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Abstract

This is a project for developing a distributed job execution environment for highly
iterative jobs. An iterative job is one where the same binary code is run hundreds of times
with incremental changes in the input values for each run. An execution environment is a
set of resources on a computing platform that can be made available to run the job and
hold the output until it is collected. The goal is to design a complete, object-oriented
scheduling system that will run a variety of jobs with minimal changes. Areas of code
that are unique to one specific type of job are decoupled from the rest. The system allows
for fine-grained job control, timely status notification and dynamic registration and
deregistration of execution platforms depending on resources available. Several objected-
oriented technologies are employed: Java, CORBA, UML, and software design patterns.
The environment has been tested using a CFD code, INS2D.
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Introduction

 Current solutions to the job scheduling and execution problem take two different
approaches. The first requires dedicated job scheduling systems that route, execute and
recover output. The second approach is a home grown scheduling environment written in
a scripting language. Problems with the first solution are cost and portability. Obtaining
licenses for all the available machines can be expensive and the scheduler may not work
on all the available platforms. Scheduling systems of this type tend to favor high-end
machines. The problem with the second is robustness. Home-grown solutions tend to
work well at first, but as the job load grows, so does the script. Hard coded values
become buried and the script looses flexibility, which is the reason why a scripting
solution was chosen in the first place. Unless it was carefully engineered from the outset,
it will eventually become a mass of arcane code that only the author can maintain.

The current trend in data processing is 3 tier and N tier solutions. Lightweight clients
communicate with middle tier application servers. These, in turn, communicate with the
backend databases or execution engines.  New advances in platform independent
languages and frameworks have removed many problems associated with porting code
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bases from one platform to the next. As machines capable of hosting an execution
environment free up the resources to do so, they will register with and be assigned work
from a dispatching object. Other machines might register based on the time of day.
During the evening hours, they register and process jobs. During the day, they deregister
and free up resources for other duties. The idea is to quickly maximize the available
computing resources that would otherwise sit idle.  By taking advantage of solid object-
oriented design idioms, platform independent languages and industry standard broker
architectures, a flexible, cost effective and dynamic problem solving environment can be
achieved.

As a proof of concept, we design our architecture around highly iterative Computational
Fluid Dynamics (CFD) codes. These CFD codes, or flow solvers, are numerically
intensive applications that model airflow over wings or airframes. The scheduling system
architecture is designed with maximum reuse in mind. One of the goals is to develop a
solution that enables different CFD codes to be “plugged in” with minimal code having to
be rewritten. The architecture has been tested using the INS2D code, which solves the
incompressible Navier-Stokes equations for steady state and time varying flow.  In our
design, we use the Unified Modeling Language (UML) to map out the architecture. In our
implementation, we use Java due to its inherent platform independence. The Common
Object Request Broker Architecture (CORBA) is used for communication and control
between the tiers [2, 6].

  CORBA was chosen because of the flexibility it offers in the choice of programming
languages. With the exception of having to acquire the Interoperable Object References
(IORs) of the different objects, the Java code is written as if all the pieces were running
on the same virtual machine. There is no need to call socket libraries and create
communication ports. All of these complicated details are abstracted out. This vastly
simplifies the complexity of the code.

One of the driving forces behind this research was to find a clean, effective way to
acquire the processing power of clusters of distributed machines. The proof of concept
was to get a room full of desktop computers to share the processing of a batch of time and
resource intensive jobs. There are other job-scheduling systems available, either
commercially or free-of-charge, that are used in more production-type environments.
Among these systems are Network Queuing System (NQS) originally from Sterling
Software, Condor from University of Wisconsin, Portable Batch System (PBS) from
NASA Ames Research Center, LoadLeveler from IBM, and Load Sharing Facility (LSF)
from Platform Computing. They differ in type of job supported (serial or parallel),
platform supported, tools provided, and many others. Our approach is unique since it is
based on object-oriented design and analysis and uses CORBA and Java for
implementation.

