
Mobilygen Corporation
 2900 Lakeside Drive #100

Santa Clara, CA 95054
Tel: (408) 869-4000
Fax: (408) 980-8044

email: info@mobilygen.com

Document Version: 1.1

MG1264
User Manual

Low Power H.264 and AAC Codec

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Copyright © 2004, 2005, 2006, and 2007 Mobilygen Corporation

Mobilygen and the Mobilygen logo are registered trademarks of Mobilygen Corporation, Inc.
All rights reserved.

All other products and services mentioned in this publication are the trademarks, service marks,
registered trademarks, or registered servicemarks of their respective owners.

Mobilygen Corporation
2900 Lakeside Drive #100
Santa Clara, CA 95054

Telephone 1 (408) 869-4000
FAX 1 (408) 980 8044

www.mobilygen.com
2 | Mobilygen Corp Confidential

About This Document
This manual provides a complete reference for the MG1264 Low Power H.264 and AAC Codec
for Mobile Devices User Manual.

Audience
This document assumes that the reader has knowledge of:

• Mobile Video product architectures

• Video Standards

Conventions
The following conventions were used in this manual:

When computer output listings are shown, an effort has been made not to break up the lines
when at all possible. This is to improve the clarity of the printout; for this reason, some listings
will be indented, and others will start at the left edge of the column.

Notation Example Meaning and Use

Courier typface .ini file Code Listings, names of files, symbols, and directo-
ries, are shown in courier typeface.

Bold Courier
typeface

install In a command line, keywords are shown in bold,
non-italic, Courier typeface. Enter them exactly as
shown.

Italics Note: Notes about the subject are shown with a header in
italics.

Bold Italics Important: Important information about the subject is shown
with the header in bold Italics. This information
should not be ignored.

Square Brackets [version] You may, but need not, select one item enclosed
within brackets. Do not enter the brackets

Angle Brackets <username> You must provide the information enclosed within
brackets. Do not enter the brackets

Bar les | les.out You may select one (but not more than one) item
from a list separated by bars. Do not enter the bars.
Confidential Mobilygen Corp. | 3

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Terms

H.264

This manual makes reference to the term H.264 and MPEG4 Part 10 Advanced Video Coding
(AVC). The full name for the standard is ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced
Video Coding”, and information can be found on the standard at:

• http://www.iec.ch/

The H.264 standard was jointly developed by the Video Coding Experts Group (VCEG) of the
International Telecommunications Union (ITU) and the MPEG committee of ISO/IEC. The two
identical standards are ISO MPEG4 Part 10 of MPEG4, and ITU-T H.264, but it is commonly
referred to as “Advanced Video Coding” or AVC.

AAC

AAC is the MPEG-4 Advanced Audio Coding standard. Information on AAC can be found at:

• http://www.aac-audio.com/
4 | Mobilygen Corp Confidential

http://www.iec.ch/
http://www.aac-audio.com/

Table of Contents

Chapter 1. Overview... 15
1.1: Architecture .. 16
1.2: MG1264 Codec Applications .. 17
1.3: Features .. 19

1.3.1: Modes Of Operation ... 19
1.3.2: Power-Up and Initialization ... 19
1.3.3: Encode and Decode Mode.. 19
1.3.4: MG1264 Codec Specifications... 19
1.3.5: H.264 Encoder Target Performance ... 20
1.3.6: PAL Resolution H.264 ... 20
1.3.7: SVGA 800x600 Video Resolution ... 20
1.3.8: Video Input and Output Scaling ... 21
1.3.9: MG1264 Codec SDRAM Requirements by Function.................... 21
1.3.10: User Control of H.264 Encoder Features (Tools) 22
1.3.11: The AAC Audio CODEC... 23
1.3.12: I/O Control.. 23
1.3.13: Full Duplex... 23

Chapter 2. Pinlist and Packaging Information 25
2.1: Package Pinouts ... 26

2.1.1: 169-Pin TFBGA Package ... 26
2.1.2: 156-Pin VFBGA Package... 28

2.2: Pin List ... 30
2.2.1: The SOUT and SIN Signals ... 34
2.2.2: JTAG Signals.. 34
2.2.3: TMODE Signal... 34

2.3: Design Considerations ... 37
2.3.1: Ground Plane Considerations ... 37
2.3.2: XIN Core Clock Considerations... 37
2.3.3: VID_CLK Video Clock Considerations... 37
2.3.4: AVDD Power Supply Considerations .. 37

2.4: Package Dimensions .. 38
2.5: Ordering Information ... 39
2.6: Solder Profile ... 40
2.7: Storage Recommendations ... 41

Chapter 3. Specifications.. 43
3.1: Electrical Characteristics .. 44

3.1.1: Absolute Maximum Ratings... 44
3.1.2: Operating Conditions.. 44
3.1.3: DC Characteristics.. 45
3.1.4: Standby Power.. 46
Confidential Mobilygen Corp. | 5

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.1.5: Power-Up and Power-Down Sequence .. 46
3.2: AC Timing ... 48

3.2.1: MG1264 Codec Host Interface Timing.. 49
3.2.2: Video Interface AC Timing.. 53
3.2.3: Audio Interface AC Timing.. 54
3.2.4: SDRAM Interface AC Timing ... 55

Chapter 4. MG1264 Codec Host Interface 57
4.1: MG1264 Codec Host Interface Physical Description 57

4.1.1: Connection Diagram... 57
4.1.2: MG1264 Codec Host Interface Signals .. 58

4.2: MG1264 Codec Host Interface Logical Description 59
4.2.1: System Control ... 59
4.2.2: Compressed Data I/O Through the MG1264 Codec Host Interface 60
4.2.3: Interrupts... 60
4.2.4: DMA Channels ... 60
4.2.5: Latency Considerations .. 60

4.3: Read/Write Timing .. 61
4.3.1: Read Timing Sequence in Read Enable Mode 62
4.3.2: Write Data Timing in Write Enable Mode 63
4.3.3: Read Timing Sequence in Read/Write and Enable Mode 64
4.3.4: Write Data Timing in Read/Write and Enable Mode 65

4.4: DMA Transfers .. 66
4.4.1: Pacing using the H_DMARQ Pin... 66
4.4.2: Pacing using the EMFifoRdReq/EMFifoWrReq Bits 66
4.4.3: Pacing using the H_WAIT Pin ... 66

4.5: MG1264 Codec Register Indirect Access .. 67
4.5.1: Reading a Register.. 67
4.5.2: Writing a Register... 67

4.6: Programming the MG1264 Codec Host Interface 68
4.6.1: Register Maps ... 68

4.7: Register Definitions ... 71
4.7.1: Configuration, Data, and Status Registers...................................... 71
4.7.2: Peripheral Interrupt Registers... 73
4.7.3: Clock and Configuration Registers .. 74
4.7.4: Accessing External Memory Port 1 and Port 2 77
4.7.5: Reading the MG1264 Codec’s External Memory 77
4.7.6: Checking the FIFO Status .. 78
4.7.7: External Memory Access Registers.. 79
4.7.8: Bitstream Write FIFO Access Registers... 85

Chapter 5. Video Interface... 87
5.1: Video Interface Usage .. 88

5.1.1: Interlaced ITU-R BT.656 Video Interfaces.................................... 88
5.1.2: Progressive Video Interface in Free-run Mode 90

5.2: Video Interface Signals .. 91
6 | Mobilygen Corp Confidential

5.3: Video Interface Timing .. 91
5.4: Working With CMOS Sensors ... 92
5.5: Video Pre-Processing Filters .. 93

5.5.1: Vertical Impulse Noise Reduction.. 93
5.5.2: Horizontal Impulse Noise Reduction ... 93
5.5.3: Horizontal Edge-Preserving Noise Reduction Filter 93
5.5.4: Motion Adaptive Temporal Recursive Filter 93

Chapter 6. SDRAM Interface.. 95
6.1: The SDRAM Interface ... 95
6.2: Mobile SDRAM Features .. 97

6.2.1: Voltage Operation (3.3V and 2.5V) ... 97
6.2.2: Temperature Compensated Self-Refresh.. 97
6.2.3: Deep Power Down.. 97
6.2.4: Drive Strength Control ... 97

Chapter 7. Audio Interface .. 99
7.1: Audio Interface Overview .. 99
7.2: Audio Interface Signals .. 100
7.3: I2S Audio Waveforms ... 101
7.4: Left Justified Audio Waveform ... 102
7.5: 16, 20, 24, 32-Bit Left Justified Audio Waveform 102

Chapter 8. Bringing up the MG1264 Codec................................... 103
8.1: Decoder Bringup .. 103

8.1.1: Phase 1: Decoding a Small Elementary NAL Video Stream 103
8.1.2: Phase 2: Decoding a Large Elementary NAL Video Stream
with Software Flow Control ... 107
8.1.3: Phase 3: Decoding A QBOX Stream.. 110

8.2: Encoder Bringup .. 112
8.2.1: Phase 1: Recording a Small Elementary NAL Video Stream 112
8.2.2: Phase 2: Recording a Large Elementary NAL Video Stream
with Software Flow Control ... 114
8.2.3: Phase 3: Recording a QBOX Stream.. 115

Chapter 9. Firmware Loader... 119
9.1: Firmware Image Format ... 120

9.1.1: Header... 120
9.1.2: Global Pointer Block .. 120
9.1.3: Pre-download CSR ... 120
9.1.4: Firmware... 121
9.1.5: Uninitialized Data... 121
9.1.6: End.. 122

9.2: Sample Code .. 122

Chapter 10. Application Programming Interface.......................... 125
Confidential Mobilygen Corp. | 7

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.1: Host Interface and the Hardware Abstraction Layer 126
10.1.1: QHAL_EM ... 126
10.1.2: QHAL_MBOX ... 128
10.1.3: QHAL_BS .. 129

10.2: Media Processor Firmware Programming Model 130
10.2.1: Control Objects... 130
10.2.2: Commands, Events, and Inter-Processor Communications 130
10.2.3: Global Pointer Block .. 131
10.2.4: Sending a Command to the Firmware .. 132
10.2.5: Reading Events from the Media Processor Firmware 133
10.2.6: Subscribing and Unsubscribing to Events 135
10.2.7: Configuration Parameters ... 136
10.2.8: Status Block.. 137

10.3: Bitstream Formats .. 138
10.3.1: QBox Bitstream Format ... 138
10.3.2: Elementary Video... 139
10.3.3: MP4 .. 139

10.4: System Control Interface Object .. 140
10.4.1: Overview .. 140
10.4.2: Object ID .. 140
10.4.3: State Machine ... 140
10.4.4: Commands .. 141
10.4.5: OSD Commands ... 142
10.4.6: Double-Buffered Configuration Commands 146
10.4.7: Single-Buffered Configuration Parameters 147
10.4.8: Double-Buffered Output Parameters .. 149
10.4.9: Events ... 155

10.5: Status Block ... 156
10.5.1: heartbeat ... 156
10.5.2: droppedEvents .. 156
10.5.3: evReadWritePointers .. 156
10.5.4: pendingEvent .. 156

10.6: H.264/ACC Decoder Interface Object ... 157
10.6.1: Overview .. 157
10.6.2: Logical View of the AV Decoder... 157
10.6.3: AV Decoder Features ... 157
10.6.4: Sending Encoded Bitstreams to the Decoder 159
10.6.5: Object ID .. 163
10.6.6: State Machine ... 163
10.6.7: Commands .. 166
10.6.8: Configuration Parameters ... 171
10.6.9: Decoder Configuration ... 174
10.6.10: Events ... 174
10.6.11: Status Block.. 176
10.6.12: Trick Play Techniques .. 177

10.7: H.264/AAC Encoder Interface Object ... 181
8 | Mobilygen Corp Confidential

10.7.1: Overview .. 181
10.7.2: Logical View of the AV Encoder ... 181
10.7.3: AV Encoder Features ... 181
10.7.4: Overview of the Video Encoding Process.................................. 184
10.7.5: Receiving Encoded Bitstreams from the Encoder...................... 189
10.7.6: Controlling the Video Bitrate ... 191
10.7.7: Using the Text Overlay .. 192
10.7.8: Object ID .. 192
10.7.9: State Machine ... 192
10.7.10: Commands.. 194

10.8: Single Buffered Configuration Parameters .. 202
10.9: Double-Buffered Video Encoder Parameters 208
10.10: Double-Buffered Video Input Parameters ... 212
10.11: Double-Buffered Video Rate Control Parameters 219
10.12: Events ... 223

10.12.1: Average Motion Field... 224
10.13: Status Block ... 225

Chapter 11. Sample Host Code Architecture................................. 227
11.1: Common Types and Definitions .. 229
11.2: Global Variables .. 230
11.3: Initialization ... 230
11.4: sendCommand function ... 231
11.5: EventHandler Thread ... 232
11.6: BitstreamRecord thread .. 233

11.6.1: Writing a New Record Request to the Queue 233
11.6.2: Reading a New Record Request from the Queue 233
11.6.3: BitstreamRecord Thread Procedure ... 234

11.7: BitstreamPlayback thread .. 236
11.7.1: Writing a new playback request to the queue............................. 236
11.7.2: Reading a New Playback Request from the Queue.................... 236
11.7.3: BitstreamPlayback Thread Procedure .. 237

11.8: Sample Usage from UI thread .. 239
11.8.1: Simple Playback Session.. 239
11.8.2: Sample Record Session .. 239

11.9: Missing Features .. 240

Appendix A. MG1264 Codec H.264 and AAC Compliance.......... 241
A.1: MG1264 Codec Encoder Compliance .. 242

A.1.1: MG1264 Codec H.264 Encoder Compliance 242
A.2: MG1264 Codec AAC Encoder Compliance ... 243

A.2.1: MG1264 Codec Decoder Compliance... 243
A.2.2: MG1264 Codec H.264 Decoder Compliance.............................. 243

A.3: MG1264 Codec AAC Decoder Compliance ... 244
A.3.1: TNS.. 244
A.3.2: HE-AAC support ... 244
Confidential Mobilygen Corp. | 9

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Appendix B. Errata to the MG1264 Codec User Manual 245
B.1: Phase Lock Loop Restrictions ... 245
B.2: Minimum Picture Size ... 246

 Revision History ... 247
10 | Mobilygen Corp Confidential

List of Figures

MG1264 Codec Block Diagram ...16
H.264/AVC Tools/Profiles ...17
Camera System-Level Block Diagram ...18
Pinout Diagram for the MG1264 Codec in the 169-pin TFBGA Package26
Pinout Diagram for the MG1264 Codec in the 156-pin VFBGA Package28
Switching Power Supply Decoupling ...37
169-pin TFBGA Package Mechanical Dimensions ..38
156-pin VFBGA Package Mechanical Dimensions ...39
Temperature Profile (Body Temp) of Infrared Convection Reflow Soldering40
Power Supply Sequencing, Case 1 ...46
Power Supply Sequencing, Case 2 ...47
MG1264 Codec Host Interface AC Timing Waveform ..49
MG1264 Codec H_DMARQ Timing ...50
H_WAIT Timing ..50
H_IRQ Timing ..51
Video Interface Timing Diagram ..53
Audio Timing Diagram ...54
Audio Interface Timing Diagram ...54
MG1264 Codec Host Interface Connection Diagrams ...57
Register Logical View ..59
Read Access Timing in Read Enable Mode ...62
Write Access Timing in Write Enable Mode ..63
Read Access Timing in Read/Write and Enable Mode ..64
Write Access Timing in Read/Write and Enable Mode ...65
ITU-R BT.656 NTSC Interlaced Video Standard ..88
ITU-R BT.656 PAL Interlaced Video Standard ...89
Progressive Video with Adjustable Timing ..90
Video Interface Connections ..91
Video Interface Timing ...91
MG1264 Codec SDRAM Interface ..96
Audio Interface with the System Host CPU as the Audio Clock Master100
Audio Interface Connections with the DAC/ADC as the Audio Clock Master101
I2S Left-justified Audio Waveform ..101
Left-justified Audio Waveform ..102
16, 20, 24, and 32-Bit Left Justified Audio Waveform ..102
QHAL Structure ..126
Command Transfer Timing ..132
Event Transfer Timing ..134
Event Queuing ..135
Idealized Decoder Datapath ..157
Decoder Buffer Structure ..160
Idealized Encoder Datapath ..181
Confidential Mobilygen Corp. | 11

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Top Field First ..185
Bottom Field First ...185
Synchronization 525-line System ...186
Synchronization 625-line System ...186
Circular Buffer Management of Bitstream Blocks ...189
H.264 Profiles and Tools ..241
12 | Mobilygen Corp Confidential

List of Tables

Target H.264 Video Bitrates and Resolutions for NTSC ... 20
H.264 Video Bitrates and Resolutions for PAL ... 20
SDRAM Requirements by Function... 21
AAC Encoder Features ... 23
MG1264 CODEC Host Interface Pins.. 30
MG1264 CODEC Power and Ground Pin List... 35
Ordering Information .. 39
Absolute Maximum Ratings ... 44
Operating Conditions .. 44
DC Characteristics .. 45
Standby Power .. 46
Host Interface Timing ... 52
Video Interface AC Timing Values .. 53
Audio Interface AC Timing Values.. 55
MG1264 Codec Host Interface Pin Descriptions ... 58
MG1264 Codec Internal Configuration and Status Registers 68
MG1264 Codec External Memory Interface Port 1 Registers.................................. 69
MG1264 Codec External Memory Interface Port 2 Registers.................................. 70
MG1264 Codec Bitstream Interface Registers ... 70
Input Video Resolutions ... 87
Video Interface Signals... 91
Compatible CMOS Sensors .. 92
DRAM Interface Signal List... 95
AAC Encoder Features ... 99
Audio Interface Signal List... 100
Forward State .. 165
Backward State ... 165
MG1264 Codec Motion Vector Range Support for Frame Based Coding............. 244
MG1264 Codec Motion Vector Range Support for Field Based Coding............... 244
Confidential Mobilygen Corp. | 13

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
14 | Mobilygen Corp Confidential

Chapter 1. Overview
The MG1264 is a single-chip H.264 codec IC that enables mobile products to capture, play
and share high quality digital video and audio. The MG1264 is a complete A/V codec
solution including both a H.264 30 frame-per-second video codec, and a high fidelity two-
channel AAC audio codec. Power consumption while encoding is 185 mW for the
complete device including VGA 30fps video, 2-channel AAC audio, and all chip I/O
functions.

Mobilygen has developed a unique chip architecture dedicated to low power video
processing. The patented EVE (Enabling Video Everywhere) architecture was used to
implement the MG1264 and includes the following key technologies:

• Dedicated hardware media processing engines that are active only when data is being
processed

• A highly-optimized hardware multi-threaded embedded microcontroller with single
cycle context switching that controls all media processing operations and allows for
easy integration of customer differentiating features

• An advanced video pre-processor that greatly improves H.264 encoder efficiency and
overall video quality

• An ultra-efficient video processing oriented memory controller with forward seeking
transaction reordering capabilities that doubles memory efficiency allowing all func-
tions to operate with a single 16-bit SDRAM

• Patented low-power H.264 video coding algorithms developed specifically to maxi-
mize video quality

• Easy to control through standard firmware APIs; no customer programming is re-
quired

The MG1264 is designed for use in video surveillance, Digital Video Recorders (DVRs),
Personal Video Recorders (PVRs), Portable Media Players (PMPs), video IP streaming,
still cameras, video cameras, peripheral products, and any other applications that require
H.264 encoding and/or decoding capabilities with very low power consumption.
Confidential Mobilygen Corp. | 15

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1.1 Architecture
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is built of the following
blocks as shown in Figure 1-1:

• MG1264 Codec Host Interface

• Video Input and Preprocessor (VPP)

• H.264 Video Codec

• Video Output Processor (VPU)

• AAC Audio CODEC

Figure 1-1 MG1264 Codec Block Diagram

ITU-R 656 (8-bit)

16-bit
Data

H.264
Codec

AAC Codec

Video Preprocessor

Video Output Processor

SDRAM
64 - 128 Mbits

Host Interface

AUD_LRCK

AUD_CLK

AUD_BCK

AUD_IDAT

AUD_ODAT

MG1264 Codec

Control
&

Compressed
Data I/O

Uncompressed
Video

Uncompressed
Audio

H_ADDR (6-bit)

H_DATA (16-bit)

HCS

H_RD

H_WR

H_IRQ

H_DMARQ

XIN

VID_CLK

ITU-R 656 (8-bit)

Bidirectional

Output Only

H_WAIT
16 | Mobilygen Corp Confidential

Overview MG1264 Codec Applications
1.2 MG1264 Codec Applications
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is a VGA 30 fps H.264
and two-channel AAC Audio CODEC that enables Audio and Video (A/V) capture and
playback functionality in mobile video products.

These include:

• Security cameras

• Digital Video Recorders (DVRs)

• Personal Video Recorders (PVRs)

• Video IP Streaming

• Digital Still Cameras

• Solid-State Camcorders

• Portable Media Players

The MG1264 Codec produces H.264 and AAC compliant bitstreams that can be decoded by any
standard-compliant decoder such as software decoders on a PC.

The MG1264 Codec is designed for low power operation. Mobile video products based on the
MG1264 Codec can play back any A/V content that it captures, just like a traditional tape based
camcorder. The MG1264 Codec can also play back H.264 streams using the Tools shown in
Figure 1-2. Figure 1-2 shows the MG1264 Codec’s capabilities.

Figure 1-2 H.264/AVC Tools/Profiles

The MG1264 Codec is designed to be a coprocessor to a main System Host Processor and
ASIC. Figure 1-3 is a camera system block diagram that shows how MG1264 Codec is
integrated into a system. The main camera ASIC performs the traditional camera functions such
as interface to the CCD, color processing, zoom lens control, LCD display, storage, etc.

I & P
Quarter-Pel MC

Different Block Sizes
In-Loop Deblocking Filter

Intra Prediction
CAVLC

Multiple Reference
Frames

Flexible
Macroblock

Order

Arbitrary
Slice
Order

Baseline

Extended

High

Main
B Slices

SI / SP Slices

Data Partitioning

CABAC

Weighted
Prediction

Field Coding

Alt
Quant
Tables

8 x 8
Transform

MG1264 (Frame Coding)

MG1264 (Field Coding)

= Baseline and Main Profice Compatible

= Main Profile Compatible

MBAFF
Confidential Mobilygen Corp. | 17

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual

Figure 1-3 Camera System-Level Block Diagram

ITU-R 656 (8-bit)

16-bit
Data

VID_CLK

SDRAM
64 - 128 Mbits

AUD_LRCK

AUD_CLK
AUD_BCK

AUD_IDAT

AUD_ODAT

MG1264 Codec

System
Host CPU

 ASIC

FLASH
Media

Storage

USB

CCD

Audio
Codec

Flash
Strobe

I2C

GPIO

LCD

SDRAM
Boot

FLASH

H_ADDR (6-bit)

H_DATA (16-bit)

HCS

H_RD

H_WR
H_IRQ

H_DMARQ

H.264
Codec

AAC Codec

Video Preprocessor

Video Output Processor

Host Interface

XIN

H_WAIT
18 | Mobilygen Corp Confidential

Overview Features
1.3 Features
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices has these features:

1.3.1 Modes Of Operation

Video compression applications require the user to manually select the mode of operation,
typically video capture and playback. Depending upon the design, the MG1264 Codec does not
need to be powered-on and initialized until the appropriate mode is selected.

1.3.2 Power-Up and Initialization

The MG1264 Codec is able to power-up and be ready to start encoding or decoding in less than
one second. The System Host CPU is responsible for downloading the boot code to the
MG1264 Codec and then initializing the MG1264 Codec. See “Firmware Loader” on page 119.

When the MG1264 Codec is actually powered-on and initialized is a design parameter of the
system. It can be either when the system is turned on or when the Video Encode mode is
selected.

1.3.3 Encode and Decode Mode

When the MG1264 Codec is active, it is ready to start encoding or decoding within one frame
time.

1.3.4 MG1264 Codec Specifications

The MG1264 Codec implements a subset of H.264 Tools that achieves superior video quality
with a low power budget. The MG1264 Codec does not implement the following H.264 tools:
B-frames, CABAC, MAFF, Weighted Prediction, ASO, and FMO.

The MG1264 Codec can be best classified in the following way: If Frame mode coding is used,
then the MG1264 Codec produces Baseline and Main Profile compatible streams (see
Figure 1-2 on page 17). Baseline is the primary encoding mode for the MG1264 Codec,
however the MG1264 Codec also supports Field mode coding. Streams coded as Field mode
are technically Main Profile.

The MG1264 Codec decodes only streams created with the same subset of tools as listed above.
Confidential Mobilygen Corp. | 19

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1.3.5 H.264 Encoder Target Performance

The MG1264 Codec is capable of encoding up to full D1 resolution (720 x 576). The MG1264
Codec is also capable of resolution down-sampling with excellent results at lower bitrates.

Table 1-1 lists target bitrates and corresponding resolutions for NTSC.

1.3.6 PAL Resolution H.264

The MG1264 Codec is also capable of PAL encoding, as shown in Table 1-2.

1.3.7 SVGA 800x600 Video Resolution

The MG1264 Codec supports a maximum video resolution of 800x600 (SVGA). This
resolution is intended for playback on PCs. This SVGA mode is intended to work with a
standard 27 MHz video clock. The maximum frame rate is 25 fps.

Table 1-1 Target H.264 Video Bitrates and Resolutions for NTSC

Video Bitrate
(kbps)

Horizontal
Resolution

(Pixels)

Vertical
Resolution

(Pixels) fps1 Notes Regarding The Source Video

300 - 768 320 240 30 QVGA, progressive, square pixel

1000 - 3000 640 480 30 VGA, progressive, square pixel

3000 800 600 25 SVGA, progressive, square pixel

300 - 768 352 240 30 SIF, progressive, rectangular pixel

1000 - 3000 720 480 30 D1, interlace, rectangular pixel

1. 30 fps is a shorthand representation for the traditional 29.976 NTSC frame rate. In applications where display
on a traditional TV is required, the frame rate should be set accordingly.

Table 1-2 H.264 Video Bitrates and Resolutions for PAL

Video
Bitrate
(kbps)

Horizontal
Resolution

(pixels)

Vertical
Resolution

(Pixels) fps Notes Regarding The Source Video

300 - 768 352 288 25 QSIF, progressive, rectangular pixel

1000 - 3000 720 576 25 D1, interlace, rectangular pixel
20 | Mobilygen Corp Confidential

Overview Features
1.3.8 Video Input and Output Scaling

The MG1264 Codec is capable of performing video scaling both on the input during encoding
and on the output during decoding. This allows the MG1264 Codec to use alternate video
resolutions to facilitate display on standard televisions. It also facilitates applications that make
use of lower resolutions such as streaming over low bandwidth networks.

Input Video Scaling

The Input Video Scaler is designed to take a standard D1 resolution video input and generate
the target encoding resolutions listed in Table 1-1. The MG1264 Codec supports a maximum
horizontal resolution of 800 pixels.

The minimum picture size that can be encoded is 96 x 96. The resolution can be obtained by
either setting the capture rectangle to that resolution, or by scaling a larger capture rectangle to
that resolution. See the crop and scaling commands for more information.

However, note that you must use one slice per macroblock row for any horizontal resolution
below 128, meaning that pictures that are 112 or 96 pixels wide must use one slice per row. See
“Cropping“ and “Scaling” on page 187 for more information.

Output Video Scaling

The Output Video Scaler is designed to up-sample any resolution less than D1 for display on a
standard television or down-sample for display on alternative displays. The Output Video Scaler
also has the ability to perform square pixel to rectangular pixel conversion to support display of
square pixel video correctly on a traditional TV display.

1.3.9 MG1264 Codec SDRAM Requirements by Function

Table 1-3 shows the SDRAM requirements for the most common applications.

Table 1-3 SDRAM Requirements by Function

Memory
Requirements Function

8 MBytes Half Duplex (encode or decode) NTSC fully featured with no On-Screen
Display (OSD)

16 MBytes Half Duplex (encode or decode) PAL fully featured with OSD

Full Duplex (encode and decode) NTSC with full-screen OSD

Full Duplex (encode and decode) PAL with no OSD

32 MBytes Full Duplex (encode and decode) PAL or NTSC with OSD
Confidential Mobilygen Corp. | 21

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1.3.10 User Control of H.264 Encoder Features (Tools)

The encoder features are selectable. Each feature has settings and/or ranges that affect the
overall compression efficiency accordingly. This section shows the key features and their
associated target settings.

Picture Resolution

Table 1-1 shows the video resolutions. This selection uses the Input Video Scaler to produce the
desired resolution.

Video Frame Rate

The primary target for the MG1264 Codec is natural motion frame rate like that of NTSC video
at 30 fps. The following alternate frame rates are also supported:

• 25 fps (for PAL applications)

• 15 fps

• Any arbitrary bitrate between 1 and 30 fps

Video Bitrate

The target bitrates are listed in Table 1-1 for given resolutions. The maximum video data rate is
10 Mbps. The minimum video data rate is 56 kbps. The bitrate can be specified arbitrarily from
56 kbps to 10 Mbps.

Picture Type

The Picture Type refers to as Frame or Field coding. When Field mode is selected, all fields are
encoded separately. The MG1264 Codec does not implement MBAFF mode.

GOP Structure

The MG1264 Codec uses I-frames and P-frames only. No B-frames. The GOP structure is user
selectable from 1 to infinity. The default GOP length is 15.

On-the-Fly Parameter Changes

The following parameters can be changes at any time:

• Frame Rate

• Bit Rate

• Resolution

• GOP Length
22 | Mobilygen Corp Confidential

Overview Features
1.3.11 The AAC Audio CODEC

The MG1264 Codec can encode two-channel AAC audio with 16-bit samples.

User Control of the AAC Encoder Features

The audio encoder features are selectable. Each feature has settings and/or ranges that affect the
overall compression efficiency, accordingly. Table 1-4 shows the key features and their
associated target settings.

1.3.12 I/O Control

The MG1264 Codec is intended to be a co-processor in a system with a basic architecture as
shown in Figure 1-3. All system control is done by the System Host CPU, including booting
and initializing the MG1264 Codec. All other I/O functions are controlled by the system host
processor. I/O functions include: LCD control, camera sensor control, TV output, mass storage
controllers, USB, Ethernet, audio codec, etc.

1.3.13 Full Duplex

The MG1264 can operate in Full Duplex mode, where it is encoding and decoding at the same
time. Some limitations apply:

• VGA resolution (max)

• Frame coding only (no field coding).

• MPEG-1 Layer II audio, mono (no AAC)

• Requires 128 Mbits of SDRAM

Table 1-4 AAC Encoder Features

Feature Options

Channels Mono (1) or Stereo (2)

Sample rate 22.05, 24, 32, 44.1, or 48 kHz

Bitrate 8 - 384 kbps
Confidential Mobilygen Corp. | 23

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
24 | Mobilygen Corp Confidential

Chapter 2. Pinl ist and Packaging
Information
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is available in two
RoHS compliant, Pb-free packages. The MG1264-169TFBGA is in a 169-pin Thin &
Fine-Pitch Ball Grid Array package (TFBGA) that is 13mm x 13mm, with 0.8mm ball-
pitch. The MG1264-156VFBGA is in a 156-pin Very Fine-Pitch Ball Grid Array package
(VFBGA) that is 9mm x 9mm, with 0.5mm ball-pitch.

This chapter describes the mechanical specifications of the MG1264 Codec packages and
provides a list of the pins for the device in each package. It also presents the solder profiles
to be used for each of the packages, and the storage recommendations for the same package.

It is divided into these subsections:

• “Package Pinouts” on page 26

• “Pin List” on page 30

• “Design Considerations” on page 37

• “Package Dimensions” on page 38

• “Solder Profile” on page 40

• “Storage Recommendations” on page 41
Confidential Mobilygen Corp. | 25

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.1 Package Pinouts

2.1.1 169-Pin TFBGA Package

Figure 2-1 shows the pinout for the MG1264 Codec in the 169-Pin TFBGA package. This fig-
ure is continued on the next page.

Figure 2-1 Pinout Diagram for the MG1264 Codec in the 169-pin TFBGA Package

1 2 3 4 5 6 7 8

A H_ADDR1 VIDOUT_
DATA_1

VIDOUT_
DATA_2

VIDOUT_
DATA_3

VIDOUT_
DATA_6

VIDOUT_
VSYNC VID_CLK VID_DATA_5

B H_ADDR2 HCS VIDOUT_
DATA_0

VIDOUT_
DATA_4

VIDOUT_
DATA_5

VIDOUT_
FIELD

VIDOUT_
HSYNC VID_DATA_6

C H_ADDR4 H_ADDR3 IOVDD CVDD IOVDD VIDOUT_
DATA_7 IOVDD VID_DATA_7

D H_ADDR6 H_ADDR5 CVDD

E H_WR IOVDD IOVDD

F H_WAIT H_IRQ H_RD GND GND GND

G H_DATA0 H_DMARQ IOVDD GND GND GND

H H_DATA3 H_DATA2 H_DATA1 GND GND GND

J H_DATA4 H_DATA5 IOVDD GND GND GND

K H_DATA6 H_DATA7 H_DATA8 GND GND GND

L H_DATA9 H_DATA10 H_DATA11

M H_DATA12 H_DATA13 CVDD

N H_DATA14 H_DATA15 TMS CVDD CVDD MIOVDD MIOVDD MIOVDD

P RESET SOUT TDI TRST AUD_IDAT AUD_ODAT AUD_BCK SD_A_2

R SIN TCK TDO TMODE AUD_CLK AUD_LRCK SD_A_10 SD_A_3
26 | Mobilygen Corp Confidential

Pinlist and Packaging Information Package Pinouts

Figure 2-1 Pinout Diagram for the MG1264 Codec in the 169-pin TFBGA Package (Con-
tinued)

9 10 11 12 13 14 15

VID_DATA_4 VID_DATA_2 VID_FIELD VID_HSYNC IOVDD AVDD SD_CLK A

VID_DATA_3 VID_DATA_1 VID_VSYNC XIN PFILTER SD_DQ_15 SD_DQ_1 B

IOVDD VID_DATA_0 IOVDD CVDD SD_DQ_0 SD_DQ_13 SD_DQ_2 C

MIOVDD MIOVDD SD_DQ_14 D

CVDD SD_DQ_4 SD_DQ_3 E

GND GND MIOVDD SD_DQ_12 SD_DQ_11 F

GND GND MIOVDD SD_DQ_6 SD_DQ_10 G

GND GND MIOVDD SD_DQ_9 SD_DQ_5 H

GND GND MIOVDD SD_DQ_8 SD_CKE J

GND GND CVDD SD_DQM_1 SD_DQM_0 K

MIOVDD SD_A_11 SD_A_12 L

MIOVDD MIOVDD SD_A_9 M

MIOVDD MIOVDD MIOVDD MIOVDD MIOVDD SD_A_7 SD_A_8 N

SD_A_0 SD_BA_1 SD_WE MIOVDD SD_CAS SD_A_6 SD_A_5 P

SD_A_1 SD_CS SD_BA_0 SD_RAS CVDD SD_A_4 SD_DQ_7 R
Confidential Mobilygen Corp. | 27

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.1.2 156-Pin VFBGA Package

Figure 2-1 shows the pinout for the MG1264 Codec in the 156-pin VFBGA package. This fig-
ure is continued on the next page.

Figure 2-2 Pinout Diagram for the MG1264 Codec in the 156-pin VFBGA Package

1 2 3 4 5 6 7 8

A H_ADDR1 VIDOUT_
DATA_0

VIDOUT_
DATA_2

VIDOUT_
DATA_4

VIDOUT_
DATA_6

VIDOUT_
FIELD

VIDOUT_
HSYNC VID_DATA7

B H_ADDR2 HCS VIDOUT_
DATA_1

VIDOUT_
DATA_3

VIDOUT_
DATA_5

VIDOUT_
DATA_7

VIDOUT_
VSYNC VID_CLK

C H_ADDR4 H_ADDR3 — — — — — —

D H_ADDR6 H_ADDR5 — — CVDD — — —

E IOVDD H_WR — CVDD — — — —

F H_IRQ H_RD — — — — IOVDD IOVDD

G H_DMARQ H_WAIT — — — IOVDD GND GND

H H_DATA1 H_DATA0 — — — IOVDD GND GND

J H_DATA2 H_DATA3 — — — GND GND GND

K H_DATA4 H_DATA5 — — — GND GND GND

L H_DATA6 H_DATA7 — — — GND MIOVDD MIOVDD

M H_DATA8 H_DATA9 — CVDD — — — —

N H_DATA10 H_DATA11 — — CVDD CVDD — —

P H_DATA12 H_DATA13 — — — — — —

R H_DATA14 RESET TMS TDI TDO TMODE AUD_CLK AUD_LRCK

T H_DATA15 SIN SOUT TCK TRST AUD_IDAT AUD_ODAT AUD_BCK
28 | Mobilygen Corp Confidential

Pinlist and Packaging Information Package Pinouts

Figure 2-2 Pinout Diagram for the MG1264 Codec in the 156-pin VFBGA Package (Con-
tinued)

9 10 11 12 13 14 15 16

VID_DATA6 VID_DATA4 VID_DATA2 VID_DATA0 VID_VSYNC XIN AVDD PFILTER A

VID_DATA5 VID_DATA3 VID_DATA1 VID_FIELD VID_HSYNC IOVDD SD_CLK SD_DQ_0 B

— — — — — — SD_DQ_1 SD_DQ15 C

— — — CVDD — — MIOVDD SD_DQ_13 D

— — — — CVDD — SD_DQ_2 SD_DQ_14 E

GND GND GND — — — SD_DQ_4 SD_DQ_3 F

GND GND MIOVDD — — — SD_DQ_12 SD_DQ_11 G

GND GND MIOVDD — — — SD_DQ_6 SD_DQ_10 H

GND GND MIOVDD — — — SD_DQ_9 SD_DQ_5 J

GND GND MIOVDD — — — SD_DQ_8 SD_CKE K

MIOVDD MIOVDD MIOVDD — — — SD_DQM_1 SD_DQM_0 L

— — — — CVDD — SD_A_11 SD_A_12 M

— — — CVDD — — MIOVDD SD_A_9 N

— — — — — — SD_A_8 SD_A_7 P

SD_A_2 SD_A_1 SD_CS SD_BA0 MIOVDD SD_CAS SD_A_6 SD_A_5 R

SD_A_10 SD_A_3 SD_A_0 SD_BA1 SD_WE SD_RAS SD_A_4 SD_DQ_7 T
Confidential Mobilygen Corp. | 29

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.2 Pin List
Table 2-1 shows the pin list sorted by interface. Table 2-2 shows the power and ground pins.

Table 2-1 MG1264 CODEC Host Interface Pins

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA

Clock Input
XIN B12 A14 I — 3.3 Clock input: Clock Input to the internal PLL that is used to

generate Core Clock. Supports 24 - 40 MHz. See “XIN
Core Clock Considerations” on page 37 for more informa-
tion.

Reset
RESET P1 R2 I — 3.3 Active low Reset pin.
Host Interface
HCS B2 B2 I — 3.3 Active low chip select. This pin is used to access the

MG1264 internal registers, external memory and bit-
stream read and write FIFO.

H_ADDR1 A1 A1 I — 3.3 H-ADDR{6:1] - 6 bits of Host Bus Address
H_ADDR2 B1 B1 I — 3.3
H_ADDR3 C2 C2 I — 3.3
H_ADDR4 C1 C1 I — 3.3
H_ADDR5 D2 D2 I — 3.3
H_ADDR6 D1 D1 I — 3.3
H_WR E1 E2 I — 3.3 Active low, Write Enable
H_RD F3 F2 I — 3.3 Active low, Read Enable
H_IRQ F2 F1 O — 3.3 4 Active low, Host Interrupt Request
H_WAIT F1 G2 O — 3.3 4 Active Low wait signal. The MG1264 CODEC asserts this

pin to extend the bus cycle until ti is able to accept data
(during writes) or present data (during reads).

H_DMARQ G2 G1 O — 3.3 4 Active low, bitstream DMA Request. See “MG1264 Codec
External Memory Interface Port 2 Registers” on page 70
and “MG1264 Codec Bitstream Interface Registers” on
page 70 for more information.
30 | Mobilygen Corp Confidential

Pinlist and Packaging Information Pin List
H_DATA0 G1 H2 IO — 3.3 4 H_DATA[15:0] - 16 bits Host Data Bus
H_DATA1 H3 H1 IO — 3.3 4
H_DATA2 H2 J1 IO — 3.3 4
H_DATA3 H1 J2 IO — 3.3 4
H_DATA4 J1 K1 IO — 3.3 4
H_DATA5 J2 K2 IO — 3.3 4
H_DATA6 K1 L1 IO — 3.3 4
H_DATA7 K2 L2 IO — 3.3 4
H_DATA8 K3 M1 IO — 3.3 4
H_DATA9 L1 M2 IO — 3.3 4
H_DATA10 L2 N1 IO — 3.3 4
H_DATA11 L3 N2 IO — 3.3 4
H_DATA12 M1 P1 IO — 3.3 4
H_DATA13 M2 P2 IO — 3.3 4
H_DATA14 N1 R1 IO — 3.3 4
H_DATA15 N2 T1 IO — 3.3 4

1. I = Input, IU = Input w/ Internal Pull-Up, IS = Input w/ Schmitt Trigger, IO = Bidirectional, O = Output, OT = Output w/ Tri-state

Table 2-1 MG1264 CODEC Host Interface Pins

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA
Confidential Mobilygen Corp. | 31

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Table 2-1 MG1264 CODEC SDRAM Interface Pins

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA

SDRAM Interface
SD_A_12 L15 M16 O — 2.5 or 3.3 4 SDRAM address - SD_A[12:0]
SD_A_11 L14 M15 O — 2.5 or 3.3 4
SD_A_10 R7 T9 O — 2.5 or 3.3 4
SD_A_9 M15 N16 O — 2.5 or 3.3 4
SD_A_8 N15 P15 O — 2.5 or 3.3 4
SD_A_7 N14 P16 O — 2.5 or 3.3 4
SD_A_6 P14 R15 O — 2.5 or 3.3 4
SD_A_5 P15 R16 O — 2.5 or 3.3 4
SD_A_4 R14 T15 O — 2.5 or 3.3 4
SD_A_3 R8 T10 O — 2.5 or 3.3 4
SD_A_2 P8 R9 O — 2.5 or 3.3 4
SD_A_1 R9 R10 O — 2.5 or 3.3 4
SD_A_0 P9 T11 O — 2.5 or 3.3 4
SD_DQM_1 K14 L15 O — 2.5 or 3.3 4 SDRAM mask bits - SD_DQM[1:0]
SD_DQM_0 K15 L16 O — 2.5 or 3.3 4
SD_BA_1 P10 T12 O — 2.5 or 3.3 4 SDRAM bank select - SD_BA[1:0]
SD_BA_0 R11 R12 O — 2.5 or 3.3 4
SD_WE P11 T13 O — 2.5 or 3.3 4 Active low SDRAM write enable
SD_CAS P13 R14 O — 2.5 or 3.3 4 Active low SDRAM CAS
SD_RAS R12 T14 O — 2.5 or 3.3 4 Active low SDRAM RAS
SD_CS R10 R11 O — 2.5 or 3.3 4 Active low SDRAM chip select
SD_CKE J15 K16 O — 2.5 or 3.3 4 SDRAM clock enable
SD_DQ_15 B14 C16 IO — 2.5 or 3.3 4 Bidirectional SDRAM data pins SD_DQ{[15:0]
SD_DQ_14 D15 E16 IO — 2.5 or 3.3 4
SD_DQ_13 C14 D16 IO — 2.5 or 3.3 4
SD_DQ_12 F14 G15 IO — 2.5 or 3.3 4
SD_DQ_11 F15 G16 IO — 2.5 or 3.3 4
SD_DQ_10 G15 H16 IO — 2.5 or 3.3 4
SD_DQ_9 H14 J15 IO — 2.5 or 3.3 4
SD_DQ_8 J14 K15 IO — 2.5 or 3.3 4
SD_DQ_7 R15 T16 IO — 2.5 or 3.3 4
SD_DQ_6 G14 H15 IO — 2.5 or 3.3 4
SD_DQ_5 H15 J16 IO — 2.5 or 3.3 4
SD_DQ_4 E14 F15 IO — 2.5 or 3.3 4
SD_DQ_3 E15 F16 IO — 2.5 or 3.3 4
SD_DQ_2 C15 E15 IO — 2.5 or 3.3 4
SD_DQ_1 B15 C15 IO — 2.5 or 3.3 4
SD_DQ_0 C13 B16 IO — 2.5 or 3.3 4
SD_CLK A15 B15 O — 2.5 or 3.3 8 SDRAM clock. This pin provides the clock to the SDRAM

1. I = Input, IU = Input w/ Internal Pull-Up, IS = Input w/ Schmitt Trigger, IO = Bidirectional, O = Output, OT = Output w/ Tri-state
32 | Mobilygen Corp Confidential

Pinlist and Packaging Information Pin List
Table 2-1 MG1264 CODEC Video and Interface Pins

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA

Video Interface
VID_HSYNC A12 B13 I Down 3.3 Option to use negative edge of VID_CLK
VID_VSYNC B11 A13 I Down 3.3 Option to use negative edge of VID_CLK
VID_FIELD A11 B12 I Down 3.3 Option to use negative edge of VID_CLK
VID_DATA_7 C8 A8 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_6 B8 A9 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_5 A8 B9 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_4 A9 A10 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_3 B9 B10 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_2 A10 A11 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_1 B10 B11 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_DATA_0 C10 A12 IO — 3.3 4 Option to use negative edge of VID_CLK
VID_CLK A7 B8 I — 3.3 Video Clock: Used for both the VID_DATA and VIDOUT

ports. Always input. See “VID_CLK Video Clock Consider-
ations” on page 37 for more information.

