
DESIGN AND IMPLEMENTATION OF AN 
AUTONOMOUS ROBOTICS SIMULATOR

by

Adam Carlton Harris

A thesis submitted to the faculty of 
The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 
for the degree of Master of Science in 

Electrical Engineering 

Charlotte 

2011 

Approved by:                                       

                     _______________________________   
Dr.  James M.  Conrad                         

  _______________________________   
Dr.  Ronald R.  Sass                             

_______________________________   
Dr.  Bharat Joshi                                  



ii

© 2011
Adam Carlton Harris

ALL RIGHTS RESERVED 



iii

ABSTRACT

ADAM CARLTON HARRIS.  Design and implementation of an autonomous robotics 
simulator.  (Under the direction of DR. JAMES M. CONRAD)

Robotics simulators are important tools that can save both time and money for 

developers. Being able to accurately and easily simulate robotic vehicles is invaluable. In 

the past two decades, corporations, robotics labs, and software development groups have 

released many robotics simulators to developers. Commercial simulators have proven to 

be very accurate and many are easy to use, however they are closed source and generally 

expensive. Open source simulators have recently had an explosion of popularity, but most 

are not easy to use. This thesis describes the design criteria and implementation of an 

easy to use open source robotics simulator.

SEAR (Simulation Environment for Autonomous Robots) is designed to be an 

open source cross-platform 3D (3 dimensional)  robotics simulator written in Java using 

jMonkeyEngine3 and the Bullet Physics engine.  Users can import custom-designed 3D 

models of robotic vehicles and terrains to be used in testing their own robotics control 

code. Several sensor types (GPS, triple-axis accelerometer, triple-axis gyroscope, and a 

compass) have been simulated and early work on infrared and ultrasonic distance sensors 

as well as LIDAR simulators has been undertaken.  Continued development on this 

project will result in the fleshing out of the SEAR simulator.



iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. James Conrad for his help and guidance 

throughout this project and my college career as well as Dr. Bharat Joshi and Dr. Ron 

Sass for serving on my committee. I must also thank my colleagues (Arthur Carroll, 

Douglas Isenberg, and Onkar Raut) whose consultations and considerations helped me 

through some of the tougher technical problems of this thesis. I would also like to thank 

Dr. Stephen Kuyath for his insights and encouragement. 

Foremost, I would like to thank my wife and family whose support and 

encouragement has allowed me to come as far as I have and that has helped me surmount 

any obstacles that may lie in my way. This work is dedicated to the memory of my 

grandfather Frank Robert Harris.



v

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

 CHAPTER 1:  INTRODUCTION 1

 1.1  Motivation 1

 1.2  Objective 2

 1.3  Organization 3

 CHAPTER 2:  REVIEW OF PREVIOUS WORK 4

 2.1  Open Source Simulators and Toolkits 5

 2.1.1  Player/Stage/Gazebo 5

 2.1.2  USARSim 7

 2.1.3  SARGE 9

 2.1.4  ROS 10

 2.1.5  UberSim 11

 2.1.6  EyeSim 12

 2.1.7  SubSim 12

 2.1.8  OpenRAVE 13

 2.1.9  RT Middleware 13

 2.1.10  MRPT 14

 2.1.11  lpzrobots 14

 2.1.12  SimRobot 15

 2.1.13  Moby 16



vi

 2.2  Commercial Robotics Simulators 16

 2.2.1  Microsoft Robotics Developer Studio 17

 2.2.2  Marilou 18

 2.2.3  Webots 20

 2.2.4  robotSim Pro/ robotBuilder 22

 2.3  Conclusion 23

 CHAPTER 3:  CONCEPT REQUIREMENTS 25

 3.1  Overview of Concept 25

 3.2  Models of Robotic Vehicles 25

 3.3  Models of Terrain 25

 3.4  Project Settings Window 26

 3.5  Sensor Wizard 26

 3.6  User Code 26

 3.7  Actual Simulation 27

 CHAPTER 4:  TOOLS USED 28

 4.1  Language Selection 28

 4.2  Game Engine Concepts 28

 4.3  jMonkeyEngine Game Engine 30

 4.4  Jbullet-jME 31

 4.5  Overview of Previous Work 32

 CHAPTER 5:  IMPLEMENTATION 34

 5.1  General Implementation and Methods 34

 5.1.1  Models of Robotic Vehicles 34



vii

 5.1.2  Models of Terrain 34

 5.1.3  Obstacles 35

 5.1.4  Project Settings Window 35

 5.1.5  Sensor Wizard 37

 5.1.6  User Code 40

 5.1.7  The Simulation Window 43

 5.2  Sensor Simulation 45

 5.2.1  Position Related Sensor Simulation 45

 5.2.1.1  GPS 46

 5.2.1.2  Compass 49

 5.2.1.3  Three-Axis Accelerometer 50

 5.2.1.4  Three-Axis Gyroscope 52

 5.2.1.5  Odometery 54

 5.2.2  Reflective Beam Simulation 55

 5.2.2.1  Infrared and Ultrasonic Reflective Sensors 55

 5.2.2.2  LIDAR 59

 CHAPTER 6:  CONCLUSIONS 62

 6.1  Summary 62

 6.2  Future Work 62

 6.2.1  Project Settings Window 63

 6.2.2  Sensor Wizard 63

 6.2.3  Sensor Simulators 63

 6.2.4  Models 64



viii

 6.2.5  Simulations 65

 6.2.6  Other Considerations 66

REFERENCES 67

APPENDIX A: SIMULATOR COMPARISON TABLE 75

APPENDIX B: SURVEY OF 3D CAD MODELING SOFTWARE 77

 B.1 Google Sketchup 77

 B.2 Blender 78

 B.3 Wings3D 78

 B.4 Misfit Model 3D 78

 B.5 BRL-CAD 78

 B.6 MeshLab 79

 B.7 Google Earth 79

 B.8 Other Software 79

 B.9 Table and Conclusions 80

APPENDIX C: PROJECT SETTINGS WINDOW 81

APPENDIX D: SENSOR WIZARD 86

APPENDIX E: GOOGLE EARTH TERRAIN MODEL IMPORT 91

APPENDIX F: CODE LISTINGS 93



ix

LIST OF FIGURES

FIGURE 2.1.3: SARGE  screen shot 9

FIGURE 2.1.12: SimRobot screen shot 15

FIGURE 2.2.1: Microsoft Robotics Developer Studio screen shot 17

FIGURE 2.2.2: anykode Marilou screen shot 18

FIGURE 2.2.3: Webots screen shot 20

FIGURE 2.2.4: robotSim Pro screen shot 22

FIGURE 3.7: Basic work flow diagram of SEAR project 27

FIGURE 5.1.7: Simulator Window screen shot 43

FIGURE 5.2.2.1: Visible simulation of beam concept. 57

FIGURE C.1: The Terrain Model tab of the Project Settings window 81

FIGURE C.2: The Robot Body Model tab of the Project Settings window 82

FIGURE C.3: The Wheel Models tab of the Project Settings window 83

FIGURE C.4: The Vehicle Dynamics tab of the Project Settings window 84

FIGURE C.5: The Code Setup tab of the Project Settings window 85

FIGURE D.1: Infrared tab of the Sensor Wizard GUI 86

FIGURE D.2: The Ultrasonic tab of the Sensor Wizard GUI 87

FIGURE D.3: The GPS tab of the Sensor Wizard GUI 87

FIGURE D.4: The LIDAR tab of the Sensor Wizard GUI 88

FIGURE D.5: The Accelerometer tab of the Sensor Wizard GUI 88

FIGURE D.6: The Gyroscope tab of the Sensor Wizard GUI 89

FIGURE D.7: The Compass tab of the Sensor Wizard GUI 89

FIGURE D.8: The Odometer tab of the Sensor Wizard GUI 90



x

FIGURE E.1: The “Get Current View” button in Google Sketchup 91

FIGURE E.2: The “Toggle Terrain” button in Google Sketchup 92



xi

LIST OF TABLES

TABLE 5.1.6: Keyboard controls of the Simulator Window 42

TABLE 5.2.1.1 GPS Simulator Attribute Table 48

TABLE 5.2.1.2: Compass Attribute Table 50

TABLE 5.2.1.3: Accelerometer attribute table. 52

TABLE 5.2.1.4 Gyroscope attribute table 54

TABLE A: Comparison table of all the simulators and toolkits 75

TABLE B: Comparison of modeling software packages 80



xii

LIST OF ABBREVIATIONS 

SEAR  Simulation Environment for Autonomous Robots 

GPL General Public License 

3D Three Dimensional 

TCP Transmission Control Protocol 

POSIX Portable Operating System Interface for Unix 

ODE Open Dynamics Engine 

USARSim Unified System for Automation and Robotics Simulation 

NIST National Institute of Standards and Technology 

UT2004 Unreal Tournament 2004 

GPS Global Positioning System 

SARGE Search and Rescue Game Engine 

Mac Macintosh-based computer 

LIDAR Light Detection And Ranging 

IMU Inertial Measurement Unit 

ROS Robot Operating System 

UNIX Uniplexed Information and Computing System 

BSD Berkeley Software Distribution 

YARP Yet Another Robot Platform 

Orcos Open Robot Control Software 

URBI Universal Robot Body Interface 

OpenRAVE Open Robotics Automation Virtual Environment 

IPC Inter-Process Communication 



xiii

OpenCV Open Source Computer Vision 

PR2 Personal Robot 2 

HRI Human-Robot Interaction 

OpenGL Open Graphics Library 

RoBIOS Robot BIOS 

GUI Graphical User Interface 

FLTK Fast Light Toolkit 

AUV Autonomous Underwater Vehicles

PAL Physics Abstraction Layer 

MATLAB Matrix Laboratory

LGPL Lesser General Public License 

MRPT Mobile Robot Programming Toolkit 

SLAM Simultaneous Localization and Mapping 

OSG OpenScreenGraph 

MRDS Microsoft Robotics Developer Studio 

VPL Visual Programming Language 

WiFi Wireless Fidelity 

RF Modem Radio Frequency Modem 

CAD Computer-Aided Design 

COLLADA Collaborative Design Activity 

API Application Programming Interface 

LabVIEW Laboratory Virtual Instrument Engineering Workbench 

XML Extensible Markup Language 



xiv

jME2 jMonkeyEngine2 

jME3 jMonkeyEngine3 

jME jMonkeyEngine 

Jbullet-jME JBullet implementation for jME2 (called JBullet-jME) 

IDE Integrated Development Environment 

jFrame Java Frame 

IR Infrared 

UCF User Code File 

NOAA National Oceanic and Atmospheric Administration 

MEMS Microelectromechanical Systems 

GPU Graphics Processing Unit 



 CHAPTER 1:   INTRODUCTION

The best way to determine whether or not a robotics project is feasible is to have a 

quick and easy way to simulate both the hardware and software that is planned to be 

used.  Of course robotics simulators have been around for almost as long as robots.  Until 

fairly recently, however, they have been either too complicated to be easily used or only 

designed specifically for a specific robot or line of robots.  In the past two decades, more 

generalized simulators for robotic systems have been developed.  Most of these 

simulators still pertain to specialized hardware or software and some have low quality 

graphical representations of the robots, their sensors, and the terrain in which they move. 

The simulations in general look simplistic and there are severe limitations in attempting 

to deal with real-world maps and terrain.

 1.1   Motivation

Robotic simulators are supposed to help determine whether or not a particular 

robot will be able to handle certain conditions.  Currently, many of the available 

simulators have several limitations.  Many are limited on the hardware available for 

simulation.  They often supply and specify several particular (and expensive) robotics 

platforms and have no easy way of adding other platforms. To add a new robotics 

platform, a lot of work has to go into importing vehicle models and in some cases even 

writing custom code in the simulator itself.  To add new sensors, even ones that are 

similar to supported versions, new drivers for these sensors generally need to be written. 



2

Several are also limited in the respect of terrain.  Real-world terrain and elevation maps 

cannot easily be integrated into some of these systems.  

Some of the current systems also do not do a very good job of simulating simple 

sensors and  interfaces.  Since many of them are designed to use specific hardware, they 

choose a communication protocol for all the sensors to run on.  This requires more 

expensive hardware and leaves fewer options for what sensors may be available.  Other 

simulators require that a specific hardware driver be written for a particular sensor.  A 

simple robot consisting of a couple of distance sensors, motor driver, and a small 8-bit 

embedded system cannot easily be simulated in many of the current systems. However, a 

robot using a computer board running linux that requires each distance sensor and motor 

driver to have its own 8-bit controller board is easily simulated in the current systems. 

This shows a trade-off of hardware complexity and programming abstraction. 

The best general simulators today seem to be both closed source and proprietary, 

which inhibits community participation in its development and their possible 

applications. These systems do a good job of supporting more hardware and having 

simpler interfaces.

 1.2   Objective

A better, simpler simulator would be one that can simulate nearly any possible 

vehicle, using nearly any type and placement of sensors.  The entire system would be 

customizable; from the design of a particular vehicle chassis to the filtering of sensor 

data.  This system would also allow a user to simulate any terrain, with an emphasis on 

real-world elevation map data.  All of the options available to the user must be easy to use 

and  the interface must be intuitive.  The simulation itself should be completely cross 



3

platform and integrate easily with all systems.  It would also be completely open source 

to allow community involvement and be free to anyone who wishes to use it.  

The basis and beginnings of this simulator are described in this thesis.  A basic 

simulator system (SEAR or Simulation Environment for Autonomous Robots) has been 

developed with the ability to load custom models of vehicles and terrain, provide basic 

simulations for certain types of sensors, allow users to write and simulate custom code, 

and simulate everything using a realistic physics engine.  Preparations have also been 

made to facilitate the user in setting up and importing new vehicle models as a whole and 

connecting simulators to specific sensor models on the vehicle. 

 1.3   Organization

This thesis is divided into six chapters.  Chapter 2 gives general descriptions of 

several currently available robot simulation software tools.   Chapter 3 describes the 

concept of the software put forth in this thesis and how it differs from currently available 

simulations in how it deals with hardware as well as aspects of the software itself. 

Chapter 4 introduces the software tools used for the creation of the simulator.  Chapter 5 

discusses the methods by which the different sensors are simulated or hope to be 

simulated in future releases, as well as give a comprehensive description of general user 

interaction with the software.  This includes tasks such as how to create a simulation 

project, import the robot model and a real-world terrain map, appropriately address the 

sensor data in user defined code, and simulate the robot's interactions with the terrain. 

Chapter 6 summarizes the work done in this thesis and plans a course for future 

innovation and development.



 CHAPTER 2:   REVIEW OF PREVIOUS WORK

Robotics simulators have grown with the field of robotics in general.  Since the 

beginning of the robotics revolution there has been a need to simulate the motions and 

reactions to stimuli of different machines.  Simulations are conducted in many cases to 

test safety protocols, to determine calibration techniques, and to test new sensors or 

equipment among other things.   Robotics simulators in the past were generally written 

specifically for a company's own line of robots or for a specific purpose.  In recent years, 

however, the improvement of physics engines and video game engines as well as 

computer processing speed has helped spur a new breed of simulators that combine 

physics calculations and accurate graphical representations of a robot in a simulation. 

These simulators have the potential flexibility to simulate any type of robot.  As the 

simulation algorithms and graphical capabilities the game engines become better and 

more efficient, simulations step out of the computer and become more real-world.  Such 

engines can be applied to the creation of a simulator, and in the words of Craighead et al. 

“...it is no longer necessary to build a robotic simulator from the ground up.” [1].  

Robotics simulators are no longer in a class of their own.  To ensure code 

portability from the simulator to real world robotic platforms (as is generally the ultimate 

goal) specific middleware is often run on the platforms.  The performance, function and 

internals of this middleware must be taken into account when comparing the simulators.

