
IPerG Deliverable 16/11/2006

Integrated Project on Pervasive Gaming
FP6 - 004457

Work package WP12: Showcase – City as Theatre

Deliverable D12.5:
Delivery of the Second City as Theatre prototype

Editors: Martin Flintham, Steve Benford and Mauricio Capra

Authors: Chris Greenhalgh, Martin Flintham, Michael Wright, Jonathan Green,
 Keir Smith, Adam Drozd, Matt Adams, Ju Row Farr,

Nick Tandavanitj, Hanna Talbot, Irma Lindt, Johan Peitz, Steffan Björk, Alain Becam

Version: 1.0

Release date: September 2006

Status: public

 Deliverable D12.5 Design Specification and Prototype of the Second
Version of Day of the Figurines

Deliverable 12.5 i 16/11/2006

Executive Summary

This document describes the second major iteration of the design of Day of the Figurines that has been
realised in the second phase of the iPerG project in the City as Theatre showcase.

Day of the Figurines is a long-term text messaging game for mobile phones that has been designed by
professional artists . The game follows a day in the life of an imaginary small town. Day of the Figurines
takes the form of a massively multiplayer board-game, but one with which players can interact remotely via
their phones. A player enters a public venue to choose a plastic figurine that is placed onto a large-scale
physical game-board. An hour or so after leaving the venue, the player will receive their first text message.
From now on they interact with their figurine by sending and receiving SMS messages, controlling its
movements and actions and seeing events through its eyes. The game involves a high degree of pre-
authored content in the form of key events that are scheduled to take place at different des tinations.
Threaded among these events are a series of missions and dilemmas that confront players in which
players use objects to try to help (or hinder) others and to maintain their own health. Day of the Figurines
is designed to be a slow game so as to reflect the nature of SMS messaging. The game time takes place
over the course of one fictional day. However, this is mapped onto twenty four days of real time, during
which the game is played for ten hours each day.

The first iteration of Day of the Figurines was hosted by the Laban Centre in London and played by 85
players over a month spanning August and September 2005. A detailed evaluation of this first iteration
was given in the previous iPerG deliverable D12.4, drawing on a combination of player feedback via
questionnaires, analysis of system logs and ethnographic observation to unpack key issues concerned
with both the player experience and the behind-the-scenes work that was required to deliver the game.
The second iteration of Day of the Figurines described in this deliverable represents a major reworking of
the game, both in terms of its content and the technology and processes used to deliver it. In particular,
this deliverable introduces the following key innovations that have emerged during this second phase:

? Support for scalability through automation of the game rules and message generation and also
the use of a simple game grammar. Whereas the first version of Day of the Figurines required a
substantial amount of operator work to generate and edit messages, this second version is highly
automated and should scale to supporting many hundreds of simultaneous players.

? The addition of greater structure and content to the game including the use of objects, a health
system and most importantly, missions which combines events, dilemmas and objects into more
extended narrative structures within the game.

? Support for episodic play, combining greater responsiveness, with quickly backing off, with daily
keep alive messages. Key to supporting episodic play is a new ‘hub-based’ movement model that
enables player’s to move more quickly through the virtual town while also enabling them to be
allocated small episodes of play – encounters, events or dilemmas – as they go.

? Techniques to limit message flow so as not to flood players and stay within the cost constraints
imposed by SMS (which affect both players and game operators). Flow control mechanisms
include the use of silos at destinations to manage the volume of chat and the introduction of
message aggregation which involved automatically combining information about several events
into a single messages so as to make maximum use of previous SMS bandwidth (a technique
that we anticipate to be more widely applicable across SMS-based pervasive games)

? Digital augmentation and physical redesign of the physical gameboard so as to provide a more
compelling spectator interface to the game and also to make its operation more efficient and
therefore scalable.

? More sophisticated authoring, operation and orchestration interfaces for the game, supported by a
back-end database and webserver for managing the game content. A key innovation here is that
these interfaces and the supporting database and many java classes required for development
are mostly automatically generated from some core Java bean specifications.

This document describes the second version of Day of the Figurines in a uniform IPerG standardized
game design structure, explaining the game design, game flow, game content, employed technology, user
interfaces and the content of the software distribution. Each IPerG game is described in this common
format. Please refer to document D5.3B for a ludological definition of pervasive games and a conceptual
framework for understanding and discussing the domain of pervasive gaming.

 Deliverable D12.5 Design Specification and Prototype of the Second
Version of Day of the Figurines

Deliverable 12.5 ii 16/11/2006

Purpose of this Document

The purpose of this document is to provide a summarized and structured presentation of the City as
Theatre phase two showcase prototype Day of the Figurines (version 2). In addition, this document should
provide a pervasive game design example and is intended to foster pervasive gaming design ideas and
realizations in Europe.

Target Audience

This document is intended as a public document to all interested parties within the European game
designer community and is intended to foster pervasive gaming development within the European
Community.

 Deliverable D12.5 Design Specification and Prototype of the Second
Version of Day of the Figurines

Deliverable 12.5 iii 16/11/2006

Deliverable Identification Sheet

IST Project No. FP6 – 004457

Acronym IPerG

Full title Integrated Project on Pervasive Gaming

Project URL http://www.pervasive-gaming.org/

EU Project Officer Albert GAUTHIER

Deliverable D12.5 Delivery of the second City as Theatre prototype

Work package WP12 City as Theatre

Date of delivery Contractual M 24 Actual M24

Status version 1.0 final ?

Nature Prototype ? Report ? Dissemination ?

Dissemination Level Public ? Consortium ?

Authors (Partner) University of Nottingham, Blast Theory, FIT, Interactive Institute

Steve Benford Email sdb@cs.nott.ac.uk Responsible Author

Partner Nottingham Phone +44 115 9514203

Abstract
(for
dissemination)

This document describes the game Day of the
Figurines (version 2), a large-scale long-term
text messaging game realized in the second
phase of the IPerG project.

In Day of the Figurines, players send and
receive SMS messages over the course of a
month to remotely control their figurines that
move across a large-physical game board.
The game follows a day in the life of a virtual
town, confronting its players with various
events, dilemmas and missions as they try to
help one another.

This document describes the second iteration
of Day of the Figurines in a uniform and
standardized IPerG format, introducing
changes to the game content and technology
that are intended to make it more scalable,
more responsive to the characteristics of SMS,
and more engaging for both players and
spectators.

Keywords game design, pervasive gaming, SMS, text
messaging

Version Log

Issue Date Rev No. Author Change

2006-07-31 1.0 Steve Benford First Version

 Deliverable D12.5 Design Specification and Prototype of the Second
Version of Day of the Figurines

Deliverable 12.5 iv 16/11/2006

2006-10-06 2.0 Martin Flintham Version for first internal review

2006-10-12 3.0 Anders Ernevi Final Version

 Deliverable D12.5 Design Specification and Prototype of the Second
Version of Day of the Figurines

Deliverable 12.5 v 16/11/2006

Table of Contents

EXECUTIVE SUMMARY..I
PURPOSE OF THIS DOCUMENT ..II
TARGET AUDIENCE..II
DELIVERABLE IDENTIFICATION SHEET ...III
TABLE OF CONTENTS ..V
TABLE OF FIGURE ..VI

1 INTRODUCTION..1

2 GAME DESIGN OVERVIEW..3

Research Goals...3
Game Setting...3
Games Area...3
Genre..3
Target Group..3
Story Line and Game Play...3
Keywords and Automated Parsing...4
Message Pacing and Aggregation ...4
The Hub ..5
Silos...5
Things...5
Missions..6

3 GAME REALISATION ..8

Introduction..8
Supporting Infrastructure...8
Application Architecture...9
SMS sending and receiving.. 10
SMS handling and parsing... 11
Core Game Engine.. 11
Pacing and Aggregation.. 12
Message Rendering... 12

4 GAME CONTENT ... 13

Introduction... 13
Authoring Process.. 13
Content Requirements.. 13
Content Usage.. 14
Content Helpers... 14
Content Breakdown ... 14
Online Content.. 15

5 TECHNOLOGY & DEVICES USED... 16

PC Workstation... 16
PC Workstation with quad-head graphics card... 16
Augmented Board.. 16
Spectator Interface... 16
Mobile Phone.. 16
SMS Gateway... 16
Webserver... 16

6 USER INTERFACES .. 17

Player website .. 17
Operator Interfaces.. 18
Author interface.. 20
Game board interface.. 20
Spectator Interface... 21

7 APPENDIX ... 23

7.1 GAME MODEL SPECIFICATION ... 23
7.1.1 Destinations & Silos... 23
7.1.2 Things.. 24

 Deliverable D12.5 Design Specification and Prototype of the Second
Version of Day of the Figurines

Deliverable 12.5 vi 16/11/2006

7.1.3 Local event.. 25
7.1.4 Dilemma... 25
7.1.5 Missions... 26
7.1.6 Player... 27
7.1.7 Game Lifecycle... 35

7.2 GAME EVENTS SPECIFICATION .. 36
7.2.1 Introduction... 36
7.2.2 Things to do with players.. 37
7.2.3 Other system-related events.. 38
7.2.4 Authoring-related events... 39
7.2.5 Parameters.. 39

7.3 DOTF-BERLIN MESSAGE SPECIFICATIONS, LINKED TO GAME EVENTS .. 42
7.3.1 Introduction... 42
7.3.2 Notes.. 51

7.4 AUTHORED TEXT REFERENCE... 51
7.4.1 Introduction... 51
7.4.2 Authored class properties... 51
7.4.3 Message Specifications.. 52
7.4.4 Other built-in text.. 52

7.5 MESSAGE ELEMENTS ... 53
7.5.1 Introduction... 53
7.5.2 Notes.. 56

7.6 DOTF-BERLIN MESSAGE AGGREGATION AND PACING... 58
7.6.1 Sending a Message... 58
7.6.2 Building (Aggregation) a Message.. 59
7.6.3 Aggregation priority in response to player action.. 59

Table of Figure

Figure 1 Supporting Infrastructure..8
Figure 2 Application Architecture..9
Figure 3 The Player Website .. 17
Figure 4 Player History.. 18
Figure 5 Adding a Player... 19
Figure 6 , Player Details; Below, Message Statistics.. 19
Figure 7 Augmented Board... 20
Figure 8 Augmentation Control.. 21
Figure 9 Spectator Interface... 22

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

1

1 INTRODUCTION

This document provides a comprehensive overview of the game design of the second City as Theatre
prototype “Day of the Figurines ”. It is based on a common IPerG game design description structure which
covers the game design, game flow, game content, employed technologies and user interfaces.

Day of the Figurines is a long-term text messaging game for mobile phones that has been designed by
professional artists. The game follows a day in the life of an imaginary small town. Players use their mobile
phones to control characters in the town by sending and receiving SMS messages, visiting destinations,
meeting other players, witnessing events that take place and dealing with dilemmas that face them. Physically,
Day of the Figurines takes the form of a massively multiplayer board-game, but one with which players can
interact remotely via their phones. A player enters a public venue to find a large-scale table-top model of an
imaginary town. They are asked to select their character from a display of plastic figurines. They give their
chosen figurine a name and a description which are entered into a database along with their mobile phone
number. Their figurine is then placed on the board at a random position in the town in order to introduce them
into the game. As they leave the venue, they are given a small map of the town and a set of rules for the
game. An hour or so after leaving the venue, the player will receive their first text message. From now on they
interact with their figurine by sending and receiving SMS messages, controlling its movements and actions
and seeing events through its eyes. By replying to this first message with the name of a destination in the town
their figurine is set on a path towards that destination. Intermittently the player receives text messages to alert
them when their figurine arrives at a destination and to nearby figurines with whom they can chat.

The game involves a high degree of pre-authored content in the form of key events that are scheduled take
place at these different destinations for example: pubs open, shops close, players discover graffiti and hear
news from the pirate radio station, a fete takes place at the park, there is a total eclipse, two Scandinavian
death metal bands play at the Locarno nightclub, two lovers are found dead at the cemetery and an army of
soldiers enters the town. Threaded among these events are a series of dilemmas that confront players. A
scenario is described. The player is asked what they want to do in response and an outcome is determined.
Outcomes nearly always result in the deterioration of their figurine’s health and in extreme circumstances they
get killed and their game is over.

Day of the Figurines is designed to be a slow game so as to reflect the nature of SMS messaging. The game
time takes place over the course of one fictional day. However, this is mapped onto twenty four days of real
time, during which the game is played for ten hours each day.

The first iteration of Day of the Figurines was hosted by the Laban Centre in London and played by 85 players
over a month spanning August and September 2005. A detailed evaluation of this first iteration was given in
the previous iPerG deliverable D12.4, drawing on a combination of player feedback via questionnaires,
analysis of system logs and ethnographic observation to unpack key issues concerned with both the player
experience and the behind-the-scenes work that was required to deliver the game. The second iteration of
Day of the Figurines described in this deliverable represents a major reworking of the game, both in terms of
its content and the technology and processes used to deliver it. In particular, this deliverable introduces the
following key innovations that have emerged during this second phase:

? Support for scalability through automation of the game rules and message generation and also the
use of a simple game grammar. Whereas the first version of Day of the Figurines required a
substantial amount of operator work to generate and edit messages, this second version is highly
automated and should scale to supporting many hundreds of simultaneous players.

