
 
 

 

 

 

 

 

 

 

 

Career Final Project 

 

 

PROGRAM AN EMBEDDED SYSTEM WITH INDUCTIVE 

PROXIMITY SENSOR AND RFID READER 

 

 

 

 
 

Author: 

Angel Maria Fàbregas López 

 

Supervisor of project: 

Lukas Vojtech 

 

 

Prague, June of 2012  



ii 
 

  



iii 
 

Table of contents 

 
Chapter 1. Introduction .......................................................................................  1 

Chapter 2. Board  .................................................................................................  3 

  2.1 Introduction  ...................................................................................................  3 

    2.1.1 Basic hardware  ........................................................................................  3 

    2.1.2 Board used  ..............................................................................................  4 

  2.2 Features and characteristics  .........................................................................  5 

  2.3 Additional components  ..................................................................................  6 

    2.3.1 CompactFlash card  ..................................................................................  6 

    2.3.2 Wifi miniPCI card ......................................................................................  6 

Chapter 3. Choice of Operating System  ............................................................  7 

  3.1 What is an Operating System?  ......................................................................  7 

  3.2 Features of our Operating System  ................................................................  7 

  3.3 Voyage Linux  ................................................................................................  8 

    3.3.1 Voyage Linux  ...........................................................................................  8 

    3.3.2 Features  ...................................................................................................  9 

    3.3.3 How to install  ............................................................................................  9 

    3.3.4 First steps  ................................................................................................  11 

  3.4 Additional packages  ......................................................................................  12 

Chapter 4. RFID reader  .......................................................................................  13 

  4.1 RFID technology  ...........................................................................................  13 

    4.1.1 Definition  ..................................................................................................  13 

    4.1.2 Operation  .................................................................................................  13 

    4.1.3 RFID frequency bands  .............................................................................  14 

  4.2 Our RFID equipment  .....................................................................................  15 

    4.2.1 General Description  .................................................................................  15 

    4.2.2 RFID Antenna  ..........................................................................................  15 



iv 
 

    4.2.3 RFID Reader  ............................................................................................  16 

  4.3 Communication with RFID reader  .................................................................  20 

    4.3.1 General description of data packet  ...........................................................  20 

    4.3.2 libusb-1.0.8  ..............................................................................................  21 

Chapter 5. Wireless communication ..................................................................  27 

  5.1 Why needs wireless connection  ....................................................................  27 

  5.2 Kinds of wireless connection  .........................................................................  27 

  5.3 IEEE 802.11 standards  .................................................................................  28 

  5.4 Hardware  ......................................................................................................  28 

  5.5 Board configuration  .......................................................................................  28 

    5.5.1 Server-client  .............................................................................................  28 

    5.5.2 Board files configuration  ...........................................................................  29 

    5.5.3 Putty  ........................................................................................................  32 

Chapter 6. Inductive proximity sensor  ..............................................................  35 

  6.1 What is it?  .....................................................................................................  35 

  6.2 Features ........................................................................................................  36 

  6.3 Connection  ....................................................................................................  36 

    6.3.1 Diagrams  .................................................................................................  36 

    6.3.2 rs232  ........................................................................................................  37 

    6.3.3 Serial-USB adapter  ..................................................................................  39 

  6.4 Basic operations  ...........................................................................................  39 

Chapter 7. Access to results  ..............................................................................  41 

  7.1 How to access to results  ...............................................................................  41 

  7.2 Results format  ...............................................................................................  41 

  7.3 Web page  .....................................................................................................  42 

    7.3.1 Privacy  .....................................................................................................  43 

    7.3.2 See information  ........................................................................................  45 

    7.3.3 Delete tag by tag  ......................................................................................  46 

    7.3.4 Delete all  ..................................................................................................  46 



v 
 

  7.4 ftp server  .......................................................................................................  47 

Chapter 8. Program made  ..................................................................................  49 

  8.1 Goals  ............................................................................................................  49 

  8.2 Flowchart diagram  ........................................................................................  49 

    8.2.1 Proximity sensor activation  .......................................................................  50 

    8.2.2 Proximity sensor deactivation  ...................................................................  50 

    8.2.3 RFID ID tag detection  ...............................................................................  50 

    8.2.5 Update databases  ....................................................................................  51 

  8.3 Functions  ......................................................................................................  52 

    8.3.1 static unsigned char crc(unsigned char data[], int length)  .........................  53 

    8.3.2 static char *temps()  ..................................................................................  53 

