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Abstract

COTS peripherals are heavily used in the embed-
ded market, but their unpredictability is a threat for
high-criticality real-time systems: it is hard or impossi-
ble to formally verify COTS components. Instead, we pro-
pose to monitor the runtime behavior of COTS peripherals
against their assumed specifications. If violations are de-
tected, then an appropriate recovery measure can be taken.
Our monitoring solution is decentralized: a monitoring de-
vice is plugged in on a peripheral bus and monitors the
peripheral behavior by examining read and write trans-
actions on the bus. Provably correct (w.r.t. given speci-
fications) hardware monitors are synthesized from high
level specifications, and executed on FPGAs, result-
ing in zero runtime overhead on the system CPU. The pro-
posed technique, called BusMOP, has been implemented
as an instance of a generic runtime verification frame-
work, called MOP, which until now has only been used
for software monitoring. We experimented with our tech-
nique using a COTS data acquisition board.

1. Introduction

The real-time embedded system industry is progres-
sively moving towards the use of Commercial-Off-
The-Shelf (COTS) components in an attempt to reduce
costs and time-to-market, even for highly critical sys-
tems like those deployed by the avionic industry. While
specialized hardware and software solutions are some-
times available for such markets, their average performance
and ease of integration is lagging behind the develop-
ment of COTS components. For example, a commercial
plane like the Boeing 777 uses the SAFEbus back-
plane [12], which, while specially designed to meet the
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hard real-time constraints of an avionic system, is only ca-
pable of transferring data up to 60 Mbps. On the other
side, a modern COTS peripheral bus such as PCI Ex-
press 2.0 [18] can reach transfer speeds of 16 Gbyte/s, over
three orders of magnitude greater than SAFEbus.

Unfortunately, when trying to use COTS for building
high-integrity, real-time embedded systems, current engi-
neering practices face significant challenges. While one can
capture relevant assumptions about COTS as formal spec-
ifications, they are hard or impossible to formally verify:
this is both because manufacturers are unwilling to disclose
details of their implementation, for fear of losing competi-
tive edge, and because the increase in performance is often
matched by a similar increase in design complexity (out-
of-order execution and branch prediction are examples of
this trend in CPU design). Modern COTS peripherals run-
ning in master mode are particularly challenging. A mas-
ter peripheral can directly communicate with all other ele-
ments in the system, including main memory and other pe-
ripherals, thus reducing the load on the CPU. On the other
side, providing fault-containment becomes extremely hard:
a misbehaving, low-criticality master peripheral could very
well disrupt the entire system.

Based on the above discussion, our proposal for the safe
integration of COTS peripherals in critical embedded sys-
tems is to use runtime monitoring: the peripheral require-
ment specifications are checked at runtime against its cur-
rent observable behavior. If any violation is detected, then
a suitable recovery action can be taken to restore the sys-
tem to a safe state. The validity of the runtime monitoring
approach has been proved in the field of software engineer-
ing by a large number of developed tools and techniques
(see Section 7). However, applying runtime monitoring to
our scenario poses some new challenges. First of all, the be-
havior of a COTS peripheral is controlled both by the hard-
ware of the peripheral itself and by its software driver, hence
we must check the correctness of their interactions. Second,
master peripherals can directly interact with the rest of the
system without requiring any action by the CPU. Based on
these two considerations, our monitoring solution must be
able to detect and check all communication between the pe-
ripheral and the rest of the system. Finally, runtime moni-



declarations : {
signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

}

event countDisable : memory write address = base1 + X"220"
dbyte value in "---------------0"

event cntrlMod : memory write address in base1 + X"220"
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event countEnable : memory write address = base1 + X"220"

dbyte value in "---------------1"

ere: ((countEnable countDisable) + cntrlMod + countDisable)*

violation handler : {
mem_reg <= ’1’;
address_reg <= base1 + X"220";
-- roll back to the previous cntr_cntrl2 value
value_reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable_reg <= "0011";

}

1

Figure 1: Example Property: SafeCounterModify

toring typically comes with an unforgivable price: runtime
overhead. We can split such overhead in two components:
1) overhead due to the observation and generation of rele-
vant events 2) overhead due to running a monitor at each
event to check if any property of the specification is vio-
lated. Both types of overhead tend to be unpredictable and
thus unsuitable for real-time computation.

To combat these problems, we propose a distributed
monitoring technique based on the development of a mon-
itoring device. The idea is to introduce an additional hard-
ware component into the system that can check all periph-
eral communication and perform recovery actions, when
necessary. Assuming “sniffing” data transfers does not add
delay to the system, our solution prevents the first type of
overhead. The second type of overhead is removed by run-
ning all monitors directly on the device, adding no runtime
overhead to the CPU. Additionally, the system can run com-
pletely undisturbed as long as no recovery action is needed.

The speed of modern COTS communication architec-
tures rules out the possibility of a software implementation
for the device; instead, all logic is implemented on a recon-
figurable FPGA. Finally, to show that a monitored system
is safe, we need to prove that the monitoring logic moni-
tors, indeed, the right properties. In our system, this is en-
sured by automatically synthesizing the monitoring logic
from formal requirements specification, so that it is “cor-
rect by construction”. In particular, we leverage on the Mon-
itor Oriented Programming (MOP)[6] framework (see Sec-
tion 2), which is highly extensible and supports multiple for-
malisms, by creating a new MOP instance: BusMOP.

Illustrative Example. An example of BusMOP can be
seen in Figure 1. This example is a property used in the case
study of Section 6 and related to the behavior of Counter 2, a
counter on the PCI703A board we used in our experiments.
This property, called SafeCounterModify, requires that any

modification to cntr cntrl2, the control register for Counter
2, happens only while the counter is not in use. This modifi-
cation is captured by the cntrlMod event, because cntr cntrl2
is at address X”220”. The counter can be enabled/disabled
by modifying bit 0 of cntr cntrl2 (captured by the countEn-
able/countDisable events; “-” is the VHDL ‘don’t care”).