VIDOUT_HSYNC B7 A7 I Down 3.3 Option to use negative edge of VID_CLK
VIDOUT_VSYNC A6 B7 I Down 3.3 Option to use negative edge of VID_CLK
VIDOUT_FIELD B6 A6 I Down 3.3 Option to use negative edge of VID_CLK
VIDOUT_DATA_7 C6 B6 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_6 A5 A5 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_5 B5 B5 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_4 B4 A4 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_3 A4 B4 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_2 A3 A3 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_1 A2 B3 O — 3.3 4 Option to use negative edge of VID_CLK
VIDOUT_DATA_0 B3 A2 O — 3.3 4 Option to use negative edge of VID_CLK
Audio Interface
AUD_IDAT P5 T6 I Down 3.3 Audio serial input data
AUD_CLK R5 R7 I Down 3.3 Audio over sample clock 256*fs (LRCK)
AUD_ODAT P6 T7 O — 3.3 4 Audio serial output data
AUD_LRCK R6 R8 IO Down 3.3 4 Audio left/right clock (48, 44.1, 32, 24, 22.05 MHz)

This pin should be software-configured as an output when
unused.

AUD_BCK P7 T8 IO Down 3.3 4 Audio bit clock, 32 or 64 *fs (LRCK)
This pin should be software-configured as an output when
unused.

1. I = Input, IU = Input w/ Internal Pull-Up, IS = Input w/ Schmitt Trigger, IO = Bidirectional, O = Output, OT = Output w/ Tri-state
Confidential Mobilygen Corp. | 33

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.2.1 The SOUT and SIN Signals

The SOUT and SIN signals provide a UART monitor port that can be used for debug purposes.
These are traditional asynchronous signals that can be used as a UART output and input
respectively.

2.2.2 JTAG Signals

The TCK, TDI, TDO, TMS and TRST signals comprise a JTAG test port. Contact your
Mobilygen Sales Representative for information regarding JTAG.

2.2.3 TMODE Signal

Setting the TMODE signal high puts the MG1264 Codec into factory test mode, and will cause
erratic operation. Customers should always pull TMODE low.

Table 2-1 MG1264 CODEC Test Pins

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA

Test Pins
SIN R1 T2 I Down 3.3 UART receive data
SOUT P2 T3 O — 3.3 4 UART transmit data
TMS N3 R3 IU Down 3.3 JTAG test mode. This pin has an internal 20 kOhm -

150 kOhm (50 kOhm nominal) pull-up resistor.
TCK R2 T4 IS Down 3.3 JTAG test clock
TDI P3 R4 IU Down 3.3 JTAG test data input. This pin has an internal 20 kOhm -

150 kOhm (50 kOhm nominal) pull-up resistor.
TDO R3 R5 OT — 3.3 8 JTAG test data output
TRST P4 T5 IU Down 3.3 Active low JTAG Reset. This pin has an internal 20 kOhm

- 150 kOhm (50 kOhm nominal) pull-up resistor.
TMODE R4 R6 I Down 3.3 Manufacturer test mode

1. I = Input, IU = Input w/ Internal Pull-Up, IS = Input w/ Schmitt Trigger, IO = Bidirectional, O = Output, OT = Output w/ Tri-state
34 | Mobilygen Corp Confidential

Pinlist and Packaging Information Pin List

Table 2-2 MG1264 CODEC Power and Ground Pin List

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA

Power And Ground
CVDD C4 D5 1.2 1.2V Core Power Supply

C12 D12 1.2 1.2V Core Power Supply
D3 E4 1.2 1.2V Core Power Supply
E13 E13 1.2 1.2V Core Power Supply
K13 M4 1.2 1.2V Core Power Supply
M3 M13 1.2 1.2V Core Power Supply
N4 N5 1.2 1.2V Core Power Supply
N5 N6 1.2 1.2V Core Power Supply
R13 N12 1.2 1.2V Core Power Supply

GND F6 F9 GND Ground
F7 F10 GND Ground
F8 F11 GND Ground
F9 G7 GND Ground

F10 G8 GND Ground
G6 G9 GND Ground
G7 G10 GND Ground
G8 H7 GND Ground
G9 H8 GND Ground
G10 H9 GND Ground
H6 H10 GND Ground
H7 J6 GND Ground
H8 J7 GND Ground
H9 J8 GND Ground
H10 J9 GND Ground
J6 J10 GND Ground
J7 K6 GND Ground
J8 K7 GND Ground
J9 K8 GND Ground
J10 K9 GND Ground
K6 K10 GND Ground
K7 L6 GND Ground
K8 – GND Ground
K9 – GND Ground
K10 – GND Ground
Confidential Mobilygen Corp. | 35

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
IOVDD C3 B14 3.3 3.3V IO Power Supply
C5 E1 3.3 3.3V IO Power Supply
C7 F7 3.3 3.3V IO Power Supply
C9 F8 3.3 3.3V IO Power Supply
C11 G6 3.3 3.3V IO Power Supply
E3 H6 3.3 3.3V IO Power Supply
A13 – 3.3 3.3V IO Power Supply
E2 – 3.3 3.3V IO Power Supply
G3 – 3.3 3.3V IO Power Supply
J3 – 3.3 3.3V IO Power Supply

MIOVDD D13 D15 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
F13 G11 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
G13 H11 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
H13 J11 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
J13 K11 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
L13 L7 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
M13 L8 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N6 L9 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N7 L10 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N8 L11 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N9 N15 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N10 R13 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N11 – 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N12 – 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
N13 – 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
D14 – 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply

MIOVDD M14 – 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply
P12 – 2.5 or 3.3 2.5V or 3.3V Memory IO Power Supply

AVDD A14 A15 1.2 1.2V Analog VDD for PLL power. See Section 2.3.4,
AVDD Power Supply Considerations

PFILTER B13 A16 N/A Analog PLL power supply filter. Do NOT ground this pin.
See Section 2.3.4, AVDD Power Supply Considerations
for more information

1. I = Input, IU = Input w/ Internal Pull-Up, IS = Input w/ Schmitt Trigger, IO = Bidirectional, O = Output, OT = Output w/ Tri-state

Table 2-2 MG1264 CODEC Power and Ground Pin List

Pin Name

Pin Number
Input

or
Output1

Pullup or
Pulldown
 when not

in use
Voltage

(V)

Function
(drive

Strength)
 (mA) Description

169-pin
TFBGA

156-pin
VFBGA
36 | Mobilygen Corp Confidential

Pinlist and Packaging Information Design Considerations
2.3 Design Considerations
The following should be taken into consideration when designing with the MG1264 Low Power
H.264 and AAC Codec for Mobile Devices.

2.3.1 Ground Plane Considerations

“Pinout Diagram for the MG1264 Codec in the 169-pin TFBGA Package” on page 26 shows
the location and identification of each Ground (GND) pin. All Ground pins should be tied to-
gether in a common plane.

2.3.2 XIN Core Clock Considerations

The XIN signal is input to an internal PLL that is used to general the internal Core Clock. The
MG1264 Codec Core Clock can run up to 110 MHz maximum by programming the internal
PLL accordingly. Generation of the Core Clock is subject to the restrictions described in “Phase
Lock Loop Restrictions” on page 245.

See “Clock and Configuration Registers” on page 74 for more information regarding control of
the PLL.

Note: XIN is independent of VID_CLK operation.

2.3.3 VID_CLK Video Clock Considerations

The VID_CLK signal drives both the VID_DATA and VIDOUT_DATA ports. A clock must
always be provided to the VID_CLK signal. The MG1264 Codec does not generate VID_CLK
in any mode. The MG1264 video ports, and VID_CLK signal, can operate up to 40 MHz. This
is beyond the typical 27 MHz associated with traditional 656 style video ports. See Chapter 5
for more information related to the operation of the video ports.

Note: VID_CLK is independent of XIN operation, but is subject to the restrictions
described in “Phase Lock Loop Restrictions” on page 245.

2.3.4 AVDD Power Supply Considerations

The AVDD signal requires a very low current of 1.3 mA maximum. PFILTER is the power sup-
ply pin for the Phase Lock Loop (PLL). This pin should not be grounded. The power supply
filtering circuit shown in Figure 2-3 is recommended to minimize jitter on the PLL.

Figure 2-3 Switching Power Supply Decoupling

MG1264
Codec

1.2V ±10%
Power Supply

CVDD
CVDD
CVDD
CVDD

AVDD

100
Ohms

25 uF
Capacitor

PFILTER
Confidential Mobilygen Corp. | 37

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.4 Package Dimensions
Figure 2-4 shows the package dimensions for the 169-pin RoHS compliant, Pb-free, 13mm x
13mm, 0.8mm ball-pitch TFBGA package. Figure 2-5 shows the package dimensions for the
the 156-pin RoHS compliant, Pb-free, 9mm x 9mm, 0.5mm ball-pitch VFBGA package.

Figure 2-4 169-pin TFBGA Package Mechanical Dimensions
38 | Mobilygen Corp Confidential

Pinlist and Packaging Information Ordering Information
Figure 2-5 156-pin VFBGA Package Mechanical Dimensions

2.5 Ordering Information
Table 2-3 shows the part numbers to be used when ordering the MG1264 Low Power H.264 and
AAC Codec for Mobile Devices.

Table 2-3 Ordering Information

Part Number Description

MG1264-169TFBGA MG1264-169TFBGA in a 169-pin Thin & Fine-Pitch Ball Grid Array
package (TFBGA) that is 13mm x 13mm, with 0.8mm ball-pitch.

MG1264-156VFBGA MG1264-156VFBGA in a 156-pin Very Fine-Pitch Ball Grid Array
package (VFBGA) that is 9mm x 9mm, with 0.5mm ball-pitch
Confidential Mobilygen Corp. | 39

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.6 Solder Profile
Figure 2-6 shows the solder profile to be used when mounting the package. This specification
applies to both the MG1264-169TFBGA and the MG1264-156VFBGA.

Figure 2-6 Temperature Profile (Body Temp) of Infrared Convection Reflow Soldering

Test Conditions
• Baked for 24 hours at 125º C

• Moisture soaking

• Ta = (30 +/- 2)º C (Ta = Ambient Temperature)

• RH = (70 +/- 5)% (RH = Relative Humidity)

• 96 h

• Reflow Soldering: IRS

• Infra-red Reflow Soldering (IRS):

• Peak Temperature: 255º to 260º C for 10 (+/- 3) seconds

• Pre-heat: 70º (+/- 10º) for 90 (+/- 30) seconds

Reference Specifications: EIAJ ED-4701 A-133B

(1.5 to 2.1) ºC/s

(160 to 180) ºC

(150 to 220) s

(90 ±30) s

T
em

pe
ra

tu
re

Time

(30 to 42) s

(10 ±3) s

Room
Temp

Peak Temp 260 ºC
255 ºC

230 ºC
40 | Mobilygen Corp Confidential

Pinlist and Packaging Information Storage Recommendations
2.7 Storage Recommendations
1. Shelf life in sealed bag: 12 months at < 40º C and < 80% RH.

2: In the case of twice reflow process:

• Mounted within 96 hours for first reflow at factory conditions of below 30º C and be-
low 70% RH, and

• Reflowed within 96 hours after first reflow at factory conditions of below 30º C and
below 70% RH, or

• Stored at below 30% RH (SMD stocker).

3: In the case of one time reflow process:

• Mounted within 168 hours at factory conditions of below 30º C and below 60% RH
(JEDEC Level3), or

• Stored at below 30% RH (SMD stocker).

4: Devices require baking before mounting if the moisture indicator inside the bag shows
over 30% RH when the bag is opened or when (1) or (2) or (3) are not met.

5: If baking is required, the devices may be baked for 24 hours at 125º (+/- 5º) C.

Note: Stipulations about the handling of moisture-proof bags or moisture sensitive devices give
priority to above cautions.
Confidential Mobilygen Corp. | 41

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
42 | Mobilygen Corp Confidential

Chapter 3. Specif ications
This chapter describes the electrical and mechanical specifications of the MG1264 Codec.
It is divided into these subsections:

• “Electrical Characteristics” on page 44

• “Absolute Maximum Ratings” on page 44

• “Operating Conditions” on page 44

• “DC Characteristics” on page 45

• “Power-Up and Power-Down Sequence” on page 46

• “AC Timing” on page 48

• “Video Interface AC Timing” on page 53

• “Audio Interface AC Timing” on page 54

• “MG1264 Codec Host Interface Timing” on page 49

• “SDRAM Interface AC Timing” on page 55
Confidential Mobilygen Corp. | 43

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.1 Electrical Characteristics
This section specifies the electrical characteristics of the MG1264 Codec.

3.1.1 Absolute Maximum Ratings

Table 3-1 gives the absolute maximum ratings. Exposure to stresses beyond those listed in this
table may result in device unreliability, permanent damage, or both.

3.1.2 Operating Conditions

Table 3-2 specifies the operating conditions for the MG1264 Codec.

Table 3-1 Absolute Maximum Ratings

Parameter Value Units Notes

CVDD 1.6 V —

AVDD 1.6 V —

IOVDD 4.5 V —

MIOVDD 4.5 V —

Maximum Input Voltage IO_VDD + 0.3 V Referenced to associated IOVDD

Storage Temperature
Range

-40 to 150 °C See “Storage Recommendations”
on page 41.

Operating Temperature
Range (case)

-20 to 125 °C —

Table 3-2 Operating Conditions

Parameter Minimum Typical Maximum Units Notes

CVDD 1.08 1.2 1.32 V 1.2V ±10%

VDDP 1.08 1.2 1.32 V 1.2V ±10%

IOVDD 2.97 3.3 3.63 V 3.3V ±10%

MIOVDD 2.25 2.5/3.3 3.63 V 2.5 / 3.3V ±10%

TAmbient -20 85 °C
44 | Mobilygen Corp Confidential

Specifications Electrical Characteristics
3.1.3 DC Characteristics

Table 3-3 defines the DC characteristics.

Table 3-3 DC Characteristics

Symbol Parameters Test Conditions

IOVDD and
MIOVDD =
3.3V ±10%

MIOVDD =
2.5V ±10% 1

UnitsMin Max Min Max

VIH Input High Level VDD = Maximum 2.0 — 1.7 — V

VIL Input Low-Level Voltage VDD = Minimum — 0.8 — 0.5 V

VOH Output High-Level
Voltage

VDD = Minimum,
IOH = –2, –4, –8 mA

2.4 — 1.9 — V

VOL Output Low-Level
Voltage

VDD = Minimum,
IOL = –2, –4, –8 mA

— 0.4 — 0.3 V

IIH Input Leakage VDD = Maximum,
VIN = VDD

–10 –10 –10 –10 µA

IIL Input Leakage VDD = Maximum,
VIN = 0V

–10 –10 –10 –10 µA

IOZ TriState Leakage VDD = Maximum,
VIN = 0V – IOVDD

–10 –10 –10 –10 µA

IDDCore Core Supply Current VDD = Maximum,
Frequency = 81 MHz

— 175 — 175 mA

IDDIO I/O Supply Current VDD = Maximum,
Frequency = 81 MHz

— 5 — 5 mA

IDDSD_IO SD I/O Supply Current VDD = Maximum,
Frequency = 81 MHz

— 20 — 20 mA

IPU Internal Pullup Current
for pins of type IU

VDD = Maximum,
VIN = 0V

–25 –165 –25 –165 µA

CPIN Capacitance2 — — 5 — 5 pF

1.The MIOVDD = 2.5V columns only apply to the SDRAM interface when using 2.5V SDRAMs.
2.Not 100% tested.
Confidential Mobilygen Corp. | 45

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.1.4 Standby Power

Table 3-4 shows the standby power for each of the major elements when the MG1264 Codec is
placed into powerdown mode and the PLL is stopped. The MG1264 Codec is placed into pow-
erdown mode using the PLLPowerDown bit in the Clock Configuration Register as described
in “Clock Configuration Register on page 74.

3.1.5 Power-Up and Power-Down Sequence

This section provides the recommended power-up and power-down sequences. In an ideal de-
sign, all of the power supplies become stable at the same time to prevent any direct feed-through
current. In real designs, though, there is typically a time delay between when the various power
supplies stabilize. This section explains the restrictions on the time differences between the
power supplies.

Case 1: Power on: 1.2V Core Supply comes on First, 1.2V Core Supply goes off last
Refer to Figure 3-1, In this case, the restrictions are as follows:

TLAG1, TLAG2 < 500 ms.

TON, TOFF < 500 ms.

Figure 3-1 Power Supply Sequencing, Case 1

Table 3-4 Standby Power

Element Min Typ Max Units

Core — 2 — mW

DRAM — 0.1 — mW

I/O — 1.9 — mW

Total — 4.0 — mW

1.2V Core Power Supply

0V (Ground Level)

0V (Ground Level)

3.3V

1.2V

TLAG1 TON TLAG2TOFF

3.3V I/O Power Supply
46 | Mobilygen Corp Confidential

Specifications Electrical Characteristics
Case 2: Power on: 3.3V I/O Supply comes on First, 3.3V I/O Supply goes off last
Refer to Figure 3-2, In this case, the restrictions are as follows:

TLAG1, TLAG2 < 500 ms.

TON, TOFF < 500 ms.

Figure 3-2 Power Supply Sequencing, Case 2

Other Cases
Follow the restrictions in Case 1 and Case 2. For example, if the 3.3V I/O supply powers up
first, and then powers down first, you should follow Case 2 for power Up and Case 1 for power
Down.

1.2V Core Power Supply

0V (Ground Level)

0V (Ground Level)

3.3V

1.2V

TLAG1 TON TLAG2TOFF

3.3V I/O Power Supply
Confidential Mobilygen Corp. | 47

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.2 AC Timing

This section provides the AC timing for the MG1264 Codec’s various interfaces. This section
is divided into the following subsections:

• “MG1264 Codec Host Interface Timing” on page 49

• “Video Interface AC Timing” on page 53

• “Audio Interface AC Timing” on page 54

• “SDRAM Interface AC Timing” on page 55
48 | Mobilygen Corp Confidential

Specifications AC Timing
3.2.1 MG1264 Codec Host Interface Timing

Figure 3-3 shows the timing diagram for the MG1264 Codec Host Interface, Figure 3-4 shows
the DMA Timing, Figure 3-5 shows the Wait timing, and Figure 3-6 shows the Interrupt Re-
quest timing. Table 3-5 lists the timing parameters for each of these diagrams.

Figure 3-3 MG1264 Codec Host Interface AC Timing Waveform

tRECtCRE

HCS

H_ADDR[6:1]

H_DATA[15:0]

H_WR

H_RD

H_DMARQ

Address Address

Write Data Read Data

tWAS

tWDC

tWAH

tWDH

tRAS tRAH

tRDD

tWECtCWE tREAtWEA

tCSH

tRDV tRDH

Max 4 CLK + tRQD

H_DMARQ takes three to four Core Clock (core_clk) periods before becoming valid
Confidential Mobilygen Corp. | 49

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Figure 3-4 MG1264 Codec H_DMARQ Timing

Figure 3-5 H_WAIT Timing

core_clk

H_WR
H_RD

H_DMARQ

tCLK

tCLK represents internal Core Clock (core_clk) cycles, not XIN cycles
H_DMARQ takes three to four Core Clock (core_clk) periods before becoming valid

tRQD

core_clk

H_WR
H_RD

H_WAIT

H_WR
H_RD

H_WAIT

The MG1264 Codec Host Interface
needs three to four Core Clock
(core_clk) cycles at the end of a host
access before H_WAIT is valid.

tWD

tCLK

tWV

Short Time Between Accesses <2 Core Clock Periods

tWD

tWV

Long Time Between Accesses >2 Core Clock Periods

The MG1264 Codec Host Interface
generates H_WAIT from the Core
Clock (core_clk) so the leading edge of
H_RE or H_WR, H_WAIT may not be
valid for one core_clk cycle, plus some
combinatorial delay.

tCLK represents internal Core Clock (core_clk) cycles, not XIN cycles
50 | Mobilygen Corp Confidential

Specifications AC Timing
Figure 3-6 H_IRQ Timing

core_clk

H_IRQ

tCLK

tID

tCLK represents internal Core Clock (core_clk) cycles, not XIN cycles
Confidential Mobilygen Corp. | 51

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Table 3-5 Host Interface Timing

Signal Parameter Description Min Max Units

core_clk tCLK Internal Core Clock: XIN x PLL Frequency 1 — 110 MHz

H_ADDR[6:1] tWAS H_ADDR setup to trailing edge H_WR for
write cycles

20 — ns

tWAH H_ADDR hold from trailing edge H_WR for
write cycles

3 — ns

tRAS H_ADDR setup to leading edge H_RD for
read cycles 2

0 — ns

tRAH H_ADDR hold from trailing edge H_RD for
read cycles

0 — ns

H_DATA[15:0] tWDC H_DATA setup to trailing edge H_WR for
write cycles

20 — ns

tWDH H_DATA hold from trailing edge H_WR for
write cycles

3 — ns

tRDD H_DATA driven from leading edge H_RD
for read cycles

0 — ns

tRDV H_DATA valid from leading edge H_RD for
read cycles

— 15 ns

tRDH H_DATA hold from trailing edge H_RD for
read cycles

2 15 ns

H_WR tCWE HCS Active to H_WR Active 0 — ns

tWEC H_WR Inactive to HCS Inactive 3 — ns

tWEA H_WR active time 37 — ns

H_RD tCRE HCS Active to H_RD Active 0 — ns

tREC H_RD Inactive to HCS Inactive 0 — ns

tREA H_RD active time 3*tCLK + 8 — ns

HCS tCSH HCS inactive time between accesses 2*tCLK — ns

H_DMARQ tRQD H_DMARQ valid from internal clock — 8 ns

H_IRQ TID H_IRQ valid from internal clock — 8 ns

H_WAIT tWD H_WAIT valid from internal clock — 8 ns

H_WAIT tWV H_WAIT valid from H_RD/ H_WR — 12 ns

1.See “Phase Lock Loop Restrictions” on page 245 for information regarding Core Clock generation.
2.H_ADDR[6:1] must be stable before H_RD is asserted. Make sure that delays caused by the printed circuit board
layout are taken into account when programming the bus timings.
52 | Mobilygen Corp Confidential

Specifications AC Timing
3.2.2 Video Interface AC Timing

Figure 3-7 and Table 3-6 show the AC timing parameters for the video interface.

Figure 3-7 Video Interface Timing Diagram

VID_CLK

VID_DATA

VIDOUT_DATA

tVF

tVIS tVIH

tVC

tVOS tVOH

tVL tVH tVR

Table 3-6 Video Interface AC Timing Values

Signal Parameter Description

Timing Value (ns.)

Min Typ Max

VID_CLK

tVC VID_CLK Cycle Time (27 MHz typical) 25 37 —

tVH VID_CLK High Time .4*tVC tVC/2 .6*tVC

tVL VID_CLK Low Time tVC - tVH

tVR VID_CLK Slew (Rise Time) Not Applicable

tVF VID_CLK Slew (Fall Time) Not Applicable

VID_DATA
tVIS VID_DATA Set-up Time to VID_CLK 5.5 — —

tVIH VID_DATA Hold Time from VID_CLK 0 — —

VIDOUT_DATA
tVOS VIDOUT_DATA Set-up Time to VID_CLK 16 — —

tVOH VIDOUT_DATA Hold Time from VID_CLK 6 — —
Confidential Mobilygen Corp. | 53

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.2.3 Audio Interface AC Timing
This section gives the AC timing parameters for the MG1264 Codec’s audio interface.
Figure 3-8 shows the relationships between the three audio clocks. Figure 3-9 shows the timing
waveforms. Table 3-7 lists the AC timing for Audio Operations.

Figure 3-8 Audio Timing Diagram

Figure 3-9 Audio Interface Timing Diagram

AUD_CLK

AUD_LRCK

AUD_BCK

AUD_IDAT

AUD_ODAT

256 AUD_CLKs

64/32 AUD_BCKs

AUD_BCK

AUD_LRCK
AUD_IDAT

AUD_ODAT

tBF

tABS tABH

tBC tBL tBH tBR
54 | Mobilygen Corp Confidential

Specifications AC Timing
3.2.4 SDRAM Interface AC Timing

The MG1264 Codec adheres to the JEDEC definition of timing for SDRAMs. Refer to the ap-
propriate specifications when designing the SDRAM Interface.

Table 3-7 Audio Interface AC Timing Values

Signal Parameter Description

Timing Value (ns.)

Min Typ Max

AUD_BCK

tBC AUD_BCK Cycle Time
(Fs = 48 kHz, 64 BCK/Sample)

— 325 —

tBC AUD_BCK Cycle Time
(Fs = 48 kHz, 32 BCK/Sample)

— 651 —

tBC AUD_BCK Cycle Time
(Fs = 32 kHz, 64 BCK/Sample)

— 488 —

tBC AUD_BCK Cycle Time
(Fs = 32 kHz, 32 BCK/Sample)

— 977 —

tBH AUD_BCK High Time .4*tBC tBC/2 .6*tBC

tBL AUD_BCK Low Time TBC - TBH

tBR AUD_BCK Slew (Rise Time) — — 1.5

tBF AUD_BCK Slew (Fall Time) — — 1.6

AUD_LRCK
AUD_ODAT
AUD_IDAT

tABS Set-up Time to AUD_BCK 8 — —

tABH Hold Time from AUD_BCK 3 — —
Confidential Mobilygen Corp. | 55

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
56 | Mobilygen Corp Confidential

Chapter 4. MG1264 Codec Host
Interface
The System Host CPU controls the MG1264 Codec through the Host Interface. The
MG1264 Codec Host Interface also serves as the compressed data interface. This interface
allows for directly-addressable access to the MG1264 Codec DRAM, the MG1264 Codec
Bitstream write FIFO, and the MG1264 Codec registers.

4.1 MG1264 Codec Host Interface Physical Description
The MG1264 Codec Host Interface is modeled on the commonly used generic
asynchronous-style interface. It consists of a 16-bit data path (H_DATA[15:0], six bits of
address (H_ADDR[6:1]), and control signals.

4.1.1 Connection Diagram

The MG1264 Codec Host Interface connection diagram is shown in Figure 4-1.

Figure 4-1 MG1264 Codec Host Interface Connection Diagrams

MG1264
Codec

Host Interface

HCS

H_RD

H_WR

H_IRQ

H_DMARQ

H_DATA[15:0]

H_ADDR[6:1]

H_WAIT
Confidential Mobilygen Corp. | 57

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
The MG1264 Codec Host Interface has a single chip select and six address lines. All of the
device’s resources reside in a single address space, and the registers that can be addressed by
the six address lines are shown in Table 4-2.

4.1.2 MG1264 Codec Host Interface Signals

The signals that comprise the MG1264 Codec Host Interface are shown in Table 4-1.

Table 4-1 MG1264 Codec Host Interface Pin Descriptions

Pin Name Signal Name Direction Description

H_DATA[15:0] Data [15:0] Bidirectional 16-bit Host Data Bus

H_ADDR[6:1] Address [6:1] Inputs Six bits of Host Address

HCS Host Chip Select Input Active Low Host Chip Select. This chip select is
used to access the MG1264 Codec’s Internal
registers, External memory, bitstream read and
write FIFO registers.

H_RD RE Input Active Low Read Enable

H_WR WE Input Active Low Write Enable

H_IRQ Interrupt Output Active Low Host Interrupt Request

H_DMARQ Host DMA Request Output Bitstream DMA Request associated with the Bit-
stream port

H_WAIT Wait Output Active low wait pin. The MG1264 Codec asserts
this pin to extend the bus cycle until it is able to
accept data (during a write cycle) or present
data (during a read cycle).

H_WAIT can stay asserted or deasserted inde-
pendently of HCS. If the H_WAIT signal is used
in multi-chip designs, this must be accounted for
by using an external multiplexer or other means
to separate the different H_WAIT signals.
58 | Mobilygen Corp Confidential

MG1264 Codec Host Interface MG1264 Codec Host Interface Logical Description
4.2 MG1264 Codec Host Interface Logical Description
The MG1264 Codec Host Interface works in two completely different modes:

• System Control

• Compressed Data I/O Interface

These are discussed in the sections that follow.

Figure 4-2 Register Logical View

4.2.1 System Control

The MG1264 Codec is controlled through the MG1264 Codec Host Interface. When the
MG1264 Codec is powered up, the System Host CPU must first download the firmware through
the MG1264 Codec Host Interface, and then initialize the MG1264 Codec. The System Host
CPU controls the operation of the MG1264 Codec by reading and writing specific registers
inside the MG1264 Codec.

The MG1264 Codec is able to accept new commands or requests from the System Host CPU at
least once every frame period. Control commands such as start/stop/pause are executed within
one frame time of being issued.

MailboxMailbox

CSRCmd
CSRAddr

CSRDataH
CSRDataL
CSRStat

PeriIntClr
PeriIntSet

PeriIntPend

EMCmd
EMXferSize
EMAddrH
EMAddrL
EMStat

EMConfig
EMReadPort
EMWritePort
EMFifoStatus

BFifoConfig
BFifoStatus
BFifoWrPort

Interrupt
Controller

Memory
Controller

Read FIFO

Write FIFO

Read FIFO

Write FIFO

Write FIFO

Mailbox

Demux
ISR

Code /Data

4:2:0 Picture
Buffer (x8)

Command
Buffer

Current Event
Buffer

Event Queue

Video Bit Buffer
(3 GOP)

Audio Bit Buffer

Audio Output
Buffer

8MB DRAM

Firmware
Control

Host Interface Register Set

(16 16-bit Words)

(16 16-bit Words)
Confidential Mobilygen Corp. | 59

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4.2.2 Compressed Data I/O Through the MG1264 Codec Host Interface

The MG1264 Codec Host Interface also transports compressed data in to (decoding) and out of
(encoding) the MG1264 Codec. The System Host CPU can use Direct Memory Access (DMA)
to facilitate these transfers.

4.2.3 Interrupts

There is a single interrupt pin defined: H_IRQ. The MG1264 Codec has four interrupt sources
that are logically OR'd together internally to form the H_IRQ:

• CSRInt: Configuration Status Register Interrupt

• EMInt: External Memory Interrupt

• BMInt: Bitstream Memory Interrupt

• MBint: Mailbox Interrupt

For information on the Interrupt Registers, refer to “Peripheral Interrupt Registers” on page 73.

4.2.4 DMA Channels

The MG1264 Codec has two generic External Memory DMA engines. One is for System Host
CPU access to the MG1264 Codec’s DRAM including the mailbox. You can find information
on this DMA interface in the section “External Memory Access Registers” on page 79.

The other is for Bitstream transfers. The Bitstream DMA is used for reading a bitstream from,
and writing a bitstream to the Bitstream Write FIFO. You can also find information on this
DMA interface in the section “Bitstream Write FIFO Access Registers” on page 85.

4.2.5 Latency Considerations

Because internal operations such as DRAM and register access can incur a lot of latency, the
MG1264 Codec’s Host Interface uses an indirect access method to access the internal MG1264
Codec’s processor resources. In this mode of operation, read and write accesses are
deterministic and no Host Ready (or Wait) signaling is needed.
60 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Read/Write Timing
4.3 Read/Write Timing
This section provides generic timing information for the MG1264 Codec Host Interface. For
specific timing information, refer to “Specifications” on page 43. For information on the
programming sequence needed to read or write a register, refer to “Register Definitions” on
page 71.

The Read/Write control signals are programmable, and can be set to work in either Read Enable
and Write Enable mode (default) or Read/Write (RD/WR) and Enable (ENABLE) mode. The
MG1264 Codec defaults to the separate Read Enable and Write Enable signalling as shown in
Figure 4-3 and Figure 4-4.

To put the host interface into Read/Write and Enable mode (Figure 4-5 and Figure 4-6), the very
first transaction on the read bus must be a Write transaction using the separate Enable and RD/
WR signaling to register address 0x18. This register is not defined as a valid register and a write
to it has no logical effect other than to put the chip into separate ENABLE and RD/WR mode.
A data value of 0x0000 should be used.
Confidential Mobilygen Corp. | 61

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4.3.1 Read Timing Sequence in Read Enable Mode

Figure 4-3 shows the timing for a System Host CPU read from the MG1264 Codec in Read
Enable mode.

Figure 4-3 Read Access Timing in Read Enable Mode

1. The System Host CPU must assure that the address bus (H_ADDR[6:1]) is stable be-
fore asserting Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a read is in process. When Host Chip Select (HCS) is used, it accesses the MG1264
Codec’s Internal registers and External memory.

3: The System Host CPU asserts the Host Read Enable (H_RD) signal to inform the
MG1264 Codec that the operation will be a read.

4: The data becomes available on H_DATA[15:0].

5: Once the data has been taken, the System Host CPU de-asserts the Host Read Enable
(H_RD) signal to indicate to the MG1264 Codec that the transaction is complete.

6: The MG1264 Codec removes the output data from the data bus (H_DATA[15:0]).

7: The System Host CPU then de-asserts the address bus (H_ADDR[6:1]) and the Host
Chip Select to complete the transaction.

HCS

H_ADDR[6:1]

H_DATA[15:0]

H_WR

H_RD

Address

Read Data

1

2

3

4

5

7

6

62 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Read/Write Timing
4.3.2 Write Data Timing in Write Enable Mode

Figure 4-4 shows the timing for a System Host CPU write to the MG1264 Codec in Write
Enable mode.

Figure 4-4 Write Access Timing in Write Enable Mode

1. The System Host CPU must assure that the address bus (H_ADDR[6:1]) and data to be
written (on H_DATA[15:0]) are stable before asserting the Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a write is in process. When the Host Chip Select (HCS) is used, it accesses the
MG1264 Codec’s Internal registers and External memory.

3: The System Host CPU asserts the Host Write Enable (H_WR) signal to inform the
MG1264 Codec that the operation will be a write.

4: The System Host CPU de-asserts the Host Write Enable (H_WR) signal to indicate to
the MG1264 Codec that the write is complete.

5: The System Host CPU de-asserts the Address bus (H_ADDR[6:1]), Write Data bus
(H_DATA[15:0]), and the Host Chip Select to indicate to the MG1264 Codec that the
transaction is complete.

HCS

H_ADDR[6:1]

H_DATA[15:0]

H_WR

H_RD

Address

Write Data
1

1

2

3 4

5

5

5

Confidential Mobilygen Corp. | 63

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4.3.3 Read Timing Sequence in Read/Write and Enable Mode

Figure 4-3 shows the timing for a System Host CPU read from the MG1264 Codec in Read/
Write mode.

Figure 4-5 Read Access Timing in Read/Write and Enable Mode

1. The System Host CPU must assure that the address bus (H_ADDR[6:1]) is stable be-
fore asserting Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a read is in process. When Host Chip Select (HCS) is used, it accesses the MG1264
Codec’s Internal registers and External memory.

3: The System Host CPU sets the Read/Write signal (RD/WR) high to inform the
MG1264 Codec that the operation will be a read.

4: The System Host CPU asserts the ENABLE signal to start the read cycle.

5: The data becomes available on H_DATA[15:0].

6: Once the data has been taken, the System Host CPU de-asserts the ENABLE signal to
indicate to the MG1264 Codec that the transaction is complete.

7: The System Host CPU then de-asserts the address bus (H_ADDR[6:1]) and the Host
Chip Select to complete the transaction.

8: The MG1264 Codec removes the output data from the data bus (H_DATA[15:0]).

HCS

H_ADDR[6:1]

H_DATA[15:0]

RD/WR

ENABLE

Address

Read Data

1

2

3

5

6

8

4

7

64 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Read/Write Timing
4.3.4 Write Data Timing in Read/Write and Enable Mode

Figure 4-4 shows the timing for a System Host CPU write to the MG1264 Codec in Read/Write
and Enable mode.

Figure 4-6 Write Access Timing in Read/Write and Enable Mode

1. The System Host CPU must assure that the address bus (H_ADDR[6:1]) and data to be
written (on H_DATA[15:0]) is stable before asserting the Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a write is in process. When the Host Chip Select (HCS) is used, it accesses the
MG1264 Codec’s Internal registers and External memory.

3: The System Host CPU sets the Read/Write signal (RD/WR) low to inform the MG1264
Codec that the operation will be a write.

4: The System Host CPU asserts the ENABLE signal to start the write cycle.

5: The System Host CPU de-asserts the RD/WR signal and ENABLE signals to indicate
to the MG1264 Codec that the write is complete.

6: The System Host CPU de-asserts the Address bus (H_ADDR[6:1]), Write Data bus
(H_DATA[15:0]), and the Host Chip Select to indicate to the MG1264 Codec that the
transaction is complete.

HCS

H_ADDR[6:1]

H_DATA[15:0]

RD/WR

ENABLE

Address

Write Data
1

1

2

3 5

6

6

6

4 5
Confidential Mobilygen Corp. | 65

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4.4 DMA Transfers
The MG1264 Codec can be configured to do DMA transfers. When the MG1264 Codec is in
DMA mode, the transfers on the external bus are a sequence of individual read and write
transactions to a FIFO port mapped to a host interface register. See “Accessing External
Memory Port 1 and Port 2” on page 77 for information on how to set up a DMA transfer.

When in DMA mode, the individual read or write transactions making up the DMA transactions
must be paced. The MG1264 Codec signals the external host that it is ready to accept a read or
write transaction. The pacing is accomplished using one of three mechanisms:

• The external H_DMARQ pin

• A register bit (EMFifoRdReq/ EMFifoWrReq)

• The external H_WAIT pin

4.4.1 Pacing using the H_DMARQ Pin

The MG1264 Codec asserts the H_DMARQ pin when a programmable threshold (EMDThresh,
see page 83) is reached in the DMA transfer FIFO. For a read DMA, the MG1264 Codec asserts
the H_DMARQ pin when EMDThresh number of 16-bit words is available to be transferred to
the System Host CPU. The MG1264 Codec deasserts the H_DMARQ pin once the number of
16-bit words available to be read falls below EMDThresh.

For a write DMA, the H_DMARQ pin is asserted when the MG1264 Codec is able to accept
EMDThresh number of 16-bit words to be written. The H_DMARQ pin is de-asserted once the
number of 16-bit words available to be written falls below EMDThresh.

4.4.2 Pacing using the EMFifoRdReq/EMFifoWrReq Bits

The EMFifoRdReq or EMFifoWrReq Bits in the EMFifoStatus Register (see page 84) are
reflections of the H_DMARQ pin and are set accordingly if in read or write DMA mode.

4.4.3 Pacing using the H_WAIT Pin

Pacing using the H_WAIT pin is slightly different than in H_DMARQ mode. In this case, the
external host does not use the H_DMARQ or the EMFifoRdReq/EMFifoWrReq mechanisms.
In the case of a read DMA transaction, the System Host CPU initiates read transactions without
monitoring the H_DMARQ pin or the EMFifoRdReq bits. If the MG1264 Codec does not
currently have data available for reading, it asserts the H_WAIT signal during that individual
read transaction until data is available. The transaction is not completed until H_WAIT is
deasserted.

In a write DMA transaction, the external host initiates write transactions without monitoring the
H_DMARQ pin or the EMFifoRdReq bits. If the MG1264 Codec is not currently able to accept
write data, it asserts the H_WAIT signal during that individual write transaction until it is able
to accept data. The transaction is not completed until H_WAIT is de-asserted.
66 | Mobilygen Corp Confidential

MG1264 Codec Host Interface MG1264 Codec Register Indirect Access
4.5 MG1264 Codec Register Indirect Access
The System Host CPU processor can only indirectly access the MG1264 Codec’s internal
Configuration and Status (CSR) registers and Mailbox registers (see Figure 4-2). This is done
through a set of registers mapped to the Host Chip Select (HCS) over the MG1264 Codec Host
Interface. These registers are not accessed during normal operation, and indirect addressing is
typically only used by the bootloader.

4.5.1 Reading a Register

The procedure to read an MG1264 Codec register is:

1. Before accessing a register, set up the PeriIntEn register to enable the Configuration
or Status Register (CSR) interrupt, if that is the preferred method for getting the “Ac-
cess Done” message. This only needs to be done once for all CSR accesses.

2: Write the Address to the CSRAddr register.

3: Write the Command bits (CSRAccess = 0) to the CSRCmd register.

4: Poll the CSRDone bit in the CSRStat register, or wait for the interrupt.

5: Read the return data from the CSRRdDataH and CSRRdDataL registers.

6: Read the CSRStat register and check that it has the expected value.

7: Clear the CSRInt bit in the PeriIntPend register, if using interrupts or
clear the CSRDone bit in the CSRStatus register, if polling.

4.5.2 Writing a Register

The procedure to write a MG1264 Codec register is:

1. Before accessing a register, set up the PeriIntEn register to enable the Configuration
or Status Register (CSR) interrupt, if that is the preferred method for getting the “Ac-
cess Done” message. This only needs to be done once for all CSR accesses.

2: Write the data to be written to the CSRWrDataH and CSRWrDataL registers.

3: Write the Address the CSRAddr register.

4: Write the Command bits (CSRAccess = 0) to the CSRCmd register.

5: Poll the CSRDone bit in the CSRStat register, or wait for the interrupt.

6: Read the CSRStat register and check that it has the expected value.

Usage Note: In some cases, it may be necessary to read CSRRdData to check a value
returned by the internal processor if the operation is more complex than a simple reg-
ister read or write.

7: Clear the CSRInt bit in the PeriIntPend register, if using interrupts or
clear the CSRDone bit in the CSRStatus register, if polling.
Confidential Mobilygen Corp. | 67

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4.6 Programming the MG1264 Codec Host Interface

4.6.1 Register Maps

This section provides information on the registers used to program the MG1264 Low Power
H.264 and AAC Codec for Mobile Devices. These registers are addressed when the Host Chip
Select (HCS) signal is asserted.

Table 4-2 shows the MG1264 Codec Internal Configuration and Status Registers. These
registers are discussed in detail in “Configuration, Data, and Status Registers” on page 71.

Table 4-2 MG1264 Codec Internal Configuration and Status Registers

Register Offset Access Description Page

CSRCmd 0x0020 R/W Configuration/Status Register Command 71

CSRAddr 0x0022 R/W Configuration/Status Register Address 71

CSRWrDataH 0x0024 R/W Configuration/Status Register Write Data High 71

CSRWrDataL 0x0026 R/W Configuration/Status Register Write Data Low 71

CSRRdDataH 0x0028 Read Configuration/Status Register Read Data High 72

CSRRdDataL 0x002A Read Configuration/Status Register Read Data Low 72

CSRStat 0x002C R/W Configuration/Status Register Status 72

PeriIntPend 0x002E R/W Peripherals Interrupt Pending 73

PeriIntEnSet 0x0030 R/W Peripherals Interrupt Enable - Set 73

PeriIntEnClr 0x0032 R/W Peripherals Interrupt Enable - Clear 73

ClkConfig 0x0034 R/W Clock Configuration Register 74

PLL Dividers 0x0036 R/W PLL Dividers Register 75

ChipID 0x0038 R Chip ID Register 76
68 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Programming the MG1264 Codec Host Interface
Table 4-3 shows the MG1264 Codec External Memory Interface Port 1 Registers. These
registers are discussed in detail in “Accessing External Memory Port 1 and Port 2” on page 77
and “Reading the MG1264 Codec’s External Memory” on page 77.

Table 4-3 MG1264 Codec External Memory Interface Port 1 Registers

Register Offset Access Description Page

EM1Cmd 0x0000 R/W External Memory DMA Command 79

EM1XferSize 0x0002 R/W External Memory DMA Transfer Size 79

EM1SrcAddrH 0x0004 R/W External Memory DMA Source Address High
or Starting Vertical/Y Source Address

80

EM1SrcAddrL 0x0006 R/W External Memory DMA Source Address Low
or Starting Horizontal/X Source Address

80

EM1DestAddrH 0x0008 R/W External Memory DMA Destination Address High
or Starting Vertical/Y Destination Address

80

EM1DestAddrL 0x000A R/W External Memory DMA Destination Address Low
or Starting Horizontal/X Destination Address

80

EM1Status 0x000C Read External Memory DMA Status 82

EM1RemCount 0x000E Read External Memory DMA Transfer Remainder Count 82

EM1Config 0x0010 R/W External Memory DMA Configuration 83

EM1FifoRdPort 0x0012 Read External Memory DMA FIFO Read Port (from memory) 84

EM1FifoWrPort 0x0014 R/W External Memory DMA FIFO Write Port (to memory) 84

EM1FifoStatus 0x0016 Read Bitstream Memory DMA Status 84
Confidential Mobilygen Corp. | 69

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Table 4-4 shows the MG1264 Codec External Memory Interface Port 2 Registers. These
registers are also discussed in detail in “Accessing External Memory Port 1 and Port 2” on
page 77 and “Reading the MG1264 Codec’s External Memory” on page 77.

Table 4-5 shows the MG1264 Codec Bitstream Interface Registers. These registers are
discussed in detail in “Bitstream Write FIFO Access Registers” on page 85.

