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Abstract

Structured programming principles are not strong
enough to control complexity and guarantee high
reliability of software at the module level. Stronger
organizing principles and stronger properties of
components are needed to make significant gains in
the quality of software. Practical proposals, based on
the definition of normal forms which have a
mathematicalllogical foundation, are suggested as a
vehicle for constructing software that is both simpler
and of higher quality with regard to clearly defined and
Justifiable criteria.

1. Introduction

Stronger principles of programming at the module level
are needed if we are to make significant gains in
controlling the complexity of software, improving its
reliability and its overall quality. Structured programming
[3], modularization techniques and information hiding [15]
and abstract data types [9] have all made important
contributions to this end. However when we ask things
like:

. What belongs and what does not belong in a loop
body,

. Is there an implementation for this algorithm that
has a smaller McCabe Number

. What is the ideal structure for a sequence of
statements,

. How many local variables are needed to

implement this algorithm, or

. Is a given module cohesive or should it be split
into two or more smaller modules.

we find there are few systematic guiding principles that
help us to satisfactorily respond to such questions. Clearly
it is desirable to have sound and reasoned answers to
questions of this sort. It is necessary to turn to other
related disciplines to find the clues that will help us
respond to such questions.

0270-5257/96 $5.00 © 1996 IEEE
Proceedings of ICSE-18

In abstract algebra[1], logic[8], database theory[16] and
other fields, normal forms are widely used to settle issues
of structure, to define ideals of form and to provide
efficiencies and economies of expression. In contrast, in
computing, there has been little interest in employing
normal forms. The tremendous advantages that have been
gained from using normal forms in related fields suggests
that it might be well worth our while to try to develop a
normal form theory for program structures. Existing
structuring proposals have not done enough to control
complexity and improve the reliability and overall quality
of software.

The fact that program structures can be modelled using
graph theory and that the semantics of program statements
may be modelled as predicate transformers [2,4,13]
provides an excellent opportunity to search for normal
forms that may capture ideals of form and composition
that can point the way to the construction of software that
is simpler, more reliable, more efficient and easier to
maintain. We will also show that such techniques offer an
excellent opportunity to put measurement of the relative
quality of software and its complexity on a much sounder
mathematical footing.

In putting forward proposals for the use of normal forms in
programming we are not interested in projecting the theory
of program structure into an obscure realm of abstract
mathematics. What we are interested in doing is providing
sound, mathematically grounded, practical principles that
can be routinely used by software engineers to guide the
construction, and measurement of key properties of
software that impact its quality. These principles define
ideals of form according to clearly enunciated criteria and
therefore also open up the possibility of re-engineering
poor quality software to a normal form. What we will put
forward here is one set of proposals for normal forms.
There may certainly be other alternatives. It is our hope
that the present work will encourage others to look at the
structure of software from this perspective.

2. Normal Forms and Program Structure

In applying the concept of normal forms to program
structure there are three possible avenues of exploration
that we can pursue. We can start by looking at possible
normal forms for simple and composite statements and
statement components. This avenue also takes into
account a number of issues of composition. Another
fruitful place to look is at modules. There have been
proposals by Myers and others, relating to coupling and
cohesion [12]. These proposals, like the present work,
could be interpreted as suggestions for normal forms. It is
however possible to extend these proposals by taking a
more rigorous look at module cohesion and the use of
variables within modules.

The application of normal forms corresponds to the
imposition of more stringent logical and structural



constraints on software components. In one sense, we are
suggesting that more order should be imposed on program
structures. Our intent here is to rigorously define a set of
normal forms for program structures. Before presenting our
suggestions let us first look at the most well-known form
associated with program structure - the proposals for
structured programming which constitute a normal form.
They require that every type of exccutable statement has a
single point of entry and exit. Imposition of this
constraint has made an important contribution to
simplifying the structure of imperative programs.
Languages like Modula-2 have chosen to use a language
architecture that directly implements and enforces
structured programming.

An obvious question to ask is: is structured programming
the only normal form relevant and applicable to program
structure? We contend that this is not the case. That, in
fact, there are a number of compatible normal forms
relevant to program structure which can be superimposed
to yield further important refinements for improving the
structural quality of programs. The suggestions we will
make are intended to simplify program structure and at the
same time make the software more reliable.