The declarations section declares two monitor-local reg-
isters, cntrlCurrent and cntrlOld, and initializes them to 0.
These registers will hold the current and previous values of
the cntr cntrl2 register. This allows us to repair the regis-
ter when/if the property is violated by writing the old value
to the register on the peripheral itself (the value reg assign-
ment), and forcing the current value the monitor stores to
be the previous value, as can be seen in the violation han-
dler section of the specification.

The ere pattern itself, in the ere section, matches any
trace that consists of a cntr cntrl2 modification, a disable of
the counter, or an enable followed by a disable. The pat-
tern is followed by *, allowing it to match repeatedly. The
only way to violate this pattern, then, is to see a modifica-
tion after an enable that is not followed by a disable first.

The implementation of the events, declarations, and the
actions available to handlers is explained in Section 5.2. The
formula/pattern implementation, and the use of handlers is
explained in Section 5.3. The actual generated code is avail-
able in our Technical Report [20], or by running the online
trial on our website [5].

Key contributions. We provide three main contribu-
tions. First, in Section 4 we describe the design of a mon-
itoring device for the PCI/PCI-X bus (a brief overview of
PCI is presented in Section 3). The monitoring device can
be plugged in on a PCI bus segment, and monitor all periph-
erals attached to the segment. Whenever peripheral activ-
ity fails to conform to the specification, the device can per-
form a corrective action: either bring the peripheral back to
a safe state if the error is recoverable, or otherwise discon-
nect it from the system. While certain implementation deci-
sions are necessarily specific to our choice of PCI, we be-
lieve that the general design principles and lessons learned
can be applied to most other communication architectures.
Second, in Section 5 we provide a new instantiation of the
MOP framework, called BusMOP, that is able to generate
hardware modules; the generated monitoring logic is then
integrated with the rest of the monitoring device design and
synthesized on the FPGA. Third, in Section 6 we show the
feasibility of the overall approach by applying our technique
together with the developed monitoring device to check a
COTS data acquisition board. Our experimental results re-
veal that the monitoring device is able to detect, and recover
from, errors caused by faults in the driver that we discovered
after manually inspecting it. We conclude by discussing re-
lated work in Section 7, and providing final remarks and fu-
ture work in Section 8.



Figure 2: MOP Architecture.

2. The MOP Framework

Monitoring-Oriented Programming (MOP) ([6] and cita-
tions there) is a formal framework for system development
and analysis, in which the developer specifies desired prop-
erties using definable specification formalisms, along with
code to execute when properties are violated or validated; it
is important to note that a failure to confirm to the specifi-
cation can be expressed as either the validation or violation
of a property, see Section 6 for examples. Monitoring code
is then automatically generated from the specified proper-
ties and integrated together with the user-provided code into
the original system. MOP is a highly extensible and config-
urable runtime verification framework; currently there are
two MOP instances: JavaMOP and BusMOP (the instance
described in this paper).

Property specifications consist of event definitions,
which are instance dependent (e.g., pointcuts in Java-
MOP and bus transactions or interrupts in BusMOP), and
logical formulae or patterns, which are not. The user is al-
lowed to extend the MOP framework with his/her own
logics via logic plugins which encapsulate the monitor syn-
thesis algorithms. This extensibility of MOP is supported
by a layered architecture which separates monitor genera-
tion and monitor integration. By standardizing the protocols
between layers, modules can be added and reused eas-
ily and independently. By providing language specific
shells, logic plugins can be reused between several dif-
ferent MOP instances. A graphical representation of the
architecture can be seen in Figure 2.

The formula or pattern designates which “traces” (ob-
served series of events) are valid or invalid. Because ex-
tended regular expression (ERE) and past-time linear tem-

poral logics (PTLTL) are the two plugins used in this paper,
we will describe which traces are valid or invalid for ERE
patterns and PTLTL formulae. For EREs, valid traces are
those which are strings in the language represented by the
ERE, with events treated as the letters in the alphabet of the
language. Neutral traces (which trigger no handlers) are pre-
fixes of strings in the language, while violations are invalid
strings. For PTLTL formulae, valid traces are any traces for
which the formula evaluates to true, invalid traces are those
for which the formula evaluates to false; there are no neu-
tral traces. For more information on regular languages and
temporal logic see [16] and [8], respectively.

3. PCI Bus Overview

The Peripheral Component Interconnect (PCI) is the cur-
rent standard family of communication architectures for
motherboard/peripheral interconnection in the personal
computer market; it is also widely popular in the embed-
ded domain [18]. The standard can be divided in two parts:
a logical specification, which details how the CPU config-
ures and accesses peripherals through the system controller,
and a physical specification, which details how peripher-
als are connected to and communicate with the mother-
board. While the logical specification has remained largely
unaltered since the introduction of the original PCI 1.0 stan-
dard in 1992, several different physical specifications have
emerged since then.

One of the main features of the logical layer is plug-
and-play (automatic configuration) functionality. On start-
up, the OS executes a PCI base driver which reads infor-
mation from special configuration registers implemented by
each PCI-compliant peripheral and uses them to configure
the system. Of peculiar importance is a set of up to 6 Base
Access Registers (BARs). Each BAR represents a request
by the peripheral for a block of addresses in either the I/O
or memory space; the PCI base driver is responsible for ac-
cepting such requests, allocating address blocks and com-
municating back the chosen addresses to the peripheral, by
writing in the BARs. To communicate with the peripheral,
the CPU can, then, issue write and read commands, called
transactions, to either I/O or memory space; each periph-
eral is required to implement bus slave logic, which decodes
and responds to transactions targeting all address spaces al-
located to the peripheral. Typically, address spaces are used
to implement either registers, which control and determine
the logical status of the peripheral, or data buffers. Periph-
erals can also implement bus master logic: they can au-
tonomously initiate read and write transactions to either
main memory or the address space of another peripheral.
Master mode is typically used by high-performance periph-
erals to perform a DMA transfer, i.e., transfer data from
the peripheral to a buffer in main memory. The peripheral’s
driver can then read the data directly from memory, which
is much faster than issuing a read transaction on the bus. Fi-



nally, each peripheral is provided with an interrupt line that
can be used to send interrupts to the CPU.

