
© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 1

ISSUE Z / V
27TH NOVEMBER 2002

An Introduction To C
On The C166 Family

A Short Course In The Fundamentals Of
C166 Microcontroller Family Programming,

Application And Tools.

Hitex (UK) Ltd.
University of Warwick Science Park

Coventry, CV4 7EZ
Tel: 024 7669 2066
Fax: 024 7669 2131
info@hitex.co.uk

http://www.hitex.co.uk

© Copyright Hitex (UK) Ltd. 1997, 2002.
All Rights Reserved.

No Part of this publication may be transmitted, transcribed, stored in a retrieval system, translated into any
language, in any form, by any means without the written permission of Hitex (UK) Ltd.

All trademarks and registered names are acknowledged to be the property of their owners.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 2

Contents

1. Overview ...6
1.1 Course Introduction..6
1.2 Basic Objective In C166 Programming ...6
1.3 Course Schedule ..7

2. Setting Up The C166 Compiler System..10
2.1 C166’s Environment Variables ...10
2.2 Multiple Include File Search Paths ..10

3. Creating A New Project ... 11
3.1 Background Information On C166 Projects .. 11
3.1.1 Basic Data Types In C166 .. 11
3.1.2 Basic Terms Used In C166 Programming ...12
3.1.3 Memory Map Of EVA167 Board And Example Program...12
3.2 Setting Up The Directory Structure For The Example Project (Worked Solution)13
3.2.1 Necessary Files To Build A Program..13
3.2.2 Laying Out A C166 Program Module (Source File) ..15
3.2.3 L166 Linker Input Files ..16
3.3 Creating A Project With The uVISION2 Workbench..16
3.3.1 uVISION2 Overview ...16
3.3.2 Important uVISION2 Features ...17
3.3.3 Setting Up The Basic Project Structure ..18
3.3.4 Setting The Tool Options ...20
The Target Tab Explained ...20
3.3.4.1 The Listing Tab Explained ..21
3.3.4.2 The Output Tab Explained ...21
3.3.4.3 The C166 Tab Explained ..22
3.3.4.4 The A166 Tab ..26
3.3.4.5 The L166 Locate Tab ..27
3.3.4.6 The L166 Misc Tab ..28
3.4 Building New Projects For The First Time ...29
3.5 Making Use Of The Multiple Target Facility ..29
3.6 The Special C167 Instructions ...30
3.7 Register Masks And Global Register Optimization...31

4. Using The HiTOP Monitor-Based Debugger ...33
EXERCISE 0: EX0 ..34

5. Using uVISION And HiTOP In Program Development ...35
EXERCISE 1: EX1 ..35

6. Configuring The C Environment To Your CPU and Hardware ..43
6.1 CPU-Specific Include Files ..43
6.2 Configuring STARTUP.A66 And START167.A66 ...44
6.2.1 Configuring STARTUP.A66 ..44
6.2.2 Configuring START167.A66...46

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 3

6.2.3 Special Note On The CAN Pin Assignments On The C167CS...49
6.3 The Two Stacks In C166...50
6.3.1 Setting The Size Of The User Stack ..50
6.3.2 Advanced Technique - Placing The User Stack In On Chip RAM..52
6.3.3 The System Stack...53
6.4 Setting Up The BUSCONx ADDRSELx Registers ..54
6.5 Special Notes On The Startup Files ...56
6.6 EVA16C Board CPU Setup Requirements (via BUSCON0 and chip select 0)57
EXERCISE 2: EX2 ..58
6.7 Configuring The Runtime Environment ..59
6.7.1 Adapting printf() To Other Output Devices ..59
6.7.2 Configuring scanf() For Other Devices ..60
EXERCISE 3: EX3 ...61

7. Inter-Module Linkage ..62
7.1 An Intelligent Include File Method That Will Avoid Many Program Build Errors62

8. The C166 Data Page-Addressing And Code Segmentation ..64
8.1 The Data Page Pointers ...64
8.1.1 A Fast Way of Addressing a Large Data Memory Space...64
8.1.2 The DPPs expressed diagrammatically ..64
8.1.3 Example Of Using DPPs ...65
8.2 Using The DPPs ..65
EXERCISE 4: \EX4 ..67
8.3 CODE "SEGMENTS" ..68
8.4 DPP Usage Summary ...68

9. C166 Compiler Memory Models ...69
9.1 Summary Of C166 Type Qualifiers That Determine Placement Of Data ..70
9.1.1 Default Data Object Placement Overriding ..70
9.1.2 C166’s Type Qualifiers Summary..71
9.2 Controlling Constant Data ..73
EXERCISE 5: EX5 ..74
9.3 Setting Up The DPPs...74
9.3.1 Special Allocation Of DPP’s To Create Customised Memory Models ...75
9.3.2 Special Memory Maps Possible With C166 v3.00 ...76
9.4 Automatic Placement Of Data ..77
9.5 CLASSES And SECTIONS ...77
9.5.1 How Type Qualifiers Relate To Class Names In C166...77
9.6 The Difference Between NDATA0 And NDATA ..78
9.6.1 The NOINIT #pragma ...78
9.7 Modules And SECTIONs - Placing Things At Absolute Addresses ...79
9.7.1 Special Note On Windows95 and NT4 ...81
9.8 Coping With The Special Sections "?C_CLRMEMSEC" And "?C_INITSEC".81
9.9 Placing Real Data At Fixed Addresses ...82
EXERCISE6: EX6 ...84
9.10 Using The RENAMECLASS Control ..85
9.11 SUMMARY OF PLACING OBJECTS AT FIXED ADDRESSES WITH THE LINKER:85

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 4

EXERCISE 7: EX7 ...86
9.12 THE ORDER PRAGMA ...86
9.13 The ASSIGN Linker Control ..87
9.14 The #pragma pack(1) Control..87
9.15 Using "SECTIONS" With The C167CR CAN Peripheral..88
9.16 Constructing A Memory Map For Small C167CR Systems ..89
9.16.1 A Typical Small System Memory Map ...90
9.16.2 Constructing Linker Input File ..91
9.17 Relocating Functions Into RAM ..96
EXERCISE 9: EX9 ..98
EXERCISE 8: EX8 ...101

10. Non-ISO/ANSI Code Saving Tricks ..102
EXERCISE 10: EX10 ..102
10.1 Special Note On Bits In Structures ...103
10.2 Bit Fields And Flags In C166...103
10.3 Simple Bit Flags ...104
10.4 The _testset_() And _testclear_() Intrinsic Functions ...105
EXERCISE 11: EX11 ...105
10.5 Intrinsic Functions ..105
10.6 The volatile Keyword ..107
11. Accessing Absolute Addresses ..108
11.1 The MVAR and MARRAY Macros ...108
11.1.1 Things To Be Aware Of With This Method ..108
EXERCISE 12: EX12 ..109

12. Pointers In C166 ... 110
12.1.1 The Various Pointers In C166 ... 110
12.1.2 Summary Of Pointer Declarations .. 110
12.1.3 Special Note On #pragma MOD167 For C167/5 Users ... 110
12.2 Variable Pointers To Absolute Addresses ... 111
12.3 Placing The Pointer Itself .. 112
EXERCISE 14: EX14 .. 113
12.4 Jumping To Variable Addresses.. 115
12.5 Pointer Casting And Conversions ... 115
12.6 Pointers To Local Data ... 117
12.7 Addressing The C167CR CAN Peripheral Via Pointers .. 118

13. Using Peripherals With Zero Software Intervention ... 119
EXERCISE 15: EX15 ..120

14. The General Purpose Registers, Register Variables And Registerbanks...121
14.1 The Context Switch ...121
14.2 Interrupts In C166 ...122
14.3 The VECTAB Linker Control ..123
14.4 Macros That Simplify The Setting Of Interrupt Priorities ...123
EXERCISE 16: EX16 ..125
EXERCISE 16 (FOR C165: EX16 .165) ..127

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 5

14.4.1 Application Example - 32-Bit Captures ..131
14.5 The Interrupt-Driven PEC System..132
14.5.1 Setting The PEC Channel Number ...132
14.5.2 Setting Up The PEC System ..133
14.5.3 Special C166 Language PEC Features Explained ..133
EXERCISE 17: EX17 ..135
EXERCISE 18: EX18 ..136
14.6 Switching Registerbanks In C...137
14.6.1 The USING Control ...137
14.6.2 Sharing Register Banks ...137
EXERCISE 19: EX19 ..138
EXERCISE 20: EX20 ..140
14.7 When Your C166 CPU Keeps Flying Off Into Space... ..141
14.7.1 The Trap.C File ...141
14.7.2 Common Reasons For Getting To Unexpected Traps ..142
14.7.3 New Control for Interrupt Functions ...142
14.8 Advanced Technique - Simulating Static Register Variables ...142
14.9 Fixing Register Banks At Absolute Addresses ..144
14.10 Controlling the CP directly -Some Tricks With Registerbanks ..144
14.11 Special Note On idata (classes IDATA0, IDATA) For C165/7 ...145
14.12 Bit Addressable Data ...146
14.12.1 Special Function Bits ..146
14.12.2 Note on declaring an sbit as external ...146

15. Assembler Interfacing - In-line Assembler ..147
15.1 Calling Assembler Functions From C166 ..147
15.1.1 Coping With Start Addresses And Parameters ...147
15.1.2 Pointer Passing To Assembler Functions ...149
15.2 Using C166 To Write Assembler Functions ..149

16. The Part 2.0B CAN Module ...151
16.1 CAN Registers ..151
16.1.1 Bit Time calculation...154
16.1.2 Resynchronization...155
16.2 Message Objects ...156
16.2.1 Using The SECTIONS Control To Access The C167CR CAN Peripheral159
16.3 Setting Up The CAN Module Baudrate And Sampling Point ...161
EXERCISE 30: EX30 ..161
16.4 Configuring The CAN Module For Transmit ..164
EXERCISE 31: EX31 ..164
16.5 Configuring The CAN Module For Receive ..168
EXERCISE 32: EX32 ..168
16.6 Configuring The CAN Module For Remote Request ...170
EXERCISE 33: EX33 ..170
16.7 CAN Module Bit Timing Calculation Spreadsheet ...172

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 6

1. Overview

1.1 Course Introduction

This course is intended as a basic introduction to C166 microcontroller programming. It will teach you the
basic skills and techniques required to produce efficient C166 programs and give you some ideas how the
powerful peripheral set can be employed. A learning-by-doing approach will be taken so that you will have a
chance to try new language features straight away. A working C167CR-based microcomputer is provided,
equipped with our HiTOP source level debugger with which programs can be tested. Many examples make
use of the C167's powerful and innovative peripheral set so that you will gain an appreciation of how they can
be applied in your own projects.

It is assumed that you are familiar with the fundamentals of the C language and have some experience of
assembler programming, preferably on the C166 family. We make no apologies for showing some of the
underlying assembler produced by the C166 compiler in those cases where misuse of compilation controls can
cause program problems.

Each language feature is covered by a programming exercise. You have the choice of creating the program
from the specification given or using the “shell” modules, which have the basic framework of the required
program already mapped out. You will find complete working versions in the SOLUTION subdirectories
from which you can take ideas, or use as is! The outlines of the examples can be found the WORK sub-
directories for you to complete.

The content is based on the most common questions asked by C166 users and our own experience of what
really counts in C166 programming. It is unlikely that you will remember everything once you start using
C166 for real but what you will find is that you’ll be able to refer back to the notes should anything difficult
crop up. You will not end the course as a C166 expert but you will be in a position to start a major develop-
ment, armed with the basic knowledge to ensure its success.

We will use the Keil uVISION Windows integrated development environment as the means of creating and
compiling the exercises and HiTOP to debug them. The built-in uVision editor is an entirely main-stream
Windows programming editor, with automatic error and syntax highlighting and should be familiar to anybody
who has used a Windows word processor, Codewright or PFE. Hitex's HiTOP is a flexible source-level
debugger for the C166 family, being used here in its monitor version.

1.2 Basic Objective In C166 Programming

To acheive the fastest possible execution by using only the C language, leading to...

=> Fastest system response to real time events
=> simpler, more maintainable code
=> cheaper EPROMs & RAMs
=> smaller bus width.
=> lowest system cost

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 7

1.3 Course Schedule

The course will run in approximately the following order:

Course introduction
Aims of course
Equipment and resources provided

An overview of the Siemens C166 microcontroller architecture
CPU design
Peripheral set
Memory map(s)

Setting up the compiler system
Basic concepts and procedures to be understood before using the tools

Creating a project
The uVISION “Project” manager
Basic terminology used in C166 programming
Fundamental compiler controls
Components of a C166 program

Using the HiTOP debugger
A quick driving lesson in Hitex’s HiTOP

Exercise EX0: Construct a project from supplied software components, to run on EVA16C
development board.

Exercise EX1: Practice using the controls and features of uVISION and HiTOP with an
example program.

Adapting the ANSI C language to the C167 hardware
CPU-specific include files
Configuring the C167 bus interface in START167.A66

Exercise EX2: Modify START167.A66 to set up user stack, system stack and BUSCON1 to suit
EVA167 hardware.

Global register optimization
The two C167 stacks
Redirecting formatted IO (printf() scanf()) etc.

Exercise EX3: Redirect redirect print() to LCD display to print a seconds counter to the LCD.

Constructing C166 programs
The “include file” method

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 8

Understanding the internal structure of the C166 core
Expediting data accesses via DPPs (Data-Page Pointers)

Exercise EX4: Working out physical addresses from DPP and EXTS examples

Special C keywords for different C167 memory areas

C166 Compiler memory models and memory management
Methods for putting specific code and data items at appropriate addresses
Linker controls and keywords
CLASSes and SECTIONs

Exercise EX5: Pitfalls when creating pointers to constant objects!

Customising memory models for efficiency
Coping with non-volatile RAM and memory-mapped IO devices

Exercise EX6: Using the NOINIT and SECTIONS control to address memory-mapped IO

Exercise EX7: Using the NOINIT and RENAMECLASS control to address memory-mapped IO

Typical memory maps for small, high performance systems

Exercise EX8: Constructing a linker control file for a typical C167 system

Exercise EX9: Relocating functions into idata for execution - checksumming ROMs

Non-ANSI code saving tricks and ideas
Squeezing extra performance from C by using assembly-programming tricks!

C pointers in C166
How C’s pointer types are adapted to the C166 architecture
Accessing fixed addresses

Exercise EX12: Use the “HVAR” macro to access a memory-mapped DIL switch on chip select 4
and print value to LCD display.

Obscure embedded C problems - placing the pointer itself
Using variable address pointers for real programming tasks

Exercise EX14: Perform a memory test over the RAM from 0x50000 to 0x5FFFF and print results
to LCD display.

Using C167 Peripherals In C

Using peripherals to perform tasks with near-zero software intervention

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 9

Exercise EX15: Configure general purpose timer block 1 (GPT1) to measure speed and direction
of quadrature-encoded input.

Interrupts in C166 - the 100ns context switch
Interrupt sources – the CAPture And COMpare (CAPCOM) unit

Exercise EX16: Make a 16-bit period & frequency measurement of square wave on P2.3 using
the CAPCOM unit or optionally with the GPT1 timer2 on P3.7 (C165 users)

Exercise EX16A: Generating a periodic waveform with the CAPCOM unit on P2.15 or or
optionally on P3.3 with the GPT1 timers 3 & 4 (C165 users)

Using the peripheral event controller (PEC) to reduce CPU loading with repetitive tasks.

Exercise EX17: Use the PEC to buffer continuous A/D readings into RAM buffers every 9.7us.

Exercise EX18: Receive a 4800 baud serial bit stream on P2.3 to reconstruct a message using the
CAPCOM unit and timer 3/2.

Exercise EX19: Receive a 4800 baud serial bit stream on P2.3 to reconstruct a message using
just the CAPCOM unit to reduce CPU overhead.

Using the C167 in Controller Area Networks (CAN) - Optional Topic

Basic CAN concepts
Calculating the bit timing parameters
Choosing the bit timing values

Exercise EX30: Calculate the bit timing register values for 100kbit/s and 75% sampling point.

Transmitting messages across CAN

Exercise EX31: Transmit the value on potentiometer zero on the 167IO board to the tutor’s CAN
monitoring program, using the supplied message ID..

Receiving messages across CAN

Exercise EX32: Receive the values of the pots. On three neighbouring stations and use them to
control the bightness of three LEDs on the 167IO board.

Using the Remote Request Mode

Exercise EX33: Use the remote request mode to obtain any one of four short messages string from
the tutor’s node. This is a race!

Course Wrap-Up And Questions
Points arising from material covered.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 10

2. Setting Up The C166 Compiler System

There are a number of basic settings that must be made to allow the compiler to run correctly.

2.1 C166’s Environment Variables

To help C166 find its include and library files, make sure that the \AUTOEXEC.BAT file on your PC contains
the following:

PATH=C:\KEIL\C166\BIN;%PATH%

SET C166INC=C:\KEIL\C166\INC
SET C166LIB=C:\KEIL\C166\LIB
SET TMP=C:\TEMP

Special Note On SET C166INC=

(i) Any include file given thus:

#include <reg167.h>

will be searched for firstly in the current and directory and if not found, in the directories indicated by the SET
C166INC= <PATHNAME>

2.2 Multiple Include File Search Paths

The SET:

SET C166INC=C:\KEIL\C166\INC;C:\166TRAIN\HEADERS

will cause C166 to search the \166TRAIN\HEADERS directory as well. Make sure that the
AUTOEXEC.BAT contains this as well.

(i) In a C source file, if you enclose the include file name in quotes;

#include “reg167.h”

then only the current directory will be searched. If the include file cannot be found, C166 will report an error.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 11

3. Creating A New Project

uVISION operates on the basis of “Projects” where all the source files and compiler and linker options are
stored in a “.UV2” file. This file is thus an important part of the software development process and must be
archived with the source files and C166 compiler version used. The name of the project is left to the user
but in the examples, the project name is based on the exercise name so that EXERCISE0 will use a project
called EX0.UV2, EXERCISE1 will use a project called EX1.UV2 and so on.

To explain how the uVISION system is used and how a simple program can be constructed within it, the
necessary steps will be run through in sequence, with enough detail to proceed to the next stage. This will
form the basis of the first exercise, in \166TRAIN\EX0\SOLUTION.

3.1 Background Information On C166 Projects

3.1.1 Basic Data Types In C166

The data types available are:
bit = 1-bit 0 - 1
char = 8-bits 0 - +/- 127
unsigned char = 8-bits 0 - 255
int = 16-bits 0 - +/-32768
short = 16-bits 0 - +/-32768
unsigned int = 16-bits 0 - 65535
unsigned short = 16-bits 0 - 65535
long = 32-bits 0 - +/- 2.147483648x109
unsigned long = 32-bits 0 - 4.29496795x109
float = 32-bits +/-1.176E-38 to +/-3.4E+38
double = 64-bits +/- 1.7E-308 to +/- 1.7E+308
pointer = 16/32-bits Variable address

Notes:
- The 16-bit ANSI “short” type equates exactly to int. The latter takes the “natural” size of the CPU,
here 16-bits.

- The machine size of the C166 is 16-bits hence int, short or unsigned int, unsigned short should be
used when possible to produce the most compact and efficient code. The use of char and unsigned
char will result in a lot of MOVBZ-type instructions which waste time.

- char and unsigned char: Unless you explicitly want a signed 8-bit number, always use unsigned char.
Char is normally reserved for ASCII characters which have no sign.

Thus:

/*** Define an 8-bit number ***/

unsigned char byte_var ;

/*** Define a character string **/

char ASCII_string[] = { “Guten Tag” } ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 12

As the strcpy, strcat and other string functions all assume “char”, you will get warnings if you try to
manipulate “unsigned char” objects with them.

3.1.2 Basic Terms Used In C166 Programming

Unfortunately, some terms will have to be used to describe how to build the example program which as yet
have not properly been defined. They will of course be fully explained later in the text. For now, here are
some simplified definitions of terms used which will help you to understand roughly what is going on!

Compiler-Related Terms

IDATA = On-chip RAM at 0xFA00 (C166) or 0xF600 (C167/5)
NEAR = Area of off-chip RAM whose variables can be accessed in one instruction

 (medium to fast speed access)
FAR = Area of off-chip RAM whose variables require several instructions to

 access (slow access)
Registers = Bank of 16 general purpose word registers used for local (automatic)

 variables,function parameters, intermediate calculation results. (Fastest
 access of all)

R1, R2 etc. = Register within the current register bank
User Stack = Artificial stack created by C166 to hold some local variables. Formed

 from MOV Rw, [R0+] type instructions. (Slow access)
System Stack = C16x’s own proper hardware stack in on-chip RAM with which PUSH and POP

 instructions can be used and onto which return addresses are placed during
 subroutine calls.

DPP0,1,2 & 3 = Registers which hold the base addresses of regions in multiples of 0x4000
 (16k), each of which is 0x4000 bytes long. For example, DPP3 always
 equals 3, indicating a 16kb region from 3 * 0x4000, i.e. 0xC000 to 0xFFFF.

Memory Model = How the compiler decides to place its variables, i.e. on-chip or off-chip,
 fast or slow access

Linker-Related Terms

CLASSES = Locates the named large date or code items at the stated address
SECTIONS = Locates the code or data from a single source file (module) at the stated

 address
VECTAB = Sets the base address of interrupt vector table area.
REGBANK = Locates the named registerbank at the stated address.
RESERVE = Prevents any code or data object in the stated address range.
CINITAB = Locates the variable initialisation tables in ROM

3.1.3 Memory Map Of EVA167 Board And Example Program

Monitor EPROMS: 0x00000 - 0x1FFFF NOT AVAILABLE
On-chip XRAM RAM: 0x0E000 - 0x0E7FF
On-chip IDATA RAM: 0x0F600 - 0x0FDFF
Off-chip RAM: 0x40000 - 0x5FFFF

The off-chip RAM is notionally split into two ranges: 0x40000 - 0x4FFFF is treated as an EPROM area for
code and constants and 0x50000 - 0x5FFFF is used as a RAM area.

Off chip RAM allocation:
Your interrupt vectors: 0x40000 - 0x403FF
Monitor’s RAM: 0x40400 - 0x41FFF NOT AVAILABLE
Your program starts at: 0x42000
Your program ends at: 0x4FFFF
Your off-chip RAM: 0x50000 - 0x5FFFF

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 13

3.2 Setting Up The Directory Structure For The Example Project (Worked Solution)

3.2.1 Necessary Files To Build A Program

The basic files required to build a working C166 application are:

(i) Source files containing executable C statements

Extension: .C

(ii) Header files containing function prototypes and definitions

Extension: .H

(iii) An optional linker input file containing a list of object files and linker controls

Extension: .LIN

In exercise EX0 we will use uVISION to control the linker although in a real project a linker control file
would be used.

(iv) A project control file containing the list of source files in the project and the compiler controls etc.:

Extension: .UV2

C166 will emit the following files types:

.OBJ - Unlocated object file with no absolute addresses assigned.

.LST - A list file containing the original source lines but with any errors or warnings
 indicated

.SRC - An optional file containing the assembler code generated by the compilation process.
 This can be assembled with A166 to produce the .OBJ file as an alternative to going
 straight to a .OBJ file from the compiler.

.ERR - A summary of the errors and warnings that occurred during compilation

The L166 linker will emit the following files:

.<noextension> - Absolute object file in the Siemens extended OMF66 format, containing a
binary representation of the program plus optionally, debug symbol information. It also
holds the necessary make information to allow uVISION to rebuild the program.

.M66 - A map file containing the address and length of all classes, sections and
registerbanks.

.REG - A special file which holds information on all the registermasks generated by every
function in the program. By giving this file back to the compiler, it can be used to allow
global register usage optimisation.

.LNK - A linker control file automatically generated by uVISION which contains the user’s own

.LIN linker control file with the object file list prepended to it.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 14

It is assumed that the various files that constitute the project will be arranged within and off a root
directory of:

\166TRAIN\EX0\SOLUTION

In the following, this will be referred to as the project “ROOT” directory.

While all files could be placed in the root directory of the project and uVISION left to show only those files
which are appropriate, it is neater to make sub-directories for the different types of file within the project:

ROOT Object files, EXEC.PRJ project file, EXEC.LIN linker file
ASM Assembler source files
INC Include files (.h)
MISC Control file for SP166KE symbol processor
SRC C source files (.C)

In the completed example project, the following files can be found in each sub-directory:

ROOT EXEC.PRJ: Project control file
EXEC.REG: Global register optimisation file
EXEC.LIN: Linker control file
EXEC.LNK: EXEC.LIN with object file list added automatically by uVISION
EXEC.LER: Linker error report file created by uVISION
EXEC.M66: MAP file showing location of every program object
EXEC: Absolute OMF66 executable file
EXEC.HTX: Code binary file for HITOP166/WIN
EXEC.SYM: Symbol database file for HITOP166/WIN
START167.OBJ, MAIN.OBJ, PUTCHAR.OBJ, SOFTUART.OBJ object files

\ASM START167.A66 assembler source file

\INC SOFTUART.H, INTMAC.H header files

\MISCSFR_167.CTL C167 SFR definitions file for SP166KE.EXE symbol processor

\SRC MAIN.C, PUTCHAR.C, SOFTUART.C, MAIN.LST, PUTCHAR.LST,SOFTUART.LST

The project directory should contain the following sub-directory structure from
\166TRAIN\EX0\SOLUTION:

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 15

3.2.2 Laying Out A C166 Program Module (Source File)

Here is how we suggest you layout your C166 modules. You can find a ready made “empty” MAIN.C in
\166TRAIN\USEFUL although there is a suitable one in the EX0 directory already.

Sample MAIN.C

#pragma SMALL /* Compiler controls */
#pragma MOD167

/*** CPU Specific Includes ***/

#include <reg167.h>

/*** ANSI Library Includes ***/

#include <stdio.h>

/*** Module Specific Includes ***/

// not used yet!

/*** Global Data Declarations ***/

/*** Function Prototypes ***/

void main(void) ;

/*** Executable Functions ***/

void main(void) { // Enter here from reset
 }

This is compiled with:

C166 MAIN.C DEBUG SMALL REGFILE(EXEC.REG) WL(2)

Or:

with the uVISION Project-Compile File command.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 16

3.2.3 L166 Linker Input Files

Although it is possible to drive L166 directly from the command line, this can get very tiresome on real pro-
grams. L166 is able to take its input from a text file which usually has the same file name stem as the execut-
able but with the extension “.LIN”. Here is a sample one:

EXEC.LIN:

VECTAB(0x40000)
CLASSES(NCODE(0x40400),NCONST(0x40400),NDATA(0x48000))
SECTIONS(?C_CLRMEMSECSTART(0x40400),?C_INITSEC)
REGFILE(exec.reg)

This is invoked with:

L166 @EXEC.LIN

Or: with the uVISION Project-Build command.

3.3 Creating A Project With The uVISION2 Workbench

3.3.1 uVISION2 Overview

uVISION2 provides an industry-standard Windows interface to the Keil C166 compiler and linker tools. It
is reasonably straightforward to configure and can support large program developments. Its user interface is
split into special windows, as shown below:

EDITING AREA

PROJECT FILE
LIST

TOOLBAR

OUTPUT WINDOW

TARGET SELECTOR

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 17

uVISION2 considers C166 programs as "PROJECTS" which can be built in different ways to suit different
"TARGETS" - in a real development, you may have a set of source files that are compiled with different
controls for different hardware platforms, that may also require different memory maps. For example, in the
training exercises, we will be building programs for a "MONITOR" target that has the code offset by
0x40000, as required by the HiTOP debugger (in this guise). For such a program to run directly from
EPROM on the board, a second target is used which differs only in that is has the code at zero.

3.3.2 Important uVISION2 Features

The Toolbar Functions

 Target Options Wizard

Select The Target Type

Compiler And CPU
Documentation

Project File Details

Most uVISION functions can be
accessed from the toolbar. We will use
uVISION2 to produce the all the
example programs, as will be ex-
plained in the next few sections.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 18

3.3.3 Setting Up The Basic Project Structure

With uVISION already running...

- Select Project-New and navigate to
\166TRAIN\EX0\WORK. Enter the project name
"EX0" in the dialog box.

- Enter the main project sub-directory and type in the
project name, here “EX0.UV2”. The UV2 file is
equivalent to the MAKEFILE in a conventional sys-
tem. It contains all the make, assembler, compiler and
linker options entered from uVISION’s Options menu.
It therefore has a major influence on how the program
is constructed and must be archived along with all the
source files. Click "OK" to exit.

Next uVISION needs to be told which CPU the pro-
gram will be built for - the "Select Device For Target
1" dialog box will appear automatically. Select the
Infineon (formerly Siemens) C167CR-LM device
from the CPU list.

uVISION allows a number of TARGETs to be defined. The C167
hardware platform to be used here will running a monitor debugger so
a TARGET called "monitor" will be created. Select the "Targets,
Groups, Files" item on the Project menu. Add the target name "moni-
tor" in the top dialog box and click "Add". Click on the existing target
TARGET1 and click "Remove Target" as this target is no longer
required- "monitor " will now become the current target. Exit the
menu with "OK".

uVISION allows files of similar types to be collected togther in
"Groups". In the project, all the C source files will be in the exist-
ing "Source Group1" group whilst the START167.A66 assembler-
coded start-up file will be in a new group "Config". From the
Project menu, select the Groups/Add Files tab and enter "config" in
the dialog box. You should end up with two groups , "Source
Group 1"and "config" to which we will later add program source
files.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 19

The source files that constitute the project are added by selecting first
Source Group 1 and right-clicking and then choosing "Add Files To
Group "Source Group 1".

The C source files for Source Group 1 are added by
entering the directory "SRC" and double clicking on
the required source files. In the example, all source
files are needed. Use "Close" to end the task.

A similar process is required to add the single
.A66assembler file to the "config" group. Right click the
config group and select add files to group 'config'.
Double click START167.A66 and then "Close".

To enable uVISION to find the compiler ex-
ecutable plus header files and libraries, the
Project-Environment Setup menu must be
completed. This is similar to a MS-DOS set
up that might be entered in AUTOEXE.BAT if
the compiler was to be used from a MAKE
utility or batch files.

The example uses a header file (INTMAC.H) located in C:\166TRAIN\HEADERS so this path must be
added after a semicolon delimiter in the "INC Folder" box.

Hint: If you get a warning along the lines of “Error during parsing Line: #pragma...” then suspect that
this menu has not been properly configured.

Note that you must have previously created a C:\TEMP directory - failure to do so could
result in “Out of Workspace “ warnings when compiling.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 20

3.3.4 Setting The Tool Options

The compiler, assembler and linker options are
set through the "OPTIONS" wizard, located at the

top right of the screen. . The Options for

target menu is split into eight sections that are
selectable from the tabs at the top of the panel.
Each target specified in the project has its own
target options.

The Target Tab Explained

- Enter the Clock speed as 20MHz. The actual
oscillator frequency is 5MHz but the C167CR
has an internal PLL that multiplies this by 4.

- The Memory Model is" HLarge", the preferred
model for the majority of C167 programs. The
Memory model determines how the compiler
will allocate program to different data areas.
The choice of memory model is explained in
chapter 9.

- Operating System is" none" in this example

- Although not strictly necessary, the XRAM at
0xE000 and the C167CR CAN module are ena-
bled by ticking the "Use On-chip CAN+XRAM"
box.

- Data should be set to "idata 6" so that the com-
piler will place all data objects of up to 6 bytes in
length will be placed into the on-chip idata area
at 0xF600. This is a way of making sure that
large objects such as arrays and structures do not
eat up valuable fast on-chip RAM.

- The Near Memory boxes are an advanced
feature and should be left at 16KB RAM and
16KB ROM. Their real purpose will be ex-
plained later!

- The External Memory boxes allow you to
specify where the ROM and RAM areas are in the
hardware. For the EVA16C board used in the
example, the user's CODE area starts at 0x42000
and is of length 0xE000 bytes. Use the down
arrow on the "#1" box ans selct ROM. The
user's RAM area is from 0x50000 of size 0x10000
and these addresses should be entered in the #2
box.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 21

3.3.4.1 The Listing Tab Explained

Here the most useful option is the Generate .LST File after compilation. This will contain the original source
file with any errors or warnings indicated where they occured. The “Include Symbols” option is useful as it
will list all the function and variable names, along with their type information at the base of list file.

3.3.4.2 The Output Tab Explained

This menu specifies the output file names and allows the HiTOP symbol processor to be included in the build
process and a HEXfile to be emitted for FLASH programming.

- In the example,the Name of executable is EX0 and it will be placed into the ..\OBJ directory through the
Select Folder fo Objects... button.