A significant contribution to program structure is made by
the statements that change the flow of control: the iterative
structures and the selection statements. It is the nested
composition of such structures which significantly adds to
the complexity of programs. What we are interested in is a
normal form that provides strict guidelines for controlling
the complexity of such structures. Single point of entry
and exit is not strong enough to prevent such structures
from becoming rather complex. At first sight it would
seem that there is not much we can do to reduce the
complexity of such structures. Proposals to date have
concentrated only on normal forms that exploit syntax and,
as such, are not strong enough to control complexity. The
key lies in proposing normal forms that exploit semantics.
Semantics allows us to impose more stringent constraints
on structures, to define forms that are ideal with respect to
some clearly specified criterion and identify semantics-
preserving transformations to convert delinquent structures
to normal forms. The resulting normal form, in each case,
is not usually a property of a statement per se, but of a
statement in a specific semantic context.

In seeking to define normal forms we will use constructive
definitions. Using this approach to assess whether a given
structure is in its normal form it is necessary to carry out a
two-step process:

. first we transform the [branched] statement
(simple or compound) to its base form, and then

we perform a semantic analysis to determine
whether the structure is already normalized
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3. Normal Forms for Statements

It is possible to define normal forms for each type of
statement, both simple and compound that we encounter in
conventional imperative programming, These normal
forms express an ideal for representing the given statement
with respect to well-defined and testable criteria. They are
designed to achieve four outcomes:

. ensure the inherent consistency and problem-
independent correctness of the statement is
preserved,

minimize its complexity,
maximize its efficiency, and

. maximize analyzability.

An additional requirement is that it should be possible to
automate the process of transforming a statement into its
normal form. We will now examine the normal forms for
several key program components to illustrate the method.

3.1 Assignments

Assignments are the simplest building blocks of
imperative programs. An obvious syntactic requirement for
an assignment is that all variables used in its expression
should be initialized and there should be no side-effects in
the expression. Apart from these requirements there is only
one semantic obligation on an assignment. It is that
assignments should always advance a computation. By this
we require that the postcondition established by an
assignment should not be equivalent to its precondition.
This constitutes a normalization condition for
assignments. If an assignment does not satisfy this
requirement it is redundant and may be removed from the
computation without consequence. We may express this
normalization condition formally using strongest
postconditions. We define sp(P,S) to represent the
strongest postcondition [2,13] established by the statement
S when it executes in the context of the precondition P.
For an assignment S executing in the context of the
precondition P we require

NAS-1: —(sp®.S) = P)

to be satisfied for the assignment to be normalized.
Otherwise such an assignment S must be a self-
assignment, e.g. x:=x or establish an already-established
condition. It is straightforward to do a strongest
postcondition calculation to determine whether an
assignment is normalized.



3.2 If-Statements

It is important to apply semantic normalization techniques
to branch statements to avoid all the potential insecurities
and correctness problems with such statements. To ensure
that a branch structure is normalized three types of
condition must be considered: the precondition P, the set of
branch guards { C1, C2, ..., CN } and the set of conditions
{ D1, Dg, ..., DN} that apply after each branch has
executed. Here we consider branch statements of the form
[41:
{P}

ifCiy—-S1 {D1}
C2— 82 {D2}
0n..-..

O0CN - SN {DN}
Ji

For such a statement to be normalized we suggest that the
following conditions must be satisfied in concert.

NMB-1.
NMB-2.

NMB-3.
NMB-4.

P=CivCyv..vCyN
Vivj ((i,je [1.N] A j#i) = (C; = —Cy))

J
Vi (ie[LN] ~ (P=Dy))
A variable unassigned in P that is
assigned in af least one branch must
be assigned in all branches.

—3i (i€ [1.NDH P = C;)

A-di ((i€[L,N]) P=-C;)

~3i (sp(PACy, S1) v ... v sp(PACN, SN))
= sp(P, ;)

sp(PACy, 81) v ... v sp(PACY, SN)

is conjunctive

NMB-5.

NMB-6.

NMB-7.

NMB-1

The first normalization condition ensures that the if-
statement is able to accommodate all possible initial states
under which it is required to execute. That is, there will be
no initial state defined by P for which all branch guards are
false.