There are two main flavors of physical architecture:
PCI/PCI-X is parallel, while PCI-E is serial but runs at
much higher frequency (2.5Ghz against up to 133Mhz for
PCI-X). We have focused on PCI/PCI-X1, which imple-
ments a shared bus architecture. The logical PCI tree is
physically divided into bus segments, and most bus wires
are shared among all peripherals connected to a single seg-
ment. We refer to [18] for detailed bus specifications. Each
transaction seen on the bus consists of an address phase,
which provides the initial address in either memory or I/O
space, followed by one or multiples data phases, each of
which carries up to 32 or 64 bits of data for PCI/PCI-X, re-
spectively (individual bytes can be masked using byte en-
ables). Since each bus segment is shared, arbitration is re-
quired to determine which master peripheral is allowed to
transmit at any one time. Arbitration uses two active-low,
point-to-point wires between the peripheral and the bus seg-
ment arbiter, REQ# and GNT#. A standard request-grant
handshake is used, where the peripheral first lowers REQ#
to request access to the bus, and the arbiter grants permis-
sion to start a new transaction by lowering GNT#.

4. Monitoring Device

We designed a prototype monitoring device based on a
Xilinx ML455 board [21] using a mixed VHDL/Verilog reg-
ister transfer level (RTL) description. The board is outfitted
with a Virtex-4 FPGA and is can be plugged into a stan-
dard 3.3Volts PCI/PCI-X socket. The FPGA implements
both a slave and a master peripheral module, together with
the monitoring modules. Events for the system are speci-
fied in terms of read/write data transfers on the bus and in-
terrupt requests; the device continuously “sniffs” all ongo-
ing activities on the bus, and it is therefore able to moni-
tor communication for all other peripherals located on the
same bus segment. Whenever a failure to meet the specifi-
cation is detected, the device can execute a recovery action
using strategies based on the detected error.

For a vast category of errors that involves incorrect in-
teraction between the peripheral and its software driver, it is
often possible to recover from the failure by forcing the pe-
ripheral into a consistent state. The monitoring device im-
plements a master module, and can therefore initiate trans-
actions on the bus. For example, consider a common type
of error, where the driver fails to validate some input from
the user and as a result writes an invalid value to a regis-
ter in the peripheral. We can recover by rewriting the reg-
ister with a valid value. However, if the error is caused by
a fault in the peripheral hardware, interacting with regis-
ters may not be enough to bring the peripheral to a consis-
tent and safe state.

1 We also plan to extend our design to PCI-E; see Section 8.

We propose a mechanism that lets the monitoring device
disconnect the faulty peripheral from the bus. We developed
a simple hardware device, the peripheral gate [19], that is
able to force the REQ# signal from the peripheral to the bus
arbiter to be high; hence, the peripheral never receives the
grant and it is prohibited from initiating any further transac-
tion on the bus2. The peripheral gate is implemented based
on a PCI extender card, i.e., a debug card that is interposed
between the peripheral card and the bus and provides easy
access to all signals. A clarifying picture for monitoring of
a single peripheral is provided in Figure 3(a). The mon-
itoring device can output a stop signal, which closes the
gate when active high. Finally, sometimes the monitoring
device cannot perform a suitable recovery action by itself,
but there is a higher level actor, such as the OS or the sys-
tem user, that can provide better recovery; examples include
complex software operations such as restarting the driver or
the whole PCI stack, and physically interacting with the pe-
ripheral. In this case, the best strategy is to communicate the
failure to the chosen actor. The study of OS-level reliabil-
ity techniques is outside the scope of this paper; instead, for
our prototype design we implemented a RS-232 controller
that can be used to send information to the user over a se-
rial connection.

The reader should notice that the nature of our imple-
mentation is such that if a trace is seen, which does not con-
form to a specification, as a consequence of a bus trans-
action, that specific bus transaction can not be prevented
from propagating to the rest of the system. For example, if
a faulty peripheral performs a write transaction to an area in
main memory which is not supposed to modify, we can de-
tect the error, disconnect the peripheral and report the fail-
ure to the OS/user. However, the information in the over-
written area will be lost. As part of our future work, we
are working to implement an interposed monitoring device:
by sitting between the bus and a peripheral, it will be able
to buffer all transactions that target that specific peripheral
or are initiated by it. If a property is validated/violated, it
is then possible to take preventive measures (i.e., either dis-
card or modify the transaction before propagating it). While
this solution will provide a higher degree of reliability, there
is a price to be paid in terms of increased communication
delay due to buffering in the monitoring device.

A simplified block diagram for the monitoring device
is shown in Figure 3(b). We distinguish three types of
blocks: 1) blocks provided by Xilinx as proprietary intel-
lectual properties (IPs); 2) manually coded RTL modules
provided by BusMOP, which are independent of the periph-
eral specification; 3) automatically generated RTL modules,
which are dependent on the specification (see Section 5).
PCI transaction signals are routed to two different modules:

2 While technically it is always possible for a faulty peripheral to disrupt
the bus by altering the state of the signals, in practice the described ap-
proach is effective since access to the bus is mediated by three-state
buffers enabled by GNT#.
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the PCI core and the decode module.
The PCI core module is a hard IP that implements all

logic required to handle basic PCI functionalities such as
plug-and-play. Bus slave and bus master logic is imple-
mented by the slave and master modules, respectively. In
particular, slave implements a set of 16 registers, base0
through base15. Since the OS configures the BAR regis-
ters at system boot, a peripheral cannot directly determine
the location of address blocks used by another peripheral.
Hence, the OS must also write the locations of the address
blocks allocated to monitored peripherals in the base reg-
isters. The decode module is used to simplify event gen-
eration. It translates all transactions on the bus (except for
those initiated by the monitoring device itself) into a se-
ries of I/O or memory reads/writes, one for each data phase,
as well as the occurence of an interrupt, and forwards the
translated information to the monitoring logic.