Table 4-4 MG1264 Codec External Memory Interface Port 2 Registers

Register Offset Access Description Page

EM2Cmd 0x0040 R/W Bitstream Memory DMA Command 79

EM2XferSize 0x0042 R/W Bitstream Memory DMA Transfer Size 79

EM2SrcAddrH 0x0044 R/W Bitstream Memory DMA Source Address High
or Starting Vertical/Y Source Address

80

EM2SrcAddrL 0x0046 R/W Bitstream Memory DMA Source Address Low
or Starting Horizontal/X Source Address

80

EM2DestAddrH 0x0048 R/W Bitstream Memory DMA Destination Address High
or Starting Vertical/Y Destination Address

80

EM2DestAddrL 0x004A R/W Bitstream Memory DMA Destination Address Low
or Starting Vertical/Y Source Address

80

EM2Status 0x004C Read Bitstream Memory DMA Status 82

EM2RemCount 0x004E Read Bitstream Memory DMA Transfer Remainder Count 82

EM2Config 0x0050 R/W Bitstream Memory DMA Configuration 83

EM2FifoRdPort 0x0052 Read Bitstream Memory DMA FIFO Read Port
(from memory)

84

EM2FifoWrPort 0x0054 R/W Bitstream Memory DMA FIFO Write Port
(to memory)

84

EM2FifoStatus 0x0056 Read Bitstream Memory DMA FIFO Status 84

Table 4-5 MG1264 Codec Bitstream Interface Registers

Register Offset Access Description Page

BFifoWrPort 0x0060 R/W Bitstream FIFO Write Port (to Media Engine) 85

BFifoStatus 0x0062 Read Bitstream FIFO Status Register 85

BFifoConfig 0x0064 R/W Bitstream FIFO Command Register 85
70 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
4.7 Register Definitions

4.7.1 Configuration, Data, and Status Registers

Command/Status Register Command CSRCmd Offset: 0x0020

Command/Status Register Address CSRAddr Offset: 0x0022

Command/Status Register Write Data High CSRWrDataH Offset: 0x0024

Command/Status Register Write Data Low CSRWrDataL Offset: 0x0026

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSR

Access
CSRLen Reserved CSRBlockID

Reserved fields should be ignored (masked) when read, and only 0's should be written to them.
CSRAccess When a 0 is written to this field, it initiates a CSR read from the address provided in the

CSRAddr register.
When a 1 is written to this field, it initiates a CSR write to the address provided in the
CSRAddr register with the data provided in the CSRWrData register.

CSRLen 000 = 4 byte (word) access
001 = 1 byte access
010 = 2 byte (halfword) access
Other codes are reserved and should not be used.

CSRBlockID Block ID for a register access

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRAddr

CSRAddr Address (within a register block) for register access. Expected to be word-aligned (bits
[1:0] are 0) for 4-byte access and half-word aligned (bit [0] is 0) for 2-byte access.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRWrDataH

CSRWrDataH High 16-bit register from which the data for a CSR write is taken.
Used with CSRWrDataL.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRWrDataL

CSRWrDataL Low 16-bit register from which the data for a CSR write is taken.
Used with CSRWrDataH
Confidential Mobilygen Corp. | 71

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Command/Status Register Read Data High CSRRdDataH Offset: 0x0028

Command/Status Register Read Data Low CSRRdDataL Offset: 0x002A

Command/Status Register Status CSRStat Offset: 0x002C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRRdDataH

CSRRdDataH High 16-bit register containing the data returned for a CSR read or the status information
returned for a write. Used with CSRRdDataL This register is read-only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRRdDataL

CSRRdDataL Low 16-bit register containing the data returned for a CSR read or the status information
returned for a write. Used with CSRRdDataH. This register is read-only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRRespID Res CSRRespLen Res CSR-

Err
CSR-
Done

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
CSRRespID Block ID information from l_obid port when a CSR access is completed (which block re-

sponded). If it doesn't match the CSRBlockID originally programmed, then something is
wrong. This field is read-only.

CSRRespLen Length of the access actually done. For a write, it should be 1; for a read, it should match
the CSRLen code originally programmed. If not, then something is wrong. This field is
read-only.

CSRErr If set to 1 when CSRDone is set, an error occurred in the access.
This should never happen. This field is read-only.

CSRDone Set to 1 after each CSRAccess completes. When the hardware sets this bit to 1, the read
data (or write response status) is available in the CSRRdData register.
It is not required to clear this bit before initiating a new access; however, software should
clear it if it is polling this bit to determine when an access completes, instead of using the
CSRInt interrupt.
72 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
4.7.2 Peripheral Interrupt Registers

Peripheral Interrupt Pending Register PeriIntPend Offset: 0x002E

Peripheral Interrupt Enable Set Register PeriIntEnSet Offset: 0x0030

The Peripheral Interrupt Enable function is implemented with separate “Set” and “Clear”
register addresses, allowing each interrupt enable bit to be set or cleared independently of the
other bits, so that no read-modify-write cycles are required.

Peripheral Interrupt Enable Clear Register PeriIntEnClr Offset: 0x0032

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Mbox

1Int
Mbox
0Int

BMInt EMInt CSR
Int

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
The bits in these registers are “sticky”; if an interrupt event occurs and sets a bit, the bit stays set until it is
cleared. A bit can only be cleared by writing a 1 to it; writing a 0 to it has no effect (so the same value that was
read from the register can be written back to clear only the interrupt bits that were previously set, not any new
ones).
Mbox1Int This bit is a logical OR of the Mbox1RdyCPU0Int and Mbox1ReadCPU0Int field of the

MboxIntCPU0 QCC register.
Mbox0Int This bit is a logical OR of the Mbox0RdyCPU0Int and Mbox0ReadCPU0Int field of the

MboxIntCPU0 QCC register.
BMInt Bitstream Read Memory DMA transfer is done (BMBusy goes from 1 to 0)
EMInt External Memory DMA transfer is done (EMBusy goes from 1 to 0)
CSRInt CSR Access is done.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PeriIntEnSet

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
PeriIntEnSet Writing a 1 to a bit at the address for PeriIntEnSet sets the corresponding bit to 1 in Peri-

IntEn; writing a 0 has no effect. Reading the register at the address for PeriIntEnSet re-
turns the current value for PeriIntEn.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PeriIntEnClr

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
PeriIntEnClr Writing a 1 to a bit at the address for PeriIntEnClr clears the corresponding bit in PeriIntEn;

writing a 0 has no effect. Reading the register at the address for PeriIntEnClr returns the
current value for PeriIntEn.
Confidential Mobilygen Corp. | 73

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4.7.3 Clock and Configuration Registers

Clock Configuration Register ClkConfig Offset: 0x0034

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Vclk

Invert
PLL

Power
Down

ClkEn

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
VclkInvert Internally inverts VID_CLK. This allows for sampling of video pins on the negative edge of

VLK. It is very useful for solving setup and hold issues on the video bus.
0: video_clk = VID_CLK (default)
1: video_clk = VID_CLK

PLLPowerDown The PLL is put in powerdown mode. Note: ClkGate must be enabled (set to 0) first (sepa-
rate register programming transactions) before setting PLLPowerDown to 1.
PLLPowerDown must be set to 0 before clearing (set to 1) ClkGate.
0: Normal Operation
1: PLL is in powerdown (default)

ClkEn This register glitchlessly turns off core_clk, video_clk, and audio_aclk and holds them low.
0: Clocks are gated off and held low (default)
1: Clocks are active
74 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
Phase Lock Loop Dividers PLLDividers Offset: 0x0036

The Core Clock frequency (core_clk) is generated using an internal Phase Lock Loop (PLL)
from the clock input on the XIN pin. The Core Clock frequency is calculated using the
following equation:

where M is set using the PLLFeedBackDivider field and X is set using the PLLOutputDivider
field of the PLLDivider register (see below).

The maximum frequency for the MG1264 Codec Core Clock is 110 MHz. at worse case
conditions. However, the MG1264 Codec has a restriction on the relationship between the clock
input on the VID_CLK pin (video Input Clock) and the Core Clock. The relationship can best
be described as follows: The maximum Core Clock frequency of the MG1264 Codec is one
PLL resolution below four times the clock on the VID_CLK pin. (See “Phase Lock Loop
Restrictions” on page 245.)

For instance, if VID_CLK = 27 MHz, the Core Clock must be less than 4 x 27 MHz (108 MHz.),
and 104.625 MHz. is the highest Core Clock frequency below the 4 x 27 MHz (108 MHz.) limit.
The equation for generating a 104.625 MHz Core Clock is:

Where the M/X ratio of 31/8 meets the requirement of being one PLL resolution below four
times the clock on the VID_CLK pin.

When programming the PLL dividers, the ClkEn bit in the Clock Configuration register must
be set to 0 before setting the dividers or PLLBypass. Once programmed, the PLL must be given
time (0.5 ms.) to lock before setting ClkEn = 1. When programming PLLBypass, the PLL does
not need time to lock and ClkEn can be set to 1 immediately.

core_clk XIN M
X
-----×=

104.625MHz 27MHz 31
8
------×=

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PLL

Bypass
Reserved PllFeedBackDivider PLLOutput

Divider
Reserved fields should be ignored (masked) when read and only 0's should be written to them.
PLLBypass The register bypasses the PLL and sets the pll_clk = XIN.

0: PLL is in normal mode (default)
1: PLL is bypassed.

PLLFeedBack
Divider

The PLL feedback divider M. The default=31
Restriction: 2<=M<=37 for 27 MHz input clock.

PLLOutput
Divider

00: The PLL output divider X is set to 8 (Default).
01: The PLL output divider X is set to 1.
10: The PLL output divider X is set to 2.
11: The PLL output divider X is set to 4.
Confidential Mobilygen Corp. | 75

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Chip ID Register ChipID 0x0038

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID TapeOutRev MaskID

this is a Read-only register
ProductID 8’b00000001
TapeOutRev 4’b0001
MaskID 4’b0000
76 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
4.7.4 Accessing External Memory Port 1 and Port 2

The System Host CPU accesses the MG1264 Codec’s external DRAM through a set of registers
mapped to the Host Chip Select (HCS) pin over the MG1264 Codec Host Interface. The base
address of this device, and the offset for each of these registers is listed in Table 4-2. These
registers are explained in detail in the sections that follow.

Two generic External Memory DMA engines have been implemented in the MG1264 Codec.
The first one (EM1) is intended for generic System Host CPU access to the DRAM, including
the mailbox. It is selected by asserting the HCS pin and register addresses 0x0000 to 0x0016.
The other (EM2) is intended for compressed bitstream transfers and is selected by asserting
HCS and register addresses 0x0040 to 0x0056. These interfaces are identical designs.

Usage Note: While these two interfaces are identical in design, the MG1264 Codec
only brings the DMA request signal from the device when H_ADDR[6] is high
(Bitstream write) out to a pin. H_DMARQ is a logical OR of the DMA requests for
External Memory Port 1 and 2. When the EMCmd register is written with an active
value, the H_DMARQ signal represents the request generated from the External
memory access logic. Otherwise, it represents the request signal generated from the
Bitstream FIFO logic.

During initialization, the System Host CPU can use the HCS pin and H_ADDR = 1
to do a block-level DMA of a DRAM image into the MG1264 Codec’s DRAM.
However, during normal operating mode, it is envisioned that the modes when
H_ADDR[6] is high will only be used for Bitstream transfers to the MG1264 Codec.
The HCS0 device is used mainly for mailbox messaging those transactions can
happen on a polled IO basis.

4.7.5 Reading the MG1264 Codec’s External Memory

The procedure to read a block of the MG1264 Codec’s memory is:

1. Verify that the EMBusy bit in the EMStatus register is set to 0; otherwise, wait until it
is.

2: If necessary, update the MG1264 Codec's DMA engine configuration in the EMConfig
register.

3: Store the address to be accessed in the EMSrcAddrH and EMSrcAddrL registers.

4: Write the transfer length to the EMXferSize register.

5: Write the “read” command to the EMCmd register (set the EMCmd field to 0b01).

6: Set up the System Host CPU to DMA the data from the EMFifoRdPort to a buffer in
the System Host CPU's memory
or
Loop through enough loads from EMFifoRdPort to read the specified number of words.
You must check the EMFifoStatus in this case. Refer to “Checking the FIFO Status”
on page 78 for additional information.

7: Optionally, check the EMBusy bit in the EMStatus register or use EMInt to determine
when the DMA engine is finished (for a “read” operation, the DMA engine for the Sys-
tem Host CPU can generate an interrupt when the DMA is complete).
Confidential Mobilygen Corp. | 77

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Writing the MG1264 Codec’s External Memory

The procedure to write to a block of the MG1264 Codec’s memory is:

1. Verify that the EMBusy bit in the EMStatus register is set to 0; otherwise, wait until it
is.

2: If necessary, update the MG1264 Codec's DMA engine configuration in the EMConfig
register.

3: Setup the address in the EMDestAddrH and EMDestAddrL registers.

4: Write the transfer length to the EMXferSize register.

5: Write the “write” command to the EMCmd register (set the EMCmd field to 0b10).

6: Set up the System Host CPU to DMA the data from a buffer in the System Host CPU's
memory to the EMFifoWrPort
or
Loop through enough stores to EMFifoWrPort to write the specified number of words.
You must check the EMFifoStatus in this case. Refer to “Checking the FIFO Status”
on page 78 for additional information.

7: Optionally, check the EMBusy bit in the EMStatus register or use EMInt to determine
when the DMA engine is finished (for a “write” operation, the DMA engine for the Sys-
tem Host CPU can generate an interrupt when the DMA is complete from the System
Host CPU's point of view, but the MG1264 Codec may still be working on it).

4.7.6 Checking the FIFO Status

The interface logic asserts a DMA request to the System Host CPU (by asserting H_DMARQ)
when it has available at least EMDThresh words of data in its Read FIFO or when it can accept
at least EMDThresh words of data into its Write FIFO, depending upon the direction of the
transfer programmed in the EMCmd register. If the System Host CPU DMA engine is not used,
individual words can be read (loaded) from or written (stored) to this port, but software must
check the status of the FIFO after every EMDThresh word.
78 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
4.7.7 External Memory Access Registers

These registers are used to access the external memory.

External Memory Command Register EM1Cmd Offset: 0x0000
Bitstream Memory Command Register EM2Cmd Offset: 0x0040

External Memory DMA Transfer Size Register EM1XferSize Offset: 0x0002
Bitstream Memory DMA Transfer Size Register EM2XferSize Offset: 0x0042

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMCmd EMM

arb
Priority

EM
Endian
Swap

Reserved

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
This register should not be modified while EMBusy is 1.
EMCmd 00 = Idle: no operation is performed

01 = Read: Initiate transfer from MG1264 Codec Memory, starting at EMSrcAddr, to the
Memory Read FIFO, which can be read by the System Host CPU (Static Bus) via the
EMFifoRdPort.
10 = Write: Initiate transfer from the Memory Write FIFO to MG1264 Codec Memory,
starting at EMDestAddr; the Memory Write FIFO is filled by the System Host CPU (Static
Bus) via the EMFifoWrPort.
11 = Reserved
For all operations, the transfer length is given by EMXferSize.

EMMarbPriority 0 = set to 0 when both EM ports are expected to be simultaneously active.
1 = set to 1 for optimal transfers when only 1 of the 2 EM ports are expected to be active.

EmEndianSwap 0 = Byte order is preserved (default)
1 = Bytes 0 and 1 are swapped during the transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMXferSize

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
This register should not be modified while EMBusy is 1
EMXferSize Number of 32-bit data words to transfer. A zero means no words will be transferred; EM-

Busy will not be set.
For Frame Mode, this is interpreted as:
 EMYSize[5:0] = EMXferSize[15:10] - Vertical size of the block to transfer (number of
“rows”)
 EMXSize[9:0] = EMXferSize[9:0] - Horizontal size (in bytes) of the block to transfer (size
of “row”)
Confidential Mobilygen Corp. | 79

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
External Memory DMA Source Address High Register EM1SrcAddrH Offset: 0x0004
Bitstream Memory DMA Source Address High Register EM2SrcAddrH Offset: 0x0044

This pair of registers changes function depending on the type of operation where it is being
used. During DMA Operations, these registers are interpreted as follows:

External Memory DMA Source Address Low Register EM1SrcAddrL Offset: 0x0006
Bitstream Memory DMA Source Address Low Register EM2SrcAddrL Offset: 0x0046

During Frame Buffer Access (EMMode = 00 or 01), these registers are interpreted as follows:

External Memory Y Source Address Register EM1SrcYAddr Offset: 0x0004
Bitstream Memory Y Source Address Register EMSrcYAddr Offset: 0x0044

External Memory X Source Address Register EM1SrcXAddr Offset: 0x0006
Bitstream Memory X Source Address Register EMSrcXAddr Offset: 0x0046

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcAddrH

EMSrcAddrH Source address for a “read” (System Host CPU <- MG1264 Codec) or “copy” (MG1264
Codec -> MG1264 Codec) operation. Used with EMSrcAddrL. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware updates this

register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcAddrL

EMSrcAddrL Source address for a “read” (System Host CPU - MG1264 Codec) or “copy” (MG1264 Co-
dec - MG1264 Codec) operation. Used with EMSrcAddrH. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware will update
this register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcYAddr

EMSrcYAddr Starting Vertical/Y source address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcXAddr

EMSrcXAddr Starting Horizontal/X source address
80 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
External Memory DMA Destination Addr. High Register EM1DestAddrH Offset: 0x0008
Bitstream Memory DMA Destination Addr. High Register EM2DestAddrH Offset: 0x0048

This pair of registers changes function depending on the type of operation where it is being
used. During DMA Operations, these registers are interpreted as:

External Memory DMA Destination Addr. Low Register EM1DestAddrL Offset: 0x000A
Bitstream Memory DMA Destination Addr. Low Register EM2DestAddrL Offset: 0x004A

During Frame Buffer Access (EMMode=00 or 01), this register is interpreted as:

External Memory Y Destination Addr. Register EM1DestYAddr Offset: 0x0008
Bitstream Memory Y Destination Addr. Register EMDestYAddr Offset: 0x0048

External Memory X Destination Addr. Register EM1DestXAddr Offset: 0x000A
Bitstream Memory X Destination Addr. Register EMDestXAddr Offset: 0x004A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestAddrH

EMDestAddrH Destination address for a “write” (System Host CPU - MG1264 Codec) or “copy” (MG1264
Codec - MG1264 Codec) operation. Used with EMDestAddrL. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware will update
this register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestAddrL

EMDestAddrL Destination address for a “write” (System Host CPU - MG1264 Codec) or “copy” (MG1264
Codec - MG1264 Codec) operation. Used with EMDestAddrH. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware will update
this register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestYAddr

EMDestYAddr Starting Vertical/Y destination address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestXAddr

EMDestXAddr Starting Horizontal/X destination address
Confidential Mobilygen Corp. | 81

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
External Memory Status Register EM1Status Offset: 0x000C
Bitstream Memory Status Register EM2Status Offset: 0x004C

External Memory Remaining Count EM1RemCount Offset: 0x000E
Bitstream Memory Remaining Count EM2RemCount Offset: 0x004E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EM-
Busy

Reserved

Reserved fields should be ignored (masked) when read. This register is read-only.
EMBusy 0 = No operation is in progress; other registers may be changed.

1 = A DMA operation is in progress; the EMCmdParams, EMSrcAddr, EMDestAddr, and
EMConfig registers may not be changed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMRemCount

Reserved fields should be ignored (masked) when read. This register is read-only.
EMRemCount Number of 32-bit data words remaining to be transferred.

In frame mode this field is interpreted similar to EMXferSize:
 EMRemY[5:0] = EMRemCount[15:10] - Remaining number of blocks to transfer
(number of "rows")
 EMRemX[9:0] = EMRemCount[9:0] - Remaining number (in bytes) of block to
transfer (size of "row"). This field should be an even number, i.e. EMRemX[0] always
equals 0.
82 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
External Memory Configuration Register EM1Config Offset: 0x0010
Bitstream Memory Configuration Register EM2Config Offset: 0x0050

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EM-
Wait

EMDThresh EM
Burst

EMMode EMBaseId

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
EMWait 0 = no H_WAIT signal generated (default)

1 = H_WAIT signal is generated. EMDThresh should be set to 1 when EMWait
is set to 1

EMDThresh The interface logic asserts a DMA request to the System Host CPU (by asserting
H_DMARQ) when it has available at least EMDThresh words of data in its Read FIFO or
when it can accept at least EMDThresh words of data into its Write FIFO, depending upon
the direction of the transfer programmed in the EMCmd register.

EMBurst Number of 16-bit words per internal MG1264 Codec Memory burst access. A DMA oper-
ation is broken into sequential MG1264 Codec memory requests of the specified burst
size. This parameter must be set to a value less than (usually half of) the MG1264 Codec
MMU buffer for the System Host CPU.
Code:
 0 = 8 16-bit words
 1 = 16 16-bit words (default)
This field is not used when EMMode is set for Frame Buffer access. The entire DMA op-
eration is sent as one internal MG1264 Codec Memory operation (using EMYSize, EMX-
Size, EMY*Addr, and EMX*Addr). The software must take care not to attempt a request
larger than the MG1264 Codec Memory subsystem can handle (the request must be no
larger than the MMU buffer size allocated to the MG1264 Codec Host Interface).

EMMode Use EMMode to control the MG1264 Codec MMU Transaction Mode
00 = Frame Buffer - frame access
01 = Frame Buffer - field access
10 = Linear (default)
11 = reserved; do not use.

EMBaseId EMSrcAddr and EMDestAddr specify addresses (offsets) relative to the MG1264 Codec
Memory Subsystem identified by EMBaseId. (default: 0)
Confidential Mobilygen Corp. | 83

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
External Memory Access FIFO Read Port EM1FifoRdPort Offset: 0x0012
Bitstream Memory Access FIFO Read Port EM2FifoRdPort Offset: 0x0052

External Memory Access FIFO Write Port EM1FifoWrPort Offset: 0x0014
Bitstream Memory Access FIFO Write Port EM2FifoWrPort Offset: 0x0054

External Memory FIFO Status Port EM1FifoStatus Offset: 0x0016
Bitstream Memory FIFO Status Port EM2FifoStatus Offset: 0x0056

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMFifoRdPort

EMFifoRdPort A read from this port removes and returns a 16-bit data word from the Memory Read FIFO
that was read from the MG1264 Codec's memory. DO NOT WRITE TO THIS REGISTER!
DATA WILL BE LOST!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMFifoWrdPort

EMFifoWrPort 16-bit data from the “Static Bus” written to this port's address is placed into the Memory
Write FIFO to be sent to the MG1264 Codec's memory. Reading from this address returns
0's.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved EM

Fifo
RdReq

EM
Fifo

WrReq
Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
EMFifoRdReq 0 = no more words are available for reading beyond the current burst of eight

1 = at least EMDThresh more 16-bit words are available in the Memory Read FIFO
If the System Host CPU’s DMA engine is being used, then flow control is done by the DMA
request line; in this case, it is not necessary for software to check this bit.

EMFifoWrReq 0 = no more words can be accepted beyond the current burst of eight
1 = at least EMDThresh more 16-bit words can be accepted by the Memory Write FIFO
If the System Host CPU’s DMA engine is being used, then flow control is done by the DMA
request line; in this case, it is not necessary for software to check this bit.
84 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
4.7.8 Bitstream Write FIFO Access Registers

The System Host CPU sends a bitstream to the MG1264 Codec’s external DRAM through a set
of registers. These registers are explained in detail in the sections that follow.

Bitstream FIFO Write Port BFifoWrPort Offset: 0x0060

Bitstream FIFO Status Register BFifoStatus Offset: 0x0062

Bitstream FIFO Configuration Register BFifoConfig Offset: 0x0064

The interface logic asserts the DMA request to the System Host CPU by driving H_DMARQ
high) when it can accept at least BThresh words of data into its FIFO. If the System Host CPU's
DMA engine is not used, individual words can be written (stored) to this port, but software must
check the status of the FIFO after every BThresh word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BFifoWrPort

BFifoWrPort 16-bit data from the “Static Bus” written to this port's address is sent to the System Input
Stream Controller of the Media Engine. Reading from this address returns 0's.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved BFifo

WrReq
Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
BFifoWrReq 0 = no more words can be accepted beyond the current burst of DBThresh

1 = at least BBurst more 16-bit words can be accepted by the Bitstream FIFO
If the System Host CPU’s DMA engine is being used, then flow control is done by the DMA
request line; in this case, it is not necessary for software to check this bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved BThresh Res

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
BThresh When this number of 16-bit words are left in the FIFO, the DMA request signal or the BFi-

foWrReq bit in the BFIFOStatus register is deasserted.
Confidential Mobilygen Corp. | 85

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
86 | Mobilygen Corp Confidential

Chapter 5. Video Interface
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is able to both send
and receive digitized raw video. This video can be either interlaced or “progressive”.
Common resolutions are shown in Table 5-1.

The MG1264 Low Power H.264 and AAC Codec for Mobile Devices video interface
supports both 656 video and 601 video. For 656 video, the MG1264 Codec reads the AV
codes from the data stream to derive the timing, and for 601 video, the MG1264 Codec
receives the sync data on the input pins.

Table 5-1 Input Video Resolutions

Horizontal Vertical Frame Rate Description

800 600 25 fps SVGA (square pixel)

768 576 25 fps square pixel PAL

720 576 25 fps rectangular pixel PAL

720 480 30 fps rectangular pixel NTSC

640 480 30 fps VGA (square pixel NTSC)

320 240 30 fps QVGA
Confidential Mobilygen Corp. | 87

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
5.1 Video Interface Usage
The pages that follow show the MG1264 Codec in various video applications.

5.1.1 Interlaced ITU-R BT.656 Video Interfaces

The MG1264 Codec has video input and output interfaces for interlaced video that are ITU-R
BT.656-compliant. In NTSC interlaced mode, the video interface requires that each frame of
video contain exactly 858 Horizontal samples and 525 Lines, as shown in Figure 5-1. The
Horizontal blanking and Vertical blanking can be adjusted to adapt to a target resolution of
active video, but the total number of samples in each frame must be maintained.

In PAL interlaced mode, the video interface requires that each frame of video contain exactly
864 Horizontal samples and 625 Lines, as shown in Figure 5-2. The Horizontal blanking and
Vertical blanking can be adjusted to adapt to a target resolution of active video, but the total
number of samples in each frame must be maintained.

Figure 5-1 and Figure 5-2 show the timing and blanking for conventional 656-compliant video.
For both NTSC and PAL video, the Horizontal Blanking has a minimum value of 64 samples
and the Vertical Blanking has a minimum value of four lines when using adjustable timing.

In interlaced applications, the video frame is created by taking a line from each of the top and
bottom video fields in sequence as shown in Figure 5-1 for NTSC video and Figure 5-2 for PAL
video.

Figure 5-1 ITU-R BT.656 NTSC Interlaced Video Standard

52
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Field

Vertical Blanking

Bottom Field

Video Frame

858

EAV
SAV

720

240

240

Line 21

Line 283

138 720

480
88 | Mobilygen Corp Confidential

Video Interface Video Interface Usage
For example:

1. Line 1 from the Top Field

2: Line 1 from the Bottom Field

3: Line 2 from the Top Field

4: Line 2 from the Bottom Field

5: Line 3 from the Top Field

6: Line 3 from the Bottom Field

 . . .

479: Line 240 from the Top Field

480: Line 240 from the Bottom Field

A similar sequence is followed for PAL interlaced video, except that a greater number of lines
have to be interlaced.

Figure 5-2 ITU-R BT.656 PAL Interlaced Video Standard

1. Line 1 from the Top Field

2: Line 1 from the Bottom Field

3: Line 2 from the Top Field

62
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Field

Vertical Blanking

Bottom Field

Video Frame

864

EAV
SAV

720

288

288

Line 23

Line 336

144 720

576
Confidential Mobilygen Corp. | 89

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
4: Line 2 from the Bottom Field

5: Line 3 from the Top Field

6: Line 3 from the Bottom Field

 . . .

573: Line 287 from the Top Field

574: Line 287 from the Bottom Field

575: Line 288 from the Top Field

576: Line 288 from the Bottom Field

5.1.2 Progressive Video Interface in Free-run Mode

There is no digital transmission standard for progressive video. Because of this, the timings are
adjustable as shown in Figure 5-3. This is called Free-run Mode.

Figure 5-3 Progressive Video with Adjustable Timing

The actual parameters are set in the Firmware Configuration file. Contact the Mobilygen Field
Application group for details and support in determining the appropriate values for your
application.

A
dj

us
ta

bl
e

H
or

iz
on

ta
l B

la
nk

in
g

(6
4

S
am

pl
es

 M
in

um
um

)

Frame

Adjustable Vertical Blanking
(4 Lines Minimum)

2048 Max.

800 Max.

20
48

 M
ax

.

60
0

M
ax

.

90 | Mobilygen Corp Confidential

Video Interface Video Interface Signals
5.2 Video Interface Signals
This section describes the signals used to interface the MG1264 Codec into a system. Table 5-2
shows the signals and Figure 5-4 shows the connections.

Figure 5-4 Video Interface Connections

5.3 Video Interface Timing
The video interface is 656 in nature, and the signal pins consist of a video clock (VID_CLK)
and video data (VID_DATA_[7:0]) as shown in Figure 5-5. The data is either the timing code
(EAV/SAV) or the actual video data. The timing for the interface is specified in the 656
Interface Specification.

Figure 5-5 Video Interface Timing

Table 5-2 Video Interface Signals

SIGNAL Dir # Bits Description

VID_CLK I 1 Video Clock: This is primarily used when the MG1264 Codec is
slaved to the Video Clock. Optionally, the MG1264 Codec can mas-
ter the Video Clock.

VID_DATA_[7:0] IO 8 Video Data: This bidirectional bus is an input by default. It must be
configured in software to be used as an output. Contact Mobilygen
Technical Support for information.

VIDOUT_DATA_[7:0] O 8 Video Output Data: Data is output on this bus when the MG1264
Codec is sourcing the video data (decoding). During full duplex op-
eration, the bidirectional Video Data port is the input, and the Video
Output Data is the output.

MG1264 Coprocessor

VID_CLK

VID_DATA_[7:0]

VIDOUT_DATA_[7:0]

27 MHz

VID_CLK

VID_DATA_[7:0]
Confidential Mobilygen Corp. | 91

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
5.4 Working With CMOS Sensors
The MG1264 Codec’s VID_DATA port is a bidirectional ITU-R.BT656 style interface. It is
designed to be flexible and interface to any device that implements the 656 standard. The
VID_DATA port can support clock speeds other than 27 MHz up to 40 MHz.

Some CMOS sensors output ITU-R.BT656 or 601 signals directly (known as YUV sensors vs.
RGB Bayer sensors). For the MG1264 Codec’s VID_DATA port to operate correctly, the video
source must provide active Horizontal and Vertical blanking signals, even for non-active video
data. Some CMOS sensors are known to suppress blanking signals in non-active video regions.

Table 5-5 shows a list of CMOS sensors that are known to work with MG1264:

Because there is a great deal of variance between different sensors with respect to video clock
gating, compliance, etc., we strongly recommend that you contact Mobilygen Technical
Support before starting a design that includes a CMOS sensor.

Table 5-3 Compatible CMOS Sensors

Company
Part

Number URL

Micron MT9V111 http://download.micron.com/pdf/flyers/mt9v111_(mi-soc-0360)_mobile_flyer.pdf

ST VS6524 http://www.st.com/stonline/books/ascii/docs/11157.htm

OnmiVision OV7710 http://www.ovt.com/data/parts/pdf/web_Brief7710%20security%20V2.8.pdf

OnmiVision OV7720 http://www.ovt.com/products/app2_table.asp?id=9
92 | Mobilygen Corp Confidential

http://www.ovt.com/products/app2_table.asp?id=9

Video Interface Video Pre-Processing Filters
5.5 Video Pre-Processing Filters
The MG1264 Codec has four specific video pre-processing filters that can be enabled of
disabled to improve the encoded picture quality of source video.

5.5.1 Vertical Impulse Noise Reduction

The Vertical impulse Noise Reduction filter is a three-line adaptive median filter that reduces
the presence of horizontal line streaks and line drops. This filter should be used only under
extremely noisy conditions because it can generate non-linear artifacts.

5.5.2 Horizontal Impulse Noise Reduction

The Horizontal Impulse Noise Reduction is a three-tap adaptive median filter that reduces the
presence of salt-and-pepper (Gaussian) noise and random single stuck-on pixels.

5.5.3 Horizontal Edge-Preserving Noise Reduction Filter

The Horizontal Edge-Preserving Noise Reduction filter reduces high frequency noise while
preserving edges and high contrast picture details. The amount of high frequency filtered is
determined by a programmable 7-tap FIR symmetrical filter. The types of edges preserved are
determined by a set of edge transition thresholds.

5.5.4 Motion Adaptive Temporal Recursive Filter

The Motion Adaptive Temporal Recursive Filter reduces picture noise according to the amount
of motion detected in a neighborhood of pixels around every pixel in the picture. When pixels
belong to still areas of the picture, they are strongly filtered recursively across many frames, i.e.,
with a long temporal constant. Conversely, pixels belonging to areas of the picture with motion
are lightly filtered with a short temporal constant.
Confidential Mobilygen Corp. | 93

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
94 | Mobilygen Corp Confidential

Chapter 6. SDRAM Interface
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices requires one 8 Meg
x 16 SDRAM, and supports both regular SDRAMs with a 3.3V interface or Mobile
SDRAMs with a 2.5V interface. We believe that most customers will use Mobile SDRAM
because they are packaged in a fine-pitched VFBGA package suitable for mobile designs.
Another reason is that an equivalent 3.3V Mobile SDRAM draws less power than an
equivalent 3.3V normal SDRAM.

The option of 2.5V volt support is very important to some customers. It offers tremendous
system power savings. In the Field Encode mode, the saving are >100 mW, including the
MG1264 Codec DRAM IO and the DRAM part itself.

6.1 The SDRAM Interface
The MG1264 Codec connects to the SDRAM as shown in Figure 6-1. Table 6-1 lists the
connections and describes their functions.

Table 6-1 DRAM Interface Signal List

SIGNAL Dir # Bits Description

SD_CLK O 1 SDRAM Clock. This signal provides the clock to the SDRAM.

SD_DQ_[15:0] IO 16 SDRAM Data. These signals are the 16-bit data port between the
SDRAM and the MG1264 Codec.

SD_A_[12:0] O 13 SDRAM Address. This bus provides the multiplexed row and column ad-
dress information to the SDRAM.

SD_BA_[1:0] O 2 SDRAM Bank Address. These lines select the bank that is being ad-
dressed within the DRAM.

SD_DQM_[1:0] O 2 SDRAM Data Mask. These bits provide a byte-mask signal for data be-
ing written to the DDR SDRAM. Two MDQM bits are provided to mask
the lower and upper bytes of 16-bit wide SDRAMs. In a typical system
SD_DQM[0] is connected to LDQM and SD_DQM[1] is connected to
UDQM on 16-bit wide SDRAMs.
Confidential Mobilygen Corp. | 95

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual

Figure 6-1 MG1264 Codec SDRAM Interface

SD_CKE O 1 SDRAM Clock Enable. This signal is the Clock Enable Output for the
DRAMs.

SD_CS O 1 SDRAM Chip Select

SD_RAS O 1 SDRAM RAS. This signal is the row access strobe to the SDRAM.

SD_CAS O 1 SDRAM CAS. This signal is the column access strobe to the SDRAM.

SD_WE O 1 SDRAM Write Enable

Table 6-1 DRAM Interface Signal List

SIGNAL Dir # Bits Description

MG1264 Coprocessor Mobile SDRAM

SD_DQ_[15:0]

SD_ADDR_[12:0]

SD_BA_[1:0]

SD_DQM_1
SD_DQM_0

SD_CLK

SD_CKE

SD_CS

SD_RAS

SD_CAS

SD_WE

DQ[15:0]

A[12:0]

BA[1:0]

UDQM
LDQM

CLK

CKE

CS

RAS

CAS

WE
96 | Mobilygen Corp Confidential

SDRAM Interface Mobile SDRAM Features
6.2 Mobile SDRAM Features
Features that are implemented in the Mobile SDRAM that are not in the normal SDRAM
include:

• Support for 3.3 and 2.5 Volt Operation (Core and I/O)

• Temperature Compensated Self-Refresh

• Partial Array Self Refresh

• Deep Power Down

• Drive Strength Control

6.2.1 Voltage Operation (3.3V and 2.5V)

The main benefit that the MG1264 Codec will get from the Mobile SDRAM is low-voltage
operation. While Normal SDRAMs are limited to 3.3V, Mobile SDRAMs allow for the option
of supporting 2.5V as well. The MG1264 Codec supports both the 3.3V and 2.5V options.

6.2.2 Temperature Compensated Self-Refresh

Mobile SDRAMs have a mechanism for saving self-refresh power based upon the operating
temperature. The Controller enables this mechanism by programming the External Mode
Register (EMR) bits A4 and A3. The Controller must have an external temperature sensor to
know the value to program into the EMR.

6.2.3 Deep Power Down

The MG1264 Codec does not use a DPD mode. Instead, the MG1264 Codec uses an external
Voltage Regulator to switch the power completely off to the SDRAM.

6.2.4 Drive Strength Control

Mobile SDRAMs are typically designed assuming a 30 pF load with a risetime and/or falltime
target of 1 nS. However, two bits exist within the Extended Mode Register of the DRAM that
allow for control of the Drive Strength (DS) to tailor it to lower loading scenarios.
Confidential Mobilygen Corp. | 97

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
98 | Mobilygen Corp Confidential

Chapter 7. Audio Interface
7.1 Audio Interface Overview
The audio interface on the MG1264 Codec is responsible for receiving a PCM audio stream
from an audio Analog-to Digital convertor in either left-justified mode or as an I2S audio
Slave device. It then writes the audio samples to the external memory via the memory
subsystem. This module can support one or two channels (left and right) per sample.

The MG1264 Codec accepts input audio for AAC compression and generates output audio
from decompressed AAC bitstreams. It accepts audio sample rates (fs or AUD_LRCK) of
48, 44.1, 32, 24, and 22.05 kHz.

The MG1264 Codec encodes two-channel AAC audio encoding with 16-bit samples at both
the 32 kHz and 48 kHz sample rates. The target audio bitrate is 10% of the associated video
bitrate, with an appropriate sample rate.

User Control of the AAC Encoder Features

The audio encoder features are selectable. Each feature has settings and/or ranges that affect
the overall compression efficiency accordingly. Table 7-1 shows the key features and their
associated target settings.

Table 7-1 AAC Encoder Features

Feature Options

Channels Mono (1) or Stereo (2)

Sample rate 22.05, 24, 32, 44.1, or 48 kHz

Bitrate 8 kbps - 384 kbps
Confidential Mobilygen Corp. | 99

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
7.2 Audio Interface Signals
The audio interface is a modification of the inter-IC sound (I2S) bus; a serial link especially for
digital audio. To minimize the number of pins required and to keep wiring simple, a four-line
serial bus is used. The signals consist of an input for two time-multiplexed data channels, an
output for two time-multiplexed data channels, a word select line, and a clock line. These
signals are shown in Table 7-2.

The MG1264 Codec requires that the audio clock must be supplied from an external source (the
MG1264 Codec is an audio Slave). The clocks can be supplied by either the System Host CPU
(refer to Figure 7-1) or the audio DAC/ADC (refer to Figure 7-2). The MG1264 Codec can use
the AUD_LRCK and AUD_BCK signals acting as either a slave or a master.

Figure 7-1 Audio Interface with the System Host CPU as the Audio Clock Master

Table 7-2 Audio Interface Signal List

SIGNAL Dir # Bits Description

AUD_CLK I 1 Audio Oversample Clock, 256 fs (LRCK) 1

1.This signal should be pulled down if not used.

AUD_BCK IO 1 Audio Bit Clock, 32 or 64 fs (LRCK) 2

2.This pin should be configured in software as an output and left unconnected if not used.

AUD_LRCK IO 1 Audio Left/Right Clock (48, 44.1, 32, 24, 22.05 kHz) 2

AUD_IDAT I 1 Audio Serial Input Data 1

AUD_ODAT O 1 Audio Serial Output Data 3

3.This pin should be left unconnected if not used.

System
Host
CPU

MG1264
Codec

Audio
DAC/ADC

AMCK

ALRCK

ABCK

AIDATA

AODATA

AUD_CLK

AUD_LRCK

AUD_BCK

AUD_IDAT

AUD_ODAT
100 | Mobilygen Corp Confidential

Audio Interface I2S Audio Waveforms

Figure 7-2 Audio Interface Connections with the DAC/ADC as the Audio Clock Master

7.3 I2S Audio Waveforms
A sample waveform for I2S audio is shown in Figure 7-3. Note that AUD_LRCK (Left Right
Clock) changes one clock before the MSB is transmitted. This allows the slave transmitter to
derive synchronous timing for the serial data that will be set up for transmission. It also allows
the receiver to store the previous word and clear the input for the next word.

• LRCK = 0; channel 0 (left)

• LRCK = 1; channel 1 (right)

Figure 7-3 I2S Left-justified Audio Waveform

System
Host
CPU

MG1264
Codec

Audio
DAC/ADC

AMCK

ALRCK

ABCK

AIDATA

AODATA

AUD_CLK

AUD_LRCK

AUD_BCK

AUD_IDAT

AUD_ODAT

AUD_BCK

AUD_LRCK

AUD_IDAT LSB MSB LSB MSB

Word n-1
Right Channel

Word n
Left Channel

Word n+1
Right Channel
Confidential Mobilygen Corp. | 101

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
7.4 Left Justified Audio Waveform
A sample waveform for Left Justified audio shown in Figure 7-4. Note that AUD_LRCK (Left
Right Clock) changes on the same cycle as when the MSB is transmitted.

• LRCK = 1; channel 0 (left)

• LRCK = 0; channel 1 (right)

Figure 7-4 Left-justified Audio Waveform

7.5 16, 20, 24, 32-Bit Left Justified Audio Waveform
Sample waveforms for 16, 20, 24, and 32-bit Left Justified audio are shown in Figure 7-5. Note
that AUD_LRCK stays high/low for 32 cycles and AUD_CLK is 64 cycles per channel. The
MSB for each audio sample is aligned with the AUD_LRCK's transition. The Audio Input
Interface ignores the data bus after the LSB for each sample.

Figure 7-5 16, 20, 24, and 32-Bit Left Justified Audio Waveform

AUD_BCK

AUD_LRCK

AUD_IDAT LSB MSB LSB MSB

Word n-1
Right Channel

Word n
Left Channel

Word n+1
Right Channel

AUD_BCK

AUD_LRCK

16-Bit
AUD_IDAT

20-Bit
AUD_IDAT

24-Bit
AUD_IDAT

32-Bit
AUD_IDAT

Word n-1
Right Channel

MSB

Word n+1
Right Channel

LSB
Ignore data following LSB

Word n
Left Channel
102 | Mobilygen Corp Confidential

Chapter 8. Bringing up the
MG1264 Codec
This chapter provides suggestions for bringing up the MG1264 Low Power H.264 and AAC
Codec for Mobile Devices decoder and encoder functions for the first time.

8.1 Decoder Bringup
This section describes the phases needed to bring up the AVC decoder in the MG1264
Codec. The phases are as follows.

1. Send a video elementary bitstream to the decoder that is smaller than the decoder's
bitbuffer and confirm that it decodes.

2: Send a video elementary bitstream to the decoder that is larger than the decoder's
bitbuffer and confirm it decodes. Since the stream is larger than the bitbuffer, this
phase tests the software flow control.

3: Send a “QBOX” video stream to the decoder and confirm that it decodes. A QBOX
video stream is a video elementary stream that has a Mobilygen QBOX header
prior to each video access unit. More information about the QBOX is contained
“Phase 3: Decoding A QBOX Stream” on page 110.

8.1.1 Phase 1: Decoding a Small Elementary NAL Video Stream

The goal for this step is to decode a video elementary AVC stream that is smaller than the
MG1264 Codec bitbuffer.

Step 1: Configuring the Bitstream Type

The MG1264 Codec firmware can decode several bitstream formats called BitstreamTypes.
In this part of the bringup we will be using the “video elementary stream.” This type of
stream corresponds to Annex B of the ISO/IEC 14496-10 where there is a startcode
preceding each Network Abstraction Layer (NAL) unit. The size of each NAL unit is not
located in the stream and can only be detected by searching for startcodes. Streams encoded
by the MG1264 Codec will have a 32-bit startcode of 0x00000001, although the decoder
can also handle 24 bit startcodes of 0x000001.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream.
This bitstream type can be forcibly selected by sending a configuration command to the
Confidential Mobilygen Corp. | 103

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
video decoder control object. This is done with the following command, which is only valid
when the decoder is in IDLE state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_ELEM_VIDEO;
cmd.arguments[2] = 0;

Step 2: Configuring the Bitstream Source

The MG1264 Codec firmware can receive bitstream data using three different methods. These
methods are:

• Bitstream push using hardware flow control

• Bitstream pull using software flow control

• Memory pull using software flow control.

The bitstream push method sends data to the bitstream FIFO device in the MG1264 Codec host
interface. This FIFO is internally connected to a MG1264 Codec device called the System Input
Stream Controller (SISC). This datapath has complete hardware flow control in that, if the
internal bitstream buffer is full, the bitstream FIFO on the host interface will assert the WAIT
signal (or de-assert the H_DMARQ signal) indicating to the host that no more data can be sent.

In normal playback operation the bitstream buffer will almost always be full, meaning that the
WAIT signal will be asserted for up to 20 ms. until a video frame is decoded. When the decoder
is in the PAUSE state, the WAIT signal will be continuously asserted. If the host system
architecture has a DMA engine that is not shared with other applications and can be blocked for
an indefinite period of time, then this is the best option as it requires no software interaction for
flow control.