All of these factors (and many more) affect the fidelity of the simulation.  



5

The ultimate goal of this survey is to compare some of the most popular 

simulators and toolkits currently available (both open source and commercial) to attempt 

to find one that can easily be used to simulate low-level, simple custom robotic hardware 

with both graphical and physical high fidelity.  There is a lot of previous work in this 

field.  This paper will add to the work of Craighead, Murphy, Burke, and Goldiez [1]. 

Out of the many simulators available, the particular robotics simulators described and 

compared in this survey are just a few that were chosen based on their wide use and 

specific feature sets.  Each simulator being compared has one or more of the following 

qualities: 

● Variety of hardware that can be simulated (both sensors and robots) 

● Graphical simulation accuracy 

● Physical simulation accuracy 

● Cross-platform capabilities 

● Openness of source code (for future development and addition of new or custom 
simulations by the user). 

 2.1   Open Source Simulators and Toolkits

 2.1.1   Player/Stage/Gazebo

Started in 1999 at the University of Southern California, the Player Project [2] is 

an open source (GPL or General Public License) three-component system involving a 

hardware network server (Player); a two-dimensional simulator of multiple robots, 

sensors or objects in a bit-mapped environment (Stage); and multi-robot simulator for 

simple 3D outdoor environments (Gazebo) [3].  Player is a Transmission Control 

Protocol (TCP) socket enabled middleware that is installed on the robotic platform.  This 

middleware creates an abstraction layer on top of the hardware of the platform, allowing 



6

portability of code [4].   Being socketed allows the use of many programming languages 

[5].  While this may ease programming portability between platforms it adds several 

layers of complexity to any robot hardware design.  

To support the socketed protocol, drivers and interfaces must be written to interact 

with each piece of hardware or algorithm.  Each type of sensor has a specific protocol 

called an interface which defines how it must communicate to the driver [6].   A driver 

must be written for Player to be able to connect to the sensor using file abstraction 

methods similar to POSIX systems.  The robotic platform itself must be capable of 

running a small POSIX operating system to support the hardware server application [3]. 

This is overkill for many introductory robotics projects, and its focus is more on higher 

level aspects of robotic control and users with a larger budgets.  The creators of Player 

admit that it is not fitting for all robot designs [5].  

Player currently supports more than 10 robotic platforms as well as 25 different 

hardware sensors.  Custom drivers and interfaces can be developed for new sensors and 

hardware.  The current array of platforms and sensor hardware available for Player robots 

can be seen on the Player project’s supported hardware webpage [7].  

Stage is a 2-dimensional robot simulator mainly designed for interior spaces.  It 

can be used as a standalone application, a C++ library, or a plug-in for Player.  The 

strength of Stage is that it focuses on being “efficient and configurable rather than highly 

accurate.” [8].  Stage was designed for simulating large groups or swarms of robots.  The 

graphical capability is also quite basic.  Sensors in Stage communicate exactly the same 

as real hardware, allowing the exact same code to be used for simulation as the actual 

hardware [5].    This is no guarantee, however, that the simulations have high physical 



7

simulation fidelity [8].  

Gazebo is a 3D robotics simulator designed for smaller populations of robots (less 

than ten) and simulates with higher fidelity than Stage [9].   Gazebo was designed to 

model 3D outdoor as well as indoor environments [5].    The use of plug-ins expands the 

capabilities of Gazebo to include abilities such as dynamic loading of custom models and 

the use of stereo camera sensors [10].   Gazebo uses the Open Dynamics Engine (ODE) 

which provides high fidelity physics simulation [11].  It also has the ability to use the 

Bullet Physics engine [12].

 2.1.2   USARSim

Originally developed in 2002 at Carnegie Mellon University, USARSim (Unified 

System for Automation and Robotics Simulation) [13] is a free simulator based on the 

cross platform Unreal Engine 2.0.  It was handed over to the National Institute of 

Standards and Technology (NIST) in 2005 and was released under the GPL license [14]. 

USARSim is actually a set of add-ons to the Unreal Engine, so users must own a copy of 

this software to be able to use the simulator.  A license for the game engine usually costs 

around $40 US [15].  Physics are simulated using the Karma physics engine which is 

built into the Unreal engine [16].   This provides basic physics simulations [1].  One 

strength of using the Unreal engine is the built in networking capability.  Because of this, 

robots can be controlled by any language supporting TCP sockets [17].   

While USARSim is based on a cross platform engine, the user manual only fully 

explains how to install it on a Windows or Linux machine.  A Mac OS installation 

procedure is not described.  The installation requires Unreal Tournament 2004 (UT2004) 

as well as a patch.  After this base is installed, USARSim components can be installed. 



8

On both Windows and Linux platforms, the installation is rather complicated and requires 

many files and directories to be moved or deleted by hand.  The USARSim wiki has 

installation instructions [18].   Linux instructions were found on the USARSim forum at 

sourceforge.net [19].   Since it is an add-on to the Unreal tournament package, the overall 

size of the installation is rather large, especially on Windows machines.

USARSim comes with several detailed models of robots available for use in 

simulations [20], however it is possible to create custom robot components in external 3D 

modeling software and specify physical attributes of the components once they are loaded 

into the simulator [21].   An incomplete tutorial on how to create and import a model 

from 3D Studio Max is included in the source download.  Once robots are created and 

loaded, they can be programmed using TCP sockets [22].  Several simulation 

environments are also available.  Environments can be created or modified by using tools 

that are part of the Unreal Engine [21].

There have been a multitude of studies designing methods for validating the 

physics and sensor simulations of USARSim.  Pepper et al.  [23] identified methods that 

would help bring the physics simulations closer to real-world robotic platforms by 

creating multiple test environments in the simulator as well as in the lab and testing real 

robotic platforms against the simulations.  The physics of the simulations were then 

modified and tested again and again until more accurate simulations resulted.  Balaguer 

and Carpin built on the previous work of validating simulated components by testing 

virtual sensors against real-world sensors.  A method for creating and testing a virtual 

GPS (Global Positioning System) sensor that much more closely simulates a real GPS 

sensor was created [24].   Wireless inter-robot communication and vision systems have 



9

been designed and validated as well [20].  USARSim has even been validated to simulate 

aspects of other worlds.  Birk et al.  used USARSim with algorithms already shown to 

work in the real world as well as real-world data from Mars exploration missions to 

validate a robot simulation of another planet [25].

 2.1.3   SARGE

Figure 2.1.3 SARGE screen shot

SARGE (Search and Rescue Game Engine) [26],  shown in Figure 2.1.3, is a 

simulator designed to train law enforcement in using robotics in search and rescue 

operations [27].  It is released under the Apache License V2.0.  A screen shot can be seen 

in Fig.1.  The developers of SARGE provided evidence that a valid robotics simulator 

could be written entirely in a game engine [1].  Unity was chosen as the game engine 



10

because it was less buggy than the Unreal engine and it provided a better option for 

physics simulations, PhysX.  PhysX provides a higher level of fidelity in physics 

simulations [11].   SARGE currently only supports Windows and Mac platforms though it 

is still under active development.  Currently, a webplayer version of the simulator is 

available on the website http://www.sargegames.com.  

It is possible for SARGE users to create their own robots and terrains with the use 

of external 3D modeling software.  Sensors are limited to LIDAR (Light Detection and 

Ranging), 3D camera, compass, GPS, odometer, inertial measuring unit (IMU), and 

standard camera [27], though only the GPS, LIDAR, compass and IMU are discussed in 

the user manual [28].   The GPS system requires an initial offset of the simulated terrain 

provided by Google Earth.  The terrains themselves can be generated in the Unity 

development environment by manually placing 3D models of buildings and other 

structures on images of real terrain from Google Earth [28].   Once a point in the virtual 

terrain is referenced to a GPS coordinate from Google Earth, the GPS sensor can be used 

[11].  This shows that while terrains and robots can be created in SARGE itself, external 

programs may be needed to set up a full simulation.

 2.1.4   ROS

ROS [29] (Robot Operating System) is currently one of the most popular robotics 

toolkits systems.  Only UNIX-based platforms are officially supported (including Mac 

OS X) [30] but the company Robotics Equipment Corporation has ported it to Windows 

[31].   ROS is fully open source and uses the BSD license [32].   This allows users to take 

part in the development of the system, which is why it has gained wide use.  In its 

meteoric rise in popularity over the last three years it has added over 1643 packages and 



11

52 code repositories since it was released [33].  

One of the strengths of ROS is that it plays nicely with other robotics simulators 

and middleware.  It has been successfully used with Player, YARP, Orcos, URBI, 

OpenRAVE, and IPC [34].  Another strength of ROS is that it can incorporate many 

commonly used libraries for specific tasks instead of having to have its own custom 

libraries [32].  For instance, the ability to easily incorporate OpenCV has helped make 

ROS a better option than some other tools.  Many libraries from the Player project are 

also being used in certain aspects of ROS [4].  An additional example of ROS working 

well with other frameworks is the use of the Gazebo simulator.  

ROS is designed to be a partially real-time system.  This is due to the fact that the 

robotics platforms it is designed to be used with, like the PR2, will be in different 

situations involving more human computer interaction in real time than many current 

commercial research robotics platforms [4].  One of the main platforms used for the 

development of ROS is the PR2 robot from Willow Garage.  The aim of using ROS’s 

real-time framework with this robot is to help guide safe Human-Robot Interaction 

(HRI).  Previous frameworks such as Player were rarely designed with this aspect in 

mind.

 2.1.5   UberSim

UberSim [35] is an open source (under GPL license) simulator based on the ODE 

physics engine and uses OpenGL for screen graphics [36].   It was created in 2000 at 

Carnegie Mellon University specifically with a focus on small robots in a robot soccer 

simulation.  The early focus of the simulator was the CMDragons RoboCup teams; 

however the ultimate goal was to develop a simulator for many types and sizes of 



12

robotics platforms [37].  Since 2007, it no longer seems to be under active development.

 2.1.6   EyeSim

EyeSim [38] began as a two-dimensional simulator for the EyeBot robotics 

platform in 2002 [39].   The EyeBot platform uses RoBIOS (Robot BIOS) library of 

functions.  These functions are simulated in the EyeSim simulator.  Test environments 

could be created easily by loading text files with one of two formats, either Wall format 

or Maze format.  Wall format simply uses four values to represent the starting and 

stopping point of a wall in X,Y coordinates (i.e.   x1  y1  x2  y2).  Maze format is a 

format in which a maze is literally drawn in a text file by using the pipe and underscore 

(i.e.  | and _ ) as well as other characters [39].  

In 2002, the EyeSim simulator had graduated to a 3D simulator that uses OpenGL 

for rendering and loads OpenInventor files for robot models.  The GUI (Graphical User 

Interface) was written using FLTK [40].  Test environments were still described by a set 

of two dimensional points as they have no width and have equal heights [41].  

Simulating the EyeBot is the extent of this project.  While different 3D models of 

robots can be imported, and different drive-types (such as omni-directional wheels and 

Ackermann steering) can be selected, the controller will always be based on the EyeBot 

controller and use RoBIOS libraries [40].  This means simulated robots will always be 

coded in C code.  The dynamics simulation is very simple and does not use a physics 

engine.  Only basic rigid body calculations are used [41].

 2.1.7   SubSim

SubSim [42] is a simulator for Autonomous Underwater Vehicles (AUVs) 

developed using the EyeBot controller.  It was developed in 2004 for the University of 



13

Western Australia in Perth[43].   SubSim uses the Newton Dynamics physics engine as 

well as Physics Abstraction Layer (PAL) to calculate the physics of being underwater [1].

Models of different robotic vehicles are can be imported from Milkshape3D files 

[43].   Programming of the robot is done by using either C or C++ for lower-level 

programming, or a language plug-ins.  Currently the only language plug-in is the EyeBot 

plug-in.  More plug-ins are planned but have yet to materialize [43].

 2.1.8   OpenRAVE

OpenRAVE [44] (Open Robotics and Animation Virtual Environment) is an open 

source (LGPL) software architecture developed at Carnegie Mellon University [45].  It is 

mainly used for planning and simulations of grasping and grasper manipulations as well 

as humanoid robots.  It is used to provide planning and simulation capabilities to other 

robotics frameworks such as Player and ROS [46].  Support for OpenRAVE was an early 

objective for the ROS team due to its planning capabilities and openness of code [46].  

One advantage to using OpenRAVE is its plug-in system.  Basically everything 

connects to OpenRAVE by plug-ins, whether it is a controller, a planner, external 

simulation engines and even actual robotic hardware.  The plug-ins are loaded 

dynamically.  Several scripting languages are supported such as Pythos and 

MATLAB/Octave [47].

 2.1.9   RT Middleware

RT Middleware [48] is set of a standards used to describe a robotics framework. 

The implementation of these standards is OpenRTM-aist, which is similar to ROS.  This 

is released under the Eclipse Public License (EPL) [49].  Currently it is available for 

Linux and Windows machines and can be programmed using C++, Python and Java [48]. 



14

The first version of OpenRTM-aist (version 0.2) was released in 2005 and since then its 

popularity has grown.  Version 1.0 of the framework was released in 2010.  

OpenRTM-aist is popular in Japan, where a lot of research related to robotics 

takes place.  While it does not provide a simulator of its own, work has been done to 

allow compatibility with parts of the Player project [50].  

 2.1.10   MRPT

The Mobile Robot Programming Toolkit (MRPT) [51] project is a set of cross 

platform C++ libraries and applications released under the GPL license.  It is cross 

platform, but has only currently has only been tested on Windows and Linux [52].  

MRPT is not a simulator or framework; rather it is a toolkit that provides libraries and 

applications that can allow multiple third-party libraries to work together [53]. The main 

focus of MRPT is Simultaneous Localization and Mapping (SLAM), computer vision, 

and motion planning algorithms [53].   

 2.1.11   lpzrobots

lpzrobots [54]  is a GPL licensed package of robotics simulation tools available 

for Linux and Mac OS.  The main simulator of this project that corresponds with others 

in this survey is ode_robots which is a 3D simulator that used the ODE and OSG 

(OpenScreenGraph) engines.



15

 2.1.12   SimRobot

Figure 2.1.12 SimRobot screen shot

Figure 2.1.12 shows a screen shot of SimRobot [55] is a free, open source 

completely cross-platform robotics simulator started in 1994.  It uses the ODE for physics 

simulations and OpenGL for graphics [56].   It is mainly used for RoboCup simulations, 

but it is not limited to this purpose.  

A simple and intuitive drag and drop interface allows custom items to be added to 

scenes.  Custom robots can be created and added as well [57].  Unlike many of the other 

robotics simulators, SimRobot is not designed around client/server interaction.  This 

allows simulations to be paused or stepped through which is a great help to debugging 



16

simulations [57].  

SimRobot does not simulate specific sensors as many of the other simulators do; 

rather it only provides generic sensors that users can customize.  These include a camera, 

distance senor (not specific on a type), a “bumper” for simulating a touch sensor, and 

“actuator state” which returns angles of joints and velocities of motors [57].  

Laue and Rofer admit that there is a “reality gap” in which simulations differ from 

real-world situations [56].  They note that code developed in the simulator may not 

translate to real robots due to distortion and noise in the real-world sensors.  They also 

note, however, that code that works in the real world may completely fail when entered 

into the simulation because it may rely on that distortion and noise.  This was specifically 

noted with the camera sensor and they suggested several methods to compensate for this 

difference.  [56]

 2.1.13   Moby

Moby [58] is an open source (GPL 2.0 license) rigid body simulation library 

written in C++.  It supports Linux and Mac OS X only.  There is little documentation for 

this simulation library.  

 2.2   Commercial Robotics Simulators

There are many commercial robotics simulators available.  Many of them are 

designed for industrial robotics or a manufacturer’s own robotic platforms.  The 

commercial simulators described and compared in this paper will be focused on research 

and education.  