? The addition of greater structure and content to the game including the use of objects, a health
system and most importantly, missions which combines events, dilemmas and objects into more
extended narrative structures within the game.

? Support for episodic play, combining greater responsiveness, with quickly backing off, with daily keep
alive messages. Key to supporting episodic play is a new ‘hub-based’ movement model that enables
player’s to move more quickly through the virtual town while also enabling them to be allocated small
episodes of play – encounters, events or dilemmas – as they go.

? Techniques to limit message flow so as not to flood players and stay within the cost cons traints
imposed by SMS (which affect both players and game operators). Flow control mechanisms include
the use of silos at destinations to manage the volume of chat and the introduction of message
aggregation which involved automatically combining information about several events into a single
messages so as to make maximum use of precious SMS bandwidth (a technique that we anticipate
to be more widely applicable across SMS-based pervasive games)

? Digital augmentation and physical redesign of the physical gameboard so as to provide a more
compelling spectator interface to the game and also to make its operation more efficient and
therefore scalable.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

2

? More sophisticated authoring, operation and orchestration interfaces for the game, supported by a
back-end database and webserver for managing the game content. A key innovation here is that
these interfaces and the supporting database and many java classes required for development are
mostly automatically generated from some core Java bean specifications.

This document describes the second version of Day of the Figurines in a uniform IPerG standardized game
design structure, explaining the game design, game flow, game content, employed technology, user interfaces
and the content of the software distribution. Each IPerG game is described in this common format. Please
refer to document D5.3B for a ludological definition of pervasive games and a conceptual framework for
understanding and discussing the domain of pervasive gaming. The appendices to this deliverable pres ent
detailed specifications of key aspects of the second version of Day of the Figurines, covering:

? Game model specification
? Events specification
? Message specifications, linked to game events
? Authored text reference.
? Message elements
? Aggregation and pacing.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

3

2 GAME DESIGN OVERVIEW

Features Day of the Figurines Game Design

Research
Goals

The overall research goal for this second iteration of Day of the Figurines is to explore the
issues involved in designing and deploying an artist-led pervasive game bas ed on SMS text
messaging for mobile phones. This includes developing and evaluating new techniques to
support the creation of long-term pervasive games based on SMS that can be gracefully
interwoven with the patterns of daily life. This overall goal breaks down into the following
more specific sub-goals:

Game structure and content – extending the previous game structure and content with
new mechanism to give players a greater sense of overall purpose within the game.

Scaling and automation – to introduce new structures and processes that will enable the
game to scale from of the order of 100 players from the first version to many hundreds of
players.

Episodic play – to support highly episodic patterns of individual play (a tendency that we
saw in the first Day of the Figurines).

Message flow – to manage the flow of messages to players, responding quickly when
appropriate but without flooding them.

Spectator Interface – to provide a compelling spectator interface that introduces players to
the game and that situates it within the specific physical venue where it is staged.

Game Setting Day of the Figurines is placed in an artistic venue, most likely associated with a new media
arts festival. This must be indoors where the physical game board will be assembled.
Players and the general public are invited to observe and join the game. Operators are
available to clear up any doubts, give more information and enter players into the game.
After the player fills the form to join the game he/she receives a short manual with the game
description. Players are also invited to visit the Day of the Figurines web site.

Games Area Any place where computers and the table could be placed indoors.

Genre Day of the Figurines is a long-term pervasive game for mobile phones that is intended to be
interwoven with patterns of daily life. Players only need visit the venue just once to join the
game. The game is subsequently played on their mobile phones through text messages.

Target Group Day of the Figurines is aimed at the broad audience for new media art works, who are
generally anticipated to be a reasonably ‘tech savvy’ and also to have a well developed
cultural and critical perspective on interactive art and games.

Story Line and
Game Play

Day of the Figurines is based on sending and receiving SMS messages where players
interact with the game through their mobile phones. The goal of the game is to help other
players. To play, visitors enter to a public space where they find a large scale model of an
imaginary town. The visitors are invited to choose a figurine. They give to the figurine a
name and answer basic questions about him or her. This information is input in a data base
and the figurine starts its journey at the edge of the town. Players also have a web
interface: www.dayofthefigurines.co.uk. Once a player has been registered in the game and
has chosen their figurine, they receive their first message from the game, asking them
where they would like to go. Through keyword commands, players can indicate new
directions for the figurines, chat with other players, use objects or perhaps be involved in
dilemmas, events and missions.

The complete specification of the game and its associated game mechanics is given in the
appendix, and the implementation of this can be viewed in the accompanying source code.
The remainder of this section will briefly highlight notable changes from the first prototype,
which has been described and evaluated in D12.2 and D12.3, namely the introduction of
automated message parsing, message pacing and aggregation, the Hub movement model,

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

4

Silos, Things and Missions.

Keywords and
Automated
Parsing

The first prototype of Day of the Figurines, presented at the Laban Centre in 2005, involved
operators manually reviewing and parsing incoming messages from players in order to
determine what the player wished to do. Although many players reported enjoying this
improvisational aspect of the prototype, this placed considerable constraints on the
possibilities for automation, and how easily the experience could be scaled to larger
numbers of players.

For this reason, this second prototype has introduced a palette of keywords which reflect a
set of actions that a player can perform within the game in order to interact with the various
destinations, objects and other players. All interaction with the game is now parsed
automatically using these keywords, and players must send messages using them in order
to play the game.

Each message must begin with a keyword, and optionally followed by an argument
appropriate to the action a player wishes to perform. The keywords available are as follows:

? Say <text to be said to nearby players>

? Go <name of a destination to travel to>

? Pickup <name of an object at the current destination>

? Drop <currently held object>

? Use <name of an object either held or at the current destination>

? Find <player name at current destination>

? Help (returns a list of keywords and also notifies operator)

? Update (returns player’s current status, destination, health etc)

? Leave town (quits the game)

? A,B,C (responds to a dilemma)

Message parsing is described in more detail in the next section, game realisation, and the
specific function of each action is described in detail in the appendix.

Message
Pacing and
Aggregation

In the first prototype, operators performed manual filtering of outgoing messages, to avoid
swamping a player with potentially duplicated, mundane messages. Similarly, players who
were deemed to be inactive were more likely to only receive messages that were deemed
to be particularly interesting to them.

This second prototype continues this theme in an automated fashion. Message aggregation
attempts to digest recent events in order to reduce the number of messages sent, by
making a distinction between events that warrant an immediate response, such as an event
that directly affects a player, and events that provide more background information, such as
other players arriving and leaving at a destination. For each of the former that generates a
message, the message aggregation system attempts to fill the remainder of the available
message space with text regarding the latter.

Secondly, the message aggregation system now maintains a record of which events a
player has been told about, and to what extent. For example, if a player arrives at a
destination that they have already visited, then they receive a short description that creates
room for listing nearby players and objects, on the assumption that they will have received
a long description the first time they arrived.

Finally, the first prototype had a certain weighting towards transactional content in
messages (e.g. Player A arrives, Player B leaves) rather than more interesting descriptions.
For the new version, some of these kinds of messages have been removed altogether and
in other cases, space at the end of messages is used to add more descriptive content.

Message pacing and aggregation is discussed in more detail in the next section, and a list
of game events and whether they create instant or aggregated message content can be

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

5

found in the appendix.

The Hub The first prototype was based around a Cartesian space, with players moving a number of
squares across the board each hour to move between destinations. This meant that there
were long periods of time while a player was travelling where, even if they wished to play,
there was little content and few other players with which to interact.

On the assumption that a player who had just sent a movement message to the game
wanted to play, this movement model was discarded in order to better offer engaging
content in response. This second prototype has therefore moved to a room model, similar to
older text adventure games, where each destination is only ever two moves away from any
other. This model operates by introducing the Hub – an ‘in-between’ place that represents a
player being in transit between destinations, and allocates interesting content to players
who have just asked to go to another part of the town. Each time that a movement
command is received, the game engine moves the player to the Hub, and after a short time
onto their desired destination.

Players entering the Hub are placed in a dynamically allocated Silo (Silos are discussed in
more detail below). A Silo can be thought of as an instance of a particular Destination, and a
player in a Silo is not aware of other players in different Silos, even though they may be at
the same Destination. Upon entering the Hub, the system looks for possible content that
can be allocated to the player. There are four different types of Hub that a player may be
allocated, based on weighted random chance:

? Local Event – the player receives a one-off descriptive event

? Dilemma – the player is given a dilemma which will expire when they leave the
Hub

? Mission – the player is allocated a mission that they will retain having left the Hub

? Chat – the player is paired up with another player already in the Hub who has also
been allocated Chat, to foster interaction and conversation. When both players
chat, the timer that will move the player on is extended to prolong the
conversation. If one or both players stop chatting, they are moved on to their target
destinations.

The allocation weighting of the different types may be manipulated while the system is
running, allowing the game operators to foster more interaction between players by
increasing the chance of players being allocated a Chat Hub experience.

Finally, the Hub model also reduces the workload of the operators moving figurines on the
game board, as players no longer need to be moved many times to move between two
Destinations.

Silos A second significant change to the first prototype’s Destination model is the introduction of
Silos, as described above. Rather than Destinations having an absolute capacity, this
second prototype introduces the concept of Silos to enable the notion of ‘quiet’ and ‘busy’
Destinations.

Each Destination now has an unlimited capacity, and contains a number of Silos, with the
capacity of each Silo determined by the Destination. When a player arrives at a Destination,
they are either placed in an existing Silo if there is one with space, or a new Silo is created
for this player. Silos are destroyed when they are empty. Players may move between Silos
overriding the authored capacity to find other specific players that they may be looking for.

This new model means that, for example, the Canal, having a Silo capacity of one, will
always be a quiet place that players may go to if they do not wish to chat to other players,
and yet many hundreds of players may simultaneously be at the Canal. Similarly, the
Locarno is deemed to be a busy destination and has a Silo capacity of ten, meaning that
many more players may chat at the Locarno and have the feeling that they are in a busy
place, without being overwhelmed by receiving many messages regarding all of the players
in the parent Destination.

Things This second prototype introduces objects that the player can interact with within the game,

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

6

known as Things. Things can effect a players health, be used on other players, or act as
devices to move one or more players inside or outside a Destination that is closed.

A Thing may be carried by a Player or a Destination, although a player may only carry one
Thing at a time. Things spawn at specified Destinations, and on use by a player may either
be destroyed, re-spawn or remain in the player’s possession.

There are five types of Thing:

? Food – affects the using player’s health

? Clothing – is automatically worn by the player on pick up

? Medicine – is used on an incapacitated player in the same Silo

? Other – is used on a randomly selected player in the same Silo

? BigBang – affects all players in the current Destination

Things have a variety of usage effects depending on their type, which determine what
happens to bystander players and the protagonist player, and what messages they receive
as a result.

Things have been introduced to provide a dedicated mechanism for players to help or to
interact with other players, for example raising a player’s health through the use of
medicine, or lowering it through the use of a weapon. They also provide a mechanism upon
which Missions can be built in order to add more structure to game play.

Missions This second prototype introduces Missions, in response to feedback from the first prototype
that indicated that some players found a lack of direction and structured player in the game,
and they did not know what to do in order to progress.

Missions may last for hours or days, and have an explicit and concrete goal within the town,
for example helping a specific player, or performing a specific task. Missions may draw on a
list of incapacitated players who require assistance, or specific Destinations and Things
when allocated.

Each Mission begins with a message sent to the player setting the scene of the Mission and
instructing them what to do. One or more Mission Criteria are then authored, each of which
has a specific trigger and optional requirement context, and also states whether fulfilling this
criteria completes or terminates the Mission. For example, a Mission may involve finding
some clothing in order to keep warm. In this case, a Criteria is authored that is triggered by
the player picking up a Thing of type Clothing. This completes the Mission, and the player is
sent a message informing them of this. There is also a Criteria that is triggered if the player
runs out of time on this particular Mission.

An example of a more complex Mission is as follows, ‘the gig at the Locarno’:

? On Mission allocation, the player receives the text “a rat faced man in a waistcoat
rushes up: 'The drummer's been arrested. Find a drum kit and get to the Locarno
by 11pm to take his place.'” The player now has two game hours to complete the
mission

? If the player arrives at the Locarno, while carrying the Thing ‘drumkit’ within the
allotted time, they receive the text “you made it! Troll skal atter herske. Back stage
the vocalist glowers at you: "From now you Juergen" He pokes your head with the
sign of the goat. Go!” The player is moved ‘outside’ the Locarno, which is
described as being a backstage VIP area at this time.

? When the Mission expires, if the player is ‘outside’ the Locarno, with the drumkit,
they must have completed the above Criteria, and receive the following message
which completes the Mission: “you and your new long haired chums sweep
victoriously onto the stage. You all thrash that kit like nordic lords while
androgynous goths gaze in awe.”

? However, if the Mission expires and the player is not waiting ‘backstage’ at the
Locarno, they receive the following: “horned, cloven disaster! You're too late.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

7

Satan's Bubbly Fjord have already found a drummer. There's still time to enjoy the
gig though.” The Mission has been failed.

