
Master’s Thesis Project

Josef Israelsson
di98jin@cs.umu.se
February 2005
20 credits

An integration of Java APIs for Bluetooth with

Teleca’s software suite Obigo

UMEÅ UNIVERSITY
DEPARTMENT OF COMPUTING SCIENCE

SE-901 87 UMEÅ
SWEDEN

 2

 3

Abstract

The Bluetooth technology for wireless communication is used worldwide in wearable
devices today. The Java programming language and its platform for wearable devices is
also a well used and still improving technology when talking about the wearable market.
JSR-82 is a Java application programming interface for the Bluetooth wireless
technology. Teleca Software Solution AB in Lund wants an implementation of JSR-82
integrated with their software framework Obigo Q-Line. Obigo is a world leading
application system found in hundreds of millions of mobile phones worldwide. Besides
this JSR-82 integration, Teleca also want a deeper investigation about three already
existing related integrations, and in the end a concrete Teleca JSR-82 solution analysed,
designed and presented.

The purpose with this thesis project was to make deeper studies in those technologies and
about the Obigo Q-Line architecture. In the end a JSR-82 library should be integrated and
a JSR-82 solution should be presented.

The result is an integration of Profix optional API JSR-82 implementation with Obigo,
and an extensive JSR-82 and related technology investigation that resulted in three
different JSR-82 solutions revealed and presented.

 4

 5

Preface

This Masters Thesis is the result of the JSR-82 project work by Josef Israelsson at Teleca
Software Solutions in Lund. The work was carried out between the 6th of September 2004
and the 21st of February 2005, with a break during October 2004.

I would like to thank Jan Olof Svensson my supervisor at Teleca for many useful ideas
and guidance along the road. I would also thank Pär Spjuth at Teleca for his great
technical expertise during this project. Thanks to my internal supervisor Thomas Nilsson
for helpful comments and suggestions regarding this report. Finally I would like to thank
the department manager Knut Mårtensson at Teleca who brought me the opportunity to
perform this Master’s Thesis project at Teleca.

Josef Israelsson

Lund, February 2005

 6

 7

Contents

1 NOTES ..11
1.1 Focus change... 11
1.2 Internal information .. 11

2 INTRODUCTION ...12
2.1 Background... 12
2.2 Thesis description... 12
2.3 Goal ... 12
2.4 Scope.. 13
2.5 Method .. 13
2.6 Thesis Outline ... 13

3 BACKGROUND ..15
3.1 Java 2 Micro Edition.. 15
3.2 MIDlets.. 16
3.3 JSR-82 ... 18

3.3.1 Introduction ... 18
3.3.2 Architecture ... 18
3.3.3 Benefits.. 23
3.3.4 Functionality.. 24

4 INTEGRATION INVESTIGATION ...25
4.1 Java / Obigo .. 26

4.1.1 Obigo Q-Line .. 26
4.1.2 PEmb overview ... 28
4.1.3 The integration .. 29

4.1.3.1 Overview.. 29
4.1.3.2 PEmb Thread ... 30
4.1.3.3 PEmb layers ... 30
4.1.3.4 PEmb integration ... 31
4.1.3.5 Incomplete Porting... 32

4.2 Bluetooth / Obigo.. 32
4.2.1 Bluetooth ... 32
4.2.2 Stack integration.. 36

4.3 JSR-82 / Bluetooth.. 37
4.3.1 JSR-82 integration issues .. 37
4.3.2 Textone.. 38
4.3.3 TLK ... 38
4.3.4 Using the TLK... 41
4.3.5 Textone TLK and Ericsson Bluetooth stack.. 43

4.4 Conclusions ... 44
4.4.1 Java / Obigo... 44
4.4.2 Bluetooth / Obigo .. 45
4.4.3 JSR-82 / Bluetooth .. 46
4.4.4 Integration design and specification .. 47

5 DESIGN...47
5.1 Approach... 48
5.2 Btone Simulator.. 49
5.3 Interfaces... 51

 8

5.4 KVM.. 52
5.5 KNI .. 53
5.6 Conclusions ... 54

6 INTEGRATION ELUCIDATION...55
6.1 The work ... 56
6.2 Time Estimation ... 59
6.3 Licenses and TCK .. 59
6.4 Conclusions ... 62

7 SOLUTIONS..62
7.1 Solutions outline ... 63
7.2 BT stack solution .. 64

7.2.1 Design, the product, scenarios... 64
7.2.2 The work ... 67
7.2.3 Licenses... 68
7.2.4 Time estimation... 68

7.3 Standalone solution .. 69
7.3.1 Design, the product, scenarios... 69
7.3.2 The work ... 71
7.3.3 Licenses... 71
7.3.4 Time estimation... 71

7.4 Full scale solution ... 72
7.4.1 Design, the product, scenarios... 72
7.4.2 The work ... 74
7.4.3 Licenses... 75
7.4.4 Time estimation... 75

8 JSR-82 INTEGRATION...76
8.1 Hardware and software ... 77
8.2 Implementation .. 77

9 FUTURE WORK..77

10 SUMMARY AND CONCLUSION ..78

11 REFERENCES ..79

APPENDIX A – ABBREVIATIONS ..81

APPENDIX B – JSR-82 METHODS...82

 9

List of figures

Figure 1: J2ME platform... 15
Figure 2: MIDlet life cycle ... 17
Figure 3: General JSR-82 architecture.. 19
Figure 4: J2ME architecture.. 22
Figure 5: The Obigo Modules and MSF... 27
Figure 6: PEmb Architecture .. 28
Figure 7: PEmb integration software configuration.. 29
Figure 8: Environment modules communicating with KVM ... 30
Figure 9: Layers of the PEmb integration model.. 31
Figure 10: Integration layers, PEmb and Obigo ... 32
Figure 11: The Bluetooth protocol stack .. 34
Figure 12: Bluetooth profiles .. 36
Figure 13: Bluetooth stack integrated with Obigo.. 37
Figure 14: TLK architecture ... 39
Figure 15: TLK solution architecture (1).. 40
Figure 16: TLK solution architecture (2).. 41
Figure 17: Java / Obigo integration .. 45
Figure 18: Bluetooth / Obigo integration.. 46
Figure 19: JSR-82 lib integrated with the PEmb lib ... 48
Figure 20: JSR-82 as a standalone library .. 48
Figure 21: JSR-82 integration with the Java KNI... 49
Figure 22: Software configuration using Btone Simulator ... 50
Figure 23: Two client’s communication via Bluetooth through the Btone simulator 51
Figure 24: The PSI interfaces and the PSC... 52
Figure 25: KVM architecture.. 53
Figure 26: Communication with the KNI interface .. 54
Figure 27: Integration layers, PEmb and Obigo ... 56
Figure 28: Solution for platform with JRE but without a Bluetooth stack 57
Figure 29: Solution for platform with JRE and with a Bluetooth stack............................ 58
Figure 30: Solution for platform with no JRE or any Bluetooth stack 59
Figure 31: BT stack - Customer platform... 64
Figure 32: BT stack - Integration of the KVM and the integration layer 65
Figure 33: The BT stack solution as a product ... 66
Figure 34: The BT stack solution integrated with customer platform.............................. 67
Figure 35: Standalone solution - customer platform... 70
Figure 36: The Standalone solution as a product.. 70
Figure 37: The solution integrated with customer platform ... 71
Figure 38: The Full Scale solution product placed on top of the customer platform 73
Figure 39: The Java / Obigo / JSR-82 integration today, with a missing BT stack and

BMS .. 74

 10

List of tables

Table 1: Time estimation BT solution .. 68
Table 2: Time estimation Standalone solution.. 71
Table 3: Time estimation Full Scale solution ... 75

 11

1 Notes

1.1 Focus change

The main task with this Master’s Thesis project was at first to integrate a JSR-82
implementation with Obigo Q-Line. But the consequences that followed large internal
delivery delays were that the focus on the thesis project was changed. When the delays
occurred no one knew how long I had to wait before I could get the necessary source
code for integrating the JSR-82 implementation with Obigo. Therefore the focus was
changed into answering the main questions stated in the “Goal” sub-chapter, and to
present a complete JSR-82 solution that could possibly be a future Teleca product.

After a while the required source code was finally delivered, and an investigation about if
there was time enough left to integrate the JSR-82 implementation was started. The
outcome from that investigation was that the JSR-82 implementation was going to be
integrated, but that there was no time for integrating a Bluetooth stack. What limitations
this brought is considered later in the report.

1.2 Internal information

Because of the usage of internal confidential information during this Master’s Thesis
project, some of the company names in this document are fictive and does not exist in
reality.

Profix, PEmb, Textone and Btone in this document are all fictive names.

 12

2 Introduction

2.1 Background

Java is one of the most used programming languages for creating software today. With its
possibilities and independence of the underlying platform Java is used worldwide by both
professional developers as well as the lay public for almost any kind of application
development.

JSR-82 (Java Specification Request) is the optional package including the APIs
(Application Programming Interface) for programming and controlling Bluetooth devices
with the Java programming language. The APIs are used in the J2ME (Java 2 Platform
Micro Edition) architecture, and have many advantages compared to native languages
like C++. To make use of the classes in the JSR-82 package, and the Bluetooth
functionality, Java applications called MIDlets are implemented. MIDlets are placed on
top of the J2ME stack on a wearable device, and makes calls to the different Bluetooth
methods in the JSR-82 library. When running a Bluetooth MIDlet the KVM (Kilo virtual
Machine) in the CLDC (Connected Limited Device Configuration) acts as a virtual
computer and executes the byte code output from the compiler. The Bluetooth stack then
responds to this execution and communicates further with the Bluetooth hardware.

2.2 Thesis description

What is the cost and what are the requirements for developing a JSR-82 solution within
the Teleca Company? What has to be done to integrate a JSR-82 implementation with
Obigo Q-Line? Which are the possible JSR-82 solutions? What does the already existing
integrations look like, and how can they be used in Teleca’s JSR-82 development? These
are some of the questions this thesis will answer.

2.3 Goal

There are two principal goals with this master thesis project. One is to answer the two
main questions:

• What different JSR-82 solutions is it possible to develop within the Teleca
Company?

 13

• How much will it cost in terms of licences, compatibility tests, time consumed,
and manpower for Teleca to deliver those JSR-82 software solutions to an end
customer?

The other goal with this Master’s Thesis project is to integrate a JSR-82 implementation
with Obigo Q-Line.

2.4 Scope

There are a lot of different technologies, systems, and integrations involved in this thesis
project, so one of the first tasks was to define what should be considered and what should
be left outside this project. Despite these restrictions, there are a lot of investigations that
had to be done. There was a need to be familiar with the J2ME platform and how to
develop MIDlets, the Bluetooth technology had to be investigated, the already existing
integrations i.e. the Java / Obigo integration, the Bluetooth / Obigo integration, and the
JSR-82 / Bluetooth integration had to be investigated and understood. There was also a
must to be familiar with Obigo Q-Line; how to implement functionality and how to
integrate external components. At last there was of course important to gain knowledge
and perform an investigation about the JSR-82 API.

In this project a JSR-82 implementation is integrated with Obigo, and the investigations
of the subjects above are gathered in a couple of internal Teleca reports. The outcome of
those investigations is presented in the internal Teleca document “Integration solutions”.

2.5 Method

At first the JSR-82 API and the J2ME platform had to be investigated. Then the existing
integrations had to be analysed and decided in which way those could be used henceforth.
Then the design of the Teleca JSR-82 solutions had to be made and settled, where after
those solutions could be elucidated and the circumstances for developing those had to be
investigated. After that the final solutions could be presented. After or in parallel with
this, the actual JSR-82 integration could be completed.

2.6 Thesis Outline

Chapter 5 is an investigation that elucidates the J2ME technology, MIDlets and the JSR-
82 API. Chapter 6 is an extensive investigation of the Bluetooth / JSR-82 integration,
Bluetooth / Obigo integration, and the Java / Obigo integration. This analysis was
important to the following integration design in chapter 7 that is a proposal of how the

 14

actual JSR-82 integration with Obigo is going to look like. Chapter 8 elucidates the
obscurities that can affect such JSR-82 integration by answering the main questions of
this Master’s Thesis project. Chapter 9 presents the result from this project, the Teleca
JSR-82 solutions. Chapter 10 is about the JSR-82 integration with Obigo, followed by
chapter 11 that presents what future work that is possible or even necessary. Chapter 12
concludes the Master’s Thesis.

 15

3 Background

3.1 Java 2 Micro Edition

The J2SE (Java 2 Standard Edition) platform, provides the Java components for the
stationary market. But on the Java 2 conference in June1999, Sun released a new
platform which they call J2ME, Java 2 Micro Edition.

The J2ME platform itself is not any piece of software; in fact it is a set of rules and
statements about how the Java programming environment should be configured to work
on wearable devices with limited resources. It is the primary platform for the wearable
market and consists of a JVM (Java Virtual Machine) specification and an API
specification [2].

Figure 1: J2ME platform

The J2ME platform is based on configurations, profiles, and optional packages. A
configuration combined with a profile and possibly some optional packages in a wearable
device is called a J2ME stack. The configuration is the lowest level and specifies the
minimal APIs that must be implemented to run Java on a low memory device. In figure 1
the CLDC/KVM represents the configuration layer. The CLDC also specifies a stripped
version of the JVM, named KVM [3]. Compared to the JVM the KVM only provides
reduced functionality, but still enough to be implemented and used in small devices. The
C programming language is the most used language for implementing a KVM. The KVM
acts as the lowest layer in the J2ME platform and provides abstraction over the native
environment. This will simplify the porting of an application to another environment;
only the KVM needs to be re-implemented because the applications uses the same
abstract interface independent of the KVM implementation.