    8.3.3 char *prep(char *num)  ..............................................................................  53 

    8.3.4 void check_and_send(char *sortida)  ........................................................  53 

    8.3.5 static int conf_reader(libusb_device_handle *rfid_handle)  ........................  54 

    8.3.6 static int stop_rfid(libusb_device_handle *rfid_handle)  .............................  55 

    8.3.7 static int start_rfid(libusb_device_handle *rfid_handle)  .............................  55 

    8.3.8 int reader()  ...............................................................................................  57 

    8.3.9 void mcs(int fd)  .........................................................................................  57 

    8.3.10 char *format_time()  ................................................................................  58 

    8.3.11 int main()  ................................................................................................  58 

  8.4 Start-up  .........................................................................................................  59 

Chapter 9. Conclusions  ......................................................................................  61 

  9.1 Projects development ....................................................................................  61 

  9.2 Project conclusions  .......................................................................................  62 

  9.3 Future work  ...................................................................................................  62 

A. Manual  .............................................................................................................  63 

  A.1 Configuration Manual ....................................................................................  63 

    A.1.1 Add/delete users  ......................................................................................  63 

    A.1.2 Program parameters  ................................................................................  66 



vi 
 

    A.1.3 Wifi network configuration  ........................................................................  67 

  A.2 user manual  ..................................................................................................  69 

    A.2.1 how it works  .............................................................................................  69 

    A.2.2 Interpretation of errors  .............................................................................  70 

    A.2.3 How to access to the results  ....................................................................  71 

B. Summary of figures and tables  .....................................................................  73 

C. Passwords  ......................................................................................................  76 

D. References  ......................................................................................................  77 

 
  



1 
 

Chapter 1 

Introduction 

 

The aim of this project is to get a machine which can control and track movements of 

goods in a factory or store. So, the main idea is to have some of these machines 

strategically placed in the building and managed all from a comfortable distance. 

To control and track movements are used two parameters, RFID tags and proximity of 

goods. These would be possible with help of RFID reader and an inductive proximity 

sensor, which with an ALIX board are three devices with which this project begins. 

This project consists on interaction of these devices and programming their software, 

as well as choice of Operating System and configuration of a wireless connection. 

 

On the other hand, goals of this project are also; 

- Achieve a robust and simple program that works with RFID reader and 

proximity sensor. 

- Improve programming skills, especially in c language. 

- Working in something similar a business project 

- Knowledge and use of different devices such as RFID reader and proximity 

sensor. 

- Use of ALIX board, and improve my knowledge about this board. 

 

This paper is organized starting with some unrelated chapters that finally are related on 

chapter 8: 

1. Introduction, chapter which we are. In this chapter there are the 

presentation of the project, marked goals and organization of paper. 

2. Board, this chapter explain the board used, as well as its features and 

characteristics. 

3. Choice of O.S., in this chapter there is a discussion about which could be 

the best O.S. for this project, how to install it and some packages that would 

be necessary in next tasks. Therefore, after this chapter ALIX board is 

prepared to other tasks.    

4. RFID reader, in this chapter there is an explanation of how RFID reader 

works, its specifications and features of RFID reader used and software 

which controls it. 



2 
 

5. Wireless communication, in this chapter there are an explanation of 

wireless connection used, their features and configuration. 

6. Inductive proximity sensor, in this chapter there is an explanation of used 

proximity device features and how it works. Just as, software programmed 

to control the device. 

7. Access to results, in this chapter there is an explanation of web page and 

ftp server, and about format of databases.  

8. Program made, in this chapter there is an explanation of high level code. 

9. Conclusions, in this chapter there is a global view of whole project, as well 

as problems and solutions found and possible future improvements. 

A. Manuals. A precise explanation of how to use and configure the program. 

B. Summary of figures and tables. 

C. Passwords, where there are all passwords used. 

D. References. 

 

 

 

  



3 
 

Chapter 2  

Board 

 

2.1 Introduction 
 

The brain of this project is this device; the board. The board is the union point of all 

devices and the interface which all software and programs run. To run programs is 

necessary an Operating System, task explained in chapter 3. 

 

2.1.1 Basic hardware 
 

Hardware is the term given to the components such as circuits, electronics and 

anything that you could touch on the board. 

Hardware can be broken up into four parts: 

- Processor 

- Memory 

- Input and Output 

- Storage 

 

2.1.1.1 Processor 

 

The processor is the most important piece of hardware. It is the brain, the very intellect 

of this electronic machine. 