In this paper, we present the architecture, implementation, and design issues of applying
object-oriented techniques to develop a distributed job execution environment. Several
technologies are employed in our approach: Java, CORBA, UML, and software design
patterns. The current environment is briefly described first. Then the architecture is



introduced as a three-tier system. The objects in each tier are described in details. Finally,
the results and some conclusions are drawn.

Typical Scenario for running CFD codes

 The INS2D code typifies CFD codes running at NASA Ames Research Center, and is
the first code used for testing our environment. It solves the incompressible Navier-
Stokes equations in two-dimensional generalized coordinates for both steady state and
time varying flow [4]. It is currently run using a complex collection of shell scripts that
performs remote launching (batching), pre-processing and post-processing of data files
[5]. These steps include parsing input data files, moving them to the machine hosting the
execution environment, executing the job, post-processing of the output files and moving
these to a flat-file database. Job Scheduling is performed through a job scheduler, such as
PBS at NASA Ames. These scripts are “boxed” inside one another. Post-processing is
run from remote execution, which is run from pre-processing. This strategy has the effect
of leaving several processes sleeping while the job processing moves from stage to stage.

 This collection of scripts evolved over a period of time. Script construction is linear.
There are no procedures. Numerous while loops and goto like escapes make reading
through them difficult. There are many hard coded values and sub sections for different
types of platforms. Since scripts are stateless, collections of related data are written out to
temporary files, which means all inter-machine communication is done at the file level.
These files have to be re-parsed on the host machine in order to retrieve the data. If a fatal
error occurs, all processing will grind to a halt.

 The scripts represent a large undertaking in terms of design effort. They successfully
process hundreds of jobs dealing with thousands of data files and variables. The problems
with them are the problems that occur in all grown systems: fungus architecture is easy to
break, hard to maintain, and almost impossible to understand. The more it grows, the
harder it will be to change it.

Java/CORBA Architecture

 Object Definition

  The design of this system is a batch-oriented and falls roughly along the lines of classic
three-tier architecture. Within these three tiers are three broad categories of objects:
CORBA objects, worker objects and utility objects. The design falls along well-defined
boundaries for each type of object. Only the CORBA objects have knowledge of their
workers and then only through their interface types. The worker objects are a loosely
coupled set of Java interfaces, abstract adapter classes, base classes and, usually,
specialization classes. Each implements or extends the one before it. This allows workers
to be “unplugged” and replaced without code changes to the CORBA objects. Workers
have no knowledge of each other. Utility objects streamline the code by providing static



methods for common operations such as acquiring a reference to the CORBA naming
service or getting a formatted timestamp. Other utility objects are worker creation
factories. Factories themselves can be swapped in or out just like the workers.

 CORBA provides the means for abstracting out the details of the underlying
communication bus. Once a remote reference to a CORBA object is obtained via the
CORBA naming service, the reference is treated as if the remote object is local to the
current Java virtual machine. This vastly simplifies the problems of dealing with
disparate computer platforms and operation systems.

The architecture has three interoperation pieces: Admin, Dispatcher and Solver, as shown
in Figure 1. Each of these high level objects has a set of worker objects that perform the
low level tasks. The Admin object selects the jobs to be run. Its workers check each job’s
runtime requirements and repackage data into generic containers for transport. The
collection of jobs is then moved to the Dispatcher object, where workers parse input files,
record status and queue the jobs up for distribution. Solver objects come on-line and
register with Dispatcher. Once a Solver object is registered, it asks for work. This Solver
object then pulls a subset of jobs from the queue, and, via its worker objects, builds the
needed execution environment and executes the jobs. Abstraction and delegation allow
the individual components to be only aware of the objects with which they have to
communicate. Worker objects only interact with the high level objects that created them.
Any number of Solver objects can request jobs from the same Dispatcher. Solver objects
can be added or removed during the processing of the jobs in the queue. Solver objects
can dynamically register with a Dispatcher object depending if resource loads on their
host machines drop to sufficient levels and un-register if loads are too high.  Solver
objects could also be time-based. They may only ask for work during a given time frame
(such as midnight to six o’clock am). How much work a Solver object can handle at any
given time is dependent of the machine on which it is running.