Besides the KVM the CLDC configuration also specifies a set of Java packages and
classes; the minimal number that is required having a Java application execute on a
wearable device. The CLDC does not specify any GUI (Graphical User Interface) or
another user friendly mechanism. It is also required that the device has some kind of

Optional APIs MIDP

CLDC / KVM

Operating system

 16

underlying operative system that handles the execution of the KVM. This means that the
CLDC configuration supplies with the substructure for Java applications, but not enough
for satisfy the demands of most Java programmers but only what they expect always is
included in a J2ME stack. Therefore profiles are used. Profiles are the layer above the
configuration layer, and define a collection of APIs that are available in a certain set of
devices, for examples mobile phones. A J2ME profile is a set of Java classes that extends
the functionality of a J2ME configuration [2]. An application that implements a certain
profile can be used on any device that supports that profile. The most used profile in
mobile phones is the MIDP (Mobile Information Device Profile) which is the one that is
going to be described in this document. MIDP consists of a collection of Java APIs that
makes it possible to download and run Java applications on a mobile device, for example
user interface and networking APIs. The CLDC/MIDP combination is a very common
assembly because of the ease and developing- friendly APIs. Applications that are
developed for the CLDC/MIDP combination are called MIDlets.

The optional APIs extends the functionality even further; they define classes for devices
with special demands on the functionality, for example database connection or wireless
communication with the Bluetooth technology.

3.2 MIDlets

As told before, MIDlets are Java applications that are written to be put above the CLDC
configuration and next to/ above the MIDP profile, and can make use of APIs from both
of those specifications. A MIDlet itself is an instance of the
javax.microedition.midlet.MIDlet class that is defined in the MIDP profile. When
running a MIDlet on a wearable device, you must first download and install it on for
example a cellular phone. The class files of a created and compiled MIDlet is packaged in
a Java archive file, which one you have to download and install on the device. There is
also a descriptor file that comes with the developing of a MIDlet. The descriptor file
describes the content of the MIDlet, so that you do not have to download the whole
archive file just to examine the functionality of the current MIDlet. Once the MIDlet is
downloaded and installed, it has to go through a set of states; the life cycle of a MIDlet.

 17

Figure 2: MIDlet life cycle

At first, when the MIDlet is about to run, an instance is created and the application is
paused: it is in the Paused state. The instance is created by calling the constructor of the
application. The next state is the Active state. The MIDlet will reach this state when the
startApp() method is called. StartApp() is automatically called by the application
manager during the execution of the MIDlet [3].

From here on the MIDlet can reach two more states: Paused and Destroyed. When the
MIDlet does not have any current tasks to execute it may be paused and the pauseApp()
method is called. When the MIDlet has finished executing, or if the MIDlet itself has any
reasons to terminate, the destroyApp() or notifyDestroyed() methods are called. This will
terminate the run of the Java application on the wearable device. When the MIDlet is in
the Destroyed state it has no longer any memory references, and therefore waits for the
Garbage Collector to remove the instance and free some memory [3]. This is illustrated in
figure 2.

This is how the structure of a typical MIDlet looks:

Import javax.microedition.midlet.MIDlet;

Public class Application extends MIDlet {

Public Application() { }

 Public void startApp() { }

 Public void pauseApp() { }

 Public void destroyApp(Boolean b) { }

}

Paused

Active Destroyed

startApp() pauseApp()

destroyApp()

destroyApp()

constructor()

 18

This was a brief explanation of how a MIDlet works. As told before, a MIDlet makes use
of APIs from the CLDC configuration and the MIDP profile. But sometimes the purpose
with the MIDlet is more than those APIs can handle, and therefore it exists something
called optional APIs. Those APIs are classes that add even more functionality to the Java
stack, more specialized functionality to applications that have very specific requirements.
Examples on such requirements would be database connectivity, wireless messaging and
multimedia. All Java packages have names that start with JSR and are requests in the
Java Community Process. What interests us here, is the JSR-82 package; the optional
package for wireless developing with the Bluetooth technology.

3.3 JSR-82

3.3.1 Introduction

JSR-82 is the formal name of the APIs for the Bluetooth Wireless Technology (JABWT).
The JSR-82 specification defines the architecture of a J2ME Bluetooth system as well as
all the classes and methods that must be implemented having the system JSR-82
compatible. The JSR-82 API is based on the CLDC configuration and operates on top of
the CLDC layer in the J2ME platform, but in fact it is used to extend the functionality of
the profile layer. The most usual J2ME profile is the MIDP profile when developing for
the cell phones market, which adds functionality such as multimedia and end-to-end
security to the J2ME system [1].

The JSR-82 API has become a fast growing standard for Bluetooth applications on
mobile phones, and the goal is to define a standard set of APIs that will enable an open,
third party application development environment for Bluetooth wireless technology on
devices with limited resources.

3.3.2 Architecture

The general architecture of the JSR-82 API is based on three functional categories:
Discovery, Communication and Device Management [16]. Their relation is illustrated in
figure 3.

 19

Figure 3: General JSR-82 architecture

Discovery is the process of search for and discovers other Bluetooth devices. This
includes APIs for device discovery, service discovery and service registration. The
Communication category embraces the actual Bluetooth communication between
applications on wearable devices; establish and using the Bluetooth technology with the
JSR-82 API. Device Management is about managing this functionality of the Discovery
and Communication categories.

JSR-82 has support for the most common used Bluetooth profiles. By having support for
only the Bluetooth base profiles, the JSR-82 could quickly be introduced at the market,
and because that the higher-level profiles in the Bluetooth profile architecture are based
on the lower ones and extends their functionality, developers also have the possibility to
extend the API and implement the higher-level profiles [1]. Below is a list of the
supported Bluetooth profiles and protocols:

Protocols:

• Logical Link Controller and Adaptation Protocol (L2CAP)

• RFCOMM

• Service Discovery Protocol (SDP)

• Object Exchange Protocol (OBEX)

Profiles:

• Generic Access Profile (GAP)

• Service Discovery Application Profile (SDAP)

Application functions

Discovery

Device

Management

Communication

Uses Uses

 20

• Serial Port Profile (SPP)

• Generic Object Exchange Profile (GOEP)

The three functional categories contain the classes and interfaces for implementing the
Bluetooth functionality. A complete list of the JSR-82 methods can be found as an
Appendix. The JSR-82 classes and interfaces are listed below:

• javax.bluetooth.DiscoveryAgent

The methods in this class are implemented for handling the service and device

discovery.

• javax.bluetooth.DataElement

The Bluetooth service attribute can take on different data types. This class

contains those data types, for example String and Boolean.

• javax.bluetooth.UUID

UUID is a unique identifier for the service attribute. This class represents those

encapsulated integers.

• javax.bluetooth.DiscoveryListener

A MIDlet needs to have listeners that respond to device and service discovery

events. This interface makes this possible.

• javax.bluetooth.ServiceRecord

This interface enables Bluetooth services being described to Bluetooth clients.

• javax.bluetooth.LocalDevice

This class enables the user collecting information about the local Bluetooth

device.

• javax.bluetooth.ServiceRegistration

This class is used to register the internal services so that other devices can locate

them.

• javax.bluetooth.L2CAPConnection

 21

The methods for sending and receiving data through a L2CAP connection are

defined in this interface. Also the methods for obtaining the MTUs are defined.

• javax.bluetooth.L2CAPConnectionNotifier

This class contains only one method. This is used by servers to listen for

connections from L2CAP clients.

• javax.bluetooth.DeviceClass

The values for the device type and the types of services on a device are defined in

this class.

The Discovery category is split into three sub-sections of classes and interfaces (device
and service discovery and service registration), which all maps to the SDAP profile and
uses the SDP protocol. These are the DiscoveryListener interface, the DiscoveryAgent
class, the UUID class, the DataElement class, and the ServiceRecord interface. The JSR-
82 specification supports the following SDAP functionality [16]:

1. Searching for services of a particular class

2. Retrieving service attributes of a service

3. Simultaneously searching for services and retrieving their attributes and
terminating a service search transaction in progress.

The Device Management category contains classes and interfaces that are used for
configuring the local Bluetooth device, security and how it responds to other Bluetooth
devices. Those classes maps to and are part of the Bluetooth GAP profile. Also the
methods for requesting secure Bluetooth communication are located in this category. This
category contains the LocalDevice class and the RemoteDevice class.

The Communication category provides classes for connections to services that have
RFCOMM, L2CAP, or OBEX as the highest-level protocols. This last category maps to
the SPP profile, its methods lets devices offer SPP based services or initiate SPP based
requests. L2CAPConnection and L2CAPConnectionNotifier are interfaces of this
category.

 22

There are two independent packages defined within the JSR-82 API: the javax.bluetooth
package and the javax.obex package. Both are depending of the javax.microedition.io
package, but can exist independent of each other on top of a CLDC configuration [16].

The MIDP profile can be extended with the JSR-82 package. The JSR-82 package is still
not depending of the MIDP layer, but the JSR-82 / MIDP combination should doubtless
be the most usable way of using the JSR-82 API [1]. Figure 4 states an example of a
J2ME architecture where the JSR-82 API coexists with the MIDP profile on top of a
CLDC layer.

Figure 4: J2ME architecture

The MIDP Bluetooth applications (MIDlets) can either be aimed at the MIDP / JSR-82
layer or directly towards the CLDC configuration.

The BCC (Bluetooth Control Centre) is a piece of software required by the JSR-82 API
to exist in a Java Bluetooth system [1]. The JSR-82 does not specify how the BCC should
be implemented; the implementation of the BCC is a vendor issue. It may be
implemented as a set of Java classes or as a native application on the Bluetooth host. The
BCC is the central authority for local Bluetooth device settings and defines security
settings for your Bluetooth device, i.e. it is an integral part of the security architecture.
The BCC requirements stated in the JSR-82 specification are the following:

 Native
applications

MIDP Bluetooth
Applications

OEM specific
Applications

CLDC / KVM

Operating System and Bluetooth Stack

OEM
specific
Classes

MIDP | Bluetooth API

 23

• Include base security settings of the device.

• Provide a list of Bluetooth devices that are already known, no matter if the
devices are in range or not.

• Provide a list of Bluetooth devices that are already trusted, no matter if the
devices are in range or not.

• Provide a mechanism to pair two devices trying to connect for the first time.

• Provide a mechanism to provide for authorization of connection requests.

• Information contained in the BCC must not be modified or altered other than by
the BCC itself.

3.3.3 Benefits

So why use Java and the JSR-82 API to make use of the Bluetooth technology? It is a
well known issue that Java does not execute as fast as other languages like C or C++, so
why bother? The main reason for using Java generally speaking is its low cost for
development and its independence of underlying platform [4]. The Java programming
language is easy to learn, and the applications created with Java are easy to make
accessible to people who wants to make use of the software. Further on there are also two
another advantages with Java that makes it a good option when programming Bluetooth
applications. In the first place, the JSR-82 API is independent of the stack and the radio
[1]. You do not need to have any knowledge about the underlying Bluetooth stack or the
radio. As a programmer you can focus on the Java programming, not about other
challenging tasks like integration with the stack and such problems; that is a JSR-82 API
Vendor issue. Follow the Java and JSR-82 standard and your application will work with
basically any hardware and OS that has a CLDC/MIDP J2ME architecture integrated.

The other great advantage by using Java to develop Bluetooth applications is that the
JSR-82 is the only standardized Bluetooth API that exists [1]. When using a C or C++
based Bluetooth SDK (Software Development Kit), it is completely a SDK vendor issue
naming the functions and classes and which profiles that should be supported. To be able
to write JSR-82 applications, the Bluetooth stack must be JSR-82 compatible. This means
that the HCI, L2CAP, SDP and RFCOMM layers must be included. The required profiles
are GAP, SDAP, SPP and GOEP. If the Bluetooth stack fulfils those requirements, a Java
MIDlet that uses the JSR-82 API should be able to make use of this Bluetooth stack.

 24

3.3.4 Functionality

In a Bluetooth application, there are some basic components that you should be aware of
and which the application must be able handle. Those are:

• Stack initialization

• Device management

• Device discovery

• Service discovery

• Service registration

• Communication

As described above there is also something called the Bluetooth Control Centre that must
exist in a JSR-82 compliant environment according to the JSR-82 specification. The
Bluetooth Control Centre is very important because sometimes the initializing of the
Bluetooth stack must go through it, why it supports with different security settings for the
device. Because the control centre is vendor specific, the package name will be
something like com.vendor.bluetooth.bcc, if it is not written in a native language.

The first thing that has to be done is to initialize the Bluetooth stack. Sometimes this
initialization is done automatically, but sometimes it requires a small amount of code.
The com port name and the baud rate may have to be set.

The next thing to examine is the device management. This means that you should manage
your own device; query some statically information about your own Bluetooth device.
javax.bluetooth.LocalDevice is a class that gives you all the information about the own
device that is needed. But a part of the device management is also about getting some
brief information about other Bluetooth devises in the area.
javax.bluetooth.RemoteDevice gives the opportunity to access a single remote Bluetooth
device in the area and receive its twelve character address or its friendly name.

The device discovery part is about getting deeper information and knowledge about the
devices in the area. A client in a client-server based model should for example use the
device discovery to discover the server to expose its services. The two classes needed to
search for other devices are the javax.bluetooth.DiscoveryAgent and
javax.bluetooth.DiscoveryListener classes. For example, to start an inquiry in a Bluetooth
environment, the startInquiry(…) method in the DiscoveryAgent must be used. To be

 25

aware of when other devices are found, the DiscoveryListener is used. When the
DiscoveryAgent find another devise, the listener is called by the KVM whereupon the
deviceDiscovered() method is called.

When other Bluetooth devices are discovered, the next step is to investigate which
services they provide. This is about the same procedure as when searching for other
devices. The task is now to search for the services in the already located devices, which is
done by using the classes DiscoveryAgent, DiscoveryListener, ServiceRecord,
DataElement and UUID. The javax.bluetooth.DiscoveryAgent has for example the
methods searchServices() and selectService() that are used to search and select any
service in another device.

When you initialize your Bluetooth device, you make it ready to access or to be accessed.
To have other devices make use of your own services, you must register those so that
other devices can find them.

Then it is time to communicate with other devices, as what the Bluetooth technology
generally is about. RFCOMM connections are stream oriented and works as a virtual
serial port protocol. This type of connections should be used in situations when you
would replace a serial cable. The connection sequence can for example start with creating
a URL with a UUID on the server side, and then open a connection with this URL. This
thread should be blocked until a client makes a response to the connection, and then the
data streams could be opened. When the streams are open, the data can be sent and
received.