The system0, . . ., systemI, . . ., systemN blocks imple-
ment the monitoring logic for each of N user specified
properties. Each systemI block consists of two automati-
cally generated modules: bus interfaceI contains all logic
that depends on the specific choice of communication in-
terface (PCI bus), while monitorI contains all logic that de-
pends on the formal language used to specify the prop-
erty. This separation provides good modularity and facili-
tates code reuse. bus interfaceI first receives as input the de-
coded bus signals and generates events, which are sequen-
tialized by the events sequentializer submodule (see Sec-
tion 5.2), and then passed to monitorI using the seq events
wires. monitorI checks whenever the formula for the I-th
property is validated/violated and passes the information
back to bus interfaceI, which can then execute three types
of recovery: 1) disconnect a monitored peripheral from the
bus using the stop signal; 2) send information to the user us-
ing the serial output module, which implements a RS-232
transmitter; 3) start a write transaction on the bus using the
master module. Finally, since it is possible for multiple sys-
temI modules to initiate recovery at the same time, we pro-
vide queuing functionalities for serial output and master in

modules master queue and serial queue, respectively.
It is important to notice that in the current implemen-

tation the time elapsed from any event that triggers a val-
idation/violation to executing the corresponding handler is
at most 4 clock cycles. This time is short enough to exe-
cute a recovery action before a faulty peripheral is allowed
to start a new transaction, as PCI arbitration overhead pre-
vents a peripheral from transmitting immediately.

5. Property Specifications

Properties are specified using a domain specific event
syntax, and formulae or patterns written in the logic of a
particular plugin. Additional monitor state can also be de-
clared using the declarations section. The violation handler
and validation handler sections allow for arbitrary code to be
executed on the occurrence of a violation or validation, re-
spectively. An example of how they are used can be seen
in Figure 1 in Section 1. Currently, we have support for the
extended regular expression (ERE) and past-time temporal
logic (PTLTL) MOP Plugins, and adding most of the others
will require a minimal amount of work, as only the moni-
tor component changes from one logical specification for-
malism to another. This means that properties may be spec-
ified, formally, using an ERE pattern or a PTLTL formula.

A property is implemented in two main modules, a
bus interface, which generates logical events from bus traf-
fic and handles monitor recovery, and a monitor implement-
ing a property specification in hardware. A more detailed
description will be given below.

5.1. Events

A formal description of the event syntax (using Backus
Naur Form (BNF) [14] extended with [p] and {p}, denoting
zero or one repetitions of p and zero or more repetitions of
p, respectively) can be seen below:

〈Event〉 ::= “event”〈ID〉 : 〈Expression〉



〈Expression〉 ::= 〈MemoryOrI/O〉〈ReadOrWrite〉“address”“ = ”
〈ArithmeticExp〉“value”[“not”]“in”〈Range〉
[〈Action〉]

| 〈MemoryOrI/O〉〈ReadOrWrite〉“address”“in”
〈Range〉[“{”〈Action〉“}”]

| “interrupt”[〈Action〉]
〈MemoryOrI/O〉 ::= “memory” | “io”
〈ReadOrWrite〉 ::= “read” | “write”

〈Action〉 ::= “”〈Arbitrary VHDL code〉“”
〈Range〉 ::= 〈ArithmeticExp〉[“, ”〈ArithmeticExp〉]

〈ArithmeticExp〉 ::= 〈Number〉 | 〈ID〉
| 〈ArithmeticExp〉“ + ”〈ArithmeticExp〉
| 〈ArithmeticExp〉“ − ”〈ArithmeticExp〉
| 〈ArithmeticExp〉“ & ”〈ArithmeticExp〉

〈Number〉 ::= 〈VHDL number or bitstring〉
〈ID〉 ::= 〈Capital or lower case letter〉{〈LetterOrDigit〉}

〈LetterOrDigit〉 ::= 〈Capital or lower case letter〉 | 〈Digit〉

There are three basic types of events in BusMOP: I/O
accesses, memory accesses, and interrupts. It is impor-
tant to distinguish between I/O and memory events be-
cause they require different enable functionality and differ-
ent read/write signals. We show uses of interrupt events in
[20]. I/O and memory events must specify at least an ad-
dress, which may be an arithmetic expression over identi-
fiers, VHDL numbers, addition, subtraction, and concate-
nation, and whether the event is a read or a write. An I/O
or memory event may also specify a value range, which is
the value of the address read or written by the bus transac-
tion. Ranges can consist of a single arithmetic expression,
or a pair of comma separated arithmetic expression denot-
ing the minimum and maximum values that may trigger the
event (thus, ranges are inclusive). Value ranges must also
specify a size, byte, dbyte (16 bits), or qbyte (32 bits), so
that the correct comparison code and byte enables can be
generated (values smaller than a byte require masking the
proper bits). Address ranges are used in events that do not
have specified value ranges. The reason for this is that when
a value range is specified, the code generator must gener-
ate the proper byte enables based on address alignment, and
alignment does not make sense for ranges. Address ranges
are useful for some properties, e.g. a property that moni-
tors accesses to a certain buffer in memory.

5.2. The bus interface Module

The code for the declarations, and handler sec-
tions is copied verbatim into the VHDL module defin-
ing the bus interface. Because of this copying, the code
must be written in VHDL. The events are expanded to com-
binatoric statements implementing the specified logic. The
output of the combinatoric statements is assigned to an
events wire vector, which is connected to the monitor mod-
ule through an event sequentializer submodule. Each
index in the bus corresponds to the truth value of a spe-
cific event, numbered with the 0’th index as the first event,
and the n’th index as the n’th event from top to bot-
tom in the specification. This ordering is important, be-

cause it directs the event linearization performed by the
event sequentializer submodule.

