
Using the
Lumos™

SSR
Controllers

ii

RISK OF FIRE, ELECTROCUTION, SERIOUS INJURY OR DEATH!

This circuit design, including but not limited to any associated plans,
schematics, designs, board layouts, documentation, and/or components, is
EXPERIMENTAL and for EDUCATIONAL purposes only. It is not a finished
consumer-grade product. It is assumed that you have the necessary un-
derstanding and skill to assemble and/or use electronic circuits.

Proceed ONLY if you know exactly what you are doing, understand the
proper procedures for working with the high voltage present on the com-
ponents and PC boards, and understand that you do so ENTIRELY AT YOUR
OWN RISK.

The author makes NO representation as to suitability or fitness for any
purpose whatsoever, and disclaims any and all liability or warranty to the
full extent permitted by applicable law.

Edition 2.1, for Lumos controllers with ROM version 3.0.
Copyright © 2013, 2014 by Steven L. Willoughby, Aloha, Oregon, USA. All
Rights Reserved. This document is released under the terms and con-
ditions of the Creative Commons “Attribution-NoDerivs 3.0 Unported” li-
cense. In summary, you are free to use, reproduce, and redistribute this
document provided you give full attribution to its author and do not alter it
or create derivativeworks from it. See http://creativecommons.org/licenses/by-
nd/3.0/ for the full set of licensing terms.

Contents

Contents iii

List of Figures v

1 Introduction 1
1.1 Intended Audience . 1
1.2 Limitation of Warranty . 1
1.3 How to Use this Manual . 2
1.4 The Name of the Game . 2
1.5 Getting Additional Help . 2
1.6 DMX Compatibility Warning 2

2 Safety Information 5
2.1 Small Part Danger . 5
2.2 Hazardous Voltage . 5
2.3 Electrostatic Discharge (ESD) Warning 6
2.4 Circuit Loading . 6

3 Overview of the Lumos Controller Models 7
3.1 48-Channel Controller . 7
3.2 48-Channel Front Panel . 8
3.3 24-Channel AC Relay . 9
3.4 24-Channel DC Controller/Relay 10
3.5 4-Channel DC Controller . 11

4 Operating the Board Controls 13
4.1 Resetting the Board . 13
4.2 Entering Configuration Mode 13
4.3 Running a Test Pattern . 14
4.4 Restoring to Factory Settings 15

5 Configuring the Board 19
5.1 Read-Only Mode . 20
5.2 Setting the Device Address 20
5.3 Setting the Device Speed . 21

iii

iv CONTENTS

5.4 Sensors . 21
5.5 Setting a Lumos Controller to Use DMX512 23
5.6 Canceling Configuration Mode 24

6 Creating Programmed Sequences 25

7 Communication Protocol Details 27
7.1 0x0–0x6: Common Commands 29
7.2 0x700–0x71f: Extended Commands 31
7.3 0x720–0x73f: Reserved . 38
7.4 0x740–0x77f: Configuration-Mode Commands 39
7.5 Firmware Update Protocol 42

8 DMX512 Command Structure 47

9 Theory of Operation 49
9.1 Phase Offset . 51
9.2 Output Relay Circuits . 54

Diagnostic Codes 55
Decoding LED Patterns . 55

Lumos CLI Command Manual Entries 59
NAME . 60

Troubleshooting 75

Glossary 77

Acknowledgements 81

Colophon 83

List of Figures

3.1 Lumos 48-Channel Controller 8
3.2 Lumos 48-Channel Front Panel 9
3.3 Lumos 24-Channel AC Relay 9
3.4 Lumos 24-Channel DC Controller/Relay 10
3.5 Lumos 4-Channel DC Controller 11

4.1 Resetting a 4-Channel DC Lumos Board Via Jumper on J2-2 and
J2-3 . 14

4.2 Test-mode Channel Indicators 16

7.1 Examples of Escaped 8-bit Data Values 29
7.2 0x71f [reply] Query Response from Lumos Controller 34
7.3 Firmware Update Protocol Response Codes 45

8.1 DMX Packet . 48

9.1 Duty Cycles of Channel Logic Drive Outputs 50
9.2 Half-AC Cycle Divided into 260 Slices 51
9.3 Duty Cycles of Logic (red) and DC SSR Outputs (blue) 52
9.4 Duty Cycles of Logic (red) and AC SSR Outputs (blue) 53
9.5 Cycle Timing with Phase Offset 53
9.6 Cycle Timing with No Phase Difference 54

A.1 Diagnostic LED Patterns . 56
A.2 Internal Fault Condition Codes 57
A.3 Key to LED Patterns . 57
A.4 Error Condition Codes Reported Via Query Command 58

v

C
h

a
p

te
r

1
Introduction

Congratulations on joining the many computer-controlled Christmas
light enthusiasts, theatrical lighting technicians, electronics hobby-
ists, and home automation innovators who are experimenting with

new ways to have computers control lights and other electronic devices.
This manual details the software controls implemented by the Lumos

controllers and the communication protocols they use with the host PC.

1.1 Intended Audience

This is an “advanced” level do-it-yourself electronic circuit project. It is
not an off-the-shelf consumer-ready product. It is only designed for edu-
cational and experimental use by experienced hobbyists and professionals
who possess the skill to construct electronic circuits, to understand how
they function, troubleshoot problems with them, and to use them safely.

This manual provides basic usage and configuration instructions suit-
able for all users of Lumos controllers.

Some of the information in this manual gives a level of technical detail
suited to advanced users and software developers who need to understand
the workings of Lumos controllers to write applications which interace with
them.

1.2 Limitation of Warranty

Since this is a do-it-yourself project, the quality of the final product, and
whether it functions as intended, is largely a result of your own efforts in

1

2 CHAPTER 1. INTRODUCTION

building it. As such, we cannot offer to troubleshoot, repair, or replace a
board we did not assemble for you. Accordingly, these instructions, and
all accompanying plans, schematics, software, hardware, and other project
materials are provided to you “AS-IS” at no cost, as a courtesy between DIY
hobbyists with NO WARRANTY of any kind expressed or implied. If you pro-
ceed to build and/or use this unit, you do so ENTIRELY AT YOUR OWN RISK.

If you purchased hardwarematerials from us (such as a PC board or pro-
grammed controller chip), we will—at our sole discretion—replace, repair,
or refund the cost of those materials if they were defective in manufacture
as shipped to you, up to 90 days from the date they were shipped to you,
but are not liable for damage caused by your handling or assembly of the
unit. Otherwise, we make no representation of suitability or fitness for any
particular purpose and disclaim all other warranty or liability of any kind
to the full extent permitted by law.

1.3 How to Use this Manual

Start with the information in the first part of the manual to learn how to
operate and configure your Lumos controller, and how to use the host PC
to alter its configuration settings.

If you need to koow the low-level details concerning how the board com-
municateswith the PC, continue reading themore advancedmaterial which
comprises the remainder of this manual.

1.4 The Name of the Game

The name “Lumos” is a combination of lumen, the Latin word for “light,”
and the initial letters of “Orchestration System.” Hence, “Light Orchestra-
tion System” which is the most common application for which the Lumos
hardware and software are used—running computerized lighting displays.

1.5 Getting Additional Help

The product website at www.alchemy.com/lumos contains additional docu-
mentation, pointers, hints, and tips to assist you further. If that doesn’t
answer all your questions, there is an online forum where you may submit
questions for help.

1.6 DMX Compatibility Warning

These boards do not support the DMX512 protocol, although we have exper-
imented with this as a feature. As such, the firmware includes a “DMX512
mode” which the board and accompanying software will recognize. How-
ever, this is still experimental and does not yet function enough for actual
production use. While this feature may be ready for use in a future upgrade

1.6. DMX COMPATIBILITY WARNING 3

to these boards, at present the Lumos boards will only work in native Lu-
mos (not DMX512) mode.

Any and all references in the Lumos manuals to “DMX” modes
should be regarded as describing experimental features not yet
ready for actual production use.

C
h

a
p

te
r

2
Safety Information

Before you use your Lumos controller, please take the time to carefully
read the following safety precautions. Failure to follow this advice
could result in death or serious injury, damage to the Lumos con-

troller unit, and/or damage to the other devices plugged into the controller.

2.1 Small Part Danger

This board contains small parts which could pose a choking hazard to small
children. This product is not a toy and is not intended for use by children
in any circumstance. The small parts on the product can be swallowed by
children under 4 years of age. Keep out of reach of children.

2.2 Hazardous Voltage

Exercise care when working with any electrical system, including one such
as the Lumos DC controllers (even though in theory they deal with low volt-
ages). The power supplies of the loads plugged into the Lumos controller,
and even the power loads being controlled, may present a shock hazard
if not wired and handled using standard safety protocols. Never touch or
work with live circuits. Always disconnect the power source before working
on your Lumos controller.

When working with loads outdoors, be sure all supplies are plugged into
GFIC-protected circuits.

5

6 CHAPTER 2. SAFETY INFORMATION

2.3 Electrostatic Discharge (ESD) Warning

Many of the components used in this project are sensitive to static electric-
ity. Always use a proper ESD-safe work environment when handling them,
or these parts may be permanently damaged. If a part is damaged in this
way, it is impossible to tell by looking at the part, and you won’t necessarily
feel the static discharge which caused the damage. Never take the risk of
handling sensitive components without ESD protection in place.

These parts include all transistors (Q0–Q23), voltage regulators (U6–
U8 and U11), diodes (D0–D11), and integrated circuits (U0–U5, U9–U10,
and U12–U13).

2.4 Circuit Loading

Always respect themaximum voltage and current capacity of the board and
yourwiring. Overloading any of thesemay result serious injury, death, fire,
and/or severe damage to any or all of the devices in use.

Each block of eight controlled loads may not exceed 10A total for the
block. Each single output channel may not exceed 5A. These should be
considered absolute maximum tolerances. The board was designed to op-
erate at sustained levels below those limits.

Also note that the Lumos output circuits were designed to control simple
resistive loads such as incandescent lights. They are not appropriate for all
kinds of loads. Some inductive loads (for example, electromagnetic relays
and motors) may require a protective “snubber” circuit which would be a
custom modification to the Lumos circuit requiring qualified engineering
work.

Do not plug any load into a Lumos board which cannot be dimmed.

C
h

a
p

te
r

3
Overview of the Lumos Controller

Models

There are currently five different hardware projects which are part of
the Lumos family of controllers, which are the subject of this man-
ual:

3.1 48-Channel Controller

This board controls 48 channels of outputs but does not contain any actual
relay circuits of its own. The TTL-level outputs are designed to be sent
directly to a 24-channel relay board (AC, DC, or one of each), although of
course they could be connected to another compatible circuit.

The controller supports only half-duplex RS-485 communications. It
occupies a single address for the Lumos command protocol. When in DMX512
mode, it consumes 48 slots beginning at an arbitrarily-configured starting
slot number.

This board contains its own power supply. It accepts a 120V AC input
(with provision for an optional power switch built-in). This power source
provides the +5V DC supply for the controller itself as well as the logic-side
components of the relay boards to which it is connected. The controller also
uses this AC supply to pick up the power waveform’s zero-crossing point for
AC relay board dimmer synchronization. This means that it is necessary
that the AC power supplied to the controller be in phase with the power
supply to the relays’ loads (or exactly 180◦ out of phase). This should be
the case in any standard residential or commercial office environment.

7

8 CHAPTER 3. OVERVIEW OF THE LUMOS CONTROLLER MODELS

Figure 3.1: Lumos 48-Channel Controller

Although a few prototypes of this board have been built and used suc-
cessfully, it has not yet been released as an open-hardware project. We may
do so in the future, possibly with an enhanced circuit design.

3.2 48-Channel Front Panel

Designed to work with the Lumos 48-Channel controller, this panel is con-
nected to the controller’s outputs in parallel with the relay boards. It pro-
vides an LED for each output channel, allowing you to see at a glance the
activity and state of all outputs. Additionally, it has LEDs which show that
power is being sent to the relays, cable check LEDs to show that the cables
are plugged in the entire length of the network, and serial I/O status indi-
cators. It allows for the controller’s status LEDs to be displayed on the front
panel as well.

This board also contains a pair of RS-232-to-RS-485 converters@RS-485
converters, one full-duplex and one half-duplex. These may be switched
between two modes: one where the host PC is always holding the bus to
transmit constantly (or at least at will), and the other where the PC can
turn the transmitter on or off by changing the state of the DTR line.