The processor decodes and executes instructions that are sent to in via the many lanes 

within the board. 

 

2.1.1.2 Memory 

 

The most common memory is known as the random access memory (RAM) because of 

it is a static memory. 

Static memories are memories that do not store data always, as soon as the board is 

switched off, the memory becomes empty or resets itself. 



4 
 

RAM chips provide the communication link between the central processing unit and the 

storage device. All software used is loaded on to the memory. The CPU or processor 

then reads the RAM for the instructions and then does the calculation and executes 

them by writing back on to the RAM. 

Another memory is dynamic memory or volatile memory which stores data that is fixed 

and does not go off even if the computer is switch off. This is read only memory (ROM) 

which stores critical boot up information of the computer. This chip allows the computer 

to start up and provides information on its hardware devices. 

 

2.1.1.3 Input and Output devices 

 

Input and Output devices purpose is to provide either input into the board system or to 

provide an output from the board system. 

These are devices used when interacting with the board such as a keyboard or serial 

wire to connect with the computer. 

 

2.1.1.4 Storage devices 

 

Storage device is the disk drive or the hard disk. 

The disk is broken up into many sectors and these sectors house the data such as 

programs inside the board. They act as a cabinet or a filing system where all the data is 

stored in its raw form. 

 

2.1.2 Board used 
 

The board used in this project is ALIX 2D3. This board is optimized for wireless routing 

and network security applications. And its size is small. 



5 
 

         

 Figure 2.1: front of ALIX 2D3 board Figure 2.2: behind of ALIX 2D3 board 

  

 

 

2.2 Features and characteristics 
 

Here are some highlighted features of ALIX 2D3: 

 CPU: 500 MHz AMD Geode LX800 

 DRAM: 256 MB DDR DRAM 

 Storage: CompactFlash socket, 44 pin IDE 

 Power: DC jack or passive POE, min. 7V to max. 20V.  

 Expansion: 1 miniPCI slot, LPC bus 

 Connectivity: 3 Ethernet channels (Via VT6015M 10/100) 

 I/O: DB9 serial port, dual USB port 

 Board size: 6x6’’ (152.4 x 152.4 mm) – same as WRAP.1E 

 Firmware: tinyBIOS 

 Others: Three front panel LEDs, push button. 

 

 



6 
 

 

2.3 Additional components 
 

The ALIX board has all connections but need two more components: CompactFlash 

card as a storage device and wifi card as Input and Output device. 

2.3.1 CompactFlash card 
 

The CompactFlash card used in this project is CompactFlash Kingston 4 GB standard 

card. 

 

Figure 2.3 – CompactFlash Kingston 4GB standard card 

 

 

This card is designed for basic storage without speed requirements.  It storages the 

Operating system and all programs made. 

 

2.3.2 Wifi miniPCI card 
 

This board doesn’t have hardware to connect by wifi so it is necessary to use an 

external hardware. To get a wifi connection is plugged in miniPCI connector a wifi 

miniPCI card [5]. At same time, this card is connected with an antenna, as is shown in 

Figure 2.5. 

   

 Figure 2.4 – Wifi miniPCI card Figure 2.5– Wifi antenna, Wifi miniPCI card 

and board 



7 
 

Chapter 3 

Choice of Operating System 

 

3.1 What is an Operating System?  
 

An operating system (OS) is a set of software that manages computer hardware 

resources and provides common services for computer programs. The operating 

system is a vital component of the system software in a computer system. Application 

programs require an operating system to function. 

For hardware function such as input and output and memory allocation, the operating 

system acts as an intermediary between programs and the computer hardware. 

Operating systems can be found on almost any device that contains a computer, from 

cellular phones and video game consoles to supercomputers and web servers. 

 

3.2 Features of our Operating System 
 

Nowadays, there are a lot of Operating Systems. To choose one of them for this project 

is essential to decide some features that project need. These features are; 

- Free Operating System, which has no monetary cost. 

- Small size. 

As Manual made by PC Engines ALIX proposes, there are some OS options; 

- FreeBSD 

- Linux 

- NetBSD 

- OpenBSD 

- Others 

- Commercial 

Each above category is composed by more than one possibility. But commercial 

category could be removed of the list because don’t fulfil with rule of no-cost OS. 

About other categories, there is no subjective reason to choose one of them, but the 

OS choose is in Linux category, because is one of the most used OS with Windows 

and MAC OS, but the other two are commercial and have a big size. 