The bitstream pull method also sends data to the bitstream FIFO in the host interface, except
that the host is required to send a command to request the size of data that can be safely sent
without filling the bitbuffer. If the host sends less than this amount, then the WAIT signal will
never be asserted for long periods of time (or indefinitely in the case of the pause state).

The memory pull interface is not covered in this document, as either the bitstream push or pull
methods are sufficient for this application.

The bitstream source is set to bitstream push by default. The bitstream source can be forcibly
selected with the following configuration command, which is only valid when the decoder is in
the IDLE state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_SOURCE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PUSH;
cmd.arguments[2] = 0;

For this phase of the bringup we will use the SISC_PUSH method because the size of the
bitstream will be smaller than the bitbuffer.
104 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup
Step 3: Putting the Decoder into the PLAY State

The decoder must be placed into the PLAY state before any streaming is done. The host must
ensure that the PLAY command returns with the COMMAND_DONE interrupt before
streaming otherwise some data at the start of the stream could be lost.

The decoder is put into the PLAY state with the following command.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_ELEM_VIDEO;
cmd.arguments[2] = 0;

Step 4: Streaming the Bitstream

Sending the bitstream is done using the QHAL bitstream (bs) module. Because the bitstream
contains startcodes and there is no parsing or demultiplexing required on the host, the host can
simply read the bitstream in fixed sized blocks and send them to the host interface one at a time.
The only restriction is that the transfer size must be 4-byte aligned.

Here is sample code that can be used to send data.

#include <stdio.h>
#include <errno.h>
#include "qhal_bs.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define NDATAPERTX (256*1024) // transfer in 256k byte chunks

char buf[NDATAPERTX];

int main(int argc,char *argv[])
{ int fd;
 qhalbs_handle_t handle;
 int err,ntx;

 switch(argc)
 { case 1:
 fd=0;
 break;
 case 2:
 fd=open(argv[1],O_RDONLY);
 break;
 default:
 fprintf(stderr,"Error: too many arguments, syntax is %s
[<file>]\n",argv[0]);
 return -1;
 };
 if(fd<0)
 { perror("Error");
 return errno;
Confidential Mobilygen Corp. | 105

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
 };
 handle=qhalbs_open();
 while(1)
 { ntx=read(fd,buf,NDATAPERTX);
 if(ntx==0) break;
 if(ntx<0)
 { perror("Error");
 return errno;
 };
 if((ntx%4) && (ntx>4))
 { lseek(fd,-(ntx%4),SEEK_CUR);
 ntx-=ntx%4;
 } else if(ntx%4)
 { bzero(buf+ntx,4-ntx%4);
 ntx+=4-ntx%4;
 };
 if((err=qhalbs_write(handle,buf,ntx))<0)
 { fprintf(stderr,"Error: qhal returned error %d\n",err);
 return err;
 };
 };
}

Decoding and presentation should begin shortly after streaming has started.

Note that this code adds padding to the buffer if it is not a multiple of four bytes. It relies on the
fact that this will only happen at the end of the file, since the read function always returns the
number of bytes requested if there are that many left (or more) in the file. Also, this code has
no checks for flow control. This is added in the next phase.

It is important to understand the endian-ness of the AVC bitstream and how it affects streaming.
The AVC stream is big-endian and should be read as a byte stream into an internal buffer and
then sent to MG1264 Codec. Little endian hosts need to be aware of this and not swap bytes
when reading into the internal buffer.
106 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup
8.1.2 Phase 2: Decoding a Large Elementary NAL Video Stream with Software Flow Control

The goal for this phase is to decode a bitstream that is larger than the size of the internal bit
buffer. If the host can use the PUSH method, then sending a large file is exactly the same as
sending a small one because the hardware takes care of the flow control. The data streaming
code from the previous section continues to work as the qhalbs_write function will block
until the streaming operation is complete. Assuming that streaming is done in a separate thread,
then the system will continue to run.

If the host uses the PULL method, meaning that it cannot have the DMA operations stall for
indefinite periods of time, then the following steps should be followed. The key section is in
streaming where we introduce software flow control.

Step 1: Setting the Bitstream Type

This step is the same as “Step 1: Setting the Bitstream Type” on page 107.

Step 2: Configuring the Bitstream Source

We have to set the bitstream source to PULL because of the software flow control. This is done
using the following configure command, which is only valid when the decoder is in the IDLE
state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_SOURCE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PULL;
cmd.arguments[2] = 0;

Step 3: Putting the Decoder into the PLAY State

This step is the same as “Step 3: Putting the Decoder into the PLAY State” on page 105.

Step 4: Streaming the Bitstream

Software flow control is achieved by sending a command to MG1264 Codec that returns the
number of bytes remaining in the bit buffer. The host must ensure that it does not send more
than this amount of data before it asks again how much data is available. The command to
obtain how much data remains is shown here.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_NEXT_BS_SIZE;

The MG1264 Codec firmware returns the number of bytes free in the return values section of
the command.

cmd.returnValues[0];

Here is sample code that can be used to send data. The code reads the amount of space left in
the bit buffer and continuously transfers data in blocks until it has no space left. It then re-reads
the amount of space left and waits until the space left is greater than the block size.
Confidential Mobilygen Corp. | 107

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
#include <stdio.h>
#include <errno.h>
#include "qhal_bs.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define NDATAPERTX (256*1024)

char buf[NDATAPERTX];

int main(int argc,char *argv[])
{ int fd;
 qhalbs_handle_t handle;
 int err,ntx;
 int i;
 int space;
 int pendingXfer;

 switch(argc)
 { case 1:
 fd=0;
 break;
 case 2:
 fd=open(argv[1],O_RDONLY);
 break;
 default:
 fprintf(stderr,"Error: too many arguments, syntax is %s
[<file>]\n",argv[0]);
 return -1;
 };
 if(fd<0)
 { perror("Error");
 return errno;
 };
 handle=qhalbs_open();

 // initialization
 pendingXfer = 0;
 ntx = 1;

 while(ntx != 0)
 {

 space = readnumleft(); // - host implements command to read data left

 while (ntx != 0)
 {

 // read one buffer
 if (pendingXfer == 0)
 {
 ntx=read(fd,buf,NDATAPERTX);
 }
108 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup

 if (ntx+4 > space)
 {
 pendingXfer = 1;
 break;
 }

 if (ntx != 0)
 {
 if((ntx%4) && (ntx>4))
 {
 lseek(fd,-(ntx%4),SEEK_CUR);
 ntx-=ntx%4;
 }
 else if(ntx%4)
 {
 bzero(buf+ntx,4-ntx%4);
 ntx+=4-ntx%4;
 }
 }

 if((err=qhalbs_write(handle,buf,ntx))<0)
 {
 fprintf(stderr,"Error: qhal returned error %d\n",err);
 return err;
 }

 space -= ntx;
 pendingXfer = 0;
 }

 // sleep 15 ms
 sleep(); // -- host specific
 }

}

Confidential Mobilygen Corp. | 109

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
8.1.3 Phase 3: Decoding A QBOX Stream

A QBOX is a Mobilygen proprietary header that includes information about the data it contains,
specifically audio or video compressed streams. For example, a flag in the header indicates if
the contained data is audio or video data. It is expected that if the host does MP4 multiplexing
and demultiplexing then it will stream QBOX data to the MG1264 Codec for decoding.

The QBOX header is as follows.

typedef struct {
 uint32_t box_size;
 uint32_t box_type; // "qbox"
 uint32_t box_flags; // (version << 24 | box_flags)
 uint16_t sample_stream_type;
 uint16_t sample_stream_id;
 uint32_t sample_flags;
 uint32_t sample_cts;
 uint8_t sample_data[];
} QBox;

sample_stream_type is set to 0x0001 for AAC audio, and 0x0002 for AVC video.

sample_stream_id is currently set to the same value as sample_stream_type.

box_flags has two flags. Bit 0 is set if there is sample data after the header and bit 1 is set if
this is the last sample in the stream.

sample_flags is a 32-bit value. Bit 0 is set if the data contains configuration information for
the decoder. Bit 1 is set if the CTS field is present and valid. Bit 2 is set if the video frame is a
synchronization point (meaning I frame for H.264), and bit 3 is set if the frame is disposable
(meaning a B frame in H.264). Bit 4 is set if the audio or video sample is the result of a MUTE
command sent to the AV encoder. Bits 30-31 represent the number of leading padding bytes in
the QBox (0-3) that are skipped by the MG1264 Codec demultiplexer.

This 24-byte structure is at the start of each bitstream block when the system has the stream type
of QBOX. Additionally, when in QBOX mode, startcodes are not used and instead the AVC
bitstream follows part 15 of ISO/IEC-14496 (AVC File Format). The net effect of this mode
compared to the previous mode is that the length of the following NAL unit replaces the 4-byte
start code of 0x00000001.

The first QBOX sent by the MG1264 Codec when encoding, and the first QBOX that is
expected to be received when decoding, contains two NAL units, one with the sequence
parameter set and the other with the picture parameter set. Subsequent QBOX's contain one
NAL unit with a single AVC access unit.

For example, here is the first QBOX header of AVC video:

0000002D Size of QBOX is 2D bytes including the size field.
71626F78 "qbox" in ASCII
00000001 Sample data is present
00020002 AVC video
00000000 sample flags
00000000 sample CTS (not implemented yet)

The next data set is the sequence parameter set proceeded by the NAL unit size. For example:

00000009 NAL size (not including this field)
6742E01E Sequence parameter data
110 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup
DA02D0F4 Sequence parameter data
40 Sequence parameter data
00000004 NAL size
68CE3E80 Picture parameter data

Totalling all of the data bytes gives 0x2D which is the size of the QBOX given at the beginning.

Step 1: Setting the Bitstream Type

This step is the same as “Step 1: Setting the Bitstream Type” on page 107.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream. In
order to use QBOX we must switch the type to QBOX. This must be done only once for the
decoder at startup (it must be done for the encoder at startup as well).

This is done with the following command, which is only valid when the decoder is in IDLE
state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_QBOX;
cmd.arguments[2] = 0;

Step 2: Configuring the Bitstream Source

There are no additional requirements that QBOX streaming put on the bitstream source. If the
host is using PUSH, then push should be used here; if the host is using PULL then it should be
used here as well.

Step 3: Putting the Decoder into the PLAY State

This step is the same as “Step 3: Putting the Decoder into the PLAY State” on page 107.

Step 4: Streaming the Bitstream

If the stored bitstream consists of QBOXes, then the streaming is done exactly the same as in
the previous phases. A QBOX stream is available to test this mode. Contact your Mobilygen
sales representative for a copy.

However, it is likely that the bitstream will be stored in an MP4 file, and the host must convert
it to QBOX format on the fly. This operation is quite simple and involves prepending the 24-
byte QBOX header to the bitstream data (and possibly updating the size of the NAL unit as
well).
Confidential Mobilygen Corp. | 111

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
8.2 Encoder Bringup
This section describes the phases needed to bringup the AVC encoder in the MG1264 Codec.
The phases are as follows.

1. Record a video elementary bitstream which is smaller than the encoder's bitbuffer and
confirm that it decodes.

2: Record a video elementary bitstream which is larger than the encoder's bitbuffer and
confirm it decodes. Since the stream is larger than the bitbuffer this tests the software
flow control.

3: Record a "QBOX" video stream and confirm it decodes. A qbox video stream is a
video elementary stream that has a Mobilygen QBOX header prior to each video access
unit. More information about the QBOX is contained in this document.

8.2.1 Phase 1: Recording a Small Elementary NAL Video Stream

The goal for this step is the decoding of a video elementary AVC stream that is smaller than the
MG1264 Codec bitbuffer.

Step 1: Configuring the Bitstream Type

The MG1264 Codec firmware can decode several bitstream formats called BitstreamTypes. In
this part of the bringup we will be using the “video elementary stream.” This type of stream
corresponds to Annex B of the ISO/IEC 14496-10 where there is a startcode preceding each
Network Abstraction Layer (NAL) unit. The size of each NAL unit is not located in the stream
and can only be detected by searching for startcodes. Streams encoded by the MG1264 Codec
will have a 32-bit startcode of 0x00000001, although the decoder can also handle 24-bit
startcodes of 0x000001.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream.
This bitstream type can be forcibly selected by sending a configuration command to the video
encoder control object. This is done with the following command, which is only valid when the
encoder is in IDLE state.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVE_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVE_CFP_BITSTREAM_TYPE_ELEM_VIDEO;
cmd.arguments[2] = 0;

Step 2: Subscribing to the BITSTREAM_BLOCK_READY Event

The MG1264 Codec firmware sends BITSTREAM_BLOCK_READY events to the host to
indicate that there is new data to store. These events must first be subscribed. This subscription
must be done only once at startup.

Subscription is done through the following command.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_SUBSCRIBE_EVENT;
cmd.arguments[0] = Q_AVE_EV_BITSTREAM_BLOCK_READY
cmd.arguments[2] = 0;
112 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Encoder Bringup
Step 3: Putting the Encoder into the RECORD state

The encoder must be placed into the RECORD state. The encoder is put into the RECORD state
with the following command.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVE_CMD_OPCODE_RECORD;
cmd.arguments[0] = 0;

Step 4: Receiving the Bitstream

Receiving the bitstream is done by processing the bitstream block ready events. The AV encoder
generates bitstream block ready events each time enough data has been accumulated in its
internal bit buffers.

The structure of a generic event is as follows:

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 EVENT_ID eventId;
 unsigned int timestamp;
 unsigned int payload[MAX_EVENT_PAYLOAD];
} EVENT;

The timestamp field is measured in microseconds. The timestamp corresponds to the PTS of
the access unit in the event (if an access unit is present).

The bitstream block ready has specific meanings assigned to the payload fields. Up to six blocks
of data can be sent in a single event. The structure of the bitstream block ready events follows.

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 EVENT_ID eventId;
 unsigned int timestamp;
 unsigned int numAndType;
 unsigned int reserved0;
 unsigned int reserved1;
 unsigned int Addr0;
 unsigned int Size0;
 unsigned int Addr1;
 unsigned int Size1;
 unsigned int Addr2;
 unsigned int Size2;
 unsigned int Addr3;
 unsigned int Size3;
 unsigned int Addr4;
 unsigned int Size4;
} STRUCT_Q_AVE_EV_BITSTREAM_BLOCK_READY;

The field numAndType contains information about the data in the event. The lower 16-bits of
this field contains the number of data blocks, which will be either 1 - 5. The upper 16-bits
contains one 3-bit field per access unit that describes its content. Access unit 0's information is
stored in bits 16-18, access unit 1 in 19-21 etc. The following values are currently allocated:
Confidential Mobilygen Corp. | 113

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1: AVC Video Elementary Stream

2: QBox

In this phase, the encoder is creating AVC video elementary streams, so the value of this field
will be (for example, if five blocks are sent per event) 0x12490005.

The bitstream should be read using the qhalem_read_bytes() method using a block Id of
64 with the address and data from the event.

Because the bitstream blocks are not being acknowledged by the host, the bitstream events will
stop arriving once the video bit buffer is full.

Step 5: Decoding the Bitstream

Once stored, this bitstream should decode. Follow the steps in the decoder bringup of small
video elementary streams to check.

8.2.2 Phase 2: Recording a Large Elementary NAL Video Stream with Software Flow Control

The goal for this phase is to record a bitstream that is larger than the size of the internal bit
buffer. This is done by the host acknowledging buffers that it has read from, and that can be
reused by the encoder.

Step 1: Configuring the Bitstream Type

This step is the same as “Step 1: Configuring the Bitstream Type” on page 112.

Step 2: Putting the Encoder into the RECORD State

This step is the same as “Step 3: Putting the Encoder into the RECORD state” on page 113.

Step 3: Receiving the bitstream

Software flow control is achieved by having the host send a command to the MG1264 Codec
that contains the same information as the event it just processed. That is, once the host has read
all the data that the event contains (one to six data blocks), then it sends the
BITSTREAM_BLOCK_DONE command. Note that since the maximum number of arguments in a
command is six, the host might have to send two commands. The list of blocks that are
acknowledged is done by setting the address to zero.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_BITSTREAM_BLOCK_DONE;
cmd.arguments[0] = Addr0;
cmd.arguments[1] = Size0;
cmd.arguments[2] = Addr1;
cmd.arguments[3] = Size1;
cmd.arguments[4] = Addr2;
cmd.arguments[5] = Size2;

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_BITSTREAM_BLOCK_DONE;
cmd.arguments[0] = Addr3;
114 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Encoder Bringup
cmd.arguments[1] = Size3;
cmd.arguments[2] = Addr4;
cmd.arguments[3] = Size4;
cmd.arguments[4] = 0;

Step 4: Stopping Recording

Stopping the recording is done with the FLUSH command. The following command performs
this operation.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_FLUSH;
cmd.arguments[0] = 0;

8.2.3 Phase 3: Recording a QBOX Stream

A QBOX is a Mobilygen proprietary header that contains information about its contained data,
specifically audio or video compressed streams. For example, a flag in the header indicates if
the contained data is audio or video data. It is expected that if the host does MP4 multiplexing
and demultiplexing, then it will stream QBOX data to the MG1264 Codec for decode.

The QBOX header is as follows.

typedef struct {
 uint32_t box_size;
 uint32_t box_type; // "qbox"
 uint32_t box_flags; // (version << 24 | box_flags)
 uint16_t sample_stream_type;
 uint16_t sample_stream_id;
 uint32_t sample_flags;
 uint32_t sample_cts;
 uint8_t sample_data[];
} QBox;

sample_stream_type is set to 0x0001 for AAC audio, and 0x0002 for AVC video.

sample_stream_id is currently set to the same value as sample_stream_type.

box_flags has two flags. Bit 0 is set if there is sample data after the header and bit 1 is set if
this is the last sample in the stream.

sample_flags has three flags. Bit 0 indicates whether configuration information is contained
in the sample. Bit 1 indicates if CTS is meaningful, bit 2 indicates if this is a sync point
(I-frame).

This 24-byte structure is at the start of each bitstream block when the system has the stream type
of QBOX. Additionally, when in QBOX mode, startcodes are not used and the AVC bitstream
follows part 15 of ISO/IEC-14496 (AVC File Format) instead. The net effect of this mode
compared to the previous mode is that the length of the following NAL unit replaces the 4-byte
start code of 0x00000001.

The first QBOX sent by the MG1264 Codec when encoding, and the first QBOX that is
expected to be received when decoding, contains two NAL units, one with the sequence
parameter set and the other with the picture parameter set. Subsequent QBOX's contain one
NAL unit with a single AVC access unit.
Confidential Mobilygen Corp. | 115

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
For example, here is the first QBOX header of AVC video.

0000002D Size of QBOX is 2D bytes including the size field.
71626F78 "qbox" in ASCII
00000001 Sample data is present
00020002 AVC video
00000000 sample flags
00000000 sample CTS (not implemented yet)

The next data set is the sequence parameter set preceded by the NAL unit size. For example

00000009 NAL size (not including this field)
6742E01E Sequence parameter data
DA02D0F4 Sequence parameter data
40 Sequence parameter data
00000004 NAL size
68CE3E80 Picture parameter data

Totalling all of the data bytes gives 0x2D which is the size of the QBOX given at the beginning.

Step 1: Configuring the Bitstream Type

This step is the same as “Step 1: Configuring the Bitstream Type” on page 112.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream. In
order to use QBOX, we must switch the type to QBOX. This must be done only once for the
encoder at startup (it must be done for the decoder at startup as well).

This is done with the following command, which is only valid when the encoder is in IDLE
state.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVE_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVE_CFP_BITSTREAM_TYPE_QBOX;
cmd.arguments[2] = 0;

Step 2: Putting the Encoder into the RECORD State

This step is the same as “Step 3: Putting the Encoder into the RECORD state” on page 113.

Step 4: Storing the bitstream

Handling the bitstream block ready events is done the same as in the previous phase except that
the QBOX header should be examined for the timestamp (CTS) and sample flags to help the
host multiplexer.

Step 5: Stopping the bitstream

Stopping the recording is done with the FLUSH command. The following command performs
this operation.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_FLUSH;
cmd.arguments[0] = 0;
116 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Encoder Bringup
However, the key difference in QBOX recording is that the firmware will continue to send the
buffered bitstream until the host receives the QBOX that has the last sample in stream (bit 1 of
box_flags).
Confidential Mobilygen Corp. | 117

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
118 | Mobilygen Corp Confidential

Chapter 9. Firmware Loader
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices contains a proprietary
media processor that controls all of operations of the MG1264 Codec, as well as executing
the Application programmers Interface. Because the MG1264 Codec has no non-volatile
storage attached (such as Flash or ROM), the System Host CPU must initialize the MG1264
Codec. This initialization process involves

• Resetting the MG1264 Codec

• Writing a set of internal MG1264 Codec registers (called Configuration/Status
Registers, or CSR registers)

• Downloading the firmware to the MG1264 Codec DRAM, and

• Writing a second set of MG1264 Codec CSR registers.

The first set of register writes initializes hardware modules such as the memory controller.
The second set of register writes starts the media processor's execution.

All of the information required to initialize the MG1264 Codec firmware is contained in a
binary file provided by Mobilygen. This binary file is referred to as the “Firmware Image”.
This chapter describes the format of the binary image and how to read it.

It is important to note that the binary image is stored in a little endian format. Big-endian
System Host CPUs will likely have to byte-reverse the image before storing it in their own
Flash memory.
Confidential Mobilygen Corp. | 119

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
9.1 Firmware Image Format
The binary firmware image provided by Mobilygen starts with a header and then one or more
sections in sequence. Each section consists of a 32-bit word that contains the section ID,
followed by a variable number of 32-bit words. All fields in each section are always 32-bit
words to make parsing easier. These fields are in little endian format and can be converted to
big endian by reversing the four bytes in the 32-bit word (byte 3 switches with byte 0, byte 2
switches with byte 1, byte 1 switches with byte 2, byte 0 switches with byte 3.).

Note: The System Host CPU should read and process each section in order.

9.1.1 Header

The Header of the binary image contains two 32-bit words. The first word contains the
characters “MBY0” and the second word contains the firmware version. The first three bytes
are the version number and the last byte is the product code. For example, if the version field is
0x010204AA, then the version is 1.2.4, with the product code AA:

unsigned char[4] header = “MBY0”;
unsigned int32 version;

9.1.2 Global Pointer Block

The GPB section contains a single word whose value is the address of the “Global Pointer
Block” for the firmware image. The Global Pointer Block is a structure that contains the address
of the command block, the current event address, and status areas for the encoder, decoder, and
system control. The address of this block can change between firmware builds. Therefore the
System Host CPU must obtain the current Global Pointer Block address by parsing the
firmware binary image.

The structure of the Global Pointer Block contains two 32-bit words. The first word is the
section ID and has a value of four. The second 32-bit word is the Global Pointer Block.

unsigned int32 sectionId = 4;
unsigned int32 globalPointerBlockAddress;

In order to process this section, the System Host CPU must read and locally store the value of
the Global Pointer Block address.

9.1.3 Pre-download CSR

There are two Configuration/Status Register sections in the binary image. The first CSR section
is referred to as the “Pre-download” section and it is executed before downloading the firmware.
The second CSR section is referred to as the “Post-download” section, and it is executed after
downloading the firmware. Each CSR section has the same format; they are different only in
their position in the file. As is expected, the Pre-download CSR section comes before the
firmware download sections, and the Post-download CSR section comes after the firmware
download sections.

The structure of the CSR section consists of the section ID with a value of two, the number of
register writes, and then four 32-bit words per register write. The words per register are the
block number, register address, register data, and register size. Register size will either be 1, 2
or 4 corresponding to an 8, 16 or 32-bit register. In all cases, the register data is a 32-bit field
with the data always starting at bit 0:
120 | Mobilygen Corp Confidential

Firmware Loader Firmware Image Format
unsigned int32 sectionId = 2;
unsigned int32 numRegisters;
repeat numRegisters

{
unsigned int32 blockId;
unsigned int32 address;
unsigned int32 data;
unsigned int32 size;
}

In order to process this section, the System Host CPU must write each register in order with the
correct address, data, and size parameters.

9.1.4 Firmware

Boot

There are two firmware sections in the binary image; the Boot section and the Main section.
The Boot firmware section contains a small amount of boot code for the MG1264 Codec that
must be put into a different DRAM address from the Main firmware section. Each firmware
section has the same format; they differ only in the location in the binary image.

The structure of the firmware section contains the section ID with value of one, the size of the
firmware data to be downloaded in bytes, the start address of the firmware data, the partition ID
of the firmware data, followed by the firmware data itself. The size of the firmware data will
always be a multiple of four.

The Boot section is small, and is typically 1024 bytes of firmware data:

unsigned int32 sectionId = 1;
unsigned int32 firmwareSize;
unsigned int32 firmwareAddress;
unsigned int32 firmwarePartition;
repeat firmwareSize/4

{
unsigned int32 firmwareData;
}

In order to process this section, the System Host CPU must copy the firmware data to the
address specified in the firmware section.

Main

The Main firmware section uses the same format as the Boot section, but is typically much
larger and is stored at a different address using a different partition. In order to process this
section, the System Host CPU must copy the firmware data to the address specified in the
firmware section.

9.1.5 Uninitialized Data

The MG1264 Codec firmware requires that a section of the MG1264 Codec DRAM be set to
zero before execution begins. This section is called the BSS section.
Confidential Mobilygen Corp. | 121

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
The structure of the BSS section is similar to the firmware section, except that there is no
firmware data. It consists of the section ID with a value of three, the size of the area to be zeroed
in bytes, the start address of the zero data, and the partition ID to use. The size of the BSS area
will always be a multiple of four:

unsigned int32 sectionId = 3;
unsigned int32 bssSize;
unsigned int32 bssAddress;
unsigned int32 bssPartition;

In order to process this section, the System Host CPU must zero-out the MG1264 Codec
DRAM starting at the given address for the specified number of bytes.

9.1.6 End

The End section consists simply of the section ID with a value of five. This section is at the end
of the binary image, and can be used by the System Host CPU to indicate that the file was parsed
successfully.

9.2 Sample Code
Mobilygen provides sample code for the firmware loader. This code assumes that the System
Host CPU is the same endian structure as the binary image. Since the binary image is originally
little endian, a big endian host will have to swap the data within the file, with the exception of
the first MBY0 string, which is a character string that does not need swapping.

Pseudocode for the sample code follows, assuming that the System Host CPU is little endian.
Byte reversal can be done using the macro:

#define SWAP_ENDIAN(A) (((A & 0xff000000) >> 24) | \
 ((A & 0x00ff0000) >> 8) | \
 ((A & 0x0000ff00) << 8) | \
 ((A & 0x000000ff) << 24))

The pseudocode contains the functions “CopyToDram”, “ZeroDram”, and “WriteRegister”.
These are functions that copy a block of local memory to the MG1264 Codec memory, zero-out
a block of MG1264 Codec memory, and write to a CSR register. Mobilygen also provides a
driver layer for the MG1264 Codec Host Interface called the Hardware Abstraction Layer
(QHAL) which contains code to perform these functions. It is expected that these calls are
implemented using real QHAL calls:

int qmmLoadAndRun(char *imageBuffer, int imageSize)
{

 // set current position of the firmware image to the start
 currentPos = imageBuffer;

 // read the first 4 bytes and check against the magic number and
 // fail if they do not match
 if ((imageBuffer[0] != 'M') || (imageBuffer[1] != 'B') ||
 (imageBuffer[2] != 'Y') || (imageBuffer[3] != '0'))
 {
 printf(“bad magic number\n”);
122 | Mobilygen Corp Confidential

Firmware Loader Sample Code
 return(0);
 }

 // move past the header to the version field and retrieve the version
 currentPos++;
 version = *currentPos++;

 // Continue in a loop processing each section as it is found.
 // In order to handle corrupted images, the loop exits as
 // soon as the current firmware image pointer goes past the
 // size of the firmware image.
 while (currentPos - imageBuffer < imageSize)
 {
 // read the id of the current section and move to the next field
 sectionId = *currentPos++;

 switch (sectionId)
 {
 case QMM_LOAD_SECTION:

 // read the size, address, and partition of the firmware
 // data to be downloaded.
 size = *currentPos++;
 addr = *currentPos++;
 partition = *currentPos++;

 // copy the firmware data to codec memory
 CopyToDram(addr, size, (char *)currentPos, partition);

 // move to next section
 currentPos = (int*)((char *)currentPos + size);

 break;

 case QMM_CSR_SECTION:
 // get number of registers to write
 numRegisters = *currentPos++;

 // iterate across the set of registers, writing each one as they
 // are read.
 for (i = 0; i < numRegisters; i++)
 {
 csrBlock = *currentPos++;
 csrAddr = *currentPos++;
 csrData = *currentPos++;
 csrSize = *currentPos++;

 // write the register
 WriteRegister(csrBlock, csrAddr, csrSize, csrData);
 }

 break;

Confidential Mobilygen Corp. | 123

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
 case QMM_BSS_SECTION:

 // read the size, address and partition of the bss section
 size = *currentPos++;
 addr = *currentPos++;
 partition = *currentPos++;

 // clear codec memory as specified
 ZeroDram(addr, size, partition);
 break;

 case QMM_GPB_SECTION:

 // retrieve the GPB address for this image
 gpb = *currentPos++;
 break;

 case QMM_END_SECTION:

 // Flag that the end section has been found
 currentPos++;
 break;

 }
 }

}

124 | Mobilygen Corp Confidential

Chapter 10. Application
Programming Interface
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is designed for use
for mobile and wall-powered applications. The MG1264 Codec integrates the Media
Processor Multi-threaded Microcontroller along with specialized hardware modules that
are responsible for the real-time encoding and decoding of video and audio streams. This
processing is done under the control of firmware running on the micro controller that
presents a programming interface to the System Host CPU.

This chapter describes the Application Programming Interface (API) for the Media
Processor firmware and how the Media Processor responds to its API calls. It is the
functional specification for the firmware and a programming manual for the System Host
CPU-based software.

The API is partitioned into five types of interface elements that are used by the System Host
CPU to control the firmware. They are:

• The Firmware State Machine

• Commands sent from the System Host CPU to the firmware that change the state of
the firmware.

• Configuration information sent from the System Host CPU to the firmware that
change parameters that control how the firmware operates in the various states.

• Asynchronous notifications sent from the firmware to the System Host CPU to inform
the System Host CPU of specific events.

• Status information made available by the firmware that can be polled by the System
Host CPU to obtain information about how the firmware is operating. This status
information is state- and bitstream-dependent and changes over time, often in
response to an asynchronous notification.

Taken together, these elements comprise the logical interface of the firmware. Three
additional interface elements must be described to complete the picture of how the firmware
is controlled. These elements are:

• How to send commands and read status and events from the System Host CPU.

• How to format bitstreams so that they are properly decoded by the Media Processor
firmware.
Confidential Mobilygen Corp. | 125

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
• How to read encoded bitstreams from the Media Processor firmware.

All eight of these interface elements are described in this document. The physical connection
between the System Host CPU and the Media Processor Controller is presented first, followed
by the logical interface of the firmware, and then the bitstream interfaces for the encoder and
decoder.

10.1 Host Interface and the Hardware Abstraction Layer
The MG1264 Codec interfaces with an external System Host CPU through its MG1264 Codec
Host Interface, which is accessed through a 16-bit SRAM-like asynchronous bus. In this
configuration, the System Host CPU is the bus Master, and the MG1264 Codec is the Slave.

The MG1264 Codec Host Interface provides the System Host CPU with the ability to read/write
the MG1264 Codec’s DRAM, read/write the MG1264 Codec’s Configuration/Status Registers
(CSR), and send bitstream data to the decoder. The MG1264 Codec Host Interface is also used
to implement an inter-processor communication protocol using special mailbox registers and
the System Host CPU interrupt signal.

The QHAL is Mobilygen's Hardware Abstraction Layer that implements the control logic
required to use the host bus effectively. The QHAL is meant to be ported and executed on the
System Host CPU, and is written in ANSI-C.

The QHAL is made up of the external memory driver (qhal_em), the CSR register driver
(qhal_qcc), the bitstream transfer driver (qhal_bs), the mailbox control driver (qhal_mbox), and
the host bus register driver (qhal_host, also known as the low-level driver). The qhal_host driver
is the only module that must change when moving between different host processors. Once the
qhal_host is properly functioning, the rest of the QHAL modules will work. For the purposes
of this document, qhal_host and qhal_qcc can be ignored. The firmware API can be
implemented only with qhal_em, qhal_bs, and qhal_mbox calls. The qhal_qcc API is used
primarily for booting the MG1264 Codec.

The structure of the QHAL is shown in Figure 10-1.

Figure 10-1 QHAL Structure

10.1.1 QHAL_EM

The qhal_em is the driver used to access the MG1264 Codec’s external DRAM. This driver
configures the memory channel and provides interfaces to the read/write blocks of memory.

Host Application

Host Adaptation Layer

Bitstream

API

Memory

API

Module
Configuration

API

Mailbox API
(Interprocessor
Communication)

Customer Provided

Mobilygen Provided

(Mobilygen/Customer)
Provided
126 | Mobilygen Corp Confidential

Application Programming Interface Host Interface and the Hardware Abstraction Layer
The MG1264 Codec Host Interface provides two concurrent memory channels; one is used for
bitstream data, and the other is used for command and control. Both channels can be used in
PIO mode, but only the bitstream channel can be used with hardware flow-control DMA. In
systems that do not have hardware flow-control DMA, only the command channel should be
used.

There are two sets of read/write functions; they are 16-bit word read/write and byte-sized read/
write functions. In either case, the total size read or written must be a multiple of 32 bits, but
the word-size read/write functions do endianness conversion if required. The Media Processor
processor is big-endian meaning that qhalem_read_words and qhalem_write_words will
perform a byte-swap before writing the data if the System Host CPU is little endian.

Note that swapping is typically only required for commands and events that are
relatively small. Bitstreams are always transferred using the byte-sized functions
(qhalem_read_bytes) that force the data to be big endian as required by most
multimedia specifications. The MG1264 Codec’s host bus hardware contains
endianness conversion that eliminates any performance penalty for reading
bitstreams.that never swap data.

The header file for the qhal_em module is:

typedef enum {
 QHALEM_ACCESSTYPE_CMD,
 QHALEM_ACCESSTYPE_STREAM
} QHALEM_ACCESSTYPE;

typedef enum {
 QHALEM_MODE_FBFRAME,
 QHALEM_MODE_FBFIELD,
 QHALEM_MODE_LINEAR
} QHALEM_MODE;

typedef enum {
 QHALEM_PRIORITY_NORMAL=0,
 QHALEM_PRIORITY_LOWER=1,
 QHALEM_PRIORITY_HIGHER=2,
 QHALEM_PRIORITY_HIGHEST=3
} QHALEM_PRIORITY;

typedef enum {
 QHALEM_BURSTSIZE_8WORDS=0,
 QHALEM_BURSTSIZE_16WORDS=1,
 QHALEM_BURSTSIZE_32WORDS=2,
 QHALEM_BURSTSIZE_64WORDS=3
} QHALEM_BURSTSIZE;

/* No one should modify a handle or what is inside */
typedef int qhalem_handle_t;

qhalem_handle_t qhalem_open(QHALEM_ACCESSTYPE type,QHALEM_MODE
txmode);

int qhalem_setconfig(qhalem_handle_t em_h, char threshold,
QHALEM_BURSTSIZE burst, QHALEM_PRIORITY priority);
Confidential Mobilygen Corp. | 127

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
int qhalem_read_bytes(qhalem_handle_t em_h, unsigned char blockID,
unsigned long addr, char *buffer, int nBytes);

int qhalem_read_words(qhalem_handle_t em_h, unsigned char blockID,
unsigned long addr, long *buffer, int nWords);

int qhalem_write_bytes(qhalem_handle_t em_h, unsigned char
blockID, unsigned long addr, char *buffer, int nBytes);
int qhalem_write_words(qhalem_handle_t em_h, unsigned char
blockID, unsigned long addr, long *buffer, int nWords);

int qhalem_close(qhalem_handle_t em_h);

10.1.2 QHAL_MBOX

The qhal_mbox driver is used to perform inter-processor communication between the System
Host CPU and the Media Processor. It is a set of high-level functions that manipulate special
mailbox CSR registers. There are two mailboxes in the system (called 0 and 1). Each mailbox
has a data register and an event source register. Mailbox 0 is for Mobilygen internal use, and
mailbox 1 is for application use.

The mailboxes registers are used to generate COMMAND_READY interrupts and
EVENT_DONE interrupts from the System Host CPU to the Media Processor.
COMMAND_READY interrupts are generated by qhalmbox_write operations (the actual
written data is ignored), and EVENT_DONE interrupts are generated using qhalmbox_read
operations. The meaning of COMMAND_READY and EVENT_DONE are explained in
“Event Transfer Protocol” on page 134.

An application can determine which, if any, event occurred using the qhal_mbox_get_event
function. This function returns if none, either, or both of the COMMAND_DONE or
EVENT_READY interrupts have occurred. An application can either poll this function, or
implement an interrupt handler that wakes up a blocked thread that then calls this function.

The qhal_mbox_get_event function returns a bit field that contains an indication of which event
occurred. The bit fields are called QHAL_MBOX_EVENT_READ, and
QHAL_MBOX_EVENT_READY. The Read event corresponds to COMMAND_DONE, and
the Ready event corresponds to EVENT_READY.

The full qhal_mbox.h header is shown as:

typedef enum {
 QHAL_MBOX0,
 QHAL_MBOX1
} QHALMBOX_DEV;

#define QHALMBOX_EVENT_NONE 0
#define QHALMBOX_EVENT_READY 1
#define QHALMBOX_EVENT_READ 2
#define QHALMBOX_EVENT_ALL 3
typedef int QHALMBOX_EVENT;

qhalmbox_handle_t qhalmbox_open(QHALMBOX_DEV mbox);
128 | Mobilygen Corp Confidential

Application Programming Interface Host Interface and the Hardware Abstraction Layer
int qhalmbox_get_event(qhalmbox_handle_t mbox_h,QHALMBOX_EVENT
*event);
int qhalmbox_read(qhalmbox_handle_t mbox_h, unsigned long *datap);
int qhalmbox_write(qhalmbox_handle_t mbox_h, unsigned long data);
int qhalmbox_close(qhalmbox_handle_t mbox_h);

10.1.3 QHAL_BS

The qhal_bs driver is used to send compressed data to the MG1264 Codec’s input data port.
Other than the traditional open and close functions, it features a single function;
qhalbs_write_bytes(). This function sends byte stream data to the MG1264 Codec with
appropriate endianness conversion. Refer to “H.264/ACC Decoder Interface Object” on
page 157 for additional information.

qhalbs_handle_t qhalbs_open();
int qhalbs_setconfig(qhalbs_handle_t bs_h,int threshold);
int qhalbs_write(qhalbs_handle_t bs_h, char *buffer, int length);
int qhalbs_close(qhalbs_handle_t bs_h);
Confidential Mobilygen Corp. | 129

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.2 Media Processor Firmware Programming Model
This section describes the programming model used by the Media Processor firmware.

10.2.1 Control Objects

The firmware presents multiple “Objects” to the System Host CPU. Each of the objects has a
well-defined state machine, a set of commands that it accepts and acts upon, a set of
configuration parameters whose values can be set by the System Host CPU, a set of
asynchronous event notifications that it sends to the System Host CPU, and status that can be
read by the System Host CPU.

The Media Processor firmware presents the following objects (called control objects), each of
a different type:

• System Control

• H.264/AAC AV Encoder

• H.264/AAC AV Decoder

Each control object is assigned a unique ID, and each command and status message is tagged
with this ID.

10.2.2 Commands, Events, and Inter-Processor Communications

The primary methods of communication between the System Host CPU and the Media
Processor firmware are commands and events. Commands are sent from the System Host CPU
to the firmware, and events are sent from the firmware to the System Host CPU.

A “Command” is a request by the System Host CPU for the Media Processor firmware to either
change state, or to configure an operational parameter. Commands are executed immediately
upon request, in the order in which they are received. If the command is a state-change request,
then the state change operation will be complete when the command completes execution.

An “Event” is a notification sent by the Media Processor firmware to the System Host CPU that
a specific event has occurred. The event optionally carries a set of parameters that give more
information about the event at the time that it occurred. New events are internally queued by the
Media Processor firmware while the System Host CPU is processing the current event. The
queue depth is configurable and can be set large enough so that no event is lost (several hundred
events).

The System Host CPU writes commands over the MG1264 Codec Host Interface to area in the
MG1264 Codec’s external DRAM called the “Command Block.” Similarly, events are stored in
the MG1264 Codec’s external DRAM and are read by the System Host CPU using the MG1264
Codec Host Interface. The event area should be treated as read-only by the System Host CPU.

The transfer protocol of both commands and events is fully handshaked, and uses interrupts to
ensure that no data is lost. The details of this protocol are provided in “Sending a Command to
the Firmware” on page 132 and “Reading Events from the Media Processor Firmware” on
page 133.

It is recommended that the host code follow the Mobilygen reference design structure described
in “Sample Host Code Architecture” on page 227 to manage sending commands and reading
events. This structure is proven and handles the important corner case of receiving an event
while waiting for a command to be processed.
130 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
10.2.3 Global Pointer Block

There are a number of important shared data structures stored in the MG1264 Codec’s DRAM
that must be accessed by the System Host CPU. The addresses of these data structures are found
in the Global Pointer Block structure. The address of the global pointer block is determined
when the firmware image is downloaded to the Media Processor.

Each of the structure members is a big-endian, 32-bit field. The global data block structure is:

typedef struct
{
 COMMAND *cmdBlock;
 EVENT *evBlock;
 void *systemControlStatus;
 void *avDecoderStatus;
 void *avEncoderStatus;
} GLOBAL_POINTER_BLOCK;

The command block is a shared memory buffer used for sending commands from the System
Host CPU to the firmware. The cmdBlock field contains the address of the command block in
the MG1264 Codec’s DRAM.

The event block is a shared memory buffer used to send asynchronous event information from
the firmware to the System Host CPU. Its operation is described in “Reading Events from the
Media Processor Firmware” on page 133. Note that events are queued internally by the Media
Processor firmware. Therefore, the System Host CPU must fetch the address of the current
event for EVERY event. The evBlock field contains the address of the current event.

The three status blocks are used by the firmware to post status information for the System Host
CPU to poll. There is one status block for each of the three control objects in the system. The
status block pointers contain the addresses for these blocks.

.

Confidential Mobilygen Corp. | 131

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.2.4 Sending a Command to the Firmware

Command Block

The System Host CPU uses the Command Block to send a command to the Media Processor
firmware The address of the command block is stored in the global pointer block. Each
command contains the target control object ID, the command opcode, up to six 32-bit
arguments, a return code, and up to seven 32-bit return values.

Each field is a big-endian, 32-bit field. The structure of the command block is shown as:

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 unsigned int opcode;
 unsigned int arguments[6];
 unsigned int returnCode;
 unsigned int returnValues[7];
} COMMAND;

Command Transfer Protocol

Sending a command from the System Host CPU to the Media Processor firmware is a fully
handshaked transaction that ensures that no data is lost. The handshaking is done through two
interrupts: the COMMAND_READY interrupt and the COMMAND_DONE interrupt. The
COMMAND_READY interrupt is generated by the System Host CPU to signal the firmware
that a new command has been written to the command block. The COMMAND_DONE
interrupt is generated by the Media Processor firmware to signal to the System Host CPU that
the command execution has completed. No new commands can be generated by the System
Host CPU until the COMMAND_DONE interrupt has been received. The System Host CPU
generates the COMMAND_READY interrupt through writes from the mailbox register in the
MG1264 Codec Host Interface.

Figure 10-2 Command Transfer Timing

Processes Command

Write Command Clear COMMAND_DONE

Time

Time

MG1264

Host

Generate
COMMAND_READY Interrupt

Generate COMMAND_DONE
Interrupt

1
2

3 4

5 6
132 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
The command transfer protocol is:

1: The System Host CPU writes the command block including opcode, control object ID,
and arguments. Only the necessary number of arguments need by written. This is done
using the qhalem_write_words API call. It is important to use the qhalem_write_words
call as this corrects for endian-ness.

2: The System Host CPU writes to the mailbox register to assert the
COMMAND_READY interrupt and clear the COMMAND_DONE interrupt. This is
done through a call to the function qhalmbox_write().

3: The Media Processor firmware responds to the interrupt and processes the command.
4: The Media Processor firmware reads from the mailbox register to assert the

COMMAND_DONE interrupt and clear the COMMAND_READY interrupt.
5: The System Host CPU waits for and receives the COMMAND_DONE interrupt. The

COMMAND_DONE and EVENT_READY interrupts are multiplexed on the same in-
terrupt pin. The System Host CPU must read the interrupt source register to determine
which interrupt is the source. This is done through the API qhalmbox_get_event() call.
This API call also clears the mailbox interrupt bit.

6: The System Host CPU reads the command return code and the return values from the
command block.

A return code of zero indicates the command was rejected. A return code of one means success.
Any other positive return code indicates success with additional information encoded in the
value. The return values can be anything and are command-specific.

10.2.5 Reading Events from the Media Processor Firmware

Events are sent by the Media Processor firmware to the System Host CPU using the same
handshaking mechanism that is used to send commands, but in reverse. Events operate on a
publish/subscribe paradigm so that the System Host CPU only sees events to which it has
subscribed. Some of the events are periodic and relatively high in frequency (once per frame/
field/picture, etc.), and are intended only for debug purposes. By default, no events are
subscribed.