NMB-2

For reasons of efficiency and consistency it is desirable that
.for any given precondition, the guard for only one branch
should be satisfied. What this means in formal terms is
that for all branch guards, the satisfaction of any guard
means that all other branch guards are not satisfied. The
second normalization condition NMB-2 captures this
requirement

NMB-3
A non-empty branch statement Cj — Sj { Dj } in an if-
statement is redundant when that statement establishes a
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postcondition Dj that is equivalent to the precondition P
for the if-statement. A normalized if-statement should
contain no redundant branches.

NMB-4

A significant insecurity in if-statements in most languages
is that they do not enforce the requirement that a variable
which is unassigned in the precondition P, and is assigned
in at least one branch of the if-statement it must be
assigned in every branch of the if-statement. If this
requirement is not fulfilled it leaves open the possibility
that on termination of the if-statement in some
circumstances the variable will be undefined while in other
cases it will be defined. This represents a correctness
problem with the if statement. The normalization
requirement is designed to avoid this problem.

NMB-5

While the first normalization condition NMB-1 guarantees
that at least one branch is reachable under the deterministic
precondition P it does not however guarantee that all
branches are reachable under P. The normalization
condition NMB-5 requires that all branches are reachable
under the precondition P.

NMB-6

To be normalized an overall branch structure must not
establish a strongest postcondition that is equivalent to the
strongest postcondition established by one, or a strict
subset, of its branches or by a simpler statement S that
involves no branches.

To illustrate NMB-6, let us consider Manna's Abstract
Program AP [10] under the precondition true:
if p(y) = x:=y; do —p(x) — x:=f(x) od
0 —p(y) > x:=a;
if p(x) o /*{—p(y)ax=arp(x)}*/
do —p(x) = x:=f(x) od
[0 —p(x) > x:=f(x); /*{~p(y)ax=f(a)a—p(a)}*/
if p(x) = x:=a; /*{—p(y)rx=ar—p(a)ap(f(a))}*/
do —p(x) — x:=f(x) od
fi
fi
Ji
The last branch statement if p(x) — x:=a; do —p(x) -
x:=f(x) od fi, after execution of its internal statement
under the precondition —p(y)Aax=f(a)a—p(a), yields
—p(y)ax=f(a)a —p(a)Aa—-p(f(a)) for skip and
—p(y)ax=ar—p(a)Ap(f(a)) for the execution of the loop do
—p(x) = x:=f(x) od because after the first iteration the
loop guard —p(x) fails. Therefore:
sp(—p(y)ax=f(a)a—p(a),
if p(x) —» x:=a; do —p(x) —> x:=f(x) od fi)
= (—p(y)ax=f(a)a-p(a)r—p(f(a)))
v (=p(y)ax=an —p(a)ap(f(a)))
= —p(y)ax=f(a)a—p(a)
= sp(—p(y)ax=f(a)a—p(a), @)



According to the condition NMB-6 the branch statement
can be replaced by the empty statement, @. More generally
a normalized branch statement should satisfy the
requirement that there exists no simpler statement S than
the branch statement such that:

sp(PAC1, 81) v sp(PACy, S9) v...v sp(PACN, SN)) =sp(P, S)

NMB-7

The normalization conditions NMB1-6 define a number of
requirements for a normalized branch statement. The
normalization condition NMB-7 differs from these
requirements in that it requires that a branch statement
should have a unified functionality. This condition may be
expressed by requiring that the postcondition should be
equivalent to a conjunctive condition if the precondition is
conjunctive.

To understand this, consider a two-branch statement {
a(x)Ab(z) } if x=0 - y:=M[] x20 - y:=M-1fi as an
example. Obviously, the postcondition a(x)Ab(z) A
((x=0Ay=M) v (x£0Ay=M-1)) cannot be simplified to a
conjunctive form without any disjunctive term. Often
programmers use this sort of device to set another variable
y that can be used in another branch test in the statements
that follow. However we may use x=0 and x#0 to replace
this additional test. This is possible because in one sense
this branch statement establishes another flag, y, from the
original flag x.