The event sequentializer is necessary because the log-
ical formalisms expect linear, disjoint events. The
event sequentializer takes coincident events and sends
them to the monitor in subsequent clock cycles, in as-
cending index order, using the seq events wire vector.
Therefore, if events(0) and events(3) occur in the same cy-
cle, the monitor will see 0 followed by 3. To see why si-
multaneous events are possible, consider, again, Figure
1 from Section 1. The cntrlMod event is asserted when-
ever the cntr cntrl2 register (base1 + X”220”) is written.
Because both the countEnable and countDisable events re-
quire writes to the same address as the cntrlMod event, any
time countEnable or countDisable are triggered, a cntrlMod
is also triggered. As the property tries to enforce the pol-
icy that all modifications happen when the counter is not
enabled, we must serialize events such that cntrlMod hap-
pens after a countDisable and before a countEnable. The
ordering of events in Figure 1, is consistent with this, be-
cause countDisable is listed before cntrlMod, which is listed
before countDisable.

The violation handler is placed in the module such that it
is only executed if the monitor module denotes that the prop-
erty has been violated. The situation is similar for a valida-
tion handler, save that it is executed only when the formula
or pattern is validated. Currently, recovery actions in the
handlers are specified as a list of concurrent VHDL state-
ments. While it could be possible to define a new formalism
for recovery specification, we believe it would not be very
beneficial for two main reasons: the formalism would have
to be specific to BusMOP; specifying correct recovery ac-
tions inevitably requires a deep understanding of the mon-
itored hardware, therefore VHDL seems well suited to the
task. As can be seen in the Figure 3(b), the monitor mod-
ule reports the validation, violation, or neutral state of the
monitored property, via the properties wire vector, to the
bus interface module. Several actions are available in vali-
dation and violation handlers. Aside from manipulating any
local state of the monitor (such as the write to cntrlCurrent
in Figure 1), the bus interface module makes available sev-
eral registers which can be used used to execute the recov-
ery actions detailed in Section 4. The registers are summa-
rized in the table below:

Write Interface
io reg write request in I/O space

mem reg write request in memory space
address reg write address

value reg write value
enable reg byte enables
serial reg ASCII value to serial output
stop reg Peripheral gate control

As can be seen in Figure 1, we perform a memory write
to the cntr cntrl2 register of its previous value. The ad-



dress reg is used to denote the address of cntr cntrl2 (base1
+ X”202”), while the value reg is set to the old value of
cntr cntrl2, the mem reg is asserted to tell the PCI bus that
the write performed is a memory write, and the byte en-
ables are set to ”0011” to denote that the lower two bytes
must be written.

5.3. The monitor Module

The monitor module is responsible for monitoring the
property given serialized events. It encompasses the logic
of the formula, and it is the only portion of our system de-
pendent on the logical formalism used.

Extended Regular Expressions. Extended regular ex-
pressions (EREs) are the normal regular expressions [16],
extended with negation. The same plugin used for Java-
MOP’s [6] EREs is used to transform the provided ERE to
a minimized deterministic finite automata (DFA) defined in
generic code. We convert the generic code to Verilog. The
current state of the DFA is kept in a register. On each clock
cycle, the current state of the DFA and the event are con-
sulted to see if the property is violated or validated, and
what state to transition to. Violations of EREs are tricky,
because, if used normally, a DFA, once it reaches a viola-
tion state, will report a violation every event (because there
is no valid transition out of the violation state). We chose to
reset the DFA to the initial state whenever a violation is en-
countered, to avoid this problem. ERE pattern is as follows:

〈Pattern〉 ::= “epsilon” | 〈Event Name〉
| “ ∼ ”〈Pattern〉 | 〈Pattern〉“ ∗ ”
| 〈Pattern〉“ + ”〈Pattern〉 | 〈Pattern〉〈Pattern〉

“epsilon” is the empty string, “ ∼ ” is negation, “ ∗ ” is
zero or more repetitions, “+” is logical or, and 〈Pattern〉
〈Pattern〉 represents concatenation.

Past-time Linear Temporal Logic. Past-time Tempo-
ral Linear Logic (PTLTL) [8] extends normal propositional
logic with temporal operators. We modified the PTLTL plu-
gin used in JavaMOP to make it more suitable for imple-
mentation as a logic circuit. The original, generic code out-
put by the plugin used a number of sequential assignments
to an array of truth values. We take this sequential code and,
using back substitution, change the sequential code into a
series of parallel assignments. The resulting assignments
are entirely parallel, allowing the operation of the monitor
to be contained within a single clock cycle. A more in depth
explanation of this transformation is omitted, but will ap-
pear in an upcoming technical report on PTLTL. The syn-
tax for PTLTL formulas is as follows:

〈Formula〉 ::= “true” | “false” | 〈Event Name〉
| “not”〈Formula〉 | 〈Formula〉“and”〈Formula〉
| 〈Formula〉“or”〈Formula〉
| 〈Formula〉“implies”〈Formula〉
| “[∗]”〈Formula〉 | “〈*〉”〈Formula〉
| “(∗)”〈Formula〉 | 〈Formula〉“S”〈Formula〉

“not”, “and”, “or”, and “implies” are the ordinary logic
operators. “[∗]”, “〈∗〉”, “(∗)”, and “S” are temporal opera-
tors denoting always in the past, eventually in the past, pre-
viously, and since, respectively.