- The HiTOP debugger requires Debug information

- uVISION includes a browser function which is enabled via Browse Information

- After the make process has completed, a Beep When Complete can be specified

- The HiTOP debugger requires a special symbol utility to be run which converts the EX0 output file in the
OMF66 format into the .HTX format. This requires Run User Program #1 to be ticked and the line:

sp166ke obj\ex0 -v -s\166train\ex0\work\src -s\166train\ex0\work\asm

to be added in the dialog box. The -s option allows the full pathname of the source files to be passed to the
utility so that HiTOP can give source level debugging.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 22

3.3.4.3 The C166 Tab Explained

There are three ways of controlling how the C166 compiler and A166 assembler translate a particular source
file:

(i) Via the command line:

C166 MAIN.C DEBUG MOD167 HLARGE

(ii) Via the #pragma keyword:

#pragma MOD167
#pragma HLARGE
#pragma DEBUG

(iii) Via uVISION’s Options-C166 Compiler... menu item, covered in detail later.

In anything but the smallest of projects, method (i) is not suitable. In practice, it is sometimes used just to
quickly compile something from the MS-DOS command line with an unusual control such as “SRC”, which
produces a valid assembler/C mixed file. This “.SRC” file can be useful for assessing code quality or for
interfacing to assembler-coded functions.

Usually, a combination of (ii) and (iii) is used. However, the user must decide which controls should be
supplied by uVISION and which should be embedded in the source by the #pragma keyword. Where the
default compiler setting is acceptable, it is not really necessary to explicitly state the control. As a general rule,
anything which can alter the generated code must be given by a #pragma: although uVISION is unlikely to
lose or alter a control over the duration of a project, bitter experience has shown that just prior to release,
something will go astray and some vital control will disappear, resulting in a subtle change to the code. This
will invalidate any proving work which has been done and may well result in unexpected program behaviour.
Therefore you should not rely on an external tool (i.e. uVISION) to set the really important controls!

If you are using a conventional command-line approach with an external MAKE utility, then the same rules
apply in that your makefile should ideally not supply the “hard controls”. In all cases, it is acceptable to place
the really critical controls in a header file, usually named “PRAGMAS.H” which contain them.

Even if you do not intend to use uVISION, it does provide a quick way of putting togther the control key-
words you require as it displays the final command line in the “Compiler Control String” box. The resulting
string can then be used to construct the individual #pragma control lines in your source files - in effect,
uVISION acts like an interactive user manual!

Here are some tips as to where to put the controls in a real project:

(i) Compiler Hardwired “HARD CONTROLS”

Generally anything which can influence the code generator or optimizer - here are a few of the most common:

MOD167 - Enable C167 family code generator
SMALL - Set the memory model
NODPPSAVE - Do not stack DPP3 on entry to interrupt routines (C167 only)
OPTIMIZE(x) - Bias the code generator towards optimum program SIZE or SPEED

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 23

WARNINGLEVEL(x) - Check for C language use and abuse
STATIC - Put locals which overflow the available registers into statically

allocated memory segments rather than using the user stack.
ORDER - Place variables in RAM and constants in EPROM in the order in which they

appear in the source file
FLOAT64 - Enable the “double” 64 bit float type and use double precision floating

point for all trigonometric and transcendental mathematics library
functions.

Note: Other controls exist which can influence the final code such as RENAMECLASS and NOINIT but
as these require a detailed understanding of the structure of a C166 system to use, they will not be covered
until later in the course.

(ii) uVISION Compiler “SOFT CONTROLS”

DEBUG - Enable symbol information for debuggers
SRC - Produce an assemblable equivalent of C source file
LISTINCLUDE - Expand include files out within .LST file
SYMBOLS - Place listing of module’s symbols in the listing file

Here, the options appropriate for the training examples will be given. However these will probably be
suitable for your own projects as well. The settings given in the following will be needed in exercise
EX0 to illustrate the compilation and linking of the example program in \166TRAIN\EX0\WORK.
Whilst most of the controls are best given via #pragma, you can still state them in the uVISION C166
compiler options menu. If the controls supplied via the two routes do not match, you will get a “CON-
FLICTING CONTROL” warning.

- Save DPP on interrupt s optimises interrupt service routines: on the C167, DPP3 is always set to 3 to
indicate the base of the SYSTEM area at 0xC000 and DPP0 is never changed from its power-up value,
unless the user alters it himself. Therefore, C166 need not stack these two registers on entry to an interrupt
routine, thereby saving two PUSHes and POPs (0.4us @20MHz).

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 24

Alias checking on pointer access is an advanced option which can acheive a small code saving on pointer
operations. The NOALIAS control can cause unexpected results in when global or static objects are modi-
fied by pointers. In most cases source code that could be upset by this control does not conform to the
MISRA-C guidelines and should therefore not be present anyway. It is recommended that this control is not
used.

Example

Without NOALIAS

struct { int i1; inti2; } *p_struct ;
int val ;

void func1(int *p_val) {
 p_struct->i1 = val ; // Read val
 *p_val = 0 ; // Zero val via pointer
 p_struct->i2 = val ; // Read val again. Now it is zero
 }

void func2(void) {
 func1(&val) ;
 }

With NOALIAS

struct { int i1; inti2; } *p_struct ;
int val ;

void func1(int *p_val) {
 p_struct->i1 = val ; // Read val
 *p_val = 0 ; // Zero val via pointer
 p_struct->i2 = val ; // Read val again. Value from first read carried forward
 } // so zeroing by pointer in previous line is not seen

void func2(void) {
 func1(&val) ;
 }

 Use static memory for non-register automatics influences how the compiler treats local variables (auto-
matics). Normally C166 will try to put as many local variables into registers (R1-R15) as possible as the
MOV Rw,Rw register-to-register instructions execute in 100ns (@20MHz). All the normal ADD, SUB,
CMP type instructions are available in the register-to-register variety so that any such operation will take just
100ns. Variables that overflow the available local registers are placed on the “User Stack”, as in a PC-type
compiler and are addressed via MOV R1,[R0 + #displacement] type instructions. As a RISC CPU, there
are few “stack-relative” instructions so that operating on user stack variables usually takes several instructions.

A significant performance advantage for interrupt functions or those with a large number of local variables can
therefore be had by forcing the compiler to put locals that cannot fit into registers (R1-R15) into (near) static
RAM segments to create a “compiled” stack, as in the C51 compiler. The common ADD, SUB and CMP
instructions all can operate directly on RAM so that there is little performance loss when compared to
reegister variables.

Note that any functions within modules compiled with this control will no longer be reentrant, thus if enabled
here in the C166 Options menu, no reentrancy will be possible across the entire program which may not be

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 25

acceptable. This control is therefore better used as a #pragma STATIC with only those modules which
contain functions which can be used non-reentrantly, such as interrupt routines.

Whilst not essential, the compiler can be forced to make sure that variables are placed in memory in the
order in which they appear in the C source file via the Keep variables in order option. This can some-
times result in wasted RAM as words (short and int types) cannot be placed on odd addresses by the
L166 linker, resulting in odd bytes being left unused. In most situations, this control (a.k.a. #pragma
ORDER) is best used within a source file whose data must be at a defined address - see section 9.12 for
more details.

The Code Optimisation level is best left at maximum, the default which also means that C166 will try to
generate the fastest possible code, even if it means increasing code size somewhat. Examples of where the
Emphasis option has some effect is in switch() statements where the compiler will produce either a fast but
bulky jump table to the case statements, or use a compact but slower “target address calculation” approach.

Double Precision Floating point may be required if you are using floating point numbers, the double
keyword is actually treated as float by default, i.e. single precision (7 significant figures). To make the double
type into a true double precision (13 significant figures) quantity, select this option. Float will remain as single
precision but sin(), cos() log() etc. library functions will all become double precision.

Application Note:

Typical Execution Times (20MHz CPU clock)

(i) Single Precision Floating Point

divide = 9-11us approx
sin(x) function = 184-280us

(ii) Double Precision Floating Point

divide = 13-16us approx
sin(x) function = 220-340us

Treat char as unsigned will force the compiler to do as its name implies. By default, C166 treats the “char”
type as a signed 8-bit quantity. Source code which originated from another compiler may assume that char is
unsigned.

- Global Register Coloring is an optimisation that allows the Linker to recompile any source files which
could have their register usage optimised using a different “register mask”. This is an iterative process
whereby the linker makes up to nine compile-link-optimize-compile attempts to make the best allocation of
general purpose registers (R1 - R15) between nested functions. For the purposes of the exercises, leave the
Global Register Coloring item disabled. As this feature extends the compile-link time considerably and is
only really useful on larger programs, it is best left in the off state for the example program.

The Warnings level is set to “Level 2: detailed” by default so that an almost PC-lint type capability is ena-
bled within C166. Do not be tempted to turn the warning level down as it will be possible to produce unsafe
code which is however legal C, especially where pointer use (and misuse) is concerned You have been
warned!

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 26

Tip: If you want to discard any changes you have made, click the Default button to restore the origi-
nal settings.

- Define box allows any #defines to be passed to the compiler from the command line.

Example Of External #define:

#ifdef _OPTION_A_
 clock_speed = 16 ; // This is set from outside source file by uVISION
#else
 clock_speed = 20 ;
#endif

None are required in the example program!

 Misc Controls box can be used to hold any special controls that will not be used in the main program
development such as the SRC option. This is usually only used to quickly see what assembler code the
compiler has produced during development of critical code sections. It must usually be removed before the
next full build is performed.

Advanced note: By right clicking on individual source files, the compiler options for a single file can be set.

3.3.4.4 The A166 Tab

The A166 assembler is set up in much the same way as the compiler. However there are no special controls
required for almost all C166 programs. However, in programs built without uVISION it is important that the
assembler knows which memory model the compiler is using and that a C167 CPU is the target . The
"HLARGE” in the A166 command line SET() control does this. Whilst the START167 source file contains
a $SEGMENTED control, it is sensible to enable it here with the SEGMENTED control. If this control is not
present, the assembler will only be able to produce programs which can run in the non-segmented CPU
mode which means a memory space limit of just 64K.The complete A166 command line would be:
MOD167 SET (HLARGE) DEBUG.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 27

3.3.4.5 The L166 Locate Tab

The L166 linker is set up in much the same way as the compiler. However, experience has shown that the
nature of the controls necessary for the linker in a real project are best placed in a conventional ASCII text
file, here named EX0.LIN. This contains only the controls necessary to locate the program at the correct
addresses, i.e. the CODE in the EPROM and the DATA in the RAM!

EXEC.LIN From Example Program

 // Linker Input File For The HLARGE Model
 //
 // Shift user's interrupt vectors (inc. reset) to 0x40000
vectab(040000h)
 // Prevent User's Program Using Monitor's RAM
reserve(0f200h-0f5ffh)
 // Move user's C main registerbank above monitor's
REGBANK(0fd00h)
 // Fix classes for HLARGE model in free RAM
CLASSES(ICODE(042000H),
 FCODE(044200H),
 NCONST(044200H-047FFFH),
 HCONST(044200H),
 NDATA(050000H-053FFFH),
 NDATA0(050000H-053FFFH),
 FDATA(050000H),
 FDATA0(050000H),
 HDATA(050000H),
 HDATA0(050000H),
 XDATA(050000H),
 XDATA0(050000H))
// Put startup code sections into free RAM
CINITAB(44200h)

However for the example we will let the Target Tab's ROM and RAM boxes provide the necessary
location information instead of an external .LIN control file , i.e. where the ROM and RAM are on the
EVA16C board. Click the Use Memory Layout From Target Dialog to do this.

I there are special SECTIONS or CLASSES that need to go at particular addresses, they can be entered
in the User Classes or Use Sections boxes. There are none required in the example.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 28

3.3.4.6 The L166 Misc Tab

The >v3.xx L166 linker is able to detect type mismatches between modules. For example, if a variable
is declared as “unsigned char x ;” in module A and then in module B, it is externally referenced as “short
x ; ” , then L166 will flag a warning. Earlier L166 versions did not do this, with the consequence that a
“word access to odd address” trap occured at run time, usually with embarassing results. In 99% of
cases, a linker warning indicates a potential run time problem which may become an error just before a
release date. The Ignore Warnings should not be selected without long and careful consideration and
preferably only after counselling.

For the EVA16C board, the interrupt table must be shifted to the base of the user's code area at
0x40000. This is acheived by entering the address in the Interupt Table Vector Address box.

In the C167CR, the area from 0xF200 to 0xF5FF is reserved, according to the data book so this address
range must be entered into the Reserve box.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 29

3.4 Building New Projects For The First Time

Now that all the configuration steps for the example program have been taken, the program must be
compiled and linked.

Normally, the source files within the program will not already exist and so the usual approach would be
to select File-New and then type in the source lines. From the Project menu, the Make: Compile File
option would be taken to compile the file. Any errors or warnings found during compilation will result
in a secondary ".ERR" window being created which gives brief details of the error. To view the source
lines containing the problem, just double click the error message within the red bar and the editor will
drop you onto the offending line.

To build the program, select Project-Build or click the button on the toolbar. This will compile all

changed files, link the objects and run the SP166KE.EXE symbol processor. Subsequent builds of the
project can be made by clicking the Project-Rebuild icon in the toolbar.

3.5 Making Use Of The Multiple Target Facility

This project so far has been built to run under the HiTOP monitor. At some point the program will need
to run standalone from FLASH ROM. This represents a new target which can be defined via the Tar-
gets, Groups, Files menu, accessible by right clicking on the
existing monitor target in the files window. Add the target name
FLASH and click "copy all settings from current target".

When running the program directly from FLASH, the user's
code area needs to be moved to 0x0000, although the RAM
address can remain the same at 0x50000.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 30

The interrupt vector table addresswill also need to be moved to 0x0000 in the L166 Misc Tab.

Finally, the new target can be selected from the Target box at the top right of the screen.

3.6 The Special C167 Instructions

As the C167CR is being used in the examples, enable the C167 code generator with Enable 80C167 in-
structions . This will allow the compiler to use the EXTP and EXTS instructions when addressing objects via
pointers to increase efficiency. Only C166 users should cancel this option - all other C16x family members
can use the C167 instruction set.

Note: Using the EXTS instruction will make the C167 behave more like a conventional CPU as whilst the
access to far objects will be made simpler, any interrupts will be locked out. This point must be borne in mind
in systems where deterministic interrupt latency times are important.

Example of EXTS sequence used for a huge pointer:

; *huge_ptr = 0x55 ;
 ; SOURCE LINE # 19

MOV R6,#85
MOV R5,WORD huge_ptr+2
MOV R4,WORD huge_ptr
EXTS R5,#1
MOV [R4],R6

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 31

3.7 Register Masks And Global Register Optimization

As has been mentioned, C166 will attempt to place local data into registers to improve speed by making best
use of the 100ns MOV Rw,Rw type instructions. It will only do this in a particular function, provided that no
further functions are called. This limitation exists as there is no way that the compiler can know whether the
called function will use registers that are already used by the caller. Thus to play safe, the calling function is
not allowed to use register variables at all!

Fortunately, C166 uses the REGISTERMASK concept to overcome this limitation. These “masks” are
generated in the list file by the compiler in the form of a code string, prefixed with ‘@’, within which is con-
tained coded information on each function’s register usage. This new information can then be attached to the
function prototypes to tell the compiler in advance about which registers any subsequently-called functions use
and hence allow calling functions to use register variables themselves.

 ; FUNCTION locate_trigger_point (BEGIN RMASK = @0x6DFF)
; SOURCE LINE # 165

00F0 F68E2C03 R MOV trigger_count,ZEROS
 ; SOURCE LINE # 166
00F4 F68E0200 R MOV trigger_offset,ZEROS
 ; SOURCE LINE # 168
00F8 E00A MOV R10,#00H

As an example if function main() calls function func0() only uses registers R8 and R9, then its register mask
can tell the compiler this so that it is free to use the remaining registers for locals withinmain(). This principle
can be extended so that all the functions along a particular calling chain can pass back information on what
regsiters are used further down the line. The net effect is that each function gets the maximum number of
registers possible so that execution speed will be optimised. As has been said, it is crucial to getting best
performance from a C166 family device that the maximum use is made of registers.

Up to C166 v2, it was up to the user to take the register mask from the list file, attach it to the appropriate
function prototype and re-compile manually. Now in v2.xx and v3.xx the L166 linker will take all the
registermasks for all functions and place them in the regfile, EXEC.REG. The new uVISION make function
will automatically take the register masks for all functions in a system out of EXEC.REG and recompile any
source file which could have its local register variable usage improved. This is why when we compile, the
REGFILE(EXEC.REG) command is given. In effect, this compiler/linker system has a feedback path! This
can result in automatic multiple-compile-link-compile cycles during which the overall size of the program will
reduce noticeably after each pass.

With assembler coded functions, the user should manually work out the register mask and add it to the assem-
bler function’s prototype at the top of the C source file.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 32

Functions written in assembler are assumed to have the worst case register usage and so any C functions
calling assembler will not have any registers available to them. It is thus up to the user to manually generate the
register mask and attach it to the function prototype that the calling module sees:

extern void asm_func0(void) @0x0010 ; // The assembler function uses only R4
extern void asm_func1(void) @0x0018 ; // The assembler function uses R4 & R3
extern void asm_func2(void) @0x0000 ; // The assembler function uses all registers

Here is how to work out the register mask for your own assembler functions:

Bit Allocations In Register Mask

A one in the various fields in a register mask indicate the following:

MDX => Your assembler function uses the multiply/divide unit
R12-R1 => Your assembler function uses a general purpose register

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 33

4. Using The HiTOP Monitor-Based Debugger

Whilst Keil’s DScope166 is a fairly reasonable monitor debugger, the Hitex HiTOP debugger is much easier
to use. HiTOP has a true Windows user interface which makes it easier to get to know. Like any monitor
debugger, there are certain things that you must be aware of to be able to use it successfully. Always bear in
mind that this is not an in-circuit emulator and if your program crashes, it will probably take the monitor with
it...

(i) You must always make sure that the global interrupt flag is enabled. HiTOP relies on using the
serial port 0 interrupt to get control of the monitor after the user has typed “GO”.

(ii) You may not use the serial port 0 or overwrite its interrupt vector.

(iii) Only the full in-circuit emulation version of HiTOP will support bit variables. Attempting to look
at them with the monitor version in the watch window will result in a “parameter error”. You must then
delete the contents of the watch window and perform a system reset (SR button on toolbar) to clear this.

(iv) The monitor occupies the following memory on the EVA167 board:
EPROM: 0 - 0x1ffff
On-chip RAM: 0xfa00 - 0xfa3f
External RAM: 0x40200 - 0x41fff

You must make sure that your program never tramples on these areas! If you enure that any linker input
file you use in the exercises has the following controls at the end of file, you will avoid accidentally
doing this.

 // Linker Input File For The HLARGE Model
 //
 // Shift user's interrupt vectors (inc. reset) to 0x40000
vectab(040000h)

 // Prevent User's Program Using Monitor's RAM
reserve(0f200h-0f5ffh)

 // Move user's C main registerbank above monitor's
REGBANK(0fd00h)

 // Fix classes for HLARGE model in free RAM
CLASSES(ICODE(042000H),
 FCODE(044200H),
 NCONST(044200H-047FFFH),
 HCONST(044200H),
 NDATA(050000H-53FFFH),
 NDATA0(050000H-053FFFH),
 FDATA(050000H),
 FDATA0(050000H),
 HDATA(050000H),
 HDATA0(050000H),
 XDATA(050000H),
 XDATA0(050000H))

 // Put startup code sections into free RAM
SECTIONS(?C_INITSEC(044200h),?C_CLRMEMSEC)

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 34

EXERCISE 0: EX0

Subdirectory \166TRAIN\EX0\WORK

Objectives

To practice using the uVISION, compiler and linker controls, build the example program in example 0. This
simple application prints messages to the LCD display.

Procedure

Go back to section 3.3 and perform the previously described steps to build the program. Once you have
successfully built it, including the running of the SP166KE.EXE symbol processor, start HiTOP by clicking
on its icon. Select file-load, TR and then RUN, via the greeen traffic light button on the HiTOP tool bar.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 35

5. Using uVISION And HiTOP In Program Development

The graphics on the next few pages show a typical edit/compile/debug session using uVISION and HiTOP.
This includes using the tool bar buttons to compile, build and update projects.

EXERCISE 1: EX1

Using the (annoying!) example C166 program in "\166TRAIN.WIN\EX1\SOLUTION" to practice using
uVISION and HiTOP. Follow the steps shown in the frames one-by-one!

1. uVISION's And HiTOP's Toolbar Buttons

These are the most important features and you will need to use these repeatedly during the course - first
uVISION....

Edit File Save File

Compile File - Compile file being edited

Update Project - Compile any file that has been edited since last build

Build Project - Compile all files and link

Enable Editor’s Syntax Colouring

... and secondly HiTOP...

Load the program Reset the C167CR

Single step one ‘C’ line

Start the program

Go until the cursor position

Go until a symbol Step out, back to caller

Single step into a function

Step one assembler statement

Stop the program

Edit File Save File

Compile File - Compile file being edited

Update Project - Compile file that has been edited since last build

Build Project - Compile all files and link

Enable Editor's Syntax Colouring

Load the program Reset the C167CR

Start the program Stop the program

Single step one "C" line Step one assembler statement

Go until the cursor position Single step into a function

Go until a symbol Step out, back to caller

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 36

2. Open A Project

Select The Project “\166TRAIN.WIN\EX1\SOLUTION\EXEC.PRJ” from
the Project Pull-Down:

3. Compiling The Currently Open File

Click the Compile Icon and uVision will compile the current file, MAIN.C

4. Update The Project

Click the Update Project Icon and uVision will report that project is up-to-date

No edits have been made
since last build...

Click the Compile Icon and uVision will compiler the current file, MAIN.C

Select The Project "\166TRAIN.IWN\EX1\SOLUTION\EXEC.PRJ"
from the Project Pull-Down

No edits have been made
since last build...

Click the Update Project Icon and uVision will report that project is up-to-date

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 37

5. Compile Only Changed Files

Add some text to the comment line above main()...

…now click on the Project Update icon and uVision will recompile and build…

Note: The Update function
automatically saves the modified file

6. HiTOP's Debugging Windows

Now that you have built a program, you can now debug it using the HiTOP166/
win debugger. Click on the HiTOP icon to start it...

Instruction
Window

Source
Window

Register
Window

Breakpoint

7. Accessing C167CR Peripherals (ADC)

HiTOP166/WIN is used to load the new program into the EVA16C for debugging
and running. It can also be used to access the C167CR’s peripherals...

Select “View-User- A/D converter” to show the 10-bit A/D converter window...

Add some text to the comment line above main()...

...now click on the Project Update Icon and uVision will recompile and build...

Note : The Update function auto-
matically saves the modified file

Now that you have built a program, you can now debug it using the HiTOP
debugger. Click on the HiTOP icon to start it...

Instruction
Window

Register
Window

Source
Window

Breakpoint

HiTOP is used to load the new program into the EVA16C for debugging
and running. It can also be used to access the C167CR's peripherals...

Select "View-User-A/D converter" to show the 10-bit A/D converter window...

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 38

8. The A/D Converter Window

This is effectively the control panel on the C167CR’s A/D converter. The voltage
of the potentiometers on the training board can be measured...

…Test whether the potentiometer on analog channel 0 is working...

9. Start A Conversion Of Channel 0

…click the “ADM” field and choose “single channel continuous” mode...

…and then the ADST
field, choosing “set” to
start the converter
running. It will convert
every 9.7us
indefinitely. The
analog value can be
read from the ADDAT
field...

HITOP166/WIN can be made to read the latest value by pressing “ALT-F12”

10. HiTOP's Toolbar Buttons

Load the program Reset the C167CR

Single step one ‘C’ line

Start the program

Go until the cursor position

Go until a symbol Step out, back to caller

Single step into a function

Step one assembler statement

Stop the program

This is effectively the control panel on the C167CR's A/D converter. The voltage
of the potentiometers on the training board can be measured...

...Test whether the potentiometer on analog channel 0 is working...

... click the "AMD" field and choose " single channel continuous" mode...

... and then the ADST
field, choosing "set" to
start the convertor run-
ning. It will convert
every 9.7us indefinitely.
The analog value can be
read from the ADDAT
field...

HiTOP can be made to read the latest value by pressing "ALT-F12"

Load the program Reset the C167CR

Start the program Stop the program

Single step one "C" line Step one assembler statement

Go until the cursor position Single step into a function

Go until a symbol Step out, back to caller

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 39

11. Loading The Program Into HiTOP

Click the icon and then...

…click LOAD to load program...

12. Running The Program

Now click the icon to reset the program...

…and then click the icon. Type “main” into the address box...

click “Go Until” to run the program to main()...

13. Single Stepping The Program

 Click the icon to single step the call to “init_lcd()”...

To drop into the function “init_keypad()”, use the icon...

..once in the function, use to get back to line #91...

(The yellow arrow shows the current program counter position)

Click the icon and then ...

...click LOAD to load program...

Now click the icon to reset the program...

 ...and the click the icon. Type "main" into the address box...

click "Go Until" to run the program to main()...

 Click the icon to single step the call to "int_lod()"...
 To drop into the function "int_keypad()", use the icon...

 ...once in the function, use to get back to line #91...
(The yellow arrow shows the current program counter position)

EX1.HTX

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 40

14. Debugging The Program - Breakpoints

Use the scroll bars on the right side of
the List window to look down the
function until line #113 is visible.

To set a
breakpoint on
this line, click in
the “BP” column
at the left side of
the window.

15. Debugging - Run To A Breakpoint

Click the icon to run until the breakpointed line...

The yellow arrow shows that the program has reached
the breakpoint and stopped

16. Debugging - Running/Stopping

To remove the breakpoint, click again in the ”BP” column on the breakpoint...

…to run the program in real time, click the icon again...

…to stop the program, click the icon.

You will probably have stopped in the keypad driver...

You will need to look at the main loop
and run until a line within it…

Use the scroll bars on the right
side of the List window to
look down the function
until line #113 is visible.

To set a
breakpoint on
this line, click in
the "BP" column
at the left side of
the window.

Click the icon to run until the breakpointed line...

The yellow arrow shows that the program has reached
the breakpoint and stopped

To remove the breakpoint, click again in the "BP" column on the breakpoint...

...to run the program in real time, click the icon again...

to stop the program click the icon.

You will probably have stopped in the keypad driver...

You will need to look at the main loop
and run until a line within it...

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 41

17. Debugging - Looking At Other .C Files

To get back to the main loop, click in the List window
and select Local pull-down...

…and select “Address”...

…type the line in main (#115)
which you want to run to...

…and click “OK”.

18. Debugging - Running To The Cursor Position

The List window will now show line #115.

...by clicking in the “PC” column - note the new “GOTO arrow” mouse pointer!

…line #116 is only executed when keys 0 - 4 are pressed. Press key
‘1’ and the program should stop at the line #116...

…run to the cursor at line #116 ...

19. Debugging - Looking At Variable Values

The variable “AD_channel” will soon be set to the value of the key just pressed...

…to look at this value, double-click the variable in line #118 and then
select Local pull-down and Watch...

AD_channel will now be in the Watch window, with its value displayed...

To get back to the main loop, click in the List window
ans select Local pull-down...

...and select "Address"...

...type the line in main (#115)
which you want to run to...

...and click "OK".

The List window will now show line #115.
 ...run to the cursor at line #116...

...by clicking in the "PC" column-note the new "GOTO arrow" mouse pointer!

...line #116 is only executed when keys 0-4 are pressed. Press key
"1" and the program should stop at the line #116...

AD_channel will now be in the Watch window, with its value displayed...

...to look at this value, double-click the variable in line #118 and then
select Local pull-down and Watch...

The variable "AD_channel" will soon be set to the value of the key just pressed...

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 42

20. Debugging - Looking At Variable Values

AD_channel is now = 1, the value of the key you pressed...

Execute a single step of line #116 with the icon...

21. Debugging - Getting Back To The Start

To reset the program, click the icon...

22. Returning To uVISION For Next Edit-Build

To release the symbol file, select uNload from the File menu...

...Now click on the uVISION
icon to return to it for
the next edit-build
cycle.

And that is all you need to know to use HiTOP!

Execute a single step of line #116 with the icon...

 AD_channel is now =1, the value of the key you pressed...

To reset the program, click the icon...

To release the symbol file, select uNload from the File menu...

...Now click in the uVISION
icon to return to it for
the next edit-build
cycle.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 43

6. Configuring The C Environment To Your CPU and Hardware

6.1 CPU-Specific Include Files

The Keil C compiler comes with a set of include files for all the C166 and C167 variants As there is only one
register (serial port) more on the C165, this is not a major problem. The include files define the special
function register set for a given variant.

These files are all stored in the \KEIL\C166\INC directory and may be directly included in your C program as
shown below

#include <reg167.h>

It is through these files that C166 knows the addresses of the on-chip special function registers.

Extract Of reg167.h:

/* (c) Copyright KEIL ELEKTRONIK GmbH. 1993, All rights reserved. */
/* Register Declarations for 80C167 Processor */

/* A/D Converter */
sfr ADCIC = 0xFF98;
sfr ADCON = 0xFFA0;
sfr ADDAT = 0xFEA0;
sfr ADEIC = 0xFF9A;
sfr ADDAT2 = 0xF0A0;
sbit ADST = ADCON^7;
sbit ADBSY = ADCON^8;
sbit ADWR = ADCON^9;
sbit ADCIN = ADCON^10;
sbit ADCRQ = ADCON^11;

/* Timer 0, Timer 1, Timer 7, Timer 8 */
sfr CC0 = 0xFE80;
sfr CC0IC = 0xFF78;
sfr CC1 = 0xFE82;
sfr CC1IC = 0xFF7A;
sfr CC2 = 0xFE84;
sfr CC2IC = 0xFF7C;
sfr CC3 = 0xFE86;
sfr CC3IC = 0xFF7E;

For the C167CS, a header file called "c167cs.h" should be used.

Example Of Use

temperature = ADDAT & 0x3ff ; // get A/D value into ‘C’ variable

if(C) { // Check the CPU's carry flag in the PSW

 x = 0xFFFF ;
 }

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 44

6.2 Configuring STARTUP.A66 And START167.A66

These files contain the code that gets you from the RESET vector at 0x00000 to the beginning of your C
program at main().

Besides providing the RESET vector, they are used to initialise
the C runtime environment and the CPU’s fundamental registers
such as SYSCON, BUSCON and any ADDRSELx and
BUSCONx registers being used. STARTUP.A66 is used for
the C166 and START167.A66 caters for the C165 and C167.
In the case of the C166, a default STARTUP.A66 is automati-
cally linked in that will provide a “safe” combination of run time
settings and CPU configuration. C167/5 users must always link
START167.OBJ as the last object file in the EXEC.LIN file.
For any CPU, if the startup object file is not the last in the
object file list, you may find some data is not initalised correctly.

The next sections cover in detail what is controlled by these
files.

6.2.1 Configuring STARTUP.A66

The majority of these operations refer to the SYSCON register.

(i) Enable or disable WATCHDOG - default DISABLED

(ii) Enable/disable clearing of program variables at startup via
the "CLR_MEMORY" and "INIT_VARS" SETs - default:
ENABLED

(iii) Enable/disable initialisation of program variables before main() is reached - default: ENABLED.

Note: if you have a variable declared:

int x = 1 ;

This control decides whether the ‘1’ is written to ‘x’ during the start up.

(iv) Configure the CPU registers that control the bus mode, waitstates etc..

MCTC - memory cycle time

Default : 1 wait state inserted

Setting 0-15 in this field will result in the CPU inserting the same number of waitstates being inserted. If the
RDYEN is enabled, setting 0-7 waitstates will result in 0-7 waitstates being inserted after READY in an
asynchronous mode goes low. If 8-15 waitstates are programmed, the READY is treated as synchronous

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 45

and 0-7 waitstates are inserted after the READY pin goes low. This change in the MCTC field was intro-
duced at the BA step of the C166.

RWDC - Read/Write delay

Default: delay time of 0.5 states enabled. This is usually only required in some multiplexed bus mode designs.
Not needed in non-multiplexed designs at all.

MTTC - Memory tristate time

Default: No tristate time inserted.

This is only required where the memory device has a data float time that is too long for the C166. This is the
time that the device drives the bus after the /RD pin has gone high. It is unusual for this to be set and about
10% CPU performance increase can be had by switching if off (set to 1).

Bus Type - Bus type

These bits are usually left in the state set by the EBC0 and EBC1 pins on the CPU. Whilst they can be
changed in software, is not really recommended!

CLKEN - Clock output pin

Default: disabled

If this bit is set, the CPU clock will be emitted on the CLKOUT pin, provided that you have previously set
this pin to be an output in the appropriate DP register.

BYTDIS - byte high enable

Default: Enabled

Enabling this bit will allow the BHE pin to emit a signal which can be used to enable the high bytes in a word-
wide memory system. A0 is used to enable the low byte device and BHE the high byte device.

SGTDIS - Disable segmented CPU mode

Default: Disabled

Unless the TINY model is used, this bit is clear so that the CPU runs in segmented mode i.e.; port 4 emits the
A16-A17 address lines.

RDYEN - RDYEN - Enable ready

Default: disabled

Setting this bit will cause the CPU to look for the READY pin going low to show that the last memory access
cycle has been completed.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 46

BTYP_ENABLE - Allow software to modify the BTYP field and hence change the bus mode.