3.3. 24-CHANNEL AC RELAY 9

Figure 3.2: Lumos 48-Channel Front Panel

Figure 3.3: Lumos 24-Channel AC Relay

Although a few prototypes of this board have been built and used suc-
cessfully, it has not yet been released as an open-hardware project. We may
do so in the future, possibly with an enhanced circuit design.

3.3 24-Channel AC Relay

This board controls 24 output channels of 120VAC, arranged in three sepa-
rate blocks of 8 channels. Each block is separately powered and completely
isolated from the other blocks and from the low-voltage logic side of the

10CHAPTER 3. OVERVIEW OF THE LUMOS CONTROLLER MODELS

Figure 3.4: Lumos 24-Channel DC Controller/Relay

board (which connects to the controller). Each block is designed to supply
up to 5A per channel, with a maximum of 8A total per block at any given
time.

Although a few prototypes of this board have been built and used suc-
cessfully, it has not yet been released as an open-hardware project. We may
do so in the future, possibly with an enhanced circuit design.

3.4 24-Channel DC Controller/Relay

This board controls 24 output channels for low-voltage DC loads, arranged
in three separate blocks of 8 channels. Each block is separately powered
and completely isolated from the other blocks and from the logic side of the
board (i.e., the on-board controller or connection to an external controller).
Each block may be powered with +5V DC or a voltage from +8 to +24V DC
and is designed to supply up to 5A per channel, with a maximum of 10A
total per block at any given time.

Unlike the AC relay board described above, this may be constructed as
a relay-only board (and attached to something like the Lumos 48-Channel
controller) or as a stand-alone controller itself. In the latter configuration,
it uses one address for Lumos-protocol communication, or 24 DMX512 slots.
Communications options (selected permanently at the time the controller
is assembled) include RS-232, full-duplex RS-485, and half-duplex RS-485.

3.5. 4-CHANNEL DC CONTROLLER 11

Figure 3.5: Lumos 4-Channel DC Controller

By sacrificing one or more of the on-board diagnostic LEDs, 1–4 input
signals may be monitored by the controller, triggering user-programmed
actions. This allows for things like a light sensor to trigger nighttime light-
ing which turns off in the daytime, or to announce the arrival of guests
when a door sensor is opened.

3.5 4-Channel DC Controller

This board controls four output channels for low-voltage DC loads. The
controlled channel block is separately powered and completely isolated from
the logic side of the board It may be powered with +5V DC or a voltage
from +8 to +24V DC and is designed to supply up to 5A per channel, with
a maximum of 10A total at any given time.

It uses one address for Lumos-protocol communication, or 4 DMX512
slots. Communications options (selected permanently at the time the con-
troller is assembled) include full- and half-duplex RS-485.

By sacrificing one or more of the on-board diagnostic LEDs, 1–4 input
signals may be monitored by the controller, triggering user-programmed
actions. This allows for things like a light sensor to trigger nighttime light-
ing which turns off in the daytime, or to announce the arrival of guests
when a door sensor is opened.

C
h

a
p

te
r

4
Operating the Board Controls

The lumos controllers include two front-panel buttons labeled “OP-
TION” and “RESET.” This chapter will describe how to use these but-
tons to control the boardmanually. Wewill assume the RESET button

is red and the OPTION button is green. Depending on components chosen
when building the board, these colors may vary.

4.1 Resetting the Board

The red RESET button is connected directly to themicrocontroller’sMCLR in-
put. As long as the button is pressed, the CPU will be halted. No operations
of the controller will be active at this time.

When the button is released, the CPU will reboot as if powered up. This
restores the ability to enter configuration mode, resets all output channels
to be fully off, clears all faults and error conditions, and re-initializes all
the hardware and software components.

Four-channel boards don’t include this button. To reset one of these
boards, insert a jumper across pins 2–3 of J2 as shown in Figure 4.1. This
will halt the board. Then remove the jumper, which will reset and restart
the board.

4.2 Entering Configuration Mode

Some functions are only enabled when the controller is in a special “config-
uration” mode1 to prevent potentially harmful effects such as accidentally

1In some places in other documentation, including the controller’s firmware source code,
this is also referred to as “privileged mode”. This term is deprecated. The preferred term is

13

14 CHAPTER 4. OPERATING THE BOARD CONTROLS

Figure 4.1: Resetting a 4-Channel DC Lumos Board Via Jumper on J2-2
and J2-3

changing the device’s address, baud rate, or other configuration parame-
ters.

To initiate configuration mode, press and hold the green OPTION but-
ton until the LEDs start flashing rapidly (approximately 2 seconds). Then
release the OPTION button until the LEDs fade to a state where the green
LED(s) are flashing rapidly.2

The four-channel boards do not have OPTION and RESET buttons directly
(unless off-board buttons were used, connected to the board at J2). These
boards are controlled by inserting jumpers onto header J2, as follows:

1. Insert a jumper across pins 5–6 of J2.
2. Wait until the LEDs start flashing rapidly (approximately 2 seconds).
3. Remove the jumper.
The board is now in configuration mode and can be instructed by the

host PC to change critical settings.
To leave configurationmode, the host PCmay issue a command to cancel

the mode, or you may press the red RESET button (which also has the effect
of rebooting the system). (For four-channel boards, follow the instructions
in the previous section to reset the board.)

4.3 Running a Test Pattern

When setting up a board in the field, it may be helpful to manually have
the board turn on its output channels as a test that everything is connected
and working properly.
now “configuration mode.”

2In normal run mode, the green LED(s) are slowly fading up and down.

4.4. RESTORING TO FACTORY SETTINGS 15

To do this, first place the board in configuration mode as described in
Section 4.2. After the green light is flashing rapidly and the others are
off, press and hold the OPTION button again for another 2 seconds, then
release. (For four-channel boards, insert and remove the jumper across
pins 5–6 again, leaving the jumper in place for about 2 seconds, as you did
to place the board in configuration mode.)

The red LEDwill now be slowly fading up and down (instead of the green
LED doing that as it does in normal run mode). The controller will turn off
all output channels, and turn channel #0 on fully.

After a one-second delay, channel #0 will turn off and #1 will turn on.
This will continue indefinitely, each channel turning on in its turn each
second. The panel LEDs will display the currently-active channel number
in binary. Note that 24-channel boards only show the least significant 3
bits, so you will see which channel within the block (0–7) is active, but not
which block. 48-channel controllers show the entire channel number. See
Figure 4.2 for a reference chart of the output codes. Four-channel boards
use the same display pattern as the 24-channel boards.

If theOPTION button is pressed briefly, the pulsing red LED freezes (steady
on) and the cycle pauses on the current output channel. Pressing the OP-
TION button again resumes the cycle. Four-channel boards may be paused
by briefly inserting and then removing a jumper across pins 5–6 of J2.

4.4 Restoring to Factory Settings

If the board is unresponsive and cannot be reconfigured via the host PC (for
example, if you configured it to use a baud rate your host PC can’t match),
follow these steps to reset the device to its factory default settings. Dis-
connect any input sensors and power supply control wires from the Lumos
controller before beginning.

24-Channel Boards
1. Turn off the Lumos controller or press and hold the red RESET button.

2. Install a jumper to short pins 4 and 5 of J11 (labeled “ICSP” on the
board).

3. Power on the Lumos controller or release the RESET button.

4. When the red, green, and yellow LEDs flash rapidly, pull the jumper
out.

4-Channel Boards
1. Turn off the Lumos controller or insert a jumper across pins 2–3 of

J2.

2. Install a jumper across pins 4–5 of J2.

16 CHAPTER 4. OPERATING THE BOARD CONTROLS

Channel48-ch 24-ch Channel48-ch 24-ch

Channel #0

Channel #1

Channel #2

Channel #3

Channel #4

Channel #5

Channel #6

Channel #7

Channel #8

Channel #9

Channel #10

Channel #11

Channel #12

Channel #13

Channel #14

Channel #15

Channel #16

Channel #17

Channel #18

Channel #19

Channel #20

Channel #21

Channel #22

Channel #23

Channel #24

Channel #25

Channel #31

Channel #32

Channel #39

Channel #40

Channel #46

Channel #47

Figure 4.2: Test-mode Channel Indicators

4.4. RESTORING TO FACTORY SETTINGS 17

3. Power on the Lumos controller or remove the jumper from pins 2–3.

4. When the red, green, and yellow LEDs flash rapidly, pull the jumper
off pins 4–5.

If those steps were carried out exactly as described, the controller will
reboot with the factory settings in place. This means, among other things,
it will be at address 0, set to use Lumos commands only (not DMX512), and
will communicate at 19,200 baud.

Failure to perform each step at the right time will prevent the factory
reset from occurring.

C
h

a
p

te
r

5
Configuring the Board

There are a number of settings which can be made on the Lumos con-
trollers. Generally, this is accomplished by using the lumosctl com-
mand-line program on the host PC. The basic configuration options

include such things as setting the device address, communication speed,
etc. These can be set directly on the command line with lumosctl.

In the following examples, the command-line prompt is represented by
a ‘$’ character. Text that is typed literally as shown in printed in fixed-
width type, while values which are to be replaced with a value appropriate
for your usage are printed in 〈Italics〉 in angle brackets (the angle brackets
are not actually typed, however).

For every command, you need to include three values:

• The serial port on the host PC to which the Lumos controller is at-
tached. This is given to lumosctl’s ––port option, as “––port=〈name〉”.
Onmany systems, it is enough to say “––port=0” or “––port=1” to spec-
ify the first or second “standard” port. A specific port name may be
given, such as “––port=COM1” or “––port=/dev/ttys0”.

• The speed (baud rate) at which to communicate with the Lumos con-
troller. This is the speed the controller is currently using, not the one
you want to change it to. This is given as “––speed=〈rate〉”, such as
“––speed=19200”.

• The Lumos controller’s address, given as “––address=〈addr〉”. For
example, “––addr=0”.

If you aren’t sure what device addresses exist on the serial line, you can
have lumosctl probe to discover them all:

19

20 CHAPTER 5. CONFIGURING THE BOARD

$ lumosctl --port=COM1 --speed=19200 --probe
Probe discovered 2 devices:
Address 00: lumos48ctl
Address 04: lumos24dc
$ _

If that doesn’t discover everything you thought it should, you can add
––verbose to the command to see more detail. Adding more and more
––verbose options increases the amount of information printed. The de-
fault port is the “first” standard port, the default speed is 19,200 bits per
second, and the default address is 0.

If you want to print a full report of the state of a device, include the
––report option:

$ lumosctl --port=COM1 --speed=19200 --address=0 --report

The ––port, ––speed, and ––address options assume a reasonable de-
fault value if they were not specified. For the sake of simplicity, we’ll as-
sume from here on that you either accept these defaults or are specifying
them to have the values you need; we won’t explicitly show them in the
examples that follow.

5.1 Read-Only Mode

Sometimes you will use the Lumos board in situations where you can’t re-
ceive a reply from the device. This may, for example, happen if you use an
RS-485 converter which only transmits data, but doesn’t receive any back,
or if there is a problem with your PC trying to control the data direction on
a half-duplex network.

In this case, use the ––read–only option to lumosctl. This suppresses
the features of lumosctl which monitor the Lumos board’s configuration
and current state. Normally, this helps confirm that the requested changes
took effect, but if your PC is unable to receive information back from the
Lumos board, lumosctl won’t be able to work without the ––read-only op-
tion.

5.2 Setting the Device Address

Set a new address by giving ––set–address=〈newaddr〉. Don’t forget to in-
clude the device’s current address with ––address=〈oldaddr〉. For example,
to change a board from address 0 to 12:

5.3. SETTING THE DEVICE SPEED 21

$ lumosctl --address=0 --set-address=12

Once the address is set, you’ll need to use that value for ––address from
that point forward.

5.3 Setting the Device Speed

Set a new speed by giving ––set–baud-rate=〈newspeed〉. Don’t forget to
include the device’s current speed with ––speed=〈oldspeed〉, so it has any
hope of seeing the command to change it. For example, to change a board
from 19200 to 57600 baud:

$ lumosctl --speed=19200 --set-baud-rate=57600

Once the speed is set, you’ll need to use that value for ––speed from that
point forward.

5.4 Sensors

If your board is built to accommodate sensor inputs, you need to set the
EEPROM settings so the controller stops driving those lines as outputs and
starts watching them as inputs.

To do this, use the ––dump–configuration=〈file〉 option. This dumps the
device’s configuration state into a text file on the host PC.