When the disjunctive postcondition Dy v Dy can be
simplified into an equivalent conjunctive form D, there are
two cases that apply. One is that the weakest branch
postcondition Dj is equivalent to D, and another Dj
implies D (as Dy v D2 =D v D; = D, where je [1,2]).
Another case is that both of the branch postconditions Dy
and Dy imply D, and each of them has an extra part R;,
i.e., Dj=D A R;, for i€ [1,2], which satisfies Ry vRy =
true. We suggest that the normalized branch statement
should be classified according to the first case, rather than
the second case. Because, from a theoretical viewpoint,
these R; do not appear in the postcondition, they may be
used only for branching purposes (otherwise they are
redundant). From a technical view point, if these R; are
needed for the branch statement as branch conditions, the
branch conditions or their modifications of the original
branch statement that produces these Rj may replace them.
For example, if x=0 — x:=1; flag:=true [] x20 —
x:=x+1; flag:=false fi is not a normalized branch
statement under any precondition P(x) because

sp(P(x), if x=0 — x:=1; flag:=true

{1 x£0 - x:=x+1; flag:=false fi)

P(x-1)A(x=1Aflag v x-1#0A—flag)
P(x-DA((x=1)e->flag)a(x=1v x#1)

= P(x-Da((x=1)cflag)
From a logical viewpoint, the flag is equivalent to the
predicate x=1, which means there is redundancy present.

o
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From a programming viewpoint, when the flag is needed
in the preceding program, the predicate x=1 may be used to
replace it. In contrast,
if Ali+1]<A[p] - i:=i+1 [] Ali+1]>Alp] — i,p:=i+1,i+1 fi

is a normalized branch statement under the precondition
Jpe[1,i]Vte[1,p-1]1Vse [p+1,i] Altl<A[p]aA[s]<A[p] because
sp(Ipe[1,i]Vte [1,p-1]1Vse [p+1,i]Altl<Alp]AAlsI<Alp],
if Ali+11<Alp] — ir=i+1 [] Ali+1]>A[p] = i,p:=i+1,i+1 fi)

= (Jpe[1,i]Vie [1,p-1]Vse[p+1,i]JAt]<Alp]aA[s]<Alp]) v

(Ve [1,i-1]At]}<A[i]ap=i)
= 3pe [1,i]Vte[1,p-1]Vse [p+1,iJA[t]<AlplaAlsI<Alp] (as
the latter implies the former)

3.3 Loops

The use of semantics allows us to clearly and precisely
define a number of important structural and correctness
requirements for loops. We will divide our discussion of
the normalization requirements into two parts, the first part
consists of requirements that apply to all loops and the
second consists of those requirements that apply to loops
that contain branched loop bodies, i.e., they contain IF-
statements and/or loops). In our discussion we will
consider a general loop do G — S od that executes under a
precondition P. These requirements extend beyond the
usual requirements for loop correctness [4].

3.3.1 Basic Normalization Conditions for
Loops: The general requirements are designed to ensure
that the context defined by the precondition P and the guard
G, really warrants the use of a loop that has the potential
to execute more than once and to terminate. The
precondition P here is not the loop invariant but rather a
condition (established by the loop initialization) which
will always strictly imply the strongest loop invariant for
the loop.

—(sp(P,do G > S 0d) =P A —G)
—(sp(P A G, S) = -G)
—((spd AG,S) = G)

LBN-1

The first normalization condition LBN-1 requires that the
loop is reachable for all possible initial states under which
it must execute. That is, there must be no initial state
defined by a non-grounded precondition P for which the
loop guard is false.

LBN-2

The condition LBN-2 deals with the efficiency of a loop. It
is different to LBN-1 in that the loop may execute a
number of times, however it demands that the loop
establishes more than simply the negation of the loop
guard without changing the precondition P. For example,
the loop { P } do i#N — i:=i+1 od should be avoided



because it produces only the condition i=N even though it
may execute a number of times.

LBN-3

Any loop, to be deserving of that status should have the
potential to execute more than once for a given non-
grounded precondition P and guard G. This requires not
only that the loop is reachable, but also that it is
executable at least twice. What this means in formal terms
is that the postcondition from the first iteration should not
imply the negation of the loop guard.

LBN-4

Every loop executing under its strongest loop Invariant I
should have a structure which guarantees, that when the
loop body executes it does not establish a condition which
implies the loop guard G. Obviously, if it does, the loop
is non-terminating.

3.3.2 Loops with Branched Bodies: Loops
structures that contain branched bodies are often regarded as
the most complex, the most difficult to analyze, and the
most likely to contain logical flaws. It is therefore
important to see how the concept of normalization may be
employed to make such structures more tractable.