Default: Disabled; the bus type is set by the EBC pins.

BTYP0 - External Bus Configuration Control

These bits determined the bus mode used by the CPU when in single-chip mode.

0 = 8-Bit Non Multiplexed
1 = 8-Bit Multiplexed
2 = 16-Bit Non Multiplexed
3 = 16-Bit Multiplexed <—-- default mode

EXT_RAM

Default: Enabled

Causes the /WR pin to be set to output so that external RAM can be written.

STKSZ - Set system stack size

Default: 256 words

The required system stack size is set by the two bits in this field.

BUSCON1/ADDRSEL1

These two registers control a bus region which can have different characteristics to that set by SYSCON and
the EBC pins. It is best to configure them using extra assembler instructions added after the set up of
SYSCON. It is important that they are setup before the sections which initialise data. This is because any
data contained in the ADDRSEL1 region will not be accessible until these registers have been set up.

6.2.2 Configuring START167.A66

These controls operate on SYSCON and BUSCON0. The functions of the C166's SYSCON are shared
between these two registers on the C165/7.

MCTC0 - memory cycle time

Default : 1 wait state inserted. Setting 0-15 in this field will result in the CPU inserting the same number of
waitstates being inserted. If the RDYEN is enabled, setting 0-7 waitstates will result in 0-7 waitstates being
inserted after READY in an asynchronous mode goes low. If 8-15 waitstates are programmed, the READY
is treated as synchronous and 0-7 waitstates are inserted after the READY pin goes low. This change in the
MCTC field was introduced at the BA step of the C166.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 47

RWDC - Read/Write delay

Default: delay time of 0.5 states enabled. This is usually only required in some multiplexed bus mode designs.
Not needed in non-multiplexed designs at all.

MTTC - Memory tristate time

Default: No tristate time inserted. This is only required where the memory device has a data float time that is
too long for the C166. This is the time that the device drives the bus after the /RD pin has gone high. It is
unusual for this to be set and about 10% CPU performance increase can be had by switching if off (set to 1).

BTYP_ENABLE - Allow software to modify the BTYP field and hence change the bus mode.

Default: Disabled; the bus type is set by the pull-down resistors on pins P0L6 and P0L7.

BTYP0 - External Bus Configuration Control

These bits determined the bus mode used bythe CPU when in single chip mode.

0 = 8-Bit Non Multiplexed
1 = 8-Bit Multiplexed
2 = 16-Bit Non Multiplexed
3 = 16-Bit Multiplexed

ALECTL0 - ALE Lengthening Control Bit.

Default: Disabled

If set, this bit will cause the ALE signal to be lengthened by 0.5 state times.

BUSACT0 - Bus active control bit

Default: Enabled

When enabled, the CPU will fetch instructions from external memory i.e., the bus will emit addresses and
read/write data.

RDYEN0 - Enable ready

Default - disabled

Setting this bit will cause the CPU to look for the READY pin going low to show that the last memory access
cycle has been completed.

RDY_AS - Decide whether /READY input is synchronous or asynchronous.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 48

Note: This bit is only valid if _RDYEN == 1.

_RDY_AS - if set to 1, /READY input is treated as synchronous otherwise /READY is asynchronous.

WRCFG - Write configuration control bit.

Default: Disabled (0)

If disabled, /WR and /BHE will operate as normal otherwise, /WR acts as /WRL (write for low byte device)
and /BHE becomes /WRH (write for high byte device). This is useful when two 8-bit RAMs are used to
produce a 16-bit memory.

CLKEN - Clock output pin

Default: disabled (0

If this bit is enabled, the CPU clock will be emitted on the CLKOUT pin, provided that you have previously
set this pin to be an output in the appropriate DP register.

BYTDIS - byte high enable

Default: Enabled (0)

Enabling (clearing) this bit will allow the BHE pin to emit a signal which can be used to enable the high bytes in
a word-wide memory system. A0 is used to enable the low byte device and BHE the high byte device.

XPEN - XRAM enable control

Default: Disabled (0)

SGTDIS - Disable segmented CPU mode

Default: Disabled (0)

Unless the TINY model is used, this bit is clear so that the CPU runs in segmented mode i.e.; port 4 emits the
A16-A17 address lines.

STKSZ: Maximum System Stack Size selection (SYSCON.13 .. SYSCON.15)
_STKSZ EQU 0 ; System stack sizes
; ; 0 = 256 words (Reset Value)
; ; 1 = 128 words
; ; 2 = 64 words
; ; 3 = 32 words
; ; 4 = 512 words
; ; 5 = not implemented
; ; 6 = not implemented
; ; 7 = no wrapping (entire internal RAM use as STACK)

This startup file is to be used for the C165 and C167. Unlike the C166, you cannot rely on the linker to pull
in a suitable default START167.A66 so you must always include it in your linker input file, EXEC.LIN.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 49

6.2.3 Special Note On The CAN Pin Assignments On The C167CS

Although the configuration of the CANRx and Tx pins is not strictly speaking associated with
START167.A66, they do come under the classification of "hardware setup", which must be considered at an
early stage in a new design.

With the standard C167CR, the single CAN module uses address line A21 (P4.5) as the transmit line and
A22 (P4.6) as the receive. This has the side-effect of limiting the C167CR to using just 20 address lines.
However thenewer C167CS-LM has been upgraded such that it has two CAN modules whose IO pins can
be reallocated to other pins.

The new three-bit wide IPC field in the PCIR register allows the user to assign the two CAN module as
follows:

One major problem for users upgrading from the C167CR is that the default (RESET) state of the IPC field is
binary '111', meaning that all CAN interfaces are disconnect. Thus C167CR programs will not run unmodi-
fied on a C167CS! To give compatibily, do the following:

#define Set_Default_CAN_IO 0xF8FF /* Required to set up CAN io pins on C167CS */

/* Set Up CAN1 IO Pins (C167CS) */
/*------------------------------*/

CAN1_Control_Status |= CCE ; // Enable access to bit timing register (and IPC field)
CAN1_Interrupt &= Set_Default_CAN_IO ; // Use standard C167CR Rx & Tx pin allocations on P4
CAN1_Control_Status = 0 ; // End of CAN module initialisation

Where CAN_Interrupt is the CAN interrupt register at 0xEF02 for CAN2 or 0xEE02 for CAN2.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 50

6.3 The Two Stacks In C166

The basic design of the C166 was deliberately biased towards allowing structured languages like C run more
efficiently than on older CPUs. The most useful instruction set feature is the provision of in effect, 16 stack
additional stack pointers. These are a result of the MOV [Ri+], mem instructions which are ideal for creating
local stacks.

In reality, C166 uses just one of the 16 potential stack pointers (i.e. general purpose registers), namely R0.
The stack created by R0 is placed in a special section in NDATA called ?C_CUSERSTACK. The “user
stack” with R0 as its user stack pointer is used by C166 for parameter passing and local automatic variables.
When a function is called, any variables or other data that cannot be fitted into registers are “pushed” on to the
user stack by the MOV [R0-], parameter instruction. The “R0-” causes R0 to point at the next free location
on the user stack. Once in the called function, the parameter is moved off the user stack by the inverse in-
struction “MOV reg,[R0+]”. Note that the R0+ moves the user stack pointer. As with the true system stack
pointer SP, every MOV [R0-], xxxx is matched with a MOV xxx, [R0-] so that the user stack pointer is
always restored to its original value after a function call.

6.3.1 Setting The Size Of The User Stack

Due to C166 placing up to 8 parameters and 15 locals in registers, it is fairly rare for the user stack to be
used at all. If the optimizer is disabled, you will instantly see a large number of MOV [-R0],R11 type in-
structions as C166 starts to move things onto the user stack.

Warning: If C166’s optimization is disabled, the user stack size is increased massively!

; FUNCTION interp_sub (BEGIN RMASK = @0x2030)
; unsigned char interp_sub(unsigned char x, unsigned char y,
 ; SOURCE LINE # 11

MOV [-R0],R11 <—— this all ends up on user stack
MOV [-R0],R10
MOV [-R0],R9
MOV [-R0],R8
SUB R0,#2

; unsigned int n, unsigned int d) {
; unsigned char t ;
;
; if(y>x)
 ; SOURCE LINE # 15

MOVB RL5,[R0+#2] ; x?00 <—— very slow
MOVB RL4,[R0+#4] ; y?00
CMPB RL4,RL5
JMP cc_ULE,?C0001

; {
 ; SOURCE LINE # 16
; t = y-x ;
 ; SOURCE LINE # 17

MOVB RL5,[R0+#2] ; x?00

Note: this habit of pushing everything on the user stack is why conventional processors like the 68000
and 8086 have relatively poor performance in C.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 51

C166’s register variables reducing the load on the user stack to zero and proof of why Keil produce the
best C166 compiler you can get!

; FUNCTION interp_sub (BEGIN RMASK = @0x2070)
; unsigned char interp_sub(unsigned char x, unsigned char y,
 ; SOURCE LINE # 11
;—— Variable ‘d?00’ assigned to Register ‘R11’ ——
;—— Variable ‘n?00’ assigned to Register ‘R10’ ——
;—— Variable ‘y?00’ assigned to Register ‘R9’ ——
;—— Variable ‘x?00’ assigned to Register ‘R8’ ——
;—— Variable ‘t?01’ assigned to Register ‘RL6’ ——
; unsigned int n, unsigned int d) {
; unsigned char t ;
;
; if(y>x)
 ; SOURCE LINE # 15

MOV R5,R8 <———— Very fast, 100ns
MOV R4,R9
CMPB RL4,RL5
JMP cc_ULE,?C0001

; {

This can make the maximum extent of the user stack a great deal lower than might be expected. However,
C166 will only use registers if the optimisation is at maximum. As can be seen, if the optimization is disabled,
the user stack will suddenly grow and may well exceed the allocated space, resulting in a program crash.

The default user stack size is 1000H bytes and this is adequate for very large programs - the size is set in the
startup.a66 file. It is sensible to leave the stack at this size until the bulk of your program has been written and
then to examine the actual worst-case stack used. If you are using the registerbanks and register mask prop-
erly, you should be able to reduce this to 100H or less. This can be estimated by working out the maximum
function/interrupt nesting and adding up the total number of MOV [R0-]s possible. Alternatively, the
teletest32/166 in-circuit emulator can be used to monitor activity in the designated ?C_USERSTACK area.

As was mentioned in the section on setting C166 compiler options, variables that end up on the user stack are
considerably slower to access as there are no ADD, SUB or CMP instructions which can use the Rw,[R0 +
#offset16] addressing mode. In other words, variables on the user stack must be moved off the stack into a
register, operated upon and then moved back onto the stack.

A significant performance advantage for interrupt functions or those with a large number of local variables can
therefore be had by forcing the compiler to put locals that cannot fit into registers (R1-R15) into (near) static
RAM segments to create a “compiled” stack, as in the C51 compiler. The common ADD, SUB and CMP
instructions all can operate directly on RAM so that there is little performance loss when compared to register
variables. Use static memory for non-register automatics in the C166 Options menu will do this.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 52

Example Of STATIC Usage:

The entry to the example INTERP.C function shown above becomes as follows when the STATIC control is
used. Note how the user stack instructions have disappeared...

?ND?interp?INTERP SECTION DATA WORD ‘NDATA’
 ORG 00H
y_break_point1?046 DSW 1
y_break_point2?047 DSW 1
 map_x1y2?049 DSW 1
 result_y1?054 DSW 1
 x_temp1?056 DSW 1
 y_temp2?058 DSW 1
?ND?interp?INTERP ENDS

 REGDEF R0 - R15

 ?PR?INTERP SECTION CODE WORD ‘NCODE’
; line 1: #pragma MOD167
; line 2:
; line 3: /*** Module-Specific Include File ***/
; line 4:
; line 5: #include <reg167.h>
; line 6: #include <interp.h>
; line 7:
; line 8:
; line 9: /*** Main Interpolation Routine ***/
; line 10: unsigned int interp(unsigned int x_value,

interp PROC NEAR
PUBLIC interp

; FUNCTION interp (BEGIN RMASK = @0x3FFE)
PUSH R13
PUSH R14
PUSH R15

;—— Variable ‘map_base’ assigned to Register ‘R10’ ——
MOV R2,R8

;—— Variable ‘x_value’ assigned to Register ‘R2’ ——
;—— Variable ‘map_x2y1?050’ assigned to Register ‘R11’ ——
;—— Variable ‘result?053’ assigned to Register ‘R12’ ——
;—— Variable ‘y_offset?043’ assigned to Register ‘R13’ ——
;—— Variable ‘x_temp2?057’ assigned to Register ‘R14’ ——
;—— Variable ‘map_x1y1?048’ assigned to Register ‘R15’ ——
; line 11: unsigned int y_value,
; line 12: unsigned int *map_base) {

Please note however, that any functions within modules compiled with this control will no longer be reentrant,
i.e. the same function cannot be called both from an interrupt and a background function. In this case, the
values acquired by “static” variables in the background call would be destroyed by those originating from the
interrupt function. This control is best used as a #pragma STATIC with only those modules which contain
functions which can be used non-reentrantly, such as interrupt routines.

6.3.2 Advanced Technique - Placing The User Stack In On Chip RAM

As has been said, the user stack is fixed in a section named ?C_CUSERSTACK, part of the NDATA class.
However, it is quite simple to move it to other memory spaces. The most common action is to place it in the
IDATA class so that it can be on-chip. As the user stack is rarely very large, IDATA should be able to
contain it quite happily. However it is most usual these days fro it to be necessary to move the userstack on-
chip.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 53

A small modification is required to START167.A66 to achieve this, as shown below:

START167.A66 Modified To Put User Stack In On-Chip RAM

Here are the modifications you will need to make if you ever want to move the USER STACK on-chip:

Upper part of START166.A66 at line #479

?C_USERSTACK SECTION DATA PUBLIC 'NDATA'

Should be modified to:

?C_USERSTACK SECTION DATA PUBLIC 'IDATA'
;
... and further down the file...

; USTSZ: User Stack Size Definition
; Defines the user stack space available for automatics. This stack space is
; accessed by R0. The user stack space must be adjusted according the actual
; requirements of the application.
USTSZ EQU 100H ; set User Stack Size to 40H Bytes.
;
... and even further down the file, after the EINIT instruction at line #700...

Make R0 be loaded with DPP3 for an on-chip USER STACK, rather than DPP2, as at present...

............EINIT
;
$IF (NOT TINY)

MOV R0,#DPP3:?C_USERSTKTOP ; This was DPP2:?C_USERSTKTOP
$ENDIF
$IF TINY

MOV R0,#?C_USERSTKTOP
$ENDIF

If your have forgotten to reduce the size of the user stack to something small enough to fit in the on-chip RAM
- the default 1000H bytes will cause L166 to issue a warning about the "IDATA class being out of group
range".

Important: you must use the USERSTACKDPP3 and NOFIXDPP C166 compiler controls if the userstack
is moved on-chip. This is to allow the compiler to correctly produce pointers to data that is on this stack.
Failure to do this will result in undefined results. See section 12.6 for more details on the
USERSTACKDPP3 control.

6.3.3 The System Stack

With the user stack taking care of function parameters and local variables, the system stack is used for storing
return addresses, the current PSW and CP plus any general purpose registers in the current register bank used
for local register variables. This stack is always located on-chip and defaults to 256 words in length
(80C166) at 0xfbff down to 0xfa00. The required stack size is set in the START167.A66 file. Values of 32,

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 54

64, 128 and 256 words can be selected via SYSCON. The CPU register “SP” has its top 5 bits hard-wired
to ‘1’, the stack is always in the range 0xf800 to 0xfffe, i.e. on-chip.

Setting The System Stack Size

; STKSZ: Maximum System Stack Size selection (SYSCON.13 .. SYSCON.14)
_STKSZ EQU 0 ; System stack sizes
; ; 0 = 256 words (Reset Value)
; ; 1 = 128 words
; ; 2 = 64 words
; ; 3 = 32 words

The C166 is endowed with two special registers, STKOV and STKUN, which set the top and bottom limits
of the stack. The default value of STKOV (Stack overflow) is 0xFA00 whilst STKUN (Stack underflow)
defaults to 0xF000, in-line with the default 256 words.

The address of the stack is defined by loading the STKOV register is startup.a66

 Setup Stack Overflow
_TOS EQU 0FC00H ;top of system stack
_BOS EQU _TOS - (512 >> _STKSZ) ;bottom of system stack

PUBLIC ?C_SYSSTKBOT
?C_SYSSTKBOT EQU _BOS

MOV STKOV,#(_BOS+6*2) ;INITIALIZE STACK OVFL REGISTER

L166 automatically reserves the appropriate on-chip memory and so no special actions are required by the
user.

6.4 Setting Up The BUSCONx ADDRSELx Registers

The operation of BUSCON2,3,4 and ADDRSEL2,3,4 on the C165/7 is identical to the BUSCON1 and
ADDRSEL1 on the C166. The big difference to the C166 is that there is a chip select pin for each
ADDRSEL. Thus, if an address is accessed in a region covered by an ADDRSELx/BUSCONx pair, the
corresponding chip select (CSx) pin goes low to enable the appropriate memory (or other) device. This is a
useful way of reducing the glue logic in a C165/7 system.

The most important thing to say about these registers is that you must initialise the ADDRSELx registers
before the corresponding BUSCONx. This is to some extent common sense; the BUSCONx contains a
BUSACT (bus active) bit which activates the bus characteristics over the preset ADDRSEL range.

Unexpected results can occur if you setup the BUSCONx first for the following reasons:

(i) The C167/5 data book warns that no two ADDRSEL registers must describe an overlapping region. As
all the ADDRSELs are set to zero when coming out of RESET, enabling two BUSCONs will cause an over-
lapping condition.

(ii) The BUSCONx region bus characteristics may differ from those of the background SYSCON. If the
BUSCONx is enabled while the ADDRSELx is set to zero, the area currently executing could be changed.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 55

The code to initialise the BUSCONx and ADDRSELx must be placed in the startup.a66 or start167.a66, just
after the BFLDH and BFLDL instructions that set up BUSCON0. It is not sensible to put the BUSCONx set
up in C as any RAM areas described by a BUSCONx will not enabled and hence be zeroed or otherwise
initialised by the C_STARTUP code in STARTUP.A66 or START167.A66.

167

E
P

R
O

M
R

A
M

U
A

R
T

BUSCON0 = 0x04EF /CE

/CE

/CE

/CS0

/CS1

/CS2

SYSCON = 0x0080

BUSCON1 = 0x04EF

BUSCON2 = 0x040E

ADDRSEL1 = 0x0405

ADDRSEL2 = 0x0400

P0.8

W
R

C
F

G B
T

Y
P

P0.7 P0.6

01

0

16 Bit Non-Multiplex Bus
0 Waitstates

8 Bit Non-Multiplex Bus
1 Waitstates

Base Addr = 0x80000
Length = 4k

Base Addr = 0x40000
Length = 128k

8K2 8K2 8K2

The Integral Chip Selects

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 56

?C_RESET PROC TASK C_STARTUP INTNO RESET = 0
?C_STARTUP:

$IF (WATCHDOG = 0)
DISWDT Disable watchdog timer

$ENDIF

BCON0L SET (_MTTC0 << 5) OR (_RWDC0 << 4) OR ((NOT _MCTC0) AND 0FH)
BCON0L SET BCON0L AND (NOT (_RDYEN0 << 2))
BCON0L SET BCON0L OR (_RWDC0 << 4) OR (_MTTC0 << 5)
BCON0H SET (_ALECTL0 << 1) OR (_BUSACT0 << 2) OR (_RDYEN0 << 4)

BFLDLBUSCON0,#3FH,#BCON0L
BFLDHBUSCON0,#17H,#BCON0H

; **** Add ADDRSEL and BUSCON setups here! ****

MOV ADDRSEL1,#421H
MOV ADDRSEL2,#421H

MOV BUSCON1,#421H
MOV BUSCON2,#421H

SYS_H SET (_STKSZ << 5) OR (_ROMS1 << 4) OR (_SGTEN << 3)
SYS_H SET SYS_H OR (_ROMEN << 2) OR (_BYTDIS << 1) OR _CLKEN
; Setup SYSCON Register

6.5 Special Notes On The Startup Files

START167.OBJ and STARTUP.A66 must be last in the list of object files in the .LIN linker input file! If not,
any initialised data will fail to be initialised properly!

When assembling these files, you must indicate the memory model of the C program with the command line
parameter:

A166 STARTUP.A66 SET(SMALL)

Failure to do so will result in the linker issuing a type-mismatch in the symbol "main" between MAIN.C and
START167.A66.

The standard STARTUP.A66 and START167.A66 files are stored in \C166\LIB. If you need to modify
them, make a local copy of it in your working directory and add startup.obj or start167.obj to the linker line.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 57

EVA16C Memory Map With HiTOP

6.6 EVA16C Board CPU Setup Requirements (via BUSCON0 and chip select 0)

EPROM: 0-0x3FFFF START167.A66 CONSTANT
2 waitstates _MCTC0 = 2
1 memory tristate time _MTTC0 = 0
No read/write delay _RWDC0 = 1
No /READY _RDYEN0 = 0
Bus type selected externally by pull-down resistors on Port P0L6/7. _BTYP_ENABLE = 0
No ALE lengthening _ALECTL0 = 0
Normal operation of /WR and /BHE WRCFG_ENABLE = 0

 _WRCFG = 0
Stack size 64 words STK_SIZE = 2
XRAM enabled _XPEN= 1
Segmentation enabled _SGTDIS = 0
Watchdog disabled WATCHDOG = 0
(NB: We are using the HLARGE model)

RAM: 0x40000-0x5FFFF (via ADDRSEL1/BUSCON1 and chip select 1)
1 waitstate _MCTC1 = 1
16 bit non-multiplexed bus _BTYP1 = 2
No /READY _RDYEN1 = 0
0 memory tristate time _MTTC1 = 1
Read/write delay enabled _RWDC1 = 0
No ALE lengthening _ALECTL1 = 0
Chip select 1 active _BUSACT1 = 1

BUSCON1 = 1
Chip select 1 is an address chip select _CSREN1 = 0

_CSWEN1 = 0

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 58

EXERCISE 2: EX2

Objective:

Configure the START167.A66 file to suit the EVA16C development board.

Procedure:

The program in EX2\WORK is from the EX0\SOLUTION and will form the basis for this exercise. The
"clean" START167.A66 has been copied directly from C:\KEIL\C166\LIB. Your task is to modify it as
follows:

(i) The user stack size will need to be reduced from 1000H to 040H bytes.

(ii) The default system stack size needs to be reduced to 64 words.

Extract From START167.A66 - Setting The User And System Stack Size

; STKSZ: Maximum System Stack Size selection (SYSCON.13 .. SYSCON.15)
; Defines the system stack space which is used by CALL/RET and PUSH/POP
; instructions. The system stack space must be adjusted according the
; actual requirements of the application.
$SET (STK_SIZE = 0) <---- Edit this
; System stack sizes:
; 0 = 256 words (Reset Value)
; 1 = 128 words
; 2 = 64 words
; 3 = 32 words
; 4 = 512 words
; 5 = not implemented
; 6 = not implemented
; 7 = no wrapping (entire internal RAM use as STACK, set size with SYSSZ)
; If you have selected 7 for STK_SIZE, you can set the actual system stack size
; with the following SSTSZ statement.
; SSTSZ EQU 200H ; set System Stack Size to 200H Bytes
; USTSZ: User Stack Size Definition
; Defines the user stack space available for automatics. This stack space is
; accessed by R0. The user stack space must be adjusted according the actual
; requirements of the application.
USTSZEQU 1000H; set User Stack Size to 1000H Bytes. <---- Edit this
;

(iii) The EVA16C memory map has the RAM which holds your program code and data on chip select 1
(CS1#). You will need to set BUSCON1 and ADDRSEL1 to map this chip select and hence the RAM to
0x40000 for a length of 128kb. There are some EQU’s in START167.A66 that will help you do this - see
page 57:

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 59

Extract From START167.A66

; BUSCON1/ADDRSEL1 .. BUSCON4/ADDRSEL4 Initialization
; ===
;
; BUSCON1/ADDRSEL1
; — Set BUSCON1 = 1 to initialize the BUSCON1/ADDRSEL1 registers
$SET (BUSCON1 = 0) <---- Edit this
;
; Define the start address and the address range of Chip Select 1 (CS1#)
; This values are used to set the ADDRSEL1 register
%DEFINE (ADDRESS1) (100000H) ; Set CS1# Start Address (default 100000H) <---- Edit this
%DEFINE (RANGE1) (1024K) ; Set CS1# Range (default 1024K = 1MB) <---- Edit this
;
; MCTC1: Memory Cycle Time (BUSCON1.0 .. BUSCON1.3):
; Note: if RDYEN1 == 1 a maximum number of 7 waitstates can be selected
_MCTC1 EQU 1 ; Memory wait states is 1 (MCTC1 field = 0EH). <---- Edit this
;
; RWDC1: Read/Write Signal Delay (BUSCON1.4):
_RWDC1 EQU 0 ; 0 = Delay Time 0.5 States <---- Edit this

Other modifications required concern the number of waitstates ("memory cycle time"), read-write delay etc..
Set up the START167.A66 to match the EVA167 hardware configuration given in section 6.6.
Further edit START167.A66 to achieve this.

Hint! If you want to know what BUSCON1 and ADDRSEL1 should be, use the “BUSCON” window
in HiTOP and enter the configuration and take the values HiTOP calculates...

6.7 Configuring The Runtime Environment

6.7.1 Adapting printf() To Other Output Devices

The printf() on a PC compiler prints to the PC screen. On an C166, there is no such device. To meet the
ANSI standard, a full printf() is provided which is directed to serial port 0 on the C166. To allow other
output devices such as LCD screens to be driven from printf(), the source code for putchar() is supplied in the
libraries directory. It is via the putchar() function that printf() ultimately transfers characters to be transmitted
to a real output device. By adapting the supplied putchar(), you can attach printf() to the output device in your
system. The only other step to take is to link the new putchar() into the program by placing it in the project
file list (see Project-Edit Project in uVISION). A typical application might be to allow floating point numbers
to be conveniently written to an LCD panel using printf()’s simple-to-use data formatting features.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 60

Note! We have cheated somewhat as to access the LCD display in exercise 0, a modified putchar() was
used!

Example:

A modified putchar() which writes printf()’s output to an LCD display register.

char far *LCD_DATA_REG = 0x38000 ;

char putchar(char c) {

 *LCD_DATA_REG = c ;
 return(c) ;
 }

If you are puzzled about the pointer to the imaginary LCD, do not worry as we will cover absolute address
pointers later on...

6.7.2 Configuring scanf() For Other Devices

In the same way that printf() writes to real devices via putchar(), scanf() derives its input from a function called
_getkey(). The standard getkey() expects to get its input from serial port 0 and this is what the default librar-
ies supply. We have supplied a modified getkey() in \166TRAIN.WIN\SOFTUART.

The principles behind adapting scanf() to your hardware are identical to those used for printf() so we will not
dwell on them further.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 61

EXERCISE 3: EX3

Objective:

Direct printf() to LCD panel to print out the value of a seconds counter, created by Timer 7 (T7).

Procedure:

The supplied PUTCHAR.C is the default one from Keil. Any program which calls printf() and which does
not have a PUTCHAR.C in the project file list will use a similar PUTCHAR.C that is stored in the ANSI
library and is directed to serial port 0.

You must edit this PUTCHAR.C to modify the putchar() function to use the "write_lcd()" and "read_lcd()" to
drive the LCD display. We have already removed the contents of putchar() that were directed to the 167’s
serial port transmit registers, S0TBUF. Remember to add it to the file list in the project otherwise the default
putchar() will still be used!

Here are the functions for the LCD that you will need to put into putchar():

(a) When the character ‘c’ received by putchar() is newline ‘\n’ then move cursor back to home position:

 write_lcd(0x02,LCD_REG); // Move print position back to top left corner by writing
 // 0x02 to LCD data register

(b) If the character is not a newline '\n', print character to current cursor position on LCD:

 write_lcd(c,LCD_DATA); // Print character to LCD data register

(c) In MAIN.C, function main(), use timer T7 to generate a one second interval between printing of the
seconds count to the LCD

- Use the C167 data book to work out value that must be written to T78CON register to make timer T7
increment at a rate of 1/512 of the 20MHz CPU oscillator frequency to give an overflow every 1.6777 sec-
onds.

- Use the T7REL register to make the T7IR overflow flag become set once per second. The value to use will
be 1/1.6777*65536 . Note that as T7 always counts up, you must negate the result before putting it into
T7REL.

- Start T7 by setting the T7R (“timer 7 run”) flag.

- The "while(!T7IR) { ; }" loop will stop the printf() to the LCD occurring more than once per
second.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 62

7. Inter-Module Linkage

Sooner or later you will want to use a procedure or global variable that is defined in another module. This
external quantity is made accessible by the "extern" keyword.

Example of Usage

extern unsigned char temp; // A char variable defined in another module
extern void schedule(void); // A function defined in another module

So in a given module, you need to add all the external globals and procedures you are going to use. You then
run the linker which will resolve all the external symbols This leaves ample room for some really great errors!
There is a better way.

7.1 An Intelligent Include File Method That Will Avoid Many Program Build Errors

The most common error in defining external global is mismatching types. Even though L166 v3.xx will flag a
warning if any mismatches occur, it is best to prevent them happening in the first place! With the large number
of special keywords in C166, having everything defined only once will make maintenance easier should, for
example, a variable need to be moved from sdata to idata.

Module main.h

unsigned char temp;

Module timer_0.h

extern unsigned int temp;

You have a 50% chance here of creating a class B hardware trap (word access to odd address) if temp
ends up an odd address! This sort of problem can be prevented by only defining the object in one include file
as follows;

Intelligent Include File

File: modulea.h
—————————————————————————————————
#ifdef _MODULEA_

unsigned char far temp = 0;
int test_function(char *)

#else

extern unsigned char far temp;
extern int test_function(char *) ;

#endif

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 63

Source Modules

File: main.c
———————————————————————————————————
#define _MAIN_
#include <modulea.h>

void main(void {

 }

File: modulea.c
———————————————————————————————————
#define _MODULEA_

#include <modulea.h>

int test_function(char *s) {
 int x ;

 return(x) ;
 }

Any other module that uses modulea.c’s globals or functions can then include the modulea.h header file but
since the defined module name is different the external versions of the definitions will be visible to the compiler.

Note! This program construction method guarantees that there is only one real definition of each
individual data object and one function prototype for each function. Thus many potential typing errors
will be instantly eliminated. This approach makes program maintenance and modification very much
easier, especially on large systems. As an example, if the typequalifier for a particular global variable
has to be changed, only one .h file needs to be edited. uVISION's MAKE will spot which source files
include the edited .h file and re-compile them automatically.

Whilst we recommend that you use this program construction method, it is not compulsory!

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 64

8. The C166 Data Page-Addressing And Code Segmentation

To go any further, we really ought to examine the way in which the C166 addresses its 256k or 16MB ad-
dress space. Whilst it is possible to write C166 programs without any detailed knowledge of this, the serious
166 user cannot really avoid getting to know the most important CPU addressing feature, the four data page
pointers (DPPs).

8.1 The Data Page Pointers

8.1.1 A Fast Way of Addressing a Large Data Memory Space

As a word machine, the C166 can deal with 16-bit quantities very efficiently, regardless of whether it involves
emitting an address or reading an item of data. In the NONSEGMENTED mode, the CPU only has to work
with 16-bit addresses, 64k being the limit of this mode. However, to address the full 256kb or (16mb of the
C167 and C165), 18- or 24-bit addresses must be generated.

To keep data and opcode access times in the C166 to a minimum, a segmented or “paged” addressing ar-
rangement is employed. For opcode accesses, 64kb segments are used, similar to the CS: segments familiar
to 8086 users. For data accesses in the C166, the memory space is divided into 16kb data segments or
pages which are controlled by four Data Page Pointers (DPPs). In contrast to the 8086’s ES: SS: and DS:
registers, there are 4 DPPs in the C166. These are used in an ingenious way to allow the entire 256k (or
16MB for C165/7) memory space to be addressed.

Summary:

i8086 : SAB80C166
——————————————————————————------------------------
CS = Code segment : CSP = Code segment pointer
DS = Data segment : DPP0 = Data page pointer 0
SS = Stack segment : DPP1 = Data page pointer 1
ES = Extra segment : DPP2 = Data page pointer 2
 : DPP3 = Data page pointer 3

8.1.2 The DPPs expressed diagrammatically

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 65

Put simply, any 18-bit data address is actually formed from a combination of 14-bit address offset with re-
spect to a single Data Page Pointer. The data page pointer effectively drives the top four address lines (A14-
A17) in a C166 and the top 12 lines in a C167. This allows a fast generation of the address as the C166 only
has to manipulate 14-bit address, even though 18- or 24-bits of memory may be being accessed.