The L2CAP connections are in opposite to RFCOMM connections packet oriented. It is
about the same procedure as with stream oriented connections, but here the maximum
transmission unit must be set. Otherwise one device may send larger packets than the
receiver can handle which will cause problems.

4 Integration investigation

Obigo Q-Line is Teleca’s world leading software for mobile devices. Obigo consists of a
framework, a browser, a messenger, a content manager, an imager, Digital Rights,
security, and a studio. Today there exist an integration of Java with Obigo, and an
integration of the Bluetooth stack with Obigo. What is missing is a version of Obigo
where both of those technologies are integrated and connected to each other as described
in the Java APIs for Bluetooth wireless technology specification (JSR-82). Teleca wants
a third party JSR-82 implementation and an arbitrary KVM to be integrated with Obigo

 26

Q-Line. This will make it possible to download and run Bluetooth applications written in
Java to a wearable device where the Obigo Q-Line is embedded. For example multiplayer
MIDlet games over a Bluetooth network, or a MIDlet that lets the user print documents to
a Bluetooth enabled printer server.

This chapter is the result of an investigation of the already existing integrations
Java/Obigo, Bluetooth/Obigo, and also the software company Textone’s integration of
the JSR-82 API with the Bluetooth stack. There is shed light upon the different
integrations, and in the end conclusions are given.

The main purpose with this integration investigation is to elucidate the obscurities with
the different integration that exists, how they are done, their similarities, and things that
couple them together. This investigation should also be very helpful in the next phase of
the project where the design of the JSR-82/Obigo integration is made.

4.1 Java / Obigo

4.1.1 Obigo Q-Line

Obigo Q-line is Teleca’s software product for mobile platforms. It is a framework that is
used on top of existing operative systems of native targets to introduce an environment
with pre-defined and usable functionality, such as browser, messaging, content handling
etc. The Framework consists generally of two main parts; the Mobile Suite Framework
(MSF), and the modules that mostly independently of each other handle the specific tasks
that the Obigo Q-Line supports (figure 5). The principal task of the MSF is to provide a
common framework for Obigo applications and services to execute within. An
advantageous feature with this framework is that it hides its platform dependence by
disposing a higher level application support for developers that uses the MSF. The MSF
consist not only of API specifications for those different task modules, but also actual
implementation of the Obigo functionality.

 27

Figure 5: The Obigo Modules and MSF

When integrating the Obigo framework on a native platform, some important interfaces
must be implemented to make communication between the module and the operative
system possible, and also to provide communication between different modules. Those
interfaces are those who abstract the platform dependence to the developer of Obigo
modules. There are two kinds of interfaces; Service APIs and Integration APIs. Service
APIs are interfaces that are used by different modules to communicate with each other.
Integration APIs are the interfaces that are used when entities in the host device wants to
communicate with the modules. Those interfaces are either an adaptor or a connector.
Adaptors are used when the software module wants to communicate with the surrounding
entities in the operative system. Connectors are used in the opposite direction.

When implementing an Obigo module, certain steps must be considered. At first the
functional scope of the Module must be set to be able to determine what kind of interface
that will suite. Then the module will be implemented, adapted to the MSF, followed by
the implementation of the interfaces and the packaging functions. A user manual for the
module must also be proposed and written.

One of the products in Obigo, and the one which is most relevant for this investigation, is
the Content Manager Service (CMS) module. This service handles the downloading of
MIDlets, and is providing an interface for communicating with a KVM. Through this
interface, the CMS informs the KVM about installed MIDlets, and about starting and
stopping those. The CMS handles the J2ME functionally Teleca today delivers to their
customers.

Messaging Browser Content Manager

Mobile Suite Framework

Integration with necessary operative system resources

 28

4.1.2 PEmb overview

PEmb is Profix Java platform for embedded devices. PEmb Micro is a variant adapted for
the handheld market and for devices with limited resources; it is a J2ME stack intended
for integration with existing operative systems in handheld devices.

PEmb is because of the portability with Java easy to integrate with a native platform and
OS, and enables use of the Java technology in almost every kind of wearable device.
Profix product is a Java Runtime Environment supporting the CLDC configuration,
including their implementation of a KVM. It also supports the MIDP profile for
downloading and running Java MIDlets. Further optional packages are also supported, as
for example the JSR-82 API for Bluetooth wireless communication.

Figure 6: PEmb Architecture

In figure 6 all layers between the Java application and the Device manufacturer
implementation is PEmb layers. Those altogether are called the PEmb library, and are
provided as precompiled, re-linkable libraries. The device manufacturer implementation
is the consumers own implemented interfaces adopted for their own platform, for
integration with the PEmb specifications. The Java application on top of the PEmb
libraries is a MIDlet that contains the source code that uses the underlying layers.

Java Application

Operator
Extension

JSR
Extension

MIDP 2.0 / 1.0

CLDC 1.1 / 1.0

Virtual Machine (KVM)

Device manufacturer implementation

OS and Hardware (Platform)

 29

4.1.3 The integration

4.1.3.1 Overview

The integration of Profix PEmb with the Obigo Q-Line is an attempt to have Teleca’s
software suite download and execute Java Applications. Because of the expanding use of
the Java technology on the handheld market, a KVM is now more of a requirement than a
feature in almost all mobile phones on the market today.

The general PEmb software configuration for integration is illustrated in figure 7. The
Java application is a downloaded MIDlet that is going to be executed inside the KVM.

Figure 7: PEmb integration software configuration

The AMS is the Application Management Software, software that manages Java
applications, for example the downloading of MIDlets and installing and deletion of
those. Also execution management, i.e. the processing of starting a MIDlet is handled by
the AMS. The KVM inside the PEmb stack is a Java Virtual Machine with reduced
functionality. The KVM main task is to load the class files and execute the byte code they
contain. The task can be divided into three general parts:

• Starting and running a MIDlet using a JAD and/or JAR file

• Stopping a MIDlet using interface call or user intervention

• Extracting a file from ZIP

The interpreter inside the KVM interprets the byte code into machine code that can be
understood by the operative system.

The purpose of the integration of Profix KVM with Obigo Q-Line was to pass all Sun’s
TCK tests for MIDP 2.0 on a Windows platform. The Obigo modules that are built and

Java application AMS

PEmb

Functions called by KVM

 30

tested with the integration are CMA, CMS, CPS, DRS, PHS, SES and STK. This means
that the integration may not work properly if other modules are added.

4.1.3.2 PEmb Thread

Since the PEmb library has to run in a separate thread in a native environment the Hybrid
Wrapper Module has been created. The PEmb library has to access Obigo services in an
asynchronous manner, and therefore the calls from the PEmb are transformed into
asynchronous calls by suspending the PEmb library while the request is processed. The
result from Obigo is then retuned to the PEmb when the thread is resumed, which make
this synchronous – asynchronous communication including the message passing style in
Obigo work properly. Hence the PEmb and the KVM will share the same memory
context, which also is a requirement for using the PEmb library in any environment. The
Wrapper Module is a re-implementation and replacement of the earlier KIS
implementation (Figure 8). KIS is a KVM interface service that worked as a loop-back
for KVM calls in Obigo.

Figure 8: Environment modules communicating with KVM

4.1.3.3 PEmb layers

The layers in the PEmb part of the integration consist of the PEmb library, PSI interfaces,
PSC components, and some lower layer interfaces and components. This is illustrated in
figure 9. Since the PEmb library is delivered as pre-compiled source code, a binary
library, there must exist some interfaces that are wrapping the target platform. Those

CMS

Other Obigo Modules

KVM

PEmb lib

MSF

 31

interfaces are called PEmb Service Interface (PSI), and are defined at a very high level.
To implement those interfaces, components called PEmb Service Component are created.
Those are implementations of the definitions in the PSI interfaces, and provide the actual
functionality between the PEmb library and the target platform. There also consists
interfaces at a lower level but those are not particularly interesting for this integration
because main parts are done with PSI interfaces.

Figure 9: Layers of the PEmb integration model

4.1.3.4 PEmb integration

The design model of the complete integration consists of many parts and looks rather
complex (Figure 10). The main request was to integrate the PEmb library on top of
Obigo, but because of the limited requirements, some parts was not integrated with Obigo
but instead directly to Windows. This was completed by using the Profix Windows RI
(Reference Implementation) code as a lower layer interface. The affected part was the
MIDP 2.0 Media Library, which fell out of the frames for the estimated time.

The Obigo PSC (PEmb Service Component) in the picture below is the Obigo
implementation of the PSI. It contains a module all dedicated to Obigo, to handle
asynchronous and long lived operations that needs to be performed by the PSI. The
Profix PSC is an implementation that holds the PEmb Graphic library (JBGL), and is
implemented towards the MSF as a lower layer interface. Because the MSF does not
provide all features stated in MIDP 2.0, some new functions had to be defined towards
the KVM. Those functions are called KVM HDI, and are handling the execution of this
MIDP functionality.

PEmb lib

PSC

PSI

 32

Figure 10: Integration layers, PEmb and Obigo

4.1.3.5 Incomplete Porting

Because the integration is running on a windows based platform, all porting was not done
to Obigo but directly towards Windows. Some of the porting was also omitted because of
its complexity and the time it have required to integrate fully. The file handling is now
running in a synchronous manner, where some work is required to make it be
asynchronous. The Media integration uses the PEmb Windows Media RI instead of
Obigo PSC. Also the graphics, the permissions, the unzipping, the certificates, and the
DRM, are not fully Obigo integrated, and requires a lot of work to be completed.

4.2 Bluetooth / Obigo

4.2.1 Bluetooth

Bluetooth is a technology that simplifies the wireless communication between
protocols just as any other communication protocol; it tells how to connect two or more
Bluetooth enabled devices and have them communicate with each other. The purpose
with Bluetooth is not being the technique with the highest data transfer speed, not either
the most wide ranged type of wireless communication. Bluetooth uses the radio spectrum
for communication, which means that there is no need for line of sight between the
devices that wants to connect to each other. The Bluetooth represents simplicity and user-
friendly usage of wearable devices that want to communicate.

PEmb lib

Obigo PSC Profix PSC

Windows

KVM int MSF

Profix RI

CMS Other
modules

Low layer
interface KVM

 33

The Bluetooth protocol stack is the controlling part and the one implementing the
Bluetooth protocol (Figure 11). The protocol stack lets you control your own device, and
communicate with other devices. The stack is divided into layers:

• HCI: The Host Controller Interface is a software layer that handles the data
transfer to and from the Bluetooth device. If a Bluetooth device for example is
connected to the computer with a USB cable, then someone must understand the
USB data signals. This is the task of the HCI layer.

• L2CAP: The Logical Link and Adaptation Protocol process all traffic except the
audio signals that comes from the HCI layer. The functions of the L2CAP layer
are packet segmentation and re-assembling of data. It also deals with multiplexing
if it receives much data at the same time that is addressed to different layers at a
higher level.

• SDP: The Service Discover Protocol does exactly what the name says; it
discovers services that other Bluetooth devices provide.

• RFCOMM: This layer emulates a RS232 connection, which means it works as a
cable replacement protocol. A wearable device would for example synchronize
data with a computer thorough the RFCOMM layer just as if it were transferred
with a serial cable.

• TCS-BIN: The Telephony Control Protocol Specification handles all signals that
have to do with telephony, answer calls, hang up calls etc.

• WAP: This is a protocol that has been adopted to fit Bluetooth’s needs with
internet accessing wearable devices.

• OBEX: This is an object exchange protocol and is also adapted to Bluetooth. As
the name implies it is used when transferring files between Bluetooth devices.

• BNEP: The Bluetooth Network Encapsulation Protocol allows other network
protocols to be transmitted over Bluetooth. BNEP encapsulates TCP/IP packets in
L2CAP packets before sending them over the network.

• HID: The Human Interface Device Protocol is adopted to control human
interfaces like keyboards and video game controllers. HID lists the rules and
guidelines for transmitting data to and from those.

 34

Figure 11: The Bluetooth protocol stack

Besides the protocol stack, the other main part in Bluetooth is the profiles. The Bluetooth
profiles define different sets of functionality for Bluetooth devices. If one Bluetooth
device for example has a certain kind of functionality, what determines if that device can
use its functionality together with another phone? It is the profiles that decide such
things. Cordless Bluetooth headphones must of course support the headset profile, but
also the Bluetooth device on the computer that the headphones are connected to must
support this profile. Therefore, to have two Bluetooth devices communicating with each
other, they must both have the protocol stack and implement the required profiles for the
action.

The profiles are all in some way connected and dependent on each other (Figure 12). The
General Access Profile (GAP) is the base profile that all the other profiles are dependent
upon. The profiles are constructed in a hierarchy where the higher ones depend on the
lower ones; the functionality of a higher profile needs the functionality of the lower one.
The most used profiles are:

• General Access Profile: This is the base profile, and the one that controls the
basic connection establishment. All the other profiles are dependent upon this
one.

• Service Discovery Application Profile: A profile that issues exactly what the
name implies: it has direct contact with the Service Discovery Protocol and search
for services on other Bluetooth devices in the area.

OBEX

TCP/IP

OBEX

UDP/IP

RFCOMM

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI)

SDP HID BNEP TCS

TCP/IP Audio

 35

• Serial Port Profile: Communicates with the RFCOMM protocol, and creates a
virtual serial connection to another Bluetooth device.

• Generic Object Exchange Profile: A profile that controls the use of the OBEX
protocol in the Bluetooth stack.

• Human Interface Device Profile: A set of functionality defined for use with the
HID protocol that sets the guidelines for human interfaces like mice or keyboards.

• Personal Area Networking Profile: A profile that supports wireless networking
in Ad-Hoc form. Requires the BNEP protocol in the Bluetooth stack.

• FAX Profile: Just as the name implies: makes it possible to send fax wireless
between for example a computer and a fax machine.

• LAN Profile: Same functionality as defined in the PANP, but this profile makes
LAN networking possible.

• File Transfer Profile: A profile that supports file transfer from one Bluetooth
device to another.

• Object Push Profile: Defines functionality for pushing and pulling a limited type
of files, for example vCards.

This is a general description of the Bluetooth technology, and what is needed to
understand the integration of Ericsson’s Bluetooth stack with Obigo.