Missions and Mission Criteria are specified in detail in the appendix.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

8

3 GAME REALISATION

Features Day of the Figurines Game Design

Introduction This section describes how the game design specification of Day of the Figurines , as
reviewed in the previous section, has been realised and implemented. A formal description
of the game design, and accompanying game state, can be found in the appendix. This
section begins by giving an overview of the infrastructure that supports the game, which
was built as a J2EE web application constantly running on a web server. Next, it introduces
the architecture of the game application itself, showing how this was split into a number of
logically discrete components. Finally, each of these components is described in turn.

Supporting
Infrastructure

Day of the Figurines is implemented as a Java web application that runs as a servlet within
Tomcat1. The Spring framework2 allows the application to be split into a number of Java
beans, controllers and views, and also supports communication between the beans. Spring
controls access to the application by mapping incoming http requests from web interfaces to
specific controllers, which in turn render data in the application as further web pages. In
addition to this, the Quartz3 scheduler provides support for regular, time-based events within
the application. Figure 4 shows an overview of these supporting infrastructure components.

Figure 1 Supporting Infrastructure

The application makes extensive use of the Equip24 data sharing middleware platform.
Equip2 provides a shared dataspace that distributes normal Java objects, by providing
synchronous, database-like operations such as adding, matching, updating and removing,
and also asynchronous change notifications with optional template based filtering and
matching.

1 http://tomcat.apache.org
2 http://www.springframework.org
3 http://www.opensymphony.com/quartz/
4 For more information about Equip2 please contact: cmg@cs.nott.ac.uk

MySQL

Database

Hibernate/

JDBC connector

Equip2

Application Logic

Quartz scheduler

Spring dispatcher servlets Application
interfaces

Tomcat servlet container

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

9

Equip2 supports a number of different data space implementations with a common
interface. The implementation used for Day of the Figurines is backed by Hibernate5, an
open source java object to relational database mapping system. This allows java objects to
be persistently stored by Equip2 in a database such as MySQL, as used in conjunction with
Tomcat in Day of the Figurines, while still providing the dataspace access operations
described above.

Using this system, Java beans are defined in a simple XML format to hold the application’s
state, and therefore the state of the game. These XML definitions are then parsed using
XSLT in order to generate the actual Java beans, Equip2 helper classes, and the Hibernate
mapping files that are used to persistently store the beans in the underlying database.
These beans can then be used in conjunction with Equip2 operations throughout the
application to provide a persistent state.

The application and this supporting infrastructure are deployed to an instance of Tomcat
with supporting MySQL database. Day of the Figurines runs on a dedicated webserver,
where multiple Tomcat instances are accessed through an instance of the Apache
webserver software, which maps the relevant url paths to the required Tomcat instance. The
webserver is a duel-core machine with 4GB of memory running Redhat Linux, and is hosted
at Nottingham.

Application
Architecture

Figure 5 shows the architecture of the application as it sits within the infrastructure
described above, in terms of the key components of the game application.

Figure 2 Application Architecture

The core of the Day of the Figurines application consists of five key components. Each
component communicates with others by adding, updating and deleting Equip objects.
Equip objects are also created and accessed by supporting interfaces, such as the
Augmented Board and Spectator Client, and the Author, Operator and Orchestration
interfaces, described in later sections.

The SMS sending and receiving component, which provides the primary interface for
interaction with the game to players, is split between two Tomcat instances, which
communicate via http requests, enabling the core game application to be started and
stopped without losing incoming SMS messages.

5 http://www.hibernate.org/

External SMS
provider

SMS Proxy

Core game application

SMS
sender /
receiver

SMS
parser

Core game
engine

Message
aggregator

Message
renderer

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

10

The SMS parsing component listens for new SMS messages received from the first
component, and parses them into Player Action objects within the context of the game state,
for example describing a destination that a player wishes to go to, or a Thing with which
they wish to interact. These objects are added to the Equip2 dataspace.

The core game engine component listens for Player Action objects, which it uses to modify
the state of the game for example by triggering a player’s movement between destinations,
and handling the resulting encounters with other players and other content within the
system. Changes in game state are also triggered by time, using the quartz scheduler. All
changes in a players state, and in other elements of the overall game state, for example the
creation or destruction of silos or the changing of destination descriptions, result in the
creation of Game Event objects which, analogous with Player Actions, contain information
about the change in state that has just occurred. These objects are added to the Equip2
dataspace.

The Message Renderer component listens for particular Game Event objects as they are
published in the Equip2 dataspace, and renders each one as a piece of readable text, which
will form part of an SMS message sent to a player.

The Message Aggregation component decides how, when and which of the rendered text
pieces are sent to players, using several pieces to construct an SMS message, attempting
to make the best use of the space available, while determining which messages can be
delayed and which must be sent immediately. It adds completed SMS messages to the
Equip2 dataspace, where they are listen for by the SMS sending and receiving component
that pushes them out to players.

The rationale behind this architecture is to separate the core game state mechanics and
game logic from the sending and receiving of SMS messages and other interfaces , to the
extent that these inputs and outputs of the system are operated independently of the core
game.

SMS sending
and receiving

As described above, the SMS sending and receiving component is split across two Tomcat
instances; the instance in which the game application is running, and a dedicated second
instance that acts as a proxy for incoming and outgoing messages. The proxy instance
communicates with an external, commercial SMS delivery provider via http requests in order
to send outgoing and receive incoming messages. It also communicates with a stub
interface within the game application Tomcat instance to send and receive messages to and
from the game application.

The proxy application provides two functions. During normal operation, it forwards
messages to and from the core game application. When the game is closed, that is out of
normal game hours, then the proxy application replies to incoming messages with a default
message stating that the game is closed, and when it is expected to reopen. Secondly, if for
some reason the core application is not available, and incoming messages cannot be
delivered, then the proxy application will cache the messages in Equip2 and retry until
delivery is successful. Similarly, if the external SMS delivery provider is unavailable, the
proxy application will cache and attempt to redeliver outgoing messages. This system
ensures that if either the core game application or the external SMS provider are
unavailable due to maintenance, or due to an unexpected occurrence, messages to and
from players are not lost. In addition to this, the external SMS provider gives the ability to
query the successful delivery of a message to a player’s phone, as opposed to the phone
being switched off or the SMS inbox being full. By providing an interface to this function, the
SMS proxy application allows the game operators to check whether a message has not only
been sent, but has successfully been received by a player.

Finally, the proxy application provides monitoring and emulation functions via a web
interface for testing and debugging. The interface displays all incoming and outgoing
messages with information about the sender or recipient, and the delivery status of the
message. It also allows an operator or developer to simulate sending and receiving
messages to and from the core game application without having to use the external SMS
provider, and therefore a real phone. A simulation may consist of a hand-crafted message,
or a bulk upload of a large number of messages that are handled over a period of time.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

11

SMS handling
and parsing

The SMS parsing component attempts to map an incoming SMS message from a player
onto a known game action, with a relevant in-game context, before this is passed to the
core game engine that then acts upon it. To identify the action that a player is attempting to
perform, the component uses a combination of direct string matching and edit-distance
calculations in order to attempt to guess what a player has specified in the case that it is
unrecognised.

To interact with and modify the game state, a player specifies a command with, optionally, a
number of arguments. Depending on the command, the argument may be a Destination
they wish to go to, a Thing they wish to pick up, use or drop, or a Player they wish to find.
Each command, and each instance of these game objects, has one or more Command
Alias objects associated with it, each of which contains a string that can be used to identify
a reference to the game object within the SMS message. An object may have more than
one Command Alias associated with it, and these are authored in such a way as to attempt
to pre-empt expected typographical errors when entering a command using a phone
keypad.

The originating phone number of each incoming SMS message is used to identify the player
who sent it. Next, the message is parsed to identify the command that the player wishes to
perform, by searching for a Command Alias that represents a command verb, such as GO,
FIND or USE, within the message. If none are found immediately, then the message is
parsed a word at a time, attempting to match the most likely Command Alias to the string
using an edit-distance function within a certain threshold, so as to overcome possible typos
that have not been predicted in advance. Based on the command verb that has been
identified, the message is then parsed a second time using a similar mechanism to identify
the relevant arguments of the message. However, the current context of the player and the
command that they have specified are used to direct the parsing of unknown arguments, for
example only matching against Things in the player’s current location in the game when
trying to pick something up, or only matching known Destinations when trying to go
somewhere.

This mechanism means that when Player Action generated from a parsed message is sent
to the core game engine component, no further parsing is required as the information in the
object has already been constructed within the context of the game.

Core Game
Engine

The core game engine component is driven by incoming Player Action events received from
the Equip2 data space notification mechanism, and by regular time events received from the
Quartz scheduler. It outputs Game Event objects in the Equip2 data space where they are
monitored by the Message Renderer component, and by other supplementary components,
such as display and orchestration interfaces.

The game engine maintains an evolving game state within Equip2, which consists of a
collection of game objects representing each Player, a history of events that a Player has
been involved in or experienced, such as Local Events, Dilemmas and Missions, a number
of Silos that contain players and are in turn associated with Destinations, and a number of
system events that are scheduled to happen at some time in the future, and trigger further
state changes.

The game engine is also backed by authored content, which is defined as a number of static
objects within Equip2. This content is queried as events within the game engine are
triggered, such as a player moving or interacting with a Thing, or time elapsing within the
game. On each trigger, the game engine queries the Equip2 data space to determine which
game content is relevant for the current time and destination, or in the case of an action
triggered by a player, the current context of that player. This, combined with the current
game state, informs the game engine of how to modify the game state.

Each action, whether player or time instigated, produces one or more Game Event objects
which inform the Message Renderer component what a player has experienced, and these
are grouped into a session for each action. For example, when a player arrives at a
Destination, a game event is created for them that states that they have arrived, and what
Description is currently relevant for that destination, a game event for each Local Event,
Dilemma or Mission that is in scope for that destination, and game events for any players
currently in the destination that may have witnessed the arrival, if necessary.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

12

Pacing and
Aggregation

The Message Renderer sends SMSs to players according to two paradigms; every
message to the system gets a timely response, and actions that directly affect a player will
always result in a message to them.

In order to create a slow response system, all Game Events that require a message to be
sent to a player are broken up into two categories; instantaneous and delayed.
Instantaneous events are those that directly, and immediately, affect the player’s state, such
as a player arriving at a destination, being in the subject of a local event, or being hit by
another player. These events are all intermittent and generated either by the system or by
another player’s action. Other Game Events result in a delayed response, namely those
generated by a player’s message to the system, such as a PICKUP or GO command, or
when they send a malformed message.

When the criteria for the Renderer to send a player a message are met, the Renderer
searches for other relevant information it can include, if possible, in the message. This is
achieved by searching through the Game Events that relate to the player and to their
current location that are not worthy of an individual message, for information that can be
included within the message. In some cases it is an update of who is currently co-located
with player, if new players have arrived since they last interacted with the system, the
presence of things dropped by other players, or any changes to player’s health.

Specific details regarding pacing and aggregation can be found in the appendix.

Message
Rendering

Once the Renderer has a Game Event that spawns a message, and any other information
to try to include in the message, it generates the text. Each piece of a message has an
associated Message Specification, which includes all the text for the message, or a
Message Element that is used to fill the message with Player, Destination or Thing relevant
content. The Message Element is a key word that is mapped to specific content in the
system

In the simplest case a Message Element is a piece of static text, whereas in other cases it
could map to the player’s nickname or listing nearby players or things. A Message Element
may result in no characters being inserted in the message if there is nothing to list or not
enough space to list even one of the things or players present, or it may be a rich list of the
other co-located players, including their des cription and what they are holding, according to
how many characters are still available in the growing SMS.

To create the final text for the SMS, some Message Specifications can be tiled together,
and some Message Elements will have others nested inside them. All Message
Specifications and Message Elements can be edited or replaced while the system is
running, allowing the authors to change the way in which any message the system sends is
rendered.

A detailed specification of Message Specifications and Message Elements can be found in
the appendix.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

13

4 GAME CONTENT

Features Day of the Figurines Game Content

Introduction This section gives an overview of how the content of Day of the Figurines that players
experience is authored. A full specification of the content types that are authored can be
found in the appendix, and the content authored for the current game can be found on the
live application website6.

Authoring
Process

As described in the previous section, authored content in Day of the Figurines is made up
of static Equip objects, which the core game engine queries to discover which content is
appropriate to the current context of a player as time passes or the player moves through
the town.

A number of interfaces are provided for creating, editing and reviewing these Equip objects,
and are documented in detail in D7.5. Briefly, they consist of a generic, automatically
generated set of web-forms that allow modifying all aspects of each content type together
with XML serialisation for up and downloading - enabling backup and transferral, a
configured view that displays the same web-forms, but with friendly names and hiding
underlying system aspects of the types that do not require authoring, and a high-level
authoring applet that displays all currently authored content by space and time.

These interfaces are integrated within the Day of the Figurines web application. In practice,
the web application is deployed twice to the production webserver. One instance runs the
game with a static content set, while the second is used by the authors to add, update and
review content. When this content has been tested and is deemed to be complete, it is
transferred to the live game instance by dumping as XML from the authoring instance and
uploading to the live ins tance.

The interfaces are backed by a set of generic Spring controllers, which provide access to
the Equip dataspace for the creation and manipulation of Equip objects. The authoring
applet is backed by a custom controller also provides access to the datas pace.