$ lumosctl --dump-configuration=lumos_board.cfg

Looking in the lumos_board.cfg, find a section beginningwith the stanza
tag “[lumos_device_settings]”. There is a field “sensors=〈list〉” which
should contain a list of all the sensors configured as inputs.

So if we had lines A and C wired up to sensor inputs instead of LED
outputs, we need to change this line in the lumos_board.cfg file to read:

[lumos_device_settings]
sensors=ac

Leave the other fields alone, just as they are.
The following describes a feature of the Lumos controller which

is planned for a future release but not implemented today. While
this description follows the expected behavior the Lumos board

22 CHAPTER 5. CONFIGURING THE BOARD

will have when that feature is actually available, it is still under
development and subject to change.

For each sensor, we can arrange for an action to take place every time
one of them activates. The actions taken are set up as “Programmed Se-
quences” (see Chapter 6). Assuming that the actions we want to carry out
are already programmed and loaded as described in that chapter, we asso-
ciate those sequences with sensor inputs by introducing a new section in
the lumos_board.cfg file called [lumos_device_sensor_〈x〉], where 〈x〉 is
the sensor letter (or we edit that section, if it’s already in the file).

For example, to set sensor A to play sequence 100 when it first activates,
then continue to loop sequence 101 as long as the sensor remains active,
then finally play sequence 102 as soon as the sensor stops being active, and
assuming we want “active” to mean when the signal on that input is at a
logic 1 level (active high), we would put this in the file:

[lumos_device_sensor_a]
enabled=yes
mode=while
setup=100
sequence=101
terminate=102
active_low=no

If we want sensor C to be active low, and trigger sequence 42 one time
when it activates, our file needs this section added to it:

[lumos_device_sensor_c]
enabled=yes
mode=once
sequence=42
active_low=yes

Once the file is set up with all the configuration changes you wish to
make, it may be loaded back to the board again with the ––load–config-
uration=〈file〉 option:

$ lumosctl --load-configuration=lumos_board.cfg

Assigning sequences to as sensor-triggered events may also be arranged
on the fly via the lumosctl program. The same effects could be performed
thus:

5.5. SETTING A LUMOS CONTROLLER TO USE DMX512 23

$ lumosctl --sensor=aw+:100:101:102 --sensor=co::42:

Note that configuring a sensor line as an input or output must be done
from the configuration file.

See Chapter 6 for complete details on how to create sequences and store
them into a Lumos controller. Full details on the operation of lumosctl in
this and other areas begins on page 59 in the appendices.

5.5 Setting a Lumos Controller to Use DMX512

The DMX512 support in Lumos is experimental and not expected to
work yet. If you wish to experiment further to refine this feature
for a future release of the Lumos firmware, contact the authorwith
your findings and recommendations.

Setting up the controller to be a DMX512 device is another task performed
via the configuration file (see Section 5.4 for instructions about how to dump
and load a configuration file).

First, get the current configuration settings into a file:

$ lumosctl --dump-configuration=lumos_board.cfg

In the [lumos_device_settings] section, add a new field “dmxchannel=〈c〉”,
where 〈c〉 is the starting slot number you wish the Lumos controller to use.
This will be channel #0 on this board.

To cause a 24-channel Lumos board to occupy DMX slots 200–247, this
would be:

[lumos_device_settings]
dmxchannel=200

Now download that configuration into the controller board:

$ lumosctl --load-configuration=lumos_board.cfg

If you want to change the board to be a Lumos-protocol board instead
of DMX512, just follow the same process, but delete the dmxchannel=〈c〉 line
completely before loading the configuration onto the Lumos board.

24 CHAPTER 5. CONFIGURING THE BOARD

5.6 Canceling Configuration Mode

When you’re finished configuring the controller board, you may use either
of these options:

$ lumosctl --disable-configuration-mode
$ lumosctl --forbid-configuration-mode

Either of these returns the board to normal runmode. The second goes a
step further, forbidding the board from going back into configuration mode
again, until the next time the board is reset or power cycled.

C
h

a
p

te
r

6
Creating Programmed Sequences

Stored programmed sequences are a planned feature for the Lu-
mos boards but is not yet implemented. This chapter will fully de-
scribe the programming environment when that feature is ready
for use.

25

C
h

a
p

te
r

7
Communication Protocol Details

The protocol used by lumos boards to receive commands is designed
to be compact (so as to conserve the number of bytes transmitted to
carry out common functions) while remaining simple and fast for the

controller to interpret. It is also designed so thatmultiple devices can share
the same RS-485 network connection. As long as they all implement this
basic protocol, they can safely avoidmisinterpreting each other’s commands
even if they do not know the details of each other’s command structure. This
includes, for example, Lumos boards at different revision levels. (There
are also more devices designed by the author which have very different
command sets but use a compatible protocol so they may peacefully coexist
with Lumos controllers on the same network.)

The protocol is essentially a stream of 8-bit bytes transmitted over an
asynchronous communication link such as RS-232 or RS-485. Commandsmay
consist of as little as a single byte, or could be an arbitrarily large number
of bytes long.

The first byte of a command always has this format:
01234567

1 〈cmd〉 〈addr〉

The most significant bit is always set. The next significant three bits,
〈cmd〉, specify the command being given to the device. The least signifi-
cant four bits, 〈addr〉, specify the address of the device which should act on
this command.

Any following data bytes in a multi-byte command always have their
most significant bit clear:

27

28 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

01234567

0 〈data〉

This suggests the following algorithm for devices listening to the data
stream, upon the receipt of each byte:

1. If bit 7 is set:

a) If I was in the middle of collecting data bytes for a command,
clearly the host has abandoned it and is beginning a new com-
mand, so I should abandon it too and return to normal passive
scanning mode.

b) If 〈addr〉 matches my address, interpret command code 〈cmd〉
and act upon it.

c) Otherwise, ignore this byte.

2. Otherwise:

a) If I was in the middle of collecting data bytes, collect this one too.
Act on the command when the last expected byte is received.

b) Otherwise, ignore this byte.

If more than eight commands are needed, we reserve command 7 as an
extended command, where the bits in the following byte are used:

01234567

1 1 1 1 〈addr〉
0 〈cmd〉

Note that where a value for 〈channel〉 is given in the commands that
follow, the protocol’s bitfield may allow for a greater number of channels
than the Lumos board actually has. For example, typically six bits are
allocated for channel numbers, giving a range of values of 0–63, but Lumos
boards are usually built to have 24 or 48 channels. If a command specifies
a 〈channel〉 value the board does not support, it will flag the command as
an error and ignore it.

If a binary value greater than 127 needs to be sent as part of a com-
mand packet, the following escape mechanism is used. Two byte values
are special:

0x7E The following byte will have its MSB set upon receipt.

0x7F The following byte will be accepted as-is without further interpreta-
tion. This means a literal 0x7E byte needs to be sent as 0x7F 0x7E,
and a literal 0x7F byte as 0x7F 0x7F.

See the examples in Figure 7.1.
In the command descriptions that follow, we will show the bytes sent or

received typographically, using the following notation:

7.1. 0X0–0X6: COMMON COMMANDS 29

Intended Value Transmitted Byte(s)
0x42 0x42
0x7D 0x7D
0x7E 0x7F 0x7E
0x7F 0x7F 0x7F
0x80 0x7E 0x00
0x81 0x7E 0x01
0xFD 0x7E 0x7D
0xFE 0x7E 0x7E
0xFF 0x7E 0x7F

Figure 7.1: Examples of Escaped 8-bit Data Values

• Binary bits are shown in fixed-width type: 0, 1.

• Decimal numbers are shown in normal type: 123.

• Hexadecimal numbers are shown in fixed-width type with a leading
0x: 0x42.

• Single-bit flags are shown in Italics as single-letter names: f .

• Multi-bit fields are shown in Italics with angle brackets: 〈speed〉.

7.1 0x0–0x6: Common Commands

With the command code embedded in the packet’s initial byte, these com-
mands represent the most commonly used features of the Lumos boards,
thereby using the minimum number of bytes to transmit over the wire,
possibly even a single byte for the entire command.

0x0: Blackout
01234567

1 0 〈addr〉

Immediately turns all output channels completely off.

0x1: Channel On/Off
01234567

1 1 〈addr〉
0 s 〈channel〉

Turns output 〈channel〉 fully on (s=1) or off (s=0).

30 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

0x2: Set Channel Output Level
01234567

1 2 〈addr〉
0 h 〈channel〉
0 〈level〉

Sets the output level of the designated 〈channel〉 to a level in the range
0–255. The controller will simply switch the output to a steady off or on
state if the level is 0 or 255, respectively. Otherwise, it will use pulse width
modification to send a square wave pulse that will be on a fraction of the
time approximately equivalent to the value on a 0–255 scale. See Chapter 9
for more information about how this pulsing works and how it affects the
apparent brightness of lights controlled by that channel.

Note that the value of the output level is encoded as the combination of
the 〈level〉 field and the h bit, with h forming the least significant bit of the
resulting value:

01234567

〈level〉 h

This means is that for the sake of simplicity, you may choose to ignore
the h bit,1 and just use a 0–127 value for 〈level〉, and it will work (although
the steps between each level will be twice as large).

0x3: Bulk Channel Update
01234567

1 3 〈addr〉
0 〈channel〉

〈N〉−1
〈levels〉

hhhhhhhh
hhhhhhhh

 〈N〉 bytes
0 1 0 1 0 1 0 1

If more than a small number of channel levels are being updated at once,
it is more economical to send a single bulk update command with all their
new values in one payload, rather than initiate individual commands for
them.

1For best results, if you choose to do this, set h=0 unless setting the channel at maximum
brightness, in which case set h=1.

7.2. 0X700–0X71F: EXTENDED COMMANDS 31

This updates 〈N〉 channels starting with 〈channel〉 and continuing to
〈channel〉+〈N〉−1. Note that the value 〈N〉−1 is passed, not 〈N〉. This
allows for any number of channels from 1–256 to be updated (in theory; no
Lumos controller currently implements that many channels).

Note that it may be necessary to escape some of these data bytes so their
8-bit values conform to the overall communications protocol as described at
the beginning of this chapter (see p. 28 for details about this escape mech-
anism).

0x4: Ramp Channel Level
01234567

1 4 〈addr〉
0 d 〈channel〉
〈steps〉−1
〈time〉−1

Smoothly increases (d=1) the brightness of 〈channel〉 from its current value
until it reaches the maximum level, or decreases (d=0) it until it is fully off,
changing it in increments of 〈steps〉 each time, with a delay of 〈time〉/120
seconds between each change. Since the values passed are actually 〈steps〉−1
and 〈time〉−1, the effective ranges for each of those values is 1–256.

Note that it may be necessary to escape some of these data bytes so their
8-bit values conform to the overall communications protocol as described at
the beginning of this chapter (see p. 28 for details about this escape mech-
anism).

Unimplemented Single-byte Codes
01234567

1 5 〈addr〉
01234567

1 6 〈addr〉

Codes 5 and 6 are not implemented and are reserved for future Lumos
features.

7.2 0x700–0x71f: Extended Commands

Less frequently used commands use an extended code, where the initial
byte’s command code is 7 (all bits set), and the following byte gives the
remaining bits of the command. The first 32 such codes (extended code
values 0x00–0x1f) are set aside for normal-mode commands. Addition-
ally, response packets sent back to the host PC from the Lumos boards are

32 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

formatted the same as commands, with codes assigned starting at 0x71f,
counting down, while the commands start at 0x700, counting up. There is
a currently-unimplemented zone of codes in the middle which is reserved
for future use.

0x700: Sleep
01234567

1 7 〈addr〉
0 0
0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0

Put the controller into sleep mode. This signals the controlled load’s power
supply to shut down (whether the power supply is equipped or inclined to
obey that signal is another matter). The Lumos board may automatically—
even immediately—wake out of sleep mode if it is asked to supply an output
>0 on any of its channels.

0x701: Wake
01234567

1 7 〈addr〉
0 1
0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0

Wake up the controller out of sleep mode. This signals the controlled load’s
power supply to turn on (whether the power supply is equipped or inclined
to obey that signal is another matter). The Lumos boardmay automatically
go into sleep mode again if some period of time elapses during which it had
no output channels with levels >0.

0x702: Shut Down
01234567

1 7 〈addr〉
0 2
0 1 0 1 1 0 0 0

0 1 0 1 1 0 0 1

Shuts the controller completely down. After this command executes, the
Lumos board will shut down as many of its functions as possible, reducing

7.2. 0X700–0X71F: EXTENDED COMMANDS 33

its power consumption to the bare minimum. It will no longer respond to
any commands sent. The only way out of a shut down is to reset or power
cycle the board.