 36

Figure 12: Bluetooth profiles

4.2.2 Stack integration

The integration of the Bluetooth stack with Obigo is made internal at Teleca in Lund. The
stack is controlled by a Bluetooth Manager Service inside Obigo, which controls the
message passing to and from the stack. This is discussed on the next page.

Figure 13 shows the integration of the Bluetooth stack with Obigo.

Generic Access Profile

Serial Port Profile

Generic Object Exchange Profile
 FAX Profile

LAN Profile

SDAP HID PANP

File Transfer Profile

Object Push Profile

 37

Figure 13: Bluetooth stack integrated with Obigo

When integrating the Bluetooth stack, a couple of issues had to be concerned. Should the
stack be fully integrated into the Obigo framework, or should the stack be in the native
environment? The result is that most part of the stack is running inside Obigo, with only
the most critical parts left outside. Those critical parts are the timer and the read and write
process that must run continuously.

Since Obigo and the Bluetooth stack use different message passing systems, an adaptor-
callback interface was created. When sending a message from Obigo to the stack, a call
to a suitable adaptor function is made. This function transforms the call into a message
and passes it to the appointed receiver, the process receiving queue. If a response is
possible to the original call, then a callback function is specified in the passed message.
Therefore the receiving process knows which function in the interface is the correct for
the returning message.

4.3 JSR-82 / Bluetooth

4.3.1 JSR-82 integration issues

JSR-82 has support for the most common used Bluetooth profiles. The scope of the
JABWT was defined this way because of the diversity with the many different devices

Obigo

Bluetooth Manager Application

Bluetooth Manager Service

Bluetooth Stack

Native

Low level Bluetooth Stack

Hardware

 38

and user scenarios Bluetooth is involved in. By having this support for the Bluetooth base
profiles, the JSR-82 could quickly be introduced at the market. Because the higher
profiles in the Bluetooth technology are based on the lower ones, and extend their
functionality, developers are free to implement the higher profiles too. The profiles that
are supported are the Generic Access Profile, the Service discovery Profile, the Serial
Port Profile, and the Generic Object Exchange Profile. The Bluetooth Control Centre and
the Service Discovery Database are also abstracted from the Java API.

JSR-82 is stack and radio independent which make it very interesting to companies that
will add Bluetooth functionality to their platform. It is also very easy to develop
Bluetooth applications with Java compared to C or C++. Therefore Java and MIDlets is a
very up-and-coming technology when talking about wearable devices like mobile phones,
and Bluetooth applications are today widely used. JSR-82 will for sure be a very used
package in most Java Runtime Environments on the handheld market.

4.3.2 Textone

Textone is a leading mobility solutions provider in the European marketplace. The
company is a member of the JSR-82 expert group and of the Bluetooth SIG, and among
their products a Java/Bluetooth solution can be found. This implementation uses standard
Java APIs and the optional package JSR-82 for communication with the Bluetooth stack.
This solution is called the Bluetooth Technology Licensing Kit (TLK), and adds
Java/Bluetooth capability to the customers’ platform. This product is adapted to platforms
that already have a Bluetooth stack integrated, and who wants to make Java MIDlet
applications make use of it. Ericsson has a co-operation with Textone where the
companies have integrated their products; Textone’s Java/Bluetooth solution with
Ericsson’s Bluetooth stack.

This part of this investigation chapter, will focus on the TLK from Textone, and how to
integrate it with a Bluetooth stack. The integration of Textone’s implementation of the
Java APIs for Bluetooth Wireless Technology with the Bluetooth stack from Ericsson
will also be investigated.

4.3.3 TLK

TLK stands for Technology Licensing Kit, and is a product that adds Textone’s
implementation of the JSR-82 APIs to the target platform. The TLK also consists of some
porting and development tools.

 39

The TLK is divided into three different parts: JABWT, the asynchronous event manager,
and the RACS (Figure 14).

Figure 14: TLK architecture

The JABWT in the picture above is Textone’s implementation of the Java APIs for
Bluetooth Wireless Technology, and follows the JSR-82 standard defined by the expert
group of the Java Community Process. The RACS, Textone Abstract C Stack, is an
integration layer written in C that implements the Java methods declared in the JABWT.
The RACS works as an interface between the JVM of the target platform and the
Bluetooth stack, and is an event based model that uses asynchrony communication to
connect the Java Bluetooth abstractions to the Bluetooth API. Its structure and design is
made as generic as possible, so that the porting to different stacks on different platforms
should be as easy as possible. To have this RACS layer integrated with the JVM (KVM)
of the target platform, either the JNI Java API or the JVM native integration mechanism
is used.

The Asynchronous Event Manager is a layer between the JABWT and the RACS, which
dispatches events asynchronously from the layer below to the layer above. Because many
Bluetooth stack APIs provides an asynchronous event based mechanism, the RACS uses
the KVM asynchronous native methods for integration with the stack.

A general structure and design of a JSR-82 compliant architecture could contain the
following parts (Figure 15):

• MIDlet: a Java application that uses the Bluetooth technology. It could be for
example wireless multiplayer gaming, or connection with a printer server.

• Local device manager: This component is responsible for implementing the
logical HCI connection with the Bluetooth device, and the remote device
discovery and the remote service discovery.

JABWT

Asynchronous Event Manager

RACS

 40

• Remote device and service discovery engine: responsible for the remote devise
and remote service discovery. Accesses through the agent in the JSR-82 stack.

• Bluetooth connection: A manager that communicates with the two connection
profiles GAP and SPP, depending on the discovered service address.

• Physical connection: The connection between the physical device, and the
controller that controls it.

• GAP connection: The connection that manages the L2CAP communication
protocol. Accesses the JSR-82 stack through a separate thread.

• SPP connection: The connection that manages the RFCOMM communication
protocol. Also accessing the JSR-82 stack by creating a thread.

• Messaging routing engine: The synchronization engine for the GAP and SPP
threads makes the data transfer reliable and stabile.

Figure 15: TLK solution architecture (1)

Next step is to add the TLK from Textone into this architecture (Figure 16). The Message
routing engine and the remote device and service discovery engine should communicate
with the JABWT implementation of the Java stack. And the connection between the
module that controls the device and the device itself should be viewed in this model:

MIDlet

Bluetooth connection

Local Device Manager

Remote device and service
Discovery engine

Physical
connection

GAP connection

SPP connection

Message routing engine

 41

Figure 16: TLK solution architecture (2)

The Bluetooth protocol stack and the Bluetooth device are also included in this model.
This is a general picture of the JSR-82 architecture that could be applied as a fundamental
image about how the integration of the JSR-82 API could be done.

4.3.4 Using the TLK

To implement applications those make use of the TLK functions, and the Bluetooth
technology, standard Bluetooth functionality calls are used. The procedure can be divided
into several steps: device discovery, creating services, accessing services, using
RFCOMM, using L2CAP, and Bluetooth security.

The device discovery process consists of two main parts: the device inquiry where the
device searches for other Bluetooth devices in the area, and the device retrieval where the
device queries a pre-configured list of devices or uses the results of a previously device
inquiry.

Message routing engine

JABWT (JSR-82)

Remote device and service
Discovery engine

Physical
connection

Asynchronous Event Manager

RACS

Bluetooth protocol stack

Bluetooth device

 42

The device inquiry can be divided into four different steps. At first a Discovery Agent
must be obtained whereupon the discovery listener interface must be implemented. Then
the Discovery Agent must be used to initiate the search, which also will supply the
listener with notification of the events. The last step is to verify that the detected devices
are of the appropriate class.

A device retrieval is an option to the sometimes very time consuming device inquiry. The
device retrieval makes access to other devices without a device inquiry. This can be done
by either using the results of a previous device inquiry, or to query a pre-configured list
of devices. The first step is to obtain a Discovery Agent, in which a retrieve-devices
method can be found and used. To have this method return a list of devices from a
previous inquiry, a cache over devices is passed as argument. To use a pre-configured list
of commonly used available devices, a list of pre-known devices is passed as argument to
the retrieve-devices method.

To make the services of a Bluetooth available to other devices, they must be registered.
This is called service registration, and stores the services of a device into the Service
Discovery Database (SDDB). If the services of a device is changed or removed, the
service must be updated to provide other Bluetooth devices with the latest information.
At first a service record must be created. The service record describes the service and
what are required to access it. This is done with the Service Record interface, where the
attribute ID and attribute value type are set. When the service is ready to be published on
the network, an accept-and-open method is called. The record will then be stored in the
Service Discovery Database.

When a Bluetooth device has gone through the process of detecting other devices, it is
time to investigate which services are available on the found devices. This is called
service discovery. The device that has been requested for its services sends a list back as
a response to the service discovery. Because a server can update its services, other
Bluetooth devices can poll the server for updated information. To discover a service in a
Java MIDlet you must at first obtain a discovery agent, and then implement the discovery
listener interface. Then a search-services method is called to retrieve the accessible
services on the device. When a service is found, a connection to it must be created. This
is done by first use the service record returned by the server to get a connection URL,
whereupon this URL is used to connect to the service.

RFCOMM emulates serial communication of a RS232 port between two Bluetooth
devices. There are restrictions of how many connections that can be multiplexed over a
RFCOMM session, which makes some demands that the programmer must show
consideration for. To create and accept a server side RFCOMM, the server must first

 43

create a special URL (Uniform Resource Locator) that describes the service and create a
service record. Then this service record must be made available to the clients, and the
server must also accept client connections. Then it is time to send and receive data to and
from the client. To create a client side RFCOMM, the client must first perform a service
discovery to found available services and to get the service record. Then the client must
construct a URL with information from the service record, and open a connection to the
server. Then data can be sent to and from the server.

The layer below RFCOMM is L2CAP. L2CAP makes it possible for Bluetooth devices to
communicate with applications and higher layers of the stack. The JSR-82 API supports
connection oriented L2CAP connections only, there is connectionless L2CAP
communication too, but those are in order not supported in JABWT. To establish a server
side L2CAP connection, the server device must create a service record and construct a
URL that describes the service. Then the server must make the service available, and
accept connections from clients. Then a communication between a server and a client is
possible and data can be sent between them. If the client wants to create a L2CAP
connection, the device must at first perform a service discovery. When the service record
for the service is received, the client must construct a URL by using this service record.
Then the client can open a connection to the server with this constructed URL. Now data
can be sent between the client and the server.

Every application that runs on a Bluetooth device has it own security and configuration
settings. The Bluetooth Control Centre is the software that controls those settings on
different applications. Two Bluetooth devices can be associated together with a key. This
process is called bonding, and is a requirement for further security functions like
authentication, encryption, and authorization. For a device to be authenticated, it must
send the key to the other device, to prove that it is the one he claims to be. Encryption is
the process of distortion upon a collection of data so it differs from the original data, and
so that no one without the decryption key can decrypt it. The last security challenge,
authorization, is the process to determine whether a client should get permissions to
access the data he wants to access. Only a service can request authorization. When adding
security to Bluetooth communication using JABWT, optional security parameters are
added to the connection URL. For example, a client connection to a RFCOMM server
can be encryption protected by adding the encryption parameter to the connection URL
on the server side.

4.3.5 Textone TLK and Ericsson Bluetooth stack

To provide a complete Java/Bluetooth solution, Textone and Ericsson have combined
their solutions; Ericsson’s Bluetooth stack integrated with Textone’s JSR-82/Bluetooth

 44

solution. The solution is produced to work in wearable devices, such as mobile phones,
that do not contain any Bluetooth stack.

Platform independent applications (MIDlets) are placed above the JSR-82 optional
package in the J2ME stack. This integration of Textone’s JSR-82 and Ericsson’s
Bluetooth stack requires that the target platform has a JRE already integrated. The RACS
needs to be integrated with a JVM to communicate with the Bluetooth stack, so a CLDC
configuration with a KVM, and the MIDP profile that enables downloading of MIDlets is
a requirement on the target platform.

This integration provides a solution that has no dependencies in the target operative
system. Ericsson’s VOS layer abstracts such dependencies and handles issues such as
memory management and message passing. The only aspect that must be well considered
is the multithread support in the target operative system. An asynchronous model is used
by the TLK for communication with the Bluetooth stack and for integration with the
KVM. The Bluetooth stack in turn provides an asynchronous API that models the
Bluetooth protocol event mechanisms. To make this fit, the RACS uses the asynchronous
native interface methods in the KVM as the most effective approach to stack integration.
The TLK is based on a multithread approach, where the threads block waiting for an
event, and where each thread has a single message queue. If the target platform for the
TLK is non-multithread based, another ways of event processing must be considered. The
TLK uses macros to deal with this issue. VOS_SEND and VOS_RECV are two macros
defined by TLK, that map to the Ericsson Bluetooth stack functions Vos_Send() and
Vos_Receive() in a multithread environment. If the target platform does not support
multitasking, those macros must refer to other functions that handle the alternative
approach for multi-tasking.

4.4 Conclusions

This chapter is the result of the investigation about the integrations of PEmb with Obigo,
the Bluetooth stack with Obigo, and JSR-82 with the Bluetooth stack. Those integrations
are all made independently of each other, and the purpose with this investigation was to
have more knowledge about those, and how to carry on with the integration of the JSR-82
API with Obigo.

4.4.1 Java / Obigo

The integration of a Java Runtime Environment with Obigo (figure 17) is the most
interesting for the future of this thesis work.

 45

Figure 17: Java / Obigo integration

The PEmb Library is supporting the JSR-82 API, but since this PEmb library is delivered
as pre-compiled source code, a new build including the JSR-82 implementation must
probably be inquired from Profix. This is though a design issue discussed in the design
chapter.

4.4.2 Bluetooth / Obigo

The integration of the Bluetooth stack with the Obigo is also interesting for this thesis
project. In a final solution version of Obigo where there is possible to download a
Bluetooth MIDlet and communicate to another Obigo device, there must besides the
J2ME stack, also be a Bluetooth stack integrated in the same device.

PEmb Libraries

Obigo PSC

KVM

MSF

Target environment

 46

Figure 18: Bluetooth / Obigo integration

This integration of the Bluetooth stack with Obigo (Figure 18) is made placing the main
part of the Bluetooth stack inside Obigo, and the low level parts in the native
environment. This solution was chosen because it was less time consuming than the other
solutions, but still easy to port to another target environments.