8.1.3 Example Of Using DPPs

Get data from location 0xC001

MOV DPP2,#03 ; Set DPP2 to page 3 (page base address = 3 * 16k
NOP ; Allow change of DPP to take effect
MOV R0,#08001H ; Load address into R0
MOVB R1,[R0] ; Use indirect addressing relative to DPP2

Real 18 bit address = DPP2 * Page Size + R0 & 0x3FFF

Where Page Size = 16k (0x4000)

This is the basis of all C166 off-chip data addressing. Note that the C167 has alternative modes, based on
the EXTS instruction.

8.2 Using The DPPs

With the memory space being addressed via Data Page Pointers with a 16kb range, some strategy is required
to allow data at any address in the 16MB range to be accessed. After reset, the DPPs are set to 0,1,2,3
respectively, meaning that no address outside the first 64kb can be addressed. The DPP values can be
modified freely by the user to allow higher addresses to be accessed.

The fact that a 16kb range can be addressed without changing a DPP, suggests that one class of data objects
could be placed in a fixed 16kb range. By way of an example, take an address range at 0x4000. By setting
DPP2 to 0x0001, a 16kb range from 0x4000 to 0x7FFF can now be addressed without changing the DPP2.

To get data from address 0x4010 into R1:

Coming out of reset...

MOV DPP2,#01 ;

In program...

MOV R1,DPP2:4010H ;

Any of the 16kb in the range can be addressed without any DPP value being changed. This is obviously a
very efficient method of addressing data.

To cover the entire 16MB address range though, requires the DPP value (i.e. the page in which the data lies)
to be recalculated before each access. Here’s an example, using DPP0 as the page pointer:

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 66

To get data from address 0x14000 into R1:

MOV DPP0, #PAG(0x14000) ; Put the page no. of 0x14000 into
 ; DPP0 (i.e. find page = 0x14000/0x4000)
MOV R1,DPP0:0x14000 ;

Accessing the on-chip special function registers at 0xff00 is usually done via DPP3: at reset, this DPP is set to
3, meaning that it covers the range of page 3, i.e. 0xc000-0xffff. Data outside the 16kb range covered by
DPP0 at anyone time can be accessed by recalculating the value of DPP0 before each access.
Thus far, we have allocated DPP2 to point at 0x4000, DPP3 to 0xC000 and DPP0 to cover all addresses in
the memory space. In fact, this is exactly how C166 uses the four DPPs:

Variable data in a 16kb range that is addressed via a fixed DPP2 is termed “near”
Data covered by DPP3 (page 3) is termed “system”
Data accessed via a constantly recalculated DPP0 is termed “far”, “huge” or “xhuge” (166 only)
Variable data in a 16kb range that is addressed via a fixed DPP2 is termed “near”
Constant data in a 16kb range that is addressed via a fixed DPP1 is also termed “near”

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 67

EXERCISE 4: \EX4

Which physical addresses will be accessed in the following examples? You need to be able to understand
addresses presented in the following formats to debug C166 code.

Note: MOV reg,reg is a WORD move (16 bits)
MOVB reg,reg is a BYTE move (8 bits)

Assume that the DPPs are set up as follows:

DPP0 = 08
DPP1 = 01
DPP2 = 04
DPP3 = 03

(i) Assume DPP1 = 01

MOV R1,DPP1:02010H ADDRESS = ___________________________

(ii) Assume R4 = 0x8002 ;

MOV R1,[R4] ADDRESS = ___________________________

(iii) Assume R4 = 0xFF00

MOV R1,[R4] ADDRESS = ___________________________

(iv) Assume DPP2 = 0x4

MOV R4,DPP2:00000H ADDRESS = ___________________________

(v) Assume R4 = 0x4202

MOV R1,[R4] ADDRESS = ___________________________

(vi) Assume R4 = 0x0102,R5 = 0x4

EXTS R5,#1
MOV R2, [R4] ADDRESS = ___________________________

(vii) Assume R5 = 0x0201

MOV R1,[R5] ADDRESS = ___________________________

Bonus Question:

Why will the access (vii) fail? What will happen?

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 68

8.3 Code "Segments"

While data accesses are made via DPPs, opcode fetches are made on the basis of 64k segments. Thus when
a CALL or JUMP is made in assembler, if the call is within the current segment then the destination address is
simply a 16 bit offset from the current segment base, held in the CSP (code segment pointer) register. If no
segment number is given, execution speed is faster. It also means that subroutines (i.e. C functions) must be
grouped together in segments, unless they are called using a “segmented” call. (CALLS).

Functions which are outside the current code segment are called with a CALLS and must be terminated with a
RETS. Such functions are termed “far” in C166.

Example

Call a function at 0x18000, i.e. 0x8000 offset in code segment 0x01:

CALLS 01,08000H ;

Functions which are called without giving a destination segment number are termed “near”.

It is how C166 mixes the foregoing classes of data and function types that is the basis of the memory models.

The amount or ROM and RAM in your system, plus the balance between code and data will largely deter-
mine which model is the best choice.

Definitions

near functions - functions can only be called from within the same segment

far functions - functions can be called across 64kb segment boundaries

near data - data in a single 16kb range, addressed by a single DPP (DPP2) which never changes.

far data - data anywhere in 256kb (or 16MB) memory space but no single object may be over 16kb.

huge data - data anywhere in the memory space but no single object may be over 64kb in size

xhuge - data anywhere in the memory space of unlimited size.

Type qualifier - Special keyword which when included in a data object definition can influence where it ends
up in memory.

8.4 DPP Usage Summary

DPP0 - Far/Huge/Xhuge
DPP1 - Near constants
DPP2 - Near data
DPP3 - System RAM/SFRs

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 69

9. C166 Compiler Memory Models

Choosing which memory model to use in your project is perhaps the first and most decision to make. It is
wise to give it careful consideration as changing models halfway through a project can be quite tricky and time
consuming. However, if a program still runs correctly after a model change, then it is probably fairly solid,
especially as regards its use of pointers.

The term “model” simply refers to how you want C166 to group together data objects and whether it is to use
segmented or non-segmented function calls. To understand why different memory models are required, it is
essential to understand the underlying structure of the C166 family, covered in the previous section.

However, to choose a model, you can use the following guidelines to help:

Definitions

default memory space - area (near or far) where data declared without type qualifier will end up:

CLASS - physical memory region occupied by data which share the same type qualifier; i.e near, far or huge.

Example:

int test_var ; // Variable will go into near, far or huge space, depending on
memory model.

int far test_var ; // Variable will go into far data area, regardless of
prevailing memory model.

TINY:
In this model, the CPU runs in segmented mode (SGTDIS = 0 in SYSCON). This means that all program
and data must lie within the first 64K. A16 and A17 are inactive and can be used as simple IO pins. The
DPP registers stay at their reset values of:

DPP0 = 0
DPP1 = 1
DPP2 = 2
DPP3 = 3

All function calls must be within the same segment i.e. near. The TINY model is rarely used, being reserved
for true single-chip FLASH 166 designs which cannot exceed 32KB in size.

SMALL:
The CPU runs in segmented mode so that A16 and A17 are active. All function calls are within segment
“near” and all data defaults to “near” and thus is within a 16kb range. Code size is effectively limited to 64kb
and data limited to 16kb variables and 16kb constants. However, by using the far and huge keywords in data
declarations, overall data size can be expanded to any size.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 70

MEDIUM:
The CPU runs in segmented mode so that address lines above A15 are active. All function calls are now “far”
and all data is within a 16kb range and defaults to “near”. Code size is unlimited and data limited to 16kb
variables and 16kb constants. However, by using the far and huge keywords in data declarations, overall
data size can be expanded to any size. This is perhaps the most useful model as it gives no restriction on code
sizes but data still defaults to fast “near” addressing.

COMPACT:
This is the reverse of MEDIUM as data defaults to “far” and functions default to near. This is useful for
programs with small amounts of code but large data.

LARGE:
This model treats all function calls as “far” and data objects likewise. It suits large applications and is perhaps
the safest choice if the final program characteristics are not easily estimated.

HLARGE:
Only available with MOD167. It is the same as LARGE but the default for variable declarations is huge. In
C166 v3.xx, huge addressing is handled more efficiently than far and so this model is to be preferred to
LARGE in C167 applications.

HCOMPACT:
Only with MOD167. It is the same as COMPACT but the default for variable declarations is huge. In C166
v3.xx, huge addressing is handled more efficiently than far and so this model is to be preferred to COM-
PACT.

Note: For C167 applications with large amounts of data, the HLARGE model combined with the HOLD
control to force small objects (char, int, short, long) into the NEAR or IDATA areas gives the easiest
development route. This is particularly true of programs ported from 16-bit PC compilers as the
characteristcs of the default huge pointer type are identical.

9.1 Summary Of C166 Type Qualifiers That Determine Placement Of Data

9.1.1 Default Data Object Placement Overriding

The chosen memory model determines the location of data objects. However, in many cases, it is useful to
override this default placement. An example in a SMALL model program might be to put a large array into
the huge data area so that all the fast near data area is not used up. The “huge” type qualifier is used to
acheive this. The syntax for using type qualifiers is:

<type> <typequalifier> <objectname> = <initialisation value>

Example

int huge example_var = 0 ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 71

9.1.2 C166’s Type Qualifiers Summary

(i) near

Purpose: Allow data to be forced into reasonably fast access area.
Overall size of all near data: 16kb
Largest single object: 16kb
CLASS name: NDATA, NDATA0

Example 1

int near near_var = 0 ;

(ii) far

Purpose: Allow a large number of small arrays to be grouped together. This keyword is best replaced by huge
on the C167 as far is less efficient for handling arrays and other large objects.

Overall size of all far data: 16MB
Largest single object: 16kb
CLASS name: FDATA, FDATA0

Example 2

int far big_array[0x2000] ;

(iii) huge

Purpose: Allow use of large data objects

Overall size of all huge data: 16MB
Largest single object: 64kb
CLASS name: HDATA, HDATA0

Example 3

int huge very_big_array[0x8000] ;

(iv) xhuge

Purpose: Allow very large data objects to be utilised

Overall size of all xhuge data: 16MB
Largest single object: 16MB
CLASS name: XDATA, XDATA0

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 72

Example 4

int xhuge humongous array[0x40000] ;

(v) idata

Purpose: Force data into on-chip RAM. This RAM is always addressed at full speed, regardless of the
external bus type or wait-states etc..

Overall size of all idata objects: determined by CPU type
Largest single object: 16kb but not realisable in practice
CLASS name: IDATA, IDATA0

Example 5

int idata fast_data = 0 ;

(vi) bdata

Purpose: Combined word and bit-addressable data. Can be used in conjunction with sbit control to allow bit
addressing of individual bits in an int.

Overall size of all bdata objects: 256b
Largest single object: 256b
CLASS name: BDATA, BDATA0

Example 6

int bdata bit_flag_word = 0 ;

(vii) sdata

Purpose: Force data into the area between 0xc000 and 0xffff, to be addressed via DPP3 which is always set
to page 3. Useful for addressing PEC pointers and memory-mapped IO at 0xc000. On the C167CD/SR,
sdata objects can be used to fill the XRAM area.

Overall size of all sdata objects: 0x3000 approx.
Largest single object: 0x3000 approx.
CLASS name: SDATA, SDATA0

Example 7

int sdata fast_data = 0 ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 73

9.2 Controlling Constant Data

To date, we have really only talked about variable data that will end up in RAM. Of course, in any embedded
system, substantial amounts of constant data will be required. This can range from look-up tables to character
strings used in printf (“Hello”) statements. Naturally, constant data should be placed into ROM in a true
embedded system.

Constant data can be near, far and huge like variables and the memory model controls which is used in the
same way. Thus a SMALL model program will have all its constant data placed into a near constant area and
a LARGE program have it in a far constant area.

As with variables, it is possible to override the default placement of constants:

Example 1

#pragma LARGE

int near const constant_data = 0x20 ; // Put this in the NCONST class

Example 2

#pragma SMALL

int const far constant_array[] = { 0x20,0x20,0x34,0x89... } ; // Put this in FCONST class

Example 3

#pragma SMALL

int const far constant_array[] = { 0x20,0x20,0x34,0x89... } ; // Put this in FCONST class

The most common use of const is to define constant strings and look-up tables. Note that any string in a
printf(“string”) statement will end up in the near (NCONST) or far (FCONST) area, depending on the
memory model.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 74

EXERCISE 5: EX5

Objective:

(i) Illustrate how constant data in C166 behaves differently to that on PC and other C platforms.
(ii) Special points to note when overriding default data placement with far keyword and using strcpy() and
other library functions.

Procedure:

Open the project in \166TRAIN.WIN\EX5\WORK and edit MAIN.C. Create a global pointer called
"*const_ptr" and make it point to a constant string, "message[]". Use the "far" keyword to make this a far
string, overruling the default for the SMALL model being used. Create a buffer in RAM called
message_buffer[].

char const message[] = { "\nHello World" } ; // A string in EPROM
char const * const_ptr = &message[0] ; // A pointer that points to the string

char message_buffer[0x20] ;

Use the strcpy() library function to copy the string into the RAM buffer and then printf() it via the putchar()
modified to output to the LCD, as in exercise EX3.

strcpy(message_buffer, const_ptr) ; // Get message
printf("%s",message_buffer) ; // Transmit message

Consider especially how you will get the *const_ptr itself into EPROM as this requires an obscure aspect of
C! Do not ignore any warnings emitted by the compiler as they usually indicate trouble.

9.3 Setting Up The DPPs

The user does not have to take any steps to set up the DPP registers as they are taken care of during the
startup phase in STARTUP.A66 or START167.A66

START167.A66 Extract

EXTRN?C_PAGEDPP1 : DATA16
EXTRN?C_PAGEDPP2 : DATA16

MOV DPP1,#?C_PAGEDPP1 ; NEAR CONST PAGE
MOV DPP2,#?C_PAGEDPP2 ; NEAR DATA PAGE

Here is how they are allocated:

DPP0 is left at its reset value (0) as it is always recalculated before use.
DPP1 is set to the base address of the near constant area (NCONST class)
DPP2 is set to the base address of the near data area (NDATA0 class)
DPP3 is set to the base address of the system or “sdata” area (SDATA class)

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 75

9.3.1 Special Allocation Of DPP’s To Create Customised Memory Models

The standard allocation of DPP1 to NCONST, DPP2 to NDATA can be overridden by the DPPUSE
control in L166 v2.54 or later. Applications for this might be to create a NCONST area of above 16kb for
large look-up tables, destined for EPROM etc. This can be acheived by the reallocation of DPP0: In the
C167 and C165, DPP0 is not used for far/huge/xhuge data accesses as the EXTx instructions are to be
preferred. Thus DPP0 could be combined with DPP1 to give a 32k linearly addressible region, here from
0x38000 to 0x3ffff.

DPP0 = 0x0E => address 0x38000 - 0x3bfff (NCONST)
DPP1 = 0x0F => address 0x3c000 - 0x3ffff (NCONST)

DPP2 = 0x04 => NDATA at 0x10000-0x13fff
DPP3 = 0x03 => SDATA at 0xc000-0xffff

L166 Input File For 32kb NCONST:

main.obj,
start167.obj
to exec
DPPUSE(0=NCONST(0x38000-0x3ffff),2=NDATA(0x10000))

Taken to extremes, in the C167 with its 4k on-chip RAM, the NDATA and SDATA areas could be com-
bined, starting from 0xf000, leaving DPP0-2 available to create a 48k linear NCONST area.

DPP0 = 0x0E => address 0x34000 - 0x37fff (NCONST)
DPP1 = 0x0F => address 0x38000 - 0x3bfff (NCONST)
DPP2 = 0x04 => address 0x3c000 - 0x3ffff (NCONST)

DPP3 = 0x03 => SDATA at 0xc000 - 0xffff

L166 Input File For 48kb NCONST:

main.obj,
start167.obj
to exec
DPPUSE(0=NCONST(0x34000-0x3ffff),3=NDATA(0x10000))

DPPUSE() Syntax:

DPPUSE(<dppnr>=<groupname>(range), <dppnr>=<groupname>(range))

<dppnr> is the number of a DPP register (0 for DPP0, 1 for DPP1, 2 for DPP2, 3 for DPP3).

<groupname> is the name NDATA for the NEAR DATA group or NCONST for the NEAR CONST
group.

<range> is the address range where the group should be placed.

Examples:

DPPUSE(0=NDATA (18000H-23FFFH), 3=NCONST (0C000H-0EFFFH))

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 76

In this example you are using DPP0, DPP1, and DPP2 for accessing the NDATA group. DPP0 is loaded
with the value 6 pointing to address 18000H. DPP1 is loaded with the value 7 pointing to the address
1C000H. DPP2 is loaded with the value 8 pointing to address 20000H. With these DPP values, the address
range 18000H - 23FFFH may be accessed with short (16-bit) addresses rather than using a far or huge
addressing. For the NCONST group, the DPP3 register is used. For efficent access to 166/167 SFR
registers of the 166/167 this register must be loaded with 3. This accesses in the range 0C000H - 0FFFFH.

DPPUSE (1=NDATA (18000H-1BFFFH), 2=NCONST (8000H-0EFFFH))

In this example the register DPP1 is used to access the NDATA addresses. The register DPP1 is therefore
loaded with the value 6 for the address range 18000H - 1BFFFH. The DPP2 and DPP3 registers are used
for accessing NCONST addresses. DPP2 is loaded with the value 2 pointing to address 08000H. DPP3 is
loaded with the value 3 pointing to address 0C000H. This allows the address range 8000H - 0EFFFH to be
used for NCONST objects.

Notes:
(i) The L166 generates a proper initilization for all DPP registers. The DPP registers are assigned in
ascending order to the named groups. L166 always assigns for an address range several DPP registers
if the range does not fit within one 16KB PAGE.

(ii) The DPP3 register must always contain the value 3. Whenever the DPP3 register is used for the NDATA
or NCONST group, the address range must fit into PAGE 3 of the 166 address space (address range
0C000H - 0FFFFH).

(iii) An address range for NDATA and NCONST must always be stated. It is not possible to re-assign just
one group.

(iv) The DPPUSE control also ensures that correct CLASS definitions for NDATA and NCONST are
generated and eliminates the need for the CLASSES statement to include NCONST and NDATA.

9.3.2 Special Memory Maps Possible With C166 v3.00

The size of the near and near const areas permitted by the default C166 memory models can be modified by
the use of the DPPUSE() control in the L166 linker. C167/5 users have a greater degree of flexibility in this
respect as DPP0 is not used for far/huge/xhuge accesses. Perhaps the commonest use for this feature is to
increase the size of the fast-access near (NDATA class) area. In many applications, 16kb is not large enough
and so DPP1 can be reallocated to NDATA, alongside the default DPP2 to create a 32k NDATA - DPP0
can then be assigned to NCONST to give a default 16k region.

EXERCISE 5A: \EX5A

The \EX5\WORK\ directory contains the files "MOD0.C" and "MOD1.C" which generate about 30k of near
constant data. The file MAIN.C holds some simple statements which access this data. Use the DPPUSE()
control to produce a linker input file, "EXEC.LIN" which will locate the program to make a 32k near constant
(NCONST) area which can run on the EVA167CR. Use HiTOP to verify that DPP0 and DPP1 have
consequetive values to give a 32k linear area.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 77

9.4 Automatic Placement Of Data

The HOLD Directive

By using the individual type qualifiers, the default memory spaces for data can be overridden. C166 can
provide some help with this task via the HOLD() directive. One of the advantages of the COMPACT and
LARGE models is that code can be added without regard to which segment functions are in as all calls are far.
The downside is that all data is far and hence slower to access.

The HOLD directive allows the user to tell C166 to put all objects of less than a stated size into a particular
memory space.

Example:

In a LARGE model program, all the chars, ints and longs are to be placed into the faster near data class. This will
leave all large objects like structures, arrays etc. in the far data area.

#pragma LARGE

#pragma HOLD(near,4) // Put all objects of 4 bytes in length or under into the
near data class.

9.5 CLASSES And SECTIONS

Classes are groups of like data objects. All the near data objects from all modules (source files) in an entire
program are collected together into a single block and given a CLASS name like “NDATA”. This name is
handle by which the user may control the address at which the data objects will be placed by the linker.

9.5.1 How Type Qualifiers Relate To Class Names In C166

near objects

NDATA - near data which is not initialised by C166’s startup phase
NDATA0 - near data which is zeroed out by C166’s startup phase

far objects

FDATA - far data which is not initialised by C166’s startup phase
FDATA0 - far data which is zeroed out by C166’s startup phase

huge objects

HDATA - huge data which is not initialised by C166’s startup phase
HDATA0 - huge data which is zeroed out by C166’s startup phase

xhuge objects

XDATA - xhuge data which is not initialised by C166’s startup phase

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 78

XDATA0 - xhuge data which is zeroed out by C166’s startup phase

idata objects

IDATA - idata data which is not initialised by C166’s startup phase
IDATA0 - idata data which is zeroed out by C166’s startup phase

bdata objects

BDATA - bdata data which is not initialised by C166’s startup phase
BDATA0 - bdata data which is zeroed out by C166’s startup phase

9.6 The Difference Between NDATA0 And NDATA

9.6.1 The NOINIT #pragma

As may be gathered, C166 will create two varieties of each data class; NDATA and NDATA0 plus FDATA
and FDATA0 etc. These should always be placed by the user at the same addresses as the basic NDATA
and FDATA classes. The reason for the distinction is that the “0” suffixed classes are cleared to zero and
initialised by STARTUP.A66 before main() is reached. The CLRMEM constant in START167.A66 deter-
mines whether this clearing occurs or not.
START167.A66 Extract

; The following code is necessary to set RAM variables to 0 at start-up
; (RESET) of the C application program.
;

$IF (CLR_MEMORY = 1)

EXTRN?C_CLRMEMSECSTART : WORD
Clr_Memory:

The initialisation consists of either clearing to zero or the writing of start values given in a variable’s declaration,
i.e.:

int far xvar = 0x02 ;

Objects destined for the FDATA and NDATA classes are those declared whilst a #pragma NOINIT control
is in force. This is usually done where the data is held in non-volatile memory from the last time the program
was run.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 79

For example:

MODULE = MAIN

int far var ; // Zeroed before main()
int far var1 = 2 ; // ‘2’ written into variable before main()

#pragma NOINIT // Inhibit zeroing/initialisation

int far nonvolvar ; // Not zeroed before main

#pragma INIT // Restore zeroing/initialisation

int ordinary_var ;

SECTIONS and CLASSES Produced As A Result Of This

(i) nonvolvar ends up in SECTION ?FD?MAIN%FDATA
(ii) var and var1 end up in SECTION ?FD0?MAIN%FDATA0

The precise address at which the classes are located is determined by the CLASSES and SECTIONS con-
trols in L166. We will cover this in detail in the next sections.

9.7 Modules And SECTIONs - Placing Things At Absolute Addresses

SECTIONs allow the data from individual modules (source files) to be placed by the linker. Thus the near
constant data (NCONST class) from a certain module can be precisely placed at a user-defined address.
This is useful for placing a look-up table in a FLASH EPROM, remote from the main program EPROM.

Consider the following example:

A far integer is declared in a module MAIN.C:

int far testvar;

This causes C166 to create a “SECTION” called ?FD0?MAIN%FDATA0. As may be gathered, the
section name is constructed as per:

?<classshortname>?>module name>%<classname>.

The <classshortname> is an abbreviation for the full class names as per:

Class Name Short Name At File/Module Level
—————————————————------------------------—————
NDATA0 ND0
FDATA0 FD0
NDATA ND
NCODE PR
FCODE PR
NCONST NC
FCONST FC

And so on...

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 80

Note that the section names generated for the executable code is always “PR”. The conversion to NCODE
and FCODE is made by the linker, depending on which memory model is current.

Example

A "huge" integer is declared in a module MODA.C:

int huge testvar1 ;

The resulting section is ?HD0?MODA%HDATA0. To fix the program's classes at the correct addresses, the
CLASSES control is used when running L166:

For example:

EXEC.LIN Linker Input File (non-uVision):

main.obj,&
moda.obj &
to exec &
CLASSES(HDATA(0x8000),
 HDATA0(0x8000))

This fixes the huge data (HDATA & HDATA0) classes at 0x8000. A further level of control over placement
is possible using the SECTIONS() command. This allows the addresses of a particular module’s own data
and code classes to be fixed within the host classes range.

For example:

main.obj,&
moda.obj &
to exec &
CLASSES(HDATA(0x8000),
 HDATA0(0x8000)) &
SECTIONS(?HD0?MODA%HDATA0(0xA000))

Note: The "host class" here is HDATA

This puts the huge data class at 0x8000 but puts the huge data objects from module MAIN.C at 0xA000.
L166 will then arrange huge data objects from other modules automatically so as to leave 0xA000 free.

On the C167/5 with their 16MB address space, it often desirable to split HDATA and FCODE classes
across several ranges. This might be required if you have for example, two ROM devices at different ad-
dresses. Commonly, this might be a 32k boot EPROM at 0x0000 and a 128k application FLASH EPROM
at 0x40000. The CLASSES control can be used to allow the linker to fill both regions thus:

main.obj,&
moda.obj &
to exec.abs &
CLASSES(FCODE(0-0x7fff,0x40000-0x5ffff),
 HDATA(0x8000),
 HDATA0(0x8000)) &
SECTIONS(?HD0?MODA%HDATA0(0xA000))

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 81

In the same way, HDATA can also be split. Be aware though that splitting the near code (NCODE) can be
risky and you must make sure that you do not try to split it across a 64k segment boundary. As near function
calls have no built-segment number, your program will crash!

9.7.1 Special Note On Windows95 and NT4

Windows95 and NT4 allow file names that can be more than 8 characters long and contain spaces. As C166
uses the module (i.e. filename) to form the SECTION name, you must not use these types of filename! Please
stick to using MS-DOS compatible filenames at all times.

9.8 Coping With The Special Sections "?C_CLRMEMSEC" And "?C_INITSEC".

These are special sections created by C166 to hold the initial values of RAM variables. When you declare a
variable int x = 0x80, the 0x80 is actually placed in ROM-based look up table. During the startup.a66, this
ROM data is transferred to its final resting place in RAM. Left to its own devices, L166 will place these near
the bottom of memory, on the assumption that this must be EPROM. On systems where the program is at,
for example, 0x40000, as might happen on an EVA167/5, it is up to the user to put these into the correct
area.

This is simply achieved by using the sections control in L166. They are best kept together; the only point to
watch is that the size of the two sections will vary according to how much initialised data there is in your
program. Thus, it is quite possible that they will grow such that they will overlap. The linker will issue a
warning to which you must respond. If you ignore the warning, you may find some initialised data fails to be
set up properly before you reach main().

Example:

main.obj
start167.obj
to exec
VECTAB(0x40000)
CLASSES(NCODE(0x40400),NCONST(0x40400),NDATA(0x48000))
SECTIONS(?C_CLRMEMSEC(0x42400),?C_INITSEC)
REGFILE(exec.reg)

Alternativly the new CINTTAB control can be used.
Example:

main.obj,
start167.obj
to exec
VECTAB(0x40000)
CLASSES(NCODE(0x42000),NCONST(0x44000),NDATA(0x50000))
CINITTAB(0x42400)

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 82

9.9 Placing Real Data At Fixed Addresses

Example Of Using The SECTIONS() Control

A common situation where the sections control can be used is when a structure or array needs to be placed at
a particular address. For example, a structure describing the registers in a memory-mapped real time clock at
0x5ff00 can be placed over the appropriate addresses by the following method:

(i) Declare structure in a special module RTCdef.c which contains nothing else:

#pragma NOINIT

struct time { int hours ;
 int minutes ;
 int second ; } ;

struct time far RTC ;

(ii) Use the sections command to fix structure over real time clock when linking.

EXEC.LIN Linker Input File

RESERVE(0x04-0x1FF)
VECTAB(0x40000)
SECTIONS(?FD?RTCDEF%FDATA(0x5ff00))

The RTC structure will now be at address 0x5FF00, the base address of the real time clock chip. Note that
any section that is to follow ?FD?RTCDEF in memory is simply appended after a comma.

The SECTIONs control will allow far, huge and xhuge sections to be located outside the range of any
CLASSES control for FDATA, HDATA and XDATA as these types of data have no restriction on where
they are located. Sections from IDATA, SDATA, NDATA, NCONST and BDATA cannot be located
outside the class range, and a L166 linker error will result.

Note: The sections control can also be thus:

SECTIONS(S1(0x40000),S2,S3,S4,S6(0x50000),S7,S8)

Where S1, S2, S3 etc. are section names in ascending address order.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 83

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 84

EXERCISE6: EX6

Objective:

Use the L166 linker's SECTION() control to place a structure representing the data registers in an imaginary
real time clock chip at 0x5FF00 so that the physical registers are aligned with the C variables of the same
name. Thus the structure element "seconds" will have the same address as the seconds register in the real
time clock. In addition, the real time clock chip has 128 bytes of RAM, offset by 128 from the base address
of the time registers.

RTC Device Memory Map

0x00 - 0x1F: RTC time and control registers
0x80 - 0xFF: Non-volatile RAM area

Note the entire clock is offset to 0x5FF00.
As the data in the clock's registers and RAM must not be cleared at power-up, the data initialisation must be
inhibited.

Procedure:

(i) The "intelligent include file" method has been used to construct the example. Edit NONVOL.H to add a
structure with the correct attribute (idata, huge, far etc.) to allow it to be accessed, even though it is not near
the normal program data in the near area.

(ii) In addition, use the #pragma NOINIT control in NONVOL.H to prevent C166 from zeroing the stored
time data after reset. In RAM.H, use this control to make sure that the non-volatile variables are also pre-
served.

(iii) Edit the L166 tab to add the new SECTIONs produced by NONVOL.C and RAM.C to the "User
Sections" box. Note: you cannot have more than one SECTIONS() in the linker file. The SECTION con-
taining the time registers needs to be located at 0x5FF00 and that holding the RAM variables at 0x5FF80.
Remember that the sections control can be thus:

SECTIONS(S1(0x40000),S2,S3,S4,S6(0x50000),S7(0x60000),S8)

Where S1, S2, S3 etc. are section names in ascending address order....

There is no need to edit MAIN.C as this is complete.

(iv) Once the program has been built, load it into HiTOP and go until main().
(v) Use the Examine function to confirm that the structure is at 0x5FF00.
(vi) Now run the program by clicking the green traffic light button
(vii) Press the RESET on the EVA167 board and then click the SR (Setup-System reset) toolbar button

in HiTOP to re-establish communication with the monitor.
(viii) Reload the program, run until main() and check that the data you put in the structure is still there...

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 85

9.10 Using The RENAMECLASS Control

An alternative approach is to use the RENAMECLASS control to produce a special class which converts
FDATA0 to a new class name such as RTC_ADDR. The new class is located at the required address by the
adding it to the existing CLASSES control.

Example:

(i) Declare structure in a special module RTCdef.c which contains nothing else:

#pragma RENAMECLASS(FDATA=RTC_ADDR) // Give subsequent FDATA objects a new class name
#pragma NOINIT

struct time { int hours ;
 int minutes ;
 int second ; } far RTC ;

Note: (i) The memory model must be stated before the RENAMECLASS pragma.
(ii) As the data class is not to be cleared during initialisation, the class name is FDATA not
 FDATA0.

(ii) Use the CLASSES command to fix structure over the real time clock when linking.
EXEC.LIN Linker Input File

VECTAB(0x40000)
CLASSES(RTC_ADDR(0x5ff00))

The RENAMECLASS approach is better for those instances where a number of modules will each be defin-
ing data objects that must all be collected together and placed in a non-volatile RAM, for example.

9.11 Summary Of Placing Objects At Fixed Addresses With The Linker:

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 86

EXERCISE 7: EX7

Objective:

Modify the previous exercise to make use of the "#pragma RENAMECLASS" approach.

0x00 - 0x1F: RTC time and control registers
0x80 - 0xFF: Non-volatile RAM area

As the data in the clock's registers and RAM must not be cleared at power-up, the data initialisation must be
inhibited. The address of the clock is 0x5FF00 and the RAM area 0x5FF80.

Procedure:

The program is very similar to EX6. However, in NONVOL.H and RAM.H , you will need to add the
RENAMECLASS control to create the new classes called "RTC_ADDR" and "NONVOLRAM" respec-
tively. Edit the EX7.LIN to add the new class names to the existing CLASSES() control.

There is no need to edit MAIN.C as this is complete.

1. Once the program has been built, load it into HiTOP and go until main().
2. Use the Examine function to confirm that the structure is at 0x5FF00.
3. Now run the program by clicking the green traffic light button
4. Press the RESET button on the EVA167 board and then click the SR (Setup-System reset) toolbar

button in HiTOP to re-establish communication with the monitor.
5. Reload the program, run until main() and check that the data you put in the structure is still there...

9.12 The ORDER Pragma

In the case where data is being declared which will exist in a non-volatile memory or a memory-mapped IO
device, it is useful if the position of the particular data item is located in the same place as it appears in the C
source file, i.e. the order in memory matches the order in the source file.

