROC | NTERRUPT = 16
GLOBAL timerO_int
FUNCTION tinerO_int (BEAN RVASK = @x0012)
void timerO_int(void) interrupt Ox10 {
; SOURCE LINE # 13
SCXT DPP3, #3
?00006:
PUSH R1
PUSH R4
PUSH R7
PUSH RO
PUSH R10

[*** Interrupt Code ***/

; 2C0005:

POP RI10
POP RO
POP R7
POP R4
POP R1
?00007:
POP DPP3
RETI

; FUNCTION tiner0O_int (END RVASK = @x0012)
tinerO_int ENDP
?PR?T ENDS

The interrupt function that created this stack frame used R1 and R4 as genera working registers hence it
PUSHes them on entry and POPs them on exit. In this case, the timeto do thisis smdl but on a more com-
plex interrupt routine, up to 15 regigers might be used. Thisis obvioudy undesirable from the point of view
of the gpparent interrupt latency but is the traditiona gpproach taken in conventiona CPUs. C166 does use
some intelligence in that it only stacks those registers actualy used by the interrupt. However, as been men-
tioned, the 166 core has afast means of switching to anew register bank i.e. the SCXT ingruction. It isthe
USING control in C166 that allows the C programmer to exploit this hardware feature.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 122

14.3 TheVECTAB Linker Control

Under norma circumstances, the interrupt table will be placed at zero. However, when usng some monitor
debuggers or if a boot-EPROM plus FLASH type system is being used, the vector table may need to be
shifted to some other address. The most common exampleis the EVA167 board where the region from O-
Ox1ffff is occupied by the monitor EPROM and the user’s program is located at 0x40000. The monitor holds
adummy vector table at zero which smply redirects the vectors up to the RAM region at 0x40000.

By using VECTAB(0x40000) in the linker input file, the vector table base of the user’ s program can shifted to
0x40000. This has dready been used asit is essential when using the EVA167 and EVA165 boards.

14.4 MacrosThat Simplify The Setting Of Interrupt Priorities

The user mugt st the interrupt priority leve (ILVL) and the group leve (GLVL). Theformer isdightly
incovenient as the priority field istwo bit offset from the base of the regiter:

ADCIC

ADCIR | ADCIE Interrupt Priority Group Level

To make source code more comprehensible, here are some macros with parametersin the INTMAC.H that
yOu can use to set interrupt priorities and group levels. They can be found in the
\166TRAIN.WIN\HEADERS directory.

[*** Interrupt Priority Setting Macros ***/

#define Set_Priority_15(reqg) (reg | = 0x30Q
#define Set_Priority_14(reg) (reg | = 0x38)
#define Set _Priority_13(regq) (reg | = 0x34)
#define Set _Priority_12(req) (reg | = 0x30)
#define Set_Priority_11(reg) (reg | = 0x20Q
#define Set_Priority_10(reg) (reg | = 0x28)
#define Set_Priority_09(reg) (reg | = 0x24)
#define Set _Priority_08(reg) (reg | = 0x20)
#define Set _Priority_07(reg) (reg | = 0x10Q
#define Set_Priority_06(reg) (reg |= 0x18)
#define Set_Priority_05(reg) (reg | = 0x14)
#define Set_Priority_04(reg) (reg | = 0x10)
#define Set _Priority_03(reg) (reg | = 0x00Q

#define Set_Priority_02(reg) (reg | = 0x08)

#define Set_Priority_01(reg) (reg | = 0x04)

#define Set_G oup_Lvl _0(reg) (reg & Oxfc)

#define Set_Goup_Lvl _1(reg) (reg (reg & Oxfc) | 0x01)
#define Set _G oup_Lvl _2(reg) (reg (reg & Oxfc) | 0x02)
#define Set_G oup_Lvl _3(reg) (reg = (reg & Oxfc) | 0x03)

These are used as follows:

Set _Priority_Ol(<interruptcontrolregister>) ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 123

Example

Set the priority of the T3 overflow interrupt to 02:

void timer3_init(unsigned int baudrate) {

T3CON = 0 ; /1 0.4us per count, timer node, count up
Set _Priority_02(T31C
T3IE = 0 ; [/ No interrupts until char comng in or

/1l to be sent

}
Set the priority of the CC8 input captures interrupt to 01

void init_CC8_ int(void) ({
CCVM2 = 0x0002 ; // Capture interrupt on P2.8, negative edge triggered
Set _Priority 01(CC8IC) ; // Hgher priority than
/1 T3 overflow interrupt

}

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 124

EXERCISE 16: EX16
Objective:

Use CAPCOM unit and interrupts to measure frequency of square wave on P2.3.

P2.3 |
(CC3)
CC3 TO
L
* ENEEEEENN
CAPTURE
20MHz— Prescale
2 5MHz

Procedure:

The CAPCOM channel on port P2.3 must be configured to capture the value of a free running 16-bit timer,
TimerO every time that afaling edge gppears on the pin. A small interrupt routine must be called to caculate
the number of timer counts between successive edges, using:

time_between_edges = CC3 - tinme_last_edge ; // Find time since |ast edge

Provided that not more than one timerO overflow occurs between edges, the result will dways be a positive
number that represents the time between edges. Make TO run at 0.4us/count.

Each port 2 pin hasa CAPCOM channel associated with it. Channel CCO is attached to P2.0. Here, chan-
nel CC3 is connected to P2.3.

() TheCCMO (CAPCOM mode register zero) register contains four 4-bit fields that allow the modes
of CAPCOM channd 0,1,2 & 3to beindividualy set. CAPCOM channel 3 (port P2.3) occupies the
upper nibble of CCMO. The ACCx bit in each case assigns the CAPCOM channd to either Timer
Oor Timer 1. Here, you must use Timer O.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 125

(i) The CC3IC interrupt control register must be configured to:
- Allow an interrupt to occur when the negative edge on P2.3 occurs
- Assgninterrupt priority leve 2, group leve 1 to the CC3 channd

@li) Aninterrupt service routine is required to which the CPU will jump when the negative edge occurs.
The argument to the interrupt keyword is the TRAP number, obtained from the interrupt vector table
in section 5 of the C167CR manua. Thisroutine will contain the subtraction caculation.

(v) Thefreguency of theinput Sgnd isfound by taking the reciproca of the mesasured time. For
convenience, this should be a floating point calculaion. Theresult is printed to the LCD display.

Put the C515C DIL switch to position ‘00000010 to start the square wave generator.

N

[{alalals

02

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 126

EXERCISE 16 (FOR C165: EX16 .165)
Objective:

Use GPT1 timer2 and timer 3 and an interrupt to measure frequency of waveform on P3.7 (T2IN). Note
that this exercise is located in C:\166train\ex16\work.165.

voi d T2_int(void) interrupt 0x22

(...... E

P37 __ L

(T2IN) ,

T2 : | T3

DU

CAPTURE

20MHz —] Prescale

2.5MHz

Procedure:

The T2IN pin on port 3.7 must be configured to capture the vaue of a free running 16-bit timer, Timer3
every time that a fdling edge gopears on the pin. A smdl interrupt routine must be cdled to cdculate
the number of timer counts between successve edges, using:

tine_between_edges = T2 - time_last_edge ; // Find tine since |ast edge

Provided that not more than one timer3 overflow occurs between edges, the result will aways be a
positive number that represents the time between edges. Make T3 run at 0.4us/count.

Each GPT timer has an input pin asociated with it that can trigger its timer to do something, here it will
be capture. Timer2'sinput pin, T2IN, is attached to P3.7.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 127

(i)
(i)

(if)

(iii)

(iv)

Put the C515C DIL switch to position ‘00000010 to start the square wave generator.

Set the T2CON register to make T2IN (P3.7) negative edge triggered, capture mode.

The T2IC interrupt control register must be configured to:

- Allow an interrupt to occur when the negative edge on P3.7 occurs
- Asdgn interrupt priority level 2, group level 1 to the T2 interrupt
The CC3IC interrupt control register must be configured to:

- Allow an interrupt to occur when the negative edge on P2.3 occurs

- Assgn interrupt priority level 2, group level 1 to the CC3 channd

An interrupt service routine is required to which the CPU will jump when the negative edge
occurs. The argument to the interrupt keyword is the TRAP number, obtained from the interrupt
vector table in section 5 of the C167CR manud. This routine will contain the subtraction
calculation.

The frequency of the input signd is found by taking the reciproca of the measured time. For
convenience, this should be a floating point caculaion. The result is printed to the LCD display.

N

o fefa]al=

62

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 128

EXERCISE 16A (FOR C165: EX16A.165)

Objective:

Use GTPL timer4 & 3 to generate a regular 1Hz interrupt via the T3 output toggle laich (T30TL) and
T30UT pin (P3.3). Make the timer3 interrupt flash the first LED in the array, LEDO (P2.6) by conven-
tiond pin-toggling in the service routine. Use the T30OUT function to drive LED9 in the LED aray.
Note: LED9 has been wired to T30UT and is the 10" LED (leftmost). Note that this exercise is lo-
cated in C:\166train\ex16a\work.165.

rsorL | LI 11T P33
> (T30UT)

P2 T3 T4 | LEDO
' ' v
<lll.l.l-

RELOAD

20MHz 1 Pprescale

2.5MHz

Procedure:

(i)

(i)

(iii)

(iv)

(v)

Use Timer 3 as afree running timer. Set the Timer 3 prescder to the same vaue as used in EX3
50 that the overflow rate is 1.68 seconds. Make T3 count up and enable the T3OE function.

Initidlise LEDO and T30UT (P3.3) as output pins so that the LEDs in the 10-way array on the
traning board can be driven.

Configure T4COM to rdoad T3 on any trangtion of the T3OTL, itsdf toggled by a T3 overflow.
The T4 timer register should contain the same vaue used for T7REL in EX3 to give a 1 second
period.

Use interrupt level 2, group level O for the T3 interrupt service routine. Toggle LEDO usng an
exclusve OR function in the service routine.

Load the progam into HITOP and run it. If you force new vaues into T4 via the SFR window you
should see that the flash rate dters accordingly.