As with any commercial application, one downfall of all of these applications is 

that they are not open source.  Commercial programs that do not release source code can 



17

tie the hands of the researcher, forcing them in some cases to choose the less than optimal 

answer to various research questions.  When problems occur with proprietary software, 

there is no way for the researcher to fix it.  This problem alone was actually the impetus 

for the Player Project [4].

 2.2.1   Microsoft Robotics Developer Studio

Figure 2.2.1 Microsoft Robotics Developer Studio screen shot

Microsoft Robotics Developer Studio (MRDS) [59]  uses Phys X physics engine 

which is one of the highest fidelity physics engines available [1].  A screen shot can be 

seen in Figure 2.2.1.  MRDS robots can be programmed in .NET languages as well as 

others.  The majority of tutorials available online mention the use of C# as well as a 



18

Visual Programming Language (VPL) Microsoft developed.  Programs written in VPL 

can be converted into C# [60].  The graphics are high fidelity.  There is a good variety of 

robotics platforms as well as sensors to choose from.  

Being a Microsoft product, it is certainly not cross platform.  Only Windows XP, 

Windows Vista, and Windows 7 are supported.  MRDS can, however, be used to program 

robotic platforms which may run other operating systems by the use of serial or wireless 

communication (Bluetooth, WiFi, or RF Modem) with the robot [61].

 2.2.2   Marilou

Figure 2.2.2 anykode Marilou screen shot

Figure 2.2.2 shows a screen shot of Marilou by anyKode [62]. Marilou is a full 

robotics simulation suite.  It includes a built in modeler program so users can build their 



19

own robots using basic shapes.  The modeler has an intuitive CAD-like interface.  The 

physics engine simulates rigid bodies, joints, and terrains.  It includes several types of 

available geometries [63].   Sensors used on robots are customizable, allowing for 

specific aspects of a particular physical sensor to be modeled and simulated.  Devices can 

be modified using a simple wizard interface.  

Robots can be programmed in many languages from Windows and Linux 

machines, but the editor and simulator are Windows only.  Marilou offers programming 

wizards that help set up projects settings and source code for based on which language 

and compiler is selected by the user [64].  

Marilou is not open source or free.  While there is a free home version, it is meant 

for hobbyists with no intention of commercialization.  The results and other associated 

information are not compatible with the professional or educational versions.  Prices for 

these versions range from $360 to $2,663 [65].



20

 2.2.3   Webots

Figure 2.2.3 Webots screen shot

The Cyberbotics simulator Webots [66] (shown in Figure 2.2.3) is a true 

multiplatform 3D robotics simulator that is one of the most developed of all the 

simulators surveyed [67].   Webots was originally developed as an open source project 

called Khepera Simulator as it initially only simulated the Khepera robot platform.  The 

name of the project changed to Webots in 1998 [68].  Its capabilities have since expanded 

to include more than 15 different robotics platforms [69].  

Webots uses the Open Dynamics Engine (ODE) physics engine and, contrary to 

the criticisms of Zaratti, Fratarcangeli, and Iocchi [22], Webots has realistic rendering of 

both robots and environments.  It also allows multiple robots to run at once.  Webots can 



21

execute controls written in C/C++, Java, URBI, Python, ROS, and MATLAB languages 

[69].   This simulator also allows the creation of custom robotics platforms; allowing the 

user to completely design a new vehicle, choose sensors, place sensors where they wish, 

and simulate code on the vehicle.  

Webots has a demonstration example showing many of the different robotics 

systems it can simulate, including an amphibious multi-jointed robot, the Mars Sojourner 

rover, robotic soccer teams, humanoids, multiple robotic arms on an assembly line, a 

robotic blimp, and several others.  The physics and graphics are very impressive and the 

software is easy to use.  

Webots has a free demonstration version available (with the ability to save world 

files crippled) for all platforms, and even has a free 30 day trial of the professional 

version.  The price for a full version ranges from $320 to $4312 [70].



22

 2.2.4   robotSim Pro/ robotBuilder

Figure 2.2.4 robotSim Pro screen shot

robotBuilder [71] is a software package from Cogmation Robotics that allows 

users to configure robots models and sensors.  A screen shot can be seen in Figure 2.2.4 

Users import the models of the robots, import and position available sensors onto the 

robots, and link these sensors to the robot's controller.  Users can create and build new 

robot models piece by piece or robotBuilder can import robot models created in other 3D 

CAD (Computer-Aided Design) programs such as the free version of Google Sketchup. 

The process involves exporting the Sketchup file as a COLLADA or 3DS file, then 

importing this into robotBuilder [72].  

robotSim Pro is an advanced 3D robotics simulator that uses a physics engine to 



23

simulate forces and collisions [73].  Since this software is commercial and closed source, 

the actual physics engine used could not be determined.  RobotSim allows multiple 

robots to simulate at one time.  Of all of the simulators in this survey, robotSim has some 

of the most realistic graphics.  The physics of all objects within a simulation environment 

can be modified to make them simulate more realistically [73].  Test environments can be 

easily created in robotSim by simply choosing objects to be placed in the simulation 

world, and manipulating their positions with the computer mouse.  Robot models created 

in the robotBuilder program can be loaded into the test environments.  Robots can be 

controlled by one of three methods; the Cogmation C++ API, LabVIEW, or any socketed 

programming language [71].   

robotSim is available for $499 or as a bundle with robotBuilder for $750. 

Cogmation offers a 90-day free trial as well as a discounted academic license.  

 2.3   Conclusion

While this is certainly not an exhaustive list of robotics simulators, this is a simple 

comparison of several of the leading simulator packages available today.  Table A 

contains a comparison table of the surveyed simulators and their relative advantages and 

disadvantages.  Items in the “disadvantages” column can be considered “show stoppers” 

for many users.  

Most of the simulators in this survey are designed for specific robotics platforms 

and sensors which are quite expensive and not very useful for simpler, cheaper systems. 

The costs and complexities of these systems often prevent them from being an option for 

projects with smaller budgets.  The code developed in many of these simulators requires 

expensive hardware when porting to real robotics systems.  The middleware that is 



24

required to run on actual hardware is often too taxing for smaller, cheaper systems.  There 

simply isn't a very good 3D robotics simulator for custom robotic systems designed on a 

tight budget.  Many times a user only needs to simulate simple sensor interactions, such 

as simple analog sensors, with high fidelity.  In these cases, there is no need for such 

processor intensive, high abstraction simulators.  



 CHAPTER 3:   CONCEPT REQUIREMENTS

 3.1   Overview of Concept

The concept of this simulator was conceived as a free (completely open source) 

and cross platform 3D graphically and physically accurate robotics simulator.  The 

simulator should be able to import 3D, user-created vehicle models and real-world terrain 

data.  The simulator should be easy to setup and use on any system.  It should also be 

easy to allow others to develop in the open source community.  The simulator should be 

flexible for the user and be easy to use for both the novice and the expert.

 3.2   Models of Robotic Vehicles

The models of robotic vehicles should be imported into the simulator in Ogre 

mesh format.  This format is one of several standard formats used in the gaming 

community.  These models can be created using one of many 3D modeling CAD software 

programs.  Several of these programs are compared in Appendix B.

 3.3   Models of Terrain

Terrain models can be created by many means, however, in this project, terrains 

are created only using Google Earth and Google Sketchup.  Google Earth allows for a 

seamless transfer of a given 3D terrain directly into Google Sketchup.  Only the altitude 

data is represented so there are no trees or other obstacles.  This model could be used as 

the basis for a fully simulated terrain.



26

 3.4   Project Settings Window

Settings for the overall SEAR project should be entered in the Project Settings 

Window.  This records which models will be used for terrain, robot body and robot 

wheels.  The robot vehicle dynamics should also be set  in this window to allow user 

described values to be used in the physics simulations.  User code files should be selected 

in this window as well.  The user has the option of selecting a custom user code file, 

creating a new user code file template or creating a new Java file template in their chosen 

working directory.  All of the Project settings can be saved to a file, or loaded from a file 

to ease set up of multiple simulations.  

 3.5   Sensor Wizard

The sensor wizard should allow users to enter important values for their sensors. 

These values would then be stored to an XML file which will be read by the simulator 

and used to set up sensor simulations.

 3.6   User Code

A robotics simulator is of no use unless the user can test custom code.  There are 

two methods for users to create custom code.  The user can use a template for a “User 

Code File” which helps simplify the coding process of coding by allowing only three 

methods to be used; a method in which users can declare variables, an initialization 

method and a main loop method.  This was designed to reduce confusion for novice users 

and makes prototyping a quick and easy process.  Additionally, the user could choose to 

code from a direct Java template of the simulator itself.  This would be a preferred 

method for more advanced simulations.  



27

 3.7   Actual Simulation

Upon starting a simulation, the values recoded in the project settings file (.prj) 

created in the Project Settings Window, the sensor settings XML file, and the user code 

file (.ucf) should all be used to create the simulation.  The paths to the models and vehicle 

dynamics must then read from the project settings file.  The simulator code itself is 

modified by having the user code file integrated into it.  

Once everything has been loaded, the simulator will begin.  A graphical window 

should open to show the results of a live simulation.  The robot should drive around the 

terrain interacting with the world either manually or using code written by the user. 

Values of sensors should also be printed to the screen so the user can watch and debug 

any problems.  Once the simulation has finished, the user can close the simulator window 

and edit the user code file again if needed for another simulation. Figure 3.7 shows the 

basic work flow diagram of the entire project.

Figure 3.7 Basic work flow diagram of SEAR project



 CHAPTER 4:   TOOLS USED

This project relied on several software tools for development.  The required 

software ranged from code IDEs to 3D modeling CAD software.  Netbeans 6.8 and 6.9 

were used for coding Java for the project.  The game engines used were jMonkeyEngine2 

(jME2) and jMonkeyEngine3 (jME3).  A variety of modeling software was used as well.

 4.1   Language Selection

Using a previous survey of current robotics simulators [1] it was shown that 

several of the current systems claim to be cross platform.  While this may technically be 

true, it is often so complicated to implement these systems on different platforms that 

most people would rather switch platforms than spend the time and effort trying to set the 

simulators up on their native systems.  Most of the currently available open source 

simulator projects are based on C and C++.  While many of them are considered also 

cross-platform, it takes a lot of work to get them running correctly for development on 

different systems.  

To make a simulator easy to use as well as easy to allow further development, 

Java was selected as the language the simulator would be coded in.  The development 

platform used was NetBeans 6.8 and 6.9.  This makes it very easy to modify the code, 

and with the use of Java, the code can run on any machine.  

 4.2   Game Engine Concepts

The jME3 game engine consists of two major parts, each with their own "spaces" 



29

that must be considered for any simulation.  There is a "world space" which is controlled 

by the rendering engine and displays all of the screen graphics.  jMonkeyEngine does this 

job in this project.  

The second part is the physics engine which can simulate rigid body dynamics as 

well as many other things.  For this project only rigid body dynamics are being used, 

however other systems can also be simulated such as fluid dynamics.  The physics engine 

calculates interactions between objects in the "physics space" such as collisions.  It can 

simulate mass and gravity as well.  

A developer must learn to think about about both spaces concurrently.  It is 

possible for objects to exist in only one of these spaces which can lean to simulation 

errors.  Once an object is made in the world space, it must be attached to a model in the 

physics space in order to react with the other objects in the physics space.  

For instance, an obstacle created in only the graphics world will show up on the 

screen during a simulation, however, the robot can drive directly through the obstacle 

without being affected by it.  Conversely, the obstacle can exist only in the physics world. 

A robot in this instance would bounce off of an invisible object in a simulation.  Another 

option would be to have an obstacle created in both, but not in the same place.  This 

would lead to the robot driving though the visible obstacle, and running into its invisible 

physics model a few meters behind the obstacle.  Attention must be paid to attach both 

the graphics and physics objects, and to do so correctly.  

The game engine creates a 3D space or "world".  In each direction, X, Y and Z the 

units are marked as "world units." World units don't equate to any real-world 

measurement.  In fact they are set by the modeling tool used in model creation. 



30

Experimentation with the supported shapes in the game engine shows that a one world-

unit cube is very close to a one meter cube model.  Certain model exporters will have a 

scale factor; however that can be used to change the units of the model upon export. 

Additionally, any object can also be scaled inside the game engine.

 4.3   jMonkeyEngine Game Engine

The game engine selected for this project was jMonkeyEngine3 (jME3) since it is 

a high performance, completely cross platform Java game engine.  At the beginning of 

this project, jME version 2.0 was used but development quickly moved to the pre-alpha 

release of jME3 due to more advanced graphics and the implementation of physics within 

the engine itself.  The basic template for a simple game in jME3 is shown below:

public class BasicGame extends SimpleBulletApplication { 

 

    public static void main(String[] args){ 

     //create an instance of this class      

        BasicGame app = new BasicGame(); 

        app.start();//Start the game 

    } 

    @Override 

    public void simpleInitApp() { 

    //Initialization of all objects required for the game.  

    //This generally loads models and sets up floors.  

    } 

    @Override 

    public void simpleUpdate(float tpf) {   

    //Main Event Loop 

    } //end of Class

The superclass SimpleBulletApplication handles all of the graphics and physics 

involved.  Because this class is extended, local overrides must be included.  The 



31

simpleInitApp method is used to initialize the world and the objects within it.  

The simpleInitApp method calls methods for loading models of the robotic 

vehicle, loading the terrain models, setting up groups of collision objects, and any other 

tasks that must be performed before the main event loop begins.  simpleInitApp then sets 

up all the internal state variables of the game and loads the screengraph [74].  The 

simpleUpdate method is the main event loop.  This method is an infinite loop and is 

executed as fast as possible.  This is where important functions of the simulator reside. 

The actual simulation of each sensor and updates to the simulator state are done in this 

loop.  Additionally, other methods from the simpleBulletApplication may be overridden 

such as onPreUpdate and onPostUpdate, though these were not used specifically in this 

project.  

 4.4   Jbullet-jME

The JBullet physics engine was chosen for this project.  JBullet is a 100% Java 

port of the Bullet Physics Library which is originally written in C++.  During early 

development of this project using jME2, the development of a JBullet implementation for 

jME2 (called JBullet-jME) was used.  Jbullet-jME development was stopped after only a 

few weeks of development so a completely new implementation of JBullet could be 

integrated in the new version of jMonkeyEngine, jME3.  

The concept was to combine the graphics and physics engines to result in a 

complete game engine.  This game engine was also coupled with a newly developed 

modification of the Netbeans IDE (Integrated Development Environment) to be released 

as jMonkeyPlatform.  This triad of development tools was not complete when this thesis 

project began and therefore was not fully utilized.  Additional problems with speed and 



32

compatibility made the use of the pre-Alpha version of the jMonkeyPlatform very 

unreliable and it was not used for this project.

 4.5   Overview of Previous Work

At a thesis topic approval meeting, A 3D model of a robot from the Embedded 

Systems lab was constructed in Google Sketchup.  The model was then exported as a 

COLLADA file and loaded into a jME2 application using JBullet-jme.  A real-world 3D 

terrain exported from Google Earth to Google Sketchup and a third-party free plug-in 

was used to generate a height-map JPEG image which was also loaded into the jME2 

program.  The robot was driven around the scene showing the reactions to collisions as 

well as the effects of gravity and velocity on the objects in the scene.  

More development using jME2 and Jbullet-jme was not possible since not many 

functions were released for the JBullet-jme engine.  Development of the simulator had to 

switch to the new pre-Alpha jME3 platform onto which all jMonkey development focus 

had been switched.  The jME3 engine integrated the JBullet physics engine into the game 

engine.  Because of this fact, any code using it had to start from scratch.  This lead to 

several systems not being implemented at the time this project switched game engines. 