This system has three major advantages to offline authoring. Firstly, it allows multiple
authors to work on the same set of content on the authoring server, without affecting the
live game, and removing the need to merge content that may have been authored against
an older snapshot. A set of sanity-checking scripts may be used to ensure that the content
does not contain mistakes. Secondly, it allows a series of XML snapshots of the content to
be created and saved, meaning that if at any time content needs to be rolled back to a
known good version, it can be re-uploaded. Finally, the generic nature of the web-forms
mean that if for some reason the java types need to be changed, the authoring interfaces
will automatically reflect these changes.

Content
Requirements

Authored content within Day of the Figurines can be split into three logical groups. This
content is static, in that it is only queried by the core game engine in order to update the
transient state of the game, rather than being modified by the game engine as events
occur.

The first group consists of static content that must be authored first so as to provide a base
upon which other content is authored. At present this consists of Destinations, which are
created as Equip objects within the database, with the intention that future content can be
tied to a specific Destination and time, although time is obviously a more abstract
representation.

The second group consists of content that is tied to a destination, or group of destinations,
and a particular time or period of time. This information is used by the core game engine to
determine when a particular piece of content should be triggered, and this content
generally affects the state of the game or players. This content consists of Destination
Descriptions, which may change over time, Local Events, Dilemmas and Missions, and

6 http://holt.mrl.nott.ac.uk/test-dof2/author/index.htm

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

14

Things. Each of these pieces of content has an associated Scope, and the Scope defines
when and where the parent should be active within the game. A number of Scopes may be
allocated to one particular content object, allowing, for example, a Local Event to span
multiple time frames or Destinations. Each Scope is associated with one other object in a
one-to-one relationship for database query efficiency, as opposed to a one-to-many
relationship of the parent object to multiple Scopes. In a similar fashion, multiple
Mission_Criteria objects are associated with each Mission.

The third group consists of message related content, and includes Command Aliases
which, similar to Scopes , provide a mapping from text strings to specified game state
objects, and Message Elements and Message Specifications for the construction of
outgoing messages. Message Elements and Specifications are static in that each serves a
predetermined purpose within the game engine. To facilitate this, a set of template
Elements and Specifications are initially uploaded to the dataspace, where they can then
be edited by the authors using the interfaces provided.

Content Usage When the main Day of the Figurines web application is loaded, portions of the authored
content is loaded and cached in memory to reduce the number of database queries that
occur on each time or action trigger, and thus increase efficiency. This includes as much of
the static content as possible, for example Command Alias and Mission Critera objects.
The code that handles this function also registers listeners that listen for changes of the
content within the Equip dataspace, and modify the memory cache accordingly so that the
system does not need to be restarted to modify content.

With this in mind, this system allows authors to respond to small errors in the content, for
example typos, or to turn off content by removing Scopes, while the game is running in
response to any problems that may occur.

Finally, at load time the game engine generates more transient game state objects based
upon the static authored content in the dataspace. These include the Thing Instance
objects that, similar to Scopes, define which Player or Destination is currently holding a
Thing. Based on the spawning rules in the static Thing class, the game engine may create
new Thing Instances in Destinations if the system is being run for the first time.

Content
Helpers

A number of supporting helper functions are provided to aid the author in creating large
amounts of content.

Each piece of static content may be associated with a Narrative Arc, which again is a
unique object within the Equip dataspace. These objects are not used by the core game
engine for running Day of the Figurines, but they are used by the authoring applet in order
to logically group a number of content objects. This functionality is used to filter these
groups within the applet view, giving the author a clearer view of how the group is spread
over time and Destinations.

A set of automated sanity-checking functions are provided to check whether the authored
objects are logically correct within the game logic of Day of the Figurines. This tool checks
all content within the system, and displays logical inconsistencies, for example Scopes that
are not assigned to a parent object, or conversely content that does not have a Scope,
Dilemmas without responses or a default response, or text that is more than 160 characters
in length.

Content
Breakdown

As stated previously, content that has been authored for the current release of Day of the
Figurines can be viewed on the live authoring server website. In summary, the current
content consists of:

? 50 Destinations

? 228 Destination Descriptions

? 27 Dilemmas

? 70 Dilemma Responses

? 251 Local Events

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

15

? 78 Message Elements

? 93 Message Specifications

? 857 Command Aliases

? 17 Narrative Arcs

? 26 Missions

? 77 Mission Criteria

? 33 Things

? 826 Thing Instances

? 1006 Scopes

Online Content A website located at www.dayofthefigurines.co.uk provides information and instructions on
how to play the game. It also allows registered players to login and see where they are in
the town, and gives a history of messages that they received.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

16

5 TECHNOLOGY & DEVICES USED

Technology/Device Amount Mode of play Function

PC Workstation
2 Players, Operators Displays an interface for adding new players

to the game, and allowing a player to
describe their figurine with operator
validation.

PC Workstation with quad-
head graphics card

1 Operators Displays an interface that enables an
operator to start and stop the game and
send start-of-day messages.

Runs the spectator interface for the
Augmented Board

Runs the Augmented Board software client

Augmented Board
1 Spectators, Operators Receiving and sending text messages

Spectator Interface
1 Spectators A display attached to the Augmented Board

that displays incoming and outgoing SMS
messages.

Mobile Phone
1 per
player

Players Sending and receiving SMS messages to
and from the game.

SMS Gateway
1 Players Commercial external SMS gateway service,

forwards messages between the game
application and players.

Webserver
1 Players, Operators,

Authors
Runs the main game web application
containing the core game engine, supports
authoring, operator and orchestration
interfaces and the public website.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

17

6 USER INTERFACES

Name Purpose

Player
website

The mobile phone and, in particular, SMS, provide a narrow channel for relaying game
information between players and the game. The Day of the Figurines player website provides
an additional resource for players that is not bandwidth limited as SMS, allowing additional
information such as hints and tips, instructions and a historical view of a player’s movements
to be displayed.

The player website is backed by a controller and JSPs that give it access to the main Equip
dataspace, allowing it to pull out historical and current player information once a player has
logged in.

Figure 3 The Player Website

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

18

Figure 4 Player History

Operator
Interfaces

The operator interface serves two main functions; adding new players to the game and
manipulating the state of the game, for example starting and stopping the game, or sending
custom messages to players in response to help requests.

The interface is constructed around a set of web pages and JSPs backed by custom
controllers that manipulate the internal Equip game state.

The game start and stop pages guide the operator through the process of opening or closing
the game and the SMS proxy with a set of buttons indicating the correct sequence that must
be performed.

Further interfaces display help requests from players that require a custom response from the
game operators, and show statistics on the overall health of the game using automatically
populated tables and graphs. These also provide access to more detailed views on individual
players and the delivery status of outgoing messages.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

19

Figure 5 Adding a Player

Figure 6 , Player Details; Below, Message Statistics

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

20

Author
interface

The authoring interface, as described previously, consists of an automatically generated set of
web pages that enable the adding, editing and deleting of Equip objects. This is supported by
a game specific configuration that only displays necessary fields with friendly names, and an
overview applet for viewing authored content by time and destination.

A full description of the authoring interface with screenshots and user manual can be found in
D7.5.

Game board
interface

The game board is a shaped 2x2 meter table that shows the town of Day of the Figurines with
its destinations. Stylised cut-outs of the destinations are folded up out of the metal surface.

Each player has a small figurine with a magnetic base, which an operator moves on the game
board when the player moves within the game. Bellow the game board two projectors are
mounted, two holes in the centre of the game board allow the images from the mounted
projectors be projected onto a mirror placed above the table the reflection of which is used to
display the movements of the figurines. These movements are shown as arrows projected
onto the board, and the name of the player is also displayed to aid the operator in identifying
the correct figurine.

Figure 7 Augmented Board

The game board is purely an output interface that is updated by the operators , and also serves
as a spectator interface for players in the venue. To update the game board the operators start
the update process via a control window and move the figurines according to the projected
arrows. An arrow goes from the current position of the figurine on the board to the new
position of the figurine on the board. Operators can update the board any time, although
typically they will update the game board once an hour.

The figure below shows the control window for the board augmentation. When the button “start
next board update” is pressed the number of figurines that need to be updated is queried from
the game server and displayed. The operator can decide how many figurines he/she would
like to update at a time. The augmentation is started by pressing the button “turn projection
on”. The operator uses a wireless Bluetooth mouse to control the display of the arrows when
he/she is at the game board. Via the control window the operator can configure how the
augmentation is displayed, including the number of arrows displayed at a time as well as the
layout and appearance of the arrows (e.g. change font, font size, colour, etc.).

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

21

Figure 8 Augmentation Control

The game board software connects to the main game web application using the IPerG
positioning service. Whenever a player moves within the game, the core game engine updates
the instance of the positioning service with information about where they moved from and to,
which can then be queried by the board software when the board is updated.

Spectator
Interface

The spectator interface is a screen embedded into the side of the game board. It runs a Flash
movie that displays the most recent messages that have been sent and received by players.
The Flash movie polls for new messages by making an HTTP request to a custom controller in
the main game web application.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

22

Figure 9 Spectator Interface

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

23

7 APPENDIX

7.1 Game Model Specification

7.1.1 Destinations & Silos

Destinations

There are 49 'normal' destinations, plus:

? Hub

? 'offboard'

Each destination is subdivided into any number of Silos. Every player in a destination is in exactly one silo of
that destination. Each silo has a nominal maximum capacity, but this may be exceeded (e.g. find or carry(?)).

Each destination may be divided into an inside and an outside, but some destinations will only have an
'outside' (even if it is inside :-). So...

? each silo is either inside or outside but not both

? a thing may be inside or outside but not both

access to the 'inside' may be restricted, e.g.:

? missions (see later)

? open/closed (time)

? [not destination capacity - this has been removed]

Silos

Silos are dynamically generated for destinations if required. Each destination has a preferred silo size.
[Currently each destination has a silo template - is this just an implementation detail?]

Game state

Silo:

? Destination

? inside/outside

? capacity

? current number of players present

? description (ID, short, not long) - Hub silo only

Destinations descriptions and open/close

Each destination each a set of destination descriptions which allow the system to determine at any moment of
game time the inside (if accessible) and outside descriptions. Each description comprises:

? text* of the outside (optional if open) and inside (optional if closed) description

? earliest use time, latest use time

? open/closed flag (causes destination to open/close as appropriate)

[* to be clarified wrt messaging, e.g. short and long forms]

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

24

Offboard

Offboard has silos of size 1 only. Otherwise it is a normal destination except that you cannot go to offboard (no
alias). E.g. 'find' would work, but people presumably won't use it?!

The Hub

Players visit the hub only when going to some other specified destination. The hub contains unbounded
number of Silos. The hub never 'opens'. The hub can have many different descriptions at any moment of
game time. Therefore each hub silo (only) has its own current description chosen from those currently valid for
the hub when the first player enters it.

See Player Movement (below).

7.1.2 Things

Game state

A (particular) thing (instance):

? is either:

o being carried by a particular player or

o in a non-hub destination, ins ide or outside (choose one only)

o in a hub silo

? identifies its Thing Class (Factory/whatever)

A Thing class (factory/whatever):

? has description(s) - [under discussion because of plurals]

? has type:

o clothing (always [and only] affects yourself)

o food (always [and only] affects yourself)

o medicine (affects incapacitated other if present)

o other (affects other if present)

? specifies Thing life-cycle:

o spawn point: destination, inside/outside flag

o target instance/spawn count (at start of game)

o actual spawned count

o destroyed outcome: disappear from game or return to spawn point (if used or if abandoned
in a hub silo)(??or potentially after a long time-out if "abandoned")

? specifies Thing use:

o [whether it affects someone else, determined from type]

o effect of use on using player using if no-one else active is present or doesn't affect someone
else ('effect') (see below)

o effect of use on using player using if no-one else active and incapacitated is present or
doesn't affect someone else ('effect') (see below)

o effect of use on using player using if someone else active present and affects someone else
('effect') (see below)

o effect on (active) subject if it affects someone else ('effect') (see below)

o 'effect' on same-silo (active) bystanders (by definition someone has to be present) (probably
just messages)

o (optional) 'effect' on same-destination (in/out) (active) bystanders [is this a mission thing]

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

25

o Note: special cases (Note: destination-specific behaviours are handled by missions)

o effect on thing:

? no effect or

? destroyed (see destroyed outcome, above)

An 'effect', e.g. of using is defined by:

? change of health:

o +/- amount

o Maximum

o minimum

? change of description:

o kind: no change, replace, append

o text

? description (text) for message(s)

? plus, generalising for local events, dilemmas, missions, to include:

o move outside in current destination

o move inside in current destination

7.1.3 Local event

Game state

Each local event is characterised by:

? effect

? list of event scopes defining time(s) and destination(s) when/where dilemma can be allocated

An event scope is characterised by:

? a begin time

? an end time (which may be the same as the begin time)

? a single destination

A player receives each local event once; having received a local event is recorded by the associated game
event (player receives local event). Local events are only delivered to players in state 'active'.

An event scope which becomes valid (reaches begin time) causes the associated local event to be delivered
to all players in that destination (if they have not already had it).