Example

Module TUNE0.C

#pragma ORDER
int const near pressure_sensor_gain = 0x1101 ;
int const near pressure_sensor_offset = 0x7123 ;
int const near pressure_sensor_temp_coeff_offset = 0x4280 ;

Linker Input File

.

.

.
SECTIONS(?NC?TUNE0%NCONST(0x100000)) // Base constants at 0x100000

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 87

In EPROM Memory:

Address Significance

0x100000 - pressure_sensor_gain
0x100002 - pressure_sensor_offset
0x100004 - pressure_sensor_temp_coeff_offset

9.13 The ASSIGN Linker Control

Where the previously described methods of fixing data objects at defined addresses are not suitable, it is
possible to assign an absolute address to a public symbol using the ASSIGN control. This generates a
typeless public symbol which can be used by C166.

Example

ASSIGN(pressure_sensor_gain(0x100000)) // Generate a symbol at 0x100000

9.14 The #pragma pack(1) Control

The basic word-orientated structure of the 166 means that word (unsigned short) elements will always be on a
word boundary. However, if the 166 is communicating with, for example, a 486 PC's ISA bus through dual-
port RAM, any C structures could be byte aligned. Thus, a word element could start at an odd address, as is
possible in x86 processors. The pack(1) directive forces the compiler to place word elements at such an
address. It is important to be aware that the compiler will generate considerably more code when accessing
structures when this control is in effect and so it should only be used on those structures that really need it!

Example:

#pragma pack(1) /* alignment is BYTE for the following structures */

struct s1 {
 int i1; // i1 has offset 0
 char c1; // c1 has offset 2
 int i2; // i2 has offset 3
 char c2; // c2 has offset 5
 int i3; // i3 has offset 6
 char z1; // z1 has offset 8
};

#pragma pack() /* reset to default: WORD alignment */

struct s2 {
 int i1; // i1 has offset 0
 char c1; // c1 has offset 2
 int i2; // i2 has offset 4
 char c2; // c2 has offset 6
 int i3; // i3 has offset 8
 char z1; // z1 has offset 10
};

Note: If the application contains struct pointers to byte-aligned structures created with #pragma
pack(1), you must also use the #pragma BYTEALIGN directive.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 88

Example:

#pragma pack(1) /* alignment is BYTE for the following structures */
#pragma BYTEALIGN

struct s1 {
 int i1; // i1 has offset 0
 char c1; // c1 has offset 2
 struct s2 {
 int i2; // i2 has offset 3
 char c2; // c2 has offset 5
 int i3; // i3 has offset 6
 } s2;
 char z1; // z1 has offset 8
} s1;

struct s2 *s2p;

void main (void) {
 s2p = &s1.s2; // this is a pointer to a bytealign struct
 s2p->i2 = 0; // this is an access to a bytealign int
}

9.15 Using "SECTIONS" With The C167CR CAN Peripheral

The CAN peripheral at 0xEF00 can be addressed via C variables situated over the real control and data
registers. This can be acheived with the following souce file, used in conjunction with the given linker
input file. As already explained, the advantage of this approach is that unlike the pointer-based
method used later, L166 physically places these data objects at 0xEF00, so preventing anything else
accidentally end up there and causing problems. CAN_REGS.C and CAN_REGS.H can be found in the
\166TRAIN.WIN\USEFUL directory, in case you need them later.

How It Works

The ORDER control tells C166 and L166 to place the objects in memory in the order in which they
appear in the source file. The NOINIT control stops START167.A66 from zeroing out the CAN
peripheral, which could have undesirable side effects! Finally, the RENAMECLASS control allows
the sdata keyword to produce a CLASS with a distinctive name that L166 can place at the appropriate
address.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 89

CAN_REGS.C

#pragma ORDER
#pragma NOINIT
#pragma RENAMECLASS(SDATA = CAN_REGS)

#define CAN_REGS_C

#include “can_regs.h”

unsigned short volatile sdata CAN_Control_Status;
unsigned char sdata CAN_Interrupt;
static unsigned char sdata reserved;
unsigned short sdata CAN_Bit_Timing;
unsigned short sdata CAN_Global_Mask;
unsigned short sdata CAN_Upper_Global_Mask;
unsigned short sdata CAN_Lower_Global_Mask;
unsigned short sdata CAN_Upper_Last_Mask;
unsigned short sdata CAN_Lower_Last_Mask;
struct MESSAGE_OBJECT sdata CAN_Object[15];

CAN_REGS.H

struct MESSAGE_OBJECT { unsigned short volatile control;
 unsigned short upper_arb;
 unsigned short lower_arb;
 unsigned char config;
 unsigned char volatile data[8

EXEC.LIN Linker File

CLASSES(ICODE(0x200),
 NCODE(0x1000),
 NCONST(0x2000),

 SDATA(0xE000),
 SDATA0(0xE000),
 NDATA(0x40000),
 NDATA0(0x40000))

SECTIONS(?SD?CAN_REGS%CAN_REGS(0xEF00))

9.16 Constructing A Memory Map For Small C167CR Systems

With increasing use of the C167CR in high volume products, the commonest memory configuration is a
C167CR plus just a single 16-bit FLASH EPROM. The 4k of on-chip RAM means that with careful soft-
ware design, no little or no external RAM is required. Here we will have a look at how C166 and L166 can
best be used to populate the memory space of this type of minimal design with code and data.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 90

9.16.1 A Typical Small System Memory Map

The example C167CR system consists of the CPU, a FLASH EPROM and an ASIC. The ASIC has 0x100
bytes of special function registers plus 0x100 bytes of RAM. Overall, the system has the following memory
map:

EPROM 0-0x1FFFF
XRAM RAM 0x0E000 - 0x0E7FF
IDATA RAM 0x0F600-0x0FDFF
ASIC registers 0x20000-0x20100
ASIC RAM 0x20100-0x201FF

Inevitably in a no RAM system, there will be no variable area of anything like the 16k maximum for NDATA.
As the whole application is very time-critical, accesses to all data must be a single instruction. In this particular
example, there is around 32k of constant data in the form of look-up tables which had to be in PROM. As
this data has to be accessed frequently from fast interrupt routines, the whole of this constant area is treated as
near (NCONST). In the final application, this region represents the calibration data for the system and is

0x00000

0x0C000

0x0E000

0x0E800

0x0EF00

0x0F000

0x0F200

0x0F600

0x0FDFF

0x0FFFF

0x0C000

FCODE

SYS_CONST

GAP_CONST

XRAM RAM

CAN Peripheral

Extended SFRs

Reserved

IDATA RAM

SFRs

FCODE

0x18000

0x20000

0x20000

0x20100

0x20800

ASIC_REGS

ASIC_RAM

NCONST

EPROM Area

32
k

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 91

likely to subject to regular field updates. Ideally, it should be kept separate from another group of “system”
constants which are only set by the programmer.

temp = near_const_val ;

MOV R1,DPP0:#near_const_val ; A near access

temp = far_const_val ;

MOV R4,SEG #far_const_val ; A far access
MOV R5,SOF #far_const_val ;
EXTS #1,R4 ;
MOV R1,[R5] ;

The important point is that this type of fast, single instruction data access can occur in any region covered by a
DPP.

Experienced C166 users may be wondering how a 32k near constant area can be created when the usual
near limit is 16k. In version 3.00 onwards, the flexible reallocation of DPP values allows consequentive
DPPs to be set to consequentive values, with the result that linear areas of greater than a single 16k page size
can be created.

One peculiarity of the design is that there is an area of RAM in an ASIC which is far removed from the
IDATA and XRAM but which still needs to be accessed by single instructions.

9.16.2 Constructing Linker Input File

Ultimately the linker input file determines where everyting ends up and we will now go through this in detail:

(i) The Constant Areas

The 32kb near constant area is based at 0x18000. The constant data is created by ordinary statements such
as:

int const near map_0_0[] = {
 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,
 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,
 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,
 } ;

The sum total of such statements is just under 32kb. Normally, DPP1 would be set to 0x18000/0x4000 = 6
by setting the NCONST classes entry to 0x18000. Here, the DPPUSE() control in the linker input file forces
DPP0 and DPP1 to 6 and 7 respectively to create a 32k linear area. The SECTIONS() control is used to
prevent the NCONST from the two modules that declare the data spilling over a page boundary - C166
x2.90 cannot generate more than 16k of NCONST per module although v3.00 can.

& // Create a 32k near constant area with DPP0, DPP1
DPPUSE(0=NCONST(0x18000-0x1ffff),2=NDATA(0x20000-0x23fff))
&
SECTIONS(?C_INITSEC(000400h),
 ?NC?MOD0%NCONST(0x18000),
 ?NC?MOD1%NCONST(0x1c000),...

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 92

Due to a quirk in the C167CR on-chip memory map, there is a region from 0x0C000 to 0x0DFFF which is
within scope of DPP3, set to its default of 3. There is a second smaller gap between the top of the XRAM at
0x0E7FF and the bottom of the CAN peripheral at 0x0EF00, although it should be noted that this could
be used in future CPU versions for additional XBUS devices. As both these areas are occupied by
EPROM, they can be used as additional constant areas. The fact that DPP3 covers this area means that
single instruction near access can be made. The trick is to declare the constant objects as “const” but use the
RENAMECLASS control to rename the NCONST data produced to a custom name, here “SYS_CONST”.
This control is of the general format:

#pragma RENAMECLASS(OLD_CLASS=NEW_CLASS)

MODULE: SYSCONST.C

#pragma RENAMECLASS(NCONST=SYS_CONST)

/*** Constants Destined For 0xC000 - 0xDFFF ***/

char const test0 = 0x1000 ;
char const thermistor_map[] = { 2,2,1,1,1,1,1 } ;

The new class is then placed at 0x0C000 by the linker line:

& // Fix classes for SMALL model
&
CLASSES(IDATA(0xF600),
 ICODE(000600H),
 NCODE(000800H),
 SYS_CONST(00C000H),....

The small gap just above the XRAM is filled in a similar manner....

MODULE: GAP.C

#pragma RENAMECLASS(NCONST=GAP_CONST)

/*** Place constants between XRAM and CAN Peripheral ***/

char const test1 = 0x1000 ;
char const gap_map[] = { 2,2,1,1,1,1,1 } ;

...and placed with...

& // Fix classes for SMALL model
CLASSES(IDATA(0xF600),
 ICODE(000600H),
 NCODE(000800H),
 SYS_CONST(00C000H),
 GAP_CONST(00E800H),...

(ii) Allocating The RAM Areas

The XRAM is located at 0x0E000 and thus within the range of DPP3. Data destined for this region are
known generally as “SDATA” and the sdata keyword is used to tell C166 to generate single instruction
accesses via DPP3, as shown below:

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 93

MODULE: XRAM.C

#pragma RENAMECLASS(SDATA = XRAM_DATA)
#pragma NOINIT

/*** Variables Destined For XRAM At 0x0E000 ***/

int sdata XRAM_var0 ;
int sdata XRAM_var1 ;
int sdata XRAM_var2 ;
int sdata XRAM_var3 ;
int sdata XRAM_var4 ;

As before, the classes control is used to fix these objects in the XRAM:

CLASSES(IDATA(0xF600),
 ICODE(000600H),
 NCODE(000800H),
 SYS_CONST(00C000H),
 GAP_CONST(00E800H),
 XRAM_DATA(0x0e000-0x0e7ff))

So far, DPP0 and DPP1 have been set to cover the area from 0x18000 to 0x1FFFF and DPP3 is covering
the XRAM and constant areas. Normally, DPP2 would cover the near data (NDATA) region and in this
example, it is used to access the ASIC registers and RAM at 0x20000.

& // Create a 32k near constant area with DPP0, DPP1
DPPUSE(0=NCONST(0x18000-0x1ffff),2=NDATA(0x20000-0x23fff))

Like before, the RENAMECLASS control is used to convert NDATA objects into, in this case, the ASIC
registers. The aim is to make sure that the ASIC special function registers are overlaid by appropriately
named variables. To make sure that the order of the variables corresponds with the physical locations in the
ASIC, the #pragma ORDER control is used. In addition, as these registers are not to be zeroed at power-up,
the #pragma NONIT control is added.

MODULE: ASIC_REG.C

#pragma ORDER
#pragma NOINIT
#pragma RENAMECLASS(NDATA = ASIC_REGS)

/** These Variables Need To Be Physically Placed Over The Real ASIC Registers ***/

int volatile asic_REG0 ;
int volatile asic_REG1 ;
int volatile asic_REG2 ;
char asic_REG3 ;
long asic_REG4 ;
int volatile asic_REG5 ;
int volatile asic_REG6 ;
int volatile asic_REG7 ;
int volatile asic_REG8[0x08] ;
int volatile asic_REG9 ;
int volatile asic_REGA ;
int volatile asic_REGB ;
int volatile asic_REGC ;

The volatile keyword is used to stop the C166 optimizer from removing references to these registers in the
source code - it serves to tell the compiler that “this variable may change without any direct CPU action”.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 94

The data destined for the ASIC RAM is declared as straight forward NDATA. In the design, the ASIC
RAM contents is preserve through power-down and is thus non-volatile. The NOINIT control prevents it
being cleared and the ORDER control ensures that between successive program builds, the variables remain
fixed.

MODULE: ASIC.C

#pragma NOINIT
#pragma ORDER

/*** Data Destined For ASIC RAM ***/

int near asic_var0 ;
int near asic_var1 ;
int near asic_var2 ;

To prevent the ASIC RAM objects from entering the ASIC regs area, both the SECTIONS and CLASSES
linker controls are used to keep them apart:

SECTIONS(?C_INITSEC(000400h),
 ?NC?MOD0%NCONST(0x18000),
 ?NC?MOD1%NCONST(0x1c000),
 ?ND?ASICREG%ASIC_REGS(0x20000)
) &
&
& // Fix classes for SMALL model
CLASSES(IDATA(0xF600),
 ICODE(000600H),
 NCODE(000800H),
 SYS_CONST(00C000H),
 GAP_CONST(00E800H),
 NDATA(0x20100-0x201ff),
 XRAM_DATA(0x0e000-0x0e7ff)) &
&

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 95

Finally, the .M66 file shows where everything actually ended up:

DPP REGISTERS RE-ASSIGNED
————————————
 DPP VALUE C166 GROUP
 ========================
 0 0006H NCONST
 1 0007H NCONST
 2 0008H NDATA

 C166 GROUP START STOP
 ==============================
 NCONST 018000H 01FFFFH
 NDATA 020000H 023FFFH

MEMORY MAP OF MODULE: EXEC (MAIN)

START STOP LENGTH TYPE ALIGN TGR GRP COMB CLASS SECTION NAME
===
000000H 000003H 000004H — — — — — * INTVECTOR TABLE *
000400H 000405H 000006H HDATA WORD — — GLOB — ?C_INITSEC
000600H 000633H 000034H CODE WORD — — PRIV ICODE ?C_STARTUP_CODE
000800H 000885H 000086H CODE WORD — 1 PUBL NCODE ?PR?MAIN
00C000H 00C007H 000008H DATA BYTE — 3 PUBL SYS_CO ?NC?SYSCONST
00E000H 00E009H 00000AH DATA WORD — 2 PUBL XRAM_D ?SD?XRAM
00E800H 00E807H 000008H DATA BYTE — 3 PUBL GAP_CO ?NC?GAP
00F200H 00F5FFH 000400H — — — — — * RESERVED MEMORY *
00F600H 00F651H 000052H DATA WORD — 2 PUBL IDATA ?ID?MAIN
00F652H 00F691H 000040H DATA WORD — — PUBL IDATA ?C_USERSTACK
00FA00H 00FBFFH 000200H — — — — — * SYSTEM STACK *
00FD00H 00FD1FH 000020H DATA WORD — — — *REG* ?C_MAINREGISTERS
018000H 01BDFFH 003E00H DATA WORD — 3 PUBL NCONST ?NC?MOD0
01C000H 01FDFFH 003E00H DATA WORD — 3 PUBL NCONST ?NC?MOD1
020000H 02002FH 000030H DATA WORD — 4 PUBL ASIC_R ?ND?ASICREG
020100H 02011FH 000020H DATA WORD — 4 PUBL NDATA ?ND?ASIC

From SYCONST.C
From XRAM.C
From GAP.C
From ASICREG.C
From ASIC.C

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 96

9.17 Relocating Functions Into RAM

Traditionally C166 programs have been completely static in that all the addresses of variables and functions
are defined at the linking stage. However the needs of FLASH EPROM programming require the user to
take special steps which require some rather obscure techniques!

One of the basic characteristics of FLASH is that instructions cannot be fetched from it whilst it is being
programmed. In those cases therefore where an application placed in FLASH on the production line needs to
be updated in the field, some means is required of temporarily executing instructions from some other memory
device is required. Another common example would be where a FLASH needs to be checksummed. It is
very rare for an emdedded system to contain two normal ROM devices so invariably this "other memory
device" will be an external RAM or more usually the C167's own on-chip idata RAM at 0xF600.

In C166 v4.06 onwards, a special mechanism has been added to allow particular functions to be stored in the
ROM in the usual way at for example 0x1000 but to be constructed so that they can be executed at an ad-
dress such as 0xF600 in the idata area. The exact procedure is:

(i) Write function in the normal way in just the one module (file)
(ii) Configure the SECTIONS statement in the linker to set the execution address to be 0xF600
(iii) Use the SROM_PS() macro to work out the base address of the function in ROM and its destination

address in RAM, plus its length
(iv) Copy the function using the hmemcpy() with the above addresses as parameters to the target

address
(v) Call the function in the usual way

Function Relocation Example:

Copy a function stored in ROM at 0x1000 into RAM at 0xF600 and then call it. Do not reserve any
space in the RAM for the function so that it just overwrites whatever was there.

Module containing function destined for RAM: IDFUNC.C
Module containing copying process for function destined for RAM: MAIN.C

MAIN.C

#include <srom.h> // Contains macros for function relocation process

// Create external reference to address of code SECTION in IDFUNC.C via macro

SROM_PS(IDFUNC) // Needed for macros used in hmemcpy() below

// Copy function(s) in module IDFUNC.C into the idata RAM

hmemcpy(SROM_PS_TRG(IDFUNC), SROM_PS_SRC(IDFUNC), SROM_PS_LEN(IDFUNC)) ; // Copy code in
 // IDFUNC.C into
 // idata

Where the parameters to hmemcpy() are:

SROM_PS_TRG(IDFUNC) // Find the TaRGet address in RAM for the copy of the function in IDFUNC
SROM_PS_SRC(IDFUNC) // Find SouRCe address in ROM for the copy of the function in IDFUNC
SROM_PS_LEN(IDFUNC) // Find the LENgth of the code in ROM to copy of the function in IDFUNC

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 97

IDFUNC.C

void idata_relocated_function(void) // This function stored in ROM but runs in RAM
 {
 // Empty function!!
 }

Finally, in the linker control file add:

SECTIONS(?PR?IDFUNC%FCODE (0xF600)[!0x1000]) // Store function in IDFUNC.C to ROM at 0x1000
 // with destination address as 0xF600. Do not
 // reserve space at 0xF600 for it. (ROM address
 // does not need to be stated)

In this case, no space was reserved in the RAM for the function due to the '!' control in the square brackets.

Generalised Form Of The SECTIONS Control For Function Relocation

SECTIONS(section name (runtime address)[<!> storage address]

If it is necessary to reserve space in the RAM for the copied function, the SECTIONS control becomes:

SECTIONS(?PR?IDFUNC%FCODE (0xF600)[0x1000]) // Store function in IDFUNC.C to ROM at 0x1000
 // with destination address as 0xF600.
 // Reserve space at 0xF600 for it. (ROM address
 // does not need to be stated)

Note: SECTIONS that are manipulated in this way are always placed into a special CLASS called SROM,
although this does not have any special significance in practice. It could be used though for grouping all
relocated functions in ROM together into a block which can then be located using something like
"CLASSES(SROM(0x1000))". The function is called in the normal way. Any symbol information
required for debugging the function will be correcty aligned with the destination address in RAM

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 98

EXERCISE 9: EX9

Objective:

It is required to perform a 16-bit checksum on the FLASH ROM devices fitted to the EVA16C training
board. The checksumming function must be executed from the C167CR IDATA RAM at 0xF600, although
it will be stored at 0x43800. Location 0x7FFFE has been pre-programmed with the correct checksum value
of 0xA591. If the checksum calculated does not match this value, wait in a loop forever otherwise return to
the caller.

Procedure:

The 16-bit checksum is calculated by summing up all the locations in FLASH area, one word (two bytes) at a
time:

{
checkum += *ROM_ptr++ ; // Add up all the locations, one word at a time
}

Where ROM_ptr is a pointer to the FLASH which is incremented after each addition.

The FLASH is split into two ranges, separated by the C167CR's on-chip RAM and SFRs:

0x00000 length 0x0C000
0x10000 length 0x30000

These ranges are stored in a structure which contains two arrays that represent the start and end addresses of
the areas:

struct FLASH { unsigned long base_addresses[No_Of_FLASH_Areas] ;
 unsigned long area_length[No_Of_FLASH_Areas] ; } ;

struct FLASH const FLASH_Map = { { 0x00000, 0x10000 }, // Addresses suitable for C167CS-LM
 { 0x0C000, 0x30000 } } ;

A function idata_relocated_function(void) is copied into IDATA RAM in main() using:

hmemcpy(SROM_PS_TRG(filename.c), SROM_PS_SRC(filename.c), SROM_PS_LEN(filename.c)) ;

where "filename.c" is the name of the file that contains the checksumming function. The address of executable
code SECTION of filename.c containing the function has been made known to the hmemcpy() via:

SROM_PS(filename.c)

which appears above main(), wherein the hmemcpy() is located.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 99

code

Clear
checksum

Perform
Checksum
Test Over
All Flash

Areas

Get current
word from

FLASH

Scan across
the various
FLASH areas

Accumulate
checksum
value

j = 0 ; j <
FLASH_Map.a-

rea_le-
ngth[i]/2 ;

j++

i = 0 ; i <
No-

_Of_FLASH_Ar
eas ; i +

Do Checksum
Check

Checksum
error

detected -
ROM is faulty

Checksum is
wrong - stop
here forever!

true

falsewhile

true

false

Does
calculated
checksum
match the
one stored

idata_relocated_function
Function that is stored in
ROM, copied to RAM and then

executed

The section name is
?PR?RAMFUNC%FCODE

Checksumming function as a flowchart
- produced with the DA-C

When called, the function sums up the words over the two FLASH ranges and then compares the result
with a pre-calculated checksum at 0x7FFFE - see the DA-C flowchart overleaf.

The linker control file SECTIONS control places the function at 0x43800 but
sets its run time address to 0xF600:

SECTIONS(// CODE SECTIONS to be relocated
 ?PR?filename%FCODE (0xF600)[!0x43800])

Exercise EX9 Checklist

MAIN.C:

(i) Make sure the header file containing the macros required for the hmemcpy()
target and source address calculations is present.

(ii) Create external references to the target and source addresses and length of
the SECTION in RAMFUNC.C that contains the function to be relocated.

(iii) Complete the hmemcpy() to include the above target and source addresses
and length so that the copy will take place.

RAMFUNC.C:

(iv) Do nothing - it is complete! The actual function that is relocated is written in
an entirely normal fashion.

EX9.LIN:

(v) Complete the SECTIONS control to store the function in RAMFUNC to
0x43800, setting the run time address to 0xF600. Refer to page 99 in the notes
for a refresher on how to work out the Code SECTION name for
RAMFUNC.C. Do not reserve space at 0xF600 for it though. Build the pro-
gram.

(vi) Load the program into Hitop and run it until main(). Open a memory
window at address 0xF600 and then run the program until the call to
idata_relocated_function(void). Check that the destination
address of the call is 0xF600. Single step into the function and run it until the line:

 if(*ROM_checksum != checksum)

Single step this and see what happens!

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 100

0x0C000

0x07FFF

0x43FFF

0x04000

0x0E000

0x0E7FF
0x0EF00
0x0F000

0x0F600

0x0FE00

0x10000

0x40000

0x50000

0x7FFFF

0x0FD00

0x00000

0x00200
0x00400

SFRs

BDATA

HDATA

NDATA

XDATA

LINKER CLASS NAME

IDATA

Ext SFRs
CAN

XRAM

SDATA

sfr T2 = 0xFE50 ;

unsigned short huge big_array[0x8000] ;

unsigned short near medium_to_fast_var ;

unsigned short xhuge vbig_array[0x10000] ;

Typical C Language Data Declaration

bit flag ;unsigned char bdata flag_byte ;

unsigned short idata on_chip ;

RESERVE(0x0F200-0x0F5FF)

unsigned short const near fast_const = 1 ;

(Code from START167.A66)

unsigned short sdata xram_var ;

*(unsigned short sdata *) 0xEF00 ;

EPROM

RAM

Clock

EPROM

Hidden
EPROM

Hidden EPROM

Interrupt Vectors

?FD?NONVOL(0x80000)

NCONST

FCODE
?C_CLRMEMSEC, ?C_CINITSEC

ICODE

FCODE

FCODE

HCONST

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 101

EXERCISE 8: EX8

Objective:

Practice making linker control files (.LIN) to suit typical memory maps found in C167CR designs.

Procedure:

Construct a linker file to match the memory map shown. The example program is based on that from exercise
EX3 but it is only the linker control file EXEC.LIN that you need to edit. MAIN.C contains some data
declarations which will make sure that each of the classes will have something in them! The class names you
will need to include in your CLASSES() control are given in the centre column of the diagram.

unsigned short xhuge vbig_array[0x10000] ; // 20000 byte array
unsigned short huge big_array[0x8000] ; // 10000 byte array
unsigned short near medium_to_fast_var ; // Near data
unsigned char const near fast_cont = 1 ; // Near constant object
unsigned short bdata flag_word = 0 ; // 16 flag bits
unsigned short idata on_chip = 0 ; // Data in on-chip IDATA RAM
unsigned short const sdata extra_const = 2 ; // More near constants in sdata area
sbit flag_X = flag_word^8 ; // A special flag bit in "flag_word"
bit flag0 = 0 ; // A single bit flag

Note that there is a real-time clock chip at 0x80000 as in exercises 6 and 7. Use the appropriate entry in the
SECTIONS control to locate it at 0x80000.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 102

10. Non-ISO/ANSI Code Saving Tricks

It is possible to save code by using the CPU’s Carry flag directly as a check for the result having exceeded
the capacity of an integer. If the sum of two integers is > 0xFFFF, the C flag will be set and this can be
checked in C and action taken.

Example

unsigned int z ;
unsigned int x = 0x8000 ;
unsigned int y = 0x8000 ;

z = x + y ;

/*** If Sum > 0xffff then limit to 0xffff ***/
if(C) {
 z = 0xffff ;
 }

A similar trick can be performed with the overflow flag and a multiply to check if the product of two ints is
over 0xFFFF;

EXERCISE 10: EX10

Perform the calculation

unsigned int = (unsigned int * unsigned int)/unsigned int, i.e. a = (x * y) / z ;

and check the result.

Use these values: x = 0x100 ; y = 0x100 ; z = 0x100

The correct ISO/ANSI Cway to perform this calculation is:

int x,y,z ;

z = ((unsigned long)x * (unsigned long)y)/(unsigned long)z ;

In current versions of C166, the following code will result:

; a = ((unsigned long)x * (unsigned long)y)/(unsigned long)z ;
 ; SOURCE LINE # 20

MOV R5,WORD y
MOV R4,WORD x
MULU R4,R5
MOV R6,WORD z
DIVLUR6
MOV R4,MDL
MOV WORD a,R4

C166 spots that this is a 16-bit scaling calculation and performs all operations in line.

If the following is used, a lot more code results and what’s more, it does not work.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 103

 a = (unsigned long)(x * y)/z ;
 ; SOURCE LINE # 16

MOV R5,WORD y
MOV R4,WORD x
MULU R4,R5
MOV R4,MDL <—— loss of high word data!
MOV R6,R4
MOV R7,#0
MOV R4,WORD z
MOV MDL,R6
MOV MDH,R7
DIVLUR4
MOV R4,MDL
MOV WORD a,R4

The moral of this is that in any major calculation it pays to check the .SRC file to see exactly what the com-
piler has done!

10.1 Special Note On Bits In Structures

From C166 v3.06, it is possible to have a bit flag as part of a structure in C166. This is covered in the next
section with ISO/ANSI C bitfields.

10.2 Bit Fields And Flags In C166

Bit fields can be very useful in embedded C programming, especially when dealing with serial data. In C166
v3.06 it is possible to put bit fields into the bdata memory so that the compiler can use bit intructions to access
the data.

Here is an example of using a bit structure: Serial data is shifted into the bit structure via a pointer. The
second part moves the various bit fields into discrete bits and words for later processing. The single bit
quantities field0 and field1 are accessed via bits while field2 and field3 require word operations.

MAIN.C

#pragma MOD167
#include <reg167.h>

/*** Create bit structure that has four fields ***/

struct bf { unsigned int field0 : 1 ;
 unsigned int field1 : 1 ;
 unsigned int field2 : 4 ;
 unsigned int field3 : 10 ; } ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 104

struct bf bdata indata ; // Create bit structure in bit-addressible area

unsigned int *buffer_ptr ; // Create an int pointer to bit structure

bit field0 = 0 ;
bit field1 = 0 ;
unsigned int field2 = 0 ;
unsigned int field3 = 0 ;

void main(void) {

 /*** Put data into serial buffer from serial port ***/

 buffer_ptr = (unsigned int *) &indata ; // Point at structure
 while(!S0RIR) { ; }
 S0RIR = 0 ;
 *buffer_ptr = (unsigned int) S0RBUF ; // Move data from serial port to bit structure

 while(1) {
 field0 = indata.field0 ; // Extract bit that constitutes field0
 field1 = indata.field1 ; // Extract bit that constitutes field1
 field2 = indata.field2 ; // Extract nibble that constitutes field2
 field3 = indata.field3 ; // Extract 10 bits that constitute field3
 }
 }

As you can see, C166 makes a pretty good job at breaking the bit fields into individual parts

SRC File:

; line 29: while(1) {
?C0007:
; line 30: field0 = indata.field0 ; // Extract bit that constitutes field0

BMOV field0,indata
; line 31: field1 = indata.field1 ; // Extract bit that constitutes field1

BMOV field1,indata+1
; line 32: field2 = indata.field2 ; // Extract nibble that constitutes field2

MOV R5,WORD indata
MOV R4,R5
SHR R4,#2
AND R4,#15
MOV WORD field2,R4

10.3 Simple Bit Flags

To implement general flags, the use of bits is recommended as these make direct use of the BDATA RAM
area.

A simple bit flag can be declared as:

bit test_flag = 0 ;

and may be either global or local.

In all respects, they can treated exactly as per normal data types.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 105

10.4 The _testset_() And _testclear_() Intrinsic Functions

The C166 has a useful set of bit-orientated functions, the most powerful of which is the JNBS bit,rel instruc-
tion. This jumps if a bit is clear then sets it. C166 will ordinarily not use this but by using the _testset_()
intrinsic function, C166 can be forced to use it. The opposite of this instruction is the JBC bit,rel which has
the corresponding intrinsic function _testclear_().

Example Of _testset_():

#include <intrins.h>

bit test_flag ;

void main(void) {

 /* Use Normal Approach */

 test_flag = 0 ;

 if(test_flag == 0) {
 test_flag = 1 ;
 P5 = 0xff ;
 }

 /* Use Intrinsic Function */

 test_flag = 0 ;

 if(_testset_(test_flag)) { // If bit clear, set it and set P5 to 0xFF

 P5 = 0xff ;
 }
 }

EXERCISE 11: EX11

Enter the above program and compile with the SRC switch to see how the _testset_() function has been used.

10.5 Intrinsic Functions

There are a number of special 80C166 assembler instructions which are not normally used by C166. For the
sake of speed, it is sometimes useful to get direct access to these but putting them as in-line code.

As an example, unlike the normal C166 ‘>>’ functions, _irol_() allows direct usage of an 80C166 instruction
set feature, in this case the ROL (rotate left) instruction. This yields a much faster result than would be ob-
tained by writing one using bits and the normal >> operator. There are also _crol_ and _lror_ intrinsic func-
tions for char and long data as well.

Intrinsic functions are inherently non-portable but as they are normally only used in very time-critical interrupt
functions, this is not a real problem.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 106

Other Intrinsic Functions

nop()

Adds an in-line NOP instruction to generate a short and predictable time delay. The only extra step necessary
is to include “intrins.h” in the C166 source file.

idle()

Puts theC167CR into idle mode by putting an IDLE instruction in-line.

pwrdn()

Puts the C167CR into power down mode.

srvwdt()

Generates an in-line SRVWDT instruction to service the on-chip watchdog timer.

sof()

This function converts a DPP:offset address in the first 64kb into a single 16-bit pointer. This is primarily used
to initialise PEC pointers.

trap()

This forces a TRAP instruction in-line. If the parameter is 0, the SRST (software reset) instruction is gener-
ated.

diswdt()

Causes the DISWDT instruction to be in-line.

einit()

Forces the EINIT instruction in-line. Note that an EINIT is already contained in START167.A66 so this
must be removed! This intrinsic function is usually used for bootstrap loader programs.

iror()

Uses the ROR instruction to perform a right rotate on the given integer.

atomic()

If the MOD167 #pragma control is in force, this yields an in-line ATOMIC instruction to inhibit all interrupts
for a number of instructions. This function is most often used to ensure coherent 32-bit reads.