Event Block

Event Blocks are used by the firmware to store a single event for the System Host CPU. Event
blocks are internally queued by the Media Processor firmware and then sent one-by-one to the
System Host CPU for processing. The System Host CPU can find the address of the current
event (the one to be processed) by reading the event block pointer in the global data pointer
block. It is critical to understand that this address will change, and the address must be
re-read for each event.

Each event block contains the event ID, the source control object ID, a 32-bit timestamp
measured in microseconds, and a variable length payload up to a maximum of thirteen words.
The event ID is a globally unique number that identifies the event type. Each field is 32-bits,
big endian. The structure of the event block is shown as:

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 EVENT_ID eventId;
 unsigned int timestamp;
 unsigned int payload[13];
} EVENT;
Confidential Mobilygen Corp. | 133

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Event Transfer Protocol

The transfer protocol for sending events from the Media Processor firmware to the System Host
CPU is identical to the command transfer protocol except the role of the processors is reversed.
Sending an event is a fully-handshaked transaction that ensures that no data is lost. The
handshaking is done through two interrupts: the EVENT_READY interrupt and the
EVENT_DONE interrupt.

The EVENT_READY interrupt is generated by the Media Processor firmware to signal to the
System Host CPU that a new event has been written to the event block. The EVENT_DONE
interrupt is generated by the System Host CPU to signal the firmware that the event handling
has completed. No new events can be generated by the firmware until the EVENT_DONE
interrupt is received. The System Host CPU generates the EVENT_DONE interrupt through
reads from the mailbox register in the MG1264 Codec Host Interface.

Figure 10-3 Event Transfer Timing

The complete Event Transfer protocol is:

1. The Media Processor firmware writes the event ID, control ID, and payload to the event
block, and then writes to the mailbox register to assert the EVENT_READY interrupt
and clear the EVENT_DONE interrupt.

2: The System Host CPU responds to the interrupt and reads the current event block ad-
dress from the global pointer block. The System Host CPU must read the interrupt
source register to determine if the interrupt is the EVENT_READY interrupt.

3: The System Host CPU processes the event.

4: The System Host CPU reads from the mailbox register to assert the EVENT_DONE
interrupt and clear the EVENT_READY interrupt. This is done using the
qhalmbox_read() API call.

5: The Media Processor firmware waits for and receives the EVENT_DONE interrupt.

6: The Media Processor firmware clears the EVENT_DONE interrupt.

The internal queueing mechanism can be represented as shown in Figure 10-4.

Read and Process Event

Write Event Clear EVENT_DONE
Time

Time

MG1264

Host

EVENT_DONE Interrupt

EVENT_READY
Interrupt

1 2

3

4

5

6 7
134 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
Figure 10-4 Event Queuing

10.2.6 Subscribing and Unsubscribing to Events

By default, all events are unsubscribed, meaning that the System Host CPU will receive no
events. Each event that the System Host CPU is interested in receiving must be explicitly
subscribed using the SUBSCRIBE_EVENT command. Similarly, events can be unsubscribed
using the UNSUBSCRIBE_EVENT command. The argument list for both commands is a
NULL terminated list of event IDs that should be subscribed/unsubscribed.

SUBSCRIBE_EVENT

For example:

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_SUBSCRIBE_EVENT;
cmd.arguments[0] = Q_AVE_EV_BITSTREAM_BLOCK_READY;
cmd.arguments[1] = Q_AVE_EV_VIDEO_FRAME_ENCODED;
cmd.arguments[2] = 0;

EVENT_DONE

EVENT_READY

Current Event Buffer Event Queue

Event Event Event Event Event New Events

Command Name Q_CMD_OPCODE_SUBSCRIBE_EVENT

Arguments Variable list of 32-bit words. Each word contains a valid event ID. The list
of IDs should be terminated by a NULL (0) 32-bit word

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description The Subscribe Event can be issued at any time, although it is expected that
the host application will subscribe to a set of events at startup.
Confidential Mobilygen Corp. | 135

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
UNSUBSCRIBE_EVENT

For example:

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_UNSUBSCRIBE_EVENT;
cmd.arguments[0] = Q_AVE_EV_BITSTREAM_BLOCK_READY;
cmd.arguments[1] = Q_AVE_EV_VIDEO_FRAME_ENCODED;
cmd.arguments[2] = 0;

10.2.7 Configuration Parameters

Each control object presents a set of configuration parameters for the System Host CPU to set.
These parameters control how the object behaves in each state, and also how it transitions states.

There are two types of configuration parameters: single-buffered and double-buffered. Single-
buffered parameters either take effect immediately or upon the next state transition, as indicated
by the parameter. Double-buffered parameters take effect only when the host issues a matching
ACTIVATE command. For example, most of the video encoder parameters are double-buffered
so that the host can change a group of parameters at one time while recording.

A configuration parameter has a unique ID and an associated 32-bit value. The 32-bit value can
include multiple bit fields. Single buffered configuration parameters are set using the
CONFIGURE command (see “Configure Command” on page 137), which has the same opcode
for all control objects. Double buffered parameters are set by different commands that are
explained in each of the control object's API section.

Command Name Q_CMD_OPCODE_UNSUBSCRIBE_EVENT

Arguments Variable list of 32-bit words. Each word contains a valid event ID. The list
of IDs should be terminated by a NULL (0) 32-bit word.

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
As previously stated, the typical operational procedure is to subscribe to
events at startup, and does not either unsubscribe or further subscribe
during operation. However, these features are supported for debug
purposes or for the implementation of features not anticipated at this time.
136 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
Configure Command

For example:

COMMAND cmd;
cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_QBOX;
cmd.arguments[2] = 0;

10.2.8 Status Block

Each control object has a status block located in the MG1264 Codec’s DRAM that is pointed
to by the global pointer block. The intent of the status block is to store information that does not
change over time, or whose changes do not need to be synchronized with the System Host CPU.
The System Host CPU can read the contents of the status block at any time simply by accessing
the Media Processor firmware memory using the qhalem_read_words API. The specific layout
of each status block is described in each control object’s section.

Command Name Q_CMD_OPCODE_CONFIGURE

Arguments Variable list of 32-bit words. Each pair consists of a configuration
parameter name and a parameter value.

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description

All single-buffered configuration parameters are set using the
CONFIGURE command. Each parameter has a one 32-bit value
associated with it that is stored by the firmware.
The arguments to the CONFIGURE command are parameter or value
pairs. If fewer than three pairs are specified, then a parameter value of 0
terminates the list.
Confidential Mobilygen Corp. | 137

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.3 Bitstream Formats
The Media Processor is capable of generating and decoding any bitstream formats, but the
firmware currently only supports QBox, Elementary, and MP4.

10.3.1 QBox Bitstream Format

The QBox format consists of a simple header preceding audio and video access units. It is
designed for applications where the System Host CPU is doing bitstream multiplexing or
demultiplexing, and can be considered an interchange format. When encoding, the Media
Processor firmware sends access units (either compressed audio or video frames) following a
standard header (called the QBox Header). This header has the size of the access unit and
information about the contents. It is expected that the System Host CPU will only use the header
for informational purposes and will not store entire QBoxes. When decoding, the System Host
CPU must then generate these headers on the fly, and send the header and payload to the Media
Processor for decoding.

The first video QBox contains the AVC sequence/picture parameter set NAL unit. Subsequent
QBox headers contain either I-frames or P-frames. QBoxes that contain I-frames contain both
a picture parameter set NAL unit followed by the video frame NAL unit. QBoxes that contain
only P-frames contain only the frame NAL unit.

If the selected audio codec is AAC then the first audio QBOX contains configuration
information according to the AudioSpecificConfig() structure as specified in section 1.6.2.1 of
ISO/IEC 14496-3:2001 (MPEG4 Systems). The audio object type is 2 for AAC-LC. When
decoding a stream, the configuration QBOX must be sent first after a transition from IDLE to
PLAY.

Other audio codecs do not have a configuration QBOX as the relevant header information is
stored in the audio elementary stream.

As a C structure, the QBox header structure is:

typedef struct {
uint32 box_size;
uint32 box_type;
uint32 box_flags;
uint16 sample_stream_type;
uint16 sample_stream_id;
uint32 sample_flags;
uint32 sample_cts; // optional
uint8 sample_data[];

} QBox;

box_size: Size of the box including the header.

box_type: Always four characters “qbox”.

box_flags: The upper eight bits are the header version. The lower 24 bits are flags. Bit 0 is set
if there is sample data in the box. Bit 1 is set if this is the last access unit in the stream. Bit 2 is
set if the QBox is followed by padding bytes to make the QBox size, plus the padding bytes a
multiple of 4 bytes.

sample_stream_type: Set to 1 if it is an AAC audio frame or configuration data, or set to 2 if
it is an H.264 frame or configuration data.

sample_stream_ID: Unused at this time.
138 | Mobilygen Corp Confidential

Application Programming Interface Bitstream Formats
sample_flags: Bit 0 is set if the data contains configuration information for the decoder. Bit 1
is set if the CTS field is present and valid. Bit 2 is set if the video frame is a synchronization
point (meaning I frame for H.264), and bit 3 is set if the frame is disposable (meaning a B frame
in H.264). Bit 4 is set if the audio or video sample is the result of a MUTE command sent to the
AV encoder. Bits 30-31 represent the number of leading padding bytes in the QBox (0-3) that
are skipped by the MG1264 Codec demultiplexer.

cts: Sample composition time in 90 kHz ticks.

Reading QBOX Bitstreams

When reading the bitstream data from the MG1264 Codec, special care is required if the host
processor is little endian. As mentioned in the QHAL_EM driver description, endianness
conversion is done for qhalem_read_words(), but qhalem_read_bytes() forces big-endianness
for bitstream transfers. Therefore, the host must either read the QBOX header first using
qhalem_read_words() and then the bitstream using qhalem_read_bytes(), or use a single
qhalem_read_bytes() call to read both the header and bitstream, and then perform endianness
conversion on the header afterwards.

QBOX Payload

For a QBox that contains AVC data as defined in ISO14996-3 as AudioSpecificConfig., there
will be an integer number of Network Abstraction Layer (NAL) units contained within the box. The
box may contain zero or one slice data NAL unit, and an arbitrary number of other NAL units
(such as SEI messages, end of stream, end of sequence etc.). The format of the data consists of
a 32-bit value containing the size of the NAL unit (including the four bytes used to encode the
size) followed by the NAL unit data.

For QBoxes that contain AAC data, there will be zero or one raw data blocks per box. The first
audio-related QBox will contain the stream configuration information as defined in
ISO14996-3 as AudioSpecificConfig..

10.3.2 Elementary Video

The Elementary Video stream accepted and generated by the Media Processor firmware is
specified in ISO/IEC 14496-10 Annex B. This stream consists of a sequence of NAL units with
each NAL unit proceeded by a startcode. The bitstream data corresponding to one event is
similar to the data that is contained in a QBOX. That is, an integer number of NAL units with
each NAL unit preceded by a 0x00000001 startcode. Note that when the decoder is in
elementary video mode, it cannot accept or generate compressed audio data at the same time.

10.3.3 MP4

TBD
Confidential Mobilygen Corp. | 139

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.4 System Control Interface Object

10.4.1 Overview

The System Control interface object is responsible for overall system control such as power
management, audio, video input/output timing, as well as the video and OSD display.

Video Display

The video display features three display planes that are stacked (top to bottom) as OSD, video
frame 1 and video frame 0. That is, OSD is overlaid on top of video frame 1 which is overlaid
on top of video frame 0.

The host has control over which planes are enabled. In the case of the video planes, the host also
has control over whether the encoder or decoder output is routed to the plane. Each plane then
has independent scaling and placement on the display. These capabilities allow for picture-in-
picture operation (PIP).

On-Screen Display

The OSD system offers a full screen display with eight bits per pixel using a full 32-bit color
indexed by the pixel's value. The set of 256 colors that can be used is referred to as the palette
and is stored as red, green, blue, and alpha. The OSD system also offers the host the ability to
download up to 128 "pixel maps" which are rectangular images. The pixel maps can be
downloaded in raw form (meaning only the pixel data is downloaded) or as BMPs where the
palette and pixel data are downloaded together. The downloaded palette can be used to set the
system palette.

Due to performance considerations, there are some restrictions in the API.

1. Width of the Bitmap and OSD Screen Size must be multiple of four.

2: Start position for the OSD destination screen has to be multiple of four.

10.4.2 Object ID

The system control object has the object ID of 0x1.

10.4.3 State Machine

The system control object has no state machine. It is considered to be always in the ENABLED
state.
140 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
10.4.4 Commands

ECHO

For example:

COMMAND cmd;
cmd.controlObjectId = SYSTEMCONTROL_CTRLOBJ_ID;
cmd.opcode = Q_SYS_CMD_ECHO;
cmd.arguments[0] = 1; // any arbitrary 32 bit value

POWERDOWN

Command Name Q_SYS_CMD_ECHO
Arguments Any 32-bit value.

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The ECHO command is used primarily for debug and bring-up purposes.
When the ECHO command is received, a corresponding ECHO event,
Q_SYS_EV_ECHO, is created with the first payload entry of the event
being the same as the first argument of the command.

Command Q_SYS_CMD_POWERDOWN

Arguments 0 = To exit
1 = To enter sleep

Return Code Cannot be checked, see description
Return Values None
Valid States All

Description

The POWERDOWN command is used to transition the MG1264 Codec to
and from a sleep mode where very little power is consumed. If the
argument value is 1, then the codec enters the POWERDOWN state, if its
0 then it wakes up. Note that the command sends a COMMAND_DONE
interrupt as all other commands do, but it is critical to note that the
System Host CPU code cannot check the return code when entering
sleep, because the memory controller has been placed into an AUTO-
REFRESH state. The command cannot fail, and it is assumed that if a
COMMAND_DONE interrupt is received, that the command was accepted.
Confidential Mobilygen Corp. | 141

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.4.5 OSD Commands

RES_DOWNLOAD

RES_RELEASE

Command Q_SYS_CMD_RES_DOWNLOAD

Arguments 0 = Resource type
1 = File size of the resource file to be downloaded.

Return Code 0 = Failure
1 = Success

Return Values 0 = Handle of the bitmap
1 = Address for downloading the bitmap file.

Valid States All

Description

The Resource Download Handle Request command is used to request a
storage place for the resource file, h264Iframe, and bitmap data or bitmap
palette. The first argument of the command is the Resource Type, which
can be one of the following:
1. Q_SYS_RCTYPE_BITMAP: A BMP file
2. Q_SYS_RCTYPE_USER_DEFINED: User defined data.
You can use user defined data for downloading any type of data, including
a raw pixel map.
The general model for using this command is to send the command to ask
for space in MG1264 Codec memory, and then download the resource
itself to the address provided by the codec in the return value.

Command Q_SYS_CMD_RES_RELEASE
Arguments Handle of the resource to be freed.

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The Bitmap Handle Release command is used to free the storage place for
the resource handle specified. Once the memory is free, it can then be
reused for downloading other resource files.
142 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
OSD_PALETTE (Set Single Entry)

OSD_PALETTE (Get Single Entry)

Command Q_SYS_CMD_OSD_PALETTE

Arguments

0 = Sub-command set to 0 for set operation
1 = Palette index (0-255)
2 = Red
3 = Green
4 = Blue
5 = Alpha

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description

The OSD_PALETTE command, and its subcommand of 0 is used to set a
single palette entry. The first argument must be zero to indicate a read
operation. The next argument is the palette index to read, and the
subsequent are the 8-bit red, green, blue, and alpha fields of the palette
entry.

Command Q_SYS_CMD_OSD_PALETTE

Arguments 0 = Sub-command set to -1 for read operation
1 = Palette index (0-255)

Return Code 0 = Failure
1 = Success

Return Values

0 = Red
1 = Green
2 = Blue
3 = Alpha

Valid States All

Description
The OSD_PALETTE command, and its subcommand of -1 is used to read
a single palette entry. The first argument must be -1 to indicate a write
operation. The next argument is the palette index to update.
Confidential Mobilygen Corp. | 143

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
OSD_PALETTE (Set Multiple Entries)

OSD_SCRN_ALPHA

Command Q_SYS_CMD_OSD_PALETTE

Arguments
0 = Palette address in codec memory
1 = Start index to update
2 = End index to update

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description

The OSD_PALETTE command is used to set the multiple palette entries
based on already downloaded memory, typically a palette contained in a
BMP file. The first argument is the address of the palette, the second
argument is the start index, and the third argument is the end index. If the
entire palette is to be set from a BMP, the correct offset from the BMP's
address in memory must be selected and the start and end indexes must
be 0 and 256.

Command Q_SYS_CMD_OSD_SCRN_ALPHA

Arguments 0 = Enable or disable
1 = Screen global alpha value

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description The OSD_SCRN_ALPHA command is used to use a single global alpha
for the entire OSD plane instead of a per-pixel alpha used in the palette.
144 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
BMPDATA_BLIT

OSD_BMPDATA_FILL

BMP_SHOW

Command Q_SYS_CMD_OSD_BMPDATA_BLIT

Arguments

0 = Bitmap data address (must be 4-byte aligned)
1 = xAddress of the OSD memory to which the bitmap is blitting to
2 = yAddress of the OSD memory to which the bitmap is blitting to
3 = Width of the bitmap data
4 = Height of the bitmap data

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The OSD Bitmap Data Blit command is used to transfer/blit a raw pixel map
of a specified width and height to an (x,y) location on the OSD display. Note
that if the source is a BMP file, the address of the raw pixel data inside the
BMP must be specified, and not the base address of the BMP itself.

Command Q_SYS_CMD_OSD_BMPDATA_FILL

Arguments

0 = Fill data value
1 = xAddress of the OSD screen to which bitmap is blitting to.
2 = yAddress of the OSD screen to which bitmap is blitting to.
3 = Width of the fill rectangle
4 = Height of the fill rectangle

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The OSD Bitmap Data Blit Fill command is used to fill a rectangle of size
(width x height) in the OSD screen at location (xaddr, yaddr) with the value
specified.

Command Q_SYS_CMD_OSD_BMP_SHOW

Arguments
0 = Mode (0 to disable, 1 to enable)
1 = xAddress of the video display window
2 = yAddress of the video display window

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The OSD Show command is used to show or hide the OSD display on the
screen. The command takes an (x,y) address, which is the coordinate
relative to the top-left corner of the display, to display the screen.
Confidential Mobilygen Corp. | 145

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.4.6 Double-Buffered Configuration Commands

The system control object manages a set of double buffered configuration parameters that are
set using a dedicated configuration command. The set of double buffered parameters are then
activated in the MG1264 Codec using an activate command.

SET_OUTPUT_PARAM

ACTIVATE_OUTPUT_CFG

Command Q_AVE_CMD_SET_OUTPUT_PARAM

Arguments

0 = Parameter 0
1 = Value 0
2 = Parameter 1 or 0
3 = Value 1
4 = Parameter 2 or 0
5 = Value 2

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description

This parameter sets a double buffered video output parameter. Up to three
parameters and their associated value can be set by a single command.
Once a parameter is set, it has to be forcibly activated by sending the
Q_AVE_CMD_ACTIVATE_OUTPUT_CFG command. When this
command is sent, all pending parameters are activated.

Command Q__AVE_CMD_ACTIVATE_OUTPUT_CFG
Arguments None

Return Code 0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command activates all pending parameters set by the
SET_OUTPUT_PARAM command since the last time either
ACTIVATE_OUTPUT_CFG was called.
146 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
10.4.7 Single-Buffered Configuration Parameters

AUDIO_NUM_CHANNELS

AUDIO_SAMPLE_RATE

AUDIO_SAMPLE_SIZE

AUDIO_OUT_MASTER_CLOCK

Parameter Q_SYS_CFG_AUDIO_NUM_CHANNELS
Value 1 or 2
States IDLE

Effective On the next AV decoder or AV encoder state transition out of IDLE

Description This parameter is to configure the number of input and output channels
(stereo or mono).

Parameter Q_SYS_CFG_AUDIO_SAMPLE_RATE
Value 24000, 32000, 48000
States IDLE

Effective On the next AV decoder or AV encoder state transition out of IDLE
Description This parameter configures the sampling rate of the system.

Parameter Q_SYS_CFG_AUDIO_SAMPLE_SIZE
Value 16, 20, 24
States IDLE

Effective On the next AV decoder or AV encoder state transition out of IDLE
Description This parameter configures the sampling size.

Parameter Q_SYS_CFG_AUDIO_OUT_MASTER_CLOCK

Value 1 = Q_SYS_CFP_AUDIO_OUT_MASTER_CLOCK_256FS
2 = Q_SYS_CFP_AUDIO_OUT_MASTER_CLOCK_512FS

States IDLE
Effective On the next AV decoder or AV encoder state transition out of IDLE

Description
This parameter configures the frequency of the audio output Master clock
to either 256 times the sampling frequency or 512 times the sampling
frequency.
Confidential Mobilygen Corp. | 147

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
AUDIO_OUT_SERIAL_MODE

Parameter Q_SYS_CFG_AUDIO_OUT_SERIAL_MODE

Value 1 = Q_SYS_CFP_AUDIO_OUT_SERIAL_MODE_I2S
2 = Q_SYS_CFP_AUDIO_OUT_SERIAL_MODE_LEFT

States IDLE
Effective On the next AV decoder or AV encoder state transition out of IDLE

Description This parameter configures the formatting of the audio output data to be
either I2S or left-justified.
148 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
10.4.8 Double-Buffered Output Parameters

These double buffered parameters are activated by the ACTIVATE_OUTPUT_CFG command.
Until the activate command is sent, these parameters have no effect.

VID_0_ENABLE

VID_1_ENABLE

VID_0_SOURCE

VID_1_SOURCE

Parameter Q_SYS_CFG_VID_0_ENABLE

Value 0 = Disable
1= Enable

States Any
Effective Activation

Description This parameter enables the display of video plane 0.

Parameter Q_SYS_CFG_VID_1_ENABLE

Value 0 = Disable
1= Enable

States Any
Effective Activation

Description This parameter enables the display of video plane 1.

Parameter Q_SYS_CFG_VID_0_SOURCE

Value
Q_SYS_CFG_OUT_SOURCE_DECODER,
Q_SYS_CFG_OUT_SOURCE_ENCODER,
Q_SYS_CFG_OUT_SOURCE_NONE

States Any
Effective Activation

Description This parameter controls which video source, either the encoder or the
decoder is displayed on video plane 0.

Parameter Q_SYS_CFG_VID_1_SOURCE

Value
Q_SYS_CFG_OUT_SOURCE_DECODER,
Q_SYS_CFG_OUT_SOURCE_ENCODER,
Q_SYS_CFG_OUT_SOURCE_NONE

States Any
Effective Activation

Description This parameter controls which video source, either the encoder or the
decoder is displayed on video plane 1.
Confidential Mobilygen Corp. | 149

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VID_0_SCALING_ENABLE

VID_1_SCALING_ENABLE

VID_0_DISPLAY_WIDTH

VID_0_DISPLAY_HEIGHT

Parameter Q_SYS_CMP_OUTPUT_VID_0_SCALING_ENABLE

Value 0 = Disable the output scaler on video plane 0
1 = Enable the output scaler on video plane 0

States Any
Effective Activation

Description
This variable is used to enable/disable the video output scaler on video
plane 0. When the scaler is enabled, it automatically resizes the decoded
video to fit the plane's display rectangle.

Parameter Q_SYS_CMP_OUTPUT_VID_1_SCALING_ENABLE

Value 0 = Disable the output scaler on video plane 1
1 = Enable the output scaler on video plane 1

States Any
Effective Activation

Description
This variable is used to enable/disable the video output scaler on video
plane 1. When the scaler is enabled, it automatically resizes the decoded
video to fit the plane's display rectangle.

Parameter Q_SYS_CMP_OUTPUT_VID_0_DISPLAY_WIDTH
Value Positive non-zero integer
States Any

Effective Activation

Description
This variable configures the width of the display rectangle on video
plane 0. When scaling is enabled, the scaler scales the video to match this
width.

Parameter Q_SYS_CMP_OUTPUT_VID_0_DISPLAY_HEIGHT
Value Positive non-zero integer
States Any

Effective Activation

Description
This variable configures the height of the display rectangle on video
plane 0. When scaling is enabled, the scaler scales the video to match this
height.
150 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
VID_0_DISPLAY_OFFSET_X

VID_0_DISPLAY_OFFSET_Y

VID_1_DISPLAY_WIDTH

VID_1_DISPLAY_HEIGHT

Parameter Q_SYS_CMP_OUTPUT_VID_0_DISPLAY_OFFSET_X
Value Positive non-zero integer
States Any

Effective Activation

Description This variable configures the X position of video plane 0 relative to the start
of active video.

Parameter Q_SYS_CMP_OUTPUT_VID_0_DISPLAY_OFFSET_Y
Value Positive non-zero integer
States Any

Effective Activation

Description This variable configures the Y position of video plane 0 relative to the start
of active video.

Parameter Q_SYS_CMP_OUTPUT_VID_1_DISPLAY_WIDTH
Value Positive non-zero integer
States Any

Effective Activation

Description
This variable configures the width of the display rectangle on video
plane 1. When scaling is enabled, the scaler scales the video to match this
width.

Parameter Q_SYS_CMP_OUTPUT_VID_1_DISPLAY_HEIGHT
Value Positive non-zero integer
States Any

Effective Activation

Description
This variable configures the height of the display rectangle on video
plane 1. When scaling is enabled, the scaler scales the video to match this
height.
Confidential Mobilygen Corp. | 151

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VID_1_DISPLAY_OFFSET_X

VID_1_DISPLAY_OFFSET_Y

Parameter Q_SYS_CMP_OUTPUT_VID_1_DISPLAY_OFFSET_X
Value Positive non-zero integer
States Any

Effective Activation

Description This variable configures the X position of video plane 1 relative to the start
of active video.

Parameter Q_SYS_CMP_OUTPUT_VID_1_DISPLAY_OFFSET_Y
Value Positive non-zero integer
States Any

Effective Activation

Description This variable configures the Y position of video plane 1 relative to the start
of active video.
152 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
VID_0_ZOOM_SOURCE_SIZE

VID_0_ZOOM_SOURCE_OFFSET_X

VID_0_ZOOM_SOURCE_OFFSET_Y

Parameter Q_SYS_CMP_OUTPUT _VID_0_ZOOM_SOURCE_SIZE
Value Source size as a 16-bit unsigned fraction
States Any

Effective Activation

Description

Video zoom is used to perform an arbitrary horizontal and vertical crop of
the source and scale it to fit the display rectangle. The size, x offset and y
offset are all specified as 16-bit fractions (such that 65536/2 is ½). This
parameter is used to set the fractional size of the crop (note that zoom
retains the same aspect ratio of the source so only scaling parameter is
needed).

Parameter Q_SYS_CMP_OUTPUT_VID_0_ZOOM_OFFSET_X
Value Source offset as a 16-bit unsigned fraction
States Any

Effective Activation

Description This parameter is used to set the start x-offset as a fraction of the entire
source.

Parameter Q_SYS_CMP_OUTPUT_VID_0_ZOOM_OFFSET_Y
Value Source offset as a 16-bit unsigned fraction
States Any

Effective Activation

Description This parameter is used to set the start y-offset as a fraction of the entire
source.
Confidential Mobilygen Corp. | 153

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VID_1_ZOOM_SOURCE_SIZE

VID_1_ZOOM_SOURCE_OFFSET_X

VID_1_ZOOM_SOURCE_OFFSET_Y

AUD_SOURCE

Parameter Q_SYS_CMP_OUTPUT _VID_1_ZOOM_SOURCE_SIZE
Value Source size as a 16-bit unsigned fraction
States Any

Effective Activation

Description

Video zoom is used to perform an arbitrary horizontal and vertical crop of
the source and scale it to fit the display rectangle. The size, x offset and y
offset are all specified as 16-bit fractions (such that 65536/2 is ½). This
parameter is used to set the fractional size of the crop (note that zoom
retains the same aspect ratio of the source so only scaling parameter is
needed).

Parameter Q_SYS_CMP_OUTPUT_VID_1_ZOOM_OFFSET_X
Value Source offset as a 16-bit unsigned fraction
States Any

Effective Activation

Description This parameter is used to set the start x-offset as a fraction of the entire
source.

Parameter Q_SYS_CMP_OUTPUT_VID_1_ZOOM_OFFSET_Y
Value Source offset as a 16-bit unsigned fraction
States Any

Effective Activation

Description This parameter is used to set the start y-offset as a fraction of the entire
source.

Parameter Q_SYS_CMP_AUD_SOURCE

Value

Q_SYS_CMP_OUT_AUD_SOURCE_MAIN
Q_SYS_CMP_OUT_AUD_SOURCE_PIP
Q_SYS_CMP_OUT_AUD_SOURCE_ENCODER
Q_SYS_CMP_OUT_AUD_SOURCE_DECODER

States Any
Effective Activation

Description
This parameter is used to select the active audio source. The options are
the stream being displayed on the main window (video plane 0), the stream
being displayed on the PIP window (video plane 1), or forced to follow the
encoder or decoder.
154 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
10.4.9 Events

Q_SYS_EV_HEARTBEAT

Q_SYS_EV_ECHO

Q_SYS_VIDEO_OUTPUT_UNDERFLOW

Q_SYS_AUDIO_OUTPUT_UNDERFLOW

Payload None

Description
The heartbeat event is created once per second to indicate that the
firmware is alive. The event can be used for bring-up and/or for debug
purposes.

Payload 0 = Value of the first argument to the corresponding ECHO command

Description
This event is created in response to the Q_SYS_CMD_ECHO command.
The event has a single payload word that contains the value of the first
argument to the ECHO command.

Payload None

Description
This event is created whenever the video display is ready for a new frame
to be displayed but its input queue is empty. During decode, this is typically
caused by a video decoder underflow.

Payload None

Description
This event is created whenever the audio output unit is ready for a new
frame to be played but its input queue is empty. During decode, this is
typically caused by an audio decoder underflow.
Confidential Mobilygen Corp. | 155

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.5 Status Block
The system control object maintains a status block that is typically used for bring-up and debug
purposes. The structure of the block is:

typedef struct
{
 int heartbeat;
 unsigned long droppedEvents;
 unsigned long evReadWritePtrs;
 int pendingEvent;
} SYSTEM_CONTROL_STATUS;

10.5.1 heartbeat

The heartbeat field of the status block is periodically incremented by the command processor
in the Media Processor firmware. The rate of increase is much faster than the rate of the
heartbeat event.

10.5.2 droppedEvents

The droppedEvents field is incremented any time an event could not be posted to the internal
event queue because the queue was full. Any dropped event is a serious condition and is
considered a fatal error.

10.5.3 evReadWritePointers

This field stores the read and write pointers (indexes) into the internal event queue. The read
pointer is the pointer used to send events to the System Host CPU, and the write pointer is the
next location to be written with a new event. The read pointer is in the upper 16 bits and the
write pointer is in the lower 16 bits. When the pointers are equal, the queue is empty, otherwise
the full condition has the write pointer lagging behind the read pointer by one.

10.5.4 pendingEvent

This field indicates that the firmware has sent an event to the System Host CPU through the
EVENT_READY interrupt and the System Host CPU has not yet acknowledged it. This field
is typically used for bring-up and debugging of System Host CPU code where events could be
unacknowledged, thus stopping event generation by the firmware.
156 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6 H.264/ACC Decoder Interface Object

10.6.1 Overview

The H.264/AAC Decoder Interface object is responsible for controlling the H.264 Video
Decoder, the AAC Decoder, and the demultiplexer as a combined entity. However, the object is
sufficiently flexible to decode only video or audio streams, in both multiplexed and elementary
formats.

The decoder and the video output unit work together to provide a set of trick play features that
are comparable to those found in DVD players. This includes a full set of forward and backward
smooth, slow motion, and scan modes. Additionally, the video output unit contains a scaler that
can be used for PAL/NTSC/VGA conversion and arbitrary zoom.

10.6.2 Logical View of the AV Decoder

An idealized view of the decoder datapath is shown in Figure 10-5.

Figure 10-5 Idealized Decoder Datapath

This object takes compressed bitstreams as its input, and has a video output and audio output
port. It is responsible for creating decoded 4:2:0 images at its video output port, and decoded
PCM samples at its audio output port. The object contains five logical processing blocks:

• Demultiplexer

• AAC Decoder

• H.264 Decoder

• Video Output

• Audio Output

10.6.3 AV Decoder Features

Audio/Video Synchronization

Playback of audio or video streams is synchronized by the video and audio display units. The
synchronization mechanism used is referred to as “Audio Master”. Audio Master means that the
audio is played in a continuous fashion, while video frames are dropped or repeated as needed
in order to achieve synchronization. The synchronization algorithm attempts to maintain
synchronization timing of less than 1.5 video frame times (45 ms. in NTSC; 60 ms. in PAL).

There are situations where the system will run as “Video Master”. This includes playing streams
with no audio, and doing trick play where the audio is decoded, but muted. The output units are

Demultiplexer

H.264/AAC Decoder Object

Bitstream

Digital
Audio

Digital
VideoVideo

Output

Audio
Output

SISC

AAC
Decoder

H.264
Decoder
Confidential Mobilygen Corp. | 157

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
also programmed to smoothly switch from the Video Master mode during trick play to Audio
Master mode in normal linear play.

The firmware has a programmable offset that can be used to skew audio or video timing. This
offset is typically required when the video and audio datapaths have different delays. For
example, a system may contain a video scaler where the incoming video is captured to memory
and then scaled before sending to the MG1264 Codec, whereas the audio is sent out directly. In
this situation, you have to program the offset to one frame time to allow for synchronized
presentation, even with the extra frame delay in the video pipeline.

Programmable Pre-buffer

In situations where the data to be decoded is being received from a real-time source, it is often
necessary for the decoder to pre-buffer a certain amount of data to ensure that it does not
underflow at a later time due to variable bitrates produced by the encoder. The AV decoder can
be programmed to have a specified amount of startup delay that can be matched from the
encoded size.

Hardware/Software Flow Control

Both audio and video data is sent to the single bitstream port in the MG1264 Codec Host
Interface. The demultiplexer reads bitstream data from this port and writes the video data to the
video bit buffer and audio data to the audio bit buffer. The MG1264 Codec Host Interface
features full hardware flow control either through a DMA request de-assertion for DMA
operations, by asserting WAIT, or by delaying the ready bit during polling. This means that no
data is lost if the MG1264 Codec cannot accept more data. Flow control is triggered any time
either the audio or video buffers are completely full and new data is sent to the demultiplexer.

In some system designs, enabling the hardware flow control is not desirable because it locks the
bus and prevents access to other devices on the same bus. In order to prevent this problem, the
firmware provides commands that return the emptiness of both the video and audio buffers,
which allows the System Host CPU to never send more data than is allowed in the buffer. The
emptiness of the buffer is expressed both in bytes and in access units (frames). The System Host
CPU must be careful not to send too many data bytes or too many access units that could trigger
the hardware flow control.

Automatic Video Standard Conversion

The firmware supports the conversion of a bitstream from any of the supported video standards
(PAL/NTSC/VGA) to the currently selected video standard. This conversion includes both
spatial (vertical and horizontal scaling) and temporal scaling. The firmware uses a special
algorithm for the frame rate conversion and does not rely on audio or video synchronization to
do the frame rate conversion. This special algorithm results in a smoother presentation with
fewer obvious dropped or repeated frames. Video standard conversion is automatic if a stream
is detected that has been encoded differently from the current standard.

Arbitrary Video Zoom

The video output unit contains a scaler that can arbitrarily upscale an image to any resolution
(the scaler can also downscale an image to fixed ratios such as 480/576 for PAL to NTSC
standard conversion). The generalized upscaler is used to implement an arbitrary zoom feature
where any part of the image (with the same aspect ratio as the display) can be cropped, and then
zoomed to fit the full-display window.
158 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
Arbitrary zoom works for any ratios above 1.0 when the video is not having its standard
converted. There is a limitation with zoom in PAL to NTSC where the video output unit is
already downscaling the video with a ratio of 480/576. Since the generalized upscaler only
works for ratios above 1.0, the smallest scaling ratio that is supported in PAL to NTSC is 576/
480 = 1.2.

Note: As of release 3.0 of the SDK, arbitrary zoom has been moved to the System
Control object.

Trick Play

The firmware implements a complete set of trick play features that allow the System Host CPU
to implement a natural user interface that offers the same user experience in both the forward
and reverse directions. Specifically, forward and reverse singlestep, forward and reverse slow-
motion, and forward and reverse smooth-scan (up to 4x) are offered. Additionally, the firmware
can smoothly transition from any of these trick modes back to linear forward or reverse
playback.

The System Host CPU is also free to implement higher speed trick play scans by sending only
I-frames from specific GOPs. This technique allows for almost any speed of forward or reverse
scan, at the expense of smoothness as a maximum of one frame per GOP is being decoded and
displayed. The API supports a command that forces the firmware to decode and display only
I-frames for a specified amount of frame times.

Trick play techniques are discussed in “Trick Play Techniques” on page 177.

10.6.4 Sending Encoded Bitstreams to the Decoder

Bitstream data is sent to the MG1264 Codec Host Interface bitstream device that, in turn, enters
a FIFO called the System Input Stream Controller (SISC). From the input FIFO, the audio or
video bitstream is demultiplexed into bitstream data and control data for both audio and video.
The bitstream data is stored in a large FIFO and the control data is stored in a queue. The control
data consists of one data structure per audio or video frame, and includes information such as
timestamp, image size, and pointers to the associated bitstream data.

The hardware flow-control WAIT signal (also known as DMA_REQ) is generated by the input
FIFO and is asserted anytime the FIFO becomes full. The input FIFO becomes full when any
of the downstream queues or FIFOs become full. That is, if any of the video access unit queues,
audio access unit queues, or the bitstream FIFOs become full, then WAIT will be asserted until
the corresponding decoder removes data from the queue. The video decoder reads data at
29.97 Hz for NTSC and 25 Hz for PAL; the audio decode reads data every 1024 output samples
(approximately 40 Hz at the 48 kHz sampling rate). Note that these rates can increase, decrease,
or even stop due to trick play such as slow-motion, scan, or pause.
Confidential Mobilygen Corp. | 159

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Figure 10-6 Decoder Buffer Structure

There are two types of bitstream transfer algorithms that can be selected by the System Host
CPU. They are referred to as either a “Push” or a “Pull” model, and the model that is used is
selected by the configuration parameter BITSTREAM_SOURCE.

In the push model, the System Host CPU does not care if the hardware flow control signal
WAIT is asserted either because the bus is not shared, or if the bus can continue to be shared
even if the transfer pauses. It is important to understand that during regular playback, either the
audio or video buffer will be full almost all the time because the incoming data rate will be
higher than the bitrate at which the bitstream was encoded. Which of the audio or video buffers
becomes full depends upon the relative bitrates of the audio or video streams, as well as the sizes
of the audio and video bit buffers.

In the pull model, the System Host CPU makes use of signaling from the firmware to ensure
that the hardware flow control mechanism is never triggered for extended periods of time due
to internal buffer fullness.

Push Transfer Model

If the System Host CPU can use the push transfer model, then transferring the bitstream is quite
simple. The System Host CPU can open the QHAL_BS device and send as much or as little data
to the MG1264 Codec as it wishes, as it does not care if the hardware flow control mechanism
is triggered. Typical transfer logic (for forward playback and trick play) is similar to this:

bytesToSend = size of input file;
char localBuffer[BUFFER_SIZE];
while (bytesToSend != 0)
{

bytesRead = read(inputfd, localBuffer, BUFFER_SIZE];
qhalbs_write_bytes(handle, localBuffer, bytesRead);
bytesToSend -= bytesRead;

}

Bitstream Data Input FIFO (256)

WAIT

Video Access Unit Queue

Video Bit Buffer

Video
Decoder

Audio Access Unit Queue

Audio Bit Buffer

Audio
Decoder
160 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
Pull Transfer Model

In the pull transfer model, the System Host CPU sends data in such a way that the audio or video
buffers never become full, and the hardware flow control signal is never asserted. This is also
referred to as “Non-Blocking Operation”. This section shows sample code that can be used for
non-blocking streaming.

The data streaming algorithm is fairly simple but does require the System Host CPU to parse
the bitstream to identify audio and video data. For purposes of this algorithm, assume the
bitstream consists of consecutive QBox structures. The key to the algorithm is that there are
commands that query the firmware for video and audio buffer emptiness, both in terms of bytes
and control structures. These commands are VIDEO_BUFFER_EMPTINESS and
AUDIO_BUFFER_EMPTINESS as described in “Commands” on page 141.

Before sending data to the MG1264 Codec, the host should query the amount of space in both
the audio and video buffers and then ensure that it does not send more data than there is space
available before it checks for space again. Note that available space is expressed in two
measurements. The first measurement is the amount of data in the compressed bitstream buffer.
The second measurement is the number of spaces in the "access unit" queue.

For video streams an access unit is a NAL unit, for audio streams an access unit is a frame. Note
that for audio streams a QBOX contains a single access unit but for video streams a QBOX can
contain multiple NAL units that match a single presentation time. These NAL units include SEI
timing messages and slice data. Therefore it is up to the host to count the number of NAL units
in each QBOX before sending it so that it can compare the number of NAL units against the
number of free entries in the video queue.

The algorithm (for forward playback and trick play only) is:

while!(end of file)
{

// sleep 10ms here to allow the host to read some data

// read the available space in each queue/FIFO
videoQueueEmptiness = readVideoQueueEmptiness();
videoFIFOEmptiness = readVideoBitstreamFIFOEmptiness();
audioQueueEmptiness = readVideoQueueEmptiness();
audioFIFOEmptiness = readAudioBitstreamFIFOEmptiness();

while (1)
{

qboxSize = ParseNextQboxSize();
qboxType = ParseNextQboxType();
if (qboxType == VIDEO_QBOX)
{

// count the number of NAL units in the qbox
nalus = GetNALUInQbox();
if (videoFIFOEmptiness - qboxSize < 0)
{

 break;
}
if (videoQueueEmptiness - nalus < 0)
{

 break;
Confidential Mobilygen Corp. | 161

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
}
videoQueueEmptiness -= nalus;
videoFIFOEmptiness -= qboxSize;

}
else if (qboxType == AUDIO_QBOX)
{

if (audioFIFOEmptiness - qboxSize < 0)
{

 break;
}
if (audioQueueEmptiness == 0)
{

 break;
}
videoQueueEmptiness--;
videoFIFOEmptiness -= qboxSize;

}

// Send Qbox bytes to the codec using qhalbs_write

// Move to next QBOX by adding qboxSize to the current
read pointer
}

162 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6.5 Object ID

The H.264/AAC decoder object ID is 0x2.

10.6.6 State Machine

The AV decoder state machine consists of two parts linked by an IDLE state. The first part is
the forward-play state machine and the second part is the reverse-play state machine. The only
way to transition between the forward and reverse parts of the state machine is by transitioning
to the IDLE state through the STOP command.

States

The decoder object has the following states:

Q_AVD_ST_IDLE: This is the startup state for the decoder, and the target state for the STOP
command. No decoding is done in this state and all internal buffers are flushed. Transitions out
of this state cause the decoder to restart decoding at the next I-frame. The last decoded frame is
output by the video output hardware. The System Host CPU should put the system into an IDLE
state for all bitstream discontinuities (such as changing from one file to another), or for
switching between forward and reverse playback.

Q_AVD_ST_FLUSH: This state is an intermediate state between a playback state and IDLE.
Because sending data to the MG1264 Codec involves hardware flow control, the data pipeline
in the MG1264 Codec often needs to be flushed before stopping the bitstream transfer process
on the System Host CPU. Once the System Host CPU has sent the FLUSH command it is free
to use the STOP command to transition to IDLE.

Q_AVD_ST_FWDPLAY: This state performs continuous audio or video decoding and
presentation. Additionally, frame rate and spatial conversion is performed as required if the
input stream does not match the current video standard for the AV decoder.

Q_AVD_ST_FWDPAUSE: This state stops the video and audio decoder, and freezes the
presentation at the last video and audio frames. No internal buffers are flushed so that a
RESUME from the PAUSE state is completely seamless. The AV decoder can enter this state
explicitly through the PAUSE command, or it can be entered automatically as part of a
SINGLESTEP command once video decode and display are completed.

Q_AVD_ST_FWDSLOW: This state performs audio or video decoding, but at a rate that is
slower than real time. Audio is decoded internally, but is muted due to discontinuities. Video
frames are presented and deinterlaced (if necessary). Video and audio buffering remains
synchronized, allowing for a seamless transition from Q_AVD_ST_FWDSLOW to
Q_AVD_ST_FWDPLAY.

Q_AVD_ST_FWDPAUSE_WAIT: This is a temporary state that the decoder occupies from
the time a SINGLESTEP command is issued to when the decoder has completed decoding and
presenting the next frame. Once the decoding and presentation of this frame is complete, the
decoder object automatically transitions to the Q_AVD_ST_FWDPAUSE state.

Q_AVD_ST_FWDIPLAY: This state performs video decoding of I-frames only. This state is
used during fast-forward with the System Host CPU sending discontinuous parts of the
bitstream. No audio decoding is done in this state, which prevents a seamless transition to the
Q_AVD_ST_FWDPLAY state. Instead, the System Host CPU should transition to the other
states via the Q_AVD_ST_IDLE state which resets the internal buffers.
Confidential Mobilygen Corp. | 163

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Q_AVD_ST_FWDSCAN: This state decodes and displays of every Nth video frame to achieve
a smooth fast-forward effect. Audio is decoded internally, but is muted due to discontinuities.
Video and audio buffering remains synchronized allowing for a seamless transition from
Q_AVD_ST_FWDSLOW to Q_AVD_ST_FWDPLAY.