It is undecided whether or not this kind of Bluetooth integration will be used in a final
Java / Obigo / BT integration. This because of restrictions Ericsson recently has done
according to the usage of their Bluetooth stack. To integrate another Bluetooth stack is
outside the scope of this project, it would be too time consuming. Instead a Bluetooth
simulator will be used for testing and demonstration of the JSR-82 integration with
Obigo.

4.4.3 JSR-82 / Bluetooth

The integration of the Java API for Bluetooth wireless communication, the JSR-82, with
the Bluetooth stack is made by the software company Textone, using Ericsson’s
Bluetooth stack. This solution is constructed with the purpose to integrate with an
existing J2RE in a wearable device, for example Profix PEmb investigated in this
document. The relationship, if there are any, between Profix PEmb and Textone’s TLK /
Bluetooth integration, will be discussed in the next chapter.

Obigo

Bluetooth Manager Application

Bluetooth Manager Service

Bluetooth Stack

Native

Low level Bluetooth Stack

Hardware

 47

4.4.4 Integration design and specification

The design chapter will focus on how to integrate the JSR-82 with Obigo Q-line. The
integrations of this investigation will be used to the most extent possible, but new angles
of approach must also be done.

5 Design

This chapter describes how an integration of the JSR-82 API with the Obigo framework
can be done. This integration design will be based on the previous investigation that has
been made, gathered in the Integration Investigation chapter, and on the conclusions from
that investigation. A brief explanation of the integration is that the JSR-82 library from
Profix will be integrated with the Java / Obigo integration, i.e. the PEmb that is integrated
with Obigo. This is followed by a possibly integration of the Bluetooth stack with this
assembly, in any case a deliberation of how such an integration could be done.

Different approaches will be discussed, and one of them will be chosen for the actual
integration. Questions as how the already existing integrations can be used and possibly
reused will be answered, illustrations of the integration will be made, the PSI interfaces
and the PSC components will be explained and discussed. Data flows of the interfaces are
also important points that will be considered. The Java KNI will also be discussed as a
detached section, as a completely different approach of what can be done to create a
product where Profix PEmb is disregarded.

In the Java version of Obigo there is no Bluetooth stack integrated. How can this be
solved? And in the end, if there is no Bluetooth stack integrated, how can an integration
of the JSR-82 with the Java / Obigo version be demonstrated and presented? Those
questions will be answered within this integration design.

Also conclusions about the further work in this project, i.e. if an actual integration within
the scope of this thesis work is possible, and if so, how this integration will look like and
what is going to be made to have a working demo in the end of this project.

The purpose with this integration design is to come to certain conclusions that will
simplify the actual integration of the JSR-82 API. One purpose is also to elucidate
different approaches, and other ways and ideas of how the JSR-82 can be used within the
Teleca Company. Output from this design will be greater knowledge about the
integration, and the approach that will be used for a possibly integration.

 48

5.1 Approach

The output from the Integration Investigation is very interesting for the design of the
integration of JSR-82 with Obigo. From a higher point of view there is many different
ways to go, different solutions that all could lead to a complete JSR-82 solution. Profix
PEmb is today integrated with the Obigo Q-Line. The PEmb library is delivered as pre-
compiled source code that is connected to the KVM module inside Obigo. One approach
of integration is to add the JSR-82 library into the existing PEmb library, and have it
connected via interfaces to the Obigo component that implements the Java interfaces
(Figure 19).

Figure 19: JSR-82 lib integrated with the PEmb lib

Another approach would be to keep the existing PEmb library intact, and let the JSR-82
be a standalone library (Figure 20). This would require some kind of interfaces against
the PEmb library that handles the JSR-82 calls.

Figure 20: JSR-82 as a standalone library

There are different advantages with those two examples of integration. The first example
will require a completely new PEmb build delivered from Profix, containing also the
JSR-82 library. Whether this is possible or not is being discussed outside the scope of this
thesis work. But this solution will set the fact that the existing PEmb architecture can be
used. The interfaces declared from Profix must be implemented in Obigo PSC to have the
JSR-82 API communicating with a future Bluetooth stack. The other integration example
would not require any new PEmb build from Profix, but only their implementation of the

PEmb library

Obigo PSC

JSR-82

PEmb library JSR-82

PSC

 49

JSR-82 library. In this case some interfaces towards the PEmb library must be
constructed to have the JSR-82 API work together with the KVM and the CLDC/MIDP.
There is also unknown if Profix have any standalone version of the JSR-82
implementation and this type of interfaces, or if the only possibility is to have it delivered
inside the PEmb library. In any case, another way to do this is to leave Profix outside this
integration, and have another JSR-82 implementation integrated with Obigo, for example
one that is being developed at Teleca (Figure 21). In this case Teleca also has the
possibility to deliver a JSR-82 solution independent of a JRE, in this case PEmb, to a
customer that already has a KVM integrated in their environment but wants support for
the Bluetooth technology. This can be solved by constructing interfaces with the Java
KNI methods instead of using the PSI interfaces from Profix.

Figure 21: JSR-82 integration with the Java KNI

For this thesis work the only solution that is possible within the scope of the project time
and manpower, is the first one where a new build is delivered from Profix. The interfaces
towards the JSR-82 library inside the Obigo PSC would not be very time consuming to
implement. If a new PEmb build containing the JSR-82 library is delivered from Profix,
this PEmb can without too much effort be integrated with Obigo. Then the first step is to
construct some dummy interfaces that make it possible to build this new solution. Then
those JSR-82 PSI interfaces can be implemented to have the Java Bluetooth methods
inside the lib work correctly, and have them ready for being used inside Bluetooth
MIDlets.

5.2 Btone Simulator

One problem with this integration is that there is no Bluetooth stack integrated within this
version of Obigo. An integration of a Bluetooth stack with this Java/Obigo version can be
done, but there is an imminent risk that such integration would be too time consuming for
this thesis work. In that case, the communication between the JSR-82 library, the KVM
and the Bluetooth stack would not exist. The purpose with this thesis work was not to

JSR-82 lib

JSR-82
KNI

component

 50

integrate a Bluetooth stack, but there may be a problem to demonstrate the functionality
of the JSR-82 integration without a Bluetooth stack. The solution to this problem is the
Btone simulator from Textone. The purpose with the Btone simulator is to simulate
Bluetooth communication between emulated devices; which is well suited for this thesis
project.

Figure 22: Software configuration using Btone Simulator

This simulator will make it possible to integrate the JSR-82 library with Obigo,
implement the necessary parts of the PSI interfaces, and finally have two Obigo devices
communicating with each other without having a Bluetooth stack integrated, i.e. simulate
JABWT connections without the actual Bluetooth hardware and software. This is
illustrated in figure 22. Figure 23 shows two emulators communicating with each other
with Btone Simulator.

BT Midlet

Java / Obigo / JSR-82

Btone
Simulator

Java / Obigo / JSR-82

BT Midlet

 51

Figure 23: Two client’s communication via Bluetooth through the Btone simulator

5.3 Interfaces

PSI is an abbreviation of PEmb Service Interfaces, which are delivered together with the
PEmb from Profix. Those are interfaces specifying the features that must be implemented
in the PEmb libraries on the target platform. The components that are implementing the
functionality according to those interfaces are called PSC (Figure 24).

 52

Figure 24: The PSI interfaces and the PSC

The shaded part of figure 24 is the component to be implemented by the manufacturer.
The JBI is interfaces already implemented in PEmb for use by the native system in
returning to PEmb the result of different processes. In the integration of Java with Obigo,
the JVM Support Component is named Obigo PSC. There the PSI interfaces for Java
support are implemented. Within this thesis project, the JABWT PSIs are the interesting
interfaces. When the JSR-82 library is eventually integrated with Obigo, the necessary
parts of that PSI should be implemented inside the Obigo PSC. PSIs are interfaces that
PEmb assumes are implemented in the native system; otherwise there will be errors when
compiling the integration source code. Therefore the compiling of the JSR-82 / Java /
Obigo integration will generate errors in the first step. Some loop back interfaces will be
implemented to have this integration compile without errors, and then the actual
functionality must be implemented, according to what is needed from the Btone
simulator. Unfortunately the lack of a Bluetooth stack in this version of Obigo requires
some kind of virtual Bluetooth functionality being implemented in the PSC to have
Obigo work properly with the Btone Simulator.

5.4 KVM

The KVM is a reduced version of the Java Virtual Machine, targeted at devices with
limited resources. The KVM is located in the lowest layer of the J2ME architecture and
acts as an abstract computing machine, and that is why it is named the cornerstone of the
Java platform. The KVM is the contributory cause of the platform independence, and is
the only component in the J2ME platform that must be re-implemented when porting a
JRE from one platform to another; the other layers can be written once and used
everywhere.

PEmb JVM library

javax.bluetooth

PSC component

 53

The KVM consists of a class loader, runtime data areas, an execution engine, and a native
method interface.

Figure 25: KVM architecture

The class loader loads the class files from the compiled API implementation and the
actual application implementation. The runtime data areas are needed by the KVM to
store byte code, temporary variables, class information, object instances and parameters
during execution time. The execution engine, also called interpreter, executes the byte
code that the class loader has loaded, i.e. translates it to machine code that the underlying
operating system can understand. The native method interface is a component that
enables Java methods to make system calls to native functions. This process is illustrated
in figure 25.

5.5 KNI

As discussed earlier, the Java platform provides the KNI (K Native Interface) API to ease
the integration of programs written in the Java language with existing non-Java language
services. The KNI is incorporated in the KVM, and defines a standard naming and calling
convention so the Java virtual machine can locate and invoke native methods.

Class

loader

subsystem

Method

area
Heap Java

stacks
Pc

registers
Native
method
stacks

Runtime data areas

Execution

Engine
Native method

interface

Native
method
libraries

Class files

 54

Suppose a JSR-82 implementation is done at Teleca. This Implementation would use
methods declared native, for example Native Method Start_Inquiry(...). This Native
function will work as a bridge to be able to run the native function on the target platform.
An interface written in C could be implemented for handling data between the KVM and
the Bluetooth stack. This C integration layer must include a header file created by the
Java Native function, to map the Java functions to the C functions. This is illustrated in
figure 26.

Figure 26: Communication with the KNI interface

In this case Teleca can offer a solution to a customer that already has a Java Runtime
Environment integrated in their platform. The C integration layer has to be integrated
with the KVM in the target platform, after which the Java KNI will be used for mapping
the Java methods declared in the JSR-82 implementation to the actual C implementation
of the methods. The C integration layer should be as generic as possible so the porting to
different stacks will be as easy as possible.

5.6 Conclusions

The approach of the integration of JSR-82 with the Java / Obigo integration has been
decided. A new library build will be requested from Profix that can be integrated with the
Obigo Q-line. Loop-back interfaces will be constructed to have the integration compile
without errors. The necessary parts of the PSI interfaces will be implemented, and the
final integration will be demonstrated with the Btone Simulator from Textone. Bluetooth
MIDlets will be downloaded into two Obigo devices, where after those will be connected

Bluetooth Midlet Teleca JSR-82 implementation.
Native Method start_inquiry(...)

KVM

KNI
C function start_inquiry(...)

Bluetooth Stack

 55

to each other through the Btone simulator. Depending on how well the Btone simulator
handles the Obigo devices, and how much of the PSI interfaces that will be implemented,
the level of the Bluetooth MIDlets will be set.

In best case a Bluetooth stack will also be integrated within this thesis project. This
integration is not planned, but depending on how well things turn out, there might be time
left for this stack integration.

6 Integration elucidation

The main task with this thesis work was from the beginning according to the project
specification to integrate the Java API for the Bluetooth Wireless Technology with the
Obigo Q-Line, together with an arbitrary KVM. But during this project, besides the
integration work, as an outcome from the many investigations, things that seemed much
as interesting as an actual integration have emerged. Those “things” has been investigated
and collected into two main questions:

• What different JSR-82 solutions is it possible to develop within the Teleca

Company?

• How much will it cost in terms of licenses, compatibility tests, and manpower for

Teleca to deliver those JSR-82 software solutions to an end customer?

This chapter is the result from an investigation about those main questions. How many
solutions is it possible to develop with the preconditions that exist today? A JSR-82
implementation may be integrated with Obigo within this thesis work, but what is needed
to finalize such integration and make it a product that can be delivered to a customer?
This JSR-82 implementation is still something that another company has developed; is
there any way to produce such an implementation without any help from outside? The
needs from customers are slightly different, so what can be done to satisfy them all; many
different products, or one solution that suites everyone?

The other question is mostly a money issue. Which license agreements must be signed?
Which TCK tests must be carried out? But there are also costs in terms of manpower and
time that must be unraveled; how long will it take to develop those solutions, and is it a
small one man work or a huge team work?

 56

The first part of this chapter deals with the work that has to be done to integrate JSR-82
with Obigo, and to develop the different solutions. Then the questions about the time
estimation will be discussed, followed by which licenses and tests that must be taken.

The purpose with this chapter is to answer the main questions above. The output can
hopefully be used by the Teleca Company as a help and guideline in their decision about
whether this JSR-82 API should exist as a Teleca product.

6.1 The work

There exist two different versions of Obigo that are interesting to this project, the
Bluetooth / Obigo integration and the Java / Obigo integration. The second of those two
are the result of cooperation with the Profix Company and the incorporation of their
PEmb into Obigo. The PEmb is as declared in the Integration Investigation chapter,
delivered as pre-compiled source code. The existing integration with Obigo (Figure 27)
does not have any support for the JSR-82 API, but such a library is still a part of the
PEmb.

Figure 27: Integration layers, PEmb and Obigo

The layers of the integration of PEmb with Obigo are presented above. According to the
integration Design chapter, a new build of PEmb will be used. This means that a new
version of the PEmb library in figure 27 will be re-integrated with the rest of the layers.
This version will thus also contain a JSR-82 implementation. The existing PSI interfaces
will be kept intact, but new JSR-82 PSIs must be implemented to enable communication
with a Bluetooth stack. Because there is no Bluetooth stack integrated with this version of

PEmb lib

Obigo PSC Profix PSC

Windows

KVM int MSF

Profix RI

CMS Other
modules

Low layer
interface KVM

 57

Obigo, only parts of those PSI interfaces can be implemented, the ones that communicate
with the PEmb library. To have a fully working JSR-82 Bluetooth Obigo version, a
Bluetooth stack must also be integrated with this solution. That is yet not within the scope
of this thesis project and will probably not be accomplished. All this integration work
will be carried out with Visual Studio 6.0.