Any loop with a branched body can be transformed into the
following equivalent form (in many instances S will be
empty)[14]:

{P}

doG—
S;
ifCy1 -8
[1Cy— 8y
...
[1CN - SN
fi

od

The basic normalization conditions for loops apply for this
loop structure. Additional normalization constraints that
apply to branch structures are as follows:

Upon loop enlry: each branch should be reachable, i.e.,
LBB-1a. — 3i ((ie[1,ND sp(P A G, S) = C}))
LBB-1b. i ((ie [1,N]) sp(P A G, 8) = =C))

After each iteration: each branch should be reachable, i.e.)
LBB-2a. —3i Vj((i,je [1,ND) sp(sp(G, S) A Cj, 5)=C)
LBB-2b. —3i Vj((i,je [1,N]) sp(sp(G, S) A Cj, 5= -Cy
Loop Progress: each branch should decrease its variant
function

If sp(P A G, S) or sp(sp(G, S) A Cj, Sj) implies one of
the branch conditions, then other branch conditions cannot
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be reached. Also if either of these conditions implies the
negation of a branch condition, then that branch is
unreachable. A normalized, branched loop body avoids all
of these problems. What LBB-2a,2b tell us is that each
branched loop should have a strongly connected branch
successor graph. For example, the following List Merge
(11]

out:=Nil;
do (iny#Nil)v (ing#Nil) —
if (ing=Nil)v((in1#NiDA(iny#Nil)A(in{.head<iny.head))
- out:=out+4-in1.head; in1=in1.tai1
{1 (ing#Nil)A((iny =Nil)v(iny=Nil)v(in; .head2iny.head))
— out:=out++ing.head; iny=iny.tail
Ii
od
contains four branches within its loop body:

if iny=Nil —» out:=out++in.head; iny:=inj.tail
(1 (ing#Nil)A(iny=Nil) — outi=out++iny.head; ing:=inj.tail
0 (ing#Nil)a(in;#Nil)A(in} .head<ing head) —
out:=out++inj.head; iny:=inj.tail
[1 (ing=Nil)A(iny#Nil)A(iny .head>iny .head)) —
out:=out++ing.head; iny:=inj.tail
fi
It satisfies the conditions LBB-1a and LBB-1b, however it
fails to match LBB-2a and LBB-2b because after execution
of the first or second branch, the control-flow will remain
in the same branch or terminate. Also after execution of
the third branch, the control-flow will only enter either the
second or the third or the fourth branch, or terminate; and
so on. We may use the following branch successor graph
(BSG) to illustrate this:

o Qe —0uf,,

These quality defects are caused by poor decomposition of
the problem. We may remove these defects by formally
transforming this algorithm into the following equivalent
form;
out:=Nil;
do (iny#Nil)A(iny=Nil) —
if iny.head<ing.head -» out:=out++iny.head;
in1=in1.[ai1
[1in; .head>iny.head — out:=out++iny.head;
inp=ing.tail
fi
od;
do (iny#Nil) — out:=out++in.head; iny=in .tail od;
do (inp#Nil) — outi=out++ing.head; iny=in).tail od

The transformations required to achieve this result
correspond to splitting the original BSG into its three



strongly connected components (corresponding to the three
loops). A more detailed treatment of loop reengineering is
given elsewhere[14]

3.4 Non-Iterative Sequences

Simply composing a compound statement of normalized
statements is not strong enough to guarantee that the
compound statement is in a normal form. Here we consider
non-iterative sequences that are composed of assignment
statements, input/output statements and if-statements.
There is a potential for un-normalized sequences to contain
redundant assignments, redundant tests and involve the use
of variables for more than a single purpose. All of these
defects may be removed by a sequence of transformations
that include several optimizations. We will now examine
the optimized structures of non-iterative statement
sequences, which contain no logical redundancy. An EBNF
definition will be given for each of these structures.