Q_AVD_ST_BWDPLAY: This state performs continuous video decoding and presentation of
frames in reverse order. No audio is decoded or presented in this state.

Q_AVD_ST_BWDPAUSE: This state stops the video decoder and freezes the presentation at
the last video frame. No internal buffers are flushed so a RESUME from PAUSE is completely
seamless. The AV decoder can enter this state explicitly through the PAUSE command, or
automatically as part of a SINGLESTEP command once video decode and display are
completed.

Q_AVD_ST_BWDSLOW: This state performs video decoding and presentation, but at a rate
that is slower than real time. Video frames are presented and de-interlaced (if necessary).

Q_AVD_ST_BWDPAUSE_WAIT: This is a temporary state that the decoder occupies from
the time a SINGLESTEP command is issued to when the decoder has completed decoding and
presenting the previous frame. Once the decode and presentation of this frame is complete, the
decoder object automatically transitions to the Q_AVD_ST_BWDPAUSE state.

Q_AVD_ST_BWDIPLAY: This state performs video decoding of I-frames only. It is used
when performing fast-reverse with the System Host CPU sending discontinuous parts of the
bitstream. The System Host CPU should transition to the other states via the Q_AVD_ST_IDLE
state which resets the internal buffers.

Q_AVD_ST_BWDSCAN: This state performs video decoding and display of every Nth frame
in order to achieve a smooth fast-reverse effect. The host must transition out of this state with a
STOP command followed by a frame accurate PLAY.
164 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
State Transition Matrices

These matrices show the commands that can transition from one state to another. Note that
several transitions are impossible and indicated by a (—) in the cell. Both forward and reverse
matrices are shown. No direct state transitions are allowed from a FORWARD state to a
REVERSE state, or vice versa. The starting state is shown in the left column, and the destination
state is shown along the top row.

Table 10-1 Forward State

State IDLE FLUSH PLAY SLOW IPLAY PAUSE_WAIT SCAN PAUSE

IDLE STOP — PLAY — — PLAY — —
FLUSH STOP — — — — — — —
PLAY STOP FLUSH — SLOW IFRAME_PLAY STEP SCAN PAUSE
SLOW STOP FLUSH RESUME SLOW — STEP — PAUSE
IPLAY STOP FLUSH — — — — — PAUSE

PAUSE_WAIT STOP FLUSH RESUME SLOW — — — Automatic
SCAN STOP FLUSH — — — — SCAN —

PAUSE STOP FLUSH RESUME SLOW — STEP — —

Table 10-2 Backward State

State IDLE FLUSH PLAY SLOW IPLAY PAUSE_WAIT SCAN PAUSE

IDLE STOP — PLAY — — PLAY — —
FLUSH STOP — — — — — — —
PLAY STOP FLUSH — SLOW IFRAME_PLAY STEP SCAN PAUSE
SLOW STOP FLUSH RESUME SLOW — STEP — PAUSE
IPLAY STOP FLUSH — — — — — PAUSE

PAUSE_WAIT STOP FLUSH RESUME SLOW — — — Automatic
SCAN STOP FLUSH — — — — SCAN —

PAUSE STOP FLUSH RESUME SLOW — STEP — —
Confidential Mobilygen Corp. | 165

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.6.7 Commands

STOP

PLAY

Command Name Q_AVD_CMD_STOP
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All
Description This command forcibly changes the state of the system to the IDLE state.

Command Name Q_AVD_CMD_PLAY

Arguments
0 = Play direction
1 = Start presentation time
2 = 0 for normal play, 1 to display first frame and pause

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States IDLE

Description

This command transitions the AV decoder to the FWDPLAY or BWDPLAY
state, depending upon the value of the play direction argument. If the
direction is 0, then the state is FWDPLAY; if the direction is 1, then the
state is BWDPLAY.
The second argument indicates a start presentation time. If this value is
zero, then presentation starts at the first I-frame that is found in the stream.
A non-zero value results in presentation starting at or later in the forward
direction, or at or before in the reverse direction. This field is used to
implement frame accurate trick play transitions that require a STOP
command, such as switching between forward and reverse play, as well as
from I-frame scan to normal playback.
The third argument is a flag that indicates to the decoder that it should
enter the PAUSE state immediately after displaying the first frame. This
feature is required to implement a frame accurate single-step from the
opposite direction. See “Trick Play Techniques” on page 177 for more
information.
As described in the state transition tables on page 165, the only states that
can be entered from IDLE are the FWDPLAY and BWDPLAY states. Once
in those states, the play direction is set and further transitions to SLOW,
PAUSE, STEP, etc. can be done.
166 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
FLUSH

I-FRAME_PLAY

PAUSE

Command Q_AVD_CMD_FLUSH
Arguments None

Return Code 0 = Failure
1 = Success

Return Values None
Valid States IDLE

Description
The FLUSH command is used just prior to the STOP command. The
purpose of the command is to clear out internal buffers that cause any
bitstream sending to block.

Command Q_AVD_CMD_IFRAME_PLAY
Arguments Number of frame times to display each I-frame

Return Code 0 = Failure
1 = Success

Return Values None
Valid States PLAY

Description

The I-FRAME_PLAY command is used to transition the firmware to a state
where only I-frames are decoded. All other frames are dropped. Each
I-frame is decoded and then displayed for a number of frame times as
specified by the first argument of the command. Because only I-frames are
decoded, the same command is used for both forward and reverse
playback. In order to transition to this state from IDLE, the System Host
CPU must first send the PLAY command, and then immediately send the
IFRAME_PLAY command before sending data.

Command Name Q_AVD_CMD_PAUSE
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSTEP, BWDSTEP, FWDSCAN, BWDSCAN

Description
The PAUSE command is used to transition the state into either FORWARD
or REVERSE PAUSE. It is also entered automatically once a single-step
operation has been completed.
Confidential Mobilygen Corp. | 167

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
IFRAME_PAUSE

SLOW

STEP

Command Name Q_AVD_CMD_IFRAME_PAUSE
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSTEP, BWDSTEP, FWDSCAN, BWDSCAN

Description

The IFRAME_PAUSE command differs from the PAUSE command in that
this command requests the AV decoder to enter the PAUSE state (either
forward or backward) when the next I-frame is being displayed. The state
of the AV decoder is not changed once this command is executed by the
firmware. Instead, the AV decoder generates the event
PAUSE_COMPLETE once the I-frame has been displayed and the
PAUSE state has been entered.

Command Name Q_AVD_CMD_SLOW
Arguments [0] Speed

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States
FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSTEP, BWDSTEP, FWDSCAN, BWDSCAN,
FWDPAUSE, BWDPAUSE

Description

The SLOW command is used to transition the state into either FORWARD
or REVERSE SLOW MOTION. It is also used to change the slow motion
speed once the SLOW MOTION state has been entered. The value of
argument 0 is the inverse of the play speed such that a value of 3 is a 1/3
rate, 5 is 1/5, etc.

Command Name Q_AVD_CMD_STEP
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSCAN, BWDSCAN, FWDPAUSE, BWDPAUSE

Description

The STEP command is used to instruct the AV decoder to decode and
display the next video frame and then automatically transition to either the
FWDPAUSE or BWDPAUSE state (depending upon the current playback
direction). The event PAUSE_COMPLETE is generated once this state
transition has been performed.
168 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
RESUME

SMOOTH_SCAN

SET_AUDIO_STREAM

Command Name Q_AVD_CMD_RESUME
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDSLOW, BWDSLOW, FWDSCAN, BWDSCAN,
FWDPAUSE, BWDPAUSE

Description
The RESUME command is used to transition the AV decoder back to the
FWDPLAY or BWDPLAY states in a smooth fashion while maintaining AV
synchronization.

Command Name Q_AVD_CMD_SMOOTH_SCAN
Arguments 0 = Speed

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States FWDSCAN, BWDSCAN, FWDPLAY, BWDPLAY

Description
The SMOOTH_SCAN command is used to perform smooth forward or
reverse scans according to the speed specified in argument 0. Allowed
speeds are 2 and 4.

Command Name Q_AVD_CMD_SET_AUDIO_STREAM
Arguments 0 = Audio stream

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Any

Description

The SET_AUDIO_STREAM command is used to change the audio decode
between allowed formats. It is implemented as a command rather than a
configuration parameter since it takes effect immediately.
The audio stream parameter can either be:
1 = PCM audio
2 = AAC audio
Confidential Mobilygen Corp. | 169

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VIDEO_BUFFER_EMPTINESS

AUDIO_BUFFER_EMPTINESS

Command Name Q_AVD_CMD_VIDEO_BUFFER_EMPTINESS
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values 0 = Video buffer emptiness in bytes
1 = Video buffer emptiness in access units

Valid States Any

Description

The VIDEO_BUFFER_EMPTINESS command is used by the System Host
CPU to query the firmware about the emptiness of the video buffer. The
firmware returns the emptiness in both bytes and access units (frames).
The System Host CPU can use these values to ensure that it does not
overflow the internal buffers during playback (thus triggering hardware flow
control). Refer to “Sending Encoded Bitstreams to the Decoder” on
page 159 for additional information.

Command Name Q_AVD_CMD_AUDIO_BUFFER_EMPTINESS
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values 0 = Audio buffer emptiness in bytes
1 = Audio buffer emptiness in access units

Valid States Any

Description

The AUDIO_BUFFER_EMPTINESS command is used by the host to
query the firmware for the emptiness of the audio buffer. The firmware
returns the emptiness in both bytes and access units (frames). The host
can use these values to ensure that it does not overflow the internal buffers
(thus triggering hardware flow control) during playback. Refer to “Sending
Encoded Bitstreams to the Decoder” on page 159 for additional
information.
170 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6.8 Configuration Parameters

These parameters can only be set when the decoder interface object is in the IDLE state and take
effect on the next transition out of the IDLE state. The values assigned to the configuration
parameters are persistent and are not reset by any state transition. They can only be changed by
subsequent configuration commands.

BITSTREAM_TYPE

BITSTREAM_SOURCE

AV_SYNCH_ENABLE

Parameter Q_AVD_CFG_BITSTREAM_TYPE

Values 1 = Q_AVD_CFP_BITSTREAM_TYPE_ELEM_VIDEO
2 = Q_AVD_CFP_BITSTREAM_TYPE_QBOX

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description
This parameter is used to configure the decoder demultiplexing unit before
bitstreams are sent to the decoder. This parameter must be setup when the
system is in an IDLE state.

Parameter Q_AVD_CFG_BITSTREAM_SOURCE

Values 1 = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PUSH
2 = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PULL

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description This parameter is used to select the bitstream transfer method. This
parameter must be set in IDLE state.

Parameter Q_AVD_CFG_AV_SYNCH_ENABLE
Values 0 or 1
 States IDLE

Effective On the next AV decoder state transition out of IDLE.
Description This parameter is used to enable or disable audio/video synchronization.
Confidential Mobilygen Corp. | 171

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VIDEO_STC_OFFSET

VIDEO_OUTPUT_STANDARD

Parameter Q_AVD_CFG_VIDEO_STC_OFFSET
Values Signed value representing 90 kHz ticks
 States IDLE

Effective On the next AV decoder state transition out of IDLE.

Description

This parameter allows the System Host CPU to program a fixed offset
between the video and audio streams in order to compensate for variable
delays in the presentation datapath. For example, a system might capture
and scale the video output, creating a one video frame delay relative to the
audio. In this case, a negative offset of one frame (-3003 in NTSC) should
be programmed.

Parameter Q_AVD_CFG_VIDEO_OUTPUT_STANDARD

Values 1 = Q_AVD_CFG_VIDEO_OUTPUT_STANDARD_NTSC
2 = Q_AVD_CFG_VIDEO_OUTPUT_STANDARD_PAL

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description This parameter sets the video standard for the video output unit. Note that
the video standard for the input unit can be different.
172 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
VIDEO_DECODE_FRAMERATE

INIT_PREBUFFER

Parameter Q_AVD_CFG_DECODE_FRAMERATE

Values 32-bit value consisting of two 16-bit fields. Bits [31:16] are the integer frame
rate and bits [15:0] are the fractional part.

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description

This variable is used to control the video decoder's frame rate. In normal
full-frame rate video with audio, the frame rate is not used as the system is
synchronized by the audio timing (Audio Master). However, the frame rate
is needed whenever the system is running in Video Master mode, such as
trick play. Additionally, it is used by the PAL <-> NTSC conversion code to
do a smoother frame rate conversion than can be achieved solely by using
audio or video synchronization.
The frame rate is set using a 16-bit integer and a 16-bit fractional
component. The two 16-bit values are sent as a single 32-bit configuration
parameter. The upper 16 bits are the integer component and the lower 16
bits are the fractional. Consider the following examples:

Parameter Q_AVD_CFG_INIT_BUFFERING
Values 32 bit value of an integer number of frames
 States Idle

Effective On next AV decoder state transition out of IDLE

Description This parameter is used to set the initial prebuffering time of the AV decoder
in frame times.

Frame Rate in Hz Value

30.0 0x1E0000
29.97 0x1DF851 (equivalent to 30000/1001)
25.0 0x190000
12.5 0xC8000
Confidential Mobilygen Corp. | 173

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.6.9 Decoder Configuration

The decoder also has a set of double-buffered configuration parameters that are set and then
explicitly activated with an activation command. The command used to configure a parameter
is Q_AVD_CMD_SET_VIDEO_ENC_PARAM (opcode 19). The command works exactly the
same as the global CONFIGURE command except that it uses a different opcode. That is, it
takes a list of zero-terminated configuration parameter/value pairs. The encoder configuration
is activated using the Q_AVD_CMD_ACTIVATE_VIDEO_ENC_CFG command (opcode 20).

TICKS_PER_FRAME_DEFAULT

10.6.10 Events

Q_AVD_EV_VIDEO_DECODER_ERROR

Q_AVD_EV_AUDIO_DECODER_ERROR

Q_AVD_EV_VIDEO_FRAME_DECODED

Q_AVD_EV_AUDIO_FRAME_DECODED

Parameter Q_AVE_CFP_VIDEO_DEC_TICKS_PER_FRAME_DEFAULT
Values Any non-zero value
 States IDLE

Effective Q_AVD_ACTIVATE_VIDEO_DEC_CFG Command

Description
This parameter is used to set the native frame rate of the a video stream in
the case it is an elementary video AVC stream without any SEI timing
messages or VUI.

Event Q_AVD_EV_VIDEO_DECODER_ERROR
Payload None

Description This event is generated once for every video decoder error detected by the
firmware.

Event Q_AVD_EV_AUDIO_DECODER_ERROR
Payload None

Description This event is generated once for every audio decoder error detected by the
firmware.

Event Q_AVD_EV_VIDEO_FRAME_DECODED
Payload None

Description This event is generated once for every video frame decoded.

Event Q_AVD_EV_AUDIO__FRAME_DECODED
Payload None

Description This event is generated once for every audio frame decoded.
174 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
Q_AVD_EV_VIDEO_PRESENTATION_COMPLETE

Q_AVD_EV_AUDIO_PRESENTATION_COMPLETE

Q_AVD_EV_PAUSE_COMPLETE

Q_AVD_EV_START_VIDEO_PRESENTATION

Event Q_AVD_EV_VIDEO_PRESENTATION_COMPLETE
Payload None

Description This event is generated once the last frame in the video stream has been
decoded and displayed.

Event Q_AVD_EV_AUDIO_PRESENTATION_COMPLETE
Payload None

Description This event is generated once the last frame in the audio stream has been
decoded and sent from the output unit.

Event Q_AVD_EV_PAUSE_COMPLETE
Payload None

Description

This event is generated when the MG1264 Codec transitions to the
PAUSE state. The first way is through the PAUSE command. The second
is through the System Host CPU issuing a SINGLESTEP command
followed by the firmware completing the automatic state transition to
PAUSE (forward or backward). The third way this event can be generated
is through the IFRAME_PAUSE command, which delays the AV decoder
transitioning to PAUSE until an I-frame is being displayed. The fourth way
is PLAY with the pause trigger set. In all cases, this event is generated
when the AV decoder completes the transition to PAUSE (forward or
backward).

Event Q_AVD_EV_START_VIDEO_PRESENTATION
Payload None

Description
This event is generated once the first video from of a stream has been
displayed. Until this event has been received, it can be assumed that the
video display contains the last frame of the previous stream, or black if no
streams have been played.
Confidential Mobilygen Corp. | 175

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.6.11 Status Block

The AV decoder object maintains a status block that can be polled by the System Host CPU at
any time. The contents of the block are not synchronized with any event, and there is no
indication from the firmware that an update has, or will occur.

typedef struct {
uint32 videoFramesDecoded;
uint32 audioFramesDecoded;
uint32 videoDecoderErrors;
uint32 audioDecoderErrors;
uint16 videoBufferEmptiness;
uint32 videoBufferAccessUnits;
uint16 audioBufferEmptiness;
uint32 audioBufferAccessUnits;
uint32 videoPresentationTime;
uint32 audioPresentationTime;
uint32 avsyncVideoDrops;
uint32 avsyncVideoRepeats;

} AVDecoderStatusBlock;

The fields in the status block are valid during audio or video decoding and presentation, and are
reset when the AV decoder exits the IDLE state. Therefore, they remain valid after the STOP
command has been issued, and represent the state of the AV decoder just prior to the STOP
command being processed.

videoFramesDecoded

This field contains the number of video frames decoded since the last PLAY command.

audioFramesDecoded

This field contains the number of audio frames decoded since the last PLAY command.

videoDecoderErrors

This field contains the number of video decoding errors since the last PLAY command.

audioDecoderErrors

This field contains the number of audio decoding errors since the last PLAY command.

videoBufferEmptiness

This field contains the emptiness (total size-fullness) of the video bit buffer.

videoBufferAccessUnits

This field contains the number of available video buffer access units.

audioBufferEmptiness

This field contains the emptiness (total size-fullness) of the audio bit buffer.

audioBufferAccessUnits

This field contains the number of available audio buffer access units.
176 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
videoPresentationTime

This field contains the time of the most recently presented video access unit expressed in 90
kHz ticks.

audioPresentationTime

This field contains the time of the most recently presented audio access unit expressed in
90 kHz ticks.

avsyncVideoDrops

This field contains the number of video frames that were dropped (not displayed) due to audio
or video synchronization requirements.

avsyncVideoRepeats

This field contains the number of video frames that were repeated due to audio or video
synchronization requirements.

10.6.12 Trick Play Techniques

Implementing a complete set of trick play features requires careful system design of the System
Host CPU code. The techniques used to implement these features can be divided into four
categories:

1. “Forward Smooth Trick Play”

2: “I-Frame Trick Play”

3: “Reverse Trick Play”

4: “Switching Between Forward and Reverse Trick Play”

Forward Smooth Trick Play

Implementing forward trick play is the simplest of the four categories since it is most similar to
linear playback where the audio or video data is sent to the MG1264 Codec in decode order.
The only exception is doing I-frame only scans with jumps and that is dealt with in section “I-
Frame Trick Play” on page 178.

Forward trick play modes are pause, singlestep, slow-motion, and scan. In all of these cases, the
bitstream data is sent to the MG1264 Codec as if the MG1264 Codec is playing the data at
regular speed. However, in trick play, the decoder either drops or repeats frames at various
defined intervals in order to achieve the trick play effect. Pause, singlestep, and slow-motion
place no additional burden on the System Host CPU since the data is being processed by the
MG1264 Codec at a rate slower than real-time. The hardware flow control mechanism ensures
that data is sent to the System Host CPU at the required rates, and the System Host CPU can
continue to use the same data streaming algorithms that are used for linear playback.

Forward smooth scan is the most difficult of the trick modes since the decoder must drop frames
in order to achieve a speed-up. However, since the video bitstream consists entirely of reference
pictures (either I-frames or P-frames), the decoder must decode each picture of the GOP. The
net effect is that the MG1264 Codec is limited to providing a 4x smooth scan. Also, note that
the System Host CPU must be able to deliver the data to the MG1264 Codec at a 4x rate,
meaning a 4 Mbit/sec stream is sent at 16 Mbit/sec.
Confidential Mobilygen Corp. | 177

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
All smooth forward trick play returns to the FWDPLAY state through the RESUME command.
Audio or video synchronization is maintained across the trick play boundary without frame
drops or repeats. The System Host CPU can go directly to an IDLE state by issuing a STOP
command.

Note that the trick play states of SINGLESTEP, FWDSCAN, and FWDSLOW cannot be
reached directly from the IDLE state. However, you can do slow and scan from IDLE by issuing
a PLAY command followed by the SLOW or SCAN command BEFORE sending any bitstream
data. You can perform a SINGLESTEP from IDLE by issuing the PLAY command with the
pause trigger set (argument 2).

I-Frame Trick Play

An important limitation of smooth forward and reverse scan is that the System Host CPU must
send data to the decoder at a rate equal to the scan rate multiplied by the video bitrate. These
data rates from the System Host CPU may not be achievable for moderate-to-high video
bitrates, making a 4x smooth scan impossible.

An alternative trick play technique, which is often used in DVD players, is to show I-frames
only at the start of a GOP and to jump GOPs. Almost any rate of forward scan can be achieved
by changing the jump distance between frames, however, these high rates come at the expense
of smoothness.

A slight variation on this technique is to show a small number of frames at the start of the GOP
in addition to the I-frame. These extra frames can provide the user with additional context
beyond a still frame, and can still achieve high rates of scan.

The decoder state machine does not allow the RESUME command to be used in I-frame trick
play to return to linear playback. This is because it is assumed that the System Host CPU is
sending discontinuous bitstream data. Therefore, the only way out of I-frame trick play is
through the STOP command. Once the STOP command is issued, the internal buffers of the
decoder are flushed and playback can begin with the PLAY command.

However, it is important that the System Host CPU does not simply restart playback at the last
I-frame sent to the decoder. Because the System Host CPU is sending only I-frames, a
tremendous number of frames (and by extension, playback time) will be in the video bit buffer
when the STOP command is issued. If data streaming resumed from the same point, the effect
to the user would be a very large jump forward in time.

Instead, the System Host CPU should query the decoder for the current presentation time (by
reading the presentationTime field in the AC decoder status block), and restart playback from
the nearest GOP boundary matching that time.

Reverse Trick Play

Reverse trick play presents a challenge for the System Host CPU since it must send GOPs to
the decoder in reverse order. Note that the data inside the GOP is sent in the traditional forward
direction, it is only the order of the GOPs that must be reversed.

Reversing the order of the GOPs must be done using some type of random access information
that the System Host CPU maintains. Typically, this is the random access information found in
MP4 files, but can take the form of any metadata that the System Host CPU wishes to store.

No additional signaling is required by the System Host CPU when sending the GOPs in reverse.
The System Host CPU must simply send the data in reverse GOP order.
178 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
Switching Between Forward and Reverse Trick Play

As can be seen from the State Transition Matrices, the only way to transition between forward
and reverse playback is through the IDLE state, which means issuing a STOP command. This
restriction makes it somewhat more difficult to implement common user operations such as
forward singlestep, followed immediately by reverse singlestep. It is up to the System Host
CPU to transition the decoder from IDLE to a trick play state in such a way that the user sees a
seamless display of frames with no jumps or extraneous frames being displayed.

Transitioning between forward and reverse trick play requires the System Host CPU to do three
general operations. The first step is to issue the STOP command to force the IDLE state. The
second operation is to query the current presentation time from the decoder. Note that this
presentation time can refer to any type of frame, either I-frame or P-frame. The third step is for
the System Host CPU to start trick play in the other direction at the previous frame in the case
of a forward to reverse switch, or to the next frame in the case of a reverse to forward switch.

Example: Forward slow-motion to reverse slow-motion proceeded by forward play:

1. Host receives user event signaling forward slow-motion

2: Host sends SLOW command

3: Host receives user event signaling reverse slow

4: Host sends the STOP command

5: Host reads the current video presentation time by reading the videoPresentationTime
field in the AV decoder status block.

6: Host issues PLAY command indicating reverse direction, the current presentation time
and with no pause trigger

7: Host issues SLOW command

8: Host identifies the byte position of the GOP which contains the current presentation
time

9: Host sends the data starting at the GOP found in step 8

Example: Forward single-step to reverse single-step proceeded by forward play:

1. Host receives user event signaling forward single-step

2: Host sends the SINGLESTEP command

3: Host waits for and receives the PAUSE_COMPLETE event

4: Host receives user event signaling reverse single-step

5: Host sends the STOP command

6: Host reads the current video presentation time by reading the videoPresentationTime
field in the AV decoder status block

7: Host issues a PLAY command indicating the reverse direction, the current presentation
time and with the pause trigger set

8: Host identifies the byte position of the GOP that contains the current presentation time

9: Host sends the data starting at the GOP identified in step 8.

10: Host waits for and receives the PAUSE_COMPLETE event.
Confidential Mobilygen Corp. | 179

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Bitstream Indexing

The MG1264 does not perform any indexing for the host code other than signaling in the QBOX
header if the frame is an I-frame. It is up to the host to “index” (which typically means store a
mapping from GOP number to byte position) the stream as it is recorded, and to send the
bitstream in the correct order when being played back. Note that the popular MP4 file formats
contains this mapping as part of the file's meta data, automatically making trick play
implementation an issue of traversing this mapping and extracting the video data.
180 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
10.7 H.264/AAC Encoder Interface Object

10.7.1 Overview

The H.264/AAC encoder interface object is responsible for controlling both the H.264 and the
AAC encoders as a combined entity. However, the object is sufficiently flexible to encode
video-only or audio-only streams, in both multiplexed and elementary formats.

10.7.2 Logical View of the AV Encoder

An idealized view of the encoder datapath in coprocessor mode is shown in Figure 10-7.

Figure 10-7 Idealized Encoder Datapath

The H.264/AAC encoder object takes in raw audio and video streams and produces a
compressed bitstream. The object contains three logical functions

• H.264 Encoding

• AAC Encoding

• Multiplexing.

10.7.3 AV Encoder Features

Real-Time Encoding with Spatial and Temporal Scaling

The MG1264 Codec can perform real-time encode AVC raw video at resolutions of up to
800x600 at 30 frames per second, and scale to a minimum of 144 x 96. It can also encode AAC
mono or stereo audio at sampling rates of up to 48 kHz at 16-bits per sample.

In addition, the video input block supports both spatial and temporal scaling. The horizontal or
vertical resolutions can be halved independently to support resolutions such as 320x480,
352x480, 720x240, 720x576, 320x240, 352x240, and 352x288. Additionally, the video frame
rate can be decimated to arbitrary frame rates, including less than one frame per second.

The minimum picture size that can be encoded is 96 x 96. The resolution can be obtained by
either setting the capture rectangle to that resolution, or by scaling a larger capture rectangle to
that resolution. See the crop and scaling commands for more information. However, note that

Digital Audio

Digital Video

Bitstream

Digital Audio

Digital Video

H.264/ACC Decoder
(Digital Bypass)

H.264
Encoder

Multiplexer

Video
Input

H.264/ACC Encoder Block

ACC
Encoder

Audio
Input
Confidential Mobilygen Corp. | 181

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
you must use one slice per macroblock row for any horizontal resolution below 128, meaning
that pictures that are 112 or 96 pixels wide must use one slice per row. See
“VENC_SLICES_PER_FRAME” on page 207. for more information.

Multiple Encoder Operational Profiles

The AVC encoder contains a number of algorithmic “tools” that are used to achieve either
higher video quality or lower video bitrates. These tools come pre-configured in three sets of
operational profiles. These profiles correspond to low, medium, and high bitrates. Low bitrates
are considered to be <= 1.5 Mbps, medium are 1.5 to 3.5 Mbps, and high is 3.5 Mbps or greater.

Once an operational profile is set, the System Host CPU is free to select any video bitrate. The
rate control algorithms in the MG1264 Codec will then use the selected toolset to match these
bitrate requirements.

Controlling the Video Bitrate

The encoder allows the System Host CPU to specify an average video bitrate and runs three
concurrent algorithms that are used to control the actual bitrate over time. These algorithms are
short-term bitrate control, long-term bitrate control, and peak quality control. These algorithms
work together to ensure that internal buffers are not overflowed, that the target file size is
achieved, and bits are not wasted unnecessarily.

Field or Frame Video Encoding

The video input to the MG1264 Codec can be either progressively-scanned or interlace-
scanned. In the case of progressive-scanned video, the encoder will produce a video sequence
consisting entirely of frame pictures. However, if the video source is interlaced, the encoder will
adaptively select between frame or field pictures depending upon the amount of motion in each
frame. Adaptively choosing the picture coding type produces an important coding gain. This
type of operation is called “Picture Adaptive Field/Frame”.

Adaptive Frame Rate
The video rate control firmware module implements an adaptive frame rate algorithm that can
be enabled for difficult content. As content gets more difficult, the rate control will typically
raise the picture QP (quantization parameter) to meet its bit budget. However, the host can set
a maximum QP then, when reached by the rate control, will result in the frame rate being low-
ered instead to hit the target bitrate. The host can also set a minimum frame rate where if the bit
budget still cannot be met at this frame rate, the QP will be raised above the ‘maximum’.
182 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
Hue/Saturation And Contrast Control

The MG1264 Codec’s video input block has the ability to control the hue/saturation and
contrast of the incoming video. These operations consist of a scaling and rotation of the chroma
pixels in the chroma plane for hue and saturation control, and an arbitrary 256 entry lookup
table for performing contrast enhancement.

Hue and Saturation modification are performed by performing by multiplying the 2-element
chrominance vector by a 2x2 matrix to produce a new 2-element chrominance vector:

Where S is the saturation (chroma gain, 1.0 = unity gain) and θ is the hue rotation angle.

In the VPU, the matrix values are generalized to:

Where Ka, Kb, Kc, and Kd are represented by 2.8 two's complement fixed point numbers. The
firmware API allows the setting of the Ka, Kb, Kc, and Kd coefficients.

Text Overlay

The encoder has the ability of superimposing two 24 character strings onto the video prior to
encoding. Each string can optionally have a frame counter that automatically increments. The
counting range is configurable, allowing for arbitrary frame rates or NTSC drop-frame
timecode to be implemented. A 16x16 one-bit-per-pixel font table is supported. A “1” bit in the
character indicates that white (or black) is written to the video pixel, a “0” bit leaves the
underlying video pixel unchanged.

Motion Alarms

The encoder has the ability to generate alarms depending on the amount of motion in the
incoming video. The user can set "regions of interest" that consist of a set of blocks. The alarm
is triggered when two thresholds are exceeded. The first threshold is the amount of motion in a
block for the block to be considered in motion. The second threshold is the fractional amount
of blocks in the region that have to be considered in motion. In this case, motion per block is
calculated as the sum of absolute differences with its collocated macroblock in the previous
frame divided by the number of pixels in the block.

Cb′ 128–

Cr′ 128–

S.cosθ -S.sinθ
S.sinθ S.cosθ

Cb 128–()
Cr 128–()

=

Cb′ 128–

Cr′ 128–

Ka Kb
Kc Kd

Cb 128–()
Cr 128–()

=

Confidential Mobilygen Corp. | 183

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.7.4 Overview of the Video Encoding Process

The video encoding consists of a three-stage pipeline. Good understanding of each stage is
required to get optimum performance from the encoder, both for quality and for latency.

The first stage is Video Capture. Video Capture refers to the process of taking video from the
video input port, processing it and then storing it in memory for subsequent encoding. The
codec architecture requires that an entire frame be captured before encoding begins, therefore
creating a minimum one frame delay.

The second stage is Video Encoding. Video Encoding refers to the process of compressing the
captured video frame into one or more slice NAL units, as well as generating the relevant SEI
messages. All of these NAL units are sent to the multiplexer. However, the encoder can operate
in a low latency mode in which the encoder and multiplexer send each slice NAL unit to the
next pipe stage as soon as possible. If the encoder is configured to use multiple slices per picture
this can reduce latency (note that when coding field pictures there are always at least two slices
per picture).

At the maximum clock rate, the encoder is configured to use approximately 93% of each frame-
time (assuming 29.97 fps for NTSC or 25 fps for PAL) so that each frame takes about 30ms to
encode. The total latency from capture to encode is therefore one frame time + 30 ms. However,
assuming that three slices are used per frame, the latency is one frame time + only 10 ms. The
host then overlaps the fetching of the first slice NAL unit with the encoding of the second NAL
unit.

The last stage is Multiplexing compressed video and audio into their buffers and coordinating
bitstream transfer with the host processor as described in the next section. Multiplexing is done
either at the frame level, or the slice level depending on the low latency configuration.

Video Capture

The video capture process it itself pipelined into four stages. The stages are synchronization,
crop, scale, and store. When encoding interlaced sequences it is important to take into account
the distinction between the temporal ordering and spatial (vertical) ordering of fields. The
concept of top and bottom fields only has meaning when referring to vertical ordering. As
indicated in Figure 10-8 and Figure 10-9, top or bottom fields may proceed from different
temporal sampling times. It is customary to designate lines as “even” if they belong to even-
numbered fields, and “odd” if they belong to odd-numbered fields. This document follows the
ITU convention of starting line numbering at one.

The relationship between top/bottom fields when the top field is the older field in time is
illustrated in Figure 10-8.
184 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
Figure 10-8 Top Field First

When the bottom field is the older field in time, the relationship is as shown in Figure 10-9:

Figure 10-9 Bottom Field First

Synchronization
The first stage in the video capture process is synchronization. This involves identifying the first
pixel in the active region of the incoming video. Two key configuration variables affect this
operation. The first variable is progressive or interlace interface. Progressive interface refers to
the transmission of video data to the MG1264 Codec line by line (as opposed to interlaced

Field 1 Field 2 Field 3 Field 4

Line 1

Line 3
Line 2

Line 4

Time

Field 1 Field 2 Field 3 Field 4

Line 1

Line 3

Time

Line 2

Line 4
Confidential Mobilygen Corp. | 185

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
where every other line is sent as a top and bottom field). In this mode, the F bit in the ITU-656
embedded sync code is ignored. This mode is the one typically used by CMOS sensors. Note
that the maximum clock rate for video input is 40 Mhz.

The second configuration variable is internal or external sync signals. In internal sync, ITU-656
codes (typically referred to as end of active video/start of active video, or EAV/SAV codes) are
used to identify horizontal, vertical blanking, as well as top and bottom fields. The ITU-656
specification defines the relative occurrence of vertical synchronization (V) and field
identification (F) signals for standard television systems (Figure 9 and Figure 10). Notice from
Figure 10-10 and Figure 10-11 that in the 525-line system (NTSC) the first line (in time) is a
bottom field (even line 4); while in the 625-line system (PAL) the first line (in time) is a top
field (odd line 1). However, the aforementioned relationship can be changed in external
synchronization mode by programming the line on which active video starts for each field.

Figure 10-10Synchronization 525-line System

Figure 10-11 Synchronization 625-line System

A programmable vertical offset identifies the start of active video (the horizontal start of active
video is defined by the SAV code). The beginning of active video is the first sample after SAV.
There must be at least eight clock cycles between EAV and SAV codes.

When operating in external synchronization mode, the transition of the ITU-656 V signal from
0 to 1 indicates the start of vertical blanking. The value of F during this transition is the field
number of the video field that has just ended (see Figure 10-10 and Figure 10-11). The first
active lines in this mode are 20 and 283 when operating in the 525-line system; or 23 and 336
when operating in the 625-line system.

When operating in free-run synchronization mode, the first line of each field is programmable,
but care should be taken to program these parameters so that the total number of lines in each
field is consistent with the external synchronization signals. Furthermore, in free-run mode,

1 2 3 4 264 28320 266

V

F 4 266

Line

262 Lines

1 2 3 4 311 33623 313Line 624

V

F 1 313

312 Lines
186 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
automatic lock mechanism is disabled. For example, there is no attempt made to automatically
synchronize to any external signals coming into the MG1264 Codec. In this mode, the starting
active video line number can be programmed for each odd or even field independently.

In external sync, there are separate horizontal, vertical, field signals that frame the pixel data,
as well as programmable vertical, and horizontal offsets relative to hsync and vsync to identify
the start of active video. In the case of interlaced video there are vertical offsets for both the top
and bottom fields.

Lastly, a software state-machine ensures that video capture always starts with a top-field in the
case of interlaced video. As is discussed later, top/bottom field pairs are captured together as a
single frame to allow for a picture-adaptive field/frame coding algorithm to be employed. The
sampling clock phase can be inverted in all synchronization modes. This feature is intended for
non-standard systems that have a 180 degree phase difference between sampling clock and data.

Once the start of active video has been identified, pixels are sent to the crop stage of the pipeline.

Chroma Adjustments
It is possible to delay the Luma component by one sample time with respect to chroma. This
may be necessary in systems that pair the collocated chroma with the even luma samples instead
of the pairing indicated in ITU-601. Furthermore, it is possible to swap the order of Cb and Cr
components for systems that do not implement the standard CbYCrY signal ordering.

Cropping
The crop operation is specified through the coordinates of the capture rectangle. The capture
rectangle is the area of the video frame that is sent to the scaler. The rectangle is defined by a
width, height and an (x,y) coordinate relative to the start of active video. Typically the capture
rectangle is set to the be full resolution of the input signal (720x480 @ 0x0) but reducing the
size of the rectangle and/or moving the origin of the rectangle can crop the video frame to a
reduced resolution.

The capture rectangle is controlled through the set of Q_AVE_CMP_VIDEO_IN_CROP_*
configuration parameters. The cropped video is then sent to the scaler stage of the pipeline.

Scaling
Video scaling is controlled through the specification of a scaling rectangle. The codec scales the
captured video (as defined by its capture rectangle) to fill the scaling rectangle (Note that the
MG1264 Codec hardware only supports downscaling of the capture rectangle). Additionally,
4:2:2 to 4:2:0 color space conversion is performed.

The scaling rectangle is set using the Q_AVE_CMP_VIDEO_IN_DECIMATION_H and
Q_AVE_CMP_VIDEO_IN_DECIMATION_V configuration parameters.

There are some hardware constraints relating to scaling. When using vertical filtering and
scaling there should be at least three lines of blanking in order to allow internal buffers to
initialize properly. The final scaled line width should not exceed 800 pixels.

Storing
Video storage is a straight-forward process of storing the resultant 4:2:0 video frame to memory
so that it can be sent to the video encoder.
Confidential Mobilygen Corp. | 187

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Video Encoding

There are many variables that control the video encoding process, all of which can be found in
the AVEncoder control object's API. However, there are a few key concepts that are identified
here.

Entire video frames (which can consist of a top/bottom field pair) are sent to the video encoder.
The encoder then decides to code the frame using frame coding or field coding. If the host
indicates that the video is progressively scanned (note that this is different from a progressive
interface) then the encoder will always use frame coding. However, if the video is identified as
interlace scan (again, different from interlace interface) then the encoder will code the image
either as a frame or field pair, depending on the amount of motion in the image (note that pure
field coding can also be specified). Note that while top/bottom field pairs are always grouped,
the encoder can mark the bitstream as being temporally bottom-field first using SEI picture
structure messages.

A scene detection algorithm is run on the video frames to determine the picture coding type. If
a scene change is detected, the frame is coded as either a P-frame with all intra blocks, or as an
I-frame (controlled using the Q_AVE_CMP_VIDEO_ENC_SCENE_CHANGE_ENABLE
and Q_AVE_CMP_VIDEO_ENC_SCENE_CHANGE_I_SLICE parameters). Otherwise, the
picture coding type is controlled by the frame's position with the GOP (group of pictures) where
the first frame is coded as an I-frame (note that for field coding only the top field is coded intra,
the bottom field is coded inter).

The picture-level rate control algorithm then determines a base quantizer to use for the frame.
The quantizer is selected to ensure bitrate, buffer fullness, and optimized for quality. Once the
base quantizer is chosen the encoder starts to compress the frame. A macroblock-level rate
control algorithm refines the choice of quantizer to more fully optimize for quality. New slice
NAL units are started as specified by the host configuration.

Multiplexing

Multiplexing is the relatively simple operation of sending bitstream to the host as described in
the subsequent section.
188 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
10.7.5 Receiving Encoded Bitstreams from the Encoder

Bitstream Transfer

The encoder produces a bitstream that is transferred between the firmware and the System Host
CPU through commands, events, and memory transfers using the external memory interface in
the MG1264 Codec Host Interface. Bitstream data is sent to the MG1264 Codec Host Interface
in discrete “bitstream blocks”. Each bitstream block contains one access unit or QBox. The
firmware maintains a set of bitstream blocks that are managed as a circular queue.

Figure 10-12Circular Buffer Management of Bitstream Blocks

The availability of a new bitstream block is signaled by the BITSTREAM_BLOCK_READY
event. In order for the System Host CPU to reduce the event rate, up to 6 bitstream blocks can
be sent per event. The number of blocks that are sent per event is set using the AV encoder
configuration parameter NUMBLOCKSPEREVENT.

When the encoder fills an event with the required number of bitstream blocks, the firmware
signals to the System Host CPU that the new blocks are available through the
BITSTREAM_BLOCK_READY event. The event payload contains the number of blocks, the
start address of each block, and the size. The event also contains information about the type of
bitstream; either AVC elementary video, AVC elementary audio, MP4, or QBox. In the case of
QBox data, each bitstream block event can contain a mix of audio and video data. Note that
once the System Host CPU has sent the FLUSH command, each bitstream block is sent with its
own event (equivalent to setting NUMBLOCKSPEREVENT to 1) to ensure a proper bitstream
flush.

When the System Host CPU receives the BITSTREAM_BLOCK_READY event, it must read
the bitstream data from the MG1264 Codec memory and transfer it to the System Host CPU’s
local memory. This is done using the QHAL function qhalem_read_bytes. Do not use the
function qhalem_read_words on bitstream data because that function corrects for
endianess.

Once the System Host CPU is through reading the bitstream data, it must send a command to
the firmware to release the memory back to the encoder. This command is the
BITSTREAM_BLOCK_DONE command, and has as arguments, the same information in the
event (start address and size of the access unit). The firmware interprets the block address and
determines if the command is referring to a video or audio block.

As a further optimization for QBox streams, the System Host CPU is only required to issue a
BITSTREAM_BLOCK_DONE command for the last block of each type in the event. For
example, if there are six blocks in the event consisting of three video blocks and three audio
blocks, the System Host CPU can issue only one BITSTREAM_BLOCK_DONE for the last
video block, and one BITSTREAM_BLOCK_DONE for the last audio block. This operation

System
Host
CPU

MG1264
Codec

Full
Block

Empty
Block

BITSTREAM_BLOCK_READY
Event

BITSTREAM_BLOCK_DONE
Command

Full
Block

Full
Block
Confidential Mobilygen Corp. | 189

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
requires the System Host CPU to parse the contents of each QBox to determine if the contents
are audio or video, although presumably this is already being done in order to multiplex the
bitstream data.

The event, Q_AVE_EV_BITSTREAM_BLOCK_READY, is represented by the following
structure:

typedef struct
{

CONTROLOBJECT_IDcontrolObjectId;
EVENT_IDeventId;

unsigned inttypeAndNumBlocks;
unsigned intaddress0;
unsigned intsize0;
unsigned intaddress1;
unsigned intsize1;
unsigned intaddress2;
unsigned intsize2;
unsigned intaddress3;
unsigned intsize3;
unsigned intaddress4;
unsigned intsize4;
unsigned intaddress5;
unsigned intsize5;

} STRUCT_Q_AVE_EV_BITSTREEAM_BLOCK_READY;

The field typeAndNumBlocks consists of two 16-bit fields. The upper 16 bits contain the
bitstream type, and the lower 16 bits contain the number of blocks in the event. Bitstream types
are the same as the parameter value set in the BITSTREAM_TYPE configuration parameter.

The command Q_AVE_CMD_BITSTREAM_BLOCK_DONE is created by copying the fields
frameAddress and frameSize from the event structure. For example, given a pointer to the event
block event:

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVE_CMD_BITSTREAM_BLOCK_DONE;
cmd.arguments[0] = event->frameAddress;
cmd.arguments[1] = event->frameSize;

The firmware can optionally pad each elementary stream sample (AVC video frame or AAC
raw data block) to 4-byte alignment. This alignment is done using a private SEI NAL unit in the
AVC and padding bits in the AAC. Creating a stream with 4-byte alignment can simplify
System Host CPU multiplexing on systems that cannot do misaligned transfers on their 16-bit
bus.

Bitstream Timing Information

Each video and audio frame is assigned a timestamp using an internal 90 kHz clock starting at
time 0. This timestamp is always present in the QBOX header, and can be optionally stored in
SEI picture timing messages in the elementary video stream. Additionally, the frame rate is
stored in the H.264 VUI. The timestamps are separated by the sample duration, which is the
reciprocal of the frame rate expressed in 90 kHz ticks. Because the MG1264 Codec supports
variable frame rate, the delta between samples is not necessarily an integer number of frame or
field times.
190 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
For audio frames, AAC codes 1024 samples per channel. For 24 kHz, this is (1024/24000) *
90000 = 3840 ticks per frame, for 48 kHz it is (1024/48000) * 90000 = 1920, and for 32 kHz it
is (1024/32000) * 9000 = 2880.

NTSC video frames use timestamps using a frame time of 30000/1001 which is approximately
29.97. In terms of 90 kHz ticks, this is a frame time of 3003 ticks. PAL video frames use 3600
ticks per frame according to their 25 Hz frame rate.