For instance, the terrain system as well as model loading had not yet been written for 

jME3 when the project switched game engines.  In fact, COLLADA models were no 

longer planned to be natively supported.  Everything written in jME2 was now also 

deprecated code and practically nothing would convert to the new engine.  All previous 

code for the robotics simulator had to be scrapped.  

Throughout this project, nightly builds of the pre-Alpha version of jME3 were 

downloaded from the jMonkeyEngine code repository  to get the newly support 



33

functionality. The use of these nightly builds lead to many code rewrites and much of the 

time spent was for waiting for certain features to be implemented in jME3.  During these 

times work on other concepts was accomplished, such as methods for simulating sensors, 

logical layout of the program, graphical user interface (GUI) design and research on other 

simulators.  The graphics capabilities of jME3 were much more advanced, and as such 

would only now on machines that supported OpenGL2 or above [75].  This reduced the 

available machines that could be used for development to one.  Because of all of these 

factors, several months passed before the jME3 version could match the capabilities of 

the original jME2 project.



 CHAPTER 5:   IMPLEMENTATION

 5.1   General Implementation and Methods

Since this project began during early pre-alpha stages of jME3, functionality for 

many features of the program were delayed and in several cases had to be completely 

redeveloped after updates to the engine rendered code deprecated.  Therefore, this project 

evolved and changed as functionality was added to jME3.  

 5.1.1   Models of Robotic Vehicles

Loading a robot vehicle model is done as a call to the RobotModelLoader class in 

the ModelLoader package of the Netbeans project.  This code was written by Arthur 

Carroll in the early stages of this project to serve as an easy method for building robots 

from the separate models of the robot body, and all four wheels and its listing can be 

found in Section F.1.  This process is invisible to the user as it happens directly in the 

Simulator.java file.  The user only has to select the location of the models of the robot 

body, and each wheel in the Project Settings Window.  Additionally, the user has fine 

grain controls to change the position of each of the wheels. Future versions of this code 

will load an entire robot model from a .scene file. 

 5.1.2   Models of Terrain

The user has only to select the location of the model they want to load in the 

Project Settings window when setting up a project.  The terrain loading process is carried

out in the Simulator.java file and involves calling the TerrainModelLoader class (Section 



35

F.2) in the ModelLoader package of the Netbeans project.  This serves as a simple 

method of importing and creating a terrain from an Ogre mesh model.  

 5.1.3   Obstacles

Obstacles are added to the test environment using built-in methods.  These 

methods are called by the user in the initialization function of the user's code.  Currently, 

the only two supported obstacles are a one-meter cube and a tree.  To add a tree to the 

environment, the user can simply pass a 3D location to the addTree() method (e.g. 

addTree( x, y, z ); where z, y, and z are in world units.) The addBox() method works 

similarly.  Using the boxes as bricks, the user can build different structures.  By adjusting 

the mass of the boxes (by editing the addBox() method directly) the user can create solid 

walls that will not crumble or break when hit by a vehicle.  Future development will yield 

an addWall() method that will allow users to build walls of a building or maze quickly 

instead of building them out of many boxes.

 5.1.4   Project Settings Window

The SEAR Project Settings window is the first jFrame window the user will see. 

It is from this window that the user will set up a simulation project.  The user must select 

which models will be used for the terrain, the robot body, and each of the robot wheels as 

well as setting initial locations of all of these models.  Additionally the dynamics of the 

robotic vehicle can also be set, such as mass, acceleration force, brake force, suspension 

stiffness, suspension compression value, and suspension damping value.  Default 

workable values are set so the user may have a starting point for their vehicles.  The user 

must also select the directories in which the jMonkey .jar libraries reside as well as their 

own user code file.  Additionally, the user can select to activate the debug shapes in the 



36

simulator.  This option visibly shows a representation of the physics shapes used in the 

simulation and can be vital for debugging simulation results.  The Sensor Wizard 

(discussed in detail in Section 5.1.5) may also be called from the Project Settings 

window.  

The “Terrain Mode” tab shown in Figure C.1 Allows the user to select the 

location of the terrain model and set the latitude, longitude and altitude values of the 

center of the terrain.  Figure C.2 shows the “Robot Body Model” tab which allows the 

user to select the location of the model of the robot body.  This tab also has options to set 

the model's position and rotation within the terrain.  These options should be used as 

course grain measurements as the robot will likely roll if the terrain is slanted anyway. 

The “Wheel Models” tab shown in Figure C.3 has options to select the location of each 

wheel model as well as options for relative positioning of each of these models to the 

main robot body.  These settings are optional depending on the models as some models 

already have the offsets designed into each of the models.  Figure C.4 shows the vehicle 

“Dynamics” tab which has several options for vehicle dynamics, such as vehicle mass, 

acceleration force, brake force, and suspension configurations such as stiffness, 

compression and damping values.  The fields are filled in with default values for a 

workable robot vehicle.  Other options are planned for this tab such as lowering the 

center of gravity of vehicle and the amount of friction slip of each wheel.  If values are 

changed by the user, the “Reset Defaults” button will reset the default dynamics values in 

this tab.  The “Code Setup” tab shown in Figure C.5 allows the user to create blank user 

code file and simulator.java templates, select the location of the preinstalled jMonkey .jar 

libraries, and select whether or not the simulator will run in debug mode.  Debug mode 



37

shows all of the physics shapes in the world to allow for debugging of model physics.  

The "Simulate", "Sensor Wizard", "Save Project" and "Load Project" buttons are 

located at the bottom of every window, in the main jFrame.  The “Sensor Wizard” button 

launches the Sensor Wizard GUI.  Save Project will allow the user to save all of the 

settings for the current project as a “.prj” project file.  Currently, the file is saved as a 

simple text file in which each line corresponds to a setting in the Project Settings window, 

however future plans call for this file to be written in XML.  The “Load Project” button 

allows the user to select a previously saved project settings file so the user won't have to 

enter them each time the simulator is run.  The Simulate button allows the user to 

simulate the project in the simulator.  Before each simulation begins, all of the settings 

for a project must be saved.  This is due to the fact that the simulator itself is compiled 

dynamically, but called as a separate system process.  The simulator must open and read 

the project settings file to initialize variables for the simulation.  A more detailed 

explanation of the processes that occur when the Simulate button is pressed is located in 

Section 5.1.7 of this thesis.  The code listing for the Project Settings Window can be 

found in Section F.3 of this thesis.  The dynamic compiler listing can be found in Section 

F.4.

 5.1.5   Sensor Wizard

The Sensor Wizard (code listing available in Section F.5) is designed to provide a 

simple way for a user to enter information about each sensor and consists of a jFrame 

similar to the Project Settings window which allows the user to specify values and 

information about each of the sensors.  The options for each sensor are saved as sensor 

objects which are then written out to an XML file.  The “Infrared (IR)” tab (Figure D.1) 



38

shows the options available for setting up the properties of the IR beam including beam 

width, maximum and minimum distance.  These values are only available for analog 

sensors.  If the “Digital Output” radio button is selected, the only options available 

describing the beam are beam width and switching distance.  Figure D.2  shows the 

“Ultrasonic” sensor tab.  This tab has many of the same options as the Infrared tab, but 

there is no option for digital or analog sensor selection.  Both the “Infrared (IR)” and 

“Ultrasonic” tabs will have a an additional field in which sensor resolution is set.  These 

values, including resolution, will be used in the method described in Section 5.2.2.1 for 

simulating distance sensors.  The “GPS” sensor tab is shown in Figure D.3 and has 

options for String Type which specifies the output string from the GPS unit.  “Update 

Speed”, “Accuracy” and” Bandwidth” are the other options available for this sensor type. 

Figure D.4 shows the “LIDAR” settings tab.  Options available to the user are angle 

between readings in degrees,  maximum sensing distance, and resolution.  The 

“Accelerometer” and “Gyroscope” tabs are shown in Figures D.5 and D.6.  These two are 

described together and most of their options are similar.  There are options for selecting 

the relevant axis, resolution, accuracy, bandwidth and maximum range.  For the 

accelerometer, the units of resolution are in millivolts per G and maximum range is in G-

forces.  For the “Gyroscope” tab, the units of resolution and maximum range are in 

degrees per second.  Figure D.7 shows the options in the “Compass” tab.  The option 

fields currently listed in this tab are dummy options as the variety of magnetometers and 

compass units don't all have the same options.  Once a better options scheme is 

determined, or a family of sensors are selected these fields will be changed.  The 

“Odometer” tab is shown in Figure D.8 and has dummy option fields in the current 



39

design.  Again, once a specific method of odometry is selected for simulation, the names 

of these fields will be changed.  

The options listed for each sensor can be found in the sensor's manufacturer 

datasheet and user manual.  For each sensor, there are options for  “Sensor Name” and 

Sensor Model” which will be used to create different sensor objects, allowing for 

multiple copies of each sensor to be loaded.  Once a sensor's options are set in its 

perspective window, the add sensor button must be pressed to save those options.  Once 

all of the options for all sensors are set, clicking the “Save and Close” button serializes all 

of the options for each sensor and writes them to an XML file.  

This XML file is to be read by the sensor classes to set up a particular sensor's 

relevant data.  For instance, the accelerometer and gyroscopes require a bandwidth or 

update frequency which is used in the simulation.  Once these values are entered into the 

sensor wizard, they are written to “Sensors.XML”.  The Sensor Wizard has all of the 

proposed supported sensor types that will be available in the future and is not currently 

being used in the simulator.  This is because the concept for the usage of the XML file 

relies on 3D models of sensors attached to the robot vehicle model.  This function will be 

implemented in future additions of the simulator as it requires the integration of a .scene 

model loader to load a complete robot vehicle model which has yet to be integrated into 

the simulator.

All of the sensors are treated as Sensor objects (code listing can be found in 

Section F.6 Sensor.java) based on the example by Thornton Rose [76].  Each of these 

objects have a specific type (Section F.7 SensorType).  Sensors are then split into two 

subtypes, Location sensors (Section F.8 Location.java) sense the current location and 



40

consist of GPS (Section F.9), Compass (Section F.10), Accelerometer (Section F.11), 

Gyroscope (Section F.12) and Odometer (Section F.13) sensors.  Distance sensors 

(Section F.14) make up the second subtype and include Infrared ( Section F.15), 

Ultrasonic (Section F.16) and LIDAR (Section F.17).  When the “Add Sensor” button is 

clicked on any of the tabs in the Sensor Wizard window, that sensor is added to a 

SensorContainer ( Section F.18) which is then written out to an XML file.  Currently a 

prototype XML reader (readXML, Section F.19) will read in the XML file, create sensor 

objects from the data within it, and print that data to a terminal along with a count of total 

number of sensor objects detected.

 5.1.6   User Code

A blank user code file template is copied to a directory of the users choice by 

clicking “Create New UCF file” button in the Project Settings window “User Code” tab. 

The path to this file should not contain any spaces to assure it is found during 

compilation.  The file is then edited in an external text editor and saved by the user.  

Compilation of the user code can be handled two different ways.  For simple 

simulations, the User Code Template can be selected.  The template is edited in any 

standard text editor outside of the the simulator.  The User Code Template consists of 

three methods, userVariables(), init(), and the mainLoop().  Variables must be in the 

userVariables() method.  The addition of obstacles (using addTree() or makeBox() 

methods) as well as information to set up sensors is done in the init() method.  Code that 

reads the sensors or controls the robot vehicle should be written into the mainLoop() 

method.  Upon clicking the “Simulate” button in the Project Settings window, the User 

Code File is copied into a standard Simulator template file, and saved to the user's current 



41

directory.  The code inside the userVariables() method is copied into the Simulator class 

as global variables.  The code inside the init() method is copied into the initSimpleApp() 

method of the Simulator file and the mainLoop() method is copied into the 

simpleUpdate(); method.  Below is an example of a blank User Code File.  A listing of 

the User Code File template can be found in Section F.20.

userVariables(){  /* Do NOT EDIT THIS LINE */ 

   /**User Global Variables go here.  **/   

 }; 

init(){   /* Do NOT EDIT THIS LINE */ 

   /**User Initialization Code goes here.  **/   

}; 

mainLoop(){  /* Do NOT EDIT THIS LINE */ 

   /**   User Program Code goes here: */   

}; 

If the user requires the use of custom methods that cannot be defined in the User 

Code File template, they can manual edit the Simulator Java code template directly. 

Section F.21 is a listing for the SimulatorTemplate.txt file.

Once the simulation begins, the vehicle may be driven around manually using the 

keyboard to position it for the beginning of the simulation.  The camera may also be 

moved during this time.  User code is executed only after the space bar has been pressed. 

Once the simulation is started, the camera begins to follow the vehicle.  A simulation may 

be restarted by pressing the enter/return key.  This resets the robot to the original position 

in the world where it can again be controlled by the keyboard.  Table 5.1.6 below shows 

keys and their functions.



42

Table 5.1.6 Keyboard controls of the Simulator Window

Key Action

H Spin Vehicle Left

K Spin Vehicle Right

U Accelerate Vehicle

J Brake Vehicle

Enter Reset Robot Position

Space Bar Begin User Code

Q Pan Camera Up

W Pan Camera Forward

A Pan Camera Left

S Pan Camera Backward

D Pan Camera Right

Z Pan Camera Down



43

 5.1.7   The Simulation Window

Figure 5.1.7 Simulator window showing gyroscope, accelerometer, GPS and Compass 
values as well as the robot vehicle model, and a tree obstacle.  The terrain is from Google 

Earth of the track at the University of North Carolina at Charlotte.  

Once all of the settings for a particular simulation are set, the user clicks the 

“Simulate” button in the Project Settings window.  At this point, many things happen. 

First, the project settings are saved to a file.  Then the user coded file is merged with a 

clean copy of a SimulatorTemplate text file.  This happens in several steps.  A blank text 

file named “Simulator.java” is opened in the user's current working directory (the 

directory in which the User Coded File resides).  Then a clean copy of a 

SimulatorTemplate.txt template provided by the simulator is opened and copied into the 

blank text file until the line “/**User Variables Declared Below this Line  */” ” is 



44

encountered.  At this point, the User Coded File is opened and the lines between 

“userVariables(){  /* Do not edit this line */” and the ending curly bracket “};”  are 

copied into the newly opened file.  Then the SimulatorTemplate.txt again is copied into 

the blank text file until it reaches the line “/**User Initialization Code goes Below here. 

**/”.  It will then copy the code within the init() method from the User Code File into this 

section until it reaches the ending curly bracket “};” of the init() method.  Once again, the 

SimulatorTemplate.txt continues to be copied into the blank text file until it reaches the 

line “/**  User Program code goes here:   */”.  It will then copy the code within the 

mainLoop() method from the User Code File into this section until it reaches the ending 

curly bracket “};” of the mainLoop() method.  The remaining lines from the 

SimulatorTemplate.txt file are written to the blank text file.  Once all lines are written, the 

files are closed.  At this point, the User Code File has been fully integrated into the 

Simulator's code.  The resulting code (named Simulator.java located in the same directory 

as the User Code File) is dynamically compiled.  

If there were no errors during compilation, a process is spawned to run the 

resulting Simulator.class file.  (The resulting Simulator window is shown in Figure 5.1.7.) 

The choice to run the simulator as a process rather than to dynamically load the class was 

chosen for two reasons.  The first being that it is very simple compared to writing a 

custom classLoader, and the second being the fact that users will likely run multiple 

simulations during one session.  It is hard to write a dynamic classLoader that will fully 

unload a class after it has run so a new version of that class could be loaded.  Having the 

class run as a process eliminates a lot of this code overhead.  

Because the Simulator.class file is run as a process, this means that it is fully 



45

separate from the Project Settings window and Sensor Wizard.  Information about the 

sensors is loaded from the Sensors.XML file, and information on how to load the models 

is located in the project settings file (.prj).  Since the user can save the project settings file 

anywhere they choose, the path to this file is passed as an argument to the simulator when 

it is called as a process.  