Example Of _atomic_(): Our dual timer method of making a 32-bit input capture measurement of a slow
pulsetrain is used to generate an unsigned long value "time_for_180" in the CC0 interrupt service rou-
tine. This value is to be used by a background loop routine. A local copy of variable will be made by the
latter so that if the CC0 interrupt occurs during the routine, the top word of data will be coherent with the

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 107

lower word. As the 166 is a 16-bit machine, the 32-bit data moves required could be invalid if
"time_for_180" changed between reading the top and bottom words. The _atomic_() function can
guarantee this will not happen:

#include <intrins.h>

atomic(2) ; // The next line takes two instructions
 // - no interrupt can get in here.
time_for_180_snapshot = time_for_180 ; // Now an indivisible 32-bit instruction

NOTES

bfld()

Allows direct access to the BFLDL and BFLDH C166 instructions.
These are very useful for setting and clearing single or groups of bits in a word.

bfld(address, OR mask , AND mask) ;

Bits that are set in the OR mask can be set to values specified by bits in AND mask

Example Of _bfld_()

// Set CAPCOM channel 3 to -ve edge triggering on timer 1

bfld(CCM0, 0xF000,0xC000) ;

// Set CAPCOM channel 0 to +ve edge triggering on timer 0

bfld(CCM0, 0x000F,0x0001) ;

10.6 The volatile Keyword

The registers in a memory-mapped real-time clock chip can change without the CPU taking any action. C166
will assume that if a location has not been operated on in C then it cannot have changed. This can cause the
optimizer to remove data accesses that it considers redundant! In the case where a clock register is being
continually checked, the optimizer may remove some accesses with undesirable side-effects.

Example:
unsigned int far *milliseconds = 0x38000; // Pointer to RTC register

time = *milliseconds ; ->(1) // Get RTC register value
x = array[time++] ;

time = *milliseconds ; ->(2) // Second register access optimized out!
y = array[time++] ;

The example fails because the compiler’s optimiser assumes that because no write occurred between (1) and
(2), *millisec cannot have changed. Hence all the code generated to make the second access to *millisec is
optimised out! The solution is declare *milliseconds as “volatile” thus:

unsigned int volatile far *milliseconds = 0x8000 ;

Now, the optimiser will not try to remove subsequent accesses to the register as volatile indicates that the data
at the location may change automatically and so inhibits its normal action.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 108

11. Accessing Absolute Addresses

11.1 The MVAR and MARRAY Macros

UARTS, ports and real-time clock devices are often added to 80C166’s as memory-mapped devices. The
registers of the different devices will appear at fixed locations in the far data space.

The simplest way of mapping variables to absolute locations in C166 is by the use of the MVAR and
MARRAY macros. These macros are used as follows:

#include “absacc.h”
#define rtc_seconds MVAR(int,0x3f000)

the symbol may then be used as follows:

current_time[4] = rtc_seconds;

Alternatively, MVAR may be used thus:

unsigned int value ;

value = MVAR(unsigned int,0x3f000) ;

The only requirement is that the header file “absacc.h” must be included at the top of the source file as shown
above. This contains the prototype for the macros.

MVAR is intended for accessing memory-mapped IO that is in a range covered by a DPP. In most casess,
such IO will be located high in the address space where it is unlikely that NDATA or NCONST will be.
Therefore the HVAR macro is more useful as it is based on huge accesses and so can point to any address.

#define HVAR(object, addr) (*((object volatile huge *) (addr)))

11.1.1 Things To Be Aware Of With This Method

There are two major problems with the MVAR and MARRAY macros that limit their use to very simple
situations:

(i) They are really just casts to a pointer except that it is not obvious how they work by looking at the
source,
i.e.:

 #define MVAR(object, addr) (*((object volatile *) (addr)))

(ii) They are only suitable for accessing absolute addresses that are fixed at compile time and will not have
to
change at run time.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 109

EXERCISE 12: EX12

Objective:

Read the value of the memory-mapped DIL switch and print it to the LCD display.

Procedure:

The 8-bit DIL switch is enabled by the 167's chip select 4 (/CS4). To read it, the chip select 4 must be
configured to become active low when the 167 emits address 0x100000 so that the DIL switch is able to
drive the D0-D7 data lines. Thus the value of the switch can be used by software.

(i) START167.A66 must be modified to set up BUSCON4 and ADDRSEL4 to make /CS4 become active
from 0x100000 to 0x100FFF, using an 8-bit non-multiplexed bus. Three waitstates must be used on this 4kb
memory region. All other settings such as MTTC4, RWDC4 can be ignored.

(ii) In MAIN.C, use the HVAR macro from ABSACC.H to create a means of addressing the switch at
0x100000. We have provided "#define DIL_Switch ..." for this purpose.

(iii) Read the value of the memory-mapped DIL switch and print it to the LCD display. Note that the neces-
sary modified PUTCHAR.C is already in place to allow printf() to drive the LCD.

Note: General form of Macro = HVAR (type, address)

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 110

12. Pointers In C166

Like variables, pointers too are influenced by the underlying paged data addressing. Pointers to data in the
near data area unsurprisingly called termed "near pointers". They may point at any object in the near data area
and as might be expected from the 16k pages, no single object may be over 16k. A near pointer in C166 is
itself 16-bits, with the top two bits fixed at 02 to indicate DPP2.

12.1.1 The Various Pointers In C166

far pointers are less restricted in that the object being pointed at can be at any 18- or 24-bit address but the
size of the object being pointed at must be limited to 16kb. As the value of DPP0 is calculated each time the
pointer is used, far pointers are thus somewhat slower than near pointers. The 16kb limit only causes prob-
lems if you try to increment a pointer over this range, as might happen when using a pointer to access a large
array. The reason for the limit is that when incrementing a far pointer, when the offset exceeds 0x3fff, the
DPP0 is not incremented and the offset simply wraps-around to zero again. Far pointers occupy 32-bits (two
words)

huge pointers (and objects) can be up to 64k in size as the overflow into the next page is not catered for.
However, as C166 does not allow an overflow from a 16- to 24-bit offset, huge pointers will just wrap-
around once they have been incremented more than 64kb from their start-point.

xhuge pointers remove the 64kb limitation and allow objects of any size to be addressed without restriction.
They are however relatively slow, unless you are using the C167/5.

The final pointer type, sdata, is very much C166 family-specific. This is a pointer which is always points into
the system area, indicated by DPP3, between 0xc000 and 0xffff. sdata pointers are 16-bits in size and are
best used for pointing at internal RAM objects or IO mapped into the 0xC000 region.

Performance Hint! If you are using a global pointer in a loop, always try to make a local copy of the
pointer; C166 will put this into a register and consequently execution speed will be much higher.

12.1.2 Summary Of Pointer Declarations

Declare a near pointer:

int near *near_ptr ;

Declare a far pointer:

int far *far_ptr ;

Declare a sdata pointer:

int sdata *s_ptr ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 111

12.1.3 Special Note On #pragma MOD167 For C167/5 Users

The #pragma MOD167 can be used to speed up huge pointer accesses especially by using the EXTS seg,off
instruction. Here is an example of the standard DPPx-related approach and the EXTS version with MOD167:

MOD167 Huge Pointer Access

; *hptr = 0x55 ;
 ; SOURCE LINE # 19

MOV R6,#85
MOV R5,WORD hptr+2
MOV R4,WORD hptr
EXTS R5,#1
MOV [R4],R6

R5 holds the 64kb segment number and R6 holds the offset into the segment. In effect, this a full 32-bit access
being equivalent to MOV [R5:R4],R6.

Normal Huge Pointer Access

; *hptr = 0x55 ;
 ; SOURCE LINE # 15

MOV R4,#85
MOV R3,WORD hptr+2
MOV R2,WORD hptr
CALLAcc_UC,?C_HSTOREI

Note that the MOD167 version eliminates the library function call an consequently improves speed
greatly.

12.2 Variable Pointers To Absolute Addresses

Pointers in RAM are useful for accessing addresses which are only known at run time or which are liable to
change dynamically. They are to be preferred to the MVAR() approach. As decreed by ANSI C, pointers
can be defined and intialised in a single statement at file level (i.e. outside any function) or declared and then
initialised at run time, within the body of a function.

The convention is:

<type> <const/volatile> <typequalifier> * <dataname> = (<type> <const/volatile>) <address>;

Example:

/*** Define and initialise pointer in single statement - file level ***/

char far *pointer = (char far *) 0x30000 ;

/*** Define pointer only - file level ***/

char far *pointer ;

// at run time...

pointer = (char far*) 0x30000 ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 112

The <typequalifier> before the’*’ determines what the pointer is able to point at. The use of the program
construction method outlined previously can help prevent this.

/*** Define Far Array In FDATA0 ***/

char far fararray[] = { “Hello from far data” } ;

/*** Define near pointer ***/

char near *near_ptr ;

/*** Make near Pointer Point At Far Object ***/

near_ptr = fararray ; // This will fail as a near pointer cannot point at a far object.

Warning! Mismatches between far and near objects do not always immediately show themselves as a
lucky combination of DPPx values can allow the erroneous pointer to work. Suddenly changing the
address of host class of the target object or altering the memory model will often show up this problem.
However, the appearance of the "pointer truncation" warning will always indicate a problem.

12.3 Placing The Pointer Itself

Pointers defined with nothing between the ‘*’ and the <dataname> are located by default in the data class
determined by the memory model. It is entirely possible to force the pointer itself into a specific memory
space. By putting a type and typequalifier after the ‘*’, the pointer can be placed. This is most frequently
required when is desired to put a pointer into EPROM, i.e. a constant class. Jump tables or tables of function
pointers fall into this category also.

Example 1 - Put a far constant pointer to a constant string into EPROM itself

char const far * const fixed_string[] = { “String in EPROM “ } ;

Example 2 - Put a far constant pointer to a ram variable into EPROM

char far ram_variable = 1 ; // Variable in far RAM

char far * const fixed_string[] = &ram_variable ; // Set up a pointer in EPROM to ram
variable

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 113

EXERCISE 14: EX14

Objective:

Illustrate important points when using pointers to do memory tests and checksums etc..

Procedure:

The program consists of two files which you must modify. MAIN.H contains the declaration of a pointer
("*mem_ptr") which will be made to point at the base of the test area of 0x50000. You must ensure that it
has the attributes that will allow it to scan across the 128k memory test area, and that it is not itself within the
range of the test!

In MAIN.C, you must make *mem_ptr point to 0x50000. You must then make it write 0x5555 into each
location and then read it back again to ensure that the data has not been corrupted by a faulty RAM. If the
data read does not match that written, a bit flag called "error_fl" must be set. The write and read of a pattern
to each location should be within a for() loop which makes 0x10000 loops. This is because the memory
pointer is to a word (short), it will be incremented by two on each loop. At the end of the memory test loop,
printf() a pass or fail message to the LCD display.

Notes:

(i) Make sure that your DATA classes are not in this area otherwise the memory test will destroy its own
variables! *mem_ptr is especially at risk from overwriting.

(ii) Ensure that the compiler's optimizer does not remove the read back of the test data: the compiler assumes
that if it writes data, it will not change. Therefore, as the data is read back immediately, it will optimize out the
read operation completely!

(iii) Ensure that the storage class qualifier (near, far etc.) that you use when declaring the pointer is able to scan
over 128k locations.

BEWARE: We have laid some traps for you....pay particular attention to the attributes and location of
*mem_ptr!

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 114

Memory Test Outline

void main(void) {

 unsigned long i ;
 unsigned short temp, mem_contents ;

 init_lcd() ;
 IEN = 1 ; // Needed for HiTOP167
 mem_ptr = (unsigned short _______ ________*) 0x50000 ;

 for(i = 0 ; i < 0x10000 ; i++) { // 0x10000 words!

 *mem_ptr = 0x5555 ;
 temp = *mem_ptr ;

 if(temp != 0x5555) {
 error_fl = 1 ;
 }

 }

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 115

12.4 Jumping To Variable Addresses

In the same way that data pointers can be set to addresses at runtime, so can function pointers. This can be
useful when calling functions which reside in a different C166 program in the same system, as could be found
in FLASH EPROM + boot EPROM designs.

Example:

Generate a call to a constant address:

((void (far*) (void)) 0x8000) () ; // Call to a constant address

Jump to variable address:

unsigned int jump_addr ; // A variable holding intended jump address

jump_addr = 0x8000 ; // Set up target address
((void (far*) (void)) jump_addr) () ; // Call to a variable address

Here is a useful macro which will cast any constant or variable to a function pointer:

#define LTOF(func) ((void (far*) (void)) func)

Example

#define LTOF(func) ((void (far*) (void)) func)

jump_addr = 0x50000 ;
LTOF(jump_addr) () ; // Call 0x50000

;
; LTOF(0x50000)() ;
 ; SOURCE LINE # 68

MOV R4,#0
MOV R5,#5
CALL ?C_SCALLI

; }

Caution! Due to the limitation that near functions must be within the current segment, jumps like these
should always be cast as far.

12.5 Pointer Casting And Conversions

It is entirely possible to turn a simple C data type (int, long) into a pointer. However, you must be aware of
the number of bytes required to form the pointer in each case:

near pointers

One word carrying information on offset from DPP2 page number, 0-0x3fff

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 116

far, huge, xhuge pointers

Two words carrying information on the page number in the upper word and offset from page base in the
lower.

sdata pointers

One word carrying information on offset from page number 3 (DPP3), 0xC000-0xFFFF

To make a near pointer, an unsigned int can be used:

Example

int near near_address = 0x4000 ;
int y = 0x8000 ;

y = *(unsigned char near *) near_address ;

You must make very sure though with conversions to near pointers that the address is actually in the near data
area!

To make a far pointers, the source data must be of type long as only this type has sufficient bytes to accom-
modate the pagenumber:offset information.

Example

unsigned long address = 0x38010 ;
unsigned char test ;

test = *(unsigned char far *) address ;

Be warned though that this on-the-fly casting from long to pointer is very inefficient and it is always better to
use a proper pointer type, as the following shows:

int var ;
unsigned long faddr = 0x30010 ;
int far *fptr = (int far *) 0x30010 ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 117

Use a proper pointer type:

var = *fptr ;
MOV R5,WORD fptr+2
MOV DPP0,R5
MOV R4,WORD fptr
MOV R4,[R4]
MOV WORD var,R4

Cast from long to pointer:

; var = *(int far*) faddr ;
MOV R4,WORD faddr
MOV R5,WORD faddr+2
ADD R4,R4
ADDC R5,R5
ADD R4,R4
ADDC R5,R5
MOV DPP0,R5
SHR R4,#2
MOV R8,[R4]
MOV DPP0,#12

Note! The conversion from long to a pointer is not like Microsoft C (MSC) for the 80x86. The
calculation of the 166’s page number is made during the cast at run-time, hence all the extra code
produced above. In MSC, the long must have the segment number already in the right place. In the
above example, rather than containing 0x30010, the long would have to have held 0x3000 0010! This
could cause problems when converting MSC programs to the 166.

12.6 Pointers To Local Data

It is possible to create pointers to local data (i.e. automatics), although it is not really good practice. If the
user stack has been moved into the IDATA on-chip RAM, you must use the USERSTACKDPP3 compila-
tion control. This will force C166 to use DPP3 as the base for the pointer so that it can happily point to the
user stack in IDATA rather than via DPP2 into the NDATA area.

#pragma USERSTACKDPP3 // Force compiler to use DPP3 when finding
 // address of local array

void func1(char a, char b) {

 char rx_buffer[0x20] ; // This array will be on user stack
 char *rx_ptr ;

 rx_ptr = &rx_buffer[a] ; // Point to ath object in local array

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 118

12.7 Addressing The C167CR CAN Peripheral Via Pointers

The standard REG167.H does not contain any mention of the CAN module’s registers. Whilst the CAN
registers superficially appear to be sfr’s like T0, CC1, S0TBUF etc. they are in fact memory-mapped IO
ports by virtue of the fact that they are not addressed by SFR addressing modes. This distinction may be
somewhat academic but they are usually addressed via constant pointers to SDATA, rather like the PEC
SRCP and DSTP pointers - SDATA is the 16k region covered by DPP3 from 0xc000 to 0xffff.

The following include file uses SVAR macros to produce constant SDATA pointers to the CAN registers. It
has taken from the RTX166 operating system CAN library and can be found in the USEFUL subdirectory.

CAN167.H Header File
/* Siemens 80C167C CAN register layout */
/* 22-JUL-94 / EG */

/* Addresses of CAN General Registers */
/* ————————————————— */

/* Control/Status Register */
#define ADR_CAN_CTL_STAT 0xEF00

/* Interrupt Register */
#define ADR_CAN_INTID 0xEF02

/* Bit Timing Register */
#define ADR_CAN_BIT_TIMING 0xEF04

/* Global Mask Short */
#define ADR_CAN_MASK_SHORT 0xEF06
/* Upper Global Mask Long */
#define ADR_CAN_UMASK_LONG 0xEF08
/* Lower Global Mask Long */
#define ADR_CAN_LMASK_LONG 0xEF0A

/* Upper Mask of Last Message */
#define ADR_CAN_UMASK_LAST 0xEF0C
/* Lower Mask of Last Message */
#define ADR_CAN_LMASK_LAST 0xEF0E

/* Masks for control/status reg (ADR_CAN_CTL_STAT) */
/* Attention: apply for WORD reads of this reg only ! */
#define BOFF_MSK 0x8000
#define EWRN_MSK 0x4000
#define RXOK_MSK 0x1000
#define TXOK_MSK 0x0800
#define LEC_MSK 0x0700
#define CCE_MSK 0x0040
#define EIE_MSK 0x0008
#define SIE_MSK 0x0004
#define IE_MSK 0x0002
#define INIT_MSK 0x0001
#define RES_ALLCTL 0x5555

/* Masks for field ‘msg_ctl’ of the 15 CAN objects */
#define INTPND_MASK 0x0001
#define RXIE_MASK 0x0004
#define TXIE_MASK 0x0010
#define MSGVAL_MASK 0x0040
#define NEWDAT_MASK 0x0100
#define MSGLST_MASK 0x0400
#define CPUUPD_MASK 0x0400
#define TXRQ_MASK 0x1000
#define RMTPND_MASK 0x4000

/* Masks for field ‘msg_cfg’ of the 15 CAN objects */
#define XTD_MASK 0x0004
#define DIR_MASK 0x0008

/* Structure for a single CAN object */
/* A total of 15 such object structures exists (starting at EF10H) */
struct t_can_obj {
 unsigned int msg_ctl;
 unsigned long arbitr;
 unsigned char msg_cfg;
 unsigned char msg[8];
 unsigned char dummy;
};

#define SVAR(object, addr) (*((object sdata *) (addr)))
#define SARRAY(object, base) ((object sdata *) (base))

/* end of header file */

MAIN.C Test Source File

#include <reg167.h>
#include <canreg.h>

#define CAN (SARRAY (struct t_can_obj, 0xEF10)) /*
Structure for CAN message area */

main () {
 int i;

 i = SVAR (int, ADR_CAN_CTL_STAT);
 SVAR (int, ADR_CAN_BIT_TIMING) = i;
 CAN[0].msg_ctl = i;

 CAN[1].arbitr = 0x12345678;

}

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 119

13. Using Peripherals With Zero Software Intervention

It is quite possible to set up a C167 peripheral to perform a complete function with no CPU activity required
to complete the task. This is particularly true of general purpose timer blocks 1 and 2 (GPT1 and GPT2).
These units comprise simple building blocks of timers, output and input pins which can be used to automate
pulse measurement or generation tasks.

As an example, we will consider how GPT1 can be used to implement a decoder for a quadrature shaft
encoder, as might be used to measure the speed and direction of an AC motor drive. Register T4 will always
contain the value of the input speed + 0x8000. Subtracting this number from T4 will yield a number repre-
senting the speed, including its direction, i.e. positive implies forwards and negative implies reverse. A com-
mon trick used here is to feed one of the quadrature channels into two pins of the C167, namely T4IN and
T3EUD.

T3

Channel A

Channel B

Channel B'
(reverse)

T3 = T4 = 0x8000

T3 = T4 = 0x8000

S
P

E
E

D
 = T

2 = T
3

S
P

E
E

D
 =

 T
2

=
T

3

S
P

E
E

D
 =

 T
2

=
T

3

S
P

E
E

D
 = T

2 = T
3

S
P

E
E

D
 = T

2 = T
3

T3 = T4 = 0x8000

T4IN
T3EUD

T2IN

16
7

Reload

Capture

0x8400

0x7C00

Here is how it is done:

(i) T4IN loads the contents of T4 into free running timer 3 with 0x8000 on every edge of channel A. Thus
T3 keeps counting either up or down from 0x8000 on every cycle.

(ii) T3EUD, also on channel A, causes T3 to count up when channel A is high and down when channel
A is low.

(Iii) T2IN captures value of T3, on channel B +ve edge, 90 degrees after T3 was set to 0x8000 by T4IN.
Thus T2 contains a signed number representing the instantaneous speed, when 0x8000 is subtracted
from it.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 120

EXERCISE 15: EX15

Objectives

Implement the quad decoder, as described above. Use it to measure the speed in Hz of the quadrature signal
being generated by the C515C CPU on the 167IO board.

Procedure

1. Configure Timer 4 to reload T3 on either a rising or falling edge on the T4IN pin.
Preload Timer 4 with 0x8000.

2. Configure Timer 2 to capture T3 on a rising edge on the T2IN pin
3. Compile the program and run it under HiTOP.
4. The LCD display will report the measured speed and direction of the input signal. What is the

frequency? Is it running forwards or backwards?

Note: Put the C515C DIL switch to position '00000001' to start the quadrature generator and make sure
that link LK2 on the training board is inserted.

Advanced Feature

We have provided a mechanism to cause the speed measured to go to zero if the quadrature input
disappears: if Timer 3 ever overflows, the input edges must have been absent for a considerable time
and so we consider the the encoder to have stopped.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 121

14. The General Purpose Registers, Register Variables And
Registerbanks

One of the fundamental features of the C166 CPU core are the general purpose registers and the concept of
register banks. The 1kb (or 2kb) internal RAM can be viewed as a series of single words or alternatively as
a collection of 64, 16 word-long registerbanks. These registerbanks can start at any address in the internal
RAM area. The base of the current registerbank is indicated by the CP (context pointer) register.

14.1 The Context Switch

The C166 includes a “switch context” instruction which causes the current registerbank base address held in
the CP register to be stacked and a new CP value inserted. This allows the current registerbank to be
changed in a single cycle and can be very useful for providing a fresh set of working registers to an interrupt
function, whilst leaving the background loop’s registerbank in tact. Once the interrupt has completed, the
original CP value is restored and the interrupted program can continue.

The current register bank forms the scratch-pad memory for local data and function parameters. Like a good
assembler programmer, C166’s optimiser will try to keep intermediate data values in registers to prevent the
loss of speed caused by moving working data off-chip - any data accessed via the MOV Rw, Rw type
instructions are guaranteed to be 100ns. C166 therefore tries to allocate all local data to registers, up to a
limit of 15 registers per function. This gives a huge increase in performance and you should try to keep as
much data local as possible, even down to making local copies of global data that is to be frequently
accessed. There are some very devious tricks that you can do to make automatics (locals) appear to be static
which we will cover later.

The allocation of variables to registers is entirely automatic and whilst the ANSI type qualifier “register” is
compiled, it has no effect. You just have to trust the compiler’s judgement on this one!

C166 permits the user to exercise considerable control over how the registerbanks can be used via the US-
ING and REGBANK controls.

14.1.1 Useful Definitions Concerning Registerbanks

Registerbank - a group of 16 word locations in the internal RAM whose base address is contained in the
Context Pointer register (CP).

Automatic data - Variables which are created on entry to a function and destroyed on exit. They are
defined at the top of the function which uses them and no other function may access them.

Local data - as per automatic.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 122

14.2 Interrupts In C166

It is possible to write interrupt functions directly in C166 without the need to use assembler entry and exit
code. The interrupt function type is the key to this. By adding this keyword to interrupt function definitions,
C166 will ensure that the current registerbank is stacked on entry, restored on exit and a RETI placed at the
end of the function. These actions constitute a “stack frame”. The interrupt vector necessary to get to the
service function is generated automatically - the numerical argument to the interrupt keyword will cause the
compiler to generate a JMPS at an address given by:

vector location = n * 0x4 + offset,

where n is the number appearing after the interrupt keyword, here “0x10” and offset is the argument to the
VECTAB control in the linker. This offset defaults to zero if no VECTAB() control is given at link time.

void timer0_int(void) interrupt 0x10 {

 }

Here is an example of a stack frame:

timer0_int PROC INTERRUPT = 16
GLOBAL timer0_int

; FUNCTION timer0_int (BEGIN RMASK = @0x0012)
; void timer0_int(void) interrupt 0x10 {
 ; SOURCE LINE # 13

SCXT DPP3,#3
?C0006:

PUSH R1
PUSH R4

 PUSH R7
 PUSH R9
 PUSH R10

/*** Interrupt Code ***/
;
;?C0005:
 POP R10
 POP R9
 POP R7

POP R4
POP R1

?C0007:
POP DPP3
RETI

; FUNCTION timer0_int (END RMASK = @0x0012)
timer0_int ENDP

 ?PR?T ENDS

The interrupt function that created this stack frame used R1 and R4 as general working registers hence it
PUSHes them on entry and POPs them on exit. In this case, the time to do this is small but on a more com-
plex interrupt routine, up to 15 registers might be used. This is obviously undesirable from the point of view
of the apparent interrupt latency but is the traditional approach taken in conventional CPUs. C166 does use
some intelligence in that it only stacks those registers actually used by the interrupt. However, as been men-
tioned, the 166 core has a fast means of switching to a new register bank i.e. the SCXT instruction. It is the
USING control in C166 that allows the C programmer to exploit this hardware feature.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 123

14.3 The VECTAB Linker Control

Under normal circumstances, the interrupt table will be placed at zero. However, when using some monitor
debuggers or if a boot-EPROM plus FLASH type system is being used, the vector table may need to be
shifted to some other address. The most common example is the EVA167 board where the region from 0-
0x1ffff is occupied by the monitor EPROM and the user’s program is located at 0x40000. The monitor holds
a dummy vector table at zero which simply redirects the vectors up to the RAM region at 0x40000.

By using VECTAB(0x40000) in the linker input file, the vector table base of the user’s program can shifted to
0x40000. This has already been used as it is essential when using the EVA167 and EVA165 boards.

14.4 Macros That Simplify The Setting Of Interrupt Priorities

The user must set the interrupt priority level (ILVL) and the group level (GLVL). The former is slightly
incovenient as the priority field is two bit offset from the base of the register:

ADCIC

ADCIR ADCIE Group LevelInterrupt Priority

To make source code more comprehensible, here are some macros with parameters in the INTMAC.H that
you can use to set interrupt priorities and group levels. They can be found in the
\166TRAIN.WIN\HEADERS directory.

/*** Interrupt Priority Setting Macros ***/

#define Set_Priority_15(reg) (reg |= 0x3C)
#define Set_Priority_14(reg) (reg |= 0x38)
#define Set_Priority_13(reg) (reg |= 0x34)
#define Set_Priority_12(reg) (reg |= 0x30)
#define Set_Priority_11(reg) (reg |= 0x2C)
#define Set_Priority_10(reg) (reg |= 0x28)
#define Set_Priority_09(reg) (reg |= 0x24)
#define Set_Priority_08(reg) (reg |= 0x20)
#define Set_Priority_07(reg) (reg |= 0x1C)
#define Set_Priority_06(reg) (reg |= 0x18)
#define Set_Priority_05(reg) (reg |= 0x14)
#define Set_Priority_04(reg) (reg |= 0x10)
#define Set_Priority_03(reg) (reg |= 0x0C)
#define Set_Priority_02(reg) (reg |= 0x08)
#define Set_Priority_01(reg) (reg |= 0x04)

#define Set_Group_Lvl_0(reg) (reg &= 0xfc)
#define Set_Group_Lvl_1(reg) (reg = (reg & 0xfc) | 0x01)
#define Set_Group_Lvl_2(reg) (reg = (reg & 0xfc) | 0x02)
#define Set_Group_Lvl_3(reg) (reg = (reg & 0xfc) | 0x03)

These are used as follows:

Set_Priority_01(<interruptcontrolregister>) ;

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 124

Example

Set the priority of the T3 overflow interrupt to 02:

void timer3_init(unsigned int baudrate) {
 T3CON = 0 ; // 0.4us per count, timer mode, count up
 Set_Priority_02(T3IC) ;
 T3IE = 0 ; // No interrupts until char coming in or
 // to be sent
 }

Set the priority of the CC8 input captures interrupt to 01:

void init_CC8_int(void) {
 CCM2 = 0x0002 ; // Capture interrupt on P2.8, negative edge triggered
 Set_Priority_01(CC8IC) ; // Higher priority than
 // T3 overflow interrupt
 }

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 125

EXERCISE 16: EX16

Objective:

Use CAPCOM unit and interrupts to measure frequency of square wave on P2.3.

Procedure:

The CAPCOM channel on port P2.3 must be configured to capture the value of a free running 16-bit timer,
Timer0 every time that a falling edge appears on the pin. A small interrupt routine must be called to calculate
the number of timer counts between successive edges, using:

 time_between_edges = CC3 - time_last_edge ; // Find time since last edge

Provided that not more than one timer0 overflow occurs between edges, the result will always be a positive
number that represents the time between edges. Make T0 run at 0.4us/count.

Each port 2 pin has a CAPCOM channel associated with it. Channel CC0 is attached to P2.0. Here, chan-
nel CC3 is connected to P2.3.

(i) The CCM0 (CAPCOM mode register zero) register contains four 4-bit fields that allow the modes
of CAPCOM channel 0,1,2 & 3 to be individually set. CAPCOM channel 3 (port P2.3) occupies the
upper nibble of CCM0. The ACCx bit in each case assigns the CAPCOM channel to either Timer
0 or Timer 1. Here, you must use Timer 0.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 126

(ii) The CC3IC interrupt control register must be configured to:
- Allow an interrupt to occur when the negative edge on P2.3 occurs
- Assign interrupt priority level 2, group level 1 to the CC3 channel

(iii) An interrupt service routine is required to which the CPU will jump when the negative edge occurs.
The argument to the interrupt keyword is the TRAP number, obtained from the interrupt vector table
in section 5 of the C167CR manual. This routine will contain the subtraction calculation.

(iv) The frequency of the input signal is found by taking the reciprocal of the measured time. For
convenience, this should be a floating point calculation. The result is printed to the LCD display.

Put the C515C DIL switch to position '00000010' to start the square wave generator.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 127

EXERCISE 16 (FOR C165: EX16 .165)

Objective:

Use GPT1 timer2 and timer 3 and an interrupt to measure frequency of waveform on P3.7 (T2IN). Note
that this exercise is located in C:\166train\ex16\work.165.

T2 T3

2.5MHz
20MHz Prescale

CAPTURE

P3.7
(T2IN)

void T2_int(void) interrupt 0x22

Procedure:

The T2IN pin on port 3.7 must be configured to capture the value of a free running 16-bit timer, Timer3
every time that a falling edge appears on the pin. A small interrupt routine must be called to calculate
the number of timer counts between successive edges, using:

 time_between_edges = T2 - time_last_edge ; // Find time since last edge

Provided that not more than one timer3 overflow occurs between edges, the result will always be a
positive number that represents the time between edges. Make T3 run at 0.4us/count.

Each GPT timer has an input pin associated with it that can trigger its timer to do something, here it will
be capture. Timer2's input pin, T2IN, is attached to P3.7.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 128

(i) Set the T2CON register to make T2IN (P3.7) negative edge triggered, capture mode.

(ii) The T2IC interrupt control register must be configured to:
- Allow an interrupt to occur when the negative edge on P3.7 occurs
- Assign interrupt priority level 2, group level 1 to the T2 interrupt

(ii) The CC3IC interrupt control register must be configured to:
- Allow an interrupt to occur when the negative edge on P2.3 occurs
- Assign interrupt priority level 2, group level 1 to the CC3 channel

(iii) An interrupt service routine is required to which the CPU will jump when the negative edge
occurs. The argument to the interrupt keyword is the TRAP number, obtained from the interrupt
vector table in section 5 of the C167CR manual. This routine will contain the subtraction
calculation.

(iv) The frequency of the input signal is found by taking the reciprocal of the measured time. For
convenience, this should be a floating point calculation. The result is printed to the LCD display.