An event scope with end time = begin time is only delivered to players in that(those) destinations at that
moment. Otherwise a player arriving after begin time (inclusive) and before end time (inclusive) is delivered
the local event (if they have not had it already).

7.1.4 Dilemma

Game state

Each authored dilemma is characterised by:

? dilemma allocation effect

? number of response options

o each of which is an effect (see Thing use, above):

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

26

? identity of default response option

? [dilemma timeout is global]

? list of event scopes defining time(s) and destination(s) when/where dilemma can be allocated

Each dilemma as allocated to a single player is characterised by:

? player

? authored dilemma

? responded flag

? identity of response (if responded)

? dilemma timeout (if not yet responded)

Dilemma allocation

Caused by entering or (if not on a mission) leaving the hub - see Player movement.

Also caused as a custom result of some action(s) in a mission (see Mission).

7.1.5 Missions

Game state

An authored mission is characterised by:

? name

? time/destination scope - list of event scopes

? min. previous mission count

? requires player in need flag

? allocation effects:

o to player

o to player in need (if present)

o to bystander(s) (optional)

? max timeout for whole mission => failure?!

? mission description text

? set is mission-specific user action over-rides, each characterised by:

o trigger - player action/event (mask)

? player

? picking up a specific thing (class)

? using a specific thing (class)

? arriving at a specific destination

? or player in need action

? [picking up a specific thing (class)]

? [using a specific thing (class)]

? arriving at a specific destination

? becomes active (??!)

? dying

? having health > some value

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

27

? leaving town

? or mission timeout

o required context (criteria), all of:

? player carrying thing (class) (optional)

? player current destination (optional)

? player current silo contains (active) player in need (optional)

? player current silo contains at least N (active) players in addition to player (may
include player in need) (optional)

o rank/priority (for conflict resolution)

o ends mission flag

o if satisfied...

o custom effects (if arrival, pick up, player in need dying, player in need recovering, player in
need leaving town):

? on player

? on player in need

? on bystander

? on bystanders in same destination (in/out) but different silo

o custom thing use effects (if thing use):

? effect on thing:

? no effect or

? destroyed (see destroyed outcome, above)

An instance of a mission as performed by a single player is characterised by:

? player identity

? mission identity

? status: current, completed, timeout

? expires game time

Mission allocation

Caused by entering or leaving the hub - see Player movement. Note additional constraints on allocation to a
particular player:

? not had this mission before

? minimum previous mission count

? existence/identification of a 'player in need' (if required by mission)

7.1.6 Player

Game State

A player (figurine):

? is in one of the following major states:

o new - in process of registration

o playing

? resting (or non-playing time)

? active

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

28

o left town

o dead

? a playing player is always in exactly one silo of one destination (dead and "left town" players are
moved to their own silo in the destination "off board")

? has a description

o player's provided description

o current description, combining

? original description which may be replaced during the game by missions, dilemmas
and local events (may be constructed from history of events ('replace'))

? list of additional appended description fragments (which may be added to during
the game due to missions, dilemmas and local events ('append'))

? has a health level (0 if dead)

o dead – 0

o incapacitated - 1-20 (cannot move, find, carry people or things other than clothes or use;
can talk)

o mobile - 21-100

? may be carrying at most one thing or player [do we have to have carrying players? can it be
handled as a special case in missions? ask Blast Theory how sad they will be if this is not
present]

? has a gender (used in message stuff only?!)

? has a mobile phone number (used for sending/receiving messages)

? a list of 'friends' (other players), quantified by number of meetings and number of messages said
to and heard from (used in Silo allocation)

? zero or one current dilemma which they have yet to respond to

? a list of dilemmas previously experienced and the player's response to each (used to ensure not
given duplicate dilemmas (and for operator and player web pages))

? zero or one current mission (cannot be on more than one mission at the same time because they
would interfere/conflict)

? a list of missions previously performed and some(?) information about what happened (see
missions)

? a list of game events affecting this player (e.g. description modifications)

? a list of local events that this player has experienced (e.g. troop envading local event)

? a list of action requests made by the player (i.e. their parsed messages)

? preferred play times

? resting state (true/false), and (if resting) time to become active

? if active in non-preferred play time then wall clock time to rest again (1 hour Wall clock play
timeout)

? award dilemma on arrival at destination flag

? award mission on arrival at destination flag

? (hub timeout - probably in a system event or similar)

Non-game State

A player has other information not used in game play:

? answers to the questionnaire questions (not used in game play, other than by operators reading
them and constructing custom messages/saying though operator-controlled characters?)

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

29

? associated Person details (not used in game play)

? activity level (not used in game play)

? destinations visited (maybe this is just game events now??)

? says sent/received (maybe this is just game events now??)

? SMS messages sent/received

Resting

Being in non-preferred play time is automatic resting. (What happens if you send a message less than an hour
before the end of your preferred play time? is resting deferred for an hour or not?)

A resting player is:

? In playing sub-state 'resting' (not 'active')

? Not visible to other players

? Still occupies a place in their silo

? Still carries the same object

? Cannot be found - if otherwise successful (same destination, considering closed) finder receives
resting notification

? Cannot be affected by use of things

? Are not considered to be an observer for local events, say, use of things (no effects are applied
to you)

If a player has a current dilemma, their dilemma timeout is in active state game time. Therefore it is frozen
while they are resting.

If a player has a hub timeout and is in a multi -player hub:

? and is on their own: they are moved to a single-player silo and their timeout is retrospectively
reset to be a single player timeout and frozen (since it is measured in active game time)

? and is with someone else: they are moved to a single-player silo as above, and the player they
are with is moved on to their final destination as if the resting player had moved on (see Player
movement, go when in a hub silo)

Note: this skews hub experiences away from chat, but this should be OK if preferred play slots are large
compared to chat timeouts (please:)

A player starts resting:

? when they reach the end of one of their preferred play periods

? if they send a REST [N] message (default N is 2 (hours))

? if they are in a non-preferred play period but are active (see below) and their activity timer
expires

When a player starts resting:

? their state is changed to 'resting' ('player starts resting' event)

? bystanders receive a 'player starts resting' event and observer events

? timers are frozen as appropriate (see above)

A player stops resting:

? when they reach the start of one of their preferred play periods (if after any explicit REST
timeout)

? when any explicit REST timeout expires if during a preferred play period

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

30

? if they send a message (other than REST) while resting

When a player stops resting:

? their state is changed to 'active'

? generate a 'player stops resting' event (causes recap/wakeup message to player) and observer
events

? any hub and dilemma timers are reinstated

? may trigger custom mission effects if player is payer-in-need in any mission(s)

User changes to player's "resting times" made on the player's public website do not take effect until the
following day.

Actions

Can only performed if state is playing. If an action (other than Rest) is attempted while resting then Player is
deemed to be active for the next 1 hour (see Resting, above).

[update game activity?!]

Commands

Command parameters defaults

GO destination none

FIND player none

PICK-UP thing none

USE thing thing currently carried

PICK-UP-AND-USE thing none

DROP thing thing currently carried

SAY text none

UPDATE - -

REST hours 2 hours

HELP text ""

A/B/C/... - -

LEAVE-TOWN - -

Movement (Go, Find)

Cannot move if incapacitated (except if a player is incapacitated while in the hub they will still be moved on
their final destination when their hub timer expires). If attempted results in failure to move game event :-)

Go to another destination when in a non-hub destination

If waiting for a dilemma response then apply default response.

Move immediately to the hub (generate leave event). Experience the fun allocation process... (all numbers
adjustable)

? 20% single player...

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

31

o 20% - nothing happens, i.e. new/empty capacity 1 silo with (new) random hub description in
current scope, short timeout, arrive event

o 80%...

? 50% - allocated a dilemma, which is in scope for current time, for the hub, and
which has not been given to this player before. ??could split here for

? hub arrival dilemma, i.e. new/empty capacity 1 silo with (new) random hub
description..., long (default dilemma response) timeout (see below)

? if player is NOT on a mission, then hub depart/destination arrival dilemma,
i.e. hub experience is like 'nothing happens', but arrival at destination
triggers dilemma (Note: dilemma cannot be chosen yet because player
may use go in the hub to go somewhere else)

? 50% - if not already on a mission(!), allocated a mission at random, which is in
scope for current time, for the hub, and which has not been given to this player
before. ?? could split here for

? hub arrival mission, like 'nothing happens' but are allocated mission

? hub depart/destination arrival mission, like 'nothing happens' but will be
allocated mission on arrival at final destination (Note: mission cannot be
chosen yet because player may use go in the hub to go somewhere else)

? if no relevant dilemma/mission available for this player then falls back to 'nothing
happens'

? 80% - multiplayer meeting, i.e. first look for a non-full non-empty two player silo (don't worry
about friends, there cannot be more one at a time), and

o if found place player in it and set chat timeouts for both players

o else choose a new/empty two player silo, fix description, allocate player to it, set arrive/wait
for meeting timeout

Hub timer set according to experience type. When expired, player progresses to final destination.

Timer changed if:

? in case of saying in multiplayer meeting, extended (see notes)

? after responding to dilemma reset to short wait

Special cases:

? dilemma expires without responding, imposes default response and resets hub exit timer as per
player response to dilemma (short wait then go to final destination)

? player in two player hub whose partner leaves (due to go or their timer expiring) more on to final
destination immediately irrespective of own timer.

Go to the same destination when in a non-hub destination

If player is outside and destination is open then do normal arrival (inside) process.

Else (if player is already inside or destination is closed) then already there non-event.

Go when in the hub

If currently awaiting dilemma response then first process default dilemma outcome.

Move immediately to destination (see below).

Note: if in multiplayer chat then other player also moved on (see above).

Arriving at a non-hub destination

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

32

Caused by hub timeout or go when in the hub...

If player is on a mission with a player in need and player in need is in this destination (outside, or inside if
open) than place player in that Silo. Otherwise, if destination is open then will be placed inside, else outside:
do silo allocation for appropriate silos only (inside or outside):

? allocate to the most fun non-full silo :-), i.e.

? find all non-full silos...

o if there are none then create/find a new/empty silo and allocate player

o if one then allocate player to it

o if more than one then select using fun test, i.e. (we propose) weighted sum of present
friend's meetings and messages [more complicated things could go here - why don't Blast
Theory write some]

Generates arrival game event(s). If player is on a mission then check for a custom arrival message/event/thing
and use if present. Complete mission if appropriate.

Check for local event and process if in scope.

If flagged to allocate mission/dilemma on arrival then... choose at random one that is in time/destination scope
and has not been done by player already and allocate.

Find when in a non-hub destination

"Find PLAYERNAME"... if:

? named player does not exist - fail, unknown player

? named player has left town or died - find failure event

? named player is resting - generate find failed (resting) event

? named player does exist...

o in same destination, different silo

? finding player outside, named player inside and destination closed - fails as if the
named player was not in the same destination

? otherwise - finding player is moved to the named player's silo, even if it is nominally
full, generating a find event and arrival and observations of arrival as if the finding
player had just arrived at the destination and been allocated to that silo

o in same silo - player is notified as if they had found the player in a different silo, their silo is
not changed, bystanders do not observe the event

o not in the same destination - find failure event

Find when in the hub

Does not work.

Saying (Say)

Text of message is broadcast to all other active players in the same silo. Act of saying is recorded. Player
friendship information updated accordingly.

Things (Pick, Drop, Use)

If incapacitated, a player cannot pick up, drop or use.

If player becomes incapacitated while carrying a non-clothing thing then the thing is dropped.

If player is carrying/wearing a thing and picks up another then the first is dropped.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

33

If a player asks to use a particular thing that is in their destination but they are not carrying then they first pick
it up.(??)

Pick up must always specify thing.

If player is on a mission then check for custom effects.

Drop does not specify thing (only one held). Any additional text would have been ignored (i.e. "drop tissues" is
just treated as "drop", even if player is not holding "tissues").

Use with no thing implies use the thing currently carried; use with a specific thing implies (a) if that thing is
held then use that (b) else try to pick up named thing and then use it (see above). They will be left holding the
thing used, or nothing if it was destroyed.

If a thing is used....

? if the player is on a mission then check for custom effects, otherwise...

? if the thing affects someone else... (type 'other') and

o no-one else active is present in current silo, then effect on user is 'effect of use on using
player using if no-one else present or doesn't affect someone else'

o at least one other active person is present in current silo, one other active player is chosen
at random as the subject, and

? effect of use on using player when someone else present applies to user

? effect of use of subject applies to subject

? effect of use on active bystander applies to any other players present in same silo

? (optional??) effect of use on non-silo but same destination active bystanders
applied if present??

? if the thing affects user

o effect of use on using player using if no-one else present or doesn't affect someone else
applies to user

o effect of use on active bystander applies to any other players present in same silo

o (optional??) effect of use on non-silo but same destination active bystanders applied if
present??

? if destroyed on use, then destroyed action performed (remove from game or respawn)

Update (Update)

Like other actions, update ends a rest. (if an update causes a player to become active do they get both the
wake up and the update messages?)

No effect on game state. Request recorded, to trigger update message to player, including (some of):

? destination

? player health description

? carrying

? same silo players

? same destination (inside/outside) things

? current dilemma

? current mission

Leave (Leave town)

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

34

Player never receives any message after this other than confirmation of having left. NB may require enforcing
in message gateway to avoid race conditions, e.g. if leave message causes player to become active.