Currently, the user can not use loops in the mainLoop() method due to the way the 

game engine works.  The code in the mainLoop() method is copied into the 

simpleUpdate() method of the simulator, where all of the physics and graphics are 

updated.  Since loops controlling the robot vehicles rely on updates from this loop, the 

programs will get stuck in an infinite loop, never breaking out or actually updating 

because they are holding up the simpleUpdate(); loop.  Therefore, all robot vehicle 

controls and sensor value filters must be modeled as finite state machines.  Future 

editions of this software will use TCP/IP sockets for all sensors and robot vehicle 

controls, thereby allowing loops and all other normal coding components and 

conventions, eliminating the need for dynamic compilation of user code, and allowing 

users to use many different programming languages.  

 5.2   Sensor Simulation

All sensors are simulated in the physics space.  There is no real need for a 

graphical representation of them at this point, however, as this simulator is developed 

further it is expected that users can add and position 3D models of sensors to their robot 

models completely graphically.

 5.2.1   Position Related Sensor Simulation

Autonomous robotic vehicles rely very heavily on knowledge of their locations in 



46

3D space.  Without this information, autonomous control of the vehicle is impossible. 

For this reason, the class of positional sensor simulators was created.  

 5.2.1.1  GPS

GPS simulation is not a new concept as shown by Balaguer and Carpin.  [24]. 

Though Balaguer and Carpin describes and tests an advanced GPS simulation algorithm, 

it is sufficient to simulate GPS with only basic functionality.  To simplify GPS 

simulations, satellite tracking is not required.  Additionally, no attention has been paid to 

simulating actual GPS inaccuracies due to atmospheric conditions or other causes.   Basic 

functionality of GPS is simulated to provide only the Latitude, Longitude and Altitude 

measurements of the vehicle's current position.  To further simplify the simulation, GPS 

is simulated as a rough flat projection of the terrain.  This is similar to the simple version 

of the GarminGPS sensor in early Gazebo simulations [77] developments will improve or 

replace this implementation, but it is important to have a simple and basic version of this 

sensor for initial tests of the simulator.  

There are several important settings that the user must enter before using the GPS 

sensor in a simulation.  The first set of values represents the latitude, longitude and 

altitude values of the center point of the terrain map being used.  These values are then 

converted from a string to complete decimal format and will be used as an offset which 

helps calculate the current latitude, longitude and altitude of the robotic vehicle during 

simulation.  Another set of values entered by the user indicate the location of the robotic 

vehicle.  Again, latitude, longitude and altitude are required.  These values are used to 

position the robot within the terrain at the start of the simulation.   Finding values for the 

latitude and longitude for both the terrain and the starting position of the vehicle are 



47

easily obtained from the Google Earth before exporting the terrain map.  Appendix E 

goes into detail on exactly how to find these values.  

Since the Earth is not a perfect sphere, the length of a longitude degree varies 

from 111,320 meters per degree at 0 degrees latitude (the equator) to 0 meters per degree 

at 90 degrees latitude (the poles) [78].  Calculating this value on a constant basis can 

prove rather costly on computing resources.  To simplify the changes in longitudinal 

distances, a lookup table based on the Zerr's table is used to simulate distance per degree 

latitude.  The value entered by the user of the starting position of the robot vehicle will be 

used in this lookup table to find the closes matching latitude.

Since it is impractical that a simulation will require a vehicle to travel more than 

five latitudinal degrees, the value of the length of a degree is never recalculated during 

the simulation.  

To find the distance per degree longitude in this simulator, a simple distance 

Formula (5.2.1.1.1), is used [79].  

Length of a degree of Longitude
= Radius of Earth at the Equator×cos(Latitude)

           (5.2.1.1.1)

Distance of a degree of longitude at the equator = 111320.3411 meters as shown 

by Zerr.  So the final formula is shown in Formula (5.2.1.1.2).

Length of one degree of Longitude
=111320.3411 meters×cos (Latitude)                     (5.2.1.1.1)

Since this formula is small and is a fast calculation it can be calculated each time 

the GPS simulator is polled without a large determent to the speed of the overall 

simulation.  

When the GPS simulator is polled, it finds the distance in three dimensions of the 



48

vehicle from the center of the world space from the current position of the vehicle . 

These values are returned in world units and are treated as meters (in this simulator, one 

world unit equals one meter).  Knowing the offset in three dimensions in meters from the 

center point of the map as well as the values of the center of the map,  the latitude, 

longitude and altitude of the vehicle can be calculated.  The current vehicle position on 

the X-axis in meters of the vehicle is converted to latitude using the values from Zerr's 

table.  The latitude of the vehicle is then known and can be used in Formula 5.2.1.2 to 

find the length per degree longitude.  The current vehicle position in the Z-axis (in 

meters) is then divided by this value to find the current longitude of the vehicle.  The 

current vehicle offset in the Y-axis is added to the value of the altitude of the center of the 

terrain map.  This gives the actual vehicle altitude in relation to the original center value. 

The code listing for the GPS sensor simulator can be found in Section F.22.

Table 5.2.1.1 GPS Simulator Attribute Table

Function Datatype Variable Name Notes:

Input boolean GPSActive
In Simulator.java used to activate 
GPS simulator

Input boolean degreeOutput

Located in GPSSimulator.java 
Denotes output type.  
True = Degree Format, 
False = Decimal Format

Input Vector3f WorldCenterGPS
Located in GPSSimulator.java 
Sets the location of the center of 
the terrain

Output Vector3f GPSResults

Stores results of a GPS 
calculation.  Set equal to 
simulate(physicsVehicleNode) 
method



49

 5.2.1.2  Compass

The compass simulator is single-axis and very simple.  A Vector3f is used to store 

the position of North.  For example, North will be located at x, y, z ordinates (100000, 0, 

0).  Since one world unit equals one meter in this simulator, this means the magnetic 

North Pole is 100km along the X-axis of any simulation.  Of course, this value can be 

changed by the user to a more accurate estimation of actual pole distance when the 

latitude and longitude of the terrain are considered.  For an accurate calculation, users can 

visit the NOAA (National Oceanic and Atmospheric Administration)National 

Geophysical Data Center magnetic declination calculator online to calculate the current 

magnetic declination of any latitude and longitude and at any given time [80].  Users can 

then calculate the appropriate current position of magnetic North, and enter this value, in 

world units, as the simulator's North value.  

The simulator calculates the angle of the robot to north by getting the values of 

the forward direction of the robotic vehicle using the getForwardVector() method.  The 

values of this vector of the X and the Z directions represent the forward facing direction 

in the X-Z plane.  These values are compared to the X and Z values of "North.” The angle 

between these two values is the angle between the forward-facing direction of the robotic 

vehicle and North.  This angle is represented in +/-180 degrees (or +/- PI radians).  

The location of North in the Google Maps terrain corresponds to the X direction 

when the terrain is exported correctly (with North facing upward).  This automatically 

sets North in the terrain model to the X direction in the simulator.  

A future version of this sensor could integrate a closer model by calculating the 

distance to magnetic North based on the Latitude and Longitude, though this measure 



50

would only be valid for a few years as the Earth's pole moves constantly. The code listing 

for the compass simulator can be found in Section F.23

Table 5.2.1.2 Compass Attribute Table

Function Datatype Variable Name Notes:

Input boolean compassActive
In Simulator.java used to activate 
Compass simulator

Input boolean compassDegrees

Located in 
CompassSimulator.java Denotes 
output type.  
True = Degree Output
False = Radians Output

Input Vector3f north3f
Located in 
CompassSimulator.java Sets the 
location of North

Output float CompassResults

Stores results of a Compass 
calculation.  Set equal to 
simulate(physicsVehicleNode) 
method

 5.2.1.3  Three-Axis Accelerometer

The use of MEMS (Microelectromechanical Systems) accelerometers are 

becoming very common in the world of robotics in recent years.  Accelerations can be 

used in dead-reckoning systems, as well as force calculations.  

Simulation of accelerations is made simpler because of several methods built into 

jME3.  jME3 provides a getLinearVelocity() method which will return the current linear 

velocity of a physicsVehicleNode in all three dimensions.  To get accelerations from this 

method, a simple integration of these vales over time is taken.  To get an accurate time 

the timer class was used.  The timer class provides two important methods used in this 

integration, getResolution() and getTime().  getResolution() returns the number of “ticks” 

per second and getTime() returns the time in “ticks”.  These two values together are used 



51

to find time in seconds.  

The accelerometer has a bandwidth set by the user.  This represents the frequency 

at which the sensor can take measurements.  The bandwidth is converted to time in 

“ticks” by inverting the bandwidth and multiplying by the timer.getResolution() method. 

The result is the number of ticks between two measurements of linear velocity.  The 

accelerometer method is called from the main event loop in the simulator Java code . 

This allows it to function continuously during the simulation.  Because of this fact, 

however, the accelerometer simulator must not take too much time to execute, otherwise 

it will slow down the entire simulation.  To make sure the main event loop executes 

quickly the accelerometer method does not stall for the given time between 

measurements, rather it stores a starting time and calculates the time that has passed 

every time the main event executed.  The elapsed time is compared to the number of ticks 

between readings calculated from the bandwidth.  

On the first run of a single reading, the first linear velocity is returned from the 

getLinearVelocity() method and saved, then the getTime() method saves the current time 

(in “ticks”) and a flag is set to prevent this from happening again until the next reading. 

Every time the main event loop runs, it calls the accelerometer method which now 

compares the elapsed time from the first reading with the number of ticks between 

readings calculated from the bandwidth.  When this time has finally elapsed the second 

linear velocity is taken and immediately an ending time is saved.   The total number of 

seconds passed between readings is found by subtracting the number of ticks that have 

elapsed during the measurement, and dividing this difference by the resolution of the 

timer from the getResoultion() method.  The acceleration is equal to the second velocity 



52

minus the first velocity divided by the elapsed time in seconds Formula 5.2.1.3.  Once a 

single reading is finished, the flag for reading the first velocity and starting time is reset.

 
Velocity 2−Velocity1

Elapsed Time in Seconds
(5.2.1.3)

These readings are for all three axes.  The decision was made to return the 

resulting values from all three axes every time the accelerometer is used.  If a user is only 

interested in one axis, the others can be ignored.  The code listing for the accelerometer 

simulator can be found in Section F.24.

Table 5.2.1.3 Accelerometer attribute table.

Function Datatype Variable Name Notes:

Input boolean accelActive
In Simulator.java used to activate 
Accelerometer simulator.

Input float bandwidth
Located in AccelSimulator.java 
Denotes the frequency of a 
sensor update

Output Vector3f accelValues

Stores results of a Accelerometer 
calculation.  Set equal to 
simulate(physicsVehicleNode) 
method.

 5.2.1.4  Three-Axis Gyroscope

Gyroscopes often accompany accelerometers in the design of inertial measuring 

systems.  They can be used to help correct offsets and errors given by real-world 

accelerometers.  Since there is no error in the simulated accelerometers in this simulator, 

there is no need for this, however users may still want to use them in this way to improve 

filtering algorithms.  Real-world MEMS gyroscopes often have a large output drift.  This 

isn't currently simulated, however future work will include a user-adjustable coefficient 

of drift to improve the simulator.  



53

jME3 has a method to return angular velocity, however, it does not return values 

in radians per second.  In fact, I could not determine exactly what units it returned even 

with the help of the developer's forum.  A custom method for finding actual angular 

velocity was created that is very similar to the accelerometer simulator.  

Again, jME's timer class was used to find timer resolution (in “ticks” per second) 

and elapsed time, in ticks.  To find the angle traveled over an elapsed time, the 

getForwardVector() method was used.  This method returns the 3D normal vector of the 

forward direction of the PhysicsVehiceNode.  The time between measurements was again 

calculated from a user-defined bandwidth for the sensor.  For the first run of a sensor 

reading, the first forward direction vector and start time are recorded then a flag is set to 

prevent this from happening again until the next reading.  The current time is compared 

with the expected elapsed time until it is reached.  At this point the second forward 

direction vector is recorded as well as the stop time.  Since the Vector3f  class has no 

methods for comparing the angle between the components, both of the forward vectors 

are projected on each of the three original planes; XY, YZ and XZ.  Each of these values 

are stored in a Vector2f.  Using the angleBetween() method in the Vector2f class, the 

angle between each projected portion of the forward directions are calculated.  For 

example, XY1 are the X and Y components of the first forward vector, XY2 are the X 

and Y components of the second forward vector.  XY1.angleBetween(XY2) returns the 

angle between these components.  This would describe a rotation about the Z-axis.  Once 

the angle traveled in each axis is found the elapsed time is used to find the angular 

velocity.  The angular velocity is then returned to the user in the format (either radians per 

second or degrees per second) the user selected when setting up the sensor.  As with the 



54

accelerometer, all three axes are always simulated.  The code listing for this sensor 

simulator can be found in Section F.25.

Table 5.2.1.4 Gyroscope attribute table

Function Datatype Variable Name Notes:

Input boolean gyroActive
In Simulator.java used to activate 
Gyroscope simulator.

Input float bandwidth
Located in GyroSimulator.java 
Denotes the frequency of a 
sensor update

Output Vector3f angularVelocity

Stores results of a Gyroscope 
calculation.  Set equal to 
simulate(physicsVehicleNode) 
method.

 5.2.1.5  Odometery

Odometry is a very useful metric used in positioning calculations for vehicles.  An 

odometer simulator is planned but has yet to be researched or studied in detail, though a 

method for measuring odometric values may be inherent if the vehicle wheels are 

replaced with jMonkey “hinge” or “joint” physics nodes as the rotation angles of these 

pivot points are controlled directly.   Regardless of the method of implementation, future 

releases of this software will have an odometry sensor simulator.

 5.2.2   Reflective Beam Simulation

Beam reflection sensors are arguably the most common sensors used in robotics. 

This sensor class includes both Infrared (IR) and Ultrasonic sensors.  Though the 

technologies behind these two types of sensor differ, they operate on the same principles. 

This type of sensor works by sending a signal out into the world, and measuring the time 

it takes for that signal to reflect back to the sensor.  These sensors come in both analog 



55

and digital output varieties.  

 5.2.2.1  Infrared and Ultrasonic Reflective Sensors

With digital outputs, the senor has a binary output based on a set threshold.  For 

instance, the Sharp GP2D15J0000F returns a logic HIGH on its output when it detects 

objects within a maximum distance of 24cm [81].  This type of sensor is fairly easy to 

simulate using a broad-face approach.  A model of the sensor's beam shape is loaded as a 

ghostNode in the simulator.  A ghostNode is a type of physicsNode available in jME3 that 

will not affect the other objects in the physics world of the simulator, but can report all 

collisions.  Any time a collision is detected with this node, the simulated sensor returns a 

positive result.  

During testing of the ghostNode method for simple collisions, it was found that 

the ghostNode implementation in jME3 returns spurious false collisions.  Discussions 

with the online developer's forum provided no help on this matter as it isn't a priority for 

the development team yet.  This sensor will be simulated the same as an analog sensor, 

except with a distance threshold the user can set to simulate the switching distance of the 

sensor.

Sensors that output analog values cannot be simulated using a broad-face method. 

The only tool available in the physics engine that can simulate an analog measurement of 

this type is a Ray.  Rays are infinitely long lines that begin at an infinitesimally small 

point and travel in a given direction.  Collisions between rays and other objects can easily 

be checked.  The information about a collision is stored in a CollisionResults object.  This 

information consists of the name of the object hit, the object type, and the coordinates (in 

World Units) of the collision in X, Y and Z dimensions.  The nature of the ray allows it to 



56

go through objects as well as collide with all objects in its path which can lead to multiple 

collisions.  If collisions exists, the closest collision can be found.  