8 
 

To be one of the most used OS is important because it would mean that there are a lot 

of documentation and Forums which can help during development of the project. 

So, the last step is chose one of the Linux OS. Like is made before, the choice will be 

in ALIX provider’s list; 

- Alix Rescue (rescue) 

- AstLinux (asterix -> VoIP) 

- CentOS (small community) 

- Debian for Alix (small community) 

- gOS 3 Gadgets (no information) 

- fli4l 

- IPCop (firewall) 

- IPFire (firewall) 

- LEAF Linux Embedded Appliance Firewall (firewall) 

- Meshlium (no information) 

- OpenWRT (small community) 

- Ubuntu Linux (big size) 

- Voyage Linux 

- Xubuntu Linux (big size) 

- Zeroshell (servers) 

In the previous Linux can be organized in some groups. Those with small 

community(CentOS, Debian for Alix, OpenWRT), those with big size (Ubuntu Linux, 

Xubuntu Linux), those with specific use such as firewall (Alix Rescue, AstLinux, IPCop, 

IPFire, LEAF, Zeroshell) and those without enough information(gOS 3 Gadgets, fli4l, 

Meshlium).  

After this classification, the only one which satisfies all features is Voyage Linux, and 

this is the OS used in this project.    

Finally, features that have been used to choose OS are larger than which was thought 

at beginning; 

- Free Operating System, which has no monetary cost. 

- Small size. 

- Big community. 

- Not specific utility. 

- Good papers and FAQs (frequent answered questions). 

 

3.3 Voyage Linux 

3.3.1 Voyage Linux 
 

Voyage Linux [3] is Debian derived distribution that is best run on an x86 embedded 

platforms such as PC Engines ALIX.  



9 
 

Typical installation requires 128 MB disk space, although larger storage allows more 

packages to be installed.  

Currently, Voyage Linux has the following editions: 

- Voyage Linux – the basic version 

- Voyage MPD – Music Player Daemon 

- Voyage ONE – VoIP software 

The edition that is used in this project is Voyage Linux., which has six releases:  

- i386 0.8.0 

- i386 live cd 

- i386 sdk 

- amd64 0.8.0 

- amd64 live cd 

 

3.3.2 Features 
 

Here are some highlighted features of Voyage Linux: 

- Basic features 

 Based on Debian Sarge r3.1/Etch r4.0/Lennyr 5.0/Squeeze r6.0 – 

stripped down only 128MB disk space required 

 Highly extensible through apt package management 

- The kernel 

 Linux 3.0/2.6 kernel – always latest 

 Full PC Engines ALIX/WRAP board support – watchdog, gpio, 

temperature reading and LED patch 

- WiFi support 

 Built in ath9k, ath5k/madwifi(-ng), hostap, prism54, optional 

ndiswrapper drivers and tonnes of wireless drivers 

 Wireless access point support in NAT or bridge mode. 

 WPA/WPA2 support via hostapd and wpa_supplicant 

 WDS support via nl80211, hostap or madwifi drivers 

 Hostap txpower and non-volatile firmware download support 

 Captive Portal: built-in nocatsplash support, optional nocatauth 

package available. 

3.3.3 How to install 
 

The installation [2] is done on the CompactFlash card using a USB card reader of a 

computer which has installed Linux Mint OS. Could be necessary that execute all 

commands as a root, so sudo command was used. 

Firstly, is important to know the path of CompactFlash card. Once it is known, in this 

project is /dev/sdc, must be empty.  



10 
 

After, a primary partition has to be done and formatted with ext3.  

Secondly, Voyage Linux image has to be downloaded and mounted in hosted 

computer. 

Finally, installation script has to be executed. Following all indications, Voyage Linux 

will be installed correctly. 

Following scheme shows the installation step by step: 

1. Prepare the card. 

- Delete everything on the card. 

- Create a primary partition using cfdisk and mark it as bootable.  

>> sudo cfdisk /dev/sdc 

- Format primary partition as ext3. 

>> sudo mkfs.ext3 /dev/sdc1 

- Delete checking every X seconds. 

>> sudo tune2fs –c 0 /dev/sdc1 

2. Prepare the installation 

- Make a directory which mount OS image. 

>> sudo mkdir /mnt/voyage 

- Download OS installation file, this project use Voyage Linux i386 

0.8.0. 

- Unpack file 

>> sudo tar –numeric-owner –jxf voyage_0-8-0.tar.bz2 

- Enter the unpacked folder 

>> cd voyage_0-8-0 

3. Installation 

- Execute script and follow steps. 