From Teleca’s point of view, there are besides the PEmb / Obigo integration also other
interesting solutions that are not a physical part of this thesis work, but that has emerged
through the many investigations and therefore have become a theoretical part of this
project. There are two different JSR-82 solutions that seem interesting as future products.
At first, there is a solution including an implementation of the JSR-82 API together with
a C implementation and a Bluetooth stack (Figure 28).

Figure 28: Solution for platform with JRE but without a Bluetooth stack

This solution is adapted to target platforms where a JRE but no Bluetooth stack is
integrated. What has to be done here is an implementation of the JSR-82 API, a C
integration layer that will be integrated with the KVM of the target platform, and the
connection to a Bluetooth stack. The whole packet can be integrated with the KVM of the
target platform via Java Native Interfaces (JNI). The JSR-82 implementation may be a
third party product, or an implementation developed within Teleca. The C integration
layer mustn’t be generic but must be aimed to the integrated Bluetooth stack. The things
that must be considered during integration is the message passing system, handling of
threads, processing calls etc. in the native environment. The Bluetooth stack may also be
a third party product or a Teleca implementation.

JSR-82 lib

C integr. layer

BT stack

 58

The other interesting solution is quite the same as the first one, but this time with no
Bluetooth stack involved (Figure 29). A stack is expected to already exist in the target
platform.

Figure 29: Solution for platform with JRE and with a Bluetooth stack

The JSR-82 task is the same as in the first solution, i.e. it may be a third party product or
implemented within Teleca. But because the integration with the Bluetooth stack is going
to take place inside the target environment, the C integration layer must be as generic as
possible. It will be more an interface that must be implemented inside the target platform
to adapt to its Bluetooth stack. The integration may still be handled with JNI, but an
interface will declare the functions, or the C layer will only contain function shells,
depending on the architecture of the target environment.

This two JSR-82 solutions enables two different customers have interest in the future
products; those with an existing JRE but no Bluetooth stack, and those with both a JRE
and a Bluetooth stack. This both solutions may also be detached from involvement from
other companies.

Those solutions together with the outcome of the thesis exam work (Figure 30), where
the customer may be one with a platform without any JRE or stack, seems to cover all
demands from the JSR-82 customers on the Java Bluetooth market.

JSR-82 lib

C integr. layer

 59

Figure 30: Solution for platform with no JRE or any Bluetooth stack

6.2 Time Estimation

To integrate the PEmb JSR-82 library with Obigo would not be too time consuming, a
couple of days to have an error-free build that work properly with the loop back PSI
implementation. The work with having the integration interact with the Btone Simulator
and simulate Bluetooth communication will probably be more time consuming.
Hopefully that can be done in two weeks. If that integration and interaction with the
Btone simulator is working as expected, there may be some Bluetooth MIDlets
implemented. That is about one week of work.

The time developing the two JSR-82 solutions may differ depending on what exactly will
be done. If the JSR-82 implementation used is a third party product, then that part will
only be a cost issue. An internal implementation of the JSR-82 API together with a C
integration layer could be a rather time consuming task and falls into the category of a
small project. To develop an intern Bluetooth stack is a very complex task and requires
great knowledge about the Bluetooth technology. A third party solution does not require
any implementation work, but is a cost issue. The best solutions for Teleca will be
discussed and presented in the Solutions chapter.

6.3 Licenses and TCK

To understand those licenses and test issues, one must have some knowledge about the
formal procedure from having an idea from a simple concept incorporated into the Java
standard. This formal procedure is named JCP which is an abbreviation of the Java

Native Platform

Obigo
 MIDP2 JSR-82 lib

CLDC KVM

Integr.layer

BT Stack

 60

Community Process. JCP allows anyone, from individuals to industry experts to have
their own idea transformed into a set of Java classes that can be used by developers
worldwide.

All Java functionality has to pass through the JCP where after that functionality in shape
of an API is assigned a formal name. When an idea of new Java functionality is proposed,
a formal JSR name is assigned to that functionality, followed by some numbers. JSR-82
is for example the formal name for Java Bluetooth functionality. The person or company
that proposed this JSR is called the Specification Lead. Each JSR has a Specification
Lead, and that company (or individual) is responsible for ensuring the delivery of the
specification, reference implementation, and TCK, which is explained below. That does
not mean that they must do the work or license it, but it does mean that they must ensure
that someone does.

The specification lead then has to form an expert group for this JSR, which purpose is to
create the official Java APIs for this JSR. In the JSR-82 expert group companies like
IBM, Mitsubishi, Textone Software, Sony Ericsson and Sun Microsystems are
participating.

According to the Java Community Process, the specification lead is responsible for the
existence of a Reference Implementation and a Technology Compatibility Kit. The
specification lead can create those of their own or let someone else do it; it is their choice
and an economical issue. The Reference Implementation is a proof that the JSR also is
possible to implement and works in a physical form and not only as a theoretical
proposal. The TCK contains documentation of the JSR, and a set of tests that other
companies must run to make sure that their own implementation of the JSR is compliant
to the JSR standard.

Each platform requires licensing and certification for each JSR the platform wishes to
certify. So TCK results for each individual JSR must be obtained and verified with the
TCK owner. No matter where the JSR implementation originates, it is required that TCKs
pass on the specific platform that will be claiming compliance. This is true for all J2ME
certifications, not just JSR-82. A software company may provide a Reference
Implementation for a specific JSR and claim it is TCK compliant, but the tests ultimately
must still all be run on the specific platform/device that the code will be deployed on.

As described before, all JSRs for which a company wishes to include and claim
compatibility with must pass the individual, specific TCK tests. However, a specification
does exist (JSR 185, also known as Java Technology for the Wireless Industry, or

 61

JTWI) which aims to provide an architectural description as well as an integrated
Reference Implementation and TCK to coordinate selected JSRs specific to wireless
devices. This type of specification is colloquially known as an 'umbrella JSR'. In practice,
the JTWI TCK essentially is comprised of a number of other JSRs, and its TCK gathers
all of these into a single suite of tests. This Umbrella JSR does not include the JSR-82
API; therefore separate tests must be accomplished to have the Bluetooth technology
certified into the targeted platform. Still it is a possibility that the JSR-82 API will be
incorporated in this Umbrella JSR in the future.

It is interesting to consider whether it is any differences by implementing an own JSR-82
solution, or buying and integrate another company’s solution. If the third party
implementation that is going to be integrated already is TCK tested, must this solution
run through the TCK tests again for every new platform the company integrates with?
The answer is yes. Even if a device manufacturer licenses an implementation of JSR 82
from a 3rd party, and that implementation is delivered and integrated in binary form into
a final product, that specific product must still certify on the specific platform it ships on.
The reason why is that even binary compatible libraries can behave in unpredictable ways
when combined with specific other code on a final product. From one JSR to the next this
may differ, but in general this is what has been proposed by Sun and is generally
followed in the industry. Interesting scenarios have developed which point out the
validity of this approach. For example, consider if Rev A of a product ships a certified
version of a JSR for a couple of years, and when Rev B of the device is released, bug
fixes or newer revs of other code cause the originally certified TCK to fail, even though
none of it is code (or the code it directly links with) has been modified.

This should be interesting from Teleca’s point of view, and is discussed in the Solutions
chapter.

If a company wants to develop a J2ME platform including MIDP2 and JSR-82
functionality (according to the integration of JSR-82 in this thesis project), there is a
certain procedure that must be followed to claim Java certification. A device
manufacturer must first take a license from Sun for J2ME. Only J2ME licensees can
claim compatibility with J2ME specifications and TCKs. For each individual
configuration, profile, and JSR, device manufacturers have the option of licensing 3rd
party implementations or developing/contracting them on their own. In either case, to be
able to claim compatibility with any J2ME API, a license must first be in place from Sun,
and then the specific TCKs must be licensed from the owner and demonstrated as
passing. Further additional licenses may be necessary if the code is not internally
developed. In the case of MIDP2, Motorola is the specification lead; however, the
reference implementation and TCK were Sun's responsibility. MIDP2 licensees may

 62

obtain the TCK from Sun in order to achieve certification, after having licensed it from
Motorola. Additional licensing agreements are necessary if a licensee wishes to use the
MIDP2 Reference Implementation in a product. When it comes to JSR-82, Motorola is
again the specification lead, but have also constructed the Reference Implementation and
the TCK tests.

A device manufacturer that wishes to claim J2ME compliance must have the following:

• A license agreement from Sun for J2ME.

• A license agreement with a Virtual Machine vendor such as Sun, Profix, Esmertec

etc. or an internally developed and certified virtual machine.

• A license agreement for each JSR to be included in the product. Licensing terms

are specific to each JSR and must be obtained from each individual JSR Spec

Lead company, and generally may include the TCK alone or both the Reference

Implementation and TCK. Compliance with any JSR cannot be claimed unless a

valid license for the TCK is in place and all TCK tests pass.

6.4 Conclusions

This chapter has described different possibilities of developing JSR-82 solutions within
Teleca. What has to be done, and what can be done? How much time will it take, and
what different licenses and tests must be bought?

There are three different solutions that should be interesting to Teleca: the solution for a
platform with JRE but without a Bluetooth stack, the solution for a platform with a JRE
and with a Bluetooth stack, and the solution for a platform with no JRE or any Bluetooth
stack. The time required for developing those solutions, and the licenses that must be
bought and the tests that must be run differs between those solutions.

In the Solution chapter some complete solutions are presented, suited to the Teleca
Company. Rather than the question “What can be done”, the question “What should be
done” is answered in that chapter.

7 Solutions

The result from this Master’s Thesis project is presented in this Solutions chapter. It will
set an end to the previous chapters, and present the concrete JSR-82 Teleca solutions as
an outcome from all the other investigations.

 63

There will be three different JSR-82 solutions presented, designed, and investigated in
form of time estimation and licenses that must be considered. The first solution is called
the BT stack solution, and is aimed for platforms that have a Java Runtime Environment
but no Bluetooth stack integrated. The second solution is called the Standalone solution,
and consists only of a JSR-82 implementation and an integration layer. This is the
solution with the least number of components, and is the one that has to be most
generally constructed; it assumes a large number of components already integrated in the
target environment and must therefore be able to interact with those. The third solution is
called the Full Scale solution and is a complete J2ME platform including the JSR-82
optional package, ready to be integrated with the customers’ platform together with the
Obigo Q-line. This one differs a little from the two first solutions, because here Teleca’s
Obigo is also involved.

For each solution a design will be presented and explained. Also the final product
presentation will complete the looks and features issue. After that there is a sub chapter
considering the work that has to be done for completing every solution. The licenses and
TCKs are very important issues in this thesis project, and are explained well for every
solution. Time estimation will set an end for each solution, and that sub chapter explains
how much time it will take to accomplish the solutions and the integration work.

7.1 Solutions outline

Today Teleca delivers MIDP2 functionality to their customers through the CMS module
in form of clean source code. This CMS module does not cover all of the MIDP2
functionality because Teleca has no Java Runtime Environment in their Software
framework Obigo Q-line. The functionality delivered has only to do with the CMS
module in Obigo, and therefore only covers user actions like downloading, installing,
support for push and for trusted MIDlets, and deleting of MIDP2 applications. To be
allowed to deliver this functionality, Teleca has to pass their MIDP2 functionality
through a number of compatibility tests from Sun Microsystems, because Sun is
responsible for the MIDP2 reference implementation and the MIDP2 TCK. To be able to
run and pass that TCK, the MIDP2 functionality that Teleca delivers has to be extended;
there must be the whole kit including a KVM and the other required libraries for the
J2ME platform. Those tests must run on the customers’ platform, which means that the
Obigo Q-line must be integrated with that target environment, and run through all the
MIDP2 compatibility tests.

Teleca does not own a KVM and that is why the Profix Company is involved in this
integration. Teleca has therefore concluded an agreement with Profix, which implies that

 64

Profix product PEmb is integrated with Obigo Q-line in demonstrational purpose and to
have Obigo run the TCK on the customers’ platform. This will ensure that Teleca’s
MIDP2 functionality works correct in the native environment.

The rest of this chapter will be based on those preconditions, and will present the best
solutions concerning the design, the work, the licenses / TCKs, and the time estimation.

7.2 BT stack solution

7.2.1 Design, the product, scenarios

This is the JSR-82 solution that is aimed at customers who does not have any Bluetooth
stack integrated with their platform (Figure 31). It is supposed that they have a Java
Runtime Environment which means that there is a KVM existing in their system, but now
the company also wants their platform to be able to make use of the Java Bluetooth
technology.

Figure 31: BT stack - Customer platform

What is needed here is a JSR-82 implementation, an implementation of the JSR-82
specification for Java Bluetooth Wireless Technology, i.e. the optional package placed on
top of the CLDC / KVM layer in figure 31. That would make the KVM able to load
Bluetooth class files imported in MIDlet applications. This is however only the
communication between the JSR-82 lib and the KVM. To make use of the Bluetooth
functionality, there must also be a Bluetooth stack integrated with the platform, so that
the KVM can forward Java Bluetooth calls to the stack and to the physical device. This
BT stack solution from Teleca would as the name implies also contain a Bluetooth stack.
The JSR-82 implementation together with the Bluetooth stack is yet not a complete
solution, because the KVM must have some kind of native-style communication with the
Bluetooth stack. This Teleca product should therefore have an integration layer between
the JSR-82 implementation and the Bluetooth stack (Figure 32). This integration layer
can be used by the KVM to have the Java Bluetooth calls from the MIDlet communicate

OS

CLDC / KVM

MIDP Optional APIs

 65

with the integration layer and with the Bluetooth stack. The Integration layer is also used
for the reverse communication, i.e. to reply the signals from the Bluetooth stack to the
KVM and the MIDlet. This integration layer should be written as generic as possible to
make the porting to different KVM on different platforms less complicated. However, the
integration with the Bluetooth stack is already done between the integration layer and the
JSR-82 implementation, so the integration that is left in this solution is the integration of
the integration layer with the KVM in the target environment. This should be done using
the native function interface KNI. The KNI is a native function interface that provides
high performance and low memory overhead, and is developed as a logical subset of the
JNI interface because there is no support for JNI in a KVM. The implementation of the
JSR-82 API should then declare some native methods, and when the classes are loaded
into the KVM, it uses the KNI interface to invoke the corresponding functions in the
native system. Those functions shall then communicate with the Bluetooth stack and send
the returning data back to the KVM, again using the KNI interface.