We start with the structurally simplest sequence. Consider
any non-iterative statement sequence consisting of
assignments and write-statements only. We can apply
simple transformations [13] to remove all redundant
assignments from the sequence. The resulting sequences
have the property that no variable is assigned twice. Hence
we have:

NNIS-1 Minimum Optimization Structure <Opos>:
This is a redundancy-free sequence containing assignments
and write-statements, where any variable is assigned only
once. In EBNF we have:

<Opos> =98 | x:=E {; <Op s>} | write(E) {; <Omos>)

The order of the statements in a <Op, o> sequence can be
freely interchanged using a straightforward set of
substitution rules. For example, the following two three-
statement sequences establish exactly the same
postcondition:

x:=a+b; y:=u*v; s:i=x-y |= si=a+b-u*v; x:=a+b; y:=u*v
We may extend the complexity of <Op, s> sequences to
include any non-iterative statement sequence consisting of
assignments and I/O statements only. When all read-
statements involve different read-variables, there exist
transformations that allow all read-statements to be
relocated at the front of the sequence. When there exist two
read-statements involving the same read-variable, a
reassignment rule is used to rename the first read-variable
and its usages by a fresh variable. This allows all read-
statements to be placed at the front of the sequence. The
rest of the sequence contains only assignments and wrife-
statements that form a <Oy, s> sequence. This leads to a
new optimized sequence that satisfies the following
definition:
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NNIS-2 Bounded Minimum Optimization Structure

<Obmos>:

This is a redundancy-free sequence, which starts with a
number of (one or more) read-statements followed by a
sequence in <O o>, Where each variable is assigned once

either by a read-statement or an assignment. In EBNF we
have:

<Opmos> ::= read(x); <Opos> | read(x) {; <Opmos>1»

We may extend any non-iterative statement sequence
consisting of assignments, I/O statements to include if-
statements. When all branch-guards of an if-statement
depend on at least one read-variable, these branch-guards
are not pre-determined for arbitrary input. Several
transformations [13] exist which enable us to locate such
an if-statement in front of all statements that follow the
read-statements which initialize at least one read-variable
that appears in the branch-guards. The encapsulating
structure starts with a number of (one or more) read-
statements followed by an if-structure, called the Bounded
Branch Structure. In this branched structure each internal
statement (branch body) is either another bounded branch
structure or a sequence in <Oy s> Of <Opmos> OF

<Opbos>-

NNIS-3 Bounded Branched Optimization Structure
<Opbos>:
This is a redundancy-free, recursively defined sequence that
starts with a number of (one or more) read-statements
followed by a branch structure, in which each branch-guard
involves at least one read-variable assigned by the
previous read-statements and each internal statement is a
sequence in <Oy, s> OF <Opmos™ Of <Ophos™-
<Oppos™ = read(x); if C1(x,...) = <Body> [] ... []
C(x,...) = <Body> fi
| read(x) {; <Oppos>1s
where <Body> ::= <Op05” | <Opmos™ | <Opbos> and
where any variable in any <Oppqg> structure is
assigned only once for each execution path, and Ci(x,...) for
ie [1,m] must involve all pre-fixed read-variables;

When there exists an if-statement whose branch-guards are
independent of any read-variable in the sequence,
transformations exist which enable us to locale this branch
statement at the front of the sequence. This constructs a
branch structure directly. In such a branch structure, each
internal statement can be simplified into a sequence in

<Opbos™> o <Opmes™> OF <Omos™>

NNIS-4 Branch Optimization Structure <Opgg>:

This is a redundancy-free branch structure such that all its
internal branch statements are sequences in either <Opp o>
of <Opmos™ O <Opos™>-

<Opgs> 1= if Cy = <Body> [1 ... [1 Cyp, — <Body> fi,



where any variable in any <Op¢> structure is assigned
only once for each execution path;

Sequences in <Opgg> and <Oppos> have similar
properties to sequences in <Oy, o> and <Oy os>- Each

variable is assigned once (for each execution path) either by
a read-statement or an assignment and the order of any
read-statements that bounds a branch structure can be
freely changed by appropriate variable substitution within
their range.

Strongest postcondition calculations, together with
transformations in line, provide a means to restructure any
non-iterative statement sequence into an equivalent
optimized, redundancy-free sequence in
<Omos>Y<Opmos>V<Opbos><Opos>. These four
structures define the Optimized Structures for any non-
iterative statement sequence.

4. Variable Normalization

The way variables are used can have a significant impact
on the quality of software. Single assignment languages
like SISAL overcome most of these problems. Here we
will consider requirements that may be applied to
imperative programs that do not exploit single assignment.
The consistency principle tells us that a variable should
only be used for a single purpose. Local variables are
frequently used to help achieve this ideal. This does not
mean, however, that local variables should be declared
freely. For example, with the module swap(x,y), the ideal
segment should use one local variable, i.e., t:=x; x:=y;
y:=t, rather than two local variables, such as t1:=x; t2:=y;
x:=t2; y:=tl. Some formality is needed to resolve this sort
of problem.