10.7.6 Controlling the Video Bitrate

The MG1264 Codec has two versions of rate control that are optimized for different
applications. These applications are storage and streaming. Only one algorithm can run at a
time.

Rate Control for Storage Applications

Storage applications are distinguished by two-features. First, storage is finite, and managing the
instantaneous bitrate is typically secondary to managing the total file size so as to guarantee a
certain record time. Second, the sustained transfer rate of the storage medium is always higher
than, and typically much higher than the average bitrate.

In that context, the rate control algorithm’s primary goal is to maintain the file size so that it is
as within a specified delta of nominal as is possible (as calculated by total time * average
bitrate). For example, the host may want the total file size to be nominal ± 2 MBytes. The peak
bitrate can be significantly higher than the average bitrate due to the high transfer rate of the
storage channel.

The storage rate control algorithm has a decoder startup delay equal to the file size delta divided
by the average bitrate. For example, if the average bitrate is 750 kbps and the delta is
1.5 MBytes, then the startup delay is the time required to buffer 1.5 MBytes. In a streaming
application where the channel rate is close to the average bitrate then this corresponds to a two-
second latency (1.5 MBytes/750 kbits). However, in storage applications where the sustained
transfer rate is typically much higher than the average bitrate, the initial startup delay is much
shorter. For example, for a transfer rate of 7.5 Mbps the initial delay is 200 ms. instead of 2
seconds.

Rate Control for Streaming Applications

Streaming applications differ from storage applications in both the speed of the data transfer
(where the transfer rate is close to the average bitrate), and the continuous nature of the
bitstream. In storage applications, the file is recorded in a "session" and the rate control
manages the total size of the stream. In streaming applications, client decoders can start
receiving data at any arbitrary I-frame and therefore the buffer state must be managed
continuously.

Streaming rate control is implemented using a leaky-bucket model parameterized by the target
average video bitrate, the actual video bitrate (the fill rate of the bucket), the speed of the
transmit channel (the drain rate of the bucket), and the initial decoder delay (the fullness of the
bucket before it starts to drain). Additionally, there is a low-delay mode that, when set, allows
the rate control to momentarily underflow (run empty) the bucket with the trade off that
subsequent frames must be dropped to allow the buffer to fill again. If low-delay is not set, then
the rate control does not allow the buffer to underflow. The rate control manages the video
bitrate in such a way that the bucket underflows either never, or as little as possible in a low-
Confidential Mobilygen Corp. | 191

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
delay mode, and never overflows while maintaining an average bitrate that is close to the target
bitrate.

If the transmit channel rate is set higher than the target bitrate, then the long term average bitrate
will tend to be larger than the target due to available slack created by the higher transfer rate. In
order to generate a stream that has the long term average bitrate that matches the target, the size
constraint should be used concurrently with the streaming rate control. The two rate control
algorithms can run concurrently and use a voting scheme to ensure that the constraints set by
each algorithm are met.

10.7.7 Using the Text Overlay

The encoder has the ability to apply a text overlay to the incoming video, along with an
incrementing frame counter (this process is referred to as "burning" in the text to the video).
There can only be two strings, each a maximum of 24 characters in length, and each of the
strings can have an incrementing frame counter (limited to 0-99 maximum). The MG1264
Codec has no knowledge of the string itself and it is up to the host code to set the string properly.

Setting static strings is very simple and uses a typical set and enable design. However, a
common feature is the implementation of a real-time clock with frame counter, which is slightly
more complex. A key ability of the text overlay is to generate a "rollover" event each time the
frame counter resets back. For example, if the frame counter is configured to count from 0-29,
a rollover event will be generated each time it counts from 29 back to 0. Additionally, a string
can be set by the host to be displayed by the codec only upon the next rollover.

The combination of these two features allows for an event-driven time display to be done.
Specifically, the host is responsible for generating the time string (not including frames) and
sending the string to the host each time there is a rollover event. Typically the host queries the
current real-time and adds one second (assuming the frame count rolls over each second) and
generates a string on the fly.

The API also allows for more sophisticated timings to be generated such as NTSC drop-frame
timecode since the start frame number is configurable and not fixed to 0. The host can detect
the drop-frame condition (typically each minute that is not divisible by 10) and set the start
frame to 2 instead of 0.

10.7.8 Object ID

The H.264/AAC encoder object ID is 0x3.

10.7.9 State Machine

States

The H.264/AAC encoder object has the following states:

• Q_AVE_ST_IDLE: This is the startup state for the encoder. When in this state, the
encoder is reset such that the first frame it generates will be an I-frame.

• Q_AVE_ST_ENCODING: This state performs continuous audio or video encoding with
bitstream output to the System Host CPU.

• Q_AVE_ST_PAUSE: This state does not reset any of the encoder buffers, but prevents
the encoder from creating new bitstream data. When the system returns to the
ENCODING state, the first frame will be an I-frame.
192 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
• Q_AVE_ST_FLUSHING: This state is an intermediate state between
Q_AVE_ST_ENCODING and Q_AVE_ST_IDLE. Unlike the decoder, the encoder
cannot transition directly to IDLE from a non-IDLE state because the encoded data needs
to be flushed. When this state is entered through the FLUSH command, the encoder stops
creating new bitstream data. The encoder remains in this state until the System Host CPU
acknowledges the receipt of the last bitstream block, after which the encoder
automatically transitions to IDLE and sends the Q_AVE_EV_FLUSH_COMPLETE
event.

State Transition Matrix

This matrix shows the commands that can be used to transition from one state to another. Note
that several transitions are impossible and indicated by a (—) in the cell. The starting state is
shown in the left column, and the destination state is shown along the top row.

1. This transition happens automatically when the bitstream has been flushed from the internal memory buffers to the
System Host CPU.

State IDLE ENCODING PAUSE FLUSHING

IDLE — RECORD — —
ENCODING — — PAUSE FLUSH

PAUSE — RESUME — FLUSH
FLUSHING (1) — — —
Confidential Mobilygen Corp. | 193

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.7.10 Commands

FLUSH

RECORD

PAUSE

Command Name Q_AVE_CMD_FLUSH
Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_ENCODING and Q_AVE_ST_PAUSE

Description
This command changes the encoder’s state to Q_AVE_ST_FLUSHING
and stops the encoder from generating new bitstream data. Once
transitioned to Q_AVE_ST_IDLE, the Q_AVE_EV_FLUSH_COMPLETE
event is generated.

Command Name Q_AVE_CMD_RECORD
Arguments 0 = Enable preview

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_IDLE

Description
This command changes the encoder’s state to Q_AVE_ST_ENCODING
and starts generating encoded data. If the enable preview argument is set
to 1 then the input video will be echoed out the video port.

Command Name Q_AVE_CMD_PAUSE
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_ENCODING
Description This command changes the encoder’s state to Q_AVE_ST_PAUSE.
194 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
RESUME

FORCE_NEW_GOP

Command Name Q_AVE_CMD_RESUME
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_PAUSE

Description
This command changes the encoder’s state back to
Q_AVE_ST_ENCODING and starts generating encoded audio or video
data.

Command Name Q_AVE_CMD_FORCE_NEW_GOP
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description This command instructs the video encoder to start a new GOP immediately
on the next frame.
Confidential Mobilygen Corp. | 195

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
BURNIN_INSERT_STR

BURNIN_STR_SET

Command Name Q_AVE_CMD_BURNIN_INSERT_STR

Arguments

0 = (bits 31-24) String index of 0 or 1
0 = (bits 23-16) Update mode (0, 1, or 2)
0 = (bits 15-8) Offset into string
0 = (bits 7-0) Start counter
1 = Characters 0-3 for update
2 = Characters 4-7 for update
3 = Characters 8-11 for update
4 = Characters 12-15 for update
5 = Characters 16-19 for update

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description

This command is used to update the string that is to be burned into the
video. The command can be used to update the entire string, or a subset
by changing the offset.
The update mode selects how the string is to be displayed. If the update
mode is 0 then the string is updated, but is not forced to be displayed. This
mode is useful for updating strings of length greater than 20 as the
command can only take 20 characters at a time. If the update mode is 1
then the string is displayed immediately. If the update mode is 2 then the
string is updated immediately upon the next rollover by the frame counter.
The start counter value is used to set the low-end of the frame count.
Typically this is 0 but can be any non-zero value up to 99.

Command Name Q_AVE_CMD_BURNIN_STR_SET

Arguments

0 = String index (0 or 1)
1 = 1 to enable, 0 to disable
2 = End counter
3 = X position for the string (multiple of 16)
4 = Y position for the string (multiple of 16)

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command is used to enable and set the location of the strings to be
displayed. Additionally, the high value of the frame counter is set with this
command.
196 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
BURNIN_FNUM_SET

BURNIN_FONT_SET

Command Name Q_AVE_CMD_BURNIN_FNUM_SET

Arguments
0 = String index (0 or 1)
1 = 1 to enable, 0 to disable
2 = String position

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command is used to enable the placement of the frame counter in a
string and to set its position within the string. For example, if the position is
4 then the 2 character frame counter will be at the 4th character in the
string.

Command Name Q_AVE_CMD_BURNIN_FONT_SET
Arguments 0 = Address of downloaded font table

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command is used to set an alternative font set that has already been
downloaded to MG1264 Codec memory. Please consult Mobilygen for use
of this feature.
Confidential Mobilygen Corp. | 197

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
MD_GLOBAL_RESET

MD_GLOBAL_REGION_SET

MD_GLOBAL_REGION_ADD

Command Name Q_AVE_CMD_MD_GLOBAL_RESET
Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description This command resets the motion detection alarm system by clearing all
regions of interest and thresholds.

Command Name Q_AVE_CMD_MD_REGION_SET

Arguments

0 = Region index
1 = Enable (1 for enable, 0 for disable)
2 = Motion threshold (0 - 255)
3 = Sensitivity threshold (percent 0 - 10000)

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description This command enables or disables a specific region of interest and sets the
motion and sensitivity thresholds for that region.

Command Name Q_AVE_CMD_MD_REGION_ADD

Arguments

0 = Region index
1 = X position (multiple of 16)
2 = Y position (multiple of 16)
3 = Width (multiple of 16)
4 = Height (multiple of 16)

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description

This command adds a rectangular area to a specified region of interest.
Note that a specific region of interest can be made of an arbitrary number
of connected or disconnected blocks. The add region command takes a
rectangle for convenience and multiple numberS of these commands can
be used on a single region.
198 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
MD_GLOBAL_REGION_SUB

SET_GAMMA_LUT

Command Name Q_AVE_CMD_MD_REGION_SUB

Arguments

0 = Region index
1 = X position (multiple of 16)
2 = Y position (multiple of 16)
3 = Width (multiple of 16)
4 = Height (multiple of 16)

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All
Description This command removes a rectangular area to a specified region of interest.

Command Name Q_AVE_CMD_SET_GAMMA_LUT

Arguments

0 = Table index (0-255)
1 = Number of entries to update (1-8)
2 = Y position (multiple of 16)
3 = Entry 0 (bits 0-7), entry 1 (bits 8-15), entry 2 (bits 16-23),
 entry 3 (bits 24-31)
4 = Entry 4 (bits 0-7), entry 5 (bits 8-15), entry 6 (bits 16-23),
 entry 7 (bits 24-31)

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All
Description This command sets up to eight gamma look-up table entries.
Confidential Mobilygen Corp. | 199

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
SET_VIDEO_ENC_PARAM

ACTIVATE_VIDEO_ENC_CFG

SET_VIDEO_IN_PARAM

Command Name Q_AVE_CMD_SET_VIDEO_ENC_PARAM

Arguments

0 = Parameter 0
1 = Value 0
2 = Parameter 1 or 0
3 = Value 1
4 = Parameter 2 or 0
5 = Value 2

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description

This parameter sets a double buffered video encoder parameter. Up to
three parameters, and their associated value can be set by a single
command. Once a parameter is set, it has to be forcibly activated by
sending the Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG command.
When this command is sent, all pending parameters are activated.

Command Name Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG
Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command activates all pending parameters set by the
SET_VIDEO_ENC_PARAM command since the last time either the
RECORD or ACTIVATE_VIDEO_ENC_CFG commands were called.

Command Name Q_AVE_CMD_SET_VIDEO_IN_PARAM

Arguments

0 = Parameter 0
1 = Value 0
2 = Parameter 1 or 0
3 = Value 1
4 = Parameter 2 or 0
5 = Value 2

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description

This parameter sets a double-buffered video input parameter. Up to three
parameters and their associated values can be set by a single command.
Once a parameter is set, it has to be forcibly activated by sending the
Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG command. When this
command is sent, all pending parameters are activated.
200 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
ACTIVATE_VIDEO_IN_CFG

SET_VIDEO_RC_PARAM

ACTIVATE_VIDEO_RC_CFG

Command Name Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG
Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command activates all pending parameters set by the
SET_VIDEO_IN_PARAM command since the last time either the
RECORD or ACTIVATE_VIDEO_ENC_CFG commands were called.

Command Name Q_AVE_CMD_SET_VIDEO_RC_PARAM

Arguments

0 = Parameter 0
1 = Value 0
2 = Parameter 1 or 0
3 = Value 1
4= Parameter 2 or 0
5 = Value 2

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description

This parameter sets a double-buffered video rate control parameter. Up to
three parameters and their associated values can be set by a single
command. Once a parameter is set, it has to be forcibly activated by
sending the Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG command.
When this command is sent, all pending parameters are activated.

Command Name Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG
Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command activates all pending parameters set by the
SET_VIDEO_RC_PARAM command since the last time either the
RECORD or ACTIVATE_VIDEO_ENC_CFG commands were called.
Confidential Mobilygen Corp. | 201

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.8 Single Buffered Configuration Parameters
These parameters can only be set when the encoder interface object is in an IDLE state and they
take effect on the next transition out of the IDLE state. The values assigned to the configuration
parameters are persistent and are not reset by any state transition. They can only be changed by
subsequent configuration commands. All of these parameters are set using the
Q_CMD_OPCODE_CONFIGURE command.

BITSTREAM_TYPE

NUMBLOCKSPEREVENT

INPUT_SELECT

Parameter Q_AVE_CFG_BITSTREAM_TYPE

Value 1 = Q_AVE_CFP_BITSTREAM_TYPE_ELEM_VIDEO
2 = Q_AVE_CFP_BITSTREAM_TYPE_QBOX

 States IDLE
Effective On the next AV encoder state transition out of IDLE.

Description
This parameter is used to configure the encoder multiplexing unit before
bitstreams are sent to the System Host CPU. This parameter must be
setup when the system is in the IDLE state.

Parameter Q_AVE_CFG_NUMBLOCKSPEREVENT
Value 1 - 6
States IDLE

Effective On the next AV encoder state transition out of IDLE

Description This parameter is used to configure the number of bitstream blocks that are
sent by the encoder per event.

Parameter Q_AVE_CFG_ENC_INPUT_SELECT

Value
1 = Q_AVE_CFP_ENC_INPUT_SELECT_AV
2 = Q_AVE_CFP_ENC_INPUT_SELECT_VIDEO_ONLY
3 = Q_AVE_CFP_ENC_INPUT_SELECT_AUDIO_ONLY

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description
This parameter controls the initialization of the video and audio encoder
pipelines. This parameter should be used if there is no external hardware
driving an audio or video interface (such as no audio clock). For example,
a video only product would select VIDEO_ONLY.
202 | Mobilygen Corp Confidential

Application Programming Interface Single Buffered Configuration Parameters
AV_SELECT

PREV_AV_SELECT

VENC_BITRATE

Parameter Q_AVE_CFG_ENC_AV_SELECT

Value
1 = Q_AVE_CFP_ENC_INPUT_SELECT_AV
2 = Q_AVE_CFP_ENC_INPUT_SELECT_VIDEO_ONLY
3 = Q_AVE_CFP_ENC_INPUT_SELECT_AUDIO_ONLY

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description
This parameter selects either video-only encoding, audio-only encoding, or
audio and video encoding. However, this parameter assumes that there is
valid data present at the video and audio interfaces (such as a valid clock).

Parameter Q_AVE_CFG_ENC_PREV_AV_SELECT

Value
1 = Q_AVE_CFP_ENC_PREV_AV_SELECT_AV
2 = Q_AVE_CFP_ENC_PREV_AV_SELECT_VIDEO_ONLY
3 = Q_AVE_CFP_ENC_PREV_AV_SELECT_AUDIO_ONLY

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description
This parameter selects either video-only, audio-only encoding, or audio
and video preview while encoding. Note that to disable preview completely
(such as in an encode only product) a parameter to the RECORD
command must be specified.

Parameter Q_AVE_CFG_VENC_BITRATE
Value Positive integer in bits per second

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description
This parameter selects the target bitrate of the encoded video stream.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
Confidential Mobilygen Corp. | 203

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
AENC_ BITRATE

VENC_FIELD_CODING

VENC_GOP_SIZE

Parameter Q_AVE_CFG_AENC_BITRATE
Value Positive integer in bits per second

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description This parameter selects the long-term bitrate of the encoded audio stream.

Parameter Q_AVE_CFG_VENC_FIELD_CODING

Value
1 = Q_AVE_CFP_VENC_FIELD_CODING_FIELD
2 = Q_AVE_CFP_VENC_FIELD_CODING_FRAME
3 = Q_AVE_CFP_VENC_FIELD_CODING_ADAPTIVE

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

When the video source is interlaced (as indicated by the configuration
variable VIN_PROG_SOURCE), this variable controls the picture coding
type. The System Host CPU can select between all frame pictures, all field
pictures, or adaptively select between field or frame pictures based upon
the amount of motion observed in the two fields.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Parameter Q_AVE_CFG_VENC_GOP_SIZE
Value 32-bit unsigned integer

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the GOP size of the encoded video stream. The
default value is 15 which means the GOP consists of one I-frame and 14
P-frames. A value of 1 indicates an all I-frame stream, and a value of 0
indicates a stream that consists of a single I-frame followed by P-frames.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
204 | Mobilygen Corp Confidential

Application Programming Interface Single Buffered Configuration Parameters
VENC_OPERATIONAL_MODE

AI_CHANNELS

Parameter Q_AVE_CFG_VENC_OPERATIONAL_MODE

Value
0 = Q_AVE_CFG_VENC_OPERATIONAL_MODE_LOW_BITRATE
1 = Q_AVE_CFG_VENC_OPERATIONAL_MODE_MED_BITRATE
2 = Q_AVE_CFG_VENC_OPERATIONAL_MODE_HIGH_BITRATE

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the general operational mode for the video encoder. It
selects a collection of video encoding tools that are suitable to a particular
bitrate range. The low bitrate toolset should be selected for bitrates
<1.5 Mbps, the medium bitrate is suitable for the range 1.5 to 3.5 Mbps,
and the high bitrate is suitable for rates greater than 3.5 Mbps. The System
Host CPU must still explicitly select the target bitrate and set the rate
control parameters.
Setting this configuration parameter has the effect of resetting many other
parameters. The System Host CPU should, therefore, be careful to set the
operational mode first, and then set the remaining parameters.

Parameter Q_AVE_CFG_AI_CHANNELS

Value

1 = Q_AVE_CFP_AI_CHANNELS_STEREO
2 = Q_AVE_CFP_AI_CHANNELS_STEREO_SWAP
3 = Q_AVE_CFP_AI_CHANNELS_STEREO_MONO_LEFT
4 = Q_AVE_CFP_AI_CHANNELS_STEREO_MONO_RIGHT

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

This parameter is used to direct a particular audio input channel
configuration to the audio encoder. Note that this value should be
consistent with the system control configuration parameter,
AUDIO_NUM_CHANNELS, such that if the number of channels is 1, a
mono configuration should be chosen. If the number of channels is 2, then
either a mono or a stereo configuration can be chosen.
Confidential Mobilygen Corp. | 205

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VIDEO_STC_OFFSET

VIDEO_MUTE

AUDIO_MUTE

Parameter Q_AVE_CFG_VIDEO_STC_OFFSET
Value Signed value representing 90 kHz ticks

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

This parameter allows the System Host CPU to program a fixed offset
between the video and audio streams in order to compensate for variable
delays in the input datapath. For example, a system might capture the
video output and scale it creating a one video frame delay relative to the
audio. In this case, a negative offset of one frame (-3003 in NTSC) should
be programmed.

Parameter Q_AVE_CFG_VIDEO_MUTE

Value 0= Mute off
1= Mute on

Valid States IDLE
Effective Immediate if recording, otherwise on next transition out of IDLE

Description
This parameter is used to ‘mute’ the video input which results in an
immediate fade to black, or black to full video. The AV encoder continues
to run with both audio and video being encoded, although the encoded
video frames will be black.

Parameter Q_AVE_CFG_AUDIO_MUTE

Value 0= Mute off
1= Mute on

Valid States IDLE
Effective Immediate if recording, otherwise on next transition out of IDLE

Description

This parameter is used to ‘mute’ the audio input which is results in an
almost immediate fade to digital silence (the input signal is attenuated over
3 ms to ensure that there are no audio discontinuities), or from silence to
full audio. The AV encoder continues to run with both audio and video
encoded, although the encoded audio frames will be silent.
206 | Mobilygen Corp Confidential

Application Programming Interface Single Buffered Configuration Parameters
VENC_SLICES_PER_FRAME

OUTSAMPLE_ALIGN

Parameter Q_AVE_CFG_VENC_SLICES_PER_FRAME
Value 1 - 6

Valid States IDLE
Effective On next transition out of IDLE

Description
This parameter is used to set the number of slices per encoded frame.
Note that interlaced frames contain two slices by default. This parameter
can be used to reduce encoder latency.

Parameter Q_AVE_CFG_OUTSAMPLE_ALIGN

Value 0 = For no-padding to 4-byte alignment
1 = To align samples to 4-bytes

Valid States IDLE
Effective On next transition out of IDLE

Description
This parameter is used to force the AAC and AVC encoders to align their
sample data to 4-byte boundaries. This alignment is done using a private
SEI message for the AVC and using padding bits in the AAC.
Confidential Mobilygen Corp. | 207

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.9 Double-Buffered Video Encoder Parameters
The video encoder has a set of double-buffered parameters that are activated by the
Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG command. The parameters are double-
buffered because they are used during recording, and multiple parameters may need to be set at
one time.

DEBLOCK _ENABLE

DEBLOCK _OFFSET_ALPHA

DEBLOCK _OFFSET_BETA

Parameter Q_AVE_CMP_VIDEO_ENC_DEBLOCK_ENABLE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description This parameter enables the in-loop de-blocking filter in the AVC encoder,
and the bitstream.

Parameter Q_AVE_CMP_VIDEO_ENC_DEBLOCK_OFFSET_ALPHA
Value -5 to 5

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description This parameter sets the alpha coefficient of the de-blocking filter.

Parameter Q_AVE_CMP_VIDEO_ENC_DEBLOCK_OFFSET_BETA
Value -5 to 5

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description This parameter sets the beta coefficient of the de-blocking filter.
208 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Encoder Parameters
VUI_TIMING_ENABLE

SEI_PICT_TIMING_ENABLE

SEI_ENC_CFG

SEI_RC_FRAME_STATS

Parameter Q_AVE_CMP_VIDEO_ENC_VUI_TIMING_ENABLE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description This parameter controls the presence of timing information in the AVC VUI
structure.

Parameter Q_AVE_CMP_VIDEO_ENC_SEI_PICT_TIMING_ENABLE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description This parameter controls the presence of SEI picture timing messages in
the AVC bitstream.

Parameter Q_AVE_CMP_VIDEO_ENC_SEI_CFG
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description
This parameter controls the presence of private SEI messages that store
the AVC encoder's configuration. This feature is typically used in bitstream
analysis and debug.

Parameter Q_AVE_CMP_VIDEO_ENC_SEI_RC_FRAME_STATS
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description
This parameter controls the presence of private SEI messages that store
the AVC encoder's frame-based statistics. This feature is typically used in
bitstream analysis and debug.
Confidential Mobilygen Corp. | 209

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
SEI_RC_CALC_STATS

SCENE_CHANGE_ENABLE

SCENE_CHANGE_I_SLICE

SCENE_CHANGE_NEW_GOP

Parameter Q_AVE_CMP_VIDEO_ENC_SEI_RC_CALC_STATS
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description
This parameter controls the presence of private SEI messages that store
the AVC encoder's calculated and derived frame-based statistics. This
feature is typically used in bitstream analysis and debug.

Parameter Q_AVE_CMP_VIDEO_ENC_SCENE_CHANGE_ENABLE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description

This parameter enables the scene detection algorithm. If the algorithm is
enabled (by setting the parameter to 1), the encoder will either code a P-
slice with all intra blocks, force an I-slice but not restart a GOP, or fully
restart a new GOP with an I-slice and IDR picture. Which action is taken
depends upon other configuration parameters.

Parameter Q_AVE_CMP_VIDEO_ENC_SCENE_CHANGE_I_SLICE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description
If this parameter is set, the scene detection algorithm will force an I-slice at
scene detection. If this parameter is not set, but the scene detection
algorithm is enabled, then all intra blocks will be coded in a P-slice.

Parameter Q_AVE_CMP_VIDEO_ENC_SCENE_CHANGE_NEW_GOP
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description If this parameter is set, then a new GOP (with IDR picture) is started when
a scene change is detected.
210 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Encoder Parameters
SCENE_CHANGE_PERIOD

Parameter Q_AVE_CMP_VIDEO_ENC_SCENE_CHANGE_PERIOD
Value Positive value in ticks

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_ENC_CFG or IDLE to non-IDLE

Description
This parameter sets the minimum time between scene changes in ticks.
For example, setting it to 30030 prevents a scene change for 10 frames
from a previous scene change.
Confidential Mobilygen Corp. | 211

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.10 Double-Buffered Video Input Parameters
The video input block has a set of double-buffered parameters which are activated by the
Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG command. The parameters are double-buffered
because they ar used during recording and multiple parameters may need to be set at one time.

VIDEO_INPUT_STANDARD

VIDEO_IN_CROP_WIDTH

VIDEO_IN_CROP_HEIGHT

Parameter Q_AVE_CMP_VIDEO_INPUT_STANDARD

Value 1 = Q_AVE_CFP_VIDEO_INPUT_STANDARD_NTSC
2 = Q_AVE_CFP_VIDEO_INPUT_STANDARD_PAL

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG or IDLE to non-IDLE

Description

This parameter selects the video input standard to be either NTSC or PAL.
The host must also set the correct capture rectangle using the
VIDEO_IN_CROP_* configuration parameters and the number of ticks per
frame (3003 or 3600) using the VIDEO_IN_TICKS_PER_FRAME
configuration parameter.

Parameter Q_AVE_CMP_VIDEO_IN_CROP_WIDTH
Value 16 to 800 (multiples of 16)

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG or IDLE to non-IDLE

Description This parameter sets the width of the crop rectangle relative to the start of
active video. Typical values are 320, 352, 640 and 720.

Parameter Q_AVE_CMP_VIDEO_IN_CROP_HEIGHT
Value 16 to 800 (multiples of 16)

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG or IDLE to non-IDLE

Description This parameter sets the height of the crop rectangle relative to the start of
active video. Typical values are 480 and 576.
212 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Input Parameters
VIDEO_IN_CROP_OFFSET_X

VIDEO_IN_CROP_OFFSET_Y

PROG_SOURCE

Parameter Q_AVE_CMP_VIDEO_IN_CROP_OFFSET_X
Value 16 to 800 (multiples of 16)

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG or IDLE to non-IDLE

Description This parameter sets the horizontal offset of the crop rectangle relative to
the start of active video. The typical value is zero.

Parameter Q_AVE_CMP_VIDEO_IN_CROP_OFFSET_Y
Value 16 to 800 (multiples of 16)

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG or IDLE to non-IDLE

Description This parameter sets the vertical offset of the crop rectangle relative to the
start of active video. The typical value is zero.

Parameter Q_AVE_CMP_VIDEO_IN_PROG_SOURCE

Value 0 = Not progressive scanned
1 = Progressive Scanned

Valid States Idle
Effective Q_AVE_CMD_ACTIVATE_VIDEO_IN_CFG or IDLE to non-IDLE

Description

This parameter indicates if the source video is progressive scanned. Note
that a source can be progressively scanned even if it is an interlace
interface as the top and bottom fields can be sampled at the same time. If
the source is interlaced, then the VENC_FIELD_CODING parameter
controls the picture coding type. Note that the values set by this
command are reset by setting the VENC_OPERATIONAL_MODE
configuration parameter.
Confidential Mobilygen Corp. | 213

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VIN_DECIMATION_H

VIN_DECIMATION_V

TICKS_PER_FRAME

Parameter Q_AVE_CMP_VIDEO_IN_DECIMATION_H
Value 1 -16 or a value smaller than the actual horizontal image size

Valid States Idle
Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the horizontal decimation ratio for the input stream. If
the decimation ratio is in the range 1-16 then it is interpreted as a
decimation ratio and frames will be horizontally scaled by that ratio to a
multiple of 16 pixels. For example, on a 720 wide image setting the
parameter to two will scale the image to 352 pixels.
If the parameter is set to a value greater than sixteen, then it is interpreted
as target pixel width and the image will be scaled to that width. For
example, if the source is 720 wide and the value is 320, then the video will
be scaled to 320 pixels wide.

Parameter Q_AVE_CMP_VIDEO_IN_DECIMATION_V
Value 1 -16 or a value smaller than the actual vertical image size

Valid States Idle
Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the vertical decimation ratio for the input stream. If the
decimation ratio is in the range 1-16, then it is interpreted as a decimation
ratio and frames will be vertically scaled by that ratio to a multiple of 16
pixels. For example, on a 480 high image setting the parameter to two will
scale the image to 240 pixels.
If the parameter is set to a value greater than 16, then it is interpreted as
target pixel height and the image will be scaled to that height. For example,
if the source is 480 high and the value is 240 then the video will be scaled
to 240 pixels high.
The behavior of the scaler is affected by the setting of the
INT_TO_PROG_SCALE parameter. If this parameter is set, then on
interlace material where the vertical scaling ratio is two or greater the
bottom field is dropped first (to achieve a 2x decimation) and further scaling
is done on the top field only.

Parameter Q_AVE_CFG_VIDEO_IN_TICKS_PER_FRAME
Value Any non-zero value

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description
This parameter is used to set the native frame rate of the video input
hardware by setting the frame time in 90 kHz ticks. For NTSC, it should be
set to 3003; for PAL it should be set to 3600.
214 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Input Parameters
TICKS_PER_OUTPUT_FRAME

INT_TO_PROG_SCALE

Parameter Q_AVE_CMP_VIDEO_IN_TICKS_PER_OUTPUT_FRAME
Value Any non-zero value

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description

This parameter is used to set the frame rate of the bitstream. The native
frame rate of the physical video input, set by VIN_TICKS_PER_FRAME
(for example 3003 ticks in NTSC) is converted to the desired frame rate by
dropping or repeating video frames. For example, if the ticks per output
frame is set to 6006, then the frame rate is ½. If it is 9009, then its 1/3.
Fractional frame rates are also supported by setting the frame length
appropriately. For example, if the parameter is set to 4504, then the frame
rate is (approximately) 20 fps.
Note that the values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Parameter Q_AVE_CMP_VIDEO_IN_INT_TO_PROG_SCALE
Value 0 or 1

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description

This parameter is used to trigger vertical decimation of an interlace stream
by dropping the bottom field instead of scaling. The effect will only be
noticed if the vertical decimation (VIN_DECIMATION_V) is two or greater.
Note that the end result is a progressive frame and frame coding should be
selected.
Note that the values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
Confidential Mobilygen Corp. | 215

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
PIXEL_AR_X

PIXEL_AR_Y

PIXEL_AR_AR_FIXED

Parameter Q_AVE_CMP_VIDEO_IN_PIXEL_AR_X
Value 1 or greater

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description

This parameter is used to set the X value of the native video input pixel
aspect ratio. This value is identical to those placed in the VUI (see table E-
1 of ISO/IEC 14496-10 E). If the input video is not scaled and the pixel
aspect ratio is identical to one of the standard (0-13) aspect ratios, then the
VUI stores the index. If the aspect ratio is different, then the extended
aspect ratio is used. Also note that the pixel aspect ratio stored in the VUI
will be changed from the native aspect ratio if the input video is scaled AND
the parameter VIDEO_IN_PIXEL_AR_FIXED is not set.

Parameter Q_AVE_CMP_VIDEO_IN_PIXEL_AR_Y
Value 1 or greater

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description

This parameter is used to set the Y value of the native video input pixel
aspect ratio. This value is identical to those placed in the VUI (see table E-
1 of ISO/IEC 14496-10 E). If the input video is not scaled and the pixel
aspect ratio is identical to one of the standard (0-13) aspect ratios, then the
VUI stores the index. If the aspect ratio is different, then the extended
aspect ratio is used. Also note that the pixel aspect ratio stored in the VUI
will be changed from the native aspect ratio if the input video is scaled AND
the parameter VIDEO_IN_PIXEL_AR_FIXED is not set.

Parameter Q_AVE_CMP_VIDEO_IN_PIXEL_AR_FIXED
Value 0 or 1

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description
This parameter is used to force the VUI to store the aspect ratio set by
VIDEO_IN_PIXEL_AR_X and VIDEO_IN_PIXEL_AR_Y even if the input
video is scaled. The VUI is forced if it is set to 1, otherwise the native aspect
ratio is changed by the scalar.
216 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Input Parameters
FIELD_ORDER

HUE_SAT_CB_KA

HUE_SAT_CB_KB

HUE_SAT_CR_KC

Parameter Q_AVE_CMP_VIDEO_IN_FIELD_ORDER

Value 1 = Q_AVE_CFP_VIDEO_INPUT_TOP_FIELD_FIRST
2 = Q_AVE_CFP_VIDEO_INPUT_BOTTOM_FIELD_FIRST

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description
This parameter is used to indicate if the physical video input hardware
sends fields that are temporally in a top to bottom order or a bottom to top
order. Note that the temporal order may be different from the order that the
hardware sends the data if the input hardware has a frame store.

Parameter Q_AVE_CMP_VIDEO_IN_HUE_SAT_CB_KA
Value 10 bit fixed point in 2.8 two's complement

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description This parameter sets the Ka matrix element in the [2x2] hue/saturation
matrix.

Parameter Q_AVE_CMP_VIDEO_IN_HUE_SAT_CB_KB
Value 10 bit fixed point in 2.8 two's complement

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description This parameter sets the Kb matrix element in the [2x2] hue/saturation
matrix.

Parameter Q_AVE_CMP_VIDEO_IN_HUE_SAT_CB_KC
Value 10 bit fixed point in 2.8 two's complement

Valid States Idle
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description This parameter sets the Kc matrix element in the [2x2] hue/saturation
matrix.
Confidential Mobilygen Corp. | 217

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
HUE_SAT_CR_KD

Parameter Q_AVE_CMP_VIDEO_IN_HUE_SAT_CB_KD
Value 10 bit fixed point in 2.8 two's complement

Valid States Any
Effective Command Q_AVE_ACTIVATE_VIDEO_IN_CFG

Description This parameter sets the Kd matrix element in the [2x2] hue/saturation
matrix.
218 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Rate Control Parameters
10.11 Double-Buffered Video Rate Control Parameters
The video rate control has a set of double-buffered parameters which are activated by the
Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG command. The parameters are double-
buffered as they can be used during record and multiple parameters that may need to be set at
one time.

SIZE_ENABLE

SIZE_BIT_TOLERANCE

BUFFER_ENABLE

BUFFER_SIZE_BITS

Parameter Q_AVE_CFG_VIDEO_RC_SIZE_ENABLE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description This parameter enables the rate control algorithm that manages the
bitstream for total size.

Parameter Q_AVE_CFG_VIDEO_RC_SIZE_BIT_TOLERANCE
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter sets the tolerance by which the rate control manages total
file size. The file size will always be equal to the nominal file size (time
multiplied by average bitrate) +/- a delta equal to this parameter. Note that
this parameter is measured in bits, not bytes.

Parameter Q_AVE_CFG_VIDEO_RC_BUFFER_ENABLE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description This parameter enables the rate control algorithm that manages the
bitstream in streaming applications.

Parameter Q_AVE_CFG_VIDEO_RC_BUFFER_SIZE BITS
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description This parameter sets the size of the HRD decoder buffer.
Confidential Mobilygen Corp. | 219

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
BUFFER_TRANSFER_RATE_BITS

BUFFER_INITIAL_DELAY

BUFFER_LOW_DELAY_MODE

ADAPTIVE_FRAMERATE_ENABLE

Parameter Q_AVE_CFG_VIDEO_RC_BUFFER_TRANSFER_RATE_BITS
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description This parameter sets the transfer rate of the video bitstream or similarly, the
fill rate of the HRD decoder buffer.

Parameter Q_AVE_CFG_VIDEO_RC_BUFFER_INITIAL_DELAY
Value Positive value in 90 kHz ticks

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description This parameter sets the initial delay of the decoder in 90 kHz ticks. For
example, 200 ms is 18000.

Parameter Q_AVE_CFG_VIDEO_RC_BUFFER_LOW_DELAY_MODE
Value 0 or 1

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter enables low-delay mode in the streaming rate control. If
set, the rate control is allowed to underflow the buffer at the expense of
dropping frames to catch up.

Parameter Q_AVE_CFG_VIDEO_RC_ADAPTIVE_FRAMERATE_ENABLE
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter enables the adaptive frame rate algorithm. The algorithm
must have the minimum and maximum QP set, as well as the frame rate
scaling parameters set to be properly used.
220 | Mobilygen Corp Confidential

Application Programming Interface Double-Buffered Video Rate Control Parameters
AFR_MAX_QP

AFR_MIN_QP

AFR_SCALING_DENOMINATOR

AFR_SCALING_MIN_NUMERATOR

Parameter Q_AVE_CFG_VIDEO_RC_AFR_MAX_QP
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter sets the QP that, when reached by the rate control
algorithm when raising the QP, will result in the frame rate being lowered
instead.

Parameter Q_AVE_CFG_VIDEO_RC_AFR_MIN_QP
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter sets the QP that, when reached by the rate control
algorithm when lowering the QP, will result in the frame rate being raised
instead. Typically this QP is set to 2 or 3 below the AFR_MAX_QP.

Parameter Q_AVE_CFG_VIDEO_RC_AFR_SCALING_DENOMINATOR
Value Positive value

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description

This parameter is used by the adaptive rate control to scale the frame rate.
Assuming that complete frames will be dropped, this value should be set
to the current maximum frame rate (rounding 29.97 to 30). If the current
standard is NTSC, then typically this means it will be set to 30. However, if
the frame rate has been reduced through the
TICKS_PER_OUTPUT_FRAME parameter, then the reduced frame rate
should be used.

Parameter Q_AVE_CFG_VIDEO_RC_AFR_SCALING_MIN_NUMERATOR
Value Positive value in bits

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter is used to set the minimal frame rate where the adaptive
frame rate algorithm starts to raise the QP above the ‘maximum’ specified.
Typical values for NTSC would be 5, 10, 15, etc.
Confidential Mobilygen Corp. | 221

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
QP_RANGE_MAX

QP_RANGE_MIN

Parameter Q_AVE_CFG_VIDEO_RC_QP_RANGE_MAX
Value 13-55

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter is used to set the maximum QP value selected by the rate
control. Note that the actual QP per macroblock may go outside of this
range based on the visual importance of that macroblock.

Parameter Q_AVE_CFG_VIDEO_RC_QP_RANGE_MIN
Value 13-55

Valid States Any
Effective Q_AVE_CMD_ACTIVATE_VIDEO_RC_CFG or IDLE to non-IDLE

Description
This parameter is used to set the minimum QP value selected by the rate
control. Note that the actual QP per macroblock may go outside of this
range based on the visual importance of that macroblock.
222 | Mobilygen Corp Confidential

Application Programming Interface Events
10.12 Events

Q_AVE_EV_BITSTREAM_BLOCK_READY

Q_AVE_EV_BITSTREAM_FLUSHED

Q_AVE_EV_VIDEO_FRAME_ENCODED

Q_AVE_EV_AUDIO_FRAME_ENCODED

Event Q_AVE_EV_BITSTREAM_BLOCK_READY

Payload

0 = typeAndNumBlocks
1 = address0
2 = size0
3 = address1
4 = size1
5 = address2
6 = size2
7 = address3
8 = size3
9 = address4
10 = size4
11 = address5
12 = size5

Description
This event is generated once for every video and audio frame that is
encoded. It is up to the System Host CPU to read the data in the block,
store it, and then free it using the BITSTREAM_BLOCK_DONE command.

Event Q_AVE_EV_BITSTREAM_FLUSHED
Payload None

Description
This event is generated once the last bitstream block in the internal
memory buffers has been posted as an event in the event queue. It does
not indicate that the System Host CPU has read the bitstream blocks,
merely that the AV encoder object has transitioned to the IDLE state.

Event Q_AVE_EV_VIDEO_FRAME_ENCODED
Payload None

Description This event is generated once for every video frame that is encoded.

Event Q_AVE_EV_AUDIO_FRAME_ENCODED
Payload None

Description This event is generated once for every audio frame that is encoded.
Confidential Mobilygen Corp. | 223

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Q_AVE_EV_VIDEO_FRAME_DROP

Q_AVE_EV_VIDEO_FRAME_REPEAT

Q_AVE_EV_BURNIN_ROVER

Q_AVE_EV_VIDEO_MD_ALERT

10.12.1 Average Motion Field

The average motion field contains the average motion in the region multiplied by 1000 (such
that 32500 is 32.5) and the number of macroblocks in motion.

Event Q_AVE_EV_VIDEO_FRAME_DROP
Payload None

Description This event is generated once for every video frame that is dropped by the
video input unit due to drift between the audio and video clocks.

Event Q_AVE_EV_VIDEO_FRAME_REPEAT
Payload None

Description This event is generated once for every video frame that is repeated by the
video input unit due to drift between the audio and video clocks.

Event Q_AVE_EV_BURNIN_ROVER
Payload 0 = String index 0 or 1

Description This event is generated whenever the automatic frame counter "rolls over"
from its maximum value to its minimum value.

Event Q_AVE_EV_BURNIN_ROVER

Payload

0 = Region index
1 = Transition
2 = Average motion
3 = Number of macroblocks in motion

Description

This event is generated whenever a specific region of interest triggers a
motion detection alarm, or when the region of interest no longer is in a state
where it would trigger an alarm. When motion is first detected an alarm with
a transition of 1 will be sent with the specified region index. When motion
is no longer detected the same event will be sent with a transition of 0.
224 | Mobilygen Corp Confidential

Application Programming Interface Status Block
10.13 Status Block
The AV encoder objects maintains a status block that can be polled by the System Host CPU at
any time. The contents of the block are not synchronized with any event, and there is no
indication from the firmware that an update has, or will occur.

typedef struct {
 unsigned int videoFramesEncoded;
 unsigned int videoBufferEmptiness;
 unsigned int videoBufferAccessUnits;
 unsigned int reserved0;
 unsigned int reserved1;
 unsigned int audioFramesEncoded;
 unsigned int audioBufferEmptiness;
 unsigned int audioBufferAccessUnits;
} AVENCODER_STATUS;

The fields in the status block are valid during audio or video encoding, and are set when the AV
encoder exits the IDLE state. Therefore, they remain valid after the FLUSH command has been
issued, and represent the state of the AV encoder just prior to the FLUSH command being
processed.

videoFramesEncoded

This field stores the number of video frames encoded since the last RECORD command.

videoBufferEmptiness

This field stores the current emptiness of the compressed video buffer.

videoBufferAccessUnits

This field stores the current number of access units in the compressed video buffer. The number
of access units is incremented by one for each video-related BITSTREAM_BLOCK_READY
event, and is decremented by one for every video-related BITSTREAM_BLOCK_DONE
command.

audioFramesEncoded

This field stores the number of audio frames encoded since the last RECORD command.

audioBufferEmptiness

This field stores the current emptiness of the compressed audio buffer.

audioBufferAccessUnits

This field stores the current number of access units in the compressed audio buffer. The number
of access units is incremented by one for each audio-related BITSTREAM_BLOCK_READY
event, and is decremented by one for every audio-related BITSTREAM_BLOCK_DONE
command.
Confidential Mobilygen Corp. | 225

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
226 | Mobilygen Corp Confidential

Chapter 11. Sample Host Code
Architecture
There are many design choices that can be made when architecting the host code needed to
interface to the MG1264 Codec’s firmware API. This chapter discusses the system
characteristics that guide these choices.

How many, and how frequent are the events that will be subscribed? The event transfer
protocol is fully handshaked and therefore prevents the sending of new events until the
current event is processed. If the number of events that need to be handled is relatively
small, then the host can wait until each event is completely handled before sending the
EVENT_DONE acknowledgement. The theory is that the event processing time is
approximately the same time as the interval between events, which results in no event
queuing inside the MG1264 Codec memory. However, if there are many events to be
examined, also at low latency then the host may have to acknowledge events as it receives
them and not wait until they are processed.

Is bitstream storage fast or slow? When recording, the host must read the bitstream from
the MG1264 Codec’s memory and then store it to a file system. If this process is slow then
BITSTREAM_BLOCK_READY processing is very slow.

How responsive does the UI need to be? In order to have a responsive system, the thread
that sends commands to the firmware cannot be blocked for long periods of time.

A typical system will have relatively few events and a relatively slow file-system. The
system will have relatively few events as only the BITSTREAM_BLOCK_DONE event
needs to be subscribed during RECORD, and no events need to be subscribed (except for
the VIDEO_DECODER_ERROR and AUDIO_DECODER_ERROR events, but they are
rare) during decode. This means that event processing can take quite some time and still not
require queuing. However, even though the number of events are low, the processing time
for the BITSTREAM_BLOCK_READY event can be long due to the slow file system. This
long processing time can result in blocking the UI if the system design is not done carefully.