Figure 32: BT stack - Integration of the KVM and the integration layer

The Java KNI implementation in the JSR-82 and the KNI implementation in the
Integration layer may look something like this:

Package jsr82Func_package;

Public class BT_operation {

 Public native int BT_op_one();

 Public static void main(String[] args) {

 New BT_operation().BT_op_one();

 }

}

KVM

MIDlet

JSR-82
implementation

KNI Integration
Layer

Bluetooth stack

 66

This BT_operation class defines two method declarations, the main method and the
native method. When the MIDlet calls this Bluetooth function implemented in the JSR-82
implementation, it creates a new instance of the BT_operation class and invokes the
native Bluetooth function. The native Bluetooth function may for example be
implemented in the C programming language located in a source file inside the native
system. The invocation of the jsr82Func_package.BT_operation generates a header file
which specifies a certain function prototype definition. The native source file must follow
this definition and should have the following appearance:

#include <kni.h>

#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_INT Java_ jsr82Func_package_

BT_operation_BT_op_one {

 …Source code for Bluetooth communication…

 KNI_ReturnInt(…returned value from BT stack…);

}

This code will have the JSR-82 implementation declare native methods, and the KVM
will use the KNI interface to invoke the corresponding function in the native
environment. This example function may be the getBluetoothAddress() function, where
the returned Integer from the C function is the Bluetooth address received from the local
Bluetooth device.

The final product from Teleca should therefore consist of three components; the JSR-82
implementation, the integration layer, and the Bluetooth stack (Figure 33).

Figure 33: The BT stack solution as a product

JSR-82
implementation

Integration layer

Bluetooth stack

 67

The customers interested in buying this product are those who have a JRE existing in
their platform, and now want to make use of the Java Bluetooth technology. Figure 34
illustrates this product integrated with the customer’s platform.

Figure 34: The BT stack solution integrated with customer platform

7.2.2 The work

Teleca must have the rights to a JSR-82 implementation, an integration layer, and a
Bluetooth stack. Profix JSR-82 implementation can’t be used, because this is delivered as
pre-compiled source code which means that there is no possibilities to KNI modify that
implementation. It is true that Profix JSR-82 implementation already supplies with
interfaces, but these are connected to the PEmb library and the KVM inside.

The options are either to buy a third party source code JSR-82 implementation that can be
modified so that it conforms to Teleca’s integration layer, or to develop an
implementation within the Teleca company. In fact, the JSR-82 is only a specification
that defines the methods that must exist in an implementation of the JABWT, i.e.
Bluetooth for Java. The JSR-82 implementation component itself does not actually do no
more than receive the calls from the MIDlet and invoke the appropriate method inside the
integration layer through the KNI interface. An actual JSR-82 implementation does not
provide any large amount of functionality; it is the whole package including the
integration layer and the Bluetooth stack that represents the JABWT functionality in a
system. Buying a third party JSR-82 implementation and modify this so that it adapts to
the integration layer seems like a quite labored process considering that the JSR-82
implementation itself shouldn’t be that much of work effort. Making an internal JSR-82
implementation would give Teleca the opportunity to construct the library the way that
suites the integration layer, and therefore this is the best option in this JSR-82 solution.

The integration layer is the component that implements the methods that JSR-82
specifies, and is the link between the JSR-82 implementation and the Bluetooth stack.
This layer is a Teleca construction that suites both their JSR-82 implementation and the
Bluetooth stack. Because most KVM are written in the C programming langue, the

Operating system

CLDC / KVM

MIDP JSR-82

Integration
layer

BT
stack

 68

integration layer should also be written in C. This will simplify both the communication
with the KVM, and with the Bluetooth stack (The Bluetooth stack could also be written
in Java, but that is not very likely). When speaking about the Bluetooth stack; the
Bluetooth specification is a very technical document that describes all the functions that
must be implemented to construct a product that follows the Bluetooth specification.

The Bluetooth protocol stack is a software component that implements the different
communication protocols that are defined in the specification. The great technical
expertise and the extensive needs for resources that is required for developing a
Bluetooth stack, makes it almost impossible for companies to develop a stack on their
own. The stack must pass the official Bluetooth test suites that are defined by the
Bluetooth SIG. The predominant majority of all companies will therefore include the
Bluetooth technology in their products by purchasing a commercial Bluetooth protocol
stack from a third party developer. Internal development can’t in most cases be justified.
The most businesslike should therefore be to buy a third party Bluetooth stack
implementation. The integration layer should then be adapted to how this Bluetooth stack
communicates. The implementation of the JSR-82 interfaces can then be targeted at this
Bluetooth stack and back again, and then the solution is complete.

7.2.3 Licenses

It does not matter if the JSR-82 implementation is an internal implementation or a third
party product, the JSR-82 implementation must still certify on the platform it ships on.
Therefore the TCK must be bought from the specification lead, which is Motorola, and be
run on the customer platform at integration time. Also a JSR-82 license must be in place
from Sun to have the permission to deliver JSR-82 functionality. The TCK must be
demonstrated as passed to certify JSR-82 compliance.

7.2.4 Time estimation

Moment Min Prob. Max Comment

JSR-82
implementation

30 h 60 h 120 h N.C

Dev.
integration
Layer

80 h 100 h 160 h N.C

Native
integration

- - - Read below

Table 1: Time estimation BT solution

 69

The probable time spent on implementing the JSR-82 lib should be one and a half week
for a person that have good knowledge about how the integration with the Integration
layer should be accomplished. This person should also be experienced in KNI interface
implementation. Further on this person must be familiar with the JSR-82 specification,
the J2ME platform, and with the Java and the C programming language. Otherwise this
must be investigated and analyzed before the actual implementation, which is a time
consuming process. The maximum time spent on implementing the JSR-82 library may
therefore be three weeks.

The development of the integration layer should be done after or in parallel with the
development of the JSR-82 implementation. This because the functions in the integration
layer are those who implement the methods defined in the JSR-82 library. This is the
actual communication with the Bluetooth device, and is a little more time consuming than
the JSR-82 implementation. The JSR-82 specification consists of a great amount of
defined functions that should be implemented, but all of those mustn’t be implemented to
support most Bluetooth functionality. This fact together with the programming skills and
knowledge about JSR-82 will depend how long the development of the integration layer
will take. A skilled C and Java programmer that is familiar with the Bluetooth
technology, the JSR-82 specification, and the JSR-82 implementation may complete this
task in two and a half week. A person that is not familiar with the JSR-82 specification or
the Bluetooth technology may complete this in four weeks. Good knowledge in the
programming languages, particularly the C programming langue is a requirement. To get
knowledge about the third party Bluetooth stack and how to communicate with it is also a
part of the procedure; a person that has experience from the Bluetooth stack that is going
to be used, and also the other skills mentioned above, may complete this integration layer
implementation in two weeks.

The time estimation for integrating this product with the native environment depends on
the customer platform and can’t be estimated. This must be investigated further when the
target platform is settled.

7.3 Standalone solution

7.3.1 Design, the product, scenarios

This standalone solution is a reduced version of the BT stack solution, and is aimed at
customers who already have a Bluetooth stack implementation integrated with their
platform (Figure 35). This customer may for example make use of the C programming
language Bluetooth technology, but their J2ME platform is not Bluetooth compatible, i.e.

 70

the JSR-82 API is not integrated and there is no connection between the KVM and the
Bluetooth stack. This customer wants to have the users of their platform being able to
make use of the JABWT, the executing of Bluetooth MIDlets.

Figure 35: Standalone solution - customer platform

The components needed in this solution are almost the same as in the BT stack solution,
except for the Bluetooth stack (Figure 36). This will though make quite different
demands on the integration layer. Because the integration with the Bluetooth stack must
be accomplished inside the customer platform, the integration layer must be as generic as
possible to have it adapted to most Bluetooth stacks on the market and to ease the porting
of the solution.

Figure 36: The Standalone solution as a product

The JSR-82 implementation should be placed on top of the MIDP layer on the customer
platform, and the KNI interface should be used for communication with the integration
layer. But this time, there can’t be any further communication inside the actual product.
The only thing the integration layer hardly does is to define the functions that are going to
communicate with the stack, some kind of loop-back functions or dummy functions. The
Bluetooth stack integration itself has to be done when the integration layer is in place in
the native environment; by the customers themselves with their own Bluetooth stack. The
integration layer is in fact more like a loop back implementation of the interfaces
specified by the JSR-82 implementation, than a functional integration layer. It is also a
possibility to leave the integration layer outside this solution and leave all of the
Bluetooth stack integration implementation to the customer. The JSR-82 interfaces that

JSR-82
implementation

Integration layer

OS, Bluetooth stack

CLDC / KVM

MIDP Optional APIs

 71

must be implemented may for example be specified in an enclosed document. The
difference would be that the physical integration of the JSR-82 implementation with the
native environment will generate compile errors until the integration layer is constructed,
because the methods defined in the JSR-82 implementation requires that those methods
exists in the native system. All this is illustrated in figure 37.

Figure 37: The solution integrated with customer platform

7.3.2 The work

Compared to the BT stack solution, this solution does not require as much work effort. In
fact, the only time consuming and manpower demanding process is the development of
the JSR-82 implementation. The integration layer only defines the functions that are
going to be implemented in the customer environment. The integration layer may also not
exist. That is to say this solution requires less work effort, but must be a less expensive
product for the end customer.

7.3.3 Licenses

Because the JSR-82 implementation is the only implementation that has to be done, the
licenses and TCK are the same as in the BT stack solution.

7.3.4 Time estimation

Moment Min Prob. Max Comment

JSR-82
implementation

30 h 60 h 120 h N.C

Dev.
integration
layer

5 h 8 h 16 h N.C

Native
integration

4 h 6 h 10 h N.C

Table 2: Time estimation Standalone solution

Operating system, Bluetooth stack

CLDC / KVM

MIDP JSR-82

Integration
layer

 72

This is the same JSR-82 development as in the BT Stack solution. Read the BT Stack
solution time estimation section for more information about the JSR-82 implementation.

The integration layer in this solution is a very small component. It is only some kind of
loop-back functions of the methods that the JSR-82 defines. Therefore it shouldn’t take
more than one working day for a person that is familiar with the JSR-82 implementation
to carry out this implementation. A person that is not familiar with the JSR-82
implementation must at first get that knowledge, which should be a one day work.

Also the integration of the integration layer with the native environment should be a
rather easy process. It all depends on the architecture of the target system which is
unknown until the target system is settled, but this is still only a procedure of having the
KNI in the KVM communicating with this interface. Probably there is some kind of
KVM module in the native system that executes all Java functionality and the
corresponding interfaces, where after this integration layer should be placed inside that
module.

7.4 Full scale solution

7.4.1 Design, the product, scenarios

The Full scale solution includes a J2ME platform, a JSR-82 implementation, an
integration layer and a Bluetooth stack, and differ a little compared to the other solutions.
While those are more like standalone JSR-82 products, this product is a complete
JABWT solution that does not require involvement of any other components to have the
target platform make use of the Java Bluetooth technology. This solution is mostly
located inside Teleca’s Obigo Q-line, and is the one focused on within this thesis project,
which physically means that the integration of the JSR-82 implementation from Profix
within this thesis project is a part of this full scale solution.

This solution is aimed at customers who wants to make use of Teleca’s software
framework Obigo Q-line, and also wants Java Bluetooth included (Figure 38). This
solution should be placed on top of the customers existing operative system within their
environment.

 73

Figure 38: The Full Scale solution product placed on top of the customer platform

The PEmb lib running in a separate thread inside Obigo executes Bluetooth MIDlets and
loads the JSR-82 class files. The KVM invokes the appropriate methods implemented in
the PSC component through the PSI interfaces. Because of its synchronous
communication the PEmb lib goes into a suspended state (That is why the PEmb runs in a
separate thread, and that is why the KVM hybrid wrapper module has been created), the
KVM module handles the calls, i.e. passes it in a Obigo asynchronous message passing
style to the BMS (Bluetooth Manager Service), which handles the signaling to and from
the Bluetooth stack. Possibly returning messages are passed back to the PSC through the
proxy (transformed into synchronous calls again) and back to the PEmb lib and the KVM
MIDlet execution. Figure 38 is a perspicuous picture of the PEmb integration. In fact, the
PEmb and the PSC are invisible to the other Obigo components, located inside the KVM
module that acts as the actual KVM.

In this solution, the KNI interface won’t be used because the KVM and the interfaces to
the native system are encapsulated and hidden inside the pre-compiled PEmb lib. The
functions required by the PSI interfaces are implemented in the PSC component. Those
PSI interfaces are probably built upon the KNI interface, but the PSI interfaces are fairly
simplified and adapted to fit the implementation in the PSC components. It is still
possible to construct an own JSR-82 implementation and use the KNI interface, but that
should be a rather more complicated and time consuming process than using the PSI

Obigo Q-Line

PEmb lib (JSR-82)

PSC component BMS

BT stack

KVM module

MSF (Mobile Suite Framework)

OS

 74

interfaces. It is also unknown if the PEmb KVM supports the KNI interface. The
drawback with the PSI interfaces is that you must use JSR implementations from Profix
because it is not possible to access those interfaces in the KVM; this is a Profix product
whose usage is hidden from other developers.

7.4.2 The work

Profix JSR-82 library has been integrated with the Java / Obigo version during this thesis
project. Teleca has still only licensed their PEmb for demo and TCK test purpose.
Developing an entire new J2ME platform including a KVM is a very time consuming
procedure, and considering that the PEmb integration process already is done, the best
option would be to license the end product rights from Profix.