For a very simplistic simulation of an analog sensor, a single ray can be used. 

These simulations can be very fast, however they are not very accurate to real-world 

sensors.  To more accurately simulate these sensors, the properties of the entire beam 

shape of the sensor must be recreated casting a multitude of rays to form a set of nested 

cones.  IR and Ultrasonic beams can have a variety of different shapes depending on the 

applications they are used for.  IR beams for the Sharp family of IR sensors generally 

have a roughly ovate or “football” shape while the MaxBotix EZ series ultrasonic sensors 

have more of a teardrop shape [82] - [84] .  A single 3D teardrop volume was selected to 

simulate the best ranges of the IR beam as well as the ultrasonic beam.  

To create the cone shape, several arrays of rays will be nested within one another. 

Each array will create a single cone.  As the radius decreases, the cones become longer 

and thinner.  The measuring length (or limit) of all the rays will be the same, thus creating 

more of the teardrop shape.  This concept was exaggerated and then simulated with 

visible lines as shown in Figure 5.2.2.1 to clarify the explanation.



57

Figure 5.2.2.1 Visible simulation of beam concept.  Each nested cone has a different color 
to make it easier to see.  The axis lines depict the Y-axis (pointing upward) and the Z-axis 

(pointing right).

Each line in the figure above represents a single ray that is cast.  The distance 

between the rays in a cone is calculated by using the resolution of the senor which is 

given by the user when setting up the sensor.  The distance in the Y direction from one 

cone to the next also uses this value.  Therefore as the resolution distance increases, the 

number of rays (and cones) decreases.  The resolution of any sensor is often given in the 

datasheet but if it is not, simple testing with dowels of differing diameters may be used 

for rough estimates [83].  A one inch diameter pipe can be used to give a rough estimate 

of the sensing distance of a sensor [85].  The closest collisions of each ray is compared, 

returning the closest overall collision in world units.  



58

The position of each ray is calculated by creating a starting point for the outermost 

cone.  The position of the first ray is calculated using information about the beam shape 

provided by the user.  At this point, the ray is rotated in 3D space using a homogeneous 

quaternion transform calculation that performed on the direction of the ray.  Quaternions 

(discovered in 1843) are used because the can easily describe any position and rotation in 

3D space [86].  These values are generally represented as matrices.  The degree to which 

the direction is rotated is calculated by dividing the circumference of the base of the cone 

being created by the resolution.  This will give the number of rays per cone.  The angle 

between the two points is calculated and used to rotate about the center of the sensor and 

in the direction in which the sensor is pointed.  This calculation loops until all 360 

degrees have been calculated.  Then the next smallest nested cone is created.  This value 

precipitates by subtracting the resolution value for the diameter of the cone that was just 

created.  Once the first ray's ending position has been calculated, the ray is again rotated 

about the direction in which the senor is pointed.   This continues until the value of the 

radius of the current cone minus the resolution is less then or equal to 0.  Section F.26 is 

the listing of the code that created Figure 5.2.2.1 above.  

Since so many more rays are cast; and collisions calculated, this method is much 

more accurate than the single ray method, however it is much more costly on the 

computer.  A user must weigh the benefits and costs of simulating a high resolution 

sensor.  In the future this method is expected to be sped up with coding techniques such 

as setting each ray or cone as a separate thread, and possibly offloading the processing to 

the GPU (Graphics Processing Unit) of the video card in the computer.  

This method of simulating distance sensors applies to both Infrared as well as 



59

ultrasonic distance sensors.  The is no difference between how the two are simulated. 

Users only specify what type of sensor is being used for their own purposes.  Critical 

values found in a particular sensor's datasheet are used to set up different sensors.  

Currently this sensor type is still in development and is not yet available for use 

by the user.  Once the method to load .scene files is implemented, the user will attach a 

model of an infrared or ultrasonic range finding sensor to the robot vehicle model.  This 

sensor will then be linked with the options in the Sensors.XML file (created in the sensor 

wizard) to provide a simulation.  

 5.2.2.2  LIDAR

LIDAR (or Light Detection And Ranging) is a method of sensing in which a laser 

on the sensor directs a beam at an object and uses the time it takes the reflection of the 

laser to return to the sensor to calculate the distance to that object.  Usually LIDAR units 

will scan this laser 90, 180, 300 and even 360 degrees [87].  This scan results in the 

distances of all objects the laser encounters in a plane.  This project chose to simulate an 

LMS2xx model LIDAR.  

Generally, LIDAR units use a bidirectional communication bus.  They have 

settings that can be modified, such as  the number of measurements, angle between 

measurements (angle step), and even on-board filtering.  Real LIDAR measurements 

result in a string of serial data.  This string contains a header as well as the distance 

measurements in a special decimal format.  The distances themselves are represented as a 

16-bit decimal number.  The upper 8-bits are converted to decimal to represent whole 

meters.  The lower 8-bits are converted to decimal, then divided by 256 to give a fraction 

of a meter.  These two separate values are then added together to represent a floating 



60

point decimal value in meters of the actual distance of the object [88].  

LIDAR was simulated in this project using a ray inside the game engine.  The 

distance of the closest collision of the ray can be compared to the ray's limit, which is a 

value representing the maximum length of the laser beam or ray.  This value is given in 

the LIDAR datasheet and entered by the user of the final program.  

To scan this ray like a real LIDAR, at least three values are required; the 

maximum spread angle, the angle step value, and the maximum sensing range of the laser 

detecting system.  All of these values will be given by the LIDAR datasheet, and can be 

adjusted in real LIDAR devices.  The algorithm for simulating the scan involves finding 

the current local 3D translation and rotation of the object, pointing the ray in the direction 

of the first reading (at local angle 0), casting the ray, comparing the closest collision 

result with the ray's length, storing the result in an array, incrementing the array index for 

the next reading, incrementing the angle by the angle step, recalculating the direction of 

the ray in 3D, and taking another reading.  These steps repeat in a for-loop until the 

maximum angle of the degree spread is reached.  

An example scan with a maximum degree spread equal to 180 degrees and an 

angle step of 0.5 degrees per step would include 360 readings; one each at the following 

angles: 

0º, 0.5º, 1º, 1.5º, 2º   ...   178º, 178.5º, 179º, 179.5º, 180º 

The result of the measurements is an array of floating point decimal numbers 

representing distances to collisions in world-units.  In real LIDAR systems, this 

information is packaged in a serial string containing a header and other information.  To 

speed simulation time, it was decided to make these numbers directly available  to the 



61

end user.  This way each measurement won't need to be parsed by the user before 

distances can be used.  This will increase the overall simulation time.  

Currently this sensor is only simulated in the physics world only and is not yet 

available for use by the user.  The code listing for this simulator can be found in Section 

F.27.  Once the method to load .scene files is implemented, the user will attach a model of 

a LIDAR sensor to the robot vehicle model.  This sensor will then be linked with the 

options in the Sensors.XML file (created in the sensor wizard) to provide a simulation.  



 CHAPTER 6:   CONCLUSIONS

 6.1   Summary

A proof of concept and implementation of an application framework to simulate 

autonomous custom-designed 3D models of robotic vehicle in a custom 3D terrain was 

successfully developed and demonstrated in this thesis.  A GUI (the Project Settings 

window) was designed and utilized to set up user projects by allowing the selection of the 

custom models for terrain and robot vehicle parts.  Additionally, vehicle dynamics were 

also configured in this GUI.  A secondary GUI (the Sensor Wizard) was designed for 

future sensor integration with custom robot vehicle models in which a user's 

configurations are saved to an XML file to be read by the simulator.  Custom user code 

(in the form of a  User Code File or a Java file) was integrated into the simulator and 

dynamically compiled and run.  Several positional sensor simulators were designed and 

implemented including a three-axis accelerometer, three-axis gyroscope, GPS and 

compass and development was begun on a class of distance sensors that will include 

infrared and ultrasonic range finding as well as LIDAR sensors.  The code for this project 

is available from the author upon request.

 6.2   Future Work

This project was designed to be the basis and framework of a much larger project. 

It will be continued and further developed.  This section of the thesis describes in what

areas improvements or changes will be made.  



63

 6.2.1   Project Settings Window

The Project Settings window will eventually give way to a more traditional 

window layout with a tree structure on the left-hand side.  This will allow the user to see 

and edit objects in the simulation in a more logical way.  Objects will better show their 

relationships child or parent) with other objects.  Modifications to objects would be much 

simpler and more intuitive in this format.  The user would simply right click the object in 

the tree to show the options available.  Windows showing properties of different objects 

would allow for fine grain control of the object's settings such as orientation in the 

simulation environment.  This tree structure will be a much better interface to control 

aspects of robot vehicle models once the .scene model loader has been developed and 

implemented.  

Project settings will be recorded in XML format instead of simple lines in a text 

file.  The XML format will allow for the settings to be imported directly into objects in 

the simulator without having to be parsed and edited like normal text strings would.

 6.2.2   Sensor Wizard

The options for the compass and odometry senors will be decided and 

implemented.  Additionally, when a user changes tabs, a pop up box should pop up 

reminding the user to click the button to add the sensor before changing tabs to make sure 

all of the sensors are added before the user saves and closes the wizard.  

 6.2.3   Sensor Simulators

Several sensors will be added to the simulator.  Currently, work is being continued 

on the distance sensors, however, sensors for odometry and other metrics will also be 

added.  Additional sensors such as cameras may also be a possibility.  



64

Additions and modifications to the current sensors are expected as well.  All of the 

options available in the Sensor Wizard will be fully utilized.  To make simulations more 

realistic, sources of error can be modeled and added to the simulators.  Gyroscopic drift is 

a common error seen in the real world that is currently not accounted for in this simulator. 

Using the example from Balaguer and Carpin [24] simulated Satellite tracking 

will be added.  Additionally, since the error for GPS units is often due to atmospheric 

conditions, simulated readings will be used in a formula with a random number to 

generate readings with an accuracy of only about three meters by default.  Three meters 

was chosen as this distance is generally given as the position accuracy of many 

commercial GPS units [89] - [91], however the distance may be modified by the user.  

Each sensor being simulated will run in its own thread, thereby making 

simulations faster.  There are special considerations when threading physics simulations. 

Since bullet is not yet multithreaded, jME3 provides some methods and tips to get started 

with this [92].  In the future, the hope is to implement multithreading for most if not all of 

the physics calculations.

 6.2.4   Models

Currently the only model type that is supported are Ogre mesh files.  Future work 

would increase this with the addition of COLLADA, OBJ and .scene file types.  The 

.scene file type is the highest priority as it would allow users to create entire robot vehicle 

models (wheels and sensor models parts included) in a 3D CAD modeling program at 

once and import the entire model as a single file.  This will reduce the errors and time 

spent aligning each wheel to the robot body.  Robot vehicle models will be created using 

a standard library of sensors.  When loaded into the simulator the sensor models will be 



65

matched up to a sensor simulator from the sensor XML file the user set up previously. 

The user would not have to set up initial locations or orientations manually as this 

information is part of the .scene file.   A simple graphical model builder could be 

incorporated to allow users to align vehicle components before simulations.  Additionally, 

scenes including terrain and obstacles will also be loaded from either .scene or .zip files.  

 6.2.5   Simulations

Many changes and additions to the simulations will be developed.  The ability to 

support different vehicle drive types is a high priority.  These drive types include servos, 

tracked vehicles, and caster wheel simulations.  It is believed that all three of these drive 

types can be simulated using jMonkey's joint objects and will greatly increase the variety 

of systems that can be simulated.  

Multiple camera viewpoints could be set up to view the simulation.  Currently, 

there is a single viewpoint that can be stationary, or to follow the robotic vehicle from 

behind as it drives.  Additional views would be useful in situations where a camera is 

needed on-board the robot, such as at the end of an arm or end effector.  

The distance sensors will be completed and also have an option to make their rays 

visible.  This is done by simply drawing lines that follow a ray's path.  This will allow the 

user to have a better idea of  the sensor's orientation during the simulation.  

A simple logger will be written to log the output of selected sensors to a file with 

a time stamp.  This will allow users to post-process the data and use the readings for other 

purposes.  

The ability to add more objects would be very helpful in some situations.  A 

method to add walls (like the tree and box methods) will be developed to allow a user to 



66

build a room or a maze within the simulator through code directly as opposed to making 

an external model of this.

 6.2.6   Other Considerations

Additions to the entire simulator project will include making the simulator TCP 

socketed.  This will allow much greater flexibility in programming languages and 

eliminate the need for dynamic compilation of Java code.  

The ability to pass arguments to the simulator program is also being planned. 

This would allow the simulator to work directly with many programming text editors by 

allowing to call it directly, without the use of the Project Settings window of this project. 

plug-ins for specific text editors could be written to support more functionality as well.  

For novice users, a simple syntax-highlighting text editor can be written for the 

purpose of editing the User Code Files.  This addition would eliminate the need for an 

external text editor and make the entire project inclusive for simple projects.  

For debugging the simulation, a terminal emulator is also planned.  This will be 

used to display standard output written by either the user or the simulator as well as errors 

from the simulator.



67

REFERENCES

[1] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A Survey of Commercial & 
Open Source Unmanned Vehicle Simulators,” Proceedings 2007 IEEE 
International Conference on Robotics and Automation, IEEE, 2007, pp. 852-
857.

[2] “Player Project” Available at: http://playerstage.sourceforge.net/ [Accessed 
2010].

[3] B.P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard, G.S. Sukhatme, and M.J. 
Mataric, “Most valuable player: a robot device server for distributed control,” 
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and  
Systems. Expanding the Societal Role of Robotics in the the Next Millennium 
(Cat. No.01CH37180), IEEE, 2001, pp. 1226-1231.

[4] N. Kagek, “GetRobo Blog English: Interviewing Brian Gerkey at Willow 
Garage” Available at: http://getrobo.typepad.com/getrobo/2008/08/interviewing-
br.html [Accessed 2010].

[5] R.T. Vaughan, B.P. Gerkey, and A. Howard, “On Device Abstractions for 
Portable, Reusable Robot Code,” IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), IEEE, 2003, pp. 2421-2427.

[6] “Player Manual: The Player Robot Device Interface” Available at: 
http://playerstage.sourceforge.net/doc/Player-cvs/player/index.html [Accessed 
2010].

[7] “Player Manual: Supported Devices” Available at: 
http://playerstage.sourceforge.net/doc/Player-
cvs/player/supported_hardware.html [Accessed 2010].

[8] B.P. Gerkey, R.T. Vaughan, and A. Howard, “The Player / Stage Project : Tools 
for Multi-Robot and Distributed Sensor Systems,” The International Conference  
on Advanced Robotics, 2003, pp. 317-323.

[9] “Basic FAQ - Playerstage” Available at: 
http://playerstage.sourceforge.net/wiki/Basic_FAQ [Accessed 2010].

[10] “Player Project: Gazebo” Available at: 
http://playerstage.sourceforge.net/index.php?src=gazebo [Accessed 2010].



68

[11] J. Craighead, R. Gutierrez, J. Burke, and R. Murphy, “Validating the Search and 
Rescue Game Environment as a robot simulator by performing a simulated 
anomaly detection task,” 2008 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IEEE, 2008, pp. 2289-2295.

[12] M. Dolha, “3D Simulation in ROS,” Nov. 2010 Available at: 
http://www.ros.org/wiki/Events/CoTeSys-ROS-School?
action=AttachFile&do=get&target=3d_sim.pdf [Accessed 2010].

[13] “Usarsim” Available at: 
http://usarsim.sourceforge.net/wiki/index.php/Main_Page [Accessed 2011].

[14] G. Roberts, S. Balakirsky, and S. Foufou, “3D Reconstruction of Rough Terrain 
for USARSim using a Height-map Method,” Proceedings of the 8th Workshop 
on Performance Metrics for Intelligent Systems - PerMIS ’08, 2008, p. 259.