>> sudo ./usr/local/sbin/voyage.update 

i. Create New Voyage disk 

ii. Select Target disk 

- /dev/sdc 

- 1   // partition 1 

- /mnt/voyage // directory to mount OS image 



11 
 

 

iii. Select Target Bootstrap Loader 

- grub 

- 1 

iv. Configure Target Console 

- 1 (serial terminal) 

- 5 (38400) 

v. Partition & Create file system 

- 1 (Partition flash media & create Filesystem 

vi. Copy Distribution to target 

- Yes 

vii. Exit 

 

Once Voyage Linux is installed correctly, only has to connect CompactFlash card on 

PCI socket, and boot ALIX board. 

 

3.3.4 First steps 
 

Once Voyage Linux is installed and ALIX board booted. How to access? There are 

some possibilities, in this project is used a serial communication. Our Computer doesn’t 

have serial connector so it is necessary to use a serial-USB adapter. When host 

computer and ALIX board are connected, is easy to access to ALIX board using 

minicom communication[1]. First time, is necessary to configure minicom command 

with: 

>> sudo minicom –s 

And modify default values to: 

 Address: /dev/ttyUSB0 

 Speed: 38400 

After configuration, connection is done with: 

>> sudo minicom 



12 
 

Now, terminal will show Voyage Linux access screen, as Figure 3.1. 

 

Figure 3.1 – minicom response 

 
 

Voyage Linux access screen needs to introduce a username and password. Default 

values are: 

username: root 

password: voyage 

For default Voyage Linux is mounted as a read-only OS, if you want to modify 

something, is important to know how to mount it as a read-write OS. It is done with: 

>> remountrw  // read-write OS 

>> remountro  //read only OS 

3.4 Additional packages 
 

As is a small and concentrate Operating System, there are some applications that are 

not installed. Basically there are two; build-essential and emacs. 

Build-essential is necessary to compile programs [4].  

Emacs is not essential, but is a good text editor and which was used in this project. 



13 
 

Chapter 4 

RFID reader 

 

4.1 RFID technology 
 

4.1.1 Definition 
 

RFID, acronym of Radio-Frequency IDentification, is the use of a wireless non-contact 

system that uses radio-frequency electromagnet fields to transfer data from a tag 

attached to an object, for the purposes of automatic identification and tracking. 

The tag contains electronically stored information which can be read from up to several 

metres away. Unlike a bar code, the tag does not need to be within line of sight of the 

reader and may be embedded in the tracked object. 

 

      

 Figure 4.1 – RFID Reader  Figure 4.2 – RFID tag 

 

4.1.2 Operation 
 

A radio-frequency identification system uses tags, or labels attached to the objects to 

be identified. Two-way radio transmitter-receivers called interrogators or readers send 

a signal to the tag and read its response. The readers generally transmit their 

observation to a computer system running RFID software or RFID middleware. 



14 
 

The tag’s information is stored electronically in a non-volatile memory. The RFID tag 

includes a small RF transmitter and receiver. An RFID reader transmits an encoded 

radio signal to interrogate the tag. The tag receives the message and responds with its 

identification information. This may be only a unique tag serial number, or may be 

product-related information such as a stock number, lot or batch number, production 

date, or other specific information. 

RFID tags can be either passive, active or battery assisted passive. An active tag has 

an on-board battery and periodically transmits its ID signal. A battery assisted passive 

(BAP) has a small battery on board and is activated when in the presence of a RFID 

reader. A passive tag is cheaper and smaller because it has no battery. Instead, the 

tag uses the radio energy transmitted by the reader as its energy source. The 

interrogator must be close for RF field to be strong enough to transfer sufficient power 

to the tag. Since tags have individual serial numbers, the RFID system design can 

discriminate several tags that might be within the range of the RFID reader and read 

them simultaneously. 

Tags may either be read-only, having a factory-assigned serial number that is used as 

a key into a database, or may be read/write, where object-specific data can be written 

into the tag by the system user. Field programmable tags may be write-once, read-

multiple, “blank” tags may be written with an electronic product code by the user. 

RFID tags contain at least two parts: an integrated circuit for storing and processing 

information, modulating and demodulating a radio-frequency signal, collecting DC 

power from the incident reader signal, and other specialized functions; and an antenna 

for receiving and transmitting the signal. 