Put the C515C DIL switch to position '00000010' to start the square wave generator.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 129

EXERCISE 16A (FOR C165: EX16A.165)

Objective:

Use GTP1 timer4 & 3 to generate a regular 1Hz interrupt via the T3 output toggle latch (T3OTL) and
T3OUT pin (P3.3). Make the timer3 interrupt flash the first LED in the array, LED0 (P2.6) by conven-
tional pin-toggling in the service routine. Use the T3OUT function to drive LED9 in the LED array.
Note: LED9 has been wired to T3OUT and is the 10th LED (leftmost). Note that this exercise is lo-
cated in C:\166train\ex16a\work.165.

T2 T3

2.5MHz
20MHz Prescale

RELOAD

T4

T3OTL
(T3OUT)

P3.3

LED9

Procedure:
(i) Use Timer 3 as a free running timer. Set the Timer 3 prescaler to the same value as used in EX3

so that the overflow rate is 1.68 seconds. Make T3 count up and enable the T3OE function.

(ii) Initialise LED0 and T3OUT (P3.3) as output pins so that the LEDs in the 10-way array on the
training board can be driven.

(iii) Configure T4COM to reload T3 on any transition of the T3OTL, itself toggled by a T3 overflow.
The T4 timer register should contain the same value used for T7REL in EX3 to give a 1 second
period.

(iv) Use interrupt level 2, group level 0 for the T3 interrupt service routine. Toggle LED0 using an
exclusive OR function in the service routine..

(v) Load the progam into HiTOP and run it. If you force new values into T4 via the SFR window you
should see that the flash rate alters accordingly.

Note: The training board’s CPU is not used in this example.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 130

EXERCISE 16A: EX16A

Objective:

Use CAPCOM unit to generate a regular 1Hz interrupt via the output compare mode. Make the CAPCOM
flash LED0 (P2.6) by conventional pin-toggling in the service routine but use the pin-toggling compare mode
for LED9 (P2.15).

Procedure:
(i) Use Timer 0 as the timebase for CAPCOM channel CC15 (P2.15). Set the Timer 0 prescaler to the

same value as used in EX3 so that the overflow rate is 1.68 seconds.

(ii) Initialise LED0 and LED9 as output pins so that the LEDs in the 10-way array on the training board can
be driven.

(iii) Configure CC15 to use a compare mode that gives an interrupt and the automatic toggling of port 2.15.
In a manner similar to that used in EX16, set the four bits that control channel CC15 via the _bfld_()
intrinsic function.

(iv) Use interrupt level 2, group level 0 for the interrupt service routine. In the service routine, add an
increment “interrupt_period” to the existing CC15 value to create the next interrupt. Toggle LED0 using
an exclusive OR function.

(v) Load the progam into HiTOP and run it. If you force new values into “interrupt_period” via the Watch
window you should see that the flash rate alters accordingly.

Note: The training board’s CPU is not used in this example.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 131

14.4.1 Application Example - 32-Bit Captures

The limitation of the method used in the last exercise is that if the period of the input is greater than or equal to
twice the period of the 16-bit timer, result will be incorrect. By using both timer 1 and timer 2 as a reference,
period measurements of very low frequency signals can be made accurately. The need to measure periods
from very low to very high frequencies is often required in engine management systems, where crankshaft
speeds can be nearly zero under cold starting conditions but very high at maximum power.

Here is how it is done:

Timer T1 is preloaded with 0x8000 while T0 remains at zero. Both timers have overflow interrupts at (for
example) priority level 12. Each overflow interrupt simply increments the appropriate overflow counter and
exits. The timers are started together by writing to the T01CON register. As T1 was preloaded with
0x8000, the T1 overflow counter will always be one count ahead of that for T0. The input waveform is
applied to a capture pin, assigned to timer T0. The capture interrupt service routine at priority level 13,
checks whether the captured value was in the upper half of T0. If it was, then it can be guaranteed that the
overflow word for T0 is stable and will not change. This value is then used to calculate the 32-bit period value
since the last edge. If the captured value is in the lower half of T0, then the overflow count from T1 is used as
it can be guaranteed that it is stable. The fact that the overflow interrupts cannot interrupt the capture routine
ensures that the chosen timer overflow counter is stable.

An example of this technique can be found in \EX16A\SOLUTION.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 132

14.5 The Interrupt-Driven PEC System

The peripheral event controller (PEC) is an excellent way of moving data to and from C166 peripherals and
RAM. It is essentially an extension to the interrupt system. Commonly, the PEC transfers are made between
peripherals and the on-chip RAM, using just one CPU cycle (100ns). The transfer is triggered by any active
interrupt source producing an interrupt request. Rather than result in a normal service routine call, the PEC
system just moves data from the address indicated by the source pointer (SRCPx) to that indicated by the
destination pointer (DSTPx). If either of the two pointers is incremented by the PEC, as would be required if
an array was the destination or source, a conventional interrupt service routine will be required after up to 255
transfers to reset the pointers back to the base of the array. The source and destination addresses are indi-
cated by source and destination pointers. These are situated at 0xFDE0 - 0xFDFF on the C166 and
0xFCE0- 0xFCFF on the C167/5, with PEC channel zero’s pointers being at the lower address limit in each
case.

Note: The design of the C166 restricts the PEC destination and source addresses to being in the first 64kb.

14.5.1 Setting The PEC Channel Number

The interrupt control registers must be set as follows:

ADCIC

ADCIR ADCIE 1 1 1 PEC Channel Number

Where the lower three bits set the channel number to be used.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 133

14.5.2 Setting Up The PEC System

The C166 language features necessary to use the PECs are:

#pragma PECDEF(x,y,...),_sof_(addr) , SRCPx, DSTPx

The necessary steps are:

(i) Reserve space in on-chip RAM for PEC pointers with #pragma PECDEF(x,y,....).
(ii) Set source pointer, SRCPx to address of register or location that will generate data

 SRCP0 = (unsigned int)&ADDAT ; // Set up source pointer 0

(iii) Set destination pointer, DSTPx, to address of location into which data is to be placed.

 DSTP0 = _sof_(ad_store) ; // Setup store pointer 0

(iv) Configure PEC control registers to set the number of transfers, whether they are byte or word and
whether the source or the destination pointers are to be incremented or decremented.

 PECC0 = 0x80 ; // Transfer 0x80 values via PEC
 PECC0 |= 0x0200 ; // Inc dest pointer for store in array, word transfer

(v) Set up PEC channel to be used.

 ADCIC |= 0x38 ; // Interrupt 14 priority, group level 0 => PEC channel 0

(vi) If number of transfers != 0xff, create an interrupt service routine to reset pointers and count register

 DSTP0 = _sof_(ad_store) ; // Set destination pointer back to base of buffer
 PECC0 |= 0x80 ; // Reset PEC channel counter to store 80 values

14.5.3 Special C166 Language PEC Features Explained

#pragma PECDEF(0) // Reserve space for PEC pointers at 0FCEO

Causes L166 to reserve 4 bytes for source and destination pointers

DSTP0 = (unsigned short) _sof_(ad_store) ; // Set destination pointer to buffer base

Sets PEC channel 0 destination pointer to the base of the results buffer by using the intrinsic function which
returns a 16 value corresponding to the offset of the buffer from the base of segment 0. The _sof_() function
has to be used as ad_buffer exists in the near data area which must be addressed via DPP2. If the C “address
of operator”, ‘&’ was used, only the offset from the base of the near data area would be returned.

SRCP0 = (unsigned short) &ADDAT ; // Set up source pointer 0

Sets PEC channel source pointer to A/D convertor results register by using & operator. As the ADDAT
register exists in the sdata area, DPP3 is used implicitly and so the apparent address of the register is its
actual address as DPP3 = 3.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 134

The SRCPx and DSTPx pointers are not real pointers in the normal sense. They are created as a result of a
special cast from a constant value to an address.

Extract From reg167.h

The special casts used to convert RAM locations between 0xfce0 and 0xfcff into PEC pointers.

#define SRCP0 (*((unsigned int volatile sdata *) 0xFCE0))
#define DSTP0 (*((unsigned int volatile sdata *) 0xFCE2))
#define SRCP1 (*((unsigned int volatile sdata *) 0xFCE4))
#define DSTP1 (*((unsigned int volatile sdata*) 0xFCE6))
.
.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 135

EXERCISE 17: EX17

Objective: Use PEC to reduce CPU load in buffering continuous conversion results into dual arrays.

Procedure:

Write a program to continuously read AD channel 0 using "fixed channel continuous conversion" mode. Use
the PEC to transfer 128 samples into two buffers alternately. Create a two-dimensional array such as "un-
signed short ad_store[2][0x80]". On successive ADC interrupt service routines, set the
destination pointer to firstly "&ad_store[0][0]" and then to "&ad_store[1][0]".

NOTE: Put the C515C DIL switch to position '00000000' to stop the square wave generator.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 136

EXERCISE 18: EX18

To illustrate how interrupts are used in C166, we will try to write a 4800 baud software UART, or at least the
receiver, the difficult part! This is a real-time program which requires two peripherals to be used in tandem,
namely GPT1 and CAPCOM1.

(i) Set up an interrupt function that triggers when a negative edge occurs on the input capture pin, P2.3.
This will eventually be used to detect the falling edge of the start bit. Put the initialisation code in a function
called “init_RX_int()”. Name the interrupt service routine “RX_int_start(). Use the capture mode of the
CAPCOM unit and use the Set_Priority_0X(xxIC) macros to set priority level 2, group level 0.

The input capture mode of the CAPCOM unit can be used to create an interrupt only in response to an edge
on one of the port 2 pins. In this mode, it is set up to perform an input capture with interrupt service routine
but in this example, the captured value is simply ignored.

There is a serial bit stream being applied to P2.3 so you should be able to generate an interrupt from it.
Check that you can repeatably get to the interrupt function in HiTOP.

NOTE: Put the C515C DIL switch to position '00000011' to start the character transmitter. It is sending
just one character every 100ms. Initially, aim to get your program to detect the falling edge of the start bit.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 137

14.6 Switching Registerbanks In C

14.6.1 The USING Control

By including the USING <regbankname> control in an interrupt function definition, a new registerbank can be
made available for the function and no stacking of general purpose registers will be required.

Here is an example:

; /*** Interrupt Service For Timer 0 ***/
;

 REGDEF R0 - R15
 T0REGBANK REGBANK R0 - R15 <——————— Create new register bank

 ?PR?T SECTION CODE WORD ‘NCODE’

timer0_int PROC INTERRUPT = 16 USING T0REGBANK
GLOBAL timer0_int

; FUNCTION timer0_int (BEGIN RMASK = @0x0012)
; void timer0_int(void) interrupt 0x10 using T0REGBANK {
 ; SOURCE LINE # 13

SCXT DPP3,#3
NOP
MOV T0REGBANK,R0 <———————— Switch context to new register bank; old CP PUSHed onto

stack.
SCXT CP,#T0REGBANK
NOP

?C0006:
?C0007:

POP CP <——————— Original CP restored from stack.
POP DPP3
RETI

; FUNCTION timer0_int (END RMASK = @0x0012)
timer0_int ENDP

 ?PR?T ENDS

Here, a new set of registers is made available and the time for pushing has been eliminated. The decision of
when to use the using control should be made after examining the actual code produced by the compiler. If up
to three registers are pushed, there is no real advantage in “using”.

14.6.2 Sharing Register Banks

Interrupts of the same priority can share a register bank as they can never interrupt one another and hence no
register-bound data be lost.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 138

EXERCISE 19: EX19

This builds directly on the last exercise to complete the UART receiver.

(i) Write a function called “timer3_init()” to set up timer3 to produce an overflow interrupt every 208us,
the basic bit period at 4800 baud - call the interrupt “timer3_int()”. Run it in auto-reload mode with
timer2 as the reload register. Use the Set_Priority_0X(n) macros to set priority level 3, group level
0.

Put a USING <regbankname> on both interrupt functions that you have written. Check that you can
repeatably get to the interrupt in HiTOP.

(ii) On each timer3 interrupt, capture the value of P2.3 into bit 9 of an unsigned int bdata variable
(rx_shift_reg) which will be used as a shift register. You will also need a incoming bit counter
called rx_bit_count. On each interrupt, you will need to shift rx_shift_reg one place to the right.

(iii) Modify the P2.3 input capture interrupt to enable the timer3 overflow interrupt. Make sure that the
timeout from this point to the first timer3 interrupt is one and a half the 208us bit period used in the
timer3_init() function. This will make sure that you are sampling each subsequent incoming bit in
the centre! A good trick is just to force T3 to a one and a half bit-period count in the capture interrupt
so that you get one longer timeout period to start with. This makes the first timer 3 interrupt occur
in the middle of the first bit - the start bit contains no information!

(iv) After 9 interrupts (i.e. 10-bits per frame) the timer 3 interrupt must disable itself.

(v) On the last interrupt, move the byte in the lower half of rx_shift_reg into a global variable called
“SxRBUF”. Create a global bit flag called SxRIR and set it at this point to tell the background that
a character has been received.

(vi) Stop timer 3, clear the interrupt request flag for CC3 and set its interrupt enable, ready for the next
start bit.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 139

NOTE: Once you can reliably receive the transmitted character, put the C515C DIL switch to position
'00000100' to make the character transmitter send an ASCII message string.

Collect the received characters into a buffer in the main() loop:

while(1) {
while(!SxRIR) { ; }
SxRIR = 0 ;
rx_buffer[i++] = SxRBUF ;

 }

14.6.3 Application Note - Using just the CAPCOM unit to realise the UART receiver

A more elegant solution is to use the CC3 CAPCOM channel to both detect the start bit and generate the bit
clock to capture the incoming bits in the serial stream. The initial configuration of CC3 is identical to that
already used. However, in the CC3 interrupt, the mode set by CCM0 is changed to compare mode. The
CC3 register is then incremented by the number of timer counts that corresponds to one bit time. After all the
bits have been captured, the CCM0 mode is set back to capture mode, so that the next start bit falling edge
can be detected.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 140

EXERCISE 20: EX20

Objective:

Implement the CAPCOM-based UART receiver.

Procedure:

(i) Edit MULTUART.C and locate a function called uartA_init(). Modify this function to do the
following:

- Set a variable called SABRG to equal the parameter "baudrate". SABRG is a global variable and will
be

used later in the CC3 interrupt.
- Set a variable called uartA_bit_count to 9
- Use the _bfld_() intrinsic function to set CAPCOM channel 3 to negative edge triggering to detect the
falling edge of the start bit. You will need to use CCM0 to do this.
- Set the CC3 interrupt to priority level 12, group level 0
- Set the start_bit_detect_mode bit variable to 0

This completes the initial configuration of CAPCOM channel 3.

(ii) Modify the uartA_rx_interrupt() function to do the following:
- If start_bit_detect_mode is one, as it will be while CC3 is in negative edge-triggered mode, add a
umber of counts corresponding to one and a half bit periods (SABRG + SABRG/2) to CC3 itself.
- Set the CC3 mode to compare mode to create another interrupt one and a half bit periods later.
- Clear the start_bit_detect_mode bit flag.

- If start_bit_detect_mode bit flag is zero, capture the bit on port 2.3 into "rxA_shift_reg". We have
provided a sbit named "rxA_shift_reg_input" that is the bit 9 of rxA_shift_reg. Likewise,
uartA_input_pin is an sbit representing port 2, bit3. The C statement "rxA_shift_reg_input =
uartA_input_pin ;" will perform the bit capture into rxA_shift_reg.
- Shift the word variable "rxA_shift_reg" one place to the right.
- Decrement the bit counter "uartA_bit_count".
- When uartA_bit_count reaches zero, set start_bit_detect_mode to 1 and transfer the lower 8 bits of
rxA_shift_reg to a variable called "SARBUF". Set uartA_bit_count back to 9 and change the compare
mode of CC3 back to capture on negative edge, ready for the next start bit. Finally, set a bit called
"SARIR" to tell the code in MAIN.C that a new character has been received.

(iii) MAIN.C need not be changed. It will capture the received characters into a buffer which may be
examined via HITOP.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 141

14.7 When Your C166 CPU Keeps Flying Off Into Space...

Filling The 80C166’s Trap Area With Dummy Interrupts

Good practice says that any unused interrupt vectors should be filled with a jump to a defined address, usually
RESET. This prevents a system from crashing should an unexpected interrupt occur. However, during debug-
ging, it is more useful to be able to find out what the erroneous trap was, rather than to just go back to reset.

14.7.1 The Trap.C File

To allow the source of traps to be easily found, we have created a file containing dummy interrupt functions
for all 80C166 interrupt sources. Each function contains an endless while(1) loop. Thus, if the CPU vectors
off to some unexpected interrupt, it will come to rest safely in a loop which will allow the source to be identi-
fied. If a debugger is being used, set breakpoints on each of the dummy interrupt routines so that you can
look back though the trace buffer to find out where the error or false interrupt occurred.

Here is an extract from the file:

/*** CAPCOM Unit Interrupt Traps ***/
void CAPCOM0_int(void) interrupt 0x10 {
while(1){;} }
void CAPCOM1_int(void) interrupt 0x11 {
while(1){;} }
void CAPCOM14_int(void) interrupt 0x1e { while(1) { ; } }
void CAPCOM15_int(void) interrupt 0x1f { while(1) { ; } }
void timer0_int(void) interrupt 0x20 {
while(1) { ; } }

/*** General Purpose Timer Unit Traps ***/
void GPT_timer2_int(void) interrupt 0x22 {
while(1) { ; }
void GPT_timer6_int(void) interrupt 0x26 { while(1) { ; } }
void GPT_CAPREL_int(void) interrupt 0x27 { while(1) { ; } } }
void serial0_tx_int(void) interrupt 0x2a { while(1) { ;} }
void serial0_rx_int(void) interrupt 0x2b { while(1) { ; } }
void serial0_error_int(void) interrupt 0x2c { while(1) { ; }
void serial1_tx_int(void) interrupt 0x2d { while(1) { ; } }
void serial1_rx_int(void) interrupt 0x2e { while(1) { ;} }
 void serial1_error_int(void) interrupt 0x2f{
while(1) { ; } }

/*** Hardware Traps ***/
void NMI_Trap(void) interrupt 0x02 {
while(1) {; }
} void STKOF_Trap(void) interrupt 0x04 {
while(1) { ; }
} void ClassB_Trap(void) interrupt 0x0a { while(1) { ; } }

/*** Software Traps ***/
void software_trap_49(void) interrupt 49 { while(1) { ; }
} void software_trap_50(void) interrupt 50 { while(1) { ;} }
} void software_trap_127(void) interrupt 127 { while(1) { ; } }

This file is compiled and linked as normal. As the vector area is now filled with JMPSs, the normal reserve
statement can be removed. Note that any interrupt sources used by your application must be commented out

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 142

of the source file otherwise when you link, “duplicate interrupt number errors” will be flagged. If you are using
a HiTOP166 monitor debugger, you will need to comment out the serial port0 traps.

In the final application, it would be more useful to call a diagnostics function which could perhaps send an
error message to a terminal. Of course, the error message should be suitably cryptic so that your end user will
not know that your released code has encountered a system stack overflow and hence not start asking awk-
ward questions....

14.7.2 Common Reasons For Getting To Unexpected Traps

(i) If you end up at the “word access to odd address” trap, check that you have not externally referenced
a char quantity as an unsigned int! Using the suggested intelligent include files method, this problem
can be eliminated.

(ii) If you end up at an interrupt vector which was completely unexpected, check that you have not got
two interrupt sources set with the same priority and group level. Using the Set_Priority() macros will
help avoid this. Also check that you have not got an incorrect or missing interrupt number.

(iii) If your program seems to end up at main() again rather than going to an interrupt routine, check that
you have got the interrupt number right. The CPU could vector off, find no JMPS and just plough
on until it sees ?C_STARTUP again!

14.7.3 New Control for Interrupt Functions

NOT_SAVE_DPP3

New C167 Libraries which do not alter DPP0 and DPP3 registers. All accesses to far/huge/xhuge variables
are done with EXTS/EXTP instruction sequences which means that DPP3 and DPP0 are never changed.
PUSHes and POPs of DPP3 and DPP0 in interrupt functinoc are eliminated. Only safe with MOD167.

14.8 Advanced Technique - Simulating Static Register Variables

The C166 core was designed to allow automatic variables to be allocated to registers so that no intermediate
data needs to be moved off chip and hence only 100ns register instructions are used. The C166 compiler will
automatically try to allocate locals to registers. It is often that case though that an interrupt function will need
to operate on some static data, which will normally have to be in ordinary data RAM that requires extra time
to access. The USING directive is useful for allowing a fast context switch but it can also provide what are
effectively static register variables: provided that no other interrupt function uses a particular register bank, the
data left behind after a previous run of the interrupt function will still be there. Thus, any automatics created in
an interrupt function which has an USING will in practice be static locals, whose values will be preserved
between function calls. Making use of this trick can drastically reduce the run time of large interrupt functions.
There are unfortunately two drawbacks in the current v3.0x C166 compiler:

(i) The static data in the interrupt cannot easily be accessed by background loop functions, as with any
local.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 143

(ii) The normal compiler memory initialisation cannot be relied upon to clear the register bank and no
initial values can be given.

However, the zeroing phase can be performed by creating a special function which has the same USING
register bank, as shown in the function “void clear_regs(void) using T0REGS”. Note the sdata pointer “con-
text pointer” created to the base of the register bank by casting the CPU’s context pointer (CP) to a unsigned
int pointer.

#include <reg166.h>
extern unsigned int rptr ;
unsigned int * sdata regs ;
unsigned int basereg ;
int const i = 0xaaaa ;

/*** Interrupt Function Using A Registerbank ***/
void timer0(void) interrupt 0x20 using T0REGS {
 unsigned int var1, var2 ; // These are in practice statics

 var1 = CC0 - var2 ; // Find time between interrupts
 var2 = CC0 ; // Remember CC0 value for next time...
 }

/*** Clear Out Register Bank Used By Interrupt Function ***/

void clear_regs(void) using T0REGS {

 static unsigned char i ;
 static unsigned int sdata *context_ptr ; // Create pointer to base of regbank

 context_ptr = (unsigned int sdata *) CP ;

 for(i = 1 ; i < T0REGS_Size ; i++) { // Never touch R0

 context_ptr[i] = 0 ;
 }
 }

/*** Main Background Loop ***/

void main(void) {

 clear_regs() ;

 basereg = (*((unsigned int sdata *) rptr)) ;
 regs = (unsigned int *) rptr ;
 *regs = 0xaaaa ;
 regs[1] = 0x5555 ;
 }

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 144

14.9 Fixing Register Banks At Absolute Addresses

Registerbanks created by the USING statement can be fixed at specific addresses using the REGBANK
control. This is sometimes necessary when on-chip RAM is in short supply and precise control of where
things end up is required. C166’s default register bank, used by background loop functions, goes by the
name of ?C_MAINREGISTERS and will sit at 0xfc00 unless told otherwise. Any new register banks created
by the USING statement can also be placed, for example:

void timer0_int(void) interrupt 0x20 USING T0REGS {
 }

main.obj,&
moda.obj &
to exec.abs &
CLASSES(FDATA(0x8000),
 FDATA0(0x8000)) &
SECTIONS(?MAIN?FD0%FDATA0(0xA000))
REGBANK(T0REGS(0xfd20))

14.10 Controlling the CP directly -Some Tricks With Registerbanks

A registerbank is really just 16 contiguous words of on-chip RAM. Thus is it entirely possible to create your
own registerbanks from int arrays. The context pointer can then be set to point at the base of the array to
perform a manual context switch.

int idata NEWREGBANK[0x10] ; // Create a word array of 16bytes
.
.
CP = &NEWREGBANK[0] ; // Perform a manual context switch

Why would you want to this? In very time-critical code, the ideal situation would be that any subsequent
functions from an interrupt function would have their own dedicated registerbank. Thus both the interrupt
function and the called function could use up to 15 registers each for locals. Unfortunately, C166 does not
really allow you to do this, although the register mask concept can help.

interrupt_func() using INTREGS {
 otherfunc() ;
 }

In a real project, it was necessary to employ the “Simulating Static Register Variables” trick outlined earlier
on to permit an interrupt function to use registers to best effect. Unfortunately some time later in the develop-
ment, a call to a function with many local variables had to be added. The use of registers in the interrupt
function was thus largely inhibited, with a great loss of performance.

Adding the registermask @0x8000 to the called function’s prototype restored the use registers in the caller to
the original state - this mask value says effectively that “this function uses no registers”. Unfortunately though,
the two functions were now using the same registerbank with the result that the local data from the caller was
being destroyed by the second function. The solution was to use the @0x8000 registermasks with a manual
context pointer switch to a 16 word array. This allowed both caller and called functions to have their own
registerbanks.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 145

Example Of Allocating One Registerbank Per Function

/*** Define a new register bank manually ***/

#define INTERPREGS_SIZE 0x10
unsigned int idata INTERPREGS[INTERPREGS_SIZE] ;

/*** Crankshaft TDC Interrupt ***/

void tdc_int(void) interrupt 0x1f using TDCREGS {

 unsigned int temp, time_for_60 ; // Make this a register variable
 unsigned int time_last_60 ; // These are really static but dedicated
 unsigned int tooth_count ; // regbank TDCREGS makes them like static

// register variables
 unsigned int CP_temp ; // Store for current context pointer during interpolator call
.
.
.
 CP_temp = CP ; // Make copy of the current context pointer TDCREGS
 CP = &INTERPREGS[0] ; /// Set context pointer to special regbank
 master_inj_PW = map_interp((ADDAT & 0x3ff),engine_speed,default_map2) ;
// Call function in new regbank
 CP = CP_temp ; // Restore original regbank (TDCREGS)
 time_last_60 = CC15 ; // Store current CC15 for next time...
 }
External function’s prototype:

#ifdef _INTERP_

#else

/*** External References ***/

 extern unsigned int map_interp(unsigned int,
 unsigned int,
 unsigned int near *) @0x8000 ;

#endif

Note: As the context pointer had to be switched before the function was called, none of the parameters passed
to it could be register variables - by switching the registerbank base, they would be inaccessible. Here, the
parameters were a CPU sfr and a global variable so no problem arose.

The end result was that both functions could freely use registers and hence the run time was reduced by 40%!

14.11 Special Note On idata (classes IDATA0, IDATA) For C165/7

The C167/5 have an internal RAM which starts at 0xf600 rather than the 0xfa00 of the C166. Unless you tell
it otherwise, the program data declared as idata will go into the IDATA0 class and be placed by C166 at
0xfc20, above the 20 bytes required by the background loop registerbank, ?C_MAINREGISTERS.

L166 will not use the region below 0xfa00 unless you tell it via the classes control. This is simply done with
the following linker invocation file:

main.obj,&
moda.obj &

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 146

to exec.abs &
CLASSES(IDATA0(0xF600),
 FDATA(0x8000),
 FDATA0(0x8000)) &
SECTIONS(?MAIN?FD0%FDATA0(0xA000))

It is usually only necessary to specify IDATA0 as any compiler-generated idata classes will be of this type.

14.12 Bit Addressable Data

A major frustration for assembler programmers coming to C used to be the inability of ANSI C to handle bits
in the bit addressable area directly. However in the C166, it is possible to force data into the bit addressable
area where the 80C166’s bit instructions can be used directly.

The simplest bit type is the “bit”. Bit variables are declared in the same way as ints and chars:

bit flag_bit = 0 ;

14.12.1 Special Function Bits

It is also possible to name the bits in a word located in the bdata bit-addressable on-chip RAM area. This
allows related bit flags to be grouped together in a single unsigned int object.

First an object is declared as bdata

unsigned int bdata test ;

Now individual bits may be enabled for bit addressing

sbit mybit0 = test^0 ;

The symbol mybit0 may now be used for all future bit operations on bit 0 of test.

14.12.2 Note on declaring an sbit as external

To reference an sbit defined in another module, simply use:

extern bit mybit0 ;

The fact that it was originally defined as a sbit is irrelevant - C166 simply regards it as an ordinary bit data
type.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 147

15. Assembler Interfacing - In-line Assembler

C166 allows small sections of assembly code to be embedded directly within C functions. It is however best
avoided and it is always better to call assembler code via a normal function call, as described in the next
section.

Any module containing in-line assembler must be compiled with the SRC switch to generate a valid assembler
file. This file has original C lines simply as comments. Examining the .src file is also useful way of understand-
ing how the compiler works!

EXAMPLE 1:

Compile with:

C166 main.c SRC

and then assembler with:

A166 main.src

void main(void) {

 char x,y,z ;

 x = 1 ;

#pragma asm

 MOV R10,#010H ; Assembler

#pragma endasm

 /* Further C Code */

 }

With C166’s good code efficiency and intrinsic functions, there are very few occasions when in-line assembler
is really required.

Note! You are strongly advised not to use this C166 feature! In almost every case, proper use of the compiler
will produce code with near-assembler efficiency. If you absolutely have to use assembler, call it as a function.

15.1 Calling Assembler Functions From C166

15.1.1 Coping With Start Addresses And Parameters

It is entirely possible to call assembler functions from C166. The most fundamental requirements are:

(i) Ensure that the start address label is accessible to C166 i.e. make sure that L166 can tie up the call
in C166 with the target label in the assembler file.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 148

Any label declared as PUBLIC in A166 is accessible from C166:

A166 Module

PUBLIC ASM_START

ASM_START: MOV R1,#100H
MOV R2,[R1+]

C166 Module

extern void asm_start(void) ;

.

.

.
 asm_start() ; // Call function written in assembler
.
.

(ii) Make sure that any parameters required by the assembler function are placed in the correct registers
by C166.

The simplest way to acheive this is to write the C module which contains the call to the assembler function and
compile it with the SRC option. The resulting .SRC file will show in which the placement of each parameter
will be shown.

Example

asm_func(0x1000,0x80000000, (char huge *) 0x104000) ; // Call asm function

MOV R11,#16384 ; huge pointer (SOF offset)
MOV R12,#16 ; huge pointer (SEG number)
MOV R9,#0 ; long data lower word
MOV R10,#-32768 ; long data upper word
MOV R8,#4096 ; int data word
CALLAcc_UC,asm_func

;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 149

15.1.2 Pointer Passing To Assembler Functions

The components of a pointer are passed to functions by C166, according to the following rules:

near pointers
The pointer consists of a single 16-bit value which is able to address a 0x4000 range, passed in a single
register.

MOV R4,[R8]

far pointers
The far pointer is page based and consists of two words (32-bit) value which are able to address a 0x4000
range, passed in two registers:

Rx+1 - page number
Rx - page offset

EXTP R9,#1
MOV R4,[R8]

huge and xhuge pointers
The huge pointer is segment based and consists of two words (32-bit) value which is able to address a
0x10000 range, passed in two registers. The xhuge pointer is identical in format but able to address an
unlimited range.

Rx+1 - segment number
Rx - segment offset

EXTS R9,#1
MOV R4,[R8]

15.2 Using C166 To Write Assembler Functions

The simplest way to produce assembler modules is to use C166 as the starting point. Here is what to do;

(i) Create a C module which contains a function with the required name.

(ii) Declare the major local and global data required by the embryonic assembler function.

(iii) Compile the C module with the SRC option.

(iv) Use the resulting .SRC file as a template on which to base your own further assembler work.

(v) Assemble .SRC file with A166

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 150

Example

$NOMACRO
$SEGMENTED CASE MOD167
;
; ‘S.SRC’ GENERATED FROM INPUT FILE ‘S.C’
; COMPILER INVOKED BY:
; C:\C166V2\BIN\C166.EXE S.C SRC
;

 NCODE CGROUP ?PR?S
 NCONST DGROUP ?NC?S
 NDATA DGROUP ?ND0?S
 SDATA DGROUP ?ID0?S,SYSTEM

 ASSUME DPP1 : NCONST
 ASSUME DPP2 : NDATA
 ASSUME DPP3 : SDATA
 ?NC?S SECTION DATA WORD ‘NCONST’
 string DB ‘H’,’E’,’L’,’L’,’O’,00H
 PUBLIC string
 ?NC?S ENDS

 ?ND0?S SECTION DATA BYTE ‘NDATA0’
 asm_global1 DSB 1
 PUBLIC asm_global1
 ?ND0?S ENDS

 ?ID0?S SECTION DATA WORD ‘IDATA0’
 asm_global2 DSW 1
 PUBLIC asm_global2
 asm_global0 DSW 1
 PUBLIC asm_global0
 ?ID0?S ENDS

; #pragma MOD167
; #include <reg167.h>
;
; char const near string[] = “HELLO” ;
; int idata asm_global0 ;
; char near asm_global1 ;
; int idata * idata asm_global2 ;
;

REGDEF R0 - R15
 TIMER_REGS REGBANK R0 - R15

 ?PR?S SECTION CODE WORD ‘NCODE’

asm_timer_int PROC INTERRUPT = 16 USING TIMER_REGS
GLOBAL asm_timer_int

; FUNCTION asm_timer_int (BEGIN RMASK = @0x0010)
; void asm_timer_int(void) interrupt 0x10 using TIMER_REGS {
 ; SOURCE LINE # 10

SCXT DPP3,#3
NOP
MOV TIMER_REGS,R0
SCXT CP,#TIMER_REGS
NOP

?C0003:
SUB R0,#2

;
; int a, b ;
;
; a = CC1 ;
 ; SOURCE LINE # 14

MOV R4,CC1
;—— Variable ‘a?01’ assigned to Register ‘R4’ ——
;
; }
 ; SOURCE LINE # 16

ADD R0,#2
?C0004:

POP CP
POP DPP3
RETI

; FUNCTION asm_timer_int (END RMASK = @0x0010)
asm_timer_int ENDP

 ?PR?S ENDS
END

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 151

16. The Part 2.0B CAN Module

The CAN module on the C167CR microcontroller has the following features;

· Transfer rates up to 1Mbaud.
· Standard 11-bit and Extended 29-bit protocols.
· Message object architecture.
· Minimal CPU management overhead.