As an example of the transformation to efficiently moni-
torable code, consider the PTLTL formula grant implies 〈*〉
request. This formula states that if a grant of some resource
occurs, then at some point in the past there must have been
a request3. This results in sequential code: b[0] := request or
b[0]; output(not grant or b[0]);. b is the array of truth values
used by the monitoring algorithm; each truth value becomes
a single bit flip flop in the FGPA implementation. The state-
ment output tells us what the output state of the monitor is,
i.e. at a given time event arrival, the original formula is true
if b[0] is true. Because this is sequential code, it is signifi-
cant that output is the last statement (it need not necessarily
be last). grant implies 〈*〉 request is changed to not grant or
〈*〉 request by boolean simplification. If we evaluate the se-
quential code for a simple trace request grant, we see that
when request arrives b[0] is assigned the value true, regard-
less of the previous value of b[0], and that true is output.
If the output statement were first, the output would be false
on the first request event. When the grant arrives the moni-
tor again outputs true because b[0] is true.

In order to transform this into a series of parallel as-
signments we need substitute the rhs R of an assignment
statement b[i] := R into all assignments b[j] := R′ af-
ter b[i] := R such that b[i] ∈ R′. The reason for this is that
with parallel assignments all rhs are evaluated before any
assignments occur. The final parallel assignment code (de-
noted by = rather than := is b[0] = request or b[0]; output(not
grant or request or b[0]) . As we can see, request or b[0] has
been substituted for the original reference to b[0]; the re-
maining b[0] contains the value from the previous event.

A design decision relating to both logics we have imple-
mented, and all future logics, is that properties cannot be vi-
olated or validated before an event arrives. Without this as-
sumption, the example ERE property would be valid at start
up. This creates a problem: to correctly trigger recovery ac-
tions in the bus interface module, we require that the prop-
erties wire be set to 1/2 (for a validation/violation respec-
tively) for only one clock cycle. The solution we adopted is
simply to set properties to zero when no event is detected.
An additional problem is that without the assumption, a sin-
gle event in ERE could cause a violation followed immedi-
ately by a validation (since we reset the monitor on viola-
tion) in the same clock cycle. This could in turn trigger both
a validation and violation handler at the same time, which is
something we can not support. JavaMOP has the same func-
tionality, but in JavaMOP it is due to the fact that a moni-
tor does not exist before the first event, whereas in BusMOP,
the monitor exists as soon as the FPGA is configured.

3 This property is over simplified: multiple grant’s are allowed for one
request



6. Case Study: The PCI703A ADC/DAC
Board

In this section, we show how our runtime monitoring
technique can be applied to a concrete case by providing
specification and runtime experiments for a specific COTS
peripheral, the PCI703A board [9]. PCI703A is a high per-
formance Analog-to-Digital/Digital-to-Analog Conversion
(ADC/DAC) peripheral for the PCI bus. In particular, it can
perform high-speed, 14-bits precision ADC at a rate of up
to 450,000 conversions/s, and transfer data to main mem-
ory in bus master mode. At the same time, the peripheral is
simple enough that we were able to carefully check all pro-
vided hardware manuals and to manually inspect its Linux
driver; specifying formal properties for a peripheral clearly
requires a deep understanding of its inner working. In our
proposed model, the peripheral’s manufacturer is responsi-
ble for writing the runtime specification. In this sense, the
formal specification can be thought of as a correctness cer-
tification provided by the manufacturer, as long as the user
employs a monitoring device and recovery actions can be
proved to restore the system to a safe state.

To better mimic what we think would be a typical pro-
cess for a COTS manufacturer, we produced a requirement
specification for the PCI703A in two steps. First, we pre-
pared a detailed description of the communication behav-
ior of the peripheral in plain English. Then, we converted
this informal description into a formal set of events and for-
mulae for BusMOP. Inspection of the driver revealed two
software faults, both of which can cause errors that are de-
tected and recovered by the monitoring device. While in this
case we could have prevented errors by simply removing
the faults, we argue that drivers for more complex periph-
erals can be thousands of lines long and neither code in-
spection nor testing is sufficient to remove all bugs. We fur-
ther injected additional faults in the driver to test all written
formal properties. It would have been nice to also show re-
covery for hardware faults, but we did not find any in the
tested peripheral and injecting faults in the hardware is dif-
ficult. A list of both informal and formal properties can be
found at [20]. In what follows, we first provide an overview
of PCI703A and then we detail properties for an example
subsystem, a counter used in the ADC process. The exam-
ple is particularly instructive as we show how a small but
representative set of properties is able to catch one of the
aforementioned driver bug.

A block diagram for the PCI703A is shown in Figure
4. The bus slave logic implements two memory address
blocks in BAR0 and BAR1, used for conversion data and
control registers, respectively; the corresponding base ad-
dresses are written in base0 and base1 in the monitoring de-
vice. The ADC Control and DAC Control blocks control the
ADC/DAC operations and write/read data into internal FI-
FOs. The DMA Control block can be programmed to move
data between each FIFO and main memory using bus master
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Figure 4: PCI703A Diagram.

functionality. Finally, the Counter Timers block implements
four counters. Counter 0 and 1 are user programmable and
can be used either for debugging purposes or to trigger a DA
conversion. Counter 3 is also user programmable and pro-
duces an external output. Finally, Counter 2 is not meant to
be user programmable; it is to be used exclusively to gener-
ate the clock for AD conversions. The C user library pro-
vided with the driver exports an ADConfig function used
to configure ADC Control and the associated Counter 2.
The library also provides a CTConfig function to be used
to configure the user counters; unfortunately, under Linux
the function can also be used to change the configuration
of Counter 2. This is a problem, as any user in the system
could erroneously or maliciously change Counter 2 while
an ADC is in progress.

Three 16-bits control registers are relevant to our dis-
cussion: cntr cntrl2 (at hexadecimal location 220 rela-
tive to BAR1), cntr divr2 (228), and adc cntrl (300). Bit
0 of cntr cntrl2 determines whether Counter 2 is en-
abled, and bits 2-1 determine its clock source (either
20Mhz or 100Khz); when the counter is enabled, it first
loads the content of cntr divr2 and then starts count-
ing down at the selected frequency. When it reaches
zero, the value of cntr divr2 is reloaded, a clock sig-
nal is sent to ADC Control, and finally if bit 4 of cntr cntrl2
is set, an interrupt is generated. Register adc cntrl con-
trols the behavior of ADC Control; in particular, bit 0
enables/disables the ADC process and bits 2-1 deter-
mine the clock source, with a value of ”00” indicating that
Counter 2 is used.