Note: The training board’s CPU is not used in this example.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 129

EXERCISE 16A: EX16A
Objective:
Use CAPCOM unit to generate aregular 1Hz interrupt via the output compare mode. Make the CAPCOM

flash LEDO (P2.6) by conventiond pin-toggling in the service routine but use the pin-toggling compare mode
for LED9 (P2.15).

wvord 1S _imtiwvoidl interrupt IxlE
Euruu-n}
_| L, P2.15
(CC15)
TO CC15
IH
COMPARE

CC15 = 0x8000

20MHz < Frescale

2.0MHz

Procedure:
() UseTimer 0 asthe timebase for CAPCOM channd CC15 (P2.15). Set the Timer O prescaer to the
same value as used in EX 3 so that the overflow rateis 1.68 seconds.

@) Initidise LEDO and LED?9 as output pins so thet the LEDs in the 10-way array on the training board can
be driven.

(i) Configure CC15 to use a compare mode that gives an interrupt and the automatic toggling of port 2.15.
In amanner smilar to that used in EX16, set the four bits that control channe CC15 viathe _bfld ()
intringc function.

(iv) Useinterrupt leve 2, group level O for the interrupt service routine. In the service routing, add an
increment “interrupt_period” to the existing CC15 vaue to creete the next interrupt. Toggle LEDO using
an exclusve OR function.

(v) Loadtheprogaminto HiTOP and runit. If you force new vauesinto “interrupt_period” viathe Watch
window you should see that the flash rate dters accordingly.

Note: The training board’'s CPU is not used in this example.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 130

14.4.1 Application Example - 32-Bit Captures

The limitation of the method used in the last exercise isthat if the period of the input is greater than or equd to
twice the period of the 16-bit timer, result will be incorrect. By using both timer 1 and timer 2 as areference,
period measurements of very low frequency sgnds can be made accurately. The need to measure periods
from very low to very high frequenciesis often required in engine management systems, where crankshaft
Speeds can be nearly zero under cold starting conditions but very high a maximum power.

Hereishow it isdone

Timer T1 is preloaded with 0x8000 while TO remains at zero. Both timers have overflow interrupts at (for
example) priority level 12. Each overflow interrupt Smply increments the appropriate overflow counter and
exits. Thetimers are started together by writing to the TO1CON register. As T1 was preloaded with

0x8000, the T1 overflow counter will ways be one count ahead of that for TO. The input waveform is
gpplied to a capture pin, assigned to timer TO. The capture interrupt service routine at priority level 13,
checks whether the captured value was in the upper half of TO. If it was, then it can be guaranteed that the
overflow word for TO is stable and will not change. Thisvaue isthen used to caculate the 32-bit period vaue
sncethelast edge. If the cgptured vaueisin the lower hdf of TO, then the overflow count from T1 isused as
it can be guaranteed that it is stable. The fact that the overflow interrupts cannot interrupt the capture routine
ensures that the chosen timer overflow counter is stable.

CCO | Ox8000 = 1

\
\
I
|
3
)
\
\
i
]
\
\
1
[
|
)
I
)
1

Y EC0 | Hx8000 = 1

CC0 | 0xB0DOO
CC0O | 0x8000

T1_msw | |
(Freloaded
with Ox8000) 1 2 3 ¢ 5

An example of this technique can be found in \EX16A\SOLUTION.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 131

14.5 ThelInterrupt-Driven PEC System

The peripherd event controller (PEC) is an excdlent way of moving datato and from C166 peripheras and
RAM. Itisessentidly an extenson to the interrupt syssiem. Commonly, the PEC transfers are made between
peripheras and the on-chip RAM, using just one CPU cycle (100ns). Thetransfer istriggered by any active
interrupt source producing an interrupt request. Rather than result in anorma service routine call, the PEC
system just moves data from the address indicated by the source pointer (SRCPX) to that indicated by the
destination pointer (DSTPX). If either of the two pointersisincremented by the PEC, as would be required if
an array was the destination or source, a conventiona interrupt service routine will be required after up to 255
transfers to reset the pointers back to the base of the array. The source and destination addresses are indi-
cated by source and destination pointers. These are Stuated at OxFDEO - OxFDFF on the C166 and
OxFCEO- OXFCFF on the C167/5, with PEC channd zero’s pointers being at the lower address limit in each
case.

Note: The design of the C166 redtricts the PEC destination and source addressesto being in the first 64kb.

-srre AL zd_aors LRED
:'/v
,/ h]]
i)
A 3
i |
el
y Ry
ADC |&:cd J Pec |
2d_slore
D3TL -
P.E.C. Overview
14.5.1 Setting The PEC Channel Number
The interrupt control registers must be set asfollows:
ADCIC
ADCIR | ADCIE 1 1 1 PEC Channel Number

Where the lower three bits sat the channd number to be used.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 132

14.5.2 Setting Up The PEC System
The C166 language features necessary to use the PECs are:
#pragma PECDEF(X,y,...),_sof (addr) , SRCPx, DSTPx

The necessary seps are:

() Reserve spacein on-chip RAM for PEC pointers with #pragma PECDEF(X y,....).
(i) Set source pointer, SRCPx to address of register or location that will generate data

SRCPO = (unsigned i nt) &ADDAT ; /1 Set up source pointer O
(i) Set degtination pointer, DSTPX, to address of location into which datais to be placed.
DSTPO = _sof _(ad_store) ; // Setup store pointer O

(iv) Configure PEC control registers to set the number of transfers, whether they are byte or word and
whether the source or the destination pointers are to be incremented or decremented.

PECCO = 0x80 ; /1l Transfer 0x80 val ues via PEC
PECCO | = 0x0200 ; // Inc dest pointer for store in array, word transfer

(v) Set up PEC channd to be used.
ADCI C | = 0x38 ; /1 Interrupt 14 priority, group |level 0 => PEC channel O

(vi) If number of transfers != Oxff, create an interrupt service routine to reset pointers and count register

DSTPO = _sof _(ad_store) ; // Set destination pointer back to base of buffer
PECC0 | = 0x80 ; /! Reset PEC channel counter to store 80 val ues

14.5.3 Special C166 L anguage PEC FeaturesExplained
#pragma PECDEF(0) // Reserve space for PEC pointers at OFCEO

Causes L 166 to reserve 4 bytes for source and destination pointers

DSTPO = (unsigned short) _sof (ad_store) ; // Set destination pointer to buffer base

Sets PEC channd 0 degtination pointer to the base of the results buffer by using the intringc function which
returns a 16 vaue corresponding to the offset of the buffer from the base of segment 0. The _sof () function
has to be used as ad_buffer existsin the near data area which must be addressed via DPP2. If the C “address
of operator”, ‘&’ was used, only the offset from the base of the near data area would be returned.

SRCPO = (unsigned short) &ADDAT ; // Set up source pointer 0

Sets PEC channel source pointer to A/D convertor results register by using & operator. Asthe ADDAT
register exists in the sdata area, DPP3 is used implicitly and so the gpparent address of the register isits
actual addressas DPP3 = 3.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 133

The SRCPx and DSTPx pointers are not red pointersin the normal sense. They are created asaresult of a
specid cast from a congtant value to an address.

Extract From regl67.h

The specia casts used to convert RAM locations between Oxfce0 and Oxfcff into PEC pointers.

#define SRCPO (*((unsigned int volatile sdata *) OxFCEQ))
#define DSTPO (*((unsigned int volatile sdata *) OxFCE2))
#define SRCP1 (*((unsigned int volatile sdata *) OxFCE4))
#define DSTP1 (*((unsigned int volatile sdata*) OxFCE6))

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 134

EXERCISE 17: EX17

Objective: Use PEC to reduce CPU load in buffering continuous conversion results into dud arrays.

Procedure:

Write a program to continuoudy read AD channel 0 using "fixed channd continuous converson” mode. Use
the PEC to transfer 128 samplesinto two buffers dternately. Create atwo-dimensond array suchas " un-
signed short ad_store[2][0x80]". Onsuccessve ADC interrupt service routines, set the

dedtination pointer tofirgly " &ad_st ore[0] [0] " andthento” &ad_store[1] [0] ".

E'C'IE{}",‘* I ac_sTore|l +0x6C

ad store[”]

ad store

ADC =200 J PEC

AD2AT

ad _slore C]-0xi30

- .. I
storae ||

add

Exercise 15 Overview

ac_s._cle

NOTE: Put the C515C DIL switch to position '00000000' to stop the square wave generator.

> HEEEES

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 135

EXERCISE 18: EX18

To illugtrate how interrupts are used in C166, we will try to write a 4800 baud software UART, or at least the
receiver, the difficult part! Thisis ared-time program which requires two peripheras to be used in tandem,
namely GPT1 and CAPCOM 1.

() Setupaninterrupt function that triggers when a negative edge occurs on the input capture pin, P2.3.
Thiswill eventudly be used to detect the fdling edge of the gart bit. Put the initidisation code in afunction
cdled “init RX_int()”. Name the interrupt service routine “RX_int_gtart(). Use the capture mode of the
CAPCOM unit and use the Set_Priority_OX(xxIC) macrosto set priority leve 2, group level 0.

The input capture mode of the CAPCOM unit can be used to create an interrupt only in response to an edge
on one of the port 2 pins. In thismode, it is set up to perform an input capture with interrupt service routine
but in this example, the captured vaue is Smply ignored.

Thereisaserid bit stream being applied to P2.3 so you should be able to generate an interrupt fromit.
Check that you can repestably get to the interrupt function in HiTOP.

el

Initialise X Interrupt
anZT_FIoat !

Slurl Fil

<—IJ ¢ _ e [

srart LR Detedtor Interiipt

. 4

Idam Laajp

NOTE: Put the C515C DIL switch to position ‘00000011 to start the character tranamitter. It is sending
just one character every 100ms. Initidly, am to get your program to detect the faling edge of the Sart hit.

n\

~ i E S

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 136

Fa_=lAa- _in v ocaerrnal C-200

14.6 Switching Registerbanksin C
14.6.1 TheUSING Control

By including the USING <regbankname> contral in an interrupt function definition, a new registerbank can be
made available for the function and no stacking of genera purpose registers will be required.