Local variables are used to record state information at
critical points in a computation. It is not easy however to
determine the number of local variables for the ideal
representation of a given algorithm or program. Instead, we
may use calculations to define the maximum number of
local variables to model a particular set of state-recording
requirements for any algorithm. When a program uses
more local variables than the maximum required number,
then its local variable set should be reduced by
normalization.

Before defining the maximum number of local variables
needed, we need to convert any assignment sequence by
substitution into an equivalent multiple assignment x:=f.
For example, with two output variables x and y, the
sequence tl:=x; t2:=y; x:=t2; y:=tl produces (t1, 12, x,
y):=(x, y, y, X). Since x:=f may contain more local
variables than necessary, we need to remove the local
variable assignments from x:=f. Given any x:=f and a
local variable sct I then as long as such a multiple
assignment is not bounded by a loop structure, we can
always achieve (x-1):=F', where f’ is the sub-set of f after
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removal of the expression set to which / corresponds.
When x:=f is in a loop structure, not all local variables
can be removed, e.g., local variables may depend on their
value in a previous iteration. The detailed treatment of this
is given in [13].

After removing local variable assignments, either
completely or partially, we can build a Variable
Dependency Directed Graph (VDDG). The formal definition
is:

Given any multiple assignment x:=f, its VDDG is a
directed graph containing a node set x and an edge set
{<x,y> | (x:=f)e (x:=f), ye (V(f)-{x})], i.e., variable
x connects to all its dependent variables except itself,
where V(f) is the variable set of f.

This graph cannot contain any self-cycles. The problem of
determining the maximum number of local variables may
be translated to determining the number of local variables
that convert a multi-assignment into an implementable
assignment sequence in an imperative program. Two cases
apply for the VDDG. They are.

« the VDDG is a tree (or a number of trees) without any
cycles

the VDDG is a tree-structure (or a number of tree-
structures) with cycle-nodes

When a given VDDG is a tree ( or a number of trees), no
local variable is needed because we can use an extended
Pre-Order traversal of the tree to decompose the
corresponding multi-assignment into a normal assignment
sequence. This order also defines the principle for
decomposing any directed graph with cycle-nodes. The
following diagrams illustrate these ideas:



A K a=p(c.e,f) b ®
multi-assignment decompose
c
v e abcdefi= %
d ple.e.0).qf).x(d.e).s(f).((d.f),v() “:
a:=p(c.e.f);
a.=;l))(c=,zzg, e decompose b=q(®
c=r(de) .f_} £ h C @:7 ¢
a=p(c.e.D);
‘ f d b=a®
a_—p(c &f); c=r(de);
d [ G e=t(d.0;
O — d:=s(0)
e:=t(d,f); f:=v(f)

When a VDDG is a tree-structure (or a number of tree-
structures) with cycle-nodes then for a simple cycle that
contains no subcycle a local variable is needed to
decompose this cycle into a tree. However a more complex
process [13] is needed to handle a complex cycle that
contains nested subcycles .

The three implementations below illustrate the impact of
applying variable normalization. The normalized
implementation (RaGCD) uses six rather than the seven or
eight assignments used in the other two implementations.
In Ra6CD each variable is used only for a single purpose.

Example:

Two implementations (ExGCD1 and ExGCD?2) of the extended Euclid's GCD algorithm, have been presented by
Jensen & Wirth[6] and Horowitz & Sahni[7] respectively:

ExGCD1: ExGCD2; RaGCD:
c:=M; d:=N; x:=0; y:=1; c:=M; d:=N; x:=0; y:=1; c¢:=M; d:=N; x:=0; y:=1;
do d#0 —> do #1 — do 0 —
q:=c/d; =cmodd; q:=c/d; i=cmodd; Prex:=x; prec:=c;
y:=y-q*x; c:=d; d:=r; wi=x-q*y; ¢:=d; d:=r; X:=y-c/d*x; y:=prex;
=X; X!=Y; y'=r Xy, yi=w c:=d;d:=precmodd
od,; od,; od,
return(y) if y<0 — y:=y+p fi; return(y)  retum(y)