IDL Files and Interfaces

 There are two Interface Definition Language (IDL) files that define the interfaces and
structures for this system [2, 6]. Though one file could have been used, the overriding
design goal in this system is functional decomposition. These files are core.idl, which
describes the CORBA interfaces that all types of jobs use, and cfd.idl, which defines a
CORBA structure that is specific to a CFD code such as INS2D (in this case it is called
ins2d.idl). The core.idl file defines three interfaces: Admin, Dispatcher and Solver. Their
operations are defined below. The cfd.idl file defines an Environment structure that holds
all the information needed to run a single job. Each job has a corresponding Environment
object, which is passed from the dispatcher to the solvers. At the lower levels, data
transfer is done via a CORBA Any (CORBA Any is a data type that can hold any
primitive or user-defined CORBA type). This allows the CFD specific Environment
object to be passed inside a more generic Any.



 CORBA Objects

•  Admin – (1st tier) connects with the user interface. It is represented by the
AdminImpl object and collects job information and populates data structures
that can be passed along the Object Request Broker (ORB). It transfers data
from the Console to the AdminAdapter object as Java objects and from
AdminAdapter to Dispatcher as CORBA Any.

•  Dispatcher – (2nd tier) contains the scheduling logic, performs parsing,
queuing and routing functions. It is represented by the DispatcherImpl object.
Jobs are unpacked from their initial data structures, repacked into
Environment structures. Initial values for worker objects are obtained by
reading a properties file, BaseDispatcherProps.txt, at startup. Data is
transferred to Solver and back as a CORBA Any.

•  Solver – (3rd tier) represented by the SolverImpl object and requests
collections of jobs from the dispatcher, builds the pads, transports the input
and data files and either runs the job itself or passes it on to a sub scheduler.
Initial values for the worker objects are obtained by reading a properties file,
BaseSolverProps.txt at startup.

Figure 1. Architecture Framework



Worker Objects

  Worker objects perform the mechanics of data structure loading and job manipulation.
The workers are composed of a pair of classes. Each one contains an abstract class and a
concrete implementation (base) class. Dividing the responsibilities of these objects into
two classes decouples the generic tasks from the specific ones. For example, all jobs must
be checked to see if they have all the required attributes, but for each type of job those
attributes will be different. By moving the details of requirements checking into the base
class, the abstract adapter does not need to be changed with each new type of job.

There are three groups of worker objects: Admin workers (at the 1st tier), Dispatcher
workers (at the 2nd tier), and Solver workers (at the 3rd tier). They are described below:

Admin Workers

•  Translator – acts as the bridge between the existing GUI and the CORBA
AdminImpl Object. It collects GUI values and input and data file locations. These
values are wrapped in a generic Java object and passed to AdminImpl.

•  Packaging - checks required job attributes and repackages the GUI data into Job
transportation structures which are packed into CORBA Any for transport across
the ORB.

Figure 2. The 1st Tier.

Dispatcher Workers

•  Parser - parses the required and optional attributes and populates the Environment
object.



•  Queue - initializes and maintains the job queue. It sorts and loads the
environments onto the queue. It also dispatches jobs to Solver objects if job
requirements and Solver runtime values match. It may build a script files if
required to do so.

•  DispatcherStatus – records and returns Dispatcher and job status.

Figure 3. The 2nd Tier.

Solver Workers

•  Receiver – accepts collections of incoming jobs and builds the execution pad. A
pad is a unique set of directories that will hold the input, data and output files.

•  Transport – handles the details of moving files from one platform to another.
•  Engine – executes the jobs or passes them to a secondary scheduler (at, cron)
•  Post  - handles job post-processing.
•  SolverStatus - records and returns Solver and Job status

Figure 4. The 3rd Tier.