Hereis an example:

; /*** Interrupt Service For Timer 0 ***/

RECDEF RO - R15
TOREGBANK REGBANK RO - RI5 <———(Ceate new regi ster bank

?PR?T SECTION CODE WORD ‘ NCODE'

timerO_int PROC |NTERRUPT = 16 USI NG TOREGBANK
GCBAL tiner0_int
; FUNCTION timerO_int (BEG N RVASK = @x0012)
void timerO_int(void) interrupt 0x10 usi ng TOREGBANK {
; SOURCE LINE # 13
SCXT DPP3, #3
NOP
MOV TOREGBANK, RO <———Switch context to new register bank; old CP PUSHed onto
st ack.
SCXT CP, #TOREGBANK
NOP
?00006:
?C0007:
POP CP <———(Oiginal CP restored from stack.
POP DPP3
RETI
FUNCTION tinerO_int (END RVASK = @x0012)
tinerO_int ENDP
?PR?T ENDS

Here, anew sat of registersis made avallable and the time for pushing has been diminated. The decison of
when to use the using control should be made after examining the actua code produced by the compiler. If up
to three registers are pushed, thereis no red advantagein “usng”.

14.6.2 Sharing Register Banks

Interrupts of the same priority can share aregister bank as they can never interrupt one another and hence no
register-bound data be logt.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 137

EXERCISE 19: EX19

This builds directly on the last exercise to complete the UART receiver.

0]

Write afunction called “timer3_init()” to set up timer3 to produce an overflow interrupt every 208us,
the basic bit period at 4800 baud - cdl the interrupt “timer3_int()”. Run it in auto-reload mode with
timer2 asthe reload register. Use the Set Priority_0X(n) macrosto set priority level 3, group level
0.

Put a USING <regbankname> on both interrupt functions that you have written. Check that you can
repeetably get to the interrupt in HiTOP.

(i)

(ii)

v)
)

(vi)

On each timer3 interrupt, capture the vaue of P2.3 into bit 9 of an undggned int bdata variable
(rx_shi ft _reg)whichwill beusad asadhift register. Y ou will dso need aincoming bit counter
cdled rx_bit_count. On each interrupt, you will needto shiftr x_shi ft _r eg one placeto the right.

Modify the P2.3 input capture interrupt to enable the timer3 overflow interrupt. Make sure that the
timeout from this point to the first timer3 interrupt is one and a hdf the 208us bit period used in the
timer3_init() function. Thiswill make sure that you are sampling each subsequent incoming bit in

the centre!’ A good trick isjust to force T3 to aone and a hdf bit-period count in the capture interrupt
S0 that you get one longer timeout period to start with. This makesthe first timer 3 interrupt occur
inthe middle of thefirg bit - the gart bit contains no informetion!

After 9 interrupts (i.e. 10-bits per frame) the timer 3 interrupt must disable itsdlf.

Onthelast interrupt, move the byte inthe lower hdf of r x_shi ft _r eg into aglobd variable cdled
“SXRBUF'. Creste aglobd bit flag caled SXRIR and et it at this point to tell the background that

a character has been received.

Stop timer 3, clear the interrupt request flag for CC3 and set its interrupt enable, ready for the next
dart hit.

sainz] ssRE SxRIG

SHTR| &=TIZ SxTIC

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 138

NOTE: Once you can rdiably receive the tranamitted character, put the C515C DIL switch to position
‘00000100 to make the character transmitter send an ASCII message string.

N

v AN

1 ks 3 < 5 a

Collect the recelved characters into a buffer in the main() loop:

while(1l) {
while(!ISxRR { ; }
SXRIR = 0 ;

rx_buffer[i++] = SXRBUF ;
}

14.6.3 Application Note - Using just the CAPCOM unit to redise the UART receiver

A more eegant solution isto use the CC3 CAPCOM channd to both detect the start bit and generate the bit
clock to capture the incoming bitsin the serid stream. The initid configuration of CC3 isidentical to that
dready used. However, in the CC3 interrupt, the mode set by CCMO is changed to compare mode. The
CC3regiger isthen incremented by the number of timer counts that corresponds to one bit time. After dl the
bits have been captured, the CCMO mode is set back to capture mode, so that the next start bit falling edge
can be detected.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 139

EXERCISE 20: EX20

Objective:

Implement the CAPCOM-based UART receiver.

Procedure:

0]

be

Edit MULTUART.C and locate a function cdled uartA_init(). Modify this function to do the
fallowing:

- Set avariable cadled SABRG to equd the parameter "baudrate’. SABRG isaglobd variable and will

used later in the CC3 interrupt.

- Set avariable caled uartA_bit count to 9

- Usethe bfld () intringc function to sst CAPCOM channel 3 to negative edge triggering to detect the
faling edge of the start bit. Y ou will need to use CCMO to do this.

- Set the CC3 interrupt to priority level 12, group level O

- Set the start_bit_detect_mode bit variable to O

This completes the initid configuration of CAPCOM channd 3.

(i)

(ii)

Modify the uartA_rx_interrupt() function to do the following:

- If gtart_bit_detect modeisone, asit will be while CC3 isin negative edge-triggered mode, add a
umber of counts corresponding to one and a haf bit periods (SABRG + SABRG/2) to CC3 itsdf.

- Set the CC3 mode to compare mode to create another interrupt one and a half bit periods later.

- Clear the start_bit_detect_mode hit flag.

- If gart_bit_detect mode hit flag is zero, capture the bit on port 2.3 into "rxA_shift reg". We have
provided a shit named "rxA_shift_reg input” that isthe bit 9 of rxA_shift reg. Likewise,
uartA_input_pinisan shit representing port 2, bit3. The C statement "rxA_shift_reg input =
uartA_input_pin ;" will perform the bit capture into rxA_shift_reg.

- Shift the word variable "rxA_shift_reg" one placeto theright.

- Decrement the bit counter "uartA_bit_count".

- When uartA_bit_count reaches zero, set start_bit_detect mode to 1 and transfer the lower 8 bits of
rxA_shift regto avariable caled "SARBUF'. Set uartA_hit_count back to 9 and change the compare
mode of CC3 back to capture on negative edge, ready for the next sart bit. Finaly, set abit caled
"SARIR" to tell the codein MAIN.C that a new character has been received.

MAIN.C need not be changed. It will capture the received charactersinto a buffer which may be
examined viaHI TOP.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 140

14.7 When Your C166 CPU KeepsFlying Off Into Space...
Filling The 80C166's Trap Area With Dummy Interrupts

Good practice says that any unused interrupt vectors should be filled with ajump to a defined address, usudly
RESET. This prevents asystem from crashing should an unexpected interrupt occur. However, during debug-
ging, it ismore useful to be able to find out what the erroneous trap was, rather than to just go back to reset.

14.7.1TheTrap.C File

To alow the source of traps to be eadly found, we have created afile containing dummy interrupt functions
for al 80C166 interrupt sources. Each function contains an endless while(1) loop. Thus, if the CPU vectors
off to some unexpected interrupt, it will come to rest safely in aloop which will alow the source to be identi-
fied. If adebugger isbeing used, set breskpoints on each of the dummy interrupt routines so that you can
look back though the trace buffer to find out where the error or false interrupt occurred.

Hereis an extract from thefile

[*** CAPCOM Unit Interrupt Traps ***/

void CAPCOMD int(void) interrupt Ox10 {

while(1){;} }

void CAPCOML_int(void) interrupt Ox11 {

while(1){;} }

void CAPCOML4_int(void) interrupt Oxle { while(1l) { ; } }
void CAPCOML5 int(void) interrupt Ox1f { while(1) { ; } }
void timerO_int(void) interrupt 0x20 {

while(1) { ; } }

[*** General Purpose Timer Unit Traps ***/

void GPT tiner2_int(void) interrupt 0x22 {

while(l) { : }

void GPT_timer6_int(void) interrupt 0x26 { while(1) { ; } }

void GPT_CAPREL_int(void) interrupt 0x27 { while(1) { ; } } }

void serial O _tx_int(void) interrupt Ox2a { while(1) { ;} }

void serialO_rx_int(void) interrupt Ox2b { while(1l) { ; } }

void serial O _error_int(void) interrupt Ox2c { while(l) { ; }

void seriall_tx_int(void) interrupt Ox2d { while(1) { ; } }

void seriall rx_int(void) interrupt Ox2e { while(1) { ;} }
void seriall_error_int(void) interrupt Ox2f{

while(1) { ; } }

[*** Hardware Traps ***/

void NM _Trap(void) interrupt 0x02 {

while(1) {; }

} void STKOF Trap(void) interrupt 0x04 {

while(1) {; }

} void OdassB Trap(void) interrupt OxOa { while(1) { ; } }

[*** Software Traps ***/

void software_trap_49(void) interrupt 49 { while(1) { ; }

} void software_trap _50(void) interrupt 50 { while(1) { ;} }

} void software_trap_127(void) interrupt 127 { while(1) { ; } }

Thisfileis compiled and linked as normd. Asthe vector arealis now filled with IMPSs, the normd reserve
statement can be removed. Note that any interrupt sources used by your gpplication must be commented out

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 141

of the source file otherwise when you link, “duplicate interrupt number errors’” will be flagged. If you are using
aHiTOP166 monitor debugger, you will need to comment out the serid portO traps.

In the final gpplication, it would be more useful to call a diagnostics function which could perhaps send an
error message to aterminal. Of course, the error message should be suitably cryptic so that your end user will
not know that your released code has encountered a system stack overflow and hence not start asking awk-
ward questions....

14.7.2 Common Reasons For Getting To Unexpected Traps

(i) If youend up at the “word access to odd address’ trap, check that you have not externally referenced
achar quantity asan unggned int! Using the suggested intelligent include files method, this problem
can be eiminated.

@) If youend up a an interrupt vector which was completely unexpected, check that you have not got
two interrupt sources set with the same priority and group level. Using the Set_Priority() macros will
help avoid this. Also check that you have not got an incorrect or missing interrupt number.

(i) If your program seemsto end up a main() again rather than going to an interrupt routine, check that
you have got the interrupt number right. The CPU could vector off, find no IMPS and just plough
on until it sees2C_STARTUP again!