0x703: Query
01234567

1 7 〈addr〉
0 3
0 0 1 0 0 1 0 0

0 1 0 1 0 1 0 0

Reports the device status back to the host PC. On half-duplex networks,
the host PC needs to switch to listening mode immediately after sending
this command, although on full duplex networks, this is not necessary. The
response packet is shown in Figure 7.2.

The information contained in this packet describes several facts about
the Lumos unit:

Device identity: The reporting device’s current address 〈addr〉 on the
network; the ROM version (major revision 〈R1〉, minor 〈R0〉); the de-
vice’s 〈serial〉 number. Serial numbers consisting of all 0 or all 1 bits
(i.e., 0x0000 or 0xFFFF) are undefined (meaning that no serial number
was assigned to this unit, probably because it was built by a hobbyist
for their own use). Serial numbers ≥ 42000 are reserved for boards
created by the author. Numbers below 42000 are available for others
to assign. The device model code is in the 〈model〉 field. The follow-
ing values are currently defined for 〈model〉: 0=48-channel controller,
1=24-channel DC controller.

General Status: The q flag indicates if the device is in configurationmode
(q=1) or normal run mode (q=0); the s flag shows whether it is in sleep
mode (s=1); The X flag is true (X=1) if configuration mode is locked
out. If a sequence is currently running, the Q flag will be set and the
sequence number is in field 〈exec〉. The fault code from the last failed
command is contained in field 〈fault〉, which is a value in the range
0–16,383: (Executing sequences are a future feature not available at
this time.)

06713

〈fault1〉 〈fault0〉

A value of 0 means there was no fault detected since the last query
command (i.e., the fault condition is cleared by the query command).

34 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

01234567

1 7 〈addr〉
0 31
0 〈R1〉 〈R0〉

0 〈Sc〉 d 〈C1〉

0 〈C0〉

0 〈Sm〉 q s f
0 〈Sa〉 X P1

0 〈P0〉

0 〈E1〉

0 〈E0〉

0 〈M1〉

0 〈M0〉

0 Q 0 〈model〉

reserved
reserved
reserved
reserved
reserved

...


each sensor A–D

0 〈fault1〉
0 〈fault0〉
0 〈P′1〉
0 〈P′0〉
〈serial1〉
〈serial0〉

0 0 1 1 0 0 1 1

Figure 7.2: 0x71f [reply] Query Response from Lumos Controller

7.2. 0X700–0X71F: EXTENDED COMMANDS 35

Sensor information: Three values describe the sensor configuration and
state: 〈Sc〉 indicates the sensor lines configured as inputs (1) or as LED
outputs (0); 〈Sm〉 shows which sensor inputs are masked out (1) or are
being monitored (0); and 〈Sa〉 indicates which sensors are currently
reading a logic 1 or 0. In each case, the sensor lines are represented
by these bits in each field:

3456

A B CD

At this time, the only sensor information available is 〈Sc〉 and 〈Sa〉.
The others are anticipated for a future release of the ROM.

DMX512 configuration: The bit d indicates that the board is in normal Lu-
mos mode (d=0) or DMX512 mode (d=1). If in DMX512 mode, its starting
DMX channel is 〈C〉+1, which is a value in the range 1–512, sent in
two fields:

0678

〈C1〉 〈C0〉

Memory state: The f flag is true (f=1) if the sequence storage memory
overflowed when being sent a new program; The number of bytes of
EEPROM memory free for storage of permanent sequences is given by
the 〈E〉 field, while the bytes of available RAM memory for temporary
storage is in the 〈M〉 field. Each of these values is in the range 0–
16,383, sent as two fields:

06713

〈E1〉 〈E0〉

〈M1〉 〈M0〉

Operating parameters: The internal timing mechanism’s phase offset
value 〈P〉 is a number in the range 0–512, given by the combination
of two fields. For 48-channel units, the phase offset of the secondary
microcontroller is given in 〈P′〉.

0678

〈P1〉 〈P0〉

〈P′1〉 〈P′0〉

The following describes a feature of the Lumos controller which
is planned for a future release but not implemented today. While
this description follows the expected behavior the Lumos board
will have when that feature is actually available, it is still under
development and subject to change.

36 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

0x704: Define Sequence
01234567

1 7 〈addr〉
0 4
0 〈id〉

〈N〉−1
〈data〉

hhhhhhhh
hhhhhhhh

 〈N〉 bytes
0 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1

Downloads a new sequence 〈data〉 of 〈N〉 bytes in length into the Lumos
controller. This sequence will be known with the given 〈id〉. If a sequence
is stored as 〈id〉=0, it will be executed automatically whenever the Lumos
board is reset. It cannot explicitly be invoked by a command from the host
PC.

Sequences with 〈id〉 in the range 0–63 are stored in permanent EEPROM
memory and will remain in the controller even after a reset or power cycle.
Those with 〈id〉 in the range 64–127 are stored temporarily in RAM memory
and will be lost when the device resets.

0x705: Execute Stored Sequence
01234567

1 7 〈addr〉
0 5
0 〈id〉

Starts executing the stored sequence with the given 〈id〉. If another se-
quence was in progress, it is stopped. If 〈id〉=0, the current sequence is
stopped without starting a new one.

7.2. 0X700–0X71F: EXTENDED COMMANDS 37

0x706: Define Sensor Action
01234567

1 7 〈addr〉
0 6
0 o w e 〈id〉
0 〈pre〉
0 〈exec〉
0 〈post〉
0 0 1 1 1 1 0 0

Defines the action to be taken when the sensor 〈id〉 triggers. (〈id〉=0 is
sensor A, 〈id〉=1 is B, 〈id〉=2 is C, and 〈id〉=3 is D.) The sensor is triggered
on the rising edge if e=1, or the falling edge if e=0.

When that sensor is triggered, any currently executing sequence is stopped.
Then the sequence number 〈pre〉 is executed once. The exec sequence will
be executed one time if o=1, or repeatedly while the sensor continues to be
active if w=1; if neither of those bits is set, the sequence loops forever until
explicitly stopped.2 When the sensor is no longer triggering, 〈exec〉 plays
on until it completes, then 〈post〉 is run once.

Note that if another sensor triggers or an “Execute Stored Sequence”
command is run, it immediately stops the current sequence and all associ-
ated sequences. This may cause 〈post〉 to not execute.

0x707 Mask Sensors
01234567

1 7 〈addr〉
0 7
0 A B CD

Sets input sensor masks for the given sensors. If the mask value is 1, that
sensor is ignored. If the mask is 0, it is responded to normally.

0x708 Erase All Stored Sequences
01234567

1 7 〈addr〉
0 8
0 1 0 0 0 0 1 1

0 1 0 0 0 0 0 1

2The action if both bits are set is undefined.

38 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

All stored sequences are erased.

0x709 Forbid Configuration Mode
01234567

1 7 〈addr〉
0 9

Turns off configuration mode (if the board was in that mode at the time),
and prevents the board from going into configuration mode in the future.
Once the board is reset or power-cycled, it may again be placed into config-
uration mode.

This command is intended to replace command 0x774 (see p. 41), since
it can be used regardless of whether the Lumos board is already in con-
figuration mode at the time. This makes it a better choice than 0x774 as
a general-purpose initialization step to ensure boards stay in normal run
mode during a performance. Command 0x774 is therefore deprecated and
may disappear in the future.

Reserved Command Codes
Codes 0x70a–0x71d are reserved for future commands. 0x71e–0x71f are
currently used for response packets from the Lumos controller.

0x71e [reply] Query NAK
01234567

1 7 〈addr〉
0 30

When the host PC sends a “query” command to the Lumos controller, the
ultimate response will be the reply packet documented on page 34. How-
ever, if there will be a delay before the Lumos controller is ready to provide
that response, it may send this “NAK” packet to indicate that it’s not yet
ready to reply. This keeps the host PC from timing out and abandoning the
controller’s reply.

The PC should assume that the full query response is forthcoming and
should continue waiting for it. No additional poll is required. Any number
of NAK packets may be sent by the Lumos controller between the PC’s query
request and the Lumos board’s full query response packet. [Currently (ROM
version 3.0) the Lumos board never sends NAK packets, but may do so in the
future.]

7.3 0x720–0x73f: Reserved

These codes are reserved for internal use by the Lumos system and may
not be used externally.

7.4. 0X740–0X77F: CONFIGURATION-MODE COMMANDS 39

7.4 0x740–0x77f: Configuration-Mode Commands

These commands make changes to the state of the device in some manner
which requires the device to be in configuration mode. If these are encoun-
tered outside configuration mode, they will be rejected.

0x74x [config] Set Phase Offset
01234567

1 7 〈addr〉
0 4 〈P1〉

0 〈P0〉

0 1 0 1 0 0 0 0

0 1 0 0 1 1 1 1

Sets the controller’s phase offset to 〈P〉, which is a 9-bit value in the range
0–511:

0678

〈P1〉 〈P0〉

This affects the internal timing mechanism within the Lumos controller
used to synchronize dimmer pulses to the ACwaveform (for AC controllers).
It shouldn’t need to be changed. This command is only recognized if
the controller is in configuration mode.

0x76x [config] Set Device Address
01234567

1 7 〈addr〉
0 6 〈addr′〉
0 1 0 0 1 0 0 1

0 1 0 0 0 0 0 1

0 1 0 0 0 1 0 0

Changes the address of unit from 〈addr〉 to 〈addr′〉. This is effective imme-
diately, so the very next commandmust be addressed to 〈addr′〉 for this unit
to respond to it. This command is only recognized if the controller
is in configuration mode.

0x770 [config] Cancel Configuration Mode
01234567

1 7 〈addr〉
0 112

40 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

Cancel configuration mode and return to normal operating mode. From
this point forward, commands marked “[config]” will no longer be recog-
nized. This command is only recognized if the controller is in con-
figuration mode.

0x771 [config] Configure Device
01234567

1 7 〈addr〉
0 113
0 A BCD d 〈C1〉

0 〈C0〉

0 0 1 1 1 0 1 0

0 0 1 1 1 1 0 1

Sets general configuration parameters not already covered elsewhere in
this command set. Flags A–D control whether a given sensor input line
is an input (1) or output (0). If configured as inputs, the Lumos controller
does not drive a voltage on them but watches for a signal there to which the
Lumos board will respond if programmed to do so. If configured as outputs,
the Lumos controller assumes they are connected to diagnostic LEDs and
will drive themwith +5V to turn on the corresponding LEDs and 0V to turn
them off.

If flag d is set (d=1), the Lumos controller will operate in DMX512 mode
(however, note that anytime it is in configuration mode, DMX512 command
reception is disabled and the Lumos commands described here are recog-
nized). When d=1, the first DMX512 channel claimed by this controller is
channel 〈C〉+1, which is a 9-bit value in the range 1–512:

0678

〈C1〉 〈C0〉

This corresponds to Lumos controller channel 0. This command is only
recognized if the controller is in configuration mode.

0x772 [config] Set Baud Rate
01234567

1 7 〈addr〉
0 114
0 〈speed〉
0 0 1 0 0 1 1 0

7.4. 0X740–0X77F: CONFIGURATION-MODE COMMANDS 41

Sets the Lumos controller’s baud rate as indicated by 〈speed〉, according to
the following table:

〈speed〉 Bits per Second
0 300
1 600
2 1,200
3 2,400
4 4,800
5 9,600
6 19,200
7 38,400
8 57,600
9 115,200

10 250,000

This setting does not affect DMX512 mode, which always uses a fixed speed
of 250,000 bps. This command is only recognized if the controller is
in configuration mode.

Note that for 48-channel controllers, this also sets the intra-processor
communication speed (which the twomicrocontrollers use to coordinate their
actions). Setting this to a low speed is not recommended.

0x773 [config] Restore Factory Defaults
01234567

1 7 〈addr〉
0 115
0 0 1 0 0 1 0 0

0 1 1 1 0 0 1 0

Restores the device to its original factory settings. Note that, among other
things, this will change the device’s address to 0 and its speed to 19,200 bps.
This command is only recognized if the controller is in configura-
tion mode.

0x774 [config] Forbid Configuration Mode
01234567

1 7 〈addr〉
0 116

Cancels configuration mode, returning to normal operating mode. Addi-
tionally, this command prevents the device from re-entering configuration

42 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

mode from this point forward until it is reset or power-cycled. This com-
mand is only recognized if the controller is in configuration mode,
but see command 0x709 on page 38.