Utility Objects

  Utility objects fall into three categories:

•  Data Holders – storage objects for groups of related data.
•  Tools – an object composed of static routines for getting hostnames, ORB

references, formatted times, etc.
•  Factories – dynamically loaded classes that build Dispatcher and Solver workers

Layers of Responsibility

 The architecture for Admin, Dispatcher and Solver interfaces is designed around four
layers, as shown in Figure 5:

•  Specification
•  Manipulation
•  Initialization
•  Specialization

Specification is the interface level. All CORBA and worker objects implement interfaces.
This is where the mechanics of the system is defined. All objects that interact with each
other are referenced through their interface type. Manipulation is the abstract adapter
level. The generic functions common to all types of jobs are implemented in the abstract
classes. Timing and lifecycle issues such as how long a Solver object will wait for jobs
before shutting down completely are defined here. Initialization is the base class level.
The base classes provide default values for the queue and status maps. They also provide
the implementation of operations specific to each type of job such as pad creation.
Specialization is used when a programmer wants to override the default values and
operations provided in the initialization level.

Frameworks and Design Patterns

The framework has been designed with a visual modeling tool, Rational Rose [3], using
the Unified Modeling Language (UML). By using UML to define the architecture, the
software engineer is forced to have a solid design before code writing can begin. This
ultimately speeds up the development cycle by finding problems with the methodology
before they become difficult to fix.

We used several software design patterns throughout the design process [7]. Design
patterns, which are a collection of well-known idioms, offer reusable solutions to
software problems. CORBA offers some of these design patterns in its architecture such



as delegation, proxy and broker [6]. In addition, we used the template method pattern and
the factory pattern.

Template Method Pattern

The template method is a behavioral pattern. It is used in designs where the class will be
used in multiple programs but the overall responsibility of the class remains the same [1].
The class is implemented as an abstract class. Only the methods that provide the generic
class function are implemented. The specialization logic is contained in the abstract
methods. This requires programmers to implement the class specific logic in the base
class that extends it.

Our design takes the template method and extends it. All the worker objects implement
this pattern. The abstract class implements an interface and the base class is usually, but
not always, overridden.  The interface requires the abstract class to only accept and return
well known data types. The class that extends the base class accepts these types but casts
them to the specific types that it needs. The workers have one class for each specification
level. The real power of this method comes when there are several operations that are
performed inside some kind of a loop. The abstract class controls the loop logic and calls
sequence of abstract methods. These methods accept and return generic data types (in this
case, Sets and Anys) and are implemented in the base class.

Figure 5. Layers of Responsibility



Figure 6. Factory Design Pattern

In the base class or the class that extends it, these methods cast the incoming arguments
to implementation specific data types, perform the detail logic and then return an
implementation specific type wrapped in an Any. The abstract class has no previous
knowledge of the type that has been returned to it. Any is then routed to other worker
objects or to another CORBA object. By combining the template method pattern with the
functional separation of control and detail logic, we develop a powerful, flexible base for
the worker objects.

Factory Pattern

In the factory design pattern [6], factories create methods to dynamically create new
objects. We used this pattern in the DispatcherImpl and SolverImpl objects. Overall, there
are two factories and eight workers, as shown in Figure 6. To make the code more
flexible and easy to maintain, SolverImpl uses a factory pattern to decouple the
instantiation of the concrete class from SolverImpl. This pattern requires the use of a
delegate object, called a factory, which creates the Engine object for SolverImpl.

The factory, BaseSolverFactory, has a getEngine() method that creates a new BaseEngine
object and returns a reference to it. SolverImpl instantiates a factory and then calls the
factory's getEngine() method. SolverImpl now has access to a BaseEngine object that it
references through the Engine interface. It has been decoupled from the concrete details



of BaseEngine. The factory method pattern provides an application-independent object
(SolverImpl) with an application-specific object (BaseSolverFactory) to which it can
delegate the creation of other application specific objects (BaseEngine and other
workers).

The down side to this pattern is that SolverImpl needs to have prior knowledge of the
factory's concrete type. Unfortunately, this has the effect of substituting one maintenance
problem for another. SolverImpl still has to have knowledge about the BaseSolverFactory
class. This problem can be overcome by making SolverImpl reference the factory's
interface, SolverFactory, instead of the concrete base class. The base class is then loaded
at runtime using dynamic class loading.