A suitable architecture can be designed that uses a small number of threads, an interrupt
handler and a sendCommand function.

sendCommand function: The sendCommand function is protected by a mutex that forces
each command to be sent to the firmware, and the COMMAND_DONE acknowledgement
to be received before processing a new command. When invoked, it sends a
NEW_COMMAND message to the CommandEventHandler thread.
Confidential Mobilygen Corp. | 227

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
EventHandler thread: This thread manages the command and event transfer protocol and
ensures that no protocol violations are performed. All events are read from this thread, and all
commands are sent from this thread. The thread operates in an infinite loop and waits for either
a NEW_INTERRUPT message or a NEW_COMMAND message.

BitstreamRecord thread: The BitstreamRecord thread is responsible for writing data to the
Flash storage device, and also reading bitstream data from the MG1264 Codec. The input to the
thread is a queue of transfer requests. A transfer request instructs the BitstreamRecord thread
to read data of a specific size and address from the MG1264 Codec and store it to a file. The
queue is written to by the CommandEventHandler thread when it receives a
BITSTREAM_BLOCK_READY event during record.

BitstreamPlayback thread: The BitstreamPlayback threads is responsible for reading data
from the Flash storage device and sending it to the MG1264 Codec. The input to the thread is
a queue of transfer requests. A transfer request instructs the BitstreamPlayback thread to read
data from a specific position and size from a file and send it to the MG1264 Codec. The queue
is written by the UI thread. Note that for simple playback of an entire file, you do not need a
queue of transfer requests, however, when it comes to streaming data which involves seeking in
the bitstream (scan I-frame or reverse playback) the queue is helpful for optimizing
performance.

UI Thread: The UI thread takes user input and translates it into calls to sendCommand and calls
to the bitstream thread.

The complete architecture, along with sample code is described in the following sections. The
thread API that is used is POSIX threads (called pthreads). Note that the code is simplified
through extensive use of global static variables. A cleaner implementation would make use of
object-oriented techniques.
228 | Mobilygen Corp Confidential

Sample Host Code Architecture Common Types and Definitions
11.1 Common Types and Definitions
These types are used throughout the reference code.

// host should always use memory partition 64 to read/write
memory
#define FWPARTITION 64
enum
{

FIRST_BLOCK = 1,
LAST_BLOCK = 2,

};

These definitions are related to the BitstreamRecord thread. Each
BITSTREAM_BLOCK_READY event is translated into a write request for BitstreamThread
to use.

typedef struct
{

int blockType;
int transfers;
int address[6];
int size[6];

} RECORD_REQUEST;
#define RECORD_QUEUE_SIZE 64
#define RECORD_BUFFER_SIZE (32768)
#define RECORD_BUFFER_PAD (4)

These definitions are related to the BitstreamPlayback thread.

typedef struct
{

int blockType;
int bytePosition;
int size;

} PLAYBACK_REQUEST;
#define PLAYBACK_QUEUE_SIZE 64
#define PLAYBACK_BUFFER_SIZE (32768)
#define PLAYBACK_BUFFER_PAD (4)
Confidential Mobilygen Corp. | 229

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.2 Global Variables
These global variables are used by the command and event thread.

EVENT localEvBlock;
pthread_id EvThreadId;

These global variables are used by the BitstreamRecord thread.

pthread_id bitstreamRecordThreadId;
pthread_mutex_t recordQueueMutex;
pthread_cond_t recordQueueCv;
int recordQueueFullness;
int recordQueueWrPtr;
int recordQueueRdPtr;
char recordBuffer[RECORD_BUFFER_SIZE +
RECORD_BUFFER_PAD];

These global variables are used by the BitstreamPlayback thread.

pthread_id bitstreamPlaybackThreadId;
pthread_mutex_t playbackQueueMutex;
pthread_cond_t playbackQueueCv;
int playbackQueueFullness;
int playbackQueueWrPtr;
int playbackQueueRdPtr;
char playbackBuffer[PLAYBACK_BUFFER_SIZE +
RECORD_BUFFER_PAD];

11.3 Initialization
All code is initialized by the call to fwInit. This function initializes all of the global variables
and spawns all of the threads except the UI thread. It is assumed that the host application spawns
this thread.

void fwInit()
{

// Init command mutex
pthread_mutex_init(&sendCommandMutex, NULL);
hem = qhalem_open(QHALEM_ACCESSTYPE_CMD,

QHALEM_MODE_LINEAR);
hmbox_ev = qhalmbox_open(QHAL_MBOX1);
hmbox_cmd = qhalmbox_open(QHAL_MBOX1);
// Lock the sendCommandMutex so that first
// call blocks in sendCommand
pthread_mutex_lock(&sendCommandMutex);
// Init the BitstreamRecord thread variables
recordQueueWrPtr = 0;
recordQueueRdPtr = 0;
recordQueueFullness = 0;
pthread_mutex_init(&recordQueueMutex, NULL);
pthread_cond_init(&recordQueueCv, NULL);
hembs = qhalem_open(QHALEM_ACCESSTYPE_BITSTREAM,

QHALEM_MODE_LINEAR)
// Init the BitstreamPlayback thread variables
playbackQueueWrPtr = 0;
230 | Mobilygen Corp Confidential

Sample Host Code Architecture sendCommand function
playbackQueueRdPtr = 0;
playbackQueueFullness = 0;
pthread_mutex_init(&playbackQueueMutex, NULL);
pthread_cond_init(&playbackQueueCv, NULL);
hbs = qhalbs_open();
// spawn command event thread
pthread_create(&cmdEvThreadId, NULL, EvThreadProc, NULL);
// spawn the bitstream record thread
pthread_create(&bitstreamRecordThreadId, NULL, bitstream-

RecordThreadProc, NULL);
// spawn the bitstream playback thread
pthread_create(&bitstreamPlaybackThreadId, NULL, bit-

streamPlaybackThreadProc, NULL);
}

11.4 sendCommand function
This function is executed in the calling thread’s context and blocks the calling thread until the
command is received by the MG1264 Codec’s firmware, and acknowledged with the
COMMAND_DONE interrupt. It is protected by a global mutex that serializes the commands,
and blocks until the COMMAND_DONE interrupt is received.

int sendCommand(COMMAND *cmd)
{

int rval;
QHALMBOX_EVENT mbs = QHALMBOX_EVENT_READ;
// take global mutex
pthread_mutex_lock(&sendCommandMutex);
// copy command to codec memory
qhalem_write_words(hem, FWPARTITION, cmdBlockAddr,

cmd, sizeof(COMMAND)/4);
// Signal command ready
qhalmbox_write(hmbox_cmd, 1);
// wait for command
qhalmbox_wait_event(hmbox_cmd, &mbs);
// copy the return code and values back to the cmd
qhalmbox_read_words(hem, FWPARTITION, cmdBlockAddr,

cmd, sizeof(COMMAND)/4);
// the return code is return by the function
rval = cmd->returnCode;
// unlock global mutex
pthread_mutex_unlock(&sendCommandMutex);
return(rval);
}

Confidential Mobilygen Corp. | 231

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.5 EventHandler Thread
The EventHandler thread waits for events through the qhalmbox_wait_event() call. When an
event is received, the event block is fetched. Bitstream events are sent to the bitstream transfer
thread while other events are handled in place.

int EvThreadProc(void *arg)
{

QHALMBOX_EVENT mbs = QHALMBOX_EVENT_READ;
unsigned int evBlockAddr, evAddr;
EVENT localEvBlock;
while (1)
{

// wait for event ready interrupt
qhalmbox_wait_event(hmbox_ev, &mbs);
// read the event pointer
qhalem_read_words(hem, FWPARTITION, evBlockAddr,

&evAddr, 1);
// read the event
qhalem_read_words(hem, FWPARTITION, evAddr,

&localEvBlock, sizeof(EVENT)/4);
// queue bitstream events
if (localEvBlock.eventId ==

Q_AVE_EV_BITSTREAM_BLOCK_READY)

{

RECORD_REQUEST rqst;
// read # of blocks in this event

rqst.transfers = localEvBlock.payload[0] & 0xffff;
for (int i = 0; I < rqst.transfers; i++)
{

rqst.address = localEvBlock.payload[2*i+1];
rqst.size = localEvBlock.payload[2*i+2];

}
sendRecordRequest(&rqst);

}
// handle other events here as needed
// send EVENT_DONE
qhalmbox_read(hmbox, &rval);

}
}

}

232 | Mobilygen Corp Confidential

Sample Host Code Architecture BitstreamRecord thread
11.6 BitstreamRecord thread
The BitstreamRecord thread is responsible for moving data from the MG1264 Codec to the
storage device (Flash card). The input to the thread is a queue of data transfer requests. The data
transfer request is similar to the BITSTREAM_BLOCK_READY event.

In this example, the BitstreamRecord thread stores a QBOX stream to a file exactly as it is sent
by the MG1264 Codec. No parsing or multiplexing of the stream is done in any way. The
interface to the thread is the sendRecordRequest function, which writes a transfer request to the
queue. The thread reads a request from the queue, reads the data from the MG1264 Codec and
stores it to a file. The file is opened or closed based on flags in the request structure that indicate
if the request is the first or last block.

11.6.1 Writing a New Record Request to the Queue

The sendRecordRequest function copies in a transfer request to the queue and signals to the
bitstream thread that there is a request to be read.

int sendRecordRequest(RECORD_REQUEST *rqst)
{

// gain access to the queue
pthread_mutex_lock(&recordQueueMutex);
// copy the request to the queue
bcopy(rqst, &(recordQueue[recordQueueWrPtr]),

sizeof(RECORD_REQUEST));
// move the write pointer
recordQueueWrPtr = recordQueueWrPtr++ %

RECORD_QUEUE_SIZE;
// increment the fullness
recordQueueFullness++;
// signal the thread
pthread_cond_signal(recordQueueCv);
// unlock queue mutex
pthread_mutex_unlock(&recordQueueMutex);

}

11.6.2 Reading a New Record Request from the Queue

The getRecordRequest blocks until there is at least one entry in the queue and then copies out
a record request from the head of the queue.

int getRecordRequest(RECORD_REQUEST *rqst)
{

// gain access to the queue
pthread_mutex_lock(&recordQueueMutex);
// wait for signal
while (recordQueueFullness == 0)
{

pthread_cond_wait(recordQueueCv, recordQueueMutex);
}
// copy the request out of the queue
bcopy(recordQueue[recordQueueWrPtr], rqst,

sizeof(RECORD_REQUEST));
// move the write pointer
recordQueueRdPtr = recordQueueRdPtr++ %

RECORD_QUEUE_SIZE;
Confidential Mobilygen Corp. | 233

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
// decrement the fullness
recordQueueFullness--;
// unlock queue mutex
pthread_mutex_unlock(&recordQueueMutex);

}

11.6.3 BitstreamRecord Thread Procedure

The bitstream thread procedure is quite simple. It reads a record request from the queue and
transfers data from the MG1264 Codec and stores it in a file. The data is read from the MG1264
Codec into a local buffer and then written out from buffer. Multiple reads might be required per
transfer request if the size is larger than the buffer size. Once the transfer request is done, a
BITSTREAM_BLOCK_DONE is sent to the MG1264 Codec.

int bitstreamRecordThreadProc(void *arg)
{

int fd;
RECORD_REQUEST rqst;
char filename = "test.qbx";
COMMAND cmd;
// init the bitstream block done command
cmd.opcode = Q_AVE_CMD_BITSTREAM_BLOCK_DONE;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
while (1)
{

// block and wait for something to do
readRecordRequest(&rqst);
// if this is the first block open the file
if (rqst->blockType | FIRST_BLOCK)
{

fd = open(filename, O_CREAT|O_TRUNC|O_WRONLY);
}
// transfer the data
for (i = 0; i < rqst->transfers; i++)
{

// prepare for next transfer
bytesLeft = rqst->size[i];
currAddr = rqst->address[i];
bytesWritten = 0;
// transfer the data via an internal buffer
while (bytesLeft != 0)
{

// read what is left in the transfer, or the
// local buffer size, whichever is bigger
bytesToRead = (bytesLeft > RECORD_BUFFER_SIZE:

 RECORD_BUFFER_SIZE? bytesLeft);
// pad the read out to the nearest 32 bits
paddedBytesToRead = (bytesToRead + 3) & 0xfffffffc;
// read the data
qhalem_read_bytes(hembs, FWPARTITION, recordBuffer,

paddedBytesToRead);
// Adjust bytesLeft for next run
bytesLeft -= bytesToRead;
234 | Mobilygen Corp Confidential

Sample Host Code Architecture BitstreamRecord thread
currAddr += bytesToRead;
}
// acknowledge that this block is read
cmd.arguments[0] = rqst->address[i];
cmd.arguments[1] = rqst->size[i];
sendCommand(&cmd);

}
// if this is the last block close the file
if (rqst->blockType | LAST_BLOCK)
{

close(fd);
}

}
}

Confidential Mobilygen Corp. | 235

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.7 BitstreamPlayback thread
The BitstreamPlayback thread is responsible for moving data to the MG1264 Codec from the
storage device (Flash card). The input to the thread is a queue of data transfer requests.

In this example, the BitstreamPlayback thread reads a QBOX stream to a file exactly as it is sent
by the MG1264 Codec. No parsing or demultiplexing of the stream is done in any way. The
interface to the thread is the sendPlaybackRequest function which writes a transfer request to
the queue. The thread reads a request from the queue, reads the data from the file and sends it
to the MG1264 Codec.

11.7.1 Writing a new playback request to the queue

The sendPlaybackRequest function copies in a transfer request to the queue and signals to the
bitstream thread that there is a request to be read. The fields of the playback request have a byte
position and size. These are useful when expanding the architecture to include random access,
but for linear playback a byte position of -1 indicates that playback should continue from the
current position in the stream.

int sendPlaybackRequest(PLAYBACK_REQUEST *rqst)
{

// gain access to the queue
pthread_mutex_lock(&playbackQueueMutex);
// copy the request to the queue
bcopy(rqst, &(playbackQueue[playbackQueueWrPtr]),

sizeof(PLAYBACK_REQUEST));
// move the write pointer
playbackQueueWrPtr = playbackQueueWrPtr++ %

PLAYBACK_QUEUE_SIZE;
// increment the fullness
playbackQueueFullness++;
// signal the thread
pthread_cond_signal(playbackQueueCv);
// unlock queue mutex
pthread_mutex_unlock(&playbackQueueMutex);

}

11.7.2 Reading a New Playback Request from the Queue

The getPlaybackRequest blocks until there is at least one entry in the queue and then copies out
a record request from the head of the queue.

int getPlaybackRequest(PLAYBACK_REQUEST *rqst)
{

// gain access to the queue
pthread_mutex_lock(&playbackQueueMutex);
// wait for signal
while (playbackQueueFullness == 0)
{

pthread_cond_wait(playbackQueueCv, playbackQueueMutex);
}
// copy the request out of the queue
bcopy(playbackQueue[playbackQueueWrPtr], rqst,

sizeof(PLAYBACK_REQUEST));
236 | Mobilygen Corp Confidential

Sample Host Code Architecture BitstreamPlayback thread
// move the write pointer
playbackQueueRdPtr = playbackQueueRdPtr++ %

PLAYBACK_QUEUE_SIZE;
// decrement the fullness
playbackQueueFullness--;
// unlock queue mutex
pthread_mutex_unlock(&playbackQueueMutex);

}

11.7.3 BitstreamPlayback Thread Procedure
int bitstreamPlaybackThreadProc(void *arg)
{

int fd;
PLAYBACK_REQUEST rqst;
char filename = "test.qbx";
int bytesToRead;
int paddedBytesToSend;
int bytesLeft;
while (1)
{

// block and wait for something to do
readPlaybackRequest(&rqst);
// if this is the first block open the file
if (rqst->blockType | FIRST_BLOCK)
{

fd = open(filename, O_RDONLY);
}
// set bytes to read, -1 means to end of file
bytesLeft = rqst->size;
// seek to position
lseek(fd, rqst->bytePosition, SEEK_SET);
while (bytesLeft > 0)
{

// read what is left in the transfer, or the
// local buffer size, whichever is bigger
bytesToRead = (bytesLeft > PLAYBACK_BUFFER_SIZE:

 PLAYBACK_BUFFER_SIZE? bytesLeft);
// read the data
bytesRead = read(fd, buffer, bytesToRead);
// if end of file get out
if (bytesRead == 0)
{

break;
}
// We pad to the nearest 32 bits. Since the buffer

size
// is already aligned to that, the only case where we
// need to pad is at the end. It is ok to send extra

data
// at the end of the stream.
paddedBytesToSend = (bytesToRead+3) & 0xfffffffc;
qhalbs_write(hbs, playbackBuffer, paddedBytesToSend);
// Adjust bytesLeft for next run
bytesLeft -= bytesToRead;
Confidential Mobilygen Corp. | 237

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
}
// if this is the last block close the file
if (rqst->blockType | LAST_BLOCK)
{

close(fd);
}

}
}

238 | Mobilygen Corp Confidential

Sample Host Code Architecture Sample Usage from UI thread
11.8 Sample Usage from UI thread

11.8.1 Simple Playback Session

It is assumed that the UI thread has received a request to playback a file from an external source,
such as a keypress or IR driver. Playback of a file is as follows.

void UI_Play()
{

COMMAND cmd;
PLAYBACK_REQUEST rqst;
// put the codec in PLAY state
cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_PLAY;
cmd.arguments[0] = 0; // forward
cmd.arguments[1] = 0; // start time
cmd.arguments[2] = 0; // no pause trigger
sendCommand(&cmd);
// start data streaming. We are sending whole file as one

block
rqst.blockType = FIRST_BLOCK | LAST_BLOCK;
rqst.size = -1;
sendPlaybackRequest(&rqst);

}

11.8.2 Sample Record Session

It is assumed that the UI thread has received a request to record a file from an external source,
such as a keypress or IR driver. Record of a file is as follows. Notice how no communication is
needed with the BitstreamRecord thread as it is driven by the CmdEvThread automatically.

void UI_Record()
{

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVE_CMD_RECORD;
sendCommand(&cmd);
}

Confidential Mobilygen Corp. | 239

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.9 Missing Features
This sample code is designed to show the basic flow of commands and events. It is not designed
to be a complete system and therefore is missing a number of features. Some of these features
are:

Stopping playback: The BitstreamPlayback thread has no way to do a fast stop operation.

End of record: The BitstreamRecord thread does not notify the UI that a flush operation has
been completed. The thread should check for the LAST_BLOCK flag and then notify the UI
when this block is stored to Flash memory.

Reverse playback: The BitstreamPlayback thread has a queue as its interface. In the sample
session, only one request is sent per file which makes the queue extraneous. However, a full
implementation would send each GOP to the decoder while in reverse play. This parsing could
be done in the playback thread itself or outside by a another thread which is parsing the random
access data structures for the stream.

Error handling: No error handling is done at all in this implementation.
240 | Mobilygen Corp Confidential

Appendix A. MG1264 Codec H.264
and AAC Compliance
This appendix explains in detail how the MG1264 Low Power H.264 and AAC Codec for
Mobile Devices complies with the H.264, and AAC standards. The subject of compliance
is complex, yet manageable when addressed within the context of an application. The key
to dealing with compliance is to find the balance between formal specification (including
all of the corner cases that accompany all MPEG specifications) and real world
implementations where most corner cases do not apply.

Compliance is generally addressed in terms of Profiles and the Tools associated with each
Profile. The concept of Level is a further classification in H.264/MPEG, but Level
represents specific combination of resolution, frame rate, and bitrate, details more related
to performance than functionality.

Figure A-1 H.264 Profiles and Tools

I & P
Quarter-Pel MC

Different Block Sizes
In-Loop Deblocking Filter

Intra Prediction
CAVLC

Multiple Reference
Frames

Flexible
Macroblock

Order

Arbitrary
Slice
Order

Baseline

Extended

High

Main
B Slices

SI / SP Slices

Data Partitioning

CABAC

Weighted
Prediction

Field Coding

Alt
Quant
Tables

8 x 8
Transform

MG1264 (Frame Coding)

MG1264 (Field Coding)

= Baseline and Main Profice Compatible

= Main Profile Compatible

MBAFF
Confidential Mobilygen Corp. | 241

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
The MG1264 Codec H.264 codec is best described as a Baseline Profile codec (encoder and
decoder). Technically, when the MG1264 Codec H.264 Encoder implements Field coding the
bitstreams are Main Profile.

A.1 MG1264 Codec Encoder Compliance
Typically, when the subject of compliance is discussed what is meant is decoder compliance.
MPEG, by definition, describes the bitstream syntax, and therefore the decoder must adhere to
the complete specification to be considered “compliant”, and decode any combination of legal
syntax.

Encoders are free to implement tools in any way that produces a syntactically correct bitstream.
Due to implementation complexity, encoders always use a subset of the available tools, or a
subset of the actual implementation of each tool. This is a key point that should not be
underestimated because if a decoder will work with only a given encoder, or group of encoders,
compliance testing on the decoder side can be simplified substantially.

A.1.1 MG1264 Codec H.264 Encoder Compliance

The MG1264 Codec H.264 Encoder has two modes of operation relative to compliance. These
two modes are defined by the use of Frame (progressive) coding or Field (interlaced) coding.
When either mode is used, the corresponding bitstreams produced are “compliant” to specific
Profiles.

Frame Coding

When Frame (progressive) encoding is used, the MG1264 Codec H.264 Encoder produces
streams that are fully compliant with the Baseline, Extended, Main, and High Profiles. Refer to
Figure A-1. The MG1264 Codec H.264 Encoder does not implement the following Baseline
tools: ASO, FMO, Multiple Reference Frames. All references are limited to the previous
Frame. When Frame coding is used, it is accurate and acceptable to describe the associated
bitstream as a “Baseline” Profile bitstream. This is because all of the tools used fall completely
into the Baseline Profile, and a Baseline-only decoder would be capable of decoding the
bitstream.

Field Coding

The only tool outside of the H.264 Baseline Profile that the MG1264 Codec encoder uses is
Field (interlace) coding. Field (interlace) coding is typically associated with the Main Profile,
although technically it is a part of all Profiles except Baseline.

When Field (interlace) encoding is used, the MG1264 Codec H.264 Encoder produces streams
that are fully compliant with the Extended, Main, and High Profiles. Refer to Figure A-1 above.
When Frame coding is used, it is accurate and acceptable to describe the associated bitstream
as a “Main” Profile bitstream. This is because all of the tools used fall completely into the Main
Profile, and a strictly Main Profile compliant decoder would be capable of decoding the
bitstream. Although the same is true for the Extended Profile, this Profile is not commonly used
and if required would be called out specifically to highlight the unique features (switching
Slices and Data Partitioning).

It is exceptionally uncommon to implement only a single tool of a Profile, such as only Field
coding in the MG1264 Codec. For this reason, Mobilygen typically does not refer to bitstreams
242 | Mobilygen Corp Confidential

MG1264 Codec H.264 and AAC Compliance MG1264 Codec AAC Encoder Compliance
produced with Field coding as Main Profile bitstreams. This is technically inaccurate, but offers
a better description of the actual bitstream.

A.2 MG1264 Codec AAC Encoder Compliance
The MG1264 Codec AAC encoder produces bitstreams that are compliant to AAC-LC.

A.2.1 MG1264 Codec Decoder Compliance

The MG1264 Codec H.264 and AAC decoders are capable of decoding any bitstream that the
MG1264 Codec encoders produce. Decoder conformance can only be an issue for bitstreams
generated by encoders other than the MG1264 Codec.

Having a decoder be generically compliant is very difficult to prove, and most MPEG decoders
do not fully achieve this. It is commonplace for applications to apply limits, or use a subset of
the full MPEG spec. DVD and the various MDTV standards (ISDB, DVB-H, DMB) are good
examples of applications that bounds the limits of the generic MPEG-2 / H.264 spec. Such
decoders are designed to support these bounded limits rather than claim generic MPEG-2 /
H.264 compliance.

A.2.2 MG1264 Codec H.264 Decoder Compliance

The MG1264 Codec H.264 Decoder can decode any bitstream that the MG1264 Codec H.264
Encoder produces. As previously noted in “MG1264 Codec H.264 Encoder Compliance” on
page 242 this includes both Frame and Field coding.

The MG1264 Codec decoder is best described as a Baseline decoder, although it does not
support all the tools of the Baseline Profile. The following Baseline Tools are not supported:
Multiple Reference Frames, ASO, and FMO. These Tools are seldom used in the majority of
applications. If the MG1264 Codec decoder encounters bitstreams that contain these Tools,
visual errors are produced at the Macro block level that will propagate until the next I-slice is
encountered. The MG1264 Codec decoder will continue to decode and will not stop or freeze.

The only Tool that the decoder supports outside of the Baseline Profile is Field coding.
Technically this means that the MG1264 Codec H.264 Decoder is capable of decoding some
level of Main Profile streams – those that only use the Field coding mode of the Main Profile
Tool set. Additionally, the MG1264 Codec decoder also has limitations in the size of motion
vectors that can be supported that are dependant on the Horizontal picture size, and the type
(Field/Frame) of coding used.

Multiple Reference Frames

The MG1264 Codec decoder supports only a single reference frame (the previous frame). If a
bitstream contains multiple reference frames, the MG1264 Codec decoder will map all motion
vectors to the previous frame, producing a visual error that will propagate until the next I-Slice.

ASO and FMO

The MG1264 Codec decoder does not support ASO or FMO.

Limited Motion Vector support

The MG1264 Codec decoder can support only a limited range of Motion Vectors (MV). The
range is dependant on the Horizontal picture resolution, and the type (Field/Frame) of coding
used. If the MG1264 Codec decoder encounters a bitstream with MVs outside the supported
Confidential Mobilygen Corp. | 243

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
range, the MV will be mapped to the maximum limit producing a visual error that will
propagate until the next I-slice.

The following two tables summarize what MV ranges the MG1264 Codec decoder can support:

A.3 MG1264 Codec AAC Decoder Compliance
The MG1264 Codec AAC decoder is best described as an AAC-LC Profile decoder. The
MG1264 Codec AAC decoder can decode any bitstream that the MG1264 Codec AAC encoder
produces. The MG1264 Codec AAC decoder does not support one Tool in the AAC-LC Profile:
TNS.

A.3.1 TNS

The MG1264 Codec AAC decoder does not support the TNS Tool in the AAC-LC Profile. The
MG1264 Codec AAC decoder firmware performs preemptive bitstream parsing that detects
TNS and modifies (removes) the TNS codes before the bitstream reaches the actual decoder
block. The result is that TNS is not applied as intended. The audible errors of this parsing work-
around are dependant on the content and strength with which TNS was applied by the encoder.

A.3.2 HE-AAC support

HE-AAC support is not listed as a feature of MG1264 Codec. The MG1264 Codec AAC
decoder has the ability to render HE-AAC streams by discarding the enhancement (SBR) layer
and decoding only the base layer.

Table A-1 MG1264 Codec Motion Vector Range Support for Frame Based Coding

Horizontal Picture Size Vertical MV Range Horizontal MV Range

0 < Hor. Size <= 480 ±62 ±62

480 < Hor. Size <= 560 ±54 ±62

560 < Hor. Size <= 656 ±46 ±62

656 < Hor. Size <= 784 ±38 ±62

784 < Hor. Size <= 800 ±38 ±30

Table A-2 MG1264 Codec Motion Vector Range Support for Field Based Coding

Horizontal Picture Size Vertical MV Range Horizontal MV Range

0 < Hor. Size <= 464 ±60 ±62

464 < Hor. Size <= 480 ±60 ±46

480 < Hor. Size <= 624 ±44 ±62

624 < Hor. Size <= 640 ±44 ±46

640 < Hor. Size <= 800 ±28 ±62
244 | Mobilygen Corp Confidential

Appendix B. Errata to the MG1264
Codec User Manual
This section contains errata regarding the MG1264 Low Power H.264 and AAC Codec for
Mobile Devices.

B.1 Phase Lock Loop Restrictions
The maximum frequency for the MG1264 Codec Core Clock is 110 MHz. at worse case
conditions. The Core Clock frequency (core_clk) is generated using an internal Phase Lock
Loop (PLL) from the clock input on the XIN pin. The Core Clock frequency is calculated
using the following equation:

where M is set using the PLLFeedBackDivider field and X is set using the
PLLOutputDivider field of the PLLDivider register (see page 75).

However, the MG1264 Codec has a restriction on the relationship between the clock input
on the VID_CLK pin (video Input Clock) and the Core Clock. The relationship can best be
described as follows: The maximum Core Clock frequency of the MG1264 Codec is one
PLL resolution below four times the clock on the VID_CLK pin. (See “Phase Lock Loop
Restrictions” on page 245.)

For instance, if VID_CLK = 27 MHz, the Core Clock must be less than 4 x 27 MHz (108
MHz.), and 104.625 MHz. is the highest Core Clock frequency below the 4 x 27 MHz (108
MHz.) limit. The equation for generating a 104.625 MHz Core Clock is:

Where the M/X ratio of 31/8 meets the requirement of being one PLL resolution below four
times the clock on the VID_CLK pin.

core_clk XIN M
X
-----×=

104.625MHz 27MHz 31
8
------×=
Confidential Mobilygen Corp. | 245

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
B.2 Minimum Picture Size
The minimum picture size that can be encoded is 96 x 96. The resolution can be obtained by
either setting the capture rectangle to that resolution, or by scaling a larger capture rectangle to
that resolution. See the crop and scaling commands for more information.

However, note that you must use one slice per macroblock row for any horizontal resolution
below 128, meaning that pictures that are 112 or 96 pixels wide must use one slice per row.
246 | Mobilygen Corp Confidential

Revision History
Revision History

The Revision History table shows recent changes to the document. Please note that the page
number refers to the page where the section heading occurs, and that the actual change or chang-
es may be on one or more of the following pages.

Revision Description of Change
Pages

Affected

0.95 Pin Change: Pin A16 was changed from GND to PFILTER. This was done to al-
low filtering on the PLL power supply to minimize jitter.

27, 36, 37

The Core Clock frequency was increased from 104 MHz to 104.625 MHz. 37

The Operating Temperature Range (Case) was changed to –20 to +125 °C, and
the TAmbient temperature range was changed to –20 to +85 °C.

44

1.00 Removed all Change Bars (no change to content). This document will no longer
use change bars. Use the Revision History to track specific changes.

Entire
Document

First Paragraph - removed two references to VGA in the description. 15

Added Note: The minimum resolution of encoding using the internal scaler is
144x96 pixels.

21, 181

Added the OmniVision OV7220 sensor to the Compatible CMOS Sensors list. 92

Added description on processing AAC Audio QBox bitstream format. 138

Add clarification regarding sending encoded bitstreams to the decoder. 159

Add numerous clarifications regarding sending encoded bitstreams to the de-
coder.

159

Added new section “Overview of the Video Capture Process” 184

1.1 Rewrote the section “Input Video Scaling” to indicate the new minimum picture
size of 96 x 96 pixels.

21

Added new section “MG1264 Codec SDRAM Requirements by Function” 21

Chapter 2, throughout. Added information on the new 169-pin Thin & Fine-Pitch
Ball Grid Array package (TFBGA). This included a new package pinout drawing
(“Pinout Diagram for the MG1264 Codec in the 169-pin TFBGA Package” on
page 26), additional columns in the Pin List tables starting on 30, and a new
package physical drawing (“169-pin TFBGA Package Mechanical Dimensions”
on page 38).

25 - 41

Table 2-1, “MG1264 CODEC Host Interface Pins” Added cross references in the
H_DMARQ pin description to the ports used in DMA operations.

30

Added a note to the TMS, TDI, and TRST IU pins: “This pin has an internal
20 kOhm - 150 kOhm (50 kOhm nominal) pull-up resistor.”

34
Confidential Mobilygen Corp. | 247

1.1 Moved the description of the test pins from Chapter 8 (now removed) to sections
Section 2.2.1 through Section 2.2.3.

34

Updated “XIN Core Clock Considerations” and “VID_CLK Video Clock Consid-
erations” on page 37 to reflect the errata described in “Phase Lock Loop Restric-
tions” on page 245.

37

Added new section “Ordering Information” 39

“DC Characteristics” on page 45: Added new parameter IPU describing the inter-
nal Pullup resistor current draw.

45

Added new section “Standby Power” describing the standby power require-
ments.

46

Figure 3-3, “MG1264 Codec Host Interface AC Timing Waveform”: Inverted the
H_DMARQ signal.

49

Figure 3-3, “MG1264 Codec H_DMARQ Timing”: Inverted the H_DMARQ sig-
nal.

50

Table 3-5, “Host Interface Timing”: Made the following changes:
• Added 110 MHZ Maximum Core Clock frequency and a footnote referencing

the Phase Lock Loop Restrictions errata.
• Changed the value for parameter tWAS from 37 ns. to 20 ns.
• Added the following footnote to the tRAS parameter: H_ADDR[6:1] must be sta-

ble before H_RD is asserted. Make sure that delays caused by the printed cir-
cuit board layout are taken into account when programming the bus timings.

• Changed the value for parameter tWDC from 37 ns. to 20 ns.

52

Table 3-6, “Video Interface AC Timing Values”: Added a minimum value of
25 ns. to the tVC parameter

53

Broke the MG1264 Codec Register and External Memory Device Register Map
table into four separate tables to improve clarity.

68

Updated the Phase Lock Loop Divider register description to reflect the errata
described in “Phase Lock Loop Restrictions” on page 245.

75

Section “Interlaced ITU-R BT.656 Video Interfaces” Added descriptions regard-
ing adjustable timing in non-standard video modes and minimum values for the
Horizontal and Vertical Blanking intervals.

88

Removed the section: “Progressive Video Interface for D1 Resolution and Be-
low” and replaced it with a new section: “Progressive Video Interface in Free-run
Mode”

90

Added a note to the “Working With CMOS Sensors” section: “Because there is
a great deal of variance between different sensors with respect to video clock
gating, compliance, etc., we strongly recommend that you contact Mobilygen
Technical Support before starting a design that includes a CMOS sensor.”

92

Added new Section 5.5, “Video Pre-Processing Filters” describing the four video
pre-processing filters that can be used to improve the encoded picture quality of
source video.

93

Added information regarding the audio clock, AUD_LRCK, and AUD_BCK sig-
nals during master and slave operation.

100

Revision Description of Change
Pages

Affected

Revision History
1.1 Removed existing Chapter 8 “Miscellaneous Signals” and moved the relevant
information into Chapter 2. This caused the chapter numbers on all of the sub-
sequent chapters to decrease by 1.

Added a definition for the sample_flags parameter. 110

Added information to the “AV Encoder Features” section regarding the minimum
picture size problem discussed in the errata on page 246.

181

Added Appendix B “Errata to the MG1264 Codec User Manual” 245

Revision Description of Change
Pages

Affected
Confidential Mobilygen Corp. | 249

Mobilygen Corporation
 2900 Lakeside Drive #100

Santa Clara, CA 95054
Tel: (408) 869-4000
Fax: (408) 980-8044

email: info@mobilygen.com

	About This Document
	Audience
	Conventions
	Terms
	Chapter 1. Overview 15
	Chapter 2. Pinlist and Packaging Information 25
	Chapter 3. Specifications 43
	Chapter 4. MG1264 Codec Host Interface 57
	Chapter 5. Video Interface 87
	Chapter 6. SDRAM Interface 95
	Chapter 7. Audio Interface 99
	Chapter 8. Bringing up the MG1264 Codec 103
	Chapter 9. Firmware Loader 119
	Chapter 10. Application Programming Interface 125
	Chapter 11. Sample Host Code Architecture 227
	Appendix A. MG1264 Codec H.264 and AAC Compliance 241
	Appendix B. Errata to the MG1264 Codec User Manual 245
	Revision History 247

	Chapter 1. Overview
	1.1 Architecture
	1.2 MG1264 Codec Applications
	1.3 Features
	1.3.1 Modes Of Operation
	1.3.2 Power-Up and Initialization
	1.3.3 Encode and Decode Mode
	1.3.4 MG1264 Codec Specifications
	1.3.5 H.264 Encoder Target Performance
	1.3.6 PAL Resolution H.264
	1.3.7 SVGA 800x600 Video Resolution
	1.3.8 Video Input and Output Scaling
	1.3.9 MG1264 Codec SDRAM Requirements by Function
	1.3.10 User Control of H.264 Encoder Features (Tools)
	1.3.11 The AAC Audio CODEC
	1.3.12 I/O Control
	1.3.13 Full Duplex

	Chapter 2. Pinlist and Packaging Information
	2.1 Package Pinouts
	2.1.1 169-Pin TFBGA Package
	2.1.2 156-Pin VFBGA Package

	2.2 Pin List
	2.2.1 The SOUT and SIN Signals
	2.2.2 JTAG Signals
	2.2.3 TMODE Signal

	2.3 Design Considerations
	2.3.1 Ground Plane Considerations
	2.3.2 XIN Core Clock Considerations
	2.3.3 VID_CLK Video Clock Considerations
	2.3.4 AVDD Power Supply Considerations

	2.4 Package Dimensions
	2.5 Ordering Information
	2.6 Solder Profile
	2.7 Storage Recommendations

	Chapter 3. Specifications
	3.1 Electrical Characteristics
	3.1.1 Absolute Maximum Ratings
	3.1.2 Operating Conditions
	3.1.3 DC Characteristics
	3.1.4 Standby Power
	3.1.5 Power-Up and Power-Down Sequence

	3.2 AC Timing
	3.2.1 MG1264 Codec Host Interface Timing
	3.2.2 Video Interface AC Timing
	3.2.3 Audio Interface AC Timing
	3.2.4 SDRAM Interface AC Timing

	Chapter 4. MG1264 Codec Host Interface
	4.1 MG1264 Codec Host Interface Physical Description
	4.1.1 Connection Diagram
	4.1.2 MG1264 Codec Host Interface Signals

	4.2 MG1264 Codec Host Interface Logical Description
	4.2.1 System Control
	4.2.2 Compressed Data I/O Through the MG1264 Codec Host Interface
	4.2.3 Interrupts
	4.2.4 DMA Channels
	4.2.5 Latency Considerations

	4.3 Read/Write Timing
	4.3.1 Read Timing Sequence in Read Enable Mode
	4.3.2 Write Data Timing in Write Enable Mode
	4.3.3 Read Timing Sequence in Read/Write and Enable Mode
	4.3.4 Write Data Timing in Read/Write and Enable Mode

	4.4 DMA Transfers
	4.4.1 Pacing using the H_DMARQ Pin
	4.4.2 Pacing using the EMFifoRdReq/EMFifoWrReq Bits
	4.4.3 Pacing using the H_WAIT Pin

	4.5 MG1264 Codec Register Indirect Access
	4.5.1 Reading a Register
	4.5.2 Writing a Register

	4.6 Programming the MG1264 Codec Host Interface
	4.6.1 Register Maps

	4.7 Register Definitions
	4.7.1 Configuration, Data, and Status Registers
	4.7.2 Peripheral Interrupt Registers
	4.7.3 Clock and Configuration Registers
	4.7.4 Accessing External Memory Port 1 and Port 2
	4.7.5 Reading the MG1264 Codec’s External Memory
	4.7.6 Checking the FIFO Status
	4.7.7 External Memory Access Registers
	4.7.8 Bitstream Write FIFO Access Registers

	Chapter 5. Video Interface
	5.1 Video Interface Usage
	5.1.1 Interlaced ITU-R BT.656 Video Interfaces
	5.1.2 Progressive Video Interface in Free-run Mode

	5.2 Video Interface Signals
	5.3 Video Interface Timing
	5.4 Working With CMOS Sensors
	5.5 Video Pre-Processing Filters
	5.5.1 Vertical Impulse Noise Reduction
	5.5.2 Horizontal Impulse Noise Reduction
	5.5.3 Horizontal Edge-Preserving Noise Reduction Filter
	5.5.4 Motion Adaptive Temporal Recursive Filter

	Chapter 6. SDRAM Interface
	6.1 The SDRAM Interface
	6.2 Mobile SDRAM Features
	6.2.1 Voltage Operation (3.3V and 2.5V)
	6.2.2 Temperature Compensated Self-Refresh
	6.2.3 Deep Power Down
	6.2.4 Drive Strength Control

	Chapter 7. Audio Interface
	7.1 Audio Interface Overview
	7.2 Audio Interface Signals
	7.3 I2S Audio Waveforms
	7.4 Left Justified Audio Waveform
	7.5 16, 20, 24, 32-Bit Left Justified Audio Waveform

	Chapter 8. Bringing up the MG1264 Codec
	8.1 Decoder Bringup
	8.1.1 Phase 1: Decoding a Small Elementary NAL Video Stream
	8.1.2 Phase 2: Decoding a Large Elementary NAL Video Stream with Software Flow Control
	8.1.3 Phase 3: Decoding A QBOX Stream

	8.2 Encoder Bringup
	8.2.1 Phase 1: Recording a Small Elementary NAL Video Stream
	8.2.2 Phase 2: Recording a Large Elementary NAL Video Stream with Software Flow Control
	8.2.3 Phase 3: Recording a QBOX Stream

	Chapter 9. Firmware Loader
	9.1 Firmware Image Format
	9.1.1 Header
	9.1.2 Global Pointer Block
	9.1.3 Pre-download CSR
	9.1.4 Firmware
	9.1.5 Uninitialized Data
	9.1.6 End

	9.2 Sample Code

	Chapter 10. Application Programming Interface
	10.1 Host Interface and the Hardware Abstraction Layer
	10.1.1 QHAL_EM
	10.1.2 QHAL_MBOX
	10.1.3 QHAL_BS

	10.2 Media Processor Firmware Programming Model
	10.2.1 Control Objects
	10.2.2 Commands, Events, and Inter-Processor Communications
	10.2.3 Global Pointer Block
	10.2.4 Sending a Command to the Firmware
	10.2.5 Reading Events from the Media Processor Firmware
	10.2.6 Subscribing and Unsubscribing to Events
	10.2.7 Configuration Parameters
	10.2.8 Status Block

	10.3 Bitstream Formats
	10.3.1 QBox Bitstream Format
	10.3.2 Elementary Video
	10.3.3 MP4

	10.4 System Control Interface Object
	10.4.1 Overview
	10.4.2 Object ID
	10.4.3 State Machine
	10.4.4 Commands
	10.4.5 OSD Commands
	10.4.6 Double-Buffered Configuration Commands
	10.4.7 Single-Buffered Configuration Parameters
	10.4.8 Double-Buffered Output Parameters
	10.4.9 Events

	10.5 Status Block
	10.5.1 heartbeat
	10.5.2 droppedEvents
	10.5.3 evReadWritePointers
	10.5.4 pendingEvent

	10.6 H.264/ACC Decoder Interface Object
	10.6.1 Overview
	10.6.2 Logical View of the AV Decoder
	10.6.3 AV Decoder Features
	10.6.4 Sending Encoded Bitstreams to the Decoder
	10.6.5 Object ID
	10.6.6 State Machine
	10.6.7 Commands
	10.6.8 Configuration Parameters
	10.6.9 Decoder Configuration
	10.6.10 Events
	10.6.11 Status Block
	10.6.12 Trick Play Techniques

	10.7 H.264/AAC Encoder Interface Object
	10.7.1 Overview
	10.7.2 Logical View of the AV Encoder
	10.7.3 AV Encoder Features
	10.7.4 Overview of the Video Encoding Process
	10.7.5 Receiving Encoded Bitstreams from the Encoder
	10.7.6 Controlling the Video Bitrate
	10.7.7 Using the Text Overlay
	10.7.8 Object ID
	10.7.9 State Machine
	10.7.10 Commands

	10.8 Single Buffered Configuration Parameters
	10.9 Double-Buffered Video Encoder Parameters
	10.10 Double-Buffered Video Input Parameters
	10.11 Double-Buffered Video Rate Control Parameters
	10.12 Events
	10.12.1 Average Motion Field

	10.13 Status Block

	Chapter 11. Sample Host Code Architecture
	11.1 Common Types and Definitions
	11.2 Global Variables
	11.3 Initialization
	11.4 sendCommand function
	11.5 EventHandler Thread
	11.6 BitstreamRecord thread
	11.6.1 Writing a New Record Request to the Queue
	11.6.2 Reading a New Record Request from the Queue
	11.6.3 BitstreamRecord Thread Procedure

	11.7 BitstreamPlayback thread
	11.7.1 Writing a new playback request to the queue
	11.7.2 Reading a New Playback Request from the Queue
	11.7.3 BitstreamPlayback Thread Procedure

	11.8 Sample Usage from UI thread
	11.8.1 Simple Playback Session
	11.8.2 Sample Record Session

	11.9 Missing Features

	Appendix A. MG1264 Codec H.264 and AAC Compliance
	A.1 MG1264 Codec Encoder Compliance
	A.1.1 MG1264 Codec H.264 Encoder Compliance

	A.2 MG1264 Codec AAC Encoder Compliance
	A.2.1 MG1264 Codec Decoder Compliance
	A.2.2 MG1264 Codec H.264 Decoder Compliance

	A.3 MG1264 Codec AAC Decoder Compliance
	A.3.1 TNS
	A.3.2 HE-AAC support

	Appendix B. Errata to the MG1264 Codec User Manual
	B.1 Phase Lock Loop Restrictions
	B.2 Minimum Picture Size

	Revision History