 

4.1.3 RFID frequency bands 
 

Band Regulations Range Data speed Remarks 

120-150 kHz (LF) Unregulated 10 cm Low Animal 
identification, 
factory data 
collection 

13.56 MHz (HF) ISM band 
worldwide 

1 m Low to 
moderate 

Smart cards 

433 MHz (UHF) Short Range 
Devices 

1-100 m Moderate Defence 
applications, 
with active 
tags 

868-870 MHz (Europe) 
902.928 MHz (North 
America) UHF 

ISM band 1-2 m Moderate to 
high 

EAN, various 
standards 

2450-5800 MHz 
(microwave) 

ISM band 1-2 m High 802.11 
WLAN, 
Bluetooth 
standards 

3.1-10 GHz Ultra wide To 200 m High Requires 



15 
 

(microwave) band semi-active or 
active tags 

 
Table 4.1 – RFID frequency bands 

 

4.2 Our RFID equipment  
 

4.2.1 General Description 
 

The aim of this task is to get identification numbers of RFID tags. To do this we have 

an RFI21.1 Development Kit of Metra Blansko a.s. company. 

 

Figure 4.3 – RFI21.1 Development Kit 

 

RFI21.1 Development Kit includes all necessary components for read tag identifiers 

which are in the field of an antenna. It also allows reading and writing the user data 

when this property is supported by tags. This project is only interested in read tag 

identifiers.  

The content of this Development Kit is: 

- RFA01 UHF RFID Antenna 

- RFI21.1EU UHF RFID Reader 

- Power supply Sunny SYS1421-0605-W 

- Galvanically isolated converter UART-RS-232 (LGA-KN232) 

- Galvanically isolated converter UART-RS-485 (LGA-KN2) 

- Interface cable RFC21 

- Interface cable USB 

- Antenna cable RFC01 (2m) 

- CD with documentation and software 

- Tags UPM ShortDipole 

In this project are used RFID Antenna, RFID Reader, Power supply, cable USB and 

Antenna cable. Also, tags UPM is used to check that program works correctly. 

 



16 
 

4.2.2 RFID Antenna 
 

RFA01 RFID antenna is made of ABS plastic. This antenna is designed for indoor use 

in industry, logistics, trade or other similar applications. 

The antenna is fed through concentric cable with an impedance of 50  connected by 

the hole on the side housing to the antenna SMA connector. 

It is a circularly polarized fixed reader antenna. Read range, which is designed to work 

in a band from 865 to 870 MHz, is increased by high gain (typ. 8 dBi) and low VSWR 

(1.2:1) minimizes wasted power in the reader.  

 

Figure 4.4 – RFA01 RFID antenna 

 

4.2.3 RFID Reader 
 

RFI21.1EU UHF RFID Reader cover is made from the stainless Steel finished by 

varnishing and has aluminous cooling plates. It is constructed for the use inside in the 

industry, logistics, stores and other similar applications. 

The reader requires a direct current 5V power supply. 

The antenna is connected by the coaxial cable with 50  impedance and the standard 

SMA connector. The cable should have a low attenuation with respect to a reading 

distance in the required RFID application. The antenna together with a cable must have 

SWR < 1.5 at the reader antenna connector in entire working frequency range. It is not 

allowed to operate the reader with a disconnected or unmatched antenna, which could 

cause reader damage. 

To connect the reader with a computer is used an USB 2.0 interface with the USB 

micro type B connector. The reader could not be powered through the USB interface.  

The reader has two signal LED’s. Green one signals power voltage presence and the 

yellow one signals a reader status. 



17 
 

The RFI21.1 is compact multiregional multiprotocol RFID reader intended for data 

reading and writing from/to passive transponders (tags) and offering them to a 

computer. The reader works with the protocols EPC Class 1 generation 2, iP-X, ISO 

18000-6B and ISO 18000-6A. It provides wide range of configuration, utilization of 

transfer speed up to 640 kb/s and easy installation including integration to the system. 

Reader status is indicated by the yellow LED as follows: 

Yellow LED Status 

No light If the green LED lights simultaneously, the reader si prepared 
to communicate with a computer, the reader neither transmits 
nor looks for tags. 

Permanent light Boot loader active. 

Blinking 4 Hz The reader transmits and looks for tags according to settings, 
tags are detected. 

Blinking 1.5 Hz 
Alternate 5% 

The reader transmits and looks for tags according to settings, 
no tags are detected. 

Blinking 1 Hz 
Alternate 50% 

Error status (power supply or temperature or SWR antenna 