Dynamic Class Loading

 The Java language and virtual machine support the ability to load classes dynamically at
runtime. For each class or type, the Java Runtime Environment (JRE) maintains an
immutable Class object that contains information about the class. A Class object
represents, or reflects, the class. Calling the Class's newInstance( ) method creates a new
instance of the class. All that is needed is the fully qualified name of the class that you
need to create. One small drawback to using dynamic loading is that the object being
created must have a default constructor that takes no arguments. The combination of the
factory pattern with dynamic loading is a powerful combination. It provides all the
advantages of the factory pattern without its inherent limitations.

System Comparison and Observations

 Our OO execution environment is not a direct replacement of a shell script that has
several thousand lines of code; therefore, a section-by-section comparison between the
two environments is not possible. There is no clean break between one script and the
next. Under the scripting system, all data assigned to a shell variable on a given machine
must be written to a file before the job moves over. The file is transferred and must be re-
parsed upon its arrival. Under the scripting system, sections of code are marked as
“belonging” to a specific solver. Under our OO system, any hard coded values needed by
a given solver are listed in a Properties file. This keeps machine specific data on that
machine. The values become known to the dispatcher when the solver registers. There is
no similar registration process with the scripts. All values are hard coded.

However, the job parameters and requirements are similar for both environments. The
original FORTRAN binaries require that a job be started in the directory that contains the
data file and grids. All output files will be generated in that directory. After the jobs are
done, the output files are moved to a storage location. If another job had to be run, the
user would have to move to another sub-directory, copy over the data files, and change
the parameters on the input files. This requirement naturally leads to a scripting system
that automates this process. In this respect, the sub-directory system of the execution



environment has remained very similar to the shell scripts. A nested set of sub-directory,
called a Pad, is built on the machine hosting a solver.

Portability and Performance

 While all UNIX machines have shell programs, different shells have different
commands. There are only a few ports of UNIX shells to Windows environments. By
using Java as the implementation language, our system is far more portable than a shell
system. By using CORBA as the communications layer, both platform and language
independence are achieved. The components themselves are independent units. The
CORBA objects can be written in any language that supports a CORBA IDL mapping,
the worker objects can be pulled out and popped back in without recompiling the Java
code of the other objects. Worker objects that have to communicate with each other do so
through Java events. They are completely decoupled from each other. The binary that the
solver runs is itself a property. As long as the nested subdirectory structure of the pad is
compatible with a different binary, the code would not have to be recompiled; only the
value of the property needs to be changed.

By working from a layered abstraction model, this system has several places where a
future developer might “take over” an object. The given object classes could be extended.
Because of using CORBA for the communication and control, the language independent
CORBA IDL contract could be implemented in C, C++, or Smalltalk. By using Java as
the main implementation language, platform independence is achieved.

The current price one must pay for using Java is poor performance relative to machine-
level compiled code. In our applications, the time it takes to run a job is a function of the
number of data points in the grid file. The vast majority of the run time is taken up by the
number crunching done by the legacy flow solver binary. Even though we do not have
measured performance numbers (we are working on it), we expect that the amount of
time the Java code runs is negligible.

Current Status and Concluding Remarks

 Initial code development was done on NT and tested on a workgroup of NT machines.
The whole environment was tested successfully on two SUN Solaris workstations,
located at San Jose State University, using one of the INS2D test cases. Also, an early
version of the environment was tested on an SGI workstation at NASA Ames Research
Center. The largest test run to date has one client and 12 servers processing 500 jobs.

In summary, we have designed and implemented an object-oriented approach for a job
scheduling and execution environment to run highly iterative jobs. Several technologies
are employed: Java, CORBA, UML and software design patterns. Early results are quite
promising. We have applied our solution to run a 2-D CFD code, INS2D. We are
currently applying it to a 3-D CFD code, such as TIGER, provided by NASA Ames.  We



are also looking into parallel CFD codes. We do not anticipate major problems in dealing
with other, sequential or parallel, codes since our approach fits well with any type of
processing where the job can be broken up into smaller units and then reassembled. Our
object-oriented environment is simple, flexible, and easy to upgrade and maintain.
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