This command is deprecated in favor of command 0x709, which
is generally preferred since it can be used in either run mode or
configuration mode. This command is retained for compatibility
with older software, but may be removed in the future.

0x775 [config] Update Firmware Image
01234567

1 7 〈addr〉
0 117
0 0 1 1 0 0 1 1

0 1 0 0 1 1 0 0

0 0 0 1 1 1 0 0

Initiates firmware update mode on the Lumos controller. From this point
forward, the controller expects to receive the new firmware image using
a special protocol. If the board is reset during this process, it remains in
firmware update mode, since it may have an unusable firmware image at
this point.

See page 70 for full documentation about the lumosupgrade command
used to perform this operation.

The protocol used between the lumosupgrade program and the Lumos
board is documented in section 7.5 below, starting on page 42.

This command is only recognized if the controller is in configu-
ration mode.

Reserved Command Codes
Codes 0x776–0x77f are reserved for future use as configuration-mode com-
mands.

7.5 Firmware Update Protocol

Once the Lumos board has been placed in flash programmode via the 0x775
“Update Firmware Image” command (see above), all other normal operation
of the Lumos board is suspended, including any of its command protocols
(Lumos native or DMX). In this mode, the board communicates using a sim-
ple bidirectional serial protocol at a fixed speed of 9600 baud, 8 bits, no
parity. This protocol is designed solely for the purpose of uploading a new
firmware image into the flash memory.

All communication is 7-bit-clean ASCII which won’t be confused as Lu-

7.5. FIRMWARE UPDATE PROTOCOL 43

mos commands by any other listening units, but since the firmware update
happens at 9600 baud, we recommend disconnecting other units from the
network that aren’t configured to run at that speed normally.

Encoded Byte Values
Most of the values sent using this protocol are encoded in amodified form of
hexadecimal—rather than using the characters 0123456789ABCDEF as the
base-16 digits, the character set @ABCDEFGHIJKLMNO is used instead. The
most significant nybble is sent first, as would normally be the case with
hexadecimal representation of values.

This encoding makes it easier to encode and decode values, since the
nybbles are simply sent with the constant upper nybble value set to 0100:

01234567

0 1 0 0 〈value〉

For example, the value 0x00 is encoded as @@, 0x12 as AB, and 0xFF as
OO.

Address Encoding
The firmware image is transmitted to the Lumos board in 64-byte blocks.
Each block must be evenly aligned on a 64-byte address boundary, so the
least significant six bits of the address will always be zeroes. Because of
this, the least significant nybble is never transmitted and is implied to be
zero.

The 64-byte blocks are specified in the protocol by their “block ID” which
is simply the more significant 16 bits of the block’s address in program
memory. Therefore, the block at memory address 0x12580–0x125BF would
be known here as block ID 0x1258.

When sent using this protocol, the nybbles of the block ID are sent from
most significant nybble to least, encoded as described above. For example,
block 0x1258 would be transmitted as ABEH.

Valid block ID values may range from 0x0000–0x16FC.

Command Protocol
Two commands are recognized in this mode: “query” and “data.”

The “query” command is sent by the PC as a single character, ‘Q’. This
causes the Lumos board to respond with a result packet with status code
‘*’ (see below). If the board was just reset and is ready to begin the process
of receiving a new image, it will respond to the query with “OOOO@@@@*”.

The “data” command sends a 64-byte block of firmware code to the Lu-
mos board. The board will then burn that block into its flash memory and
respond with a result packet as described in the next section. The data
command packet is always 137 bytes and has the form:

44 CHAPTER 7. COMMUNICATION PROTOCOL DETAILS

0 1 2 3 4 5 6 7

> 〈block ID〉 | 〈data〉

hhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh


128 bytes
for 〈data〉

〈check〉
.

The ‘>’, ‘|’, and ‘.’ bytes are literal ASCII characters. The other fields are
described individually below:
〈block ID〉 identifies the block being sent, encoded as described above. The

blocks may be sent in any order, except for the requirement that block
0x0000 (encoded as ID @@@@) must be the very last block to be sent.
Overwriting this block changes the boot vector for the microcontroller
which then enables the device to execute the new firmware image the
next time it is reset, so it is important that this be the last block writ-
ten.
The act of successfully sending and burning block ID zero ends flash
program mode. Once that block is written, the device will automati-
cally reset and resume normal Lumos controller board operation.

〈data〉 is the block of 64 bytes starting at the address implied by the block
ID. Since it’s encoded as described above, it is transmitted as 128 ASCII
characters.

〈checksum〉 is a one-byte checksum, encoded as two ASCII characters. The
checksum is a running 8-bit total of the two bytes of 〈block ID〉 and
each byte of 〈data〉. The two’s complement of this total is encoded and
sent in this field of the command. Only the least significant 8 bits of
the total are used for any part of this calculation. For example, if the
8-bit total of the block ID and data bytes comes out to 0x47, then we
calculate its two’s complement by inverting and adding one:

0x47 = 01000111
invert → 10111000
+1 → 10111001

The checksum sent in this example would be 0xB9, encoded into ASCII
as “KI”.

Response Codes
The response to the query or data commands is always a nine-byte packet
of the form:

7.5. FIRMWARE UPDATE PROTOCOL 45

〈st〉 〈x〉 〈y〉 Description
! — — Invalid block ID given
* — — Response to query command; board ready
b — — Burn error writing to flash memory
k — — Data received and burned successfully
n 0x00 0x00 Data packet format error
n x 0x00 Checksum error, calculated to be x
n x 0x40 Illegal character x received
n 0xFF 0xFF Unrecognized command packet
v x y Verification error: value y read x bytes from end

Figure 7.3: Firmware Update Protocol Response Codes

0 1 2 3 4 5 6 7

〈block ID〉 〈x〉 〈y〉
〈st〉

where:

〈block ID〉 is the last-known block ID processed by the Lumos board. If no
block has been processed yet, this value will be 0xFFFF (encoded as
“OOOO”) which is never a valid block ID.

〈x〉 and 〈y〉 are extra data bytes (encoded as two ASCII characters each)
which provide additional information relevant to the particular 〈status〉
code being reported.

〈st〉 is a code indicating the result of the command. The possible status
results are summarized in Figure 7.3.

For example, after successfully burning block 0x045C, the Lumos board
will send the result “@DEL@@@@k”.

C
h

a
p

te
r

8
DMX512 Command Structure

Support for DMX512 is included in the Lumos firmware but has not
been tested to be reliable yet, and in fact may not function at all.
The information that follows is experimental. If you have DMX512
equipment, expertise, and willingness to help develop this feature
of Lumos further, contact the author.

When configured in DMX512 mode, none of the Lumos commands doc-
umented in Chapter 7 are recognized. The Lumos controller will be only
looking for DMX512 command packets. To use the Lumos commands for con-
figuration of the board (e.g., to turn off DMX512 mode or change the starting
channel number), activate configuration mode using the OPTION button.
That will disable DMX512 mode for the time the device is in configuration
mode.

The DMX protocol always uses a fixed speed of 250,000 baud. There is
only one packet type recognized by a Lumos controller. All other packets
are silently ignored.

A packet begins with a “break” condition on the line. Immediately fol-
lowing the break is a sequence of one or more bytes of data. The first byte
must be a zero (other values for this initial byte are used to send other kinds
of DMX512 packets, but we’re not interested in those so they are simply ig-
nored).

After the zero byte there will be up to 512 channel value bytes. (It is per-
missible for the packet to end before all 512 channel values have been sent.)
The Lumos controller is configured to have a starting address within the
DMX512 “universe.” This corresponds to Channel 0 of the Lumos controller.
For example, if a Lumos controller were configured to DMX512 channel 10,
then it would ignore the first nine bytes of channel values in each packet.

47

48 CHAPTER 8. DMX512 COMMAND STRUCTURE

01234567

Break (≥92µS)
Mark (≥12µS)

}
Start signal

0
〈value1〉
〈value2〉
〈value3〉

...
〈value512〉


Data packet

Figure 8.1: DMX Packet

The tenth byte would set the output value of the controller’s Channel 0,
the next byte would set the output level for Channel 1, and so on, up to the
thirty-forth byte which sets Channel 23 (for a 24-channel controller), or the
fifty-eighth byte which sets Channel 47 (for a 48-channel controller).

If the packet ends before the Lumos controller has received enough bytes
to set all of its channels, the remaining channels simply keep their previously-
known output values.

The bytes in these packets are 8-bit values, directly giving the channel
output values of 0–255, with 0 being fully off and 255 being fully on.

A packet has the general form shown in Figure 8.1. Note that DMX512
channel numbers start with 1.

C
h

a
p

te
r

9
Theory of Operation

The lumos controller boards provide 256 levels of dimmer control on
their output channels by using pulse widthmodification (PWM). That
is, each output is always either fully “on” (0V output) or “off” (+5V

output) at any instant in time, but cycles between on and off states so that,
for example, if a channel is set to 50%, it will be fully on half the time and
fully off half the time. This is illustrated in Figure 9.1.

Each half-wave period (1/120 s for the 60Hz power frequency standard
used in many countries such as the USA)1 is divided into 260 “slices” of
approximately 0.000032051 s each. (See Figure 9.2.) An output channel
may change state at one of those slice boundaries. This provides for 256
different output levels to be supported, plus a couple of idle slices at the
beginning and end to make sure the TRIACs are fully off before the next
zero-crossing point begins. (You’ll note in the timing diagrams that the
outputs are always turned off a very tiny fraction of a second before the
start of the next output cycle.)

For the intended application of these controllers—incandescent lamps
for the AC boards and LEDs for the DC boards—this produces the visual
effect of the light being dimmed. Note that not all devices can tolerate being
supplied power like this, so you need to make an informed decision about
what to plug into a Lumos controller.2 This is similar to many household

1The AC-powered Lumos boards are not designed to work in environments where the
power frequency is not 60Hz. DC-powered boards will work regardless, since they never see
the AC power directly.

2You might think it’s an acceptable risk to attach one of these loads, such as a “non-
dimmable” CFL light, if you tell the Lumos board to only turn it on or off, and never use
the dimmer settings. In theory, that might be ok, all other things being equal, but you’re

49

50 CHAPTER 9. THEORY OF OPERATION

+5V

0V

+5V

0V

+5V

0V

+5V

0V

+5V

0V

0%

25%

50%

75%

100%

0 s 1
120 s

1
60 s

1
40 s

1
30 s

Figure 9.1: Duty Cycles of Channel Logic Drive Outputs

dimmers, so as a general rule of thumb, a light (such as a CFL) marked as
“non-dimmable” should not be dimmed by a Lumos board. Damage to the
Lumos board and the lamp may result.

For DC loads, this PWM signal appears as-is on the output channel (al-
though inverted). Note that the frequency of these pulses is 1/120 s, which
should be sufficient to avoid visible “flicker” for both incandescent and LED
lights. This is shown in Figure 9.3.

Dimming AC loads works along similar lines, but the TRIAC outputs on
those controllers require that these timing pulses be synchronized to the
points where the AC power waveform crosses the 0V line. The reason for
this is that TRIACs, once turned on, stay on as long as power is applied to
them, even if the controlling gate signal turns off. So the only opportunity
to delay them from switching on is at a zero-crossing point. The 48-channel

trusting that your host PC software won’t accidentally command the board to do something
to fade that output, or a stored sequence won’t do that, or a glitch in communications won’t
be misinterpreted as such, or even that a firmware bug on the controller won’t cause this. It’s
an informed risk you can decide whether to take, but we don’t officially recommend it.

9.1. PHASE OFFSET 51

0 s 1
120 s

Figure 9.2: Half-AC Cycle Divided into 260 Slices

controller board uses its built-in power supply to sense the AC zero-crossing
point and makes that available to the on-board logic, which will base its
channel outputs on that timing signal.

This means that the AC waveform which appears at the output of the
relay board starts part-way into each half-cycle, as shown in Figure 9.4.

The DC controllers produce a 120Hz timing pulse internally so they are
consitent with the AC controllers, but this doesn’t need to be synchronized
with anything external.