Player is removed from current silo, and state becomes 'left town'. Other players in silo receive bystander of
left town event. If player is player-in-need of any mission(s) then check for mission actions.

Rest (Rest)

See Resting (above). Optional parameter is number of hours to rest; default is 2 hours.

Help (Help)

Logs player help event. Reported to operator, who can respond on an individual basis. No other automatic
effect on game state.

Dilemma response (A, B, C)

If player:

? has no current dilemma, 'no dilemma' event/response

? has current dilemma

o dilemma does not have corresponding option, apply default response

o dilemma has corresponding option, apply the effect of that response to the player (no visible
effect to bystanders)

Other events

Things (used on)

See Player use (effect of use of subject applies to subject).

Becoming active (end of rest)

See Resting (above).

Description changes

Caused by 'effects', i.e.

? player's use of thing

? thing used on player

? local event

? dilemma

? mission

Health changes

Most changes to health are results of effects; other possibilities are:

? hospital special case

? operator intervention

Health of resting players cannot be affected by effects or hospital.

There is a potential mortality threshold of (?) 10:

? if the player's health is greater than this before an effect then their final health cannot be less
than this.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

35

There is an incapacity threshold of (?) 20 and below inclusive:

? players cannot move, find, pick, drop or use when incapacitated; they can only carry clothing.

There is an upper limit of 100. A health increase cannot make a player less half than as close to 100 as they
were before. E.g. health 50, cannot increase by more than 25; health 80 cannot increase by more than 10
((100-80)/2); health 90 cannot increase by more than 5 ((100-90)/2).

If a player's health becomes zero (or less - capped to zero), they die:

? their state becomes dead (not playing)

? player removed from silo & destination (ends up in "off the board")

? if player is player-in-need on any mission(s) then check for and process custom mission
actions/effects

? player death event (Operator notified to create a single custom death message); bystander
observe death event(s)

? if carrying (clothes), the thing's destroyed action is performed (remove or respawn)

? any outstanding timers are cancelled (hub, dilemma)

If a player is player-in-need on any mission(s) and their health increases then check for custom actions on
those missions (player recovery). NB be careful of race condition with player on mission actually having
helped them by using the right thing on them.

Dilemmas - allocation of, time-out or other default trigger

See Dilemmas (above)

Local events - occurrence

See Local events (above).

Missions -

See missions (above)

7.1.7 Game Lifecycle

Game time

Game time is essentially independent from physical world time. While the game is active game time
progressive at a define rate with respect to physical world time, typically 10 hours physical world = 1 hour
game time.

Game time must not be moved backwards.

Game activity

While the game is not active no game actions or events are processed and no game timers make progress.

Relation to Incoming Message Handling

Some message handling can occur when the game is not active:

? initial processing of leave town

? response to first incoming message from a player after game closes with game closed message

? messages when the game is closed are logged but not passed to the game engine for
processing

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

36

? Note: if the game engine crashes (i.e. message delivery to the game engine fails) then the
gateway attempts to reliably deliver these messages at the first opportunity while attempting to
attract the attention of an operator)

The incoming gateway should normally be opened after the game is made active and closed before the game
is made inactive.

Relation to Outgoing Message Gateway

The outgoing gateway should normally be enabled before the game is made active and disabled after the
game is made inactive (to allow events in progress at game close to the processed and corresponding
messages generated and despatched).

Opening/closing game

The game will be opened initial when the event starts. It will close finally when the event ends. It will be closed
temporarily:

? each night

? at other times if major maintenance work is urgently required, e.g. whole system crash/stall

Opening the game

At the beginning of the event will any players be pre-registered? Maybe; hopefully it won't matter (see next
point).

But in general players may be regis tered while the game is not active. In this case the player's state on
registration remains 'new' until the game is activated. A player who is added when the game is active may be
immediately made active/resting as appropriate.

The game will never be activated until the start of the event.

When the game is opened:

? resting/active states are updated for current physical world time

? a message is sent to each active player. (game opens event)

? 'new' players are made active/resting as appropriate (get welcome to dof message rather than
game opened message)

? event processing resumes

? the game clock is started

Closing the game

When the game is closed:

? the game clock is stopped

? event processing stops - flush (process) events that are now released/in flight

? a message is sent to each active player (game closed event)

7.2 Game Events Specification

7.2.1 Introduction

Each thing that happens within the core game is represented by one (or more) game events, which may be
used:

? by the game engine itself, e.g. to avoid duplicate local event allocation

? by the message generation system

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

37

? by the orchestration interface, to get a detailed view of player activity

? by the player web interface, to construct a history of player activity in the game

Major groups of game events are:

? things that players do

? things that players attempt which are impossible/etc.

? other things that happen to players

? bystander observation of an game event

? other system -related events??

7.2.2 Things to do with players

are (* = observable):

? issues a command (go, say, ...)

? things to do with movement

o leaves a destination/silo*

o arrives at a destination/silo*

? normal/special? hub/destination? first/return??

o find another player

o is moved outside/inside a destination (by an effect)

o attempts to go to a non-existent destination

o attempts to go to the same destination

o attempts to find another player but cannot (not here/dead/left or resting)

o attempts to find another player who does not exist

o attempts to perform an action when incapacitated

? things to do with things

o picks up a thing*

o uses a thing*

o has a thing used on them (see uses a thing)

o drops a thing*

o attempts to pick up an unknown thing

o attempts to pick up a thing not present

o attempts to use when not holding/nothing there

o attempts to drop something when not holding anything

o attempts to perform an action when incapacitated

? things to do with saying

o says something*

? things to do with info/update/status

o requests update

? things to do with local events

o is given a local event

? things to do with dilemmas

o is given a dilemma

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

38

o responds to a dilemma

o defaults (times out) on a dilemma

o defaults (does something else) on a dilemma

o attempts to respond to a dilemma when no current dilemma

? things to do with missions

o is given a mission*

o satisfies a mission 'stage'*

o completes a mission*

o defaults (times out) on a mission*

o is assigned to a mission as player-in-need

? health-related player things

o (see experiences effect)

o becomes/ceases to be incapacitated*

o dies*

o (attempts to perform an action when incapacitated)

? other player-state things

o experiences effect

o leaves town*

o starts resting*

o becomes active/stops resting

o starts the game

o game becomes active while playing (e.g. start of day) (from other system events??)

o game becomes inactive while playing (e.g. end of day) (from other system events??)

? observations

o of any of the * above

? operator-related ?? (outside core game?!)

o player receives custom message ??

7.2.3 Other system-related events

are:

? destination description changes

? destination opens/closes

? local event begins

? local event ends

? game opens

? game closes

? game starts

? game ends

? thing destroyed

? thing spawned

? silo created

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

39

7.2.4 Authoring-related events

are:

? unauthorised

7.2.5 Parameters

Event Parameters Related
events

things to do with players player, current destination, current silo, game time, system time

issues a command (go,
say, ...)

text, reference to parsed command request

things to do with movement

leaves a destination/silo* destination, silo, cause event

arrives at a destination/silo* destination, silo, cause event, cause type: arrive hub/arrive
destination/find/effect

find another player other player leave, arrive

is moved outside/inside a
destination (by an effect)

inside/outside, cause event

attempts to go to a non-
existant destination

destination name

attempts to go to the same
destination

attempts to find another
player but cannot (not
here/dead/left or resting)

other player, reason (not here, dead, left, resting)

attempts to find another
player who does not exist

other player name

attempts to perform an
action when incapacitated

command event

things to do with things

picks up a thing* thing

uses a thing* thing, other player (optional)

has a thing used on them
(see uses a thing)

thing, other player, uses thing event

drops a thing* thing, inside/outside

attempts to pick up an
unknown thing

thing name, pick-up-and-use flag

attempts to pick up a thing
not present

thing

attempts to use when not
holding/nothing there

thing (optional) [not generated for failed pick-up-and-use]

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

40

attempts to drop something
when not holding anything

thing (optional)

attempts to perform an
action when incapacitated

command event

things to do with saying

says something* text, other active players count (i.e. number of observation of
this)

things to do with
info/update/status

requests update

things to do with local
events

is given a local event local event, present at start/on arrival

things to do with dilemmas

is given a dilemma dilemma, type: hub arrive/non-hub arrive/mission, from mission
(if mission type)

responds to a dilemma dilemma, response

defaults (times out) on a
dilemma

dilemma, default outcome

defaults (does something
else) on a dilemma

dilemma, default outcome

attempts to respond to a
dilemma when no current
dilemma

response code

things to do with missions

is given a mission* mission, type: hub arrive/non-hub arrive, player-in-need (if
required)

satisfies a mission 'stage'* mission, stage

completes a mission* mission

defaults (times out) on a
mission*

mission

is assigned to a mission as
player-in-need

mission, other player

health-related player things (see also experiences effect)

becomes/ceases to be
incapacitated*

incapacitated flag, changes health event

dies* changes health event

(attempts to perform an command event

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

41

action when incapacitated)

other player-state things

experiences effect

effect, affects health flag, final health, crosses boundary flag,
affects description flag, effect type: local event, dilemma
allocation, dilemma response, mission allocation, mission stage
player/player-in-need/bystander/distant bystander, thing use
player/player-in-need/bystander/distant bystander, cause event

incapacitated,
dies

leaves town*

starts resting* type: end of preferred play/rest message, rest time (if rest
message)

becomes active/stops
resting*

type: start of preferred play/end of rest message

starts the game

game becomes active while
playing (e.g. start of day)
(from other system
events??)

game becomes inactive
while playing (e.g. end of
day) (from other system
events??)

observations

of any of the * above observed event, different silo flag (copy of observed event fields
for efficiency: event type, player, other player, thing, text)

other system -related
events

game time, system time (no player, destination, silo)

destination opens/closes destination, open/closed

local event begins local event, destination

local event ends local event, destination

game opens reason text, message players flag, message text

game closes type: routine/exceptional, reason text, message players flag,
message text

game starts

game ends

thing destroyed thing, type: hub silo recycling/used, destination, silo, cause event

thing spawned reason: start of game/thing destroyed, thing, destination, silo,
cause event (thing destroyed)

silo created destination, silo, reason: hub no experience/hub dilemma/hub
mission/hub chat/destination

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

42

7.3 DOTF-Berlin Message Specifications, linked to Game Events

7.3.1 Introduction

All Messages sent to players are built from Message Specifications. For Barcelona message specifications
see DOTF-Berlin_Message_Specification.doc.

Messages are keyed to Game Events.

Game
Event

Role Condition
Message
specification:
Short Name

Description Indicative Text
(from Barcelona
with minor edits)

Comments

things to
do with
players

issues a
command
(go, say,
...)

 normally :-) -

 player verb not recognised

NO_SUCH_COM
MAND

command not
recognised

This key word is
not recognised.
The main key
words are SAY,
SAY TO, GO, PICK
UP, USE, DROP,
INFO and FIND.
Go to
www.dayofthefiguri
nes.co.uk to learn
more.

things to
do with
movement

leaves a
destinatio
n/silo*

observer not hub (hub leaves
shouldn't be observed
anyway)

W_LEAVE_FRO
M_DESTINATIO
N

player
witnesses
partner leaving

$PARTNERNICKN
AME has just left.

arrives at
a
destinatio
n/silo*

observer non-hub destination
W_ARRIVE_AT_
DESTINATION

player
witnesses
partner
arriving

$PARTNERFULLN
AME has just
arrived.

 player arrival at non-hub
destination during
destination
description, not find
or effect

ARRIVE_DESTI
NATION

player arriving
at a (non-hub)
destination

you've arrived at
$DESTSHORTNA
ME,
$DESTLONGDES
C.
$LIST_PLAYERS
$LIST_THINGS

Inadequate:
e.g. need to
know about
mission
player-in-need
and/or key
things

 player arrive in hub, only
player in silo, not hub
arrival dilemma or
mission (i.e. no
experience, first
person for chat, hub
departure mission or

ARRIVE_HUB_S
OLO

player arrives
in the hub for
a single player
(no action)
experience, or
in the case
that someone
arrives in the

you're on your way
to
$DESTLONGDES
C.
$HUBDESCRIPTIO
N

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

43

dilemma) hub and is
waiting for a
multiplayer
meeting for
some time

 observer in hub, have received
ARRIVE_HUB_SOLO

HUB_MEETING player's meet
in hub

you meet
$PARTNERNICKN
AME,
$PARTNERDESC
RIPTION,
$PARTNERHESHE
seems to be
$PARTNERHEALT
H.

 player arrive in hub,
someone else
present (i.e. chat)

ARRIVE_HUB_M
EETING

player is
joined in the
hub by
another
player, in this
case they
have not been
given the
description

on the way you
meet
$PARTNERNICKN
AME,
$PARTNERDESC
RIPTION.
$HUBDESCRIPTIO
N

find
another
player

player

FOUND_PLAYE
R

target of find
found in
player's
location

after a quick search
around
$DESTSHORTNA
ME, you find
$PARTNERNICKN
AME and join them.

is moved
outside/in
side a
destinatio
n (by an
effect)