14.7.3 New Control for Interrupt Functions
NOT_SAVE DPP3

New C167 Librarieswhich do not ater DPPO and DPP3 registers. All accessesto far/huge/xhuge variables
are done with EXTS/EXTP ingtruction sequences which means that DPP3 and DPPO are never changed.
PUSHes and POPs of DPP3 and DPPO in interrupt functinoc are eiminated. Only safe with MOD167.

14.8 Advanced Technique - Simulating Static Register Variables

The C166 core was designed to alow automatic variables to be allocated to registers so that no intermediate
data needs to be moved off chip and hence only 100ns register ingtructions are used. The C166 compiler will
automaticdly try to dlocate locdsto regigters. It is often that case though that an interrupt function will need
to operate on some detic data, which will normaly have to be in ordinary deta RAM that requires extratime
to access. The USING directive is useful for allowing afast context switch but it can dso provide what are
effectively static register variables: provided that no other interrupt function uses a particular register bank, the
data left behind after aprevious run of the interrupt function will sill be there. Thus, any autométics crested in
an interrupt function which has an USING will in practice be static loca's, whose vaues will be preserved
between function cdls. Making use of thistrick can dragtically reduce the run time of large interrupt functions.
There are unfortunately two drawbacks in the current v3.0x C166 compiler:

() Thedatic datain the interrupt cannot easily be accessed by background loop functions, as with any
locd.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 142

(i) Thenormd compiler memory initiaisation cannot be relied upon to clear the register bank and no
initia vaues can be given.

However, the zeroing phase can be performed by creating a specia function which has the same USING
register bank, as shown in the function “void clear_regs(void) usng TOREGS’. Note the sdata pointer “con-
text pointer” created to the base of the register bank by casting the CPU’ s context pointer (CP) to a unsigned
int pointer.

#i ncl ude <regl66. h>

extern unsigned int rptr

unsigned int * sdata regs ;

unsi gned int basereg ;
int const i = Oxaaaa ;

[*** |nterrupt Function Using A Registerbank ***/
void tinerO(void) interrupt 0x20 using TOREGS ({

unsigned int varl, var2 ; // These are in practice statics
varl = CQ0 - var2 ; [// Find tine between interrupts

var2 = CQ0 ; /! Renmenber CO0 value for next tine...

}

[*** Clear Qut Register Bank Used By Interrupt Function ***/
void clear_regs(void) using TOREGS {

static unsigned char i ;
static unsigned int sdata *context_ptr ; // Create pointer to base of regbank

context_ptr = (unsigned int sdata *) CP ;
for(i =1 ; i < TOREGS Size ; i++) { [/ Never touch RO
context_ptr[i] = 0 ;
}
}
[*** NMai n Background Loop ***/
void main(void) {
clear_regs() ;
basereg = (*((unsigned int sdata *) rptr))
regs = (unsigned int *) rptr
*regs = Oxaaaa ;

regs[1] = 0x5555 ;
}

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 143

14.9 Fixing Register Banks At Absolute Addresses

Registerbanks created by the USING statement can be fixed at specific addresses using the REGBANK
control. Thisis sometimes necessary when on-chip RAM isin short supply and precise control of where
things end up isrequired. C166's default register bank, used by background loop functions, goes by the
name of 2C_MAINREGISTERS and will gt a OxfcO0 unlesstold otherwise. Any new register banks created
by the USING statement can also be placed, for example:

void timerO_int(void) interrupt 0x20 USI NG TOREGS {
}

nmai n. obj , &
noda. obj &
to exec.abs &
CLASSES(FDATA(0x8000) ,
FDATAO(0x8000)) &
SECTI ONS(?MAI N?FDO%-DATAO(0xA000))
REGBANK(TOREGS(0xf d20))

14.10 Controlling the CP directly -Some Tricks With Registerbanks

A regiserbank isredly just 16 contiguous words of on-chip RAM. Thusisit entirely possible to creste your
own registerbanks from int arrays. The context pointer can then be set to point at the base of the array to
perform amanua context switch.

int idata NEWREGBANK[0x10] ; // Create a word array of 16bytes

CP = &NEWREGBANK[0] ; // Perform a nanual context swtch

Why would you want to this? In very time-critical code, the idedl situation would be that any subsequent
functions from an interrupt function would have their own dedicated registerbank. Thus both the interrupt
function and the called function could use up to 15 registers each for locds. Unfortunately, C166 does not
redlly alow you to do this, athough the register mask concept can help.

interrupt_func() using |INTREGS {
ot herfunc() ;

}

Inared project, it was necessary to employ the “Simulating Static Register Variables’ trick outlined earlier
on to permit an interrupt function to use registersto best effect. Unfortunately some time later in the develop-
ment, a cal to afunction with many loca variables had to be added. The use of registersin the interrupt
function was thus largely inhibited, with agreeat loss of performance.

Adding the registermask @0x8000 to the called function’s prototype restored the use registersin the caller to
the origind state - this mask value says effectively that “this function uses no registers’. Unfortunately though,
the two functions were now using the same registerbank with the result thet the local data from the caler was
being destroyed by the second function. The solution was to use the @0x8000 registermasks with a manua
context pointer switch to a 16 word array. Thisalowed both caler and caled functions to have their own
registerbanks.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 144

Example Of Allocating One Registerbank Per Function

[*** Define a new register bank nmanual ly ***/

#defi ne | NTERPREGS_SI ZE 0x10
unsi gned int idata | NTERPREGS[| NTERPREGS SI ZF] ;

[*** Crankshaft TDC Interrupt ***/
void tdc_int(void) interrupt Ox1f using TDCREGS {

unsigned int tenp, time_for_60 ; // Make this a register variable
unsigned int tinme_last_60 ; // These are really static but dedicated
unsi gned int tooth_count ; // regbank TDCREGS nakes themlike static
/1 register variables
unsigned int CP_tenp ; // Store for current context pointer during interpolator call

CP_tenp = CP ; // Make copy of the current context pointer TDCREGS

CP = &I NTERPREGS[0] ; /// Set context pointer to special reghank

master _inj _PW = map_interp((ADDAT & 0x3ff), engi ne_speed, def aul t _nap2)
/1 Call function in new regbank

CP = CP_tenp ; /'l Restore original regbank (TDCREGS)
time_last_ 60 = CCl5 ; // Store current CCl5 for next tine...
}

Externd function’s prototype:

#i fdef _| NTERP_
#el se
[*** External References ***/
extern unsigned int map_interp(unsigned int,
unsi gned int,

unsi gned int near *) @x8000 ;

#endi f

Note: Asthe context pointer had to be switched before the function was called, none of the parameters passed
to it could be register variables - by switching the registerbank base, they would be inaccessble. Here, the
parameters were a CPU sfr and aglobal variable so no problem arose.

The end result was that both functions could fredly use registers and hence the run time was reduced by 40%!

14.11 Special Note On idata (classes IDATAO, IDATA) For C165/7

The C167/5 have an internd RAM which gtarts at Oxf600 rather than the Oxfa00 of the C166. Unlessyou tel
it otherwise, the program data declared as idatawill go into the IDATAO class and be placed by C166 at
Oxfc20, above the 20 bytes required by the background loop registerbank, 2C_MAINREGISTERS.

L. 166 will not use the region below OxfaD0 unless you tdl it viathe classes control. Thisis smply done with
the following linker invocation file

mai n. obj , &
noda. obj &

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 145

to exec.abs &
CLASSES(| DATAO(0xF600)
FDATA(0x8000),
FDATAO(0x8000)) &
SECTI ONS(?MAI N?FDO%-DATAO(0XA000))

It isusudly only necessary to specify IDATAO as any compiler-generated idata classes will be of thistype.
14.12 Bit Addressable Data

A mgor frugration for assembler programmers coming to C used to be the inability of ANSI C to handle bits
in the bit addressable area directly. However in the C166, it is possible to force data into the bit addressable
areawhere the 80C166' s bit instructions can be used directly.

The amplest bit typeisthe “bit”. Bit variables are declared in the same way asints and chars.
bit flag_bit = 0 ;
14.12.1 Special Function Bits

It is ds0 possible to name the bitsin aword located in the bdata bit-addressable on-chip RAM area. This
dlows rdaed bit flags to be grouped together in asingle unsigned int object.

First an object is declared as bdata
unsi gned int bdata test ;

Now individua bits may be enabled for bit addressing

shit nybit0 = test’O ;

The symbol myhitO may now be used for dl future bit operations on bit O of test.
14.12.2 Note on declaring an shit as external

To reference an it defined in another module, Smply use:

extern bit nmybitO ;

The fact thet it was origindly defined as a shit isirrdevant - C166 Smply regards it as an ordinary bit deta
type.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 146

15. Assembler Interfacing - In-line Assembler

C166 dlows smdl sections of assembly code to be embedded directly within C functions. It is however best
avoided and it is aways better to cal assembler code viaanorma function cdl, as described in the next
section.

Any module containing in-line assembler must be compiled with the SRC switch to generate a valid assembler
file. Thisfile hasorigind C lines smply as comments. Examining the .gcfileis dso useful way of understand-
ing how the compiler works!

EXAMPLE 1:
Compile with:

C166 main.c SRC

and then assembler with:

A166 main.src
void main(void) {
char x,y,z ;
X =1
#pragma asm
MOV R10, #010H ; Assenbl er
#pragma endasm

/* Further C Code */

}

With C166's good code efficiency and intringc functions, there are very few occasons when in-line assembler
isredly required.

Note! You are strongly advised not to use this C166 feature! In dmost every case, proper use of the compiler
will produce code with near-assembler efficiency. If you absolutely have to use assembler, cdl it asafunction.

15.1 Calling Assembler Functions From C166
15.1.1 Coping With Start Addresses And Parameters

Itisentirdy possbleto cal assembler functions from C166. The most fundamenta requirements are:

() Ensurethat the start address label is accessible to C166 i.e. make sure that L 166 can tie up the call
in C166 with the target |abd in the assembler file.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 147

Any labd declared as PUBLIC in A166 is accessble from C166:

A166 Module
PUBLI C ASM START

ASM START: MOV R1, #100H
MV R2, [R1+]

C166 Module

extern void asmstart (void)

asmstart() ; /1 Call

function witten in assenbler

(i) Make sure that any parameters required by the assembler function are placed in the correct registers

by C166.