9.1 Phase Offset

There is an obscure device setting called “phase offset” on the Lumos con-
trollers which adds a delay between the receipt of the zero-crossing signal
and the time of the actual zero-crossing event. This compensates for the
effect of the controller’s AC supply being out of phase with the load AC sup-
ply. (In the very first prototype Lumos design, the detector circuit needed
this but that is no longer the case.) In practice, there shouldn’t be any
phase difference between the controller’s supply and the load supply which
would require changing this offset. Note that being 180◦ out of phase—
such as being supplied from separate “sides” of a residential AC breaker
panel—doesn’t matter here, since they have the same zero-crossing point.)

52 CHAPTER 9. THEORY OF OPERATION

+5V

0V

0V

+xV

+5V

0V

0V

+xV

+5V

0V

0V

+xV

25%

50%

100%

0 s 1
120 s

1
60 s

1
40 s

1
30 s

Figure 9.3: Duty Cycles of Logic (red) and DC SSR Outputs (blue)

We will now describe how the phase offset works in the internal timing
chain of the Lumos controller firmware, in case you should find yourself in
some strange circumstance where you need to change this setting. Other-
wise, use the normal setting for this value (2).

The timing diagram for the controller’s output update cycle is shown in
Figure 9.5. Note the green AC waveform as perceived by the zero-crossing
detector vs. the blue actual waveform present at the loads. The phase offset
is compensating for this difference.

When the zero-crossing detector senses 0V on the incoming power line,
it triggers an interrupt on the Lumos microcontroller (INT on the diagram).
This starts the phase delay timer which counts down a number of slices
equal to the “phase offset” setting (normally 2). Once that many slices have
gone by, the “working slices” begin. During each of these slices, various

9.1. PHASE OFFSET 53

+5V

0V

–170V

+170V

+5V

0V

–170V

+170V

+5V

0V

–170V

+170V

25%

50%

100%

0 s 1
120 s

1
60 s

1
40 s

1
30 s

Figure 9.4: Duty Cycles of Logic (red) and AC SSR Outputs (blue)

0 s 1
120 s

Slice # 0 2 4 6 8 10 254 258 0 2· · ·

ZC ZCINT INT

phase offset phase offset
working slices

Figure 9.5: Cycle Timing with Phase Offset

54 CHAPTER 9. THEORY OF OPERATION

0 s 1
120 s

Slice # 0 2 4 6 8 10 254 258 0 2· · ·

ZC ZC
INT INT

2 2
working slices

Figure 9.6: Cycle Timing with No Phase Difference

output channels are turned on in order for each of them to generate the
desired PWM duty cycle.

Assuming that the interrupt arrives at the actual zero-crossing event,
as it ideally should, the default phase offset delay of 2 means that we get
two idle slices before the 256 working slices begin, and two idle slices at
the end. This compensates for any slight timing errors thay may creep into
the cycle as well as ensuring the TRIACs settle as already described. This is
shown in Figure 9.6.

9.2 Output Relay Circuits

The output solid-state relays (SSRs) used by the Lumos boards are vari-
ations of the standard SSR design used within the DIY animated lighting
community over the years (see p. 82). For DC boards, this is a high-power
MOSFET circuit, while for AC boards, this is a TRIAC. In both cases, the re-
lay is intended to control a simple resistive load (typically incandescent
and LED lights). They are not designed to control inductive loads (e.g., mo-
tors or flourescent lights). If you intend to use those types of loads with
these SSRs, you will need to add protective circuitry (such as an additional,
higher-power SSR or a “snubber” circuit) to the Lumos circuit, which is out-
side the design scope of the Lumos board. Such a modification requires
qualified engineering design and should not be attempted by the end user.

Diagnostic Codes

Decoding LED Patterns

The front panel LEDs provide an indication of the state of the Lumos con-
troller. During boot, they rapidly change to indicate the phase of the ini-
tialization process being performed. If the device gets stuck during that
process, the LED pattern will indicate where the problem occurred. During
normal runtime operation, they inform the user of the mode and status of
the system, errors encountered, etc.

The various codes are summarized in Figure A.1. 4-channel controllers
use the same pattern as the 24-channel controllers.

55

56 DIAGNOSTIC CODES

Description of Condition/Fault Indicated48-ch 24-ch

[boot] Boot process not yet started

[boot] EEPROM setup stage

[boot] EEPROM write operation

[boot] EEPROM read operation / system initialization

[boot] system initialization

[boot] system initialized but main loop/timing system non-functional

[run] factory defaults restored (will now reboot)

[run] normal run mode

[run] received command addressed to this unit

[config] configuration mode

[run] intra-processor communication activity

[run] command rejected (invalid, bad arguments, disallowed, etc.)

[run] communications error (framing error)

[run] communications error (overrun error)

[run] communications error (device buffer overflow)

[run] internal fault detected

[sleep] in sleep mode

[halt] system halted (shutdown) normally

[halt] system failure while trying to halt

[halt] system failure (exact error on other LEDs)

Figure A.1: Diagnostic LED Patterns

DECODING LED PATTERNS 57

Description of Condition/Fault Indicated48-ch 24-ch

Dispatch table overrun

Input validator failure

Reset failure

Hardware fault

Internal command error

Other/unknown failure

Figure A.2: Internal Fault Condition Codes

steady on
steady off
slowly fading up/down
quickly fading up/down
slowly flashing
quickly flashing
blink then fade once
super-slow flashing
not involved or affected; may have any value

Figure A.3: Key to LED Patterns

58 DIAGNOSTIC CODES

0x01 Command interpreter dispatch overrun
0x02 Pass-down command in non-master ROM (set level)
0x03 Pass-down command in non-master ROM (bulk update)
0x05 Command interpreter dispatch overrun (in state 6)
0x06 Pass-down command in non-master ROM (ramp level)
0x07 Command interpreter dispatch overrun (in state 9)
0x08 Command interpreter dispatch overrun (in state 10, non-slave)
0x0A Bad sentinel byte in internal command
0x0B Command interpreter dispatch overrun (internal commands)
0x0C Command interpreter dispatch overrun (internal commands)
0x0D Command interpreter dispatch overrun (state 13)
0x0E Command interpreter dispatch overrun (state 17)
0x0F Could not determine ROM type (query)
0x10 Operation on wrong ROM type (query)
0x11 Device does not support T/R operation
0x12 Code executed on wrong ROM (M/S communication)
0x20 Invalid command
0x21 Configuration-mode command outside configuration mode
0x22 Command not implemented
0x23 Command incomplete
0x70 Failed to reset following factory default restore

Figure A.4: Error Condition Codes Reported Via Query Command

Lumos CLI Command Manual Entries

This chapter provides the documentation for the lumosasm, lumosctl, and
lumosupgrade commands. This same information is also provided to the
CLI user on Unix, Linux, or Macintosh systems via the man command.

In this documentation, the following typographical conventions are used:

• 〈Variables〉, which indicate values to be replaced with suitable values
when you invoke the program, are shown in Italic type inside angle
brackets. (The angle brackets are not typed as part of the command
syntax.)

• Literal text which should be typed as-is, as well as the names of
commands, is set in fixed-width text.

• File names are set in Italics. Italics are also used for general points
of emphasis.

• [Optional values] are enclosed in square brackets. Thesemay be omit-
ted if appropriate. (The brackets themselves are not typed as part of
the command syntax.)

References to other program manual entries look like “lumosctl(1)” which
indicates that the lumosctl command is documented in section 1 of the
manual, which is the section for general user commands on Unix-like sys-
tems.

59

60 LUMOS CLI COMMAND MANUAL ENTRIES

NAME

lumosasm – Assemble stored sequences for download to a Lumos board
The lumosasm program is used to assemble descriptions of stored

sequences into the internal binary format recognized by the Lu-
mos boards. Since that feature is not yet supported byLumos boards,
this section of the manual is blank until that feature is fully de-
fined.

NAME 61

NAME

lumosctl – Manual control for Lumos SSR controller hardware

SYNOPSIS

lumosctl [–dFhkPRrSvwXz] [–a 〈addr〉] [–A 〈addr〉] [–b 〈speed〉] [–B 〈speed〉] [–
c 〈file〉] [–C 〈file〉] [–D 〈sens〉] [–E 〈sens〉] [–H 〈hexfile〉] [–L 〈level〉] [–m 〈mS〉] [–p
〈port〉] [–P 〈phase〉] [–s 〈file〉] [–T 〈mode〉] [–t 〈s〉[orw+]:〈init〉:〈seq〉:〈term]〉
[–x 〈duplex〉] 〈channel-outputs〉. . .

Where 〈channel-outputs〉 may be any combination of:

〈channel〉[@〈level〉[,. . .]]
〈channel〉d[〈:steps〉[〈:time〉]]
〈channel〉u[〈:steps〉[〈:time〉]]

x〈id〉
p〈time〉

DESCRIPTION

This command allows you to directly manipulate the state of a supported
Lumos SSR controller unit, including administration functions such as chang-
ing the unit’s address, phase offset, etc.

Other software such as lumos(1) or—providing appropriate drivers are
installed—popular third-party programs such as Vixen are more appropri-
ate for performing (“playing”) sequences of light patterns on these boards.
By contrast, lumosctl is more suited to setting up and configuring the
boards (although some basic real-time control of channel outputs is pos-
sible using lumosctl).

In the absence of any command-line options to the contrary, the normal
operation of lumosctl is to make a number of channel output level changes
as determined by the non-option arguments which are of the form:

〈channel〉

or

〈channel〉@〈level〉[,. . .]

or

〈channel〉{u|d}[:〈steps〉[:〈time〉]]

In the first case, a channel number by itself means to turn on that chan-
nel to full brightness. In the second case, by specifying a level value (a
number from 0 to 255, inclusive), that channel’s output is dimmed to the
given level. Level 255 is the same as turning on to full brightness; level 0
is the same as turning it fully off.

62 LUMOS CLI COMMAND MANUAL ENTRIES

In the third case, the dimmer level is ramped up smoothly from its cur-
rent value to full brightness (“u”), or down smoothly until fully off (“d”).
Optionally you may specify the number of dimmer level increments to in-
crease or decrease at each change (1–128, default is 1); additionally, you
may specify the amount of time to wait between each step, in units of 1/120
second (1–128, default is 1). As a convenience, this may be expressed as
a real number of seconds followed by the letter “s”. Thus, the argument
13@127 sets channel 13 to half brightness. If this were followed by the argu-
ment 13u then channel 13 would be smoothly increased in brightness from
there to full brightness (which is another 128 levels to take it from 127 to
255), by incrementing it one level every 1/120th of a second, reaching a full
brightness level 128/120 seconds later (1.0666 seconds). If the argument
13d:10:2 were given, then channel 13 would drop to being fully off, going
in steps of 10 levels at a time, 1/60th of a second between each step. Finally,
an argument 10u:5:0.25s fades channel 10 up from its current value to full
brightness by incrementing its value by 5 every quarter-second.

Bulk updating of channels is also supported. If multiple values are
listed for a channel, such as: 10@0,0,255,255,127,40,30,20,10

Then the channel named (10 in this example) is assigned the first value
(0), and the subsequent values are assigned to the immediately following
channels (so channel 11 is set to 0, 12 is set to 255, and so forth).

A pause in the execution of the arguments may be effected by adding an
argument of the form p〈t〉[s[ec[ond[s]]]] which makes lumosctl pause for
〈t〉 seconds before continuing on to the next argument. The 〈t〉 value need
not be an integer.

A number of options are provided as described below. These command
the SSR controller to perform certain administrative functions or configu-
ration changes.

When giving multiple types of commands in one invocation of this pro-
gram, they will be carried out in the following order:

1. Address Change

2. Kill all channels

3. Other configuration changes

4. Disable configuration mode

5. Channel(s) off/on/dim/etc.

6. Shutdown

OPTIONS

Each of the following options may be specified by either a long option (like
“––verbose”) or a shorter option letter (like “–v”). If an option takes a pa-

NAME 63

rameter, it may follow the option as “–a12”, “–a 12”, “––address 12”, or “––
address=12”.

Long option names may be abbreviated to any unambiguous initial sub-
string.

––address=〈addr〉
(–a 〈addr〉) Specifies the address of the target controller unit. The
〈addr〉 value is an integer from 0 to 15, inclusive. It defaults to 0.

––clear–sequences
(–S) Delete all stored sequences from the device’s memory. [This is a
future feature, currently not available on Lumos boards.]

––disable–sensor=〈s〉
(–D 〈s〉) Disable inputs from the sensor(s) specified as the 〈s〉 param-
eter (which are given as a set of one or more letters, e.g., ––disable–
sensor=ab). The Lumos board will act as though those sensors were
inactive regardless of their actual inputs. The special character “*”
appearing in 〈s〉 means to disable all sensors. [This is a future fea-
ture, currently not available on Lumos boards.]