 - message
generated by
effect event

attempts
to go to a
non-
existent
destinatio
n

player

GO_NOSUCHDE
ST

the player
didn't specify a
destination
that we know

This destination is
not recognised. Try
again using a name
of a destination
listed on your map
or at
www.dayofthefiguri
nes.co.uk

attempts
to go to
the same
destinatio
n

player

GO_SAMEDEST player already
at destination

you're already at
"$DESTLONGNAM
E", feeling
$PLAYERHEALTH.

attempts
to find
another
player but
cannot
(not
here/dead
/left or

player other player is not
resting in the same
destination

FIND_PLAYER_
NOT_PRESENT

target of find
not currently in
the same
location as
play

$PARTNERNICKN
AME can't be found
anywhere in
$DESTSHORTNA
ME

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

44

resting)

attempts
to find
another
player
who does
not exist

player

FIND_NO_SUCH
_PLAYER

target of find
not a player
the system
recognises

the player you are
looking for can't be
found. Check that
the name you used
is right and try
again.

attempts
to perform
an action
when
incapacita
ted

player attempts go/find

PLAYER_CANT_
MOVE

message sent
player when
they try and
move but are
incapacitated

you are
$PLAYERHEALTH,
and lie helpless

things to
do with
things

picks up a
thing*

player not clothes

PICKUP_TPOS

Default pickup
success
message sent
to actioning
player

you pick up
$THINGLONGNAM
E

 observer not clothes

PICKUP_TBOS

Default pickup
success
message sent
to bystander

$ACTIONINGPLAY
ER picks up
$THINGLONGNAM
E

 player clothes

PICKUP_TPOSC

Default pickup
clothes
success
message sent
to actioning
player

you put on
$THINGSHORTNA
ME

 observer clothes

PICKUP_TBOSC

Default pickup
clothes
success
message sent
to bystander

$ACTIONINGPLAY
ER puts on
$THINGLONGNAM
E

uses a
thing*

 - messages
from thing use
effects

has a
thing used
on them
(see uses
a thing)

 - messages
from thing use
effects

drops a
thing*

player not clothes

DROP_TPOS

Default drop
success
message sent
to actioning
player

you put down the
$THINGSHORTNA
ME.

 observer not clothes
DROP_TBOS

Default drop
success
message sent

$ACTIONINGPLAY
ER puts down
$THINGLONGNAM

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

45

to bystander E.

 player clothes

DROP_TPOSC

Default drop
clothes
success
message sent
to actioning
player

you take off the
$THINGSHORTNA
ME and place it on
the ground.

 observer clothes

DROP_TBOSC

Default drop
clothes
success
message sent
to bystander

$ACTIONINGPLAY
ER takes off
$THINGLONGNAM
E and places it on
the ground.

attempts
to pick up
an
unknown
thing

player at least one thing in
destination
inside/outside PICKUP_THING

NOTTHERE

ERROR
Player tried to
pickup an
absent 'Thing'

there is no
"$MESSAGETEXT"
nearby to pickup.
You're at
$DESTSHORTNA
ME.
$LIST_THINGS

 player no thing at all in
destination
inside/outside PICKUP_NOTHI

NGTHERE

ERROR
Player tried to
pick
something up
when no
things were
present

there is nothing
near you to pick up.
You're at
$DESTSHORTNA
ME.
$LIST_THINGS

attempts
to pick up
a thing not
present

player at least one thing in
destination
inside/outside PICKUP_THING

NOTTHERE

ERROR
Player tried to
pickup an
absent 'Thing'

there is no
"$MESSAGETEXT"
nearby to pickup.
You're at
$DESTSHORTNA
ME.
$LIST_THINGS

 player no thing at all in
destination
inside/outside PICKUP_NOTHI

NGTHERE

ERROR
Player tried to
pick
something up
when no
things were
present

there is nothing
near you to pick up.
You're at
$DESTSHORTNA
ME.
$LIST_THINGS

attempts
to use
when not
holding/no
thing
there

player provided not due to
failed pick-up-and-
use USE_NOTHING

HELD

ERROR
Player is trying
to use
something
when they
have nothing
to use

you don't have
anything to use.
$LIST_THINGS

attempts
to drop
something
when not
holding
anything

player

DROP_NOTHIN
GHELD

ERROR
Player is trying
to drop
something
when they
have nothing
to drop

you don't have
anything you can
drop.
$LIST_THINGS

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

46

attempts
to perform
an action
when
incapacita
ted

player attempts pick up

PICKUP_TPOFH

Default pickup
failure
message due
to poor health
sent to
actioning
player

you do not have the
strength to pick up
$THINGSHORTNA
ME

 player attempts to drop
(clothes)

DROP_TPOFC

incap clothes
drop failure
message due
to poor health
sent to
actioning
player

you do not have the
strength to move let
alone undress.

things to
do with
saying

says
something
*

observer
PLAYER_HEAR
D_SAY

player hears a
say message

$PARTNERNICKN
AME said:
"$MESSAGETEXT"
.

things to
do with
info/updat
e/status

requests
update

player

UPDATE_REQU
EST

The message
sent to a
player who
has requested
an update

Message built from
available/applicable
information
according to the
following priority,
incorporating player
knowledge:
$DESTINATION_I
NFO
$PLAYERHEALTH
$LIST_THING_HE
LD
$MISSION_INFO
$LIST_PLAYERS
$LIST_THINGS

things to
do with
local
events

is given a
local
event

 - message from
local event
effect

things to
do with
dilemmas

is given a
dilemma

player - message from
dilemma
allocation
effect

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

47

responds
to a
dilemma

 - message from
dilemma
response
effect

defaults
(times
out) on a
dilemma

 - message from
dilemma
default
response
effect

defaults
(does
something
else) on a
dilemma

 - message from
dilemma
default
response
effect

attempts
to
respond
to a
dilemma
when no
current
dilemma

player use
UPDATE_REQU
EST

 As per update
request

things to
do with
missions

is given a
mission*

player &
observer

 - message from
mission
allocation
effects

satisfies a
mission
'stage'*

player,
player in
need &
observer

 - message from
mission stage
effects

completes
a mission*

 - (message
generated by
stage event)

defaults
(times
out) on a
mission*

 - (message
generated by
default stage
event)

is
assigned
to a
mission
as player-
in-need

player - message from
player in need
allocation
effect

health-
related
player
things

becomes/
ceases to

observer INCAP_TB message sent
to bystander

$PARTNERNICKN
AME is now

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

48

be
incapacita
ted*

on nearby
player
incapacitation

$PARTNERHEALT
H.

 player

INCAP_TP

message sent
to player when
they become
incapacitated
by someone or
something
else

you are lying
helpless on the
ground. You are
$PLAYERHEALTH

dies*

player

PLAYER_DEAD
message sent
to player when
they die

you have been
killed to death.
Thank you for
playing Day Of The
Figurines.

 observer

W_PLAYER_DE
AD

message sent
to partner
when they die

$PARTNERNICKN
AME has died.
Within moments
two men in green
overalls come
along, load
$PARTNERNICKN
AME's body into
their battered white
van and drive off

(attempts
to perform
an action
when
incapacita
ted)

other
player-
state
things

experienc
es effect

player health boundary
change, not
becoming
incapacitated or dying

HEALTHCH_TP

message sent
to player on
health
boundary
change

you are now
$PLAYERHEALTH.

leaves
town*

player

LEAVE_TOWN player leaves
the town

$PLAYERNICKNA
ME catches a lift on
a passing truck and
leaves town. Thank
you for playing Day
Of The Figurines.
Please reply to this
msg with any
feedback.

 observer

W_LEAVE_TOW
N

partner leaves
town

$PARTNERNICKN
AME catches a lift
on a passing truck
and leaves town.
You won't be
seeing them again.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

49

starts
resting*

player player request rest - no message

 player player begin rest and
end day

PLAYER_REST_
END_DAY

 BT write me.

 observer W_REST $PARTNERNICKN
AME is resting.

Not a great
message

becomes
active/sto
ps
resting*

player player wake from
requested rest

PLAYER_WAKE You wake up and
slowly realise
where you are in .

More
description?!
Include
something like
an up

 player player wake and
begin day

PLAYER_WAKE
_START_DAY

 BT write me.

 observer W_PLAYER_WA
KE

 $PARTNERNICKN
AME snorts loudly
and opens their
eyes with a starts.

starts the
game

player

WELCOME

welcome
message to
player to start
the game

welcome to Day Of
The Figurines.
$PLAYERNICKNA
ME has been
dropped by a truck
at the edge of town.
You are
$PLAYERHEALTH.
Where do you want
to go?

observatio
ns

of any of
the *
above

player - see 'observer'
cases for
observed
event

other
system -
related
events

destinatio
n
opens/clo
ses

 - author a local
event if a
message is
required

local
event
begins

 - see player is
given a local
event event

local
event
ends

 -

game
opens

every
active

if message players
flag

- Text for
mangling from
event.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

50

player Requires
specific
operator
construction!

game
closes

every
active
player

if message players
flag

- Text for
mangling for
event.
Requires
specific
operator
construction!

game
starts

 -

thing
destroyed

 -

thing
spawned

 -

silo
created

 -

game
ends day
1

every
playing
player

END_GAME_DA
Y_1

Day game end
(sent at end of
day)

the hour is over for
$PLAYERNICKNA
ME. Some things a
stuff.

game
ends day
2

every
playing
player

END_GAME_DA
Y_2

Day game end
(sent at end of
day)

the hour is over for
$PLAYERNICKNA
ME. Some things a
stuff.

game
ends day
N

every
playing
player

END_GAME_DA
Y_N

Day game end
(sent at end of
day)

the hour is over for
$PLAYERNICKNA
ME. Some things a
stuff.

game
ends day
24

every
playing
player

END_GAME_DA
Y_24

Day game end
(sent at end of
day)

the hour is over for
$PLAYERNICKNA
ME. Some things a
stuff.

starts
game day
2

every
playing
player

START_GAME_
DAY_2

Day game end
(sent at end of
day)

the hour is begun
for
$PLAYERNICKNA
ME. Some things a
stuff.

game
starts day
3

every
playing
player

START_GAME_
DAY_3

Day game end
(sent at end of
day)

the hour is begun
for
$PLAYERNICKNA
ME. Some things a
stuff.

game
starts day
N

every
playing
player

START_GAME_
DAY_N

Day game end
(sent at end of
day)

the hour is begun
for
$PLAYERNICKNA
ME. Some things a
stuff.

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

51

game
starts day
24

every
playing
player

START_GAME_
DAY_24

Day game end
(sent at end of
day)

the hour is begun
for
$PLAYERNICKNA
ME. Some things a
stuff.

7.3.2 Notes

Multiple shortening length message specifications have been replaced by a "smart" aggregation system.
Where potential elements are prioritised by the authors and subsequently included where appropriate
(according to mission and history) and the space available.

7.4 Authored Text Reference

7.4.1 Introduction

This document attempts to pull together and index all possible sources of text that appear in messages sent
by the DOTF system, which in some sense are therefore authored. This includes:

? properties of database classes included via message elements

? message specifications, from

o database MessageSpecifications

o effects, in thing (use), local events, dilemmas and missions

? other built-in text

o health descriptions (in source code)

o custom -coded message element text fragments (in source code)

7.4.2 Authored class properties

Player

? nickName - used in $PLAYERNICKNAME, $PARTNERNICKNAME, etc.

? descriptionText - used in $PARTNERDESCRIPTION, etc., which is intended to be used in
context "You are X"/"He/she is X".

? (answers to player's questions - not used)

Destination

? shortName - used in $DESTSHORTNAME, etc. Useful e.g. in "You are at X", "Going to X"

? longName - used in $DESTLONGNAME, etc.

Non-hub destinations will have a (single) current destination description (current inside/outside/closed
descriptions held by a single destination description). From this the description is determined and might be
cached in the Destination. See Destination_Description.

Silo

Hub Silos have a single description, determined from a randomly selected Hub Destination_Description when
the Silo was entered. This may be cached as descriptionText, or looked up using des criptionID.

Destination_Description

All Destination (and Hub Silo) descriptions are specified by Destination_Descriptions, which additionally
specify the time over which they apply and whether the (non-hub) destination is open. Text is:

? descriptionInsideText (if it has a distinct inside) - e.g. used in $DESTLONGDESC if inside

? descriptionOutsideText - e.g. used in $DESTLONGDESC if outside

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

52

? shortDescriptionInsideText (optional, and if it has a distinct inside) - e.g. used in
$DESTSHORTDESC if inside

? shortDescriptionOutsideText - e.g. used in $DESTSHORTDESC if outside

? A description is a complete sentence EXCLUDING final full stop.

Thing

revised singular/plural proposal

? shortNameSingular - if thing is single

? shortNamePlural - for all things

? longNameSingular (was description) - if thing is single

? longNamePlural - for all things

? cardinality type: single/some/many

Note: names should NOT include "a", "the", "some", etc. Used in $LIST_THINGS, $LIST_THING_HELD

Effect

Effects are used in: thing use, local events, dilemma, mission. They include description change option, in
particular:

? description change type: no change, replace, append

? text

Replace implies text is used in place of player's own description, which is intended to be used in context "You
are X", "He/she is X", "Bob, who is X, ...".