[15] B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis, and C. Scrapper, “USARSim: 
A Validated Simulator for Research in Robotics and Automation,” Workshop on 
"Robot Simulators: Available Software, Scientific Applications and Future  
Trends", at IEEE/RSJ IROS 2008.

[16] S. Okamoto, K. Kurose, S. Saga, K. Ohno, and S. Tadokoro, “Validation of 
Simulated Robots with Realistically Modeled Dimensions and Mass in 
USARSim,” IEEE International Workshop on Safety, Security and Rescue  
Robotics (SSRR), Sendai, Japan: 2008, pp. 77-82.

[17] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: A 
Robot Simulator for Research and Education,” Proceedings 2007 IEEE 
International Conference on Robotics and Automation, Apr. 2007, pp. 1400-
1405.

[18] “4. Installation - Usarsim” Available at: 
http://usarsim.sourceforge.net/wiki/index.php/4._Installation [Accessed 2010].

[19] “SourceForge.net: Topic: Confused about installing USARSim on Linux” 
Available at: 
http://sourceforge.net/projects/usarsim/forums/forum/486389/topic/3873619 
[Accessed 2010].

[20] S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, and J. Wang, “Quantitative 
Assessments of USARSim Accuracy,” Performance Metrics for Intelligent  
Systems, 2006.



69

[21] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff, “High Fidelity Tools for 
Rescue Robotics : Results and Perspectives,” Robocup 2005: Robot Soccer  
World Cup IX, Springer, 2006, pp. 301-311.

[22] M. Zaratti, M. Fratarcangeli, and L. Iocchi, “A 3D Simulator of Multiple 
Legged Robots based on USARSim,” Robocup 2006: Robot Soccer World Cup, 
Springer, 2007, pp. 13-24.

[23] C. Pepper, S. Balakirsky, and C. Scrapper, “Robot simulation physics 
validation,” Proceedings of the 2007 Workshop on Performance Metrics for  
Intelligent Systems - PerMIS ’07, New York, New York, USA: ACM Press, 
2007, pp. 97-104.

[24] B. Balaguer and S. Carpin, “Where Am I ? A Simulated GPS Sensor for 
Outdoor Robotic Applications,” Simulation, Modeling, and Programming for  
Autonomous Robots, Springer Berlin / Heidelberg, 2008, pp. 222-233.

[25] A. Birk, J. Poppinga, T. Stoyanov, and Y. Nevatia, “Planetary Exploration in 
USARsim : A Case Study including Real World Data from Mars,” RoboCup 
2008: Robot Soccer World Cup XII, Springer Berlin / Heidelberg, 2009, pp. 463-
472.

[26] “SARGE” Available at: http://www.sargegames.com/page1/page1.html 
[Accessed 2011].

[27] J. Craighead, J. Burke, and R. Murphy, “Using the Unity Game Engine to 
Develop SARGE : A Case Study,” Simulation Workshop at the International  
Conference on Intelligent Robots and Systems (IROS), 2008.

[28] “User Guide for SARGE 0.1.7,” Apr. 2008.

[29] “Documentation - ROS Wiki” Available at: http://www.ros.org/wiki/ [Accessed 
2011].

[30] “ROS/Introduction - ROS Wiki” Available at: 
http://www.ros.org/wiki/ROS/Introduction [Accessed 2011].

[31] “ROS für Windows” Available at: http://www.servicerobotics.eu/index.php?
id=37 [Accessed 2010].

[32] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. 
Wheeler, and A. Ng, “ROS : an Open-Source Robot Operating System,” ICRA 
Workshop on Open Source Software, 2009.



70

[33] “Happy 3rd Anniversary, ROS! | Willow Garage” Available at: 
http://www.willowgarage.com/blog/2010/11/08/happy-3rd-anniversary-ros 
[Accessed 2011].

[34] “FAQ - ROS Wiki” Available at: http://www.ros.org/wiki/FAQ [Accessed 
November 11, 2010].

[35] “Carnegie Mellon UberSim Project” Available at: 
http://www.cs.cmu.edu/~robosoccer/ubersim/ [Accessed 2010].

[36] “Downloads” Available at: http://www.cs.cmu.edu/~coral/download/ [Accessed 
2010].

[37] B. Browning and E. Tryzelaar, “Ubersim: A Multi-robot Simulator for Robot 
Soccer,” The Second International Joint Conference on Autonomous Agents and  
Multiagent Systems, 2003, pp. 948-949.

[38] “EyeSim - Mobile Robot Simulator” Available at: 
http://robotics.ee.uwa.edu.au/eyebot/doc/sim/sim.html [Accessed 2011].

[39] T. Bräunl, “The Eyesim Mobile Robot Simulator,” 2000.

[40] A. Koestler and T. Bräunl, “Mobile Robot Simulation with Realistic Error 
Models,” International Conference on Autonomous Robots and Agents, ICARA, 
2004, pp. 46-51.

[41] A. Waggershauser and A.G.R. und Proze\ssrechentechnik, “Simulation of Small 
Autonomous Mobile Robots,” 2002.

[42] “SubSim” Available at: http://robotics.ee.uwa.edu.au/auv/subsim.html 
[Accessed 2010].

[43] T. Bielohlawek, “SubSim - An Autonomous Underwater Vehicle Simulation 
System,” 2006.

[44] “OpenRAVE” Available at: 
http://openrave.programmingvision.com/index.php/Main_Page [Accessed 
2010].

[45] R. Diankov and J. Kuffner, “OpenRAVE : A Planning Architecture for 
Autonomous Robotics,” Robotics, 2008.

[46] “OpenRAVE and ROS | Willow Garage” Available at: 
http://www.willowgarage.com/blog/2009/01/21/openrave-and-ros [Accessed 
2010].



71

[47] “OpenRAVE: Introduction to OpenRAVE” Available at: 
http://openrave.programmingvision.com/index.php/Main_Page#Introduction_to
_OpenRAVE_-_the_Open_Robotics_Automation_Virtual_Environment 
[Accessed 2010].

[48] “OpenRTM-aist official website | OpenRTM-aist” Available at: 
http://www.openrtm.org/ [Accessed 2010].

[49] “RT-Middleware : OpenRTM-aist Version 1.0 has been Released” Available at: 
http://www.aist.go.jp/aist_e/latest_research/2010/20100210/20100210.html 
[Accessed 2010].

[50] I. Chen, B. MacDonald, B. Wunsche, G. Biggs, and T. Kotoku, “A simulation 
environment for OpenRTM-aist,” IEEE International Symposium on System 
Integration, Tokyo, Japan: 2009, pp. 113-117.

[51] “The Mobile Robot Programming Toolkit” Available at: http://www.mrpt.org/ 
[Accessed 2010].

[52] J.L.B. Claraco, “Development of Scientific Applications with the Mobile Robot 
Programming Toolkit: The MRPT reference book,” University of Malaga, 2010.

[53] “About MRPT | The Mobile Robot Programming Toolkit” Available at: 
http://www.mrpt.org/About [Accessed February 20, 2010].

[54] “Software” Available at: http://robot.informatik.uni-leipzig.de/software/ 
[Accessed 2011].

[55] “SimRobot - Robotics Simulator” Available at: http://www.informatik.uni-
bremen.de/simrobot/index_e.htm [Accessed 2011].

[56] T. Laue and T. R, “SimRobot – Development and Applications,” International  
Conference on Simulation, Modeling and Programming for Autonomous Robots  
(SIMPAR), 2008.

[57] T. Laue, K. Spiess, and T. Rofer, “SimRobot – A General Physical Robot 
Simulator and Its Application in RoboCup,” RoboCup 2005: Robot Soccer  
World Cup IX, Springer Berlin / Heidelberg, 2006, pp. 173-183.

[58] “Moby Rigid Body Simulator” Available at: 
http://physsim.sourceforge.net/index.html [Accessed 2011].

[59] “Microsoft Robotics” Available at: http://msdn.microsoft.com/en-us/robotics 
[Accessed 2011].



72

[60] J. Jackson, “Microsoft Robotics Studio: A Technical Introduction,” IEEE 
Robotics & Automation Magazine, vol. 14, 2007, pp. 82-87.

[61] “Overview” Available at: http://msdn.microsoft.com/en-
us/library/bb483024.aspx [Accessed 2010].

[62] “anyKode Marilou - Modeling and simulation environment for Robotics” 
Available at: http://www.anykode.com/index.php [Accessed 2011].

[63] “Physics models for simulated robots and environments” Available at: 
http://www.anykode.com/marilouphysics.php [Accessed 2011].

[64] “Marilou - wizards” Available at: http://www.anykode.com/marilouwizard.php 
[Accessed 2011].

[65] “anyKode - Marilou” Available at: http://www.anykode.com/licensemodel.php 
[Accessed 2011].

[66] “Webots: mobile robot simulator - Webots - Overview” Available at: 
http://www.cyberbotics.com/overview.php [Accessed 2010].

[67] O. Michel, “Cyberbotics Ltd. Webots TM : Professional Mobile Robot 
Simulation,” International Journal of Advanced Robotic Systems, vol. 1, 2004, 
p. 39--42.

[68] “Khepera Simulator Homepage” Available at: 
http://diwww.epfl.ch/lami/team/michel/khep-sim/ [Accessed 2011].

[69] “Webots User Guide release 6.3.3,” 2010.

[70] “Webots: mobile robot simulator - Store” Available at: 
http://www.cyberbotics.com/store [Accessed 2011].

[71] “Cogmation Robotics - robotSim Pro” Available at: 
http://www.cogmation.com/robot_builder.html [Accessed 2011].

[72] “CogNation • View topic - Create model with Google Sketchup” Available at: 
http://cogmation.com/forum/viewtopic.php?f=9&t=6 [Accessed 2011].

[73] “robotSim Documentation” Available at: 
http://cogmation.com/pdf/robotsim_doc.pdf.



73

[74] “jme3” Available at: 
http://jmonkeyengine.org/wiki/doku.php/jme3:intermediate:simpleapplication 
[Accessed 2011].

[75] “jme3:requirements – jME Wiki” Available at: 
http://jmonkeyengine.org/wiki/doku.php/jme3:requirements [Accessed 2011].

[76] T. Rose, “Serializing Java Objects as XML - Developer.com” Available at: 
http://www.developer.com/xml/article.php/1377961/Serializing-Java-Objects-as-
XML.htm [Accessed 2008].

[77] “Gazebo Gazebo: Gazebo” Available at: 
http://playerstage.sourceforge.net/doc/Gazebo-manual-0.8.0-pre1-html/ 
[Accessed 2010].

[78] G.B.M. Zerr, “The Length of a Degree of Latitude and Longitude for Any 
Place,” The American mathematical monthly: the official journal of the  
Mathematical Association of America, The Association, 1901, pp. 60-61.

[79] D. Mark and J. LaMarche, More iPhone 3 Development: Tackling iPhone SDK 
3, Apress, 2009.

[80] “NOAA s Geophysical Data Center - Geomagnetic Data” Available at:ʼ  
http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp [Accessed 2002].

[81] Sharp, “Sharp GP2D12/GP2D15 datasheet.”

[82] “Sharp IR Rangers Information” Available at: 
http://www.acroname.com/robotics/info/articles/sharp/sharp.html [Accessed 
2010].

[83] “MaxSonar-EZ1 FAQ-MaxBotix Inc., Reliable Ultrasonic Range Finders and 
Sensors with Analog, Pulse Width ( uses Time of Flight ) and Serial Outputs.” 
Available at: http://www.maxbotix.com/MaxSonar-EZ1__FAQ.html [Accessed 
2010].

[84] “Performance Data- MaxBotix Inc., MaxSonar Super High Performance 
Ultrasonic Range Finders and Sensors Compared to devantech SRF04 and 
More.” Available at: http://www.maxbotix.com/Performance_Data.html 
[Accessed 2010].

[85] M. Koehler, “Ultrasonic Sensors : How they Work and their Limitations in 
Robotics,” 2002.



74

[86] D.R. Isenberg, “Quaternion and Eulaer-Angle Based Approaches to the 
Dynamical Modeling, Position Control, and Tracking Control of a Space 
Robot,” 2009.

[87] SICK AG, “Telegrams for Configuring and Operating the LMS2xx Laser 
Measurement Systems, Firmware version V2.30/X1.27,” 2006.

[88] SICK AG, “User Protocol Services for Operating/Configuring the LD– 
OEM/LD–LRS,” 2006.

[89] I. San Jose Technology, “San Jose FV-M8 datasheet.”

[90] L.T. Inc, “LOCOSYS tech LS20031 Datasheet.”

[91] L. S.P.K. Electronics Co., “Sarantel SL1206 Datasheet.”

[92] “jme3:bullet_multithreading – jME Wiki” Available at: 
http://jmonkeyengine.org/wiki/doku.php/jme3:bullet_multithreading [Accessed 
2010]. 



75

APPENDIX A: SIMULATOR COMPARISON TABLE

Table A Comparison table of all the simulators and toolkits 

Simulator Advantages Disadvantages

Player/Stage/Gazebo

• Open Source (GPL)

• Cross Platform
• Active Community of Users and 

Developers
• Uses ODE Physics Engine for High 

Fidelity Simulations
• Uses TCP Sockets

• Can be Programmed in Many Different 
Language

USARSim

• Open Source (GPL)
• Supports both Windows and Linux

• Users Have Ability to Make Custom 
Robots and Terrain with Moderate Ease

• Uses TCP Sockets

• Can be Programmed in Many Different 
Language

• Hard to Install

• Must have Unreal Engine 
to use (Costs about $40)

• Uses Karma Physics 
Engine

SARGE

• Open Source (Apache License V2.0 )
• Uses PhysX Physics Engine for High 

Fidelity Simulations
• Supports both Windows and Mac
• Users Have Ability to Make Custom 

Robots and Terrain with Moderate Ease
• Uses TCP Sockets
• Can be Programmed in Many Different 

Languages

• Designed for Training, 
not Full Robot 
Simulations

ROS

• Open Source (BSD License) 

• Supports Linux, Mac, and Windows*
• Very Active Community  of Users and 

Developers  
• Works with Other Simulators and 

Middleware

UberSim
• Open Source (GPL)
• Uses ODE Physics Engine for High 

Fidelity Simulations
• No Longer Developed

EyeSim • Can Import Different Vehicles
• Only Supports EyeBot 

Controller

SubSim
• Can Import Different Vehicles

• Can be programmed in C or C++ as well as 
using plug-ins for other languages

OpenRAVE • Open Source (Lesser GPL)
• Everything Connects using plug-Ins

• Can be used with Other Systems (like ROS 
and Player)

• Can be Programmed in Several Scripting 
Languages 

RT-Middlware • Open Source (EPL)

• Based on a Set of Standards that are 
Unlikely to Change Dramatically

• Works with Player Project

• Can be Programmed in Several Different 
Languages



76

Table A (continued)
Simulator Advantages Disadvantages

MRPT • Open Source (GPL)

• Supports Windows and Linux 
lpzrobots • Open Source (GPL)

• Uses ODE Physics Engine for High 
Fidelity Simulations

SimRobot • Open Source

• Users Have Ability to Make Custom 
Robots and Terrain 

Microsoft Robotics Developer 
Studio

• Visual Programming Language
• Uses PhysX Physics Engine for High 

Fidelity Simulations
• Free

• Installs on Windows 
Machines only

• Not Open Source

Marilou • Users Have Ability to Make Custom 
Robots and Terrain Using Built-in Modeler

• Provides Programming Wizards

• Robots Can be Programmed in Windows or 
Linux

• Free Home Version Available

• Installs on Windows 
Machines only

• Not Open Source

• License Costs Range 
between $260 and $2663

Webots • Uses ODE Physics Engine for High 
Fidelity Simulations

• Can be Programmed in Many Different 
Languages

• Free Demonstration Version Available

• Not Open Source

• License Costs Between 
$320 and $4312

robotSim /robotBuilder • Users Have Ability to Make Custom 
Robots and Terrain Using Built-in Modeler

• Uses TCP Sockets
• Can be Programmed in Many Different 

Languages
• 90-day Free Trial and Discounted 

Academic License Available

• Not Open Source
• License Costs Between 

$499 and $750



77

APPENDIX B: SURVEY OF 3D CAD MODELING SOFTWARE

One of the major components to this project is the choice of a compatible 3D 

CAD program for modeling robots and terrains.  Factors in choosing a compatible CAD 

program were chosen to mirror the motivations for this project as a whole.  Ease of use 

was the highest priority, closely followed by price and whether or not the programs were 

cross platform or open source.  Essential factors included import file types, and especially 

export file types.  Since jME3 can only import certain file types and each file type has its 

own advantages and disadvantages, this was an important factor.  jME natively supports 

Wavefront OBJ files, and Ogre mesh XML files.  With the addition of a user-created 

library, it can also load COLLADA models (.dae files).  