––drop–configuration–mode
(–d) If the Lumos device is in configuration command mode (for con-
figuraiton of the device), this will cancel that mode. Further configu-
ration commands will not be recognized on that device.

––dump–configuration–file=〈file〉
(–C 〈file〉) Dump the device configuration into the named 〈file〉. See
below for a description of the configuration file format.

––enable–sensor=〈s〉
(–E 〈s〉) Enable inputs from the sensor(s) specified as the 〈s〉 param-
eter. See ––disable–sensor. [This is a future feature, currently
not available on Lumos boards.]

––factory–reset
(–F) Resets the board to its initial default settings, as it would have
arrived “out of the box” as it were (of course this is a DIY project, so
there’s no actual “factory” but if there were one, these are the defaults
the board would come shipped with). This can also be accomplished
by inserting a jumper on the board in the correct sequence. See the
Lumos controller user’s manual for details.

––help
(–h) Prints a summary of these options and exits.

––kill–all
(–k) Turn off all output channels at once.

64 LUMOS CLI COMMAND MANUAL ENTRIES

––load–compiled–sequence=〈file〉
(–H 〈file〉) Load one or more pre-compiled sequences from the speci-
fied hex 〈file〉. This is expected to be the output from the lumosasm(1)
command. [This is a future feature, currently not available on
Lumos boards.]

––load–configuration–file=〈file〉
(–c 〈file〉) Load the device configuration from the named 〈file〉 and pro-
gram that into the device.

––load–sequence=〈file〉
(–s 〈file〉) Load one or more sequences from the specified source 〈file〉
(see below for sequence source code syntax) and program them into
the device. If another sequence already exists with the same num-
ber, it replaces the old one; however, beware that the controller device
does not optimize memory storage, so eventually stored sequences
may become fragmented, resulting in running out of storage space
for them. To avoid this, it is best to clear all sequences using the ––
clear–sequences option, then load all the sequences you want on the
device at once. [This is a future feature, currently not available
on Lumos boards.]

––port=〈port〉
(–p 〈port〉) Specify the serial port to use when communicating with
the controller unit. This may be a simple integer value (0 for the first
serial port on the system, 1 for the next one, etc.) or the actual device
name on your system (such as “COM1” or “/dev/ttys0”).

––probe
(–P) Search for, and report on, all Lumos controllers attached to the
serial network. If the ––report option is also specified, this provides
that level of output for every attached device; otherwise, it only lists
device models and addresses.

––read–only
(–r) Do not query the Lumos board’s status. Normally, lumosctl reads
back the board status at the start and after each configuration change
to ensure that the changes were successful. If you are using the board
under conditions where getting data from the Lumos board is not pos-
sible (e.g., if your RS-485 adapter doesn’t support a return channel),
use the –r option to suppress this part of lumosctl’s behavior. This
means that configuration requests are sent “blindly” to the Lumos
board without any way to confirm that they took effect. (The name
of this option seems backwards, but it was named from the Lumos
board’s point of view—that is, it sees its data connection as a read-
only source of data and won’t try to send any data back to the PC.)

––report

NAME 65

(–R) Report on the current device status to standard output in human-
readable form.

––sensor=〈s〉[orw+]:〈init〉:〈seq〉:〈term〉
(–t 〈s〉[orw+]:〈init〉:〈seq〉:〈term〉) Define an action to be taken when a
sensor is triggered. When the sensor is activated, the sequence 〈init〉
is run, followed by the sequence 〈seq〉 and then finally the sequence
〈term〉 when the sensor event is over. The sensor assigned this action
is given as the parameter 〈s〉 and is one of the letters A, B, C, or D. This
may be followed by the following option letters as needed:

o Trigger once: play sequence 〈seq〉 only one time. The action will
not be taken again until the sensor input transitions to inactive
and then asserts itself as active again. This is the default action.

r Repeat mode: play sequence 〈seq〉 indefinitely until explicitly
told to stop (by an overt stop command such as an x0 argument,
or another sequence being triggered manually or by sensor ac-
tion).

w Trigger while active: play sequence 〈seq〉 repeatedly as long as
the sensor remains active. When the sensor input transitions to
inactive again, terminate the action.

+ The sensor is to be considered “active” when at a logic high out-
put (active-high mode). Normally, sensors are active-low (active
when the input is at ground).

If 0 is specified for any of the sequence numbers, that means no se-
quence is called for that part of the trigger action.
[This is a future feature, currently not available on Lumos
boards.]

––set–address=〈addr〉
(–A 〈addr〉) Change the device address to 〈addr〉. This must be an
integer in the range 0–15.

––set–baud–rate=〈speed〉
(–B 〈rate〉) Set a new baud rate for the device to start using from now
on.

––set–phase=〈offset〉
(–P 〈offset〉) Set the phase offset in the device to the specified value.
This must be an integer in the range 0–511. This is an advanced set-
ting which affects the ability of the AC relay boards to function prop-
erly. Do not change this setting unless you know exactly what you are
doing.

––sleep
(–z) Tell the unit to go to sleep (this instructs the board to turn off a
power supply which it is controlling, if any, but has no other effect).

66 LUMOS CLI COMMAND MANUAL ENTRIES

––shutdown
(–X) Command the unit to shut down completely. It will be unrespon-
sive until power cycled or the reset button is pressed to reboot the
controller.

––speed=〈rate〉
(–b 〈rate〉) Set the serial port to the given baud 〈rate〉. [Default is
19200 baud.]

––txdelay=〈mS〉
(–m 〈mS〉) Delay 〈mS〉milliseconds between each transition from trans-
mitting to receiving mode and vice versa. Usually only needed for
half-duplex networks.

––txlevel=〈level〉
(–L 〈level〉) Transmit mode is controlled by either the DTR or RTS
lines. This option controls what logic level on that line means to en-
gage the transmitter. The value of 〈level〉 may be either “0” to mean
a logic low (off) indicates transmit mode, or “1” to mean a logic high
(on) is used.

––txmode=〈line〉
(–T 〈line〉) Specifies which serial control line is used to control the RS-
485 transmitter. The value for 〈line〉 may be either “dtr” or “rts”.

––wake
(–w) Tell the unit to start the attached power supply from sleep mode.
command is given at a future time.

––verbose
(–v) Output messages to the standard output. Additional ––verbose
options increases verbosity. High levels of verbosity include a dump
of every bit sent or received on the serial network.

CONFIGURATION FILE FORMAT

The files read andwritten by the ––dump–configuration and ––load–configuration
options use a fairly standard configuration file format similar to the “ini”
files used by early versions of Microsoft Windows and other systems. For
full details of this format see http://docs.python.org/library/configparser.html,
but the highlights include:

1. One data value per line (long lines may be continued by indentation
ala RFC 822 headers).

2. Each line consists of the name of a data value, either an equals sign
or a colon, and the value itself.

3. A syntax %(〈name〉)s can be used to substitute values into other val-
ues. Literal percent signs in values are simply doubled (“%%”).

NAME 67

All configration data are contained in a stanza called “[lumos_device_settings]”.
The values are detailed individually below. Note that some of these de-
scribe anticipated future features of the Lumos hardware that are
not available at this time. These future features are recognized by lu-
mosctl as documented here, but won’t actually have any effect until they
are fully implemented in the Lumos firmware.

baud=〈n〉
The configured serial I/O speed of the device. Supported values in-
clude 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200,
and 250000. Speeds slower than 9600 baud are not recommended.
[Default is 19200.]

dmxchannel=〈n〉
If this field exists, the Lumos board is to run in DMX512 mode, with
its channel #0 appearing at DMX512 slot #〈n〉, where 〈n〉 is an integer
in the range 1–512. If this field is not present, the Lumos board will
not be configured to recognize DMX512 packets at all.

phase=〈offset〉
TheACwaveformphase offset for the unit. This should only be changed
if needed due to some anomaly with the zero-crossing detector which
throws off the unit’s timing. This is an integer in the range 0–511.
[Default is 2.]

sensors=〈list〉
The value is a list of single letters in the range A–D. Each letter
appearing in this list indicates that the corresponding sensor input
should be enabled in the hardware. You must ensure that the hard-
ware is really configured that way.

Sensor Configuration
For each sensor listed in the sensors field, a corresponding stanza called
“[lumos_device_sensor_〈x 〉]” appears, where 〈x〉 is the name of the sensor
(“A”, “B”, “C”, or “D”), with the following fields:

enabled=〈bool〉
If “yes”, the sensor input is set to be monitored. If “no”, it is ignored.
[Default is “yes”.]

mode={once|repeat|while}
Define the operating mode of the sensor trigger: play once per trigger,
repeat forever until another trigger (or explicit command to stop), or
play as long as sensor remains active. [Default is once.]

setup=〈id〉
Sequence 〈id〉 number to be played initially when the sensor becomes
active

68 LUMOS CLI COMMAND MANUAL ENTRIES

sequence=〈id〉
Sequence 〈id〉 number to be played as the main (possibly repeated)
aciton for the sensor.

terminate=〈id〉
Sequence 〈id〉 number to be played when the action stops. Note that
the main sequence might not have played to completion.

SEQUENCE SOURCE SYNTAX

Each source file given to ––load–sequence contains one or more sequence
definitions as described here. The formal syntax definition for the sequence
language is still being designed and will be documented here when it is
implemented.

AUTHOR

Software Alchemy / support@alchemy.com

COMPATIBILITY

This version of lumosctl is compatible with the following boards:
• Lumos 48-channel controller version 3.1 or 3.2 providing it has been

upgraded or installed with ROM firmware version 3.0 or later (boards
with ID markings beginning with “48CTL-3-1” or “LUMOS-48CTL-
3.2”). (Whether this controller is driving AC or DC boards is irrele-
vant.)

• Lumos 24-channel DC controller version 1.0 (boards with ID mark-
ings beginning with “LUMOS-24SSR-DC-1.0”).

• Lumos 4-channel DC controller version 1.0 (boards with ID markings
beginning with “LUMOS-4SSR-DC-1.0”).

HISTORY

This program first appeared under the name 48ssrctl and was used only
for the Lumos 48-channel AC controller boards, employing the older firmware
(ROM versions less than 3.x).

This document describes version 2.0 of this utility, which is the first to
carry this name and to include the expanded features for firmware version
3.0.

SEE ALSO

lumosasm(1).

NAME 69

LIMITATIONS

This program does not send DMX512 commands to the device(s), only Lu-
mos native commands.

BUGS

Sometimes lumosctl doesn’t correctly track board configuration changes
and incorrectly reports that the Lumos board’s configuration was “not as
expected” even though the operation was successful. If this happens, try
running lumosctl –R to get a fresh report of the board’s status and verify
that it is configured as desired.

The sequence language is constrained by the limits of the hardware
(such as 8-bit unsigned integer values and limited arithmetic expression
evaluation), by the need to be compiled to fit in a very small memory space.
As such, the optimization toward certain use cases and against others may
seem odd at first, but it serves that purpose.

Submit any other issues found to support@alchemy.com.

70 LUMOS CLI COMMAND MANUAL ENTRIES

NAME

lumosupgrade –Download newfirmware image into Lumos controller hard-
ware

SYNOPSIS

lumosupgrade [–fhNnRv] –a 〈addr〉 [–b 〈speed〉] [–L 〈txlvl〉] [–m 〈txdelay〉] [–p
〈port〉] [–T 〈mode〉] 〈image-file〉

DESCRIPTION

This command places the target Lumos controller device into “flash pro-
gram mode” and downloads a new firmware image onto it. This is used in
order to upgrade the Lumos firmware to a new version.

To upgrade your controller’s firmware, perform the following steps:

1. Connect your Lumos controller board to the host PC (all by itself, not
sharing a serial connection with other devices). The connection must
be bidirectional as the Lumos board needs to be able to acknowledge
receipt of the new image. (This may require setting your PC’s RS-485
interface appropriately so it may send and receive data. Pay attention
to whether your Lumos board is full- or half-duplex.)

2. Place the Lumos board into configurationmode (previously called “priv-
ileged mode”).

3. Invoke the lumosupgrade program to load a new firmware image onto
it, as explained in the remainder of this manual page.

Once started, this process must run to successful completion before
the Lumos board may be used for normal operations again. If anything
goes amiss, the Lumos board may be reset and the lumosupgrade program
restarted using the ––resume option. (Upon reset, the Lumos boardwill stay
in flash program mode until a new image has been loaded into it. Should
the board reset/reboot for any reason during the process, the lumosupgrade
process must be started over to ensure a complete image is loaded.)