The smplest way to acheive thisis to write the C module which contains the cdll to the assembler function and
compile it with the SRC option. The resulting .SRC file will show in which the placement of each parameter

will be shown.

Example

asm f unc(0x1000, 0x80000000,

MOV Rl11, #16384

MOV R12, #16

MOV R9, #0

MOV R10, #- 32768
MOV R8, #4096
CALLAcc_UC, asm func

© Copyright Hitex (UK) Ltd 1999

(char huge *) 0x104000) ; // Call asmfunction

huge pointer (SOF offset)
huge poi nter (SEG nunber)

; long data | ower word

| ong data upper word

;. int data word

C166 Introduction Page 148

15.1.2 Pointer Passing To Assembler Functions
The components of a pointer are passed to functions by C166, according to the following rules.

near pointers
The pointer conssts of asingle 16-bit value which is able to address a 0x4000 range, passed in asingle
register.

MOV R4, [R8]

far pointers
The far pointer is page based and consgts of two words (32-bit) value which are able to address a 0x4000
range, passed in two registers.

Rx+1 - page number
RXx - page offset

EXTP RO, #1
MOV R4, [R8]

huge and xhuge pointers

The huge pointer is segment based and consists of two words (32-bit) value which is able to address a
0x10000 range, passed in two registers. The xhuge pointer isidentical in format but able to address an
unlimited range.

Rx+1 - segment number
RX - segment offset

EXTS RO, #1
MOV R4, [R8]

15.2 Using C166 To Write Assembler Functions

The smplest way to produce assembler modulesis to use C166 asthe starting point. Hereiswhat to do;
() Create aC module which contains afunction with the required name.

(i) Declarethe mgor loca and globa data required by the embryonic assembler function.

(i) Compile the C module with the SRC option.

(iv) Usethereaulting .SRC file as atemplate on which to base your own further assembler work.

(v) Assemble .SRC filewith A166

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 149

Example

$NOVACRO
$SEGMENTED CASE MOD167

*S. SRC GENERATED FROM I NPUT FILE *S. C

; COWPI LER | NVOKED BY:

C:\ C166V2\ BI N\ C166. EXE S. CSRC

NCODE CGROUP ?PR?S
NCONST DGROUP ?NC?S
NDATA DGROUP ?ND0O?S
SDATA DGROUP 2?1 D0?S, SYSTEM

ASSUME DPP1 : NCONST
ASSUME DPP2 : NDATA
ASSUME DPP3 : SDATA
?NC?S SECTI ON DATA WORD ‘ NCONST’
string DB ‘H,'E,'L','L,"’O,00H
PUBLI C string
?NC?S ENDS

?ND0?S SECTI ON DATA BYTE ‘ NDATAO’
asmgloball DSB 1

PUBLIC asm gl obal 1

?ND0?S ENDS

?1 D0?S SECTI ON DATA WORD * | DATAQ’
asm gl obal 2 DSW 1

PUBLI C asm gl obal 2
asm gl obal 0 DSW 1

PUBLI C asm gl obal O

?1 D0?S ENDS

#pragnma MOD167
#i ncl ude <regl67. h>

char const near string[] = “HELLO" ;
int idata asm gl obal 0 ;

char near asm global 1 ;

int idata * idata asm gl obal 2 ;

REGDEF RO - R15
TIMER_REGS REGBANK RO - RI15

?PR?S SECTI ON CODE WORD ‘ NCODE'

asmtimer_int PROC | NTERRUPT = 16 USI NG TI MER_REGS

GLOBAL asm timer_int

FUNCTI ON asm ti mer _int (BEG N RMASK = @x0010)

void asmtinmer_int(void) interrupt 0x10 usi
SCXT DPP3, #3
NCP
MV TI MER_REGS, RO
SCXT CP, #TI MER_REGS
NOP

?C0003:

SUB RO, #2
int a, b;
a = CCl ;

MoV R4, CC1

—Variabl e ‘a?01’ assigned to Register ‘R4’

; }
ADD RO, #2
2C0004:
POP cP
POP DPP3
RETI

ng TI MER_REGS {
SOURCE LI NE # 10

SOURCE LINE # 14

SOURCE LI NE # 16

FUNCTI ON asm timer_int (END RMASK = @x0010)

asm timer_int ENDP
?PR?S ENDS
END

© Copyright Hitex (UK) Ltd 1999

C166 Introduction

Page 150

16. The Part 2.0B CAN Module

The CAN module on the C167CR microcontroller has the following features;

Trandfer rates up to 1IMbaud.

Standard 11-bit and Extended 29-bit protocols.
Message object architecture.

Minima CPU management overhead.

The CAN module is derived from standalone CAN components like the 82C257 so anybody having written
CAN software before should find the procedures very familiar. Thefirst job isto understand what the CAN
modul€' s control registers do and how they are addressed.

16.1 CAN Registers

The CAN moduleisa C167 XBUS peripheral which is accessed viaan area of memory-mapped registers,
garting at address OXEF00. These registers are made up of 6 General Control Registers (GCR) and 15
Message Object Buffers (MOB). Their arrangement is shown in the diagram below.

Control/Status Register

CxTT0 Clener] Toewislers ool St VIxTIT O

Crlkl Dlcasaac bjast L ook

CxEFO hlemang.e kol = “nlorrups vHF 2
el hlesgage Cbjaat 3 Loaister

kA Messaze Objet 1 g it limicg OB E
CxTTal Mleesuee Ciljzcl = .-] Togislen

Cxllei Mcssaze Cbjast o 13leaal kdeek ALY
CxEF 8 [T A e " Tmsler

cx] o blosaage Cohjaot o AT
LREED Mesaass Objaat 9 N b aal Mesk

CxTTAL Tlersmee Cljacl 17 T

Ol L1 Mesgaze Okt 1L

CuRFCE hleange Chjecl 12 U HE
SARRNY helcasaze Ckjzat 13 N wask of

B N Messag e Objeat 14 _ast Iiessase

CxTTTH) Relersage Cljacl 13 .

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 151

These bits control and indicate the satus of the CAN module.

E
ROFE WIS REODKITHEOE T=0 TEC | TET a |0 0 O [FEE [&TE | TR THIT

I I I & 1F IT&" I 1% " I & 7% 1% "W
L SByteis control part of register;-

INIT - Sat initidisation
Write 1 to start the software initialisation of the CAN module.
Write O to activate CAN module after initidisation.

IE - Interrupt enable of CAN module
Write 1 to enable CAN objectsto generate TX/RX interrupts.
Write O to stop them.

SIE - Status interrupt enable
Write 1 to enable interrupts when TXOK, RXOK are set or LEC is updated.
Write O to stop them.

EIE - Error interrupt enable
Write 1 to enable interrupts when EWRN or BOFF change.
Write O to stop them.

CCE - Configuration change enable
Write 1 to enable access to Bit Timing Regidter.
Write O to prevent/protect access.

MSByte is the status part of the register:

LEC - Last Error Code

NO ERROR

STUFF ERROR

FORMAT ERROR
ACKNOWLEDGE ERROR
BIT 1 ERROR

BIT 0 ERROR

CRC ERROR

TXOK - Transmitted message successfully
RXOK - Received message successfully
EWRN - Indicates warning level has reached 96
BOFF - Busoff dtate error level >= 255

OO0k wWNEO

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 152

Interrupt Register

The CAN interrupt register indicates the source of the different interrupts that the module can generae:

HLSERY LD IR

INTID - 00 interrupt idle
- 01 status change interrupt
if SIE set, update of LEC or set of RXOK or TXOK
if EIE set, change of BOFF or EWRN.
- 2 Message Object 15 (Receive only) interrupt, highest priority
- (2+N) Message Object N interrupt (N=1..14)

Unlike other peripheralsin the C167, dl the possible interrupt sources in the CAN module share the same
vector. Therefore in the single CAN service routine, the user must check the flags in the CAN interrupt
register to see what event actualy caused the interrupt. In the interrupt routine, the interrupt source must be
serviced and then INTID checked again to seeif there are any other interrupt sources pending until INTID =
0. Thisprocessiscovered in more detail later.

Bit Timing Register

Thisregigter contains the fields which define the bit times used on the network.

f} 1THLGT TELEG] S LyF

I I I Iy I

Its probably a good idea to read a document which explains the definitions and theory of calculation behind
the CAN bit timing before you get too stuck here! Fortunately, there are some “rules of thumb” that can
safely be used in most applications. However, asthe timings are largely dependent on the electrica character-
igics of physcd layer, you should take specid careif you have an unusud or very long transmission line.

BRP - Baud Rate Prescder, defines time quanta.

SIW - (Re)Synchronization Jump Width, dlow bit time resync up to (SIW+1) quanta.
TSEG1 - Time Segment before sample point, sample after (TSEG1+1) quanta

TSEG2 - Time Segment after sample point, (TSEG2+1) quanta after sample.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 153

16.1.1 Bit Timecalculation

Hereisadiagram of asingle CAN hit time, which is divided up into 4 separate time segments.

“onmminal bl time

-4 -

Syne_seg Lrop_Seg Plyase_Segl Pluase_Heg2

Bumyale ot

SYNC_SEG - Synchronization segment
PROP_SEG - Propagation segment
PHASE SEG1 - Phase segment 1
PHASE SEG2 - Phase segment 2

Thefiddsin the Bit Timing Regigter rae asfallows,

Ti meSegl = PROP_SEG + PHASE SEGL
Ti meSeg2 = PHASE SE®

BIT time = SYNC_ SEG + TinmeSegl + Ti neSeg2

SYNC_ SEG = 1 quanta (This tine is not adjustable)
TinmeSegl = (TSEGL+1l) quanta

Ti meSeg2 = (TSE&R+1) quanta

1 quanta = (BRP+l) * 2 * t

t 1 / XCLK FREQUENCY

The generd rule on defining the sample point is that is should be about 60% of thetotd BIT time, as recom-
mended in the CAN specification. This corresponds to the capacitive-type loading on the bus, particularly
over long distances.