This section of the paper will include a survey and comparison of several 3D 

CAD modeling packages.  Several factors will be rated on a Likert 1-5 scale, 1 being a 

poor score, and 5 being the best score.  There are many software packages on the market, 

however if a software doesn't meet the essential factors of file export type and cost then it 

isn't considered in this paper.

 B.1 Google Sketchup

Google Sketchup is currently available for Mac and Windows systems.  It is the 

easiest and most intuitive modeler to learn.  

 It supports export options of COLLADA, OBJ and with the help of a plug-in, 

Ogremesh.XML; all of which can be used with jME3.  The interface is simple and very 

intuitive.  New users can begin making  models in minutes.  Sketchup is linked with 

Google Earth and can natively import Google Earth terrains in a single mouse click.  This 

is invaluable as terrains can be directly taken from Google Earth and imported into 



78

Sketchup to be modified with additional models of buildings, plants or other obstacles. 

The terrain can be exported from Google Sketchup in the same was as a robot model.

 B.2 Blender

Blender is a free cross platform, open source 3d modeler and animator.  It is not 

intuitive and is quite complicated to use.  It also takes a long time to become familiarized 

with the hotkeys and modeling tools.  It has the ability to use plug-ins which can allow 

for many additional exporting options

 B.3 Wings3D

Wings3D is a free, open source, cross platform 3D polygon mesh modeler.  It has 

a fairly intuitive interface and does not take very long to create simple models.  It can 

import and export Wavefront OBJ files, among other formats.

 B.4 Misfit Model 3D

Misfit Model 3D is a free, open source, and cross platform modeler.  While Misfit 

Model 3d can export Milkshape MS3D, Quake MD2, Wavefront OBJ, Quake MD3, 

Cal3d, COB, DXF, Lightwave LWO, and 3DS, only the Wavefront OBJ can currently be 

used for jME3.  A benefit of Misfit is the ability to write plug-ins for additional import 

and export abilities.

 B.5 BRL-CAD

The U.S.  military has been using BRL-CAD for more than 20 years for the 

design and testing of weapons, vehicles, and architecture.  It is now a free, open source, 

cross-platform package of more than different modeling tools.  It is quite complicated and 

not very user friendly.  The only relevant format it can export is Wavefront OBJ, though it 

cannot import it.



79

 B.6 MeshLab

MeshLab is another free open source package.  It can run on Windows and linux, 

but can only run on Intel-based Macs.  It supports many formats for both importing and 

exporting, the two relevant to jME are Wavefront OBJ and COLLADA.  It is easy to use 

but cannot create models from scratch.  This tool package is best used for fixing problems 

that might arise from exporting models from other software packages.

 B.7 Google Earth

Google Earth is a 3d representation of Earth.  It includes satellite imagery as well 

as 3D terrain.  The key feature used for this project  is the ability to simply export terrains 

directly into Google Sketchup.  

 B.8 Other Software

There are many other modeling package.  Maya, Moment of Inspiration (MOI), 

FreeCAD, monoworks, Gmax, Open CASCADE,  Sculptris, Milkshape, among others, 

can all be used for modeling however none were seriously considered for this comparison 

dues to lack of specific features, export formats, or cost.

 B.9 Table and Conclusions

Table B compares all of the modeling packages discussed.  Though all software 

mentioned was used during testing in this project, the main software used in this thesis 

are Google Sketchup, Google Earth and Blender.  The ability to seamlessly import 

Google Earth terrain into Google Sketchup with a single mouse click made this 

combination of tools a must for the project.  Models were also developed and modified in 

Sketchup.  Blender was used for final touch ups to some models as needed, or for model 



80

export and file conversion capabilities during testing.  

Table B Comparison of modeling software packages

Software Ease of Use (1-5) Relevant File Formats

Wings3D 4 OBJ

Misfit Model3D 4 OBJ

Google Sketchup 5
OBJ, COLLADA, 
OgreMeshXML*

Blender 1
OBJ, COLLADA, 
OgreMeshXML*

MeshLab 1 OBJ, COLLADA

BRL-CAD 1 OBJ
* can export this format using a plug-in



81

APPENDIX C: PROJECT SETTINGS WINDOW

The Project Settings window allows the user to set up a project by selecting 

models and values to be used in the simulation.  It also initiates the dynamic compilation 

and running of the Simulator code.

Figure C.1 The Terrain Model tab of the Project Settings window



82

Figure C.2 The Robot Body Model tab of the Project Settings window



83

Figure C.3 The Wheel Models tab of the Project Settings window



84

Figure C.4 The Vehicle Dynamics tab of the Project Settings window



85

Figure C.5 The Code Setup tab of the Project Settings window



86

APPENDIX D: SENSOR WIZARD

The Sensor Wizard is used to set up each of the sensors to be simulated.  Once the 

settings are entered, they can be saved to an XML file that can be read by the simulation.

Figure D.1 Infrared tab of the Sensor Wizard GUI



87

Figure D.2 The Ultrasonic tab of the Sensor Wizard GUI

Figure D.3 The GPS tab of the Sensor Wizard GUI



88

Figure D.4 The LIDAR tab of the Sensor Wizard GUI

Figure D.5 The Accelerometer tab of the Sensor Wizard GUI



89

Figure D.6 The Gyroscope tab of the Sensor Wizard GUI

Figure D.7 The Compass tab of the Sensor Wizard GUI



90

Figure D.8 The Odometer tab of the Sensor Wizard GUI



91

APPENDIX E: GOOGLE EARTH TERRAIN MODEL IMPORT 

Google Earth, Google Sketchup, and the Ogre Mesh user script can be combined 

to  export Ogre-Mesh files of real-world terrain from Google Earth.

Step 1: The Ogre mesh exporter should be installed before running Google Sketchup.  To 

do so, a zip file containing the plug-in can be found at 

http://www.di.unito.it/~nunnarif/sketchup_Ogre_export/  the files within the zip file 

should b placed in the Google Sketchup plug-ins folder (e.g.  C:/Program 

Files/Google/Google Sketchup7/plugins )   

This plug-in relies on a folder named "SketchupOgreExport" that the user must 

create before using the plug-in.

Step 2: Open both Google Sketchup and Google Earth.

 In Google Earth, Select "tools-->Options--> Navigation" and deselect 

"Automatically tilt while zooming"

Step 3: The location of interest should be opened in Google Earth and zoomed to the 

desired level.  For the compass in the simulator to align to North, North must be indicated 

at the very top the compass rose.  Once this is correct, a screen shot should be taken of 

the scene by selecting "File--> Save --> Save Image"  Name this image”color.jpg”

Figure E.1 The “Get Current View” button in Google Sketchup

The "Get Current View" (Figure E.1) button in Google Sketchup should be 

clicked.  This will import the current view for Google Earth into Sketchup.  

Step 4: Click the "Toggle Terrain"  button (Figure E.2) and assure the terrain is selected 

then select "Tools--> Export selection to Ogre Mesh"



92

Figure E.2 The “Toggle Terrain” button in Google Sketchup

Type a name for your main file when prompted.  After a short while, a window 

should pop up telling the number of triangles and the number of submeshes/Materials. 

Click "OK" to close this window.

Step 5:  Navigate to C:/SketchupOgreExport.  there should be three files.  a .jpg, a 

.material and a .mesh.xml.  These are the files required by the simulator.  Copy them into 

a folder of your choice and place this folder in the same directory as the User Code File 

and point to it in the Project Settings window Terrain Model window.

Step 6:  By default, Google Earth will export a black and white image as the material of 

the terrain.  To get a color image of the ground, copy the file saved in Step 3 into the 

same folder as the 3 Ogre mesh exported files.  Open the .material file into a text editor. 

Replace the texture line (will be "texture "<name of .jpg file in this folder>".jpg") with 

the line "texture color.jpg".  Save the file and the material for the terrain in the simulator 

should be in color beginning with the next simulation.

Notes: The larger the area that is selected, the less resolution there will be in the terrain. 

There is a balance between accurate terrain and size of terrain.

Using a color image only exports the image on the screen, which may not exactly 

line up with the terrain.  The main reason for using a color terrain is for aesthetics and 

locating where to place trees when their locations are hard to discern in the black and 

white images.

To set the GPS values for the terrain model, simply read the GPS values and 

altitude off the image files that were exported.



93

APPENDIX F: CODE LISTINGS

The code for this project was written in Java using JDK 1.6.0_20 and 

jMonkeyEngine 3 (jME3) and developed in Netbeans 6.8 and Netbeans 6.9. The entire 

Netbeans project file of this project is available upon request to the author, Adam Harris 

(acharris.uncc@gmail.com) or mentoring advisor of this project, Dr. James Conrad 

(jmconrad@uncc.edu). 

 F.1  RobotModelLoader.java – Loads the Ogre Mesh models of the robot body and 
wheels.

 F.2  TerrainModelLoader.java – Loads the Ogre Mesh model of the terrain.

 F.3  ProjectSettings.java – The Main GUI window providing options to set up a 
simulation project.

 F.4  CompilesAndRuns.java – Dynamically compiles and runs the simulator code.

 F.5  SensorWizardFrame.java – The GUI Window for the Sensor Wizard

 F.6  Sensor.java – The parent class for all sensors in the Sensor Wizard.

 F.7  SensorType.java – Enumerated set of sensor types in the Sensor Wizard. 

 F.8  Location.java – Parent class to all location sensor types in the Sensor Wizard .

 F.9  GPS.java – Stores the information for the GPS sensors from the Sensor Wizard.

 F.10  Compass.java – Stores the information for the compass sensors from the Sensor 
Wizard.

 F.11  Accelerometer.java – Stores the information for the accelerometer sensors from 
the Sensor Wizard.

 F.12  Gyroscope.java – Stores the information for the gyroscope sensors from the 
Sensor Wizard.

 F.13  Odometer.java – Stores the information for the odometer sensors from the 
Sensor Wizard.



94

 F.14  Distance.java – Parent class of all distance sensor types in the Sensor Wizard.

 F.15  IRsensor.java – Stores the information for the IR sensors from the Sensor 
Wizard.

 F.16  Ultrasonic.java – Stores the information for the ultrasonic sensors from the 
Sensor Wizard.

 F.17  LIDAR.java – Stores the information for the LIDAR sensors from the Sensor 
Wizard.

 F.18  SensorContainer.java – Stores all sensor objects from the Sensor Wizard to 
write them to an XML file.

 F.19  readXML.java – Reads the XML file created by the Sensor Wizard and prints 
results to the terminal.

 F.20  UserCodeFileTemplate.ucf – A blank User Code File template.

 F.21  SimulatorTemplate.txt – A blank copy of the entire simulator used either for 
user coding, or to copy user code into before compilation.

 F.22  GPSSimulator.java – Simulates the GPS sensor in the simulator.

 F.23  CompassSimulator.java – Simulates the compass sensor in the simulator.

 F.24  AccelSimulator.java – Simulates the accelerometer sensor in the simulator.

 F.25  GyroSimulator.java – Simulates the gyroscope sensor in the simulator.

 F.26  DistanceConeTests.java – Used to test the IR and ultrasonic sensor granularity 
algorithms by drawing lines of multiple colors on the screen.

 F.27  LIDARtests.java – A hard coded example of a LIDAR simulation in the physics 
world only.


	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS 
	 CHAPTER 1:   INTRODUCTION
	 1.1   Motivation
	 1.2   Objective
	 1.3   Organization

	 CHAPTER 2:   REVIEW OF PREVIOUS WORK
	 2.1   Open Source Simulators and Toolkits
	 2.1.1   Player/Stage/Gazebo
	 2.1.2   USARSim
	 2.1.3   SARGE

	 2.1.4   ROS
	 2.1.5   UberSim
	 2.1.6   EyeSim
	 2.1.7   SubSim
	 2.1.8   OpenRAVE
	 2.1.9   RT Middleware
	 2.1.10   MRPT
	 2.1.11   lpzrobots
	 2.1.12   SimRobot
	 2.1.13   Moby

	 2.2   Commercial Robotics Simulators
	 2.2.1   Microsoft Robotics Developer Studio
	 2.2.2   Marilou
	 2.2.3   Webots
	 2.2.4   robotSim Pro/ robotBuilder

	 2.3   Conclusion

	 CHAPTER 3:   CONCEPT REQUIREMENTS
	 3.1   Overview of Concept
	 3.2   Models of Robotic Vehicles
	 3.3   Models of Terrain
	 3.4   Project Settings Window
	 3.5   Sensor Wizard
	 3.6   User Code
	 3.7   Actual Simulation

	 CHAPTER 4:   TOOLS USED
	 4.1   Language Selection
	 4.2   Game Engine Concepts
	 4.3   jMonkeyEngine Game Engine
	 4.4   Jbullet-jME
	 4.5   Overview of Previous Work

	 CHAPTER 5:   IMPLEMENTATION
	 5.1   General Implementation and Methods
	 5.1.1   Models of Robotic Vehicles
	 5.1.2   Models of Terrain
	 5.1.3   Obstacles
	 5.1.4   Project Settings Window
	 5.1.5   Sensor Wizard
	 5.1.6   User Code
	 5.1.7   The Simulation Window

	 5.2   Sensor Simulation
	 5.2.1   Position Related Sensor Simulation
	 5.2.1.1   GPS
	 5.2.1.2   Compass
	 5.2.1.3   Three-Axis Accelerometer
	 5.2.1.4   Three-Axis Gyroscope
	 5.2.1.5   Odometery

	 5.2.2   Reflective Beam Simulation
	 5.2.2.1   Infrared and Ultrasonic Reflective Sensors
	 5.2.2.2   LIDAR



	 CHAPTER 6:   CONCLUSIONS
	 6.1   Summary
	 6.2   Future Work
	 6.2.1   Project Settings Window
	 6.2.2   Sensor Wizard
	 6.2.3   Sensor Simulators
	 6.2.4   Models
	 6.2.5   Simulations
	 6.2.6   Other Considerations


	REFERENCES
	APPENDIX A: SIMULATOR COMPARISON TABLE
	APPENDIX B: SURVEY OF 3D CAD MODELING SOFTWARE
	 B.1  Google Sketchup
	 B.2  Blender
	 B.3  Wings3D
	 B.4  Misfit Model 3D
	 B.5  BRL-CAD
	 B.6  MeshLab
	 B.7  Google Earth
	 B.8  Other Software
	 B.9  Table and Conclusions

	APPENDIX C: PROJECT SETTINGS WINDOW
	APPENDIX D: SENSOR WIZARD
	APPENDIX E: GOOGLE EARTH TERRAIN MODEL IMPORT 
	APPENDIX F: CODE LISTINGS