OPTIONS

Each of the following options may be specified by either a long option (like
“––verbose”) or a shorter option letter (like “–v”). If an option takes a pa-
rameter, it may follow the option as “–a12”, “–a 12”, “––address 12”, or “––
address=12”.

Long option names may be abbreviated to any unambiguous initial sub-
string.

NAME 71

––address=〈addr〉
(–a 〈addr〉) Specifies the address of the target controller unit. The
〈addr〉 value is an integer from 0 to 15, inclusive. Note that down-
loading a new firmware image must be done when the target unit is
the only device plugged in to the computer. Once the download oper-
ation is underway, the low-level protocol used to transmit the image
to the device is not necessarily compatible with other units. This op-
tion is required because the command to place the device into flash
program mode must be addressed to the unit.

––dry–run
(–n) Do everything except actually burn the new firmware into the
unit. This checks that the 〈image-file〉 is reasonably sane-looking (not
a thorough check of correctness), and communicates with the Lumos
controller up to the point where it would put it into flash program
mode.

––force
(–f) Force upgrade of the board without asking the user for confirma-
tion.

––help
(–h) Print a summary of these options and exit.

––null–device
(–N) Don’t actually communicate with the serial port, but still carry
out the other actions including sanity checks on 〈image-file〉. Implies
––dry–run.

––port=〈dev〉
(–p 〈dev〉) Specifies the I/O port the Lumos device is connected to. This
may be a simple integer 0, 1, 2, etc. to refer to the first, second, third,
etc, standard serial port on the system, or a device name appropriate
to the system such as COM1, ttys1, or /dev/ttys1.

––resume
(–R) Indicates that the Lumos board was reset prematurely while at-
tempting an upgrade. Since the Lumos board will still be in flash
programming mode (and therefore won’t be in a position to recognize
the Lumos-protocol command to begin a flash programming opera-
tion), this option tells lumosupgrade to simply start downloading the
image onto it, and to not try to put it into programming mode first.

––speed=〈rate〉
(–b 〈rate〉) Set the serial port to the given baud 〈rate〉. This is the
speed the Lumos board is already configured to use, and will be used
for the initial command to enter flash programming mode. Once in
flash programming mode, however, a fixed speed of 9600 baud will be
used. [Default is 19200 baud.]

72 LUMOS CLI COMMAND MANUAL ENTRIES

––txdelay=〈t〉
(–m 〈ms〉) Delay 〈ms〉milliseconds after changing the transmitter con-
trol line for half-duplex networks.

––txlevel={0|1}
(–L {0|1}) Specifies the logic level used to signal transmit mode for
half-duplex networks. A 1 indicates that the DTR or RTS line (as
selected by the ––txmode option) is asserted to transmit, while a 0
means the line is deasserted to transmit.

––txmode={dtr|rts}
(–T {dtr|rts}) Specifies which I/O line is used to signal transmit mode
on half-duplex networks.

––verbose
(–v) Output messages to the standard output. Additional ––verbose
options increase verbosity. High levels of verbosity include a dump of
every bit sent or received on the serial network.

FILE FORMAT

The firmware 〈image-file〉 is expected to be in standard Intel Hex format.
Attempts to change memory addresses outside the supported range will be
ignored, including configuration fuses and EEPROM area. Actually, only a
reasonable subset of the Intel Hex format is supported; specifically, record
types 00 (data record), 01 (end of file), and 04 (extended address) are recog-
nized.

AUTHOR

Steve Willoughby, Software Alchemy / support@alchemy.com

COMPATIBILITY

This version of lumosupgrade is compatible with the following boards:
• Lumos 24-channel DC controller version 1.0 (boards with ID mark-

ings beginning with “LUMOS-24SSR-DC-1.0”).

• Lumos 4-channel DC controller version 1.0 (boards with ID markings
beginning with “LUMOS-4SSR-DC-1.0”).

The 48-channel controllers are not compatible with this program. These
boards must be reprogrammed using a microcontroller programmer.

HISTORY

This program first appeared to support Lumos ROM version 3.0.

NAME 73

SEE ALSO

lumosctl(1).

Troubleshooting

While we anticipate the Lumos board will providemany hours of worry-free
operation, as with any device (particularly one built as a DIY project), some-
times things don’t go quite as planned. Here are a few common problems
and their solutions.

Symptom Likely Cause(s) Solution
An entire block of out-
puts does not turn on

No power to the block If the BLOCK PWR light is off,
check the fuse for that block,
the connection from the power
supply to the block, and that the
power supply is powered on.

Power supply not told to
wake up (ATX-style sup-
plies only).

Check that the power supply’s
green wire is attached to the
PWR CTL terminal.
If the LEDs on the board show
that it is in sleep mode, send it
a “wake” command from the PC
or just command it to turn on
any output channel.

Some outputs don’t
work, or are erratic.

Loose chip. Lightly press chips back into
their sockets.

Bad solder connection
or loose chip.

Re-check all solder connections
on the board, re-solder any
which are cold, broken, or in-
complete.

No units in serial net-
work respond to com-
mands.

Missing terminator Replace terminators on both
ends of the daisy chain (note the
PC’s RS485 converter may in-
clude a built-in terminator for
that position).

One unit does not re-
spond to commands.

Wrong address. Use the lumosctl program to
reconfigure the board to have
the correct address.

Blown communication
fuse.

Replace fuse F3 (24-channel
boards).

75

76 TROUBLESHOOTING

If all else fails, try performing a factory reset as described in section 4.4
(page 15).

Glossary

Address: The ID number assigned to a particular device to uniquely dis-
tinguish it from the other devices plugged into the same serial con-
nection. The commands sent to Lumos boards all contain a “target
address” which identifies the particular Lumos board which is to act
on that command. All the other Lumos boards will ignore it.

Baud Rate: The speed, in bits per second, of data that is transferred over
a serial cable. The term “baud” refers to the number of electrical state
changes per second made to perform the signalling. For the kind of
signalling done by Lumos boards, the baud rate is the same as the bit-
per-second rate, although for other applications such as high-speed
modems, it would be more correct to refer to the bit-per-second (BPS)
rate only. Depending on the exact protocol settings used, one charac-
ter takes approximately 10 bits to send, so a data rate of 9600 baud
would send about 960 characters (bytes) per second.

Active Low: A logic signal which is considered “on” when the signal is
“low” (binary 0 or 0V), and “off” when the signal is “high” (binary 1 or
+5V). Lumos relay circuits are triggered with active-low signals.

CLI Command-line interface. A program launched on the command-line,
or “shell,” interface of the computer—the cmd window on Microsoft
Windows, or the shell in a Mac OSX or Unix/Linux terminal window
or xterm. Typically CLI tools interact with the user via keyboard, of-
ten using a combination of “options” or “switches” to control the pro-
gram’s behavior rather than using a mouse or other graphical inter-
faces. Generally, CLI tools are easier to automate (to have the com-
puter run them autonomously on a schedule or as needed) since most
of them are designed to be run unattended, specifying all of the pa-
rameters needed right on the command line.

DIY: “Do-It-Yourself.”

Duplex: a feature of a serial line. On a full-duplex connection, separate
data wires are present to carry data in both directions, so one device
can send and receive data at the same time. On a half-duplex connec-
tion, only a single set of data wires is present, so devices must take
turns transmitting over them.

77

78 GLOSSARY

Factory reset: The process of resetting all user-configurable options on a
device to their original state, as the device presumably was shipped
“in the box” from its factory. Lumos boards can be reset in thismanner
as described on page 15.

Jumper Block: A series of pins mounted to the PCB. Different options are
configured for the circuit by placing a jumper over certain pairs of
pins, shorting them together.

LED (Light Emitting Diode): A special kind of diode which emits light
when current passes from its anode to its cathode.

MOSFET: The type of transistor which forms the major part of a Lumos DC
relay channel. The name is an acronym for Metal Oxide Semiconduc-
tor Field Effect Transistor.

PCB (Printed Circuit Board): The board where electronic components
are mounted to form a complete circuit. Metal traces are “printed”
(actually etched) onto the surface of the board itself to make the con-
nections between components.

Power Cycle: To turn the power off, then on, thus resetting the state of the
device. On a Lumos board, the same effect can be had by pressing the
RESET button momentarily, although power cycling works, too. Note
that this does not undo any permanent settings such as device address
or baud rate. To return all settings to their original values, you must
perform a full factory reset.

RS-232: A standard hardware protocol for sending serial data between two
devices (such as a computer and a modem or a single Lumos board).
Shielded cable should be used for best results, and the cable length
should not exceed 25 ft.

RS-485: A standard hardware protocol for sending serial data between
multiple devices on a single cable length (electrically it is a single
cable which each device “taps into” along the line; physically it is typ-
ically a “daisy chain” arrangement where a short cable connects one
device to the next, another cable to the next, and so on). Unshielded
twisted-pair cable is used (like Ethernet cable), and the cable lengths
should not exceed a total of 4,000 ft (1,200m).

SSR (Solid-State Relay): A device which controls an external power load.
In contrast to a mechanical relay, an SSR has no moving parts, but
does its switching electronically.

Terminator Plug: An RS-485 network requires a terminator at each end.
This is a small plug which plugs into the last unit in the daisy chain.

TTL (Transistor-Transistor Logic): One of theways digital logic circuits
can be constructed. For our purposes here, we consider a “TTL-level”
signal to be a logic input or output where a voltage near +5V is “high”

79

(binary 1 or “true”) and a voltage near 0V is “low” (binary 0 or “false”).
The inputs should never be above +5 nor below 0 volts.

Acknowledgements

Kickstarter Project

We launched a Kickstarter project to build a test network of Lumos DC
boards for final testing and debugging before releasing the final designs
and firmware as an open source DIY project.

Thank you to all our Kickstarter backers who made the final testing of
the Lumos DC controllers possible!

Fan Level
Amanda Allen

Supporter Level
Casey Adams Beth Gordon
Sue Allen Sara Jacobson
Andrej Čibej Tanya Spackman
Betsy Fernley

Backer Level
DC

Silver Level
David Johnston Melf

Gold Level
Rob Beasley Phil Willoughby

Patron Level
Casey A. Robert A. Nesius
William H. Ayers Patrick Quinn-Graham
Jon and Rebecca Garver Jama Scaggs
Andy Kitzke Doug Van Camp
Joseph Moss Matthew Wentworth

We also wish to thank Darren Bliss who has been a great supporter of the
Lumos project since the very first prototype was being experimented with,
and the other Kickstarter backers and friends who offered moral support,
other contributions, or who wished to contribute anonymously.

81

82 ACKNOWLEDGEMENTS

Technical Legacy

The do-it-yourself computerized Christmas light hobby thrives as a com-
munity of enthusiasts who contribute their ideas and designs for others to
build, enjoy, and improve upon with new designs of their own. This jour-
ney began for me years ago with the discovery of Hill Robertson’s Com-
puter Christmas website (www.computerchristmas.com). It continues on
sites such as Chuck Smith’s Planet Christmas (www.planetchristmas.com),
doityourselfchristmas.com, and many others.

Over the years the users of these forums have produced some great de-
signs which have become de facto standards as others adopt them and refine
them in their own designs. The Lumos boards’ TRIAC and MOSFET relay cir-
cuits (the final few components at the controlled outputs) are a continuation
of the standard circuits used by those communities, inspiredmost by Robert
Stark’s TRIAC design and the DC MOSFET circuits by JohnWilson (fromCom-
puter Christmas and Do It Yourself Christmas, respectively). I am pleased
to contribute my own innovations on these common design themes back to
the same community (the remainder of the Lumos circuits other than the
TRIAC and MOSFET output sections are entirely my own original design).

Colophon

This manual was composed and typeset by the author using LATEX with
Memoir layout macros, augmented by wrapfig, lettrine, bytefield, wallpa-
per, TikZ, and a host of miscellaneous behind-the-scenes working packages.

It was set 10/12 pt using the TEX Gyre Schola font family created by
GUST, the Polish TEX User Group. This typeface is based on URW Century
Schoolbook L, originally designed by Morris Fuller Benton in 1919, for the
American Type Founders.

Schematics were generated using the gEDA tool gschem. The PCB layout
illustrations were created by pcb on Linux. All of the above are free and
open-source tools.

Published electronically in PDF format for ease of viewing on any plat-
form.

83