Example

Cdculétion to generate BIT time to give 100K baud with asampling point of 60% of the nomina BIT time.

XCLK = 20Mhz
t = 1/ 20Mhz

Choose 1 tine quanta = 500ns = (BRP + 1) * 2 * t
BRP = 4

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 154

Totd time quantain 100K baud = 20

So sample point a 60% = 12 quantainto BIT time

200t quanta

1 TimeSepl — 11 TimeSeg2 — &

F 3

Hamplz Peine
Therefore:

TSEGL = (TineSegl - 1) quanta = 10
TSE&R = (TineSeg2 - 1) quanta = 7

Choose SIW = 3 (see next paragraph)
BTR = (TSEG2 << 12) | (TSEG2 << 8) | (SJW<< 6) | BRP = OXx7ACA

16.1.2 Resynchronization

Resynchronization occurs when a recessive to dominant bit state change occurs outside an expected
SYNC_SEG. If the bit changeis earlier than the SYNC_SEG, then PHASE _SEGL is shortened to compen-
sate. If the bit change islatter than the SYNC_SEG then PHASE _SEG?2 is lengthened.

This adds the following congtraints on the timings,

TinmeSegl >= Tsjw + PROP_SEG
Ti neSeg2 >= Tsjw

The maximum number of time quantathat can be added or subtracted is defined by
Tsjw = (SIW1) quanta
So the SIW field alows compensation for phase shift between clocks on different nodes.

Mask Registers

These tel the CAN module which hits of the incoming message ID to compare againg the ID’sin the RX
message object’ s buffers.

Global Mask Short

ez o lois) - 1 1 1 1 JLDZ8 | 127 IDZa 1RSS5 L0325 | W22 LD21

I T r I I I e

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 155

1D28..18 - standard CAN 11-bit mask

If abitisset to 1inthe mask it meansthat the corresponding bit of any message seen on the bus will be
compared with the corresponding ID bit in any receive type message objects to seeif thereisamatch. If set
to 0, thishit is“don’t care” so it will not be compared againg.

Quick example;
CAN _d obal _Mask = OxEO01; /* Mask | D = Ox00f */

Here, the CAN module only checks the bottom nibble of the 11-bit ID againgt the RX message object buffers
to find amatch then captures CAN message.

Upper Global Mask Long / Lower Global Mask Long

These are two 16-bits registers which contain the 29-bit masks when using extended CAN.

Upper Mask of Last Message/ Lower Mask of Last Message

Message object 15 isareceive only object, which can be used for different and infrequently sent messages. It

has its own independent mask registers, containing either a 11-bit or a 29-bit mask, depending on type of
CAN used.

16.2 Message Objects

The CAN module has atotd of 14 identica message objects and amessage object 15, which isreceive only,
having its own masks and double buffering. Each object consists of 15 objects of 15 consecutive bytes, at an
address multiple of 16 bytes. The objects represent packets of information of which 8 bytes are red dataand
the remainder are part of the CAN protocol. A diagram follows:

Sdessaee Control (N
12

Arbilration I
14
Lravy Bare 11 Sdessups Conlig +
[By 2 [T Bt 1 +3
Lraty Bl < Lraty Btz 3 —1i
Lrava Beeles 13 LDiatu Pt & -1z
Reserved Diara Tats 7 14

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 156

Message Control Register

This regigter contains 8 fields which are each made up of 2 complementary bits. This dlows a selective set or
reset of specific bits without requiring read-modify-write operations. It can o give the software engineer
many hours of fun interpreting hex numbers.... The interpretation of the 2-bit fieldsis given below;

Vdue Function on Write Meaning on Read
00 Reserved Reserved
01 Reset dement Element is reset
10 Set dement Element is st
11 Unchanged Reserved
RMTPND | TR WMAGTAT | WEWDAT | sdvar, il B D TEND
CTULTT

INTPND - Indicates this object generated an interrupt request
Read thisto find out if object has interrupted.
RXIE - Interrupt when object successfully receives a message

Set thisfidd if you want interrupts generated when message RXed
TXIE- I nterrupt when object successfully transmits message
Set thisfidd if you want interrupts generated when message TXed

MSGVAL - Indicates if object valid. CAN module only operates on vaid objects
Clear thisto ssop CAN module messing with object while your updeting it.
NEWDAT - Indicates if data has been written by CPU or CAN module since last cleared
Read thisto find out if object has been written too.
MSGLST - RX objects only. Indicates CAN module stored new datawhile NEWDAT =1
Read thisto find out if previous message was overwritten.
CPUUPD - TX objects only. Stops TX of object while CPU is updating the object.
Set thisto stop CAN module Txing this object will your updating it.
TXRQ - Indicates TX of object as been requested by CPU or remote frame

Set thisto request TX of this message.
RMTPND - TX objectsonly. Indicates TX has been requested by remote node.
Read thisto find out if the TX of this object has been Remotely Requested.

Upper Arbitration Register

10200 1518 1018 fLUS1T T LD S |10 [1DLS | W2 | L2327 126 135 | 1032 | W25 | W22 1631

1% mr

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 157

Lower Arbitration Register

Wl 125 L2 | Wl T 0 0l LA T I T I~ W T O O T W B

IR T T I i

Arbitration registers for 11- or 29-bit IDs. Set the RX 1D to be captured off the bus for RX type objects or
the ID to be TXed for TX type objects.

1D28..0 - 29-bit extended CAN id
1D28..1D18 - 11-bit standard CAN id (1D17..0 Don’t care)

Message Configuration Register

LA e e et DI |10 [1 (]

Iy T T T T

XTD
DIR

Set if object is set up for 29-bit CAN e se standard 11-bit CAN
Message Direction

DIR =1 TX Object. When TXRQ set message is transmitted.
On RX of remote frame with matching ID the TXRQ + RMTPND are st

DIR = 0 RX Object. When TXRQ set remote frame with its ID is TXed
On RX of data frame with matching ID message datais stored in object

DLC Data Length Code vaues0..8

Data Fields

TATARYTED

TATABYTE 2 NATABYTE

TaATARYTE 4 DATARYTE §

TATABYTE & TIATABYTE ¥

BLELEA LS LATA 13T

DATABYTEO..7 - Storage for up to 8 bytes in each message object.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 158

16.2.1 Using The SECTIONS Control To Access The C167CR CAN Peripheral

It has ben widdly commented upon that the CAN modul€ s registers do not appear in REG167.H, dong with
al the other SFRs. The reason for thisisthat as an XBUS periphera, the SFR data type is not appropriate as
redly the module is just a memory-mapped region with aspecid sgnificance. Kell suggest that you use casts
to apointer of constant addressesin the CAN peripherd but thisis alittle dangerous as the linker has no
knowledge of the registers and may drop something else on top of them.

It is better to address it via appropriately-named C variables Situated over the red control and data registers.
This can be acheived with the following souce file, usad in conjunction with the given linker input file. The
advantage of this approach is that unlike the pointer-based method, L 166 physicaly places these data objects
at OXEF00, so preventing anything else accidentaly end up there and causing problems.

Some special controlsto note are:

The ORDER which ensures that the linker places the datain memory in the order in which it gppears
in the sourcefile.

The NOINIT control which stops the CAN peripherd being zeroed before the program gets to main().
The RENAMECLASS control which makes the compiler emit a digtinctively named section which

the linker’s SECTIONS control can use to fix the data at OxEFOO.

Filee CAN_REGS.C

#pragma ORDER
#pragma NONT
#pragma RENAMECLASS(SDATA = CAN_REGS)

#i nclude “can_regs.h”

unsi gned short volatile sdata CAN Control _Status;
unsi gned char sdata CAN Interrupt;

static unsigned char sdata reserved;

unsi gned short sdata CAN Bit_Ti m ng;

unsi gned short sdata CAN_d obal _Mask;

unsi gned short sdata CAN Upper_d obal _Mask;

unsi gned short sdata CAN Lower _d obal _Mask;

unsi gned short sdata CAN Upper _Last_Mask;

unsi gned short sdata CAN Lower _Last_Mask;

struct MESSAGE OBJECT sdata CAN (bject[15];

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 159

Filee CAN_REGSH

struct MESSAGE _OBJECT {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short volatile control
short upper_arb

short |ower_arb

char config;

char volatile data[8];
char reserved; }

extern unsigned short volatile sdata CAN Control _Status;
extern unsigned char sdata CAN_Interrupt;

extern unsigned short sdata CAN Bit_Ti m ng

extern unsigned short sdata CAN G obal _Mask;

extern unsigned short sdata CAN Upper_d obal _Mask
extern unsigned short sdata CAN Lower_d obal _Mask
extern unsigned short sdata CAN Upper _Last_ Mask

extern unsigned short sdata CAN Lower Last_ Mask

extern struct

MESSAGE_OBJECT sdata CAN Ohject[];

File EXEC.LIN Linker Control File

CLASSES(| CODE(0x200) ,
NCODE(0x1000) ,
NCONST(0x2000) ,
SDATA(0xE000) ,
SDATAO(0XE000) ,
NDATA(0x40000) ,

NDATAO(0x40000))

SECTI ONS(?SD?CAN_REGSYCAN_REGS(0xEF00))

© Copyright Hitex (UK) Ltd 1999

C166 Introduction Page 160

16.3 Setting Up The CAN Module Baudrate And Sampling Point
EXERCISE 30: EX30

Directory: \166TRAIN.WIN\EX30\WORK

Object: Set up basic CAN module parameters of

Baud rate
(Re)synchronisation Jump Width

Sampling point

The specification calls for the following settings:

:

CPU cl ock frequency

Baudr at e

(Re) synchroni zati on Junp Wdth (SIW
Synchroni sati on Segnent

Sanpl i ng poi nt

100kbi t/s
TSE&R - 1 quanta (SIW <=3)

1
75%

You mugt caculate the values of the TSEG1, TSEG2, SIW and BRP fields in the CAN_Control_Status and
Bit_Timing registers to complete thetask. All the other exercises depend on you getting these basic settings
right!

Procedure:
Open the project \166 TRAIN.WIN\EX30\WORK and edit the C source file*CAN.C”.