The full scale solution is yet not completed as described in the previous sub chapter; a
Bluetooth stack is missing in this version of Obigo, and also the BMS module that
handles the Bluetooth stack (Figure 39). The BMS module was constructed in another
thesis project at Teleca. Note that the PEmb integration was done in a subset of the Obigo
suite, which means that the integration may not work as intended if other modules are
added. It is therefore unknown what kind of bugs (if any) that will appear when the BMS
module is introduced.

Figure 39: The Java / Obigo / JSR-82 integration today, with a missing BT stack and BMS

The implementation part of this thesis project has therefore been aimed towards a
Bluetooth software simulator instead of an actual Bluetooth stack. This means that the
JSR-82 PSC component that has been constructed, only implements the communication
between the PEmb lib and the PSC. A Bluetooth stack must be integrated with this
version of Obigo together with the BMS. Then the JSR-82 PSC implementation can be
completed and the Obigo Q-Line will have full Java Bluetooth support.

KVM

MIDlet

JSR-82
implementation

PSI JSR-82
PSC

 75

7.4.3 Licenses

This JSR-82 solution brings the most complicated case when speaking about licenses and
TCKs. For every new platform this complete J2ME solution shall be integrated with, new
MIDP2 compatibility tests must run in the native environment to have it Java MIDP2
certified on that platform. But also a specific TCK must be obtained from Motorola for
the JSR-82 optional API. Those must also be presented as passed on every new platform
this solution integrates with. Also a JSR-82 license must be in place from Sun to claim
JSR-82 compliance.

Also the missing Bluetooth stack problem must be considered. What third party stack is
best suited for this integration? Earlier the Ericsson Bluetooth stack has been used, so an
integration of that one would simplify this procedure. But as it seems right now Ericsson
has introduced new restrictions about the usage of their Bluetooth stack, so maybe Teleca
won’t be able to use it in a final product. If Ericsson’s stack is going to be used, the stack
integration process won’t be a problematic or time consuming process, otherwise it will.
This lies however as a higher level decision in the Teleca Company structure and is
outside the scope of this thesis project.

7.4.4 Time estimation

Moment Min Prob. Max Comment

BT stack
integration
(Ericsson)

16 h 24 h 40 h N.C

BT stack
integration
(other)

40 h 80 h 160 h N.C

PSC
implementation

24 h 40 h 80 h N.C

Native
integration

- - - Read below

Table 3: Time estimation Full Scale solution

The integration of Eriksson’s Bluetooth stack with Obigo has been done once before at
Teleca, which took about three days to complete. That person who is familiar with this
integration may complete this again in three days, but in best case he knows about the
problems that came up last time, so the time spent on this integration can be reduced
down to two days. Also in the integration of the Bluetooth stack the BMS integration is
included. This may cause trouble, because the PEmb is integrated on a stripped version of

 76

Obigo which may not work correctly if other modules are introduced. If this problem
occurs, this procedure of having Java / Obigo work with the BMS module may be a one
week work.

If another Bluetooth stack is going to be integrated instead of Eriksson’s stack, the
integration will be more time consuming. At first knowledge about the stack must be
acquired, and then the integration must be designed. The existing BMS is constructed to
be stack-independent, but there is still unknown if it is going to work with another stack;
this hasn’t been tested at Teleca. However, if the stack has the same structure as
Eriksson’s stack, and the BMS module works fine with this stack, the integration may
only take one week. The most probable is still that the stack differs from Eriksson’s
stack, and therefore the integration will be a little different. This will set the probable
integration time to two weeks. But if the BMA module won’t integrate with this new
Bluetooth stack, the BMA must be modified or a new must be developed. Experience
about this kind of development exists at Teleca, but this will still be a time consuming
work. If the BMA must be completely rewritten the time for the integration will be about
four weeks.

The PSC implementation is the procedure of implementing the communication to and
from the Bluetooth stack. This must be done after the stack is integrated, and shouldn’t be
too time consuming. The PSC should communicate with the Bluetooth stack through the
BMS module, where the stack calls already are written. The PSC functions should call
the appropriate functions inside the BMS module to have the communication with the
Bluetooth stack work correctly. In best case this may take only three days for a person
that is familiar with Obigo, Bluetooth and the JSR-82 implementation, to carry out, but
the probable time for this implementation is one week. The worst case scenario is the one
where the PSC component won’t be able to access the BMS functions, and there must be
another kind of layer between the PSC and the BMS.

The time estimation for integrating this product with the native environment depends on
the customer platform and can’t be estimated. This must be investigated further when the
target platform is settled.

8 JSR-82 integration

Besides the design and JSR-82 solutions work, the integration of Profix JSR-82
implementation has also been a part of this project. Profix JSR-82 library was delivered
as pre-compiled source code, together with the PEmb library. The actual JSR-82
integration was performed at Visual studio source code / structure level, where the JSR-

 77

82 implementation together with the PEmb library was integrated inside the hybrid
wrapper module inside Obigo. This entailed Visual studio generates new errors at
compilation time; as a result of the JSR-82 implementation introduction with the PEmb
library inside the hybrid wrapper module; PEmb now required those JSR-82 PSI
interfaces implemented inside the PSC component. To have the JSR-82 integration build
successfully, some loop-back interfaces was implemented.

8.1 Hardware and software

The software used for the implementation of the PSI interfaces is Visual Studio 6.0 and
the Obigo SDK. The MIDlet applications used has been developed using JEdit and Suns
wireless toolkit WTK2.2. Btone Simulator is used for testing the Bluetooth functionality
of the MIDlets. Other software used during this project is Cygwin, GnuMake, Viso 2003,
Nokia Developer suite and the PEmb Emulator.

8.2 Implementation

The actual implementation is a small part of this project and has been related to the
integration the JSR-82 library with Obigo. At first some loop-back interfaces had to be
implemented to have the integration builds without any errors. The next step was to
implement the actual PSI interfaces. Because no Bluetooth stack was integrated in this
Obigo version, the PSI interfaces couldn’t be fully developed; only the communication
between the PEmb library and the PSC could be implemented.

The PSI interfaces were implemented inside the PSC component inside the Obigo KVM
module.

9 Future work

Because no Bluetooth stack is integrated with the Java / Obigo version, such integration
has to be done to have a complete Obigo JABWT solution. This integration has been
done once at Teleca, but with another Obigo version. See the time estimation part in the
“Full scale solution” section for more information of the Bluetooth integration. The
Bluetooth stack integration in this project has always been aimed at the BMS module.
But because the BMS high level of abstraction, such integration may have the PSC
component seem unnecessary; it may only pass the calls from the PEmb forward to the
BMS. Another way, and maybe a better one, would be to have the PSC component
communicate directly with the Bluetooth stack.

 78

10 Summary and conclusion

When speaking in terms of working this project was divided into two main parts
independent of each other, but still very connected as an end product; the theory part is
the description and presentation of what the integration part can look like in the end. The
description of the Teleca JSR-82 solutions has been the biggest part of the project
because of different delay issues during the work. The integration and implementation
part is actually a small sub-section of this project, but such an interesting one.

As the result of this project, three possible Teleca JSR-82 solutions has been designed,
investigated, and presented. Those are three different products that can co-exist in some
kind of product family, where the customers have the opportunity to choose the product
that fits their own needs.

The solutions differs in both functionality, size, and developing cost, but covers most of
today customer needs when speaking of Java Bluetooth functionality on a wearable
platform.

An integration of the JSR-82 library with Obigo has also been completed. The integration
contains a half-way implementation of some of the PSI interfaces, and extends the
functionality of the Obigo even more. This is still just prototype integration, but it is a
great beginning of what could be a complete Teleca JSR-82 solution as presented in the
other part of this project.

 79

11 References

1. Hopkins Bruce; Ranjith Anthony, Bluetooth for Java, 2003, Springer-Verlag, ISBN 1-
59059-078-3

2. Knudsen Jonathan, Wireless Java: Developing with J2ME, second edition, 2003,
Springer-Verlag, ISBN 1-59059-077-5

3. Kroll Michael; Haustein Stefan, J2ME Application Development, 2004, Sams
Publishing, ISBN 0-672-32095- 9

4. Mahmoud Qusay, Learning Wireless Java, 2001, O’Reilly, ISBN 0-596-00243-2

5. Magnus Söder , Integrating Profix KVM with Obigo SDK, 2003

6. Profix, Micro Developers Guide: Using Device Emulator for Windows, 2004

7. Burström David; Ohlson Mikael, Integration of a Kilobyte Virtual Machine with the

Teleca Obigo Framework, 2004

8. Hagberg Jonas, Hast Marcus, Bluetooth for Mobile Phones, 2004

9. Teleca, Obigo Developer’s Manual
1, 2003

10. Teleca, Obigo Framework Development
1, 2003

11. Teleca, Obigo SDK User’s manual
1, 2003

12. Teleca, Q04C1 Design Specification PEmb KVM Integration
1, 2004

13. Profix, Interface Reference Java APIs for Bluetooth Wireless Technology
1, 2004

14. Profix, Interface Reference CLDC 1.0/1.1—MIDP 2.0
1, 2004

15. Textone, Btone Technology Licensing Kit User Guide
1, 2003

1 Internal document at Teleca Software Solutions, Lund

 80

16. Textone, Btone Technology Licensing Kit – Ericsson Stack Mapping
1, 2003

17. Textone, Btone Technology Licensing Kit – Implementation Specific Components
1,

2003

18. Textone, Btone Technology Licensing Kit – NEC Porting Guide
1, 2003

19. Textone, Btone Simulator User Guide
1, 2002

20. Motorola Wireless Software, Java APIs for Bluetooth Wireless Technology (JSR-82),
2002

21. Sony Ericsson, Developing Applications with the Java APIs for Bluetooth (JSR-82),
2004

22. Textone, Btone Bluetooth Technology Licensing Kit Technical Overwiev
1

23. Textone, Btone White Paper
1, 2001

24. Karl McCabe, Btone Technical Overwiev
1
, Business Model, Porting Analysis

25. http://java.sun.com/j2me/overview.html , 2004-09-20, Sun Microsystems

26. http://developers.sun.com/techtopics/mobility/midp/ttips/BTintro/index.html , 2004-
09-21, Sun Microsystems

27. http://www.microjava.com/developer/faq/compile_run_debug , 2004-11-14,
Microdevnet

28. http://java.com/en/dukeszone/index.jsp , 2004-11- 18. Sun Microsystems

29. http://today.java.net/pub/a/today/2004/07/27/bluetooth.html , 2004-11-18, Sun
Microsystems

30. http://www.jcp.org/en/press/success/bluetooth , 2005-01-18, Java Community
Process

 81

Appendix A – Abbreviations

(JSR) Java specification Request
(JCP) Java Community Process
(J2ME) Java 2 Micro Edition
(API) Application Programming Interface
(KVM) Kilo Virtual Machine
(KNI) K Native Interface
(JNI) Java Native Interface
(BT) Bluetooth
(CLDC) Connected Limited Device Configuration
(MIDP) MIDlet Information Device Profile
(BMS) Bluetooth Manager Service
(CMS) Content Manager Service
(GUI) Graphical User Interface
(BCC) Bluetooth Control Centre
(SDK) Software Development Kit
(HCI) Host Controller Interface
(L2CAP) Logical Link and Adaptation Protocol
(SDP) Service Discovery Protocol
(SPP) Serial Port Profile
(GOEP) Generic Object Exchange Profile
(UUID) Universal Unique Identifier
(URL) Uniform Resource Locators
(MSF) Mobile Suite Framework
(OS) Operating System
(AMS) Application Management Software
(CMA) Content Manager Application
(RI) Reference Implementation
(HDI) Host Device Integration
(SMF) State Machine Framework
(RACS) Textone Abstract C Stack
(SIG) Special Interest Group
(PSI) PEmb Service Interface
(PSC) PEmb Service Component

 82

Appendix B – JSR-82 Methods

javax.bluetooth.DiscoveryListener

• public void deviceDiscovered(RemoteDevice, DeviceClass)
• public void inquiryCompleted(int)
• public void servicesDiscovered(int, ServiceRecord[])
• public void serviceSearchCompleted(int, int)

javax.bluetooth.L2CAPConnection

• public int getReceiveMTU()
• public int getTransmitMTU()
• public boolean ready()
• public int receive(byte[])
• public void send(byte[])

javax.bluetooth.L2CAPConnectionNotifier

• public L2CAPConnection acceptAndOpen()

throws IOException

javax.bluetooth.ServiceRecord

• public int getAttributeIDs()
• public DataElement getAttributeValue(int)
• public String getConnectionURL(int, boolean)
• public RemoteDevice getHostDevice()
• public boolean populateRecord(int[])
• public boolean setAttributeValue(int, DataElement)

javax.bluetooth.DataElement

• public void addElement(DataElement)
• public boolean getBoolean()
• public int getDataType()
• public long getLong()

javax.bluetooth.DeviceClass

• public int getMajorDeviceClass()
• public int getMinorDeviceClass()
• public int getServiceClasses()

javax.bluetooth.DiscoveryAgent

• public boolean cancelInquiry(DiscoveryListener)

 83

• public boolean cancelServiceSearch(int)
• public RemoteDevice retrieveDevices(int)
• public int searchServices(int[], UUID[], RemoteDevice, DiscoveryListener)
• public String selectService(UUID, int, boolean)
• public boolean startInquiry(int, DiscoveryListener)

javax.bluetooth.LocalDevice

• public String getBluetoothAddress()
• public DeviceClass getDeviceClass()
• public int getDiscoverable()
• public DiscoveryAgent getDiscoveryAgent()
• public String getFriendlyName()
• public static LocalDevice getLocalDevice()
• public static String getProperty(String)
• public ServiceRecord getRecord(Connection)
• public boolean setDiscoverable(int)
• public void updateRecord(ServiceRecord)

javax.bluetooth.RemoteDevice

• public boolean authenticate()
• public boolean authorize(Connection)
• public boolean encrypt(Connection, boolean)
• public boolean equals(Object)
• public final String getBluetoothAddress()
• public String getFriendlyName(boolean)
• public static RemoteDevice getRemoteDevice(Connection)
• public int hashCode()
• public boolean isAuthenticated()
• public boolean isAuthorized(Connection)
• public boolean isEncrypted()
• public boolean isTrustedDevice()

javax.bluetooth.UUID

• public boolean equals(Object)
• public int hashCode()
• public String toString()