After applying equivalence transformations we get (q, 1, ¢, d, X, y):=(c/d, x, d, cmodd, y-c/d*x, x) from the loop
body of ExGCDI1. After removal of local variables q and r, we obtain the underlying logical intent of the body, that
is, (¢, d, x, y) = (d, cmodd, y-c/d*x, x). Its VDDG and normalized result RaGCD are as follows:

rec
c d c d P
C
* y * Y
® y R H
prex pre

Yo

d

—>

prex:=x;
prec:=c;
Hi=y-c/d*x;
y:=prex;

c:=d;

d:=prec mod d
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5. Normalization of a Program Fragment

In this paper we have defined a set of normalization
conditions for individual statements and for composite
statements. These normal forms which have a
mathematical/logical basis express an ideal. Taken
together these requirements provide a basis for constructing
what we will call well-structured programs. Such programs
should be composed only of normalized statements at all
levels. We claim that programs composed only of
normalized components are far more likely to be less
complex and more reliable. To make this point let us
consider Manna's Abstract Program AP [10] as an
example:

if p(y) — x:=y; do —p(x) - x:=f(x) od
0-p@) —
X:=a;
if p(x) — do —p(x) - x:=f(x) od
0 —p(x) -
x:=f(x);
if p(x) = x:=a; do —p(x) - x:={(x) od fi
fi
fi

When this program fragment is normalized (and hence re-
engineered) we get the following equivalent much simpler
and non-redundant program fragment:

ifp(y) - x=y
0 —p(y) — if p(a) > x:=a [] —p(a) - x:=f(a) fi
fi

6. Module Normalization

Cohesion is usually cited as the criterion that may be used
to decide what belongs in a given module and what should
be implemented elsewhere(12]. Unfortunately this concept
is rarely defined precisely enough to be used a basis for
module normalization[5]. Two formal requirements must
be satisfied for the functionality encapsulated in a module
to be cohesive. These requirements maybe formulated in
terms of input/output dependencies. Where mutual
dependencies exist there is cohesion. Assessment of a
module's cohesion is easiest to make using a graph-
theoretic interpretation. The two normalization conditions
are as follows:

MYVN-1

Each output variable must depend upon at least one input,
and each input variable must be used to produce at least
one output variable.

MVN-2

The input/output variable dependencies must be represented
by a single connected bipartite graph. The I/O
dependencies in the diagram below violate this criterion .
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inputs:

Outputs:

If we denote the module input and output sets by I and O,
and we construct the VDDG graph <IuOQ, E>, where E
is the edge set for the module/program then the
normalization conditions may be expressed formally as
follows:

MVN-1. V
Vx3y(xe Onyel = <x,y>€E)
MVN-2. VIVO' (ISl A050'=
~3 <x,y>€ E(xeI'Aye 0-0' v xeI1 Aye 0'))

These two normalization criteria provide a very effective
means for deciding what functionality belongs in a
particular module. In the noncohesive module above the
component with output z and dependent inputs d and e
should be in a separate module.

7. Conclusions

Structured programming, information hiding and ADTs
have made important contributions to program quality.
However such techniques alone are often not strong
enough to control (reduce) complexity to manageable
levels, make software more reliable and make it easier to
understand and change. The weakness of these methods
when they are applied to structures is that they do not
effectively take into account contextual and semantic
issues. As a result, they do not guarantee that complexity
will be limited and that high quality software will always
be produced by following their guidelines,

What we have suggested in the present discussion is that
there exists, beyond structured programming, another level
of structuring, based on context and semantics, This level
is more subtle, but it is significant in its impact on the
quality of software,

In the past decades, much of the mathematics/formal
methods that have been brought to bear on programs has
looked only at the semantics/correctness of components.
What we need to invent is the mathematicsilogic of
structure for praogram components (composed and
uncomposed). Normalization of simple and complex
statements, of variable-usage and of modules provides a
vehicle for achieving these goals. To realize the normal



forms we have described we have three choices: get the
programming language to enforce them, leave it to users
to design components that conform to the normal form
requirements, or develop tools that can automatically re-
engineer un-normalized components to their corresponding
normal forms. Obviously the first choice is the best. It
does however require some refinements to existing
languages and compilers.
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