() SetthelINIT hit inthe CAN_Control_Statusregister to ‘1" to put the CAN module into initidisation
mode. Refer to page 23-6 in the C167CR CAN module description for details of this register.

(i) Set the CCE bit to remove the write protection on the Bit Timing register. Refer to page 23-10 inthe
C167CR CAN module description for details of thisregister.

(i) Work out the vaue for the Baud Rate Prescder (BRP), TSEGL and TSEG2 fiddsin the
Bit_Timing_Regider. The sze of thetime quanta"Tq" in microseconds must be found first of al.
Y ou will dso haveto find the number of time quanta per bit period plusthe TSEG1 and TSEG2 to
do this. Y ou can use the following method:

(8 Cdculate the hit time at the required baudrate (1/Baudrate). Use microseconds and MHz throughout.
(b) Draw adiagram of the time before the sample point and the time after it:

i

JuIng AR

Rl Tirae:

< >
Te Cre Tive Quaniun
«—

< >« >
“n Re*zre Szrepls Paind n After SrTale Prind

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 161

() Write down the equation for this, using units of :
Tq_Before_Sanple Point * Tq + Tq_After_Sanple_Point * Tq = Bit_Tine

Subgtitute: Tq_Before_Sample Point = (0.75/(1-0.75) * Tg_After_Sample Point
=> (0.75/(1-0.75) * Tq_After_Sanple_Point *Tq) + Tq_After_Sanple_Point * Tq = Bit_Ti me
=> 3*Tq_After_Sanple Point * Tg + Tq_After_Sanple Point * Tg = Bit_Tinme
=> 4*Tq_After_Sanple_Point = Bit_Tine/Tq
Tq_After_Sanple_Point = Bit_Tine/ (4 * Tq)
=> Tq_After_Sanple_Point = 10us/(4 * Tq)

To givefindly:

Tg_After_Sanpl e_Point = 2.5/ Tq

(d) By ingpection of the above equation, anumber of vaues of Tq are possble thet give integer
vauesof Tq After_Sample Point:

Tg = 0.1us, Tg_After_Sanple_Point = 25 tinme quanta, => Tqg_Before_Sanple_Point = 75
Tq = 0.5us, Tqg_After_Sanple_Point = 5 time quanta, => Tqg_Before_Sanple_Point = 15
Tq = 2.5us, Tg After_Sanple Point = 1 tinme quanta, => Tq_Before_Sanple_Point = 3

(e) From the 167 data book:

TSE&R = Tq_After_Sanmple_Point - 1
TSEGL = Tq_Before_Sanple_Point - Sync_Seg - 1

where (2 <= TSEG1 <= 15) and (1 <= TSEG2 <= 7). In ample terms, the number of Tq per bit must
be between 8 and 25 inclusive.

These limits should alow you to choose one of the three vaues of Tq and
thence the values of TSEG1 and TSEG2.

Alternatively, you can refer to the supplied table of dl possible
vauesof Tq. (Table produced by EXCEL spreadshest that is available as a handout)

Noteon SJW: Thebiggest possible synchronization jump width will occur when the time quantum size,

Tq, islarge. Thisimpliesthat the BRP chosen must therefore be the highest vaue cons stent with meeting the
TSEG1 and TSEG2 criteria A large SIW will therefore make the network more robust.

(iv) Youarenow ableto cdculate the value for the Baud Rate Prescaler fidld in the bit timing regigter,
using the formula

BRP = (Tq*Fosc/2)-1 (using units of mcroseconds for Tq and Mz for Fosc)

(v) Putthevduefor BRP into the lower 6 bits of the Bit_Timing regigter.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 162

(vi) Puttheresulting value TSEGL into CAN_Control_Status bits 8-11
(vii) Put theresulting value TSEG2 into CAN_Control_Status bits 12-14

(viii) Set the resynchronization jump width (SIW) to the value TSEG2-1 by writing to
CAN_Control_Status bits 6-7.

(iX) Completethe CAN module setup by clearing the bitsin the CAN_Control_Status register
(X) Rebuild the project using Project-Build.

(X)) Load the program into the HiTOP debugger, click the Target Reset button (TR) and run the program.
The LCD display should confirm whether you have got the settings correct!

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 163

16.4 Configuring The CAN Module For Transmit

EXERCISE 31: EX31
Directory: \166 TRAIN.WIN\EX31\WORK

Object: Tranamit the digita value of potentiometer zero on the 10 board to the CAN monitor program on the
OHP screen

This exercise builds on exercise EX30.

CAN message object 1 will be used to send the vaue to the CAN monitor program that is driving the OHP
screen. If you successfully complete the exercise, you will be able to use your potentiometer zero to control
the length of abar on the OHP screen corresponding to your node number!

The means of periodicaly reading the value of the potentiometer (pot.) is performed in an interrupt routine on
timer 3, which is provided.

To transmit, you must decide what message ID to use to trangmit your pot vaue across the network. All the
message numbers being used are based on Ox70F. If you are team zero, your transmit message number will
be Ox70F. If you areteam A, you must use Ox71F. Team B must use 0x72F, team 3 Ox73F and so on.

Y ou will be given the correct identifier at the sart of the sesson.

Note that in the examples, the number of the CAN object will be denoted by “ONE”, “TWQO”, “THREE”,
“FOUR” and FIVE’. For example, ”CAN_Object[ONE].control” is the control register for CAN object 1
and “CAN_Object[TWO].upper_arb” is the upper arbitration register for CAN object two and so on.
Open the project \166 TRAIN.WIN\EX31\WORK \exec.prj and edit CAN.C.

Procedure:

() Beforetrying to use the CAN module, you must reset dl the flagsin the Message Control Register
for each of the 15 message objects. Astheseflags consst of two bitseach, ‘01" must be written to
each two bit field to clear it. Over thetotd of 8 flags, the pattern 0x5555 will do this.

Specid note on the CAN object contral registers: Thisregigter is unusud in that each flag in it has two hits.

To st aflag, ‘10 must bewritten and to clear it, ‘01", If ‘11" iswritten, the flag isundtered. Thisarange-

ment is required to alow changes to be made to flags without a READ-MODIFY-WRITE.

Examples:
To st the MSGVAL flag:

Message Control = OXFFBF ;

To dear the MSGVAL flag:

Message Control = OXFF7F ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 164

CAN_REGSH file contains ready-made definitions that you can use to set and clear the various flagsin the
control register during the exercises.

#define SET_RMIPND Oxbfff
#define CLR_RMIPND Ox7fff
#defi ne RMIPND 0x8000
#define SET _TXRQ Oxef ff
#define CLR_TXRQ Ooxdf ff
#define TXRQ 0x2000
#define SET_CPUUPD Oxf bf f
#define CLR CPUUPD Ooxf 7f f
#define CPUUPD 0x0800
#define SET_MSGAST Oxf bf f
#define CLR_MBGALST Oxf 7f f
#define MSGE.ST 0x0800
#define SET_NEWDAT Oxfeff
#defi ne CLR_NEWDAT Oxf df f
#defi ne NEWDAT 0x0200
#define SET_MSGVAL Oxf f bf
#define CLR_MSGVAL Oxf f 7f
#defi ne MSGVAL 0x0080
#define SET _TXI E Oxf f ef
#define CLR TXIE Oxf f df
#define TX E 0x0020
#define SET_RXIE Oxfffb
#define CLR RXIE Oxfff7
#define RXIE 0x0008
#define SET_| NTPND Oxfffe
#define CLR_| NTPND oxfffd
#define | NTPND 0x0002

/* Bit Patterns for Message Configuration Registers */

#define EI GHT_DATA BYTES 0x80
#define SEVEN DATA BYTES 0x70
#define SI X DATA BYTES 0x60
#define FIVE DATA BYTES 0x50

#defi ne FOUR_DATA BYTES 0x40

#defi ne THREE_DATA BYTES 0x30

#defi ne TWD DATA BYTES 0x20
#defi ne ONE_DATA BYTE 0x10
#defi ne ZERO DATA BYTES 0x00
#define FOR TX 0x08
#define FOR_RX 0x00

#defi ne STANDARD FRAME 0x00
#defi ne EXTENDED FRAME 0x04
#define CHECK ALL_ID BITS Oxffff
#defi ne BOFF 0x8000
#defi ne BEWRN 0x4000
#defi ne RXOK 0x1000
#defi ne TXXK 0x0800
#defi ne CCE 0x0040
#define ElE 0x0008
#define SIE 0x0004
#define |IE 0x0002

#define INIT 0x0001

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 165

Each structure in the array of structures “CAN_Object[].control* must have 0x5555 written to it.

You must set the message ID for the potentiometer vaue you are going to send to the screen. Set
message object 1 to use your transmit message number by writing a pattern to CAN object 1 upper
arbitration register “CAN_Object[ONE].upper_arb” . The pattern isfound by taking the message
ID and rearranging its bits according to:

Message ID upper_arbitration register - see C167 manua page 23-16

Bits0-2 Bits13-15
Bits3-10 Bits0O-7

)

)

(i)

‘Message ID {11-hit), | |
1

15114 |13 7185|432 1]60

upper arbitration register

11-bit IDs are being used here so the lower_arbitration register is set to zero. 1n a29-hit system, these
would be set by rearranging the remaining bits of the ID to cover both the lower and upper arbitration
regisers.

The configuration, i.e. the operating mode for message object must be set. In the CAN object 1
configuration register “CAN_Object[ONE].config* , you must st:

Messageis atransmit object, i.e. datais to be sent across network
- Set the DIR (direction) bit

One byte of the eight possible bytesisto be sent

- Put a‘'1 inthe DLC (data |l ength code) field

11-bit identifier isto be used.

- Make sure the XTD (extend) bit is ‘0O

Findly, in the CAN object 1 message control register “CAN_Object ONE].control* st the
“MSGVAL” fidld to make the message vaid. Thiswill dlow the CAN module to transmit deta, once
the CAN object 1 dataregister has be written with data. Note that this has two bits per flag so that
you will have to write*10’ to the MSGVAL field to make the message valid.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 166

(vii) Thetimer 3 interrupt service routine has some code which will make the 167's ADC take areading
of the voltage on potentiometer zero every 100ms. Take the value from the ADC results register
(ADDAT) and write it into CAN message object 1, data byte zero “CAN_Object[ONE].data[0]”.
To make the CAN module put the data onto the network, set the transmit request bit in the CAN
object 1 control register “CAN_Object[ONE].control“. Againthisisatwo bit field so you will have to
write ‘10" to the TXRQ field. This completes the setup.