The CAN module is derived from standalone CAN components like the 82C257 so anybody having written
CAN software before should find the procedures very familiar. The first job is to understand what the CAN
module’s control registers do and how they are addressed.

16.1 CAN Registers

The CAN module is a C167 XBUS peripheral which is accessed via an area of memory-mapped registers,
starting at address 0xEF00. These registers are made up of 6 General Control Registers (GCR) and 15
Message Object Buffers (MOB). Their arrangement is shown in the diagram below.

Control/Status Register

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 152

These bits control and indicate the status of the CAN module.

LSByte is control part of register;-

INIT - Start initialisation
Write 1 to start the software initialisation of the CAN module.
Write 0 to activate CAN module after initialisation.

IE - Interrupt enable of CAN module
Write 1 to enable CAN objects to generate TX/RX interrupts.
Write 0 to stop them.

SIE - Status interrupt enable
Write 1 to enable interrupts when TXOK, RXOK are set or LEC is updated.
Write 0 to stop them.

EIE - Error interrupt enable
Write 1 to enable interrupts when EWRN or BOFF change.
Write 0 to stop them.

CCE - Configuration change enable
Write 1 to enable access to Bit Timing Register.
Write 0 to prevent/protect access.

MSByte is the status part of the register:

LEC - Last Error Code
0 NO ERROR
1 STUFF ERROR
2 FORMAT ERROR
3 ACKNOWLEDGE ERROR
4 BIT 1 ERROR
5 BIT 0 ERROR
6 CRC ERROR

TXOK - Transmitted message successfully
RXOK - Received message successfully
EWRN - Indicates warning level has reached 96
BOFF - Busoff state error level >= 255

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 153

Interrupt Register

The CAN interrupt register indicates the source of the different interrupts that the module can generate:

INTID - 00 interrupt idle
- 01 status change interrupt

if SIE set, update of LEC or set of RXOK or TXOK
if EIE set, change of BOFF or EWRN.

- 2 Message Object 15 (Receive only) interrupt, highest priority
- (2+N) Message Object N interrupt (N=1..14)

Unlike other peripherals in the C167, all the possible interrupt sources in the CAN module share the same
vector. Therefore in the single CAN service routine, the user must check the flags in the CAN interrupt
register to see what event actually caused the interrupt. In the interrupt routine, the interrupt source must be
serviced and then INTID checked again to see if there are any other interrupt sources pending until INTID =
0. This process is covered in more detail later.

Bit Timing Register

This register contains the fields which define the bit times used on the network.

Its probably a good idea to read a document which explains the definitions and theory of calculation behind
the CAN bit timing before you get too stuck here! Fortunately, there are some “rules of thumb” that can
safely be used in most applications. However, as the timings are largely dependent on the electrical character-
istics of physical layer, you should take special care if you have an unusual or very long transmission line.

BRP - Baud Rate Prescaler, defines time quanta.
SJW - (Re)Synchronization Jump Width, allow bit time resync up to (SJW+1) quanta.
TSEG1 - Time Segment before sample point, sample after (TSEG1+1) quanta.
TSEG2 - Time Segment after sample point, (TSEG2+1) quanta after sample.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 154

16.1.1 Bit Time calculation

Here is a diagram of a single CAN bit time, which is divided up into 4 separate time segments.

SYNC_SEG - Synchronization segment
PROP_SEG - Propagation segment
PHASE_SEG1 - Phase segment 1
PHASE_SEG2 - Phase segment 2

The fields in the Bit Timing Register relate as follows;

TimeSeg1 = PROP_SEG + PHASE_SEG1
TimeSeg2 = PHASE_SEG2

BIT time = SYNC_SEG + TimeSeg1 + TimeSeg2

SYNC_SEG = 1 quanta (This time is not adjustable)
TimeSeg1 = (TSEG1+1) quanta
TimeSeg2 = (TSEG2+1) quanta
1 quanta = (BRP+1) * 2 * t
t = 1 / XCLK FREQUENCY

The general rule on defining the sample point is that is should be about 60% of the total BIT time, as recom-
mended in the CAN specification. This corresponds to the capacitive-type loading on the bus, particularly
over long distances.

Example

Calculation to generate BIT time to give 100Kbaud with a sampling point of 60% of the nominal BIT time.

XCLK = 20Mhz
t = 1/20Mhz

Choose 1 time quanta = 500ns = (BRP + 1) * 2 * t
BRP = 4

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 155

Total time quanta in 100Kbaud = 20

So sample point at 60% = 12 quanta into BIT time

Therefore:

TSEG1 = (TimeSeg1 - 1) quanta = 10
TSEG2 = (TimeSeg2 - 1) quanta = 7

Choose SJW = 3 (see next paragraph)

BTR = (TSEG2 << 12) | (TSEG2 << 8) | (SJW << 6) | BRP = 0x7AC4

16.1.2 Resynchronization

Resynchronization occurs when a recessive to dominant bit state change occurs outside an expected
SYNC_SEG. If the bit change is earlier than the SYNC_SEG, then PHASE_SEG1 is shortened to compen-
sate. If the bit change is latter than the SYNC_SEG then PHASE_SEG2 is lengthened.

This adds the following constraints on the timings;

TimeSeg1 >= Tsjw + PROP_SEG
TimeSeg2 >= Tsjw

The maximum number of time quanta that can be added or subtracted is defined by

Tsjw = (SJW+1) quanta

So the SJW field allows compensation for phase shift between clocks on different nodes.

Mask Registers

These tell the CAN module which bits of the incoming message ID to compare against the ID’s in the RX
message object’s buffers.

Global Mask Short

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 156

ID28..18 - standard CAN 11-bit mask

If a bit is set to 1 in the mask it means that the corresponding bit of any message seen on the bus will be
compared with the corresponding ID bit in any receive type message objects to see if there is a match. If set
to 0, this bit is “don’t care” so it will not be compared against.

Quick example;

CAN_Global_Mask = 0xE001; /* Mask ID = 0x00f */

Here, the CAN module only checks the bottom nibble of the 11-bit ID against the RX message object buffers
to find a match then captures CAN message.

Upper Global Mask Long / Lower Global Mask Long

These are two 16-bits registers which contain the 29-bit masks when using extended CAN.

Upper Mask of Last Message / Lower Mask of Last Message

Message object 15 is a receive only object, which can be used for different and infrequently sent messages. It
has its own independent mask registers, containing either a 11-bit or a 29-bit mask, depending on type of
CAN used.

16.2 Message Objects

The CAN module has a total of 14 identical message objects and a message object 15, which is receive only,
having its own masks and double buffering. Each object consists of 15 objects of 15 consecutive bytes, at an
address multiple of 16 bytes. The objects represent packets of information of which 8 bytes are real data and
the remainder are part of the CAN protocol. A diagram follows:

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 157

Message Control Register

This register contains 8 fields which are each made up of 2 complementary bits. This allows a selective set or
reset of specific bits without requiring read-modify-write operations. It can also give the software engineer
many hours of fun interpreting hex numbers.... The interpretation of the 2-bit fields is given below;

Value Function on Write Meaning on Read

00 Reserved Reserved

01 Reset element Element is reset

10 Set element Element is set

11 Unchanged Reserved

INTPND - Indicates this object generated an interrupt request
Read this to find out if object has interrupted.

RXIE - Interrupt when object successfully receives a message
Set this field if you want interrupts generated when message RXed

TXIE- Interrupt when object successfully transmits message
Set this field if you want interrupts generated when message TXed

MSGVAL - Indicates if object valid. CAN module only operates on valid objects
Clear this to stop CAN module messing with object while your updating it.

NEWDAT - Indicates if data has been written by CPU or CAN module since last cleared
Read this to find out if object has been written too.

MSGLST - RX objects only. Indicates CAN module stored new data while NEWDAT = 1
Read this to find out if previous message was overwritten.

CPUUPD - TX objects only. Stops TX of object while CPU is updating the object.
Set this to stop CAN module Txing this object will your updating it.

TXRQ - Indicates TX of object as been requested by CPU or remote frame
Set this to request TX of this message.

RMTPND - TX objects only. Indicates TX has been requested by remote node.
Read this to find out if the TX of this object has been Remotely Requested.

Upper Arbitration Register

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 158

Lower Arbitration Register

Arbitration registers for 11- or 29-bit IDs. Set the RX ID to be captured off the bus for RX type objects or
the ID to be TXed for TX type objects.

ID28..0 - 29-bit extended CAN id
ID28..ID18 - 11-bit standard CAN id (ID17..0 Don’t care)

Message Configuration Register

XTD - Set if object is set up for 29-bit CAN else standard 11-bit CAN
DIR - Message Direction

DIR = 1 TX Object. When TXRQ set message is transmitted.
On RX of remote frame with matching ID the TXRQ + RMTPND are set

DIR = 0 RX Object. When TXRQ set remote frame with its ID is TXed
On RX of data frame with matching ID message data is stored in object

DLC - Data Length Code values 0..8

Data Fields

DATA BYTE 0..7 - Storage for up to 8 bytes in each message object.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 159

16.2.1 Using The SECTIONS Control To Access The C167CR CAN Peripheral

It has ben widely commented upon that the CAN module’s registers do not appear in REG167.H, along with
all the other SFRs. The reason for this is that as an XBUS peripheral, the SFR data type is not appropriate as
really the module is just a memory-mapped region with a special significance. Keil suggest that you use casts
to a pointer of constant addresses in the CAN peripheral but this is a little dangerous as the linker has no
knowledge of the registers and may drop something else on top of them.

It is better to address it via appropriately-named C variables situated over the real control and data registers.
This can be acheived with the following souce file, used in conjunction with the given linker input file. The
advantage of this approach is that unlike the pointer-based method, L166 physically places these data objects
at 0xEF00, so preventing anything else accidentally end up there and causing problems.

Some special controls to note are:

· The ORDER which ensures that the linker places the data in memory in the order in which it appears
in the source file.

· The NOINIT control which stops the CAN peripheral being zeroed before the program gets to main().
· The RENAMECLASS control which makes the compiler emit a distinctively named section which

the linker’s SECTIONS control can use to fix the data at 0xEF00.

File: CAN_REGS.C

#pragma ORDER
#pragma NOINIT
#pragma RENAMECLASS(SDATA = CAN_REGS)

#include “can_regs.h”

unsigned short volatile sdata CAN_Control_Status;
unsigned char sdata CAN_Interrupt;
static unsigned char sdata reserved;
unsigned short sdata CAN_Bit_Timing;
unsigned short sdata CAN_Global_Mask;
unsigned short sdata CAN_Upper_Global_Mask;
unsigned short sdata CAN_Lower_Global_Mask;
unsigned short sdata CAN_Upper_Last_Mask;
unsigned short sdata CAN_Lower_Last_Mask;

struct MESSAGE_OBJECT sdata CAN_Object[15];

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 160

File: CAN_REGS.H

struct MESSAGE_OBJECT {
unsigned short volatile control;
unsigned short upper_arb;
unsigned short lower_arb;
unsigned char config;
unsigned char volatile data[8];
unsigned char reserved; };

extern unsigned short volatile sdata CAN_Control_Status;
extern unsigned char sdata CAN_Interrupt;
extern unsigned short sdata CAN_Bit_Timing;
extern unsigned short sdata CAN_Global_Mask;
extern unsigned short sdata CAN_Upper_Global_Mask;
extern unsigned short sdata CAN_Lower_Global_Mask;
extern unsigned short sdata CAN_Upper_Last_Mask;
extern unsigned short sdata CAN_Lower_Last_Mask;
extern struct MESSAGE_OBJECT sdata CAN_Object[];

File: EXEC.LIN Linker Control File

CLASSES(ICODE(0x200),
 NCODE(0x1000),
 NCONST(0x2000),

 SDATA(0xE000),
 SDATA0(0xE000),
 NDATA(0x40000),
 NDATA0(0x40000))

SECTIONS(?SD?CAN_REGS%CAN_REGS(0xEF00))

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 161

16.3 Setting Up The CAN Module Baudrate And Sampling Point

EXERCISE 30: EX30

Directory: \166TRAIN.WIN\EX30\WORK

Object: Set up basic CAN module parameters of:

· Baud rate
· (Re)synchronisation Jump Width
· Sampling point

The specification calls for the following settings:

CPU clock frequency = 20MHz
Baudrate = 100kbit/s
(Re)synchronization Jump Width (SJW) = TSEG2 – 1 quanta (SJW <=3)
Synchronisation Segment = 1
Sampling point = 75%

You must calculate the values of the TSEG1, TSEG2, SJW and BRP fields in the CAN_Control_Status and
Bit_Timing registers to complete the task. All the other exercises depend on you getting these basic settings
right!

Procedure:

Open the project \166TRAIN.WIN\EX30\WORK and edit the C source file “CAN.C”.

(i) Set the INIT bit in the CAN_Control_Status register to ‘1’ to put the CAN module into initialisation
mode. Refer to page 23-6 in the C167CR CAN module description for details of this register.

(ii) Set the CCE bit to remove the write protection on the Bit Timing register. Refer to page 23-10 in the
C167CR CAN module description for details of this register.

(iii) Work out the value for the Baud Rate Prescaler (BRP), TSEG1 and TSEG2 fields in the
Bit_Timing_Register. The size of the time quanta "Tq" in microseconds must be found first of all.
You will also have to find the number of time quanta per bit period plus the TSEG1 and TSEG2 to
do this. You can use the following method:

 (a) Calculate the bit time at the required baudrate (1/Baudrate). Use microseconds and MHz throughout.
 (b) Draw a diagram of the time before the sample point and the time after it:

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 162

 (c) Write down the equation for this, using units of :

 Tq_Before_Sample_Point * Tq + Tq_After_Sample_Point * Tq = Bit_Time

Substitute: Tq_Before_Sample_Point = (0.75/(1-0.75) * Tq_After_Sample_Point

 => (0.75/(1-0.75) * Tq_After_Sample_Point *Tq) + Tq_After_Sample_Point * Tq = Bit_Time

 => 3*Tq_After_Sample_Point * Tq + Tq_After_Sample_Point * Tq = Bit_Time

 => 4*Tq_After_Sample_Point = Bit_Time/Tq

 Tq_After_Sample_Point = Bit_Time/(4 * Tq)

 => Tq_After_Sample_Point = 10us/(4 * Tq)

To give finally:

 Tq_After_Sample_Point = 2.5/Tq

 (d) By inspection of the above equation, a number of values of Tq are possible that give integer
 values of Tq_After_Sample_Point:

 Tq = 0.1us, Tq_After_Sample_Point = 25 time quanta, => Tq_Before_Sample_Point = 75
 Tq = 0.5us, Tq_After_Sample_Point = 5 time quanta, => Tq_Before_Sample_Point = 15
 Tq = 2.5us, Tq_After_Sample_Point = 1 time quanta, => Tq_Before_Sample_Point = 3

 (e) From the 167 data book:

 TSEG2 = Tq_After_Sample_Point - 1
TSEG1 = Tq_Before_Sample_Point - Sync_Seg - 1

 where (2 <= TSEG1 <= 15) and (1 <= TSEG2 <= 7). In simple terms, the number of Tq per bit must
 be between 8 and 25 inclusive.

 These limits should allow you to choose one of the three values of Tq and
 thence the values of TSEG1 and TSEG2.

 Alternatively, you can refer to the supplied table of all possible
 values of Tq. (Table produced by EXCEL spreadsheet that is available as a handout)

Note on SJW: The biggest possible synchronization jump width will occur when the time quantum size,
Tq, is large. This implies that the BRP chosen must therefore be the highest value consistent with meeting the
TSEG1 and TSEG2 criteria. A large SJW will therefore make the network more robust.

(iv) You are now able to calculate the value for the Baud Rate Prescaler field in the bit timing register,
using the formula:

 BRP = (Tq*Fosc/2)-1 (using units of microseconds for Tq and MHz for Fosc)

(v) Put the value for BRP into the lower 6 bits of the Bit_Timing register.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 163

(vi) Put the resulting value TSEG1 into CAN_Control_Status bits 8-11

(vii) Put the resulting value TSEG2 into CAN_Control_Status bits 12-14

(viii) Set the resynchronization jump width (SJW) to the value TSEG2-1 by writing to
CAN_Control_Status bits 6-7.

(ix) Complete the CAN module setup by clearing the bits in the CAN_Control_Status register

(x) Rebuild the project using Project-Build.

(xi) Load the program into the HiTOP debugger, click the Target Reset button (TR) and run the program.
The LCD display should confirm whether you have got the settings correct!

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 164

16.4 Configuring The CAN Module For Transmit

EXERCISE 31: EX31

Directory: \166TRAIN.WIN\EX31\WORK

Object: Transmit the digital value of potentiometer zero on the IO board to the CAN monitor program on the
OHP screen

This exercise builds on exercise EX30.

CAN message object 1 will be used to send the value to the CAN monitor program that is driving the OHP
screen. If you successfully complete the exercise, you will be able to use your potentiometer zero to control
the length of a bar on the OHP screen corresponding to your node number!

The means of periodically reading the value of the potentiometer (pot.) is performed in an interrupt routine on
timer 3, which is provided.

To transmit, you must decide what message ID to use to transmit your pot value across the network. All the
message numbers being used are based on 0x70F. If you are team zero, your transmit message number will
be 0x70F. If you are team A, you must use 0x71F. Team B must use 0x72F, team 3 0x73F and so on.
You will be given the correct identifier at the start of the session.

Note that in the examples, the number of the CAN object will be denoted by “ONE”, “TWO”, “THREE”,
“FOUR” and FIVE”. For example, ”CAN_Object[ONE].control” is the control register for CAN object 1
and “CAN_Object[TWO].upper_arb” is the upper arbitration register for CAN object two and so on.

Open the project \166TRAIN.WIN\EX31\WORK\exec.prj and edit CAN.C.

Procedure:

(i) Before trying to use the CAN module, you must reset all the flags in the Message Control Register
for each of the 15 message objects. As these flags consist of two bits each, ‘01’ must be written to
each two bit field to clear it. Over the total of 8 flags, the pattern 0x5555 will do this.

Special note on the CAN object control registers: This register is unusual in that each flag in it has two bits.
To set a flag, ‘10’ must be written and to clear it, ‘01’. If ‘11’ is written, the flag is unaltered. This arrange-
ment is required to allow changes to be made to flags without a READ-MODIFY-WRITE.

 Examples:

· To set the MSGVAL flag:

Message Control = 0xFFBF ;

· To clear the MSGVAL flag:

Message Control = 0xFF7F ;

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 165

CAN_REGS.H file contains ready-made definitions that you can use to set and clear the various flags in the
control register during the exercises:

#define SET_RMTPND 0xbfff
#define CLR_RMTPND 0x7fff
#define RMTPND 0x8000
#define SET_TXRQ 0xefff
#define CLR_TXRQ 0xdfff
#define TXRQ 0x2000
#define SET_CPUUPD 0xfbff
#define CLR_CPUUPD 0xf7ff
#define CPUUPD 0x0800
#define SET_MSGLST 0xfbff
#define CLR_MSGLST 0xf7ff
#define MSGLST 0x0800
#define SET_NEWDAT 0xfeff
#define CLR_NEWDAT 0xfdff
#define NEWDAT 0x0200
#define SET_MSGVAL 0xffbf
#define CLR_MSGVAL 0xff7f
#define MSGVAL 0x0080
#define SET_TXIE 0xffef
#define CLR_TXIE 0xffdf
#define TXIE 0x0020
#define SET_RXIE 0xfffb
#define CLR_RXIE 0xfff7
#define RXIE 0x0008
#define SET_INTPND 0xfffe
#define CLR_INTPND 0xfffd
#define INTPND 0x0002

/* Bit Patterns for Message Configuration Registers */

#define EIGHT_DATA_BYTES 0x80
#define SEVEN_DATA_BYTES 0x70
#define SIX_DATA_BYTES 0x60
#define FIVE_DATA_BYTES 0x50
#define FOUR_DATA_BYTES 0x40
#define THREE_DATA_BYTES 0x30
#define TWO_DATA_BYTES 0x20
#define ONE_DATA_BYTE 0x10
#define ZERO_DATA_BYTES 0x00
#define FOR_TX 0x08
#define FOR_RX 0x00
#define STANDARD_FRAME 0x00
#define EXTENDED_FRAME 0x04

#define CHECK_ALL_ID_BITS 0xffff

#define BOFF 0x8000
#define EWRN 0x4000
#define RXOK 0x1000
#define TXOK 0x0800
#define CCE 0x0040
#define EIE 0x0008
#define SIE 0x0004
#define IE 0x0002
#define INIT 0x0001

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 166

(ii) Each structure in the array of structures “CAN_Object[].control“ must have 0x5555 written to it.

(iii) You must set the message ID for the potentiometer value you are going to send to the screen. Set
message object 1 to use your transmit message number by writing a pattern to CAN object 1 upper
arbitration register “CAN_Object[ONE].upper_arb” . The pattern is found by taking the message
ID and rearranging its bits according to:

Message IDupper_arbitration register - see C167 manual page 23-16

Bits 0-2 Bits 13-15
Bits 3-10 Bits 0-7

(iv) 11-bit IDs are being used here so the lower_arbitration register is set to zero. In a 29-bit system, these
would be set by rearranging the remaining bits of the ID to cover both the lower and upper arbitration
registers.

(v) The configuration, i.e. the operating mode for message object must be set. In the CAN object 1
configuration register “CAN_Object[ONE].config“ , you must set:

· Message is a transmit object, i.e. data is to be sent across network
- Set the DIR (direction) bit

· One byte of the eight possible bytes is to be sent
- Put a ‘1’ in the DLC (data length code) field

· 11-bit identifier is to be used.
- Make sure the XTD (extend) bit is ‘0’

(vi) Finally, in the CAN object 1 message control register “CAN_Object[ONE].control“ set the
“MSGVAL” field to make the message valid. This will allow the CAN module to transmit data, once
the CAN object 1 data register has be written with data. Note that this has two bits per flag so that
you will have to write ‘10’ to the MSGVAL field to make the message valid.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 167

(vii) The timer 3 interrupt service routine has some code which will make the 167’s ADC take a reading
of the voltage on potentiometer zero every 100ms. Take the value from the ADC results register
(ADDAT) and write it into CAN message object 1, data byte zero “CAN_Object[ONE].data[0]”.
To make the CAN module put the data onto the network, set the transmit request bit in the CAN
object 1 control register “CAN_Object[ONE].control“. Again this is a two bit field so you will have to
write ‘10’ to the TXRQ field. This completes the setup.

ADVANCED FEATURE: In real applications, messages transmitted across network may consist of
more than one byte. It is possible that transmission of the message may begin before all bytes have
been updated so that the receiver will get some new bytes and some old ones, resulting in a data “co-
herency” problem. This is mainly a problem with the remote request mode, covered in detail in exer-
cise EX4.

The CPUUPD flag will cause transmission to be suspended while the 167 updates the bytes in the
message. Once the update has completed, the CPUUPD flag is cleared. As this example only sends
one byte at a time, coherency is not a problem. In this and future exercises, you must remember to set
the CPUUPD flag during any write to a message data object.

(vii) Build the project with the Project-Build button.

(viii) Load the program into HiTOP, perform a target reset with the TR button. Run the program and if
you have got it right, you should be able to control the length of the bar corresponding to your node
number on the OHP screen.

C Programmer’s Note:

The CAN peripheral is simply memory-mapped into the C167CR’s memory space at 0xEF00 – 0xEFFF.
As the C166 compiler has no specific support for this, an array of structures containing appropriately named
elements is created and placed over the CAN module at 0xEF00. Each structure represents all the registers
that pertain to one of the 15 CAN message objects. The programmer simply has to use the following type of
statement to access the message objects:

CAN_Object[ONE].control = MSGVAL ;

One peculiarity of this approach is that while the C167CR data book numbers the message objects from 1 to
15, in C, the objects are represented by structures 0 to 14. Thus object 1 is accessed via
“CAN_Object[0].control…”, object 2 reference through CAN_Object[1].control and so-on.

struct MESSAGE_OBJECT // Structure template representing CAN peripheral’s registers
{

unsigned short volatile control; // Control register
unsigned short upper_arb; // Upper arbitration register
unsigned short lower_arb; // Lower arbitration register
unsigned char config; // Configuration register
unsigned char volatile data[8]; // 8 bytes of data
unsigned char reserved; // Unused byte

};

struct MESSAGE_OBJECT CAN_Object[15]; // Create array of 15 structures representing
 // CAN module

Note: The data bytes in the message objects are represented by the 8 byte array, “data[]” in the structures.

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 168

16.5 Configuring The CAN Module For Receive

EXERCISE 32: EX32

Directory: \166TRAIN.WIN\EX32\WORK

Object: Receive the value of the neighbouring team’s potentiometer zero

This exercise builds on the last exercise. Now you must configure CAN message objects 2,3 and 4 to receive
messages about the values on the potentiometers of three neighbouring teams. Some pre-written software
will allow you to put these values into the 167’s PWM unit to that the brightness of three LEDs can be con-
trolled remotely from pots on neighbouring nodes.

The message IDs of the neighbouring pots. that you must receive will generally be 0x10, 0x20 and 0x30
greater than your transmit object, established in exercise 1. However, you will be given the exact message
IDs that you must receive.

Open the project in \166TRAIN.WIN\EX32\WORK and edit CAN.C.

Procedure:

(i) Set the CAN object 1 upper arbitration register (“CAN_Object[TWO].upper_arb”) to the message
ID of the first neighbouring pot. Remember to rearrange the bits in the message ID, as you did in
exercise EX1, plus you must set the lower_arbitration register to zero.

(ii) Set the upper arbitration register for CAN objects 3 and 4. You can use the simple C function
“standard_id()” to convert the message ID into the required format, rather than manually rearranging
the bits.

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 169

(iii) Write to the message configuration register to set the mode for each CAN message object so that they
will do the following:

· Receive one byte of data per occurance of the message ID on the network.
DLC field = 1

· Use a standard 11-bit ID
XTD field = 0

In the Message control register for each object, make sure objects 2,3 and 4 are receive:

· Enable receive
TXRQ = 0

(iv) Make objects 2,3 and 4 valid, i.e. ready to receive by writing to the MSGVAL two-bit field in
“CAN_Object[X].control”. Remember that this field requires you to write ‘10’ to set the MSGVAL
flag and make the object valid.

(v) The CAN peripheral allows a simple filtering to be done so that only certain messages can be
received. It can be programmed to ignore certain bits in the ID. This is simply done by writing a
pattern to the CAN global 11-bit mask register “CAN_Global_11Bit_Mask”. In this exercise, we
want all messages on the network to be able to enter the CAN peripheral so all the bits must be set
to ‘1’. That completes the set up.

(vi) In the timer 3 interrupt service routine, we have provided a means of using the neighbouring pots
to drive three LEDs. Take the data received in the CAN object 2 data byte zero
“CAN_Object[TWO].data[0]” , negate it and put it into the CC4 PWM register. Data from object
3 must be put into CC5 in a similar manner. Finally, take the data from object 4 and put it straight
into the PW2 register.

(vii) Make sure that you edit the part carried over from the last exercise at the top of the function which
sets the transmit message for your pot…

/* Set Message ID */

CAN_Object[ONE].upper_arb = 0x____ ; // This is your transmit pot message ID
CAN_Object[ONE].lower_arb = 0x____ ; // always = 0 for standard 11-bit CAN ID

(viii) Build the project by clicking on the build button.

(ix) Load the program into HiTOP and hit the TR button. Now run the program by clicking the green
traffic light. Get a neighbouring team to alter the position of their pot. – you should see one of the
LEDs on your IO board change in brightness!

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 170

16.6 Configuring The CAN Module For Remote Request

EXERCISE 33: EX33

Directory: \166TRAIN.WIN\EX33\WORK

Object: Use remote request mode to request an 8-byte text string from the tutor’s CAN node

As in EX3, configure a message object (use number 5) to 0x70E and make it a receive object for the maxi-
mum 8 data bytes possible in a CAN message. Now by setting CAN object 5’s TXRQ bit in the message
control register, the CAN node which is able to send message 0x70E will send it automatically. This is the
remote “request mode”.

The message ID you should use is 0x01 less than that which you used for your CAN object 1 (the
potentiometer value transmit object). Thus if your object 1 is message ID 0x70F, the remote request object
will be 0x70E, for example.

In the exercise, you will receive a 8-byte text string which can be printed to the LCD display. The strings will
say something useful!

Open the project in \166TRAIN.WIN\EX33\WORK and edit CAN.C.

Procedure:

(i) Configure CAN object 5 to be a receive object for 8 data bytes, using a message ID of one less than
that used for CAN object 1. Remember that the message ID is set via

CAN_Object[FIVE].upper_arb,
the number of data bytes, 11-bit ID and receive mode are configured via CAN_Object[FIVE].config.

(ii) Make CAN object 5 valid by setting the MSGVAL two-bit field to ‘10’.

(iii) At the bottom of the timer 3 interrupt service routine, check whether the NEWDAT flag in
CAN_Object[FIVE].control is set. If it is, clear it and print the 8 data bytes in

CAN_Object[FIVE].data
to the LCD display. Note that NEWDAT is a two bit field so you will be checking for ‘10’ in bits
8 and 9 of the message control register for object 5. To clear the NEWDAT field, you will need to
write ‘01’ to it.

(iv) Now set the TXRQ bits in CAN_Object[FIVE].control to ‘10’ so that the tutor’s node will send the
message to your object 5 again.

(v) Make sure that you edit the part carried over from exercise EX2 at the top of the function which sets
the transmit message for your pot…

/* Set Message ID */

CAN_Object[ONE].upper_arb = 0x____ ; // This is your transmit pot message ID
CAN_Object[ONE].lower_arb = 0x____ ; // always = 0 for standard 11-bit CAN ID

© Copyright Hitex (UK) Ltd 1997 C166 Introduction Page 171

(v) Build the project by clicking on the Build button.

(vi) Load the program into HiTOP and perform a target reset. Run the program with the green traffic light.

(vii) Check the message on the LCD – if you are the first team to complete the exercise, you will get a
special message…

© Copyright Hitex (UK) Ltd 1999 C166 Introduction Page 172

16.7 CAN Module Bit Timing Calculation Spreadsheet

Sample 0.75 Sync_Seg 1 Quantum
Baud 100000 Bit Time 10 uS

Fosc 20 MHz
BRP Tq
n uS Tq_before Tq_after TSEG1 TSEG2
0 0.1 75.0 25.0 73.0 24.0
1 0.2 37.5 12.5 35.5 11.5
2 0.3 25.0 8.3 23.0 7.3
3 0.4 18.8 6.3 16.8 5.3
4 0.5 15.0 5.0 13.0 4.0
5 0.6 12.5 4.2 10.5 3.2
6 0.7 10.7 3.6 8.7 2.6
7 0.8 9.4 3.1 7.4 2.1
8 0.9 8.3 2.8 6.3 1.8
9 1 7.5 2.5 5.5 1.5
10 1.1 6.8 2.3 4.8 1.3
11 1.2 6.3 2.1 4.3 1.1
12 1.3 5.8 1.9 3.8 0.9
13 1.4 5.4 1.8 3.4 0.8
14 1.5 5.0 1.7 3.0 0.7
15 1.6 4.7 1.6 2.7 0.6
16 1.7 4.4 1.5 2.4 0.5
17 1.8 4.2 1.4 2.2 0.4
18 1.9 3.9 1.3 1.9 0.3
19 2 3.8 1.3 1.8 0.3
20 2.1 3.6 1.2 1.6 0.2
21 2.2 3.4 1.1 1.4 0.1
22 2.3 3.3 1.1 1.3 0.1
23 2.4 3.1 1.0 1.1 0.0
24 2.5 3.0 1.0 1.0 0.0
25 2.6 2.9 1.0 0.9 0.0
26 2.7 2.8 0.9 0.8 -0.1
27 2.8 2.7 0.9 0.7 -0.1
28 2.9 2.6 0.9 0.6 -0.1
29 3 2.5 0.8 0.5 -0.2
30 3.1 2.4 0.8 0.4 -0.2
31 3.2 2.3 0.8 0.3 -0.2