We express three requirements:

Requirement 1 Bit 4 of cntr cntrl2 should never be set.
While the functionality is relevant for Counters 0,1, in the
case of Counter 2 setting bit 4 would cause the generation
of spurious interrupts that increase load on the driver.

Requirement 2 If the ADC is using Counter 2, and the
clock source for Counter 2 is set to 20 Mhz, then the value
of cntr divr2 must be at least 45 to avoid violating the max-
imum conversion speed of the peripheral.



declarations : {
signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

}

event cntrlMod : memory write address in base1 + X"220"
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event setBit4 : memory write

address = base1 + X"220"
dbyte value in "-----------1----"

ere: setBit4

validation handler : {
mem_reg <= ’1’;
address_reg <= base1 + X"220";
-- roll back to the previous cntr_cntrl2 value
value_reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable_reg <= "0011";

}

1

Figure 5: InterruptFix Specification

Requirement 3 If the ADC is active and using Counter
2, then Counter 2 must also be active; furthermore, while
Counter 2 is active no change to the counter configuration
is allowed.

Requirements 1-3 are able to catch the driver bug in the
sense that an invalid counter configuration can not be set
before starting the ADC, and furthermore while the ADC
is active no counter modification is allowed. We wrote four
(five including the example from Section 1) formal proper-
ties to capture the requirements:

InterruptFix. The InterruptFix specification is the for-
malization of Requirement 1, and can be seen in Figure 5.
Because we do not want the 4th bit set, we simply monitor
the pattern setBit4, an event which corresponds to setting
the 4th bit. We perform recovery when the pattern is val-
idated by overwriting cntr cntrl2 with the last valid value,
similarly to SafeCounterModify in Figure 1.

SafeConversionSpeed. The SafeConversionSpeed spec-
ification is the formalization of Requirement 2, and can be
seen in Figure 6. For this property we chose to show how
event side effects can be used in handlers as part of check-
ing that a property has been validated/violated. When the
clkSrcSet or srcSet events are triggered, meaning that the
cntr cntrl2 or adc cntrl registers have been modified, respec-
tively, we store the value written to the register in monitor
local registers (e.g., src <= value(15 downto 0)). The pat-
tern specifies that the cntr divr2 be set to a bad value (less
than 45), followed by any number of updates to cntr cntrl2
or adc cntrl, followed by the enabling of the counter. If
cntr divr2 is set to a value larger than 44, the pattern will be
violated, and the monitor will be reset. This means that the
validation handler will be executed only when then value of
cntr divr2 is too low for safe conversion, but regardless of
whether or not the board is actually using Counter 2. The
handler then checks that it is, in fact using Counter 2, and

declarations : {
signal clkSrc : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal src : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

}

event divrBad: memory write address = base1 + X"228"
dbyte value in 0,44

event divrGood: memory write address = base1 + X"228"
dbyte value in 45,65535

event clkSrcSet : memory write address in base1 + X"300"
{ clkSrc <= value(15 downto 0); }

event srcSet : memory write address in base1 + X"220"
{ src <= value(15 downto 0); }

event countEnable : memory write address = base1 + X"220"
dbyte value in "---------------1"

ere: (divrBad (clkSrcSet + srcSet)* countEnable)*

validation handler : {
if (clkSrc(2 downto 1) = "01") and (src(2 downto 1) = "00") then
mem_reg <= ’1’;
address_reg <= base1 + X"228";
--set cntr_divr2 to 45
value_reg(15 downto 0) <= X"2D";
enable_reg <= "0011";

end if;
}

1

Figure 6: SafeConversionSpeed Specification

that Counter 2 is using the 20Mhz source, before perform-
ing the recovery: setting cntr divr2 to a valid value (45).

NoDisableWhileConverting. The NoDisableWhile-
Converting specification is the formalization of part of Re-
quirement 3, and can be seen in Figure 7. This could
have been written in a similar manner to SafeConver-
sionSpeed, i.e., using event side effects to store current
register values and checking them in the handler. We de-
cided to use a fully formal specification, that defines events
for setting the registers to good or bad values. The for-
mula itself specifies that, if the ADC is enabled, and clkSrc2
is good, meaning that Counter 2 is being used to time the
ADC, then Counter 2 must be enabled. The part of the for-
mula before the implies keyword, states that the ADC is
enabled and the ADC clock source is Counter 2, the sec-
ond half of the formula is the requirement that Counter 2
not be disabled. The formula is true when correct behav-
ior is exhibited, so we use a violation handler for the re-
covery action, which again is simply to set cntr cntrl2 to the
last valid value.

SafeDivrModify. The SafeDivrModify specification is
the formalization of part of Requirement 3, and can be seen
in Figure 8. In conjunction with NoDisableWhileConvert-
ing and SafeCounterModify (from Section 1), all of require-
ment 3 is covered. This specification ensures that cntr divr2
is not modified while Counter 2 is enabled. This property
is the same as SafeCounterModify from Figure 1, save that
we are ensuring that cntr divr2 is not modified, rather than
cntr cntrl2. We also used PTLTL rather than ERE, to show
how two very similar properties look in both logics. These
could be collapsed into one specification, but it would make
recovery more complicated, because we only want to roll
back the register that was actually modified (cntr cntrl2 or



declarations : {
signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

}

event countEnable : memory write address = base1 + X"220"
dbyte value in "---------------1"
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event countDisable : memory write address = base1 + X"220"

dbyte value in "---------------0"
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event clkSrc2Good : memory write address = base1 + X"300"

dbyte value in "-------------01-"
event clkSrc2Bad : memory write address = base1 + X"300"

dbyte value not in "-------------01-"
event adcEnable : memory write address = base1 + X"300"

dbyte value in "---------------1"
event adcDisable : memory write address = base1 + X"300"

dbyte value in "---------------0"

ptltl: ( ((not adcDisable) S adcEnable) and
((not clkSrc2Bad) S clkSrc2Good) )
implies
((not countDisable) S countEnable)

violation handler : {
mem_reg <= ’1’;
address_reg <= base1 + X"220";
-- roll back to the previous cntr_cntrl2 value
value_reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable_reg <= "0011";

}

1

Figure 7: NoDisableWhileConverting Specification

cntr divr2). The formula itself states that if cntr divr2 has
been modified and the counter has not been disabled since
the last time it was enabled, than we must recover. Unlike
SafeCounterModify we use a validation rather than a viola-
tion handler, because the formula was easier to express with
recovery being on validation.