ADVANCED FEATURE: Inreal applications, messages transmitted across network may consist of
mor e than one byte. It is possible that transmission of the message may begin before all bytes have
been updated so that the receiver will get some new bytes and some old ones, resulting in a data “ co-
herency” problem. Thisis mainly a problem with the remote request mode, covered in detail in exer-
cise EX4.

The CPUUPD flag will cause transmission to be suspended while the 167 updates the bytesin the
message. Once the update has completed, the CPUUPD flag is cleared. As this example only sends
one byte at a time, coherency is not a problem. In thisand future exercises, you must remember to set
the CPUUPD flag during any write to a message data object.

(vii) Build the project with the Project-Build button.

(viii) Load the program into HiTOP, perform atarget reset with the TR button. Run the program and if
you have got it right, you should be able to contral the length of the bar corresponding to your node
number on the OHP screen.

C Programmer’s Note:

The CAN peripheral is smply memory-mapped into the C167CR’s memory space at OXEF00 — OXEFFF.
Asthe C166 compiler has no specific support for this, an array of structures containing appropriately named
elementsis created and placed over the CAN module at OXEFOO. Each structure represents all the registers
that pertain to one of the 15 CAN message objects. The programmer smply has to use the following type of
statement to access the message objects:.

CAN_(bj ect[ONE] . control = MSGVAL ;

One peculiarity of this gpproach isthat while the C167CR data book numbers the message objects from 1 to
15, in C, the objects are represented by structures0to 14. Thus object 1 is accessed via
“CAN_Ohbject[0].control...”, object 2 reference through CAN_Object[1].control and so-on.

struct MESSAGE OBJECT /1 Structure tenplate representing CAN peripheral’s registers
{

unsi gned short volatile control; /1 Control register

unsi gned short upper_arb; /1 Upper arbitration register

unsi gned short | ower_arb; /1 Lower arbitration register

unsi gned char confi g; /1 Configuration register

unsi gned char volatile data[8]; /1 8 bytes of data

unsi gned char reserved; /1 Unused byte

}s

struct MESSAGE OBJECT CAN (nject[15]; // Create array of 15 structures representing
/1 CAN nodul e

Note: The data bytes in the message objects are represented by the 8 byte array, “datd]]” in the structures.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 167

16.5 Configuring The CAN Module For Recelve

EXERCISE 32: EX32

Directory: \166TRAIN.WIN\EX32\WORK

Object: Recelve the vaue of the neighbouring team’ s potentiometer zero

This exercise builds on the last exercise. Now you must configure CAN message objects 2,3 and 4 to receive
messages about the vaues on the potentiometers of three neighbouring teams. Some pre-written software

will alow you to put these values into the 167's PWM unit to that the brightness of three LEDs can be con-
trolled remotely from pots on neighbouring nodes.

The message I1Ds of the neighbouring pots. that you must receive will generaly be 0x10, 0x20 and 0x30
greater than your tranamit object, established in exercise 1. However, you will be given the exact message
IDsthat you must receive.

Open the project in \166TRAIN.WIN\EX32\WORK and edit CAN.C.

Procedure:

() Setthe CAN object 1 upper arbitration register (“CAN_Object[TWO].upper_arb”) to the message

ID of thefirst neighbouring pot. Remember to rearrange the bitsin the message ID, asyou did in
exercise EX1, plusyou must set the lower_arbitration register to zero.

‘Message D (11-bit) | | |
|

i RN i
| N
T I |
a | \
Q|0 clo|o
151 14 | 13 7 B &) 4 3 2 1 0

upper arbitration register

(i) Set the upper arbitration register for CAN objects 3 and 4. Y ou can use the smple C function
“glandard id()” to convert the message ID into the required format, rather than manually rearranging
the bits.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 168

(i) Write to the message configuration register to set the mode for each CAN message object so that they
will do the following:

Receive one byte of data per occurance of the message ID on the network.
DLC field = 1

Use astandard 11-bit ID

XTD field = 0

In the Message control register for each object, make sure objects 2,3 and 4 are receive:

Enablerecave
TXRQ = 0

(iv) Makeobjects2,3and 4 vdid, i.e. ready to receive by writing to the MSGVAL two-hit field in
“CAN_Object[X].control”. Remember that thisfield requires you to write ‘10’ to set the MSGVAL
flag and make the object vdid.

(v) The CAN peripherd dlows asmple filtering to be done so that only certain messages can be
received. It can be programmed to ignore certain bitsin the ID. Thisis smply done by writing a
pattern to the CAN globa 11-bit mask register “CAN_Globa _11Bit Mask”. Inthisexercise, we
want al messages on the network to be able to enter the CAN peripherd so al the bits must be set
to‘1’. That completes the set up.

(vi) Inthetimer 3interrupt service routine, we have provided ameans of using the neighbouring pots
to drivethree LEDs. Take the datareceived in the CAN object 2 data byte zero
“CAN_Object[TWO].data[0]” , negate it and put it into the CC4 PWM register. Data from object
3 mug be put into CC5 inasmilar manner. Findly, take the data from object 4 and put it straight
into the PW2 regidter.

(vii) Make sure that you edit the part carried over from the last exercise at the top of the function which
sets the transmit message for your pot. ..

/* Set Message ID */

CAN_(bj ect [ONE] . upper _arb
CAN_(bj ect [ONE] . | ower _arb

0x ; I/ This is your transmt pot message |D
0x ; /1 always = 0 for standard 11-bit CAN ID

(viii) Build the project by dlicking on the build button.
(iX) Load the program into HiTOP and hit the TR button. Now run the program by clicking the green

traffic light. Get a neighbouring team to dter the position of their pot. —you should see one of the
LEDs on your 10 board change in brightness!

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 169

16.6 Configuring The CAN Module For Remote Request

EXERCISE 33: EX33
Directory: \166TRAIN.WIN\EX33\WORK
Object: Use remote request mode to request an 8-byte text string from the tutor’s CAN node

Asin EX3, configure a message object (use number 5) to Ox70E and make it areceive object for the maxi-
mum 8 data bytes possible in a CAN message. Now by setting CAN object 5's TXRQ bit in the message
control register, the CAN node which is able to send message Ox70E will send it automatically. Thisisthe

remote “request mode’.

The message ID you should use is 0x01 less than that which you used for your CAN object 1 (the
potentiometer vaue transmit object). Thusif your object 1 is message ID 0x70F, the remote request object
will be Ox70E, for example.

In the exercise, you will receive a 8-byte text string which can be printed to the LCD display. The strings will
sy something useful!

Open the project in \166TRAIN.WIN\EX33\WORK and edit CAN.C.
Procedure:

() Configure CAN object 5 to be areceive object for 8 data bytes, usng amessage ID of one less than
that used for CAN object 1. Remember that the message ID is set via
CAN_Object[FIVE].upper_arb,
the number of data bytes, 11-bit ID and receive mode are configured via CAN_Object[FIVE].config.

(1) Make CAN object 5 valid by setting the MSGVAL two-hit field to * 10'.

(i) At the bottom of the timer 3 interrupt service routine, check whether the NEWDAT flagin
CAN_Object[FIVE].control isset. If itis, clear it and print the 8 data bytesin
CAN_Object[FIVE].data
to the LCD display. Notethat NEWDAT isatwo bit field so you will be checking for ‘10" in bits
8 and 9 of the message control register for object 5. To clear the NEWDAT field, you will need to
write ‘01’ toiit.

(iv) Now set the TXRQ bitsin CAN_Object[FIVE].control to ‘10’ so that the tutor’ s node will send the
message to your object 5 again.

(v) Make surethat you edit the part carried over from exercise EX2 at the top of the function which sets
the transmit message for your pot...
/* Set Message ID */

CAN_(bj ect[ONE] . upper _arb = 0x ; /1l This is your transmt pot nessage |D
CAN bj ect[ONE] .l ower _arb = 0x ; Il always = 0 for standard 11-bit CAN ID

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 170

(v) Buildthe project by clicking on the Build button.
(vi) Loadthe programinto HiTOP and perform atarget reset. Run the program with the green traffic light.

(vii) Check the message on the LCD —if you are the firgt team to complete the exercise, you will get a
Specid messge. ..

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 171

Quant um
usS

1
10

Ti me
MHz

0.75 Sync_Seg
Bi t

16.7 CAN Module Bit Timing Calculation Spreadsheet
Baud 100000
Fosc 20

BRP Tq

Sanpl e

@ o — =N NN
I . . 0MONO—AOD N A0~ OOMITOHNNAAOO O . ..
NAteAd = = « & o v o, . _oocoocooco
FNANMODYTOANNAATAA OO0 00000000000 1 1 1 1 1 1
& oOn oo LW
Wb NYTOOWOMOTONMNTNODOOTMAODONOL M
DO MWO©MO -+ o e v e e e e e e e
FRNONAdddooN~NOOLSTOONOANNNAAAAAAdA1 00 OO0 0 OO
bl
)
-
—
© OO

| . .O0OMONO AU MADO~NONITNNONAAOO OO O O 0 0 0
L ol T T o N
FNAdoouwtmonaNaNANNAAdAAAAAAAAAAAA AO OO O OO
)
-
o
“—
)
QO OWO W~

| L . T M o0MOTONTNODOTMNMAO OO N~NOL M
TN NO .
FrMOANAAAAO0OO0OMN QOO SITITONOOMOMOMOHO®MNNNNNNN

ANOMOSTN OO HN®S IO
SO0o00c0O0cO0O0O0

ANOLTOLON~NOD «N
iddandNNaNNNNNNN®® o

1.6
1.7
.8
9

—

1.

10
11
12
13
14
15
16
17
18
19
20
21

COAdNMITLOHOMNWOD

C166 Introduction Page 172

© Copyright Hitex (UK) Ltd 1999