Mission

In addition to mission allocation and stage effects:

? descriptionText, which is a self-contained sentance INCLUDING full-stop, e.g. "The policeman is
still waiting for you." (says Keir), used (maybe) in update and/or web site to remind player of their
current mission (if any)

7.4.3 Message Specifications

A message specification (DOTF-Berlin_Message_Specification_3.doc) is a text template of a complete
message for processing by the manglator. Message specifications come from:

? The text property of the MessageSpecification instances in the database used when generating
messages from game events

? The messageText property (optional) of an Effect from a Local event, dilemma, mission or thing
use

7.4.4 Other built-in text

Health descriptions

Currently:

? "cock of the walk"

? "banging"

? "hot to trot"

? "very fine indeed"

? "averagely fine"

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

53

? "feeling peaky"

? "out of sorts"

? "poorly"

? "pretty ill"

? "very unwell"

? "maximum sick"

? "about to pass out"

? "unable to move"

? "fading fast"

? "very fucked"

? "dead"

For use in phrases "who is XX", "you are XX", "he/she is XX".

Text to be stored in MessageElements, where the title is built from form "HEALTH_" + bottom of health range
percent + "_TO_" + top of health range percent, eg. HEALTH_20_TO_30

Special case message elements

See DOTF-Berlin_Message_Elements_2.doc. These include text compiled into the message generation code.
Currently (those which do not simply select one of the above pieces of text):

? $LIST_THINGS, List of things in current_destination (inside/outside). e.g. "There is|are " ... "
here."

? $LIST_PLAYERS, List of other (active) players in current_silo, as is most relevant to player and
fits available space. eg "", "[Player.nickName], [Player.description],", " is|are here"

? $LIST_THING_HELD, thing held/worn, e.g. "" or "You are wearing|carrying [Thing.longName]."
of if there is room "You are wearing|carrying [Thing.description]."

? $PARTNERHESHE, "he" or "she" according to gender

? $PARTNERHISHER, "his" or "her" according to gender

7.5 Message Elements

7.5.1 Introduction

Each Message is constructed from a Message Specification (see Message Specification); each message text
may combine text with variable elements, i.e. Message Elements.

Messages are (currently) constructed in a game context comprising:

? String data - text to be "mangled"

? dof2.db.Player player - player receiving the message (?)

? dof2.db.Player partner - another significant player, e.g. player being observed, player met

? dof2.db.Player thing_actioner - player using the thing (use of thing, only)

? dof2.db.Player thing_recipient - player that thing is used on (if applicable to thing, use of thing
only)

? dof2.db.Destination currrent_destination - current destination of player

? +dof2.db.Destionation current_silo - current silo of player, (e.g. used in hub, inside/outside text)

? dof2.db.Destination future_destination - final destination of player (if in the hub)

? dof2.db.Thing thing - thing (if pick, drop or use)

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

54

? String passText - uninterpreted text to include, e.g. body of say or name actually given for
(presumed) destination or thing

Barcelona Message Elements:

Element text, description,

class
introspectio
n/special
case,

details

$PLAYERNICKN
AME

a player's
nick name

class (Player) player.nickName

$DESTSHORTNA
ME

a player's
current
destination,
short name

class (Destination) current_destination.shortName

$DESTLONGNA
ME

a player's
current
destination,
long name

class (Destination) current_destination.longName

$DESTSHORTDE
SC

short
description
of a player's
current
destination

special case (Destination)
current_destination.shortDesriptionInsideText
or
current_destination.shortDescriptionOutsideTe
xt according to player inside/outside (If
undefined then long description) [could look up
from Destination_Description using
current_destination.insideDescriptionID/outsid
eDescriptionID]

$DESTLONGDES
C

long
description
of a player's
current
destination

special case (Destination)
current_destination.desriptionInsideText or
current_destination.descriptionOutsideText
according to player inside/outside (If undefined
then long description) [could look up from
Destination_Description using
current_destination.insideDescriptionID/outsid
eDescriptionID]

$HUBDESCRIPTI
ON

description
of a hub, will
be short, fits
in a hub
meeting
message

class (Silo) current_silo.descriptionText [or look up
from current_silo.descriptionID]

$THINGDESCRIP
TION

description
of a thing

class (Thing) thing.description

$THINGLONGNA
ME

long name
of a thing

class (Thing) thing.longName

$PARTNERDESC
RIPTION

description
of a player
that is being
met

class (Person) partner.descriptionText

$PARTNERNICK
NAME

short name
of a player
that is being

class (Person) partner.nickName

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

55

met

$ACTIONINGPLA
YER

The
nickname of
the actioning
player in a
use event

class (Player) thing_actioner.nickName

$RECIPIENTPLA
YER

The
nickname of
the recipient
player in a
use event

class (Player) thing_recipient.nickName

$MESSAGETEXT message
text being
passed in

special case = passText parameter

$LIST_THINGS player
mission and
history
appropriate
listing of the
things in
destination
(and their
descriptions)

special case List of things in current_destination
(inside/outside). If no things, then
"$NO_THINGS_PRESENT". Else if recently
recieved description
"There is|are "..." here."; things are grouped by
kind, "a [Thing.longName]", "a couple of ...", "a
few ...", "many"; comma separated with "and"
for last clause. "There is|are "..." here."; things
are grouped by kind, "a [Thing.description]", "a
couple of ...", "a few ...", "many"; comma
separated with "and" for last clause.

Length
constrained
to maximise
relevant
information
in full
message

$NO_THINGS_P
RESENT

no things
present in
destination

special case "" | "There is nothing here. " new.
Currenlty ""
is always
used, this
allows for
custom
message, if
desired

$LIST_PLAYERS show
mission and
history
appropriate
information
about co-
located
players

special case List of other (active) players in current_silo. If
no other players then
$NO_PLAYERS_PRESENT. Else ..." is|are
here"; comma-separated and "and" for last
clause; "[Player.nickName],
[Player.description], "; unless a player is
incapacitated, in which case "who is
$PLAYERHEALTH"(player) instead of
Player.description.

In the case that only one player is listed, cf
above, except text is ..." is nearest." (not " is
here.").

Preferentiall
y select: (1)
mission
player-in-
need (2)
incapacitate
d friends (3)
other
incapacitate
d players (4)
a (best?)
friend (5)
random

$NO_PLAYERS_
PRESENT

no players
present in
silo

special case "" | "There is no-one here. " new.
Currenlty ""
is always
used, this
allows for
custom
message, if
desired

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

56

$LIST_THINGS_
HELD

thing
held/worn
(possibly
with
description,
in the
context of
player
message
history)

special case If holding nothing then "". Else if recently
recieved description "You are wearing|carrying
[Thing.longName]." Else "You are
wearing|carrying [Thing.description]."
according to Thing type (clothes/not) as
message length permits

$PARTNERHEAL
TH

partner
health

special case Selection of health description according to
partner.health (see below)

$PLAYERHEALT
H

player's
health

special case Selection of health description according to
player.health (see below)

$PARTNERHESH
E

PARTNER
HE or SHE

special case "he" or "she" according to partner gender

$PARTNERHISH
ER

partner his
or hers

special case "his" | "her" according to partner gender

$ANSWER1 the answer
to question 1

class (Question) question1.questionText new

$ANSWER2 the answer
to question 2

class (Question) question2.questionText new

$ANSWER3 the answer
to question 3

class (Question) question3.questionText new

$ANSWER4 the answer
to question 4

class (Question) question4.questionText new

No longer used:

? $PLAYERFULLNAME

? $PARTNERFULLNAME

? $THINGSHORTNAME

? $PLAYERHESHE

? $PLAYERHISHERS

7.5.2 Notes

message length variants

The variable length versions are likely to disappear as message elements included in message specifications;
a single "smart" message element may be included to hint at including that "kind" of information e.g.

? things - the following have been replaced with "smart" LIST_THINGS:

o LISTTHINGSWITHDESCRIPTION

o LISTTHINGS

o LISTONETHINGWITHDESCRIPTION

o LISTONETHING

? players present - the following have been replaced with "smart" LIST_PLAYERS:

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

57

o LISTPLAYERSWITHDESCRIPTION

o LISTPLAYERS

o LISTONEPLAYERWITHDESCRIPTION

o LISTONEPLAYER

? things held - the following have been replaced with "smart": LIST_THING_HELD:

o THINGHELD

o THINGHELDWITHDESC

Things

Talking about things

? A (single game) thing has:

o "shortName" -> "systemName"

o "longName" -> "shortName" (no definite or indfinite article, i.e. "a", "some", "...")

? singular (if thing is single)

? plural

o "desription" -> "longName"

? singular (if thing is single)

? plural

o cardinality of (single game) thing: singular / "some" / "many"

So...

? A (single game) thing

o indefinite article

? cardinality singular: "[is] a $THINGSHORTNAMESINGULAR" or "[is] a
$THINGLONGNAMESINGULAR"

? some: "[are] some $THINGSHORTNAMEPLURAL" or "[are] some
$THINGLONGNAMEPLURAL"

? many: "[are] many $THINGSHORTNAMEPLURAL" or "[are] many
$THINGLONGNAMEPLURAL"

o definite article

? cardinality singular: "the $THINGSHORTNAMESINGULAR" or "the
$THINGLONGNAMESINGULAR"

? some: "the $THINGSHORTNAMEPLURAL" or "the $THINGLONGNAMEPLURAL"

? many: "the $THINGSHORTNAMEPLURAL" or "the $THINGLONGNAMEPLURAL"

? N (a small number, "some" or "many") of a game thing (class):

o indefinite article

? cardinality singular: "[are] N|some|many $THINGSHORTNAMEPLURAL" or "[are]
N|some|many $THINGLONGNAMEPLURAL"

? some: "[are] some|many $THINGSHORTNAMEPLURAL" or "[are] some|many
$THINGLONGNAMEPLURAL"

? many: "[are] many $THINGSHORTNAMEPLURAL" or "[are] many
$THINGLONGNAMEPLURAL"

o definite article - never used!!!

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

58

Health descriptions

Currently:

? "cock of the walk"

? "banging"

? "hot to trot"

? "very fine indeed"

? "averagely fine"

? "feeling peaky"

? "out of sorts"

? "poorly"

? "pretty ill"

? "very unwell"

? "maximum sick"

? "about to pass out"

? "unable to move"

? "fading fast"

? "very fucked"

? "dead"

For use in phrases "who is XX", "you are XX", "he/she is XX".

Text to be stored in MessageElements, where the title is built from form "HEALTH_" + bottom of health range
percent + "_TO_" + top of health range percent, e.g. HEALTH_20_TO_30.

7.6 DOTF-Berlin Message Aggregation and Pacing

7.6.1 Sending a Message

The system will send a message to a player;

(*'d entries are those that will include aggregated content)

? if the player is active...

o in response to a player message...

? that is correctly formed and successful (say, go, update, pick up, use, drop, find,
leave town, help) after a generic time out (around 5 to 7 minute) *

? e.g."go locarno", "update", "say How did you guys get here?"

? that is correctly formed but unsuccessful, or is incorrectly formed, after an 'error'
time out (around 3 to 5 minute) *

? e.g. "jkdfn" which causes NO_SUCH_COMMAND or a "go to hell" which
causes a GO_NOSUCHDEST

o at the beginning of their game

o at the end of their game

o at the beginning of the day

o at the beginning of the day (delayed due to resting)

o at the end of the day

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

59

o at the end of the day (early due to resting)

o after "waking" from requested "resting"

o if a player in the same silo as the player has sent a SAY message *

o if they become incapacitated *

o if they die

o if they leave town

o when they arrive at a destination (including the HUB)

o when they meet another player in the HUB

o when some one dies in the same silo as the player *

o as a part result of an 'effect' (e.g. during a dilemma, mission, local event, ??)

o if some one uses a thing (assuming there is a bystander, destination-wide bystander, or
recipent effect)*

7.6.2 Building (Aggregation) a Message

Elements that can be used in an aggregated message (or message part) are...

? Due to Game Events

o when the player witness (same silo)

? another player leaving

? another player arriving

? another player drops a thing

? another player picks up a thing

? Destination specific information

o what Thing(s) are present

? Silo specific information

o which player(s) are present (and active)

? Player specific information

o that the player has gone through a health boundary

o the Thing the player is holding (if applicable) (low priority)

o the mission the player is on (if applicable) (low priority)

7.6.3 Aggregation priority in response to player action

For 'update' (and for waking from rest)

? where the player is

? health

? mission they are on

? incapacitated player(s) present

? what they are holding

? player(s) present description

? thing(s) present description

? player(s) present

? thing(s) present

IPerG -FP6 –004457 Deliverable 12.5

 19/09/2006

60

For 'say' (and heard 'say')

? player(s) present description

? thing(s) present description

? player(s) present

? thing(s) present

? health/health boundary change

? mission they are on

? what they are holding

? health

? where the player is

For 'use', 'pick up', 'drop' (and having a thing used on them?)

? response the action

? health/health boundary change

? player(s) present description

? thing(s) present description

? player(s) present

? thing(s) present

? health

? where the player is

For 'find'

? response the action

? player(s) present description

? thing(s) present des cription

? player(s) present health

? thing(s) present

? health/health boundary change

? where the player is

? health

? what they are holding

For 'go'

? response to the action

? health/health boundary change

? health

? what they are holding

When becoming incapacitated

? that you've dropped your thing (if applicable)

? player(s) present description

? player(s) present