As a final consideration, note that the handlers of Safe-
CounterModify, InterruptFix and NoDisableWhileConvert-
ing can be invoked simulteously if an incorrect value is writ-
ten to cntr cntrl2, which results in the execution of multiple
bus writes. However, this causes no problem since all han-
dlers overwrite cntr cntrl2 with the same valid value.

7. Related Work

There are two main run-time verification approaches: 1)
offline, where a log, or trace is kept, which can then be used
for purposes of debugging; and 2) online, where a property
is checked while the program is running. As BusMOP is an
online technique, we will only describe online approaches
to runtime verification.

MaC [13], PathExplorer (PaX [11], and Eagle [4] use
specific verification languages which cannot be changed,
while BusMOP, as an extension of MO [6], will eventu-
ally support all the logics supported in JavaMOP. Temporal

declarations : {
signal divrCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal divrOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

}

event countDisable : memory write address = base1 + X"220"
dbyte value in "---------------0"

event divrMod : memory write address in base1 + X"228"
{
divrOld <= divrCurrent;
divrCurrent <= value(15 downto 0);

}
event countEnable : memory write address = base1 + X"220"

dbyte value in "---------------1"

ptltl: (divrMod) and (*)((not countDisable) S countEnable)

validation handler : {
mem_reg <= ’1’;
address_reg <= base1 + X"228";
-- roll back to the previous cntr_divr2 value
value_reg(15 downto 0) <= divrOld;
divrCurrent <= divrOld;
enable_reg <= "0011";

}

1

Figure 8: SafeDivrModify Specification

Rove [7] is a commercial runtime verification tool which
uses future time metric temporal logic. It provides inline
specification of monitors, where the monitors are written
straight in the source file. Inline specification does not make
sense for BusMOP, as there is no program being monitored
per se. Program Query Language (PQL [17], is an approach
somewhat similar to MOP, although it also only allows one
specification language. PQL can support the full general-
ity of context free languages. Tracematches [3] is very sim-
ilar to JavaMOP. The biggest difference is that its choice
of regular expressions for logical formalism is hardwired.
It is an extension of the AB [2] AspectJ compiler. All of
the above approaches are designed to monitor specific pro-
grams, and are implemented in software. This has the effect
of both adding runtime overhead, and performing a func-
tion different from that of BusMOP, which monitors COTS
peripherals.

The PSL to Verilog compiler, P2 [15], is the sole at-
tempt to perform formal runtime verification in hardware,
of which we are aware. P2V is similar to BusMOP in that
monitors are implemented in hardware rather than soft-
ware, and that both approaches thus have no runtime over-
head on the CPU. P2V, however, is more like the above ap-
proaches in that it is designed for monitoring actual pro-
grams rather than peripheral devices. Also it requires a dy-
namically extensible soft-core processor implemented on an
FPGA, while our approach can potentially be applied to any
COTS communication architecture. Further, P2V uses hard-
wired logic while BusMOP allows different formalisms.

Finally, in recent years there have been several propos-
als in the industry to extend virtual memory support to pe-
ripherals (for example, see [10]). While the main objective
of these mechanisms is to extend virtualization to hardware
devices, they can nevertheless be used to improved system
reliability preventing peripherals from writing to wrong lo-



cations in main memory. In comparison, BusMOP is able to
check a much greater range of requirements, but in its cur-
rent implementation it lacks the ability to take preventive
measures. As such, it can be beneficial to use both tech-
niques together to simplify recovery.

8. Conclusions and Future Work

COTS peripherals are increasingly being adopted in
the embedded market for performance reasons. How-
ever, COTS components introduce challenges in the devel-
opment of critical systems, as they are unpredictable and
often complete hardware specification is not publicly avail-
able. In this paper, we have proposed run-time monitoring
of bus activities as a way to cope with such unpredictabil-
ity. A monitoring device can be plugged on a PCI bus
segment and check that all communication between periph-
erals and the rest of the system behaves according to spec-
ifications. Monitoring logic is automatically generated by
the BusMOP framework and synthesized on FPGA, result-
ing in zero CPU runtime overhead. Finally, we showed the
applicability of our monitoring infrastructure and recov-
ery mechanisms on a real test case.

We plan to extend this work in two directions. From
a system point of view, we plan to develop a interposing
PCI/PCI-X/PCI-E monitoring device capable of executing
preventive recovery actions as described in Section 4. From
a formal specification point of view, we plan to extend Bus-
MOP to support other logic specifications. Most of the plu-
gins already developed for the MOP framework will re-
quire little work, with the exception of context free gram-
mars (CFG)4, which would require implementing, effec-
tively, a hardware LR(1) parser. This extension is not triv-
ial: the monitor must be able to process each event in few
clock cycles, but a LR(1) parser can perform an unbounded
number of reductions each event. Finally, none of the for-
malisms supported so far include the notion of time as an
explicit variable, making it difficult to check real-time re-
quirements. As a long term research goal to solve this prob-
lem, we plan to develop efficient runtime monitoring algo-
rithms for a significant subset of timed automata [1].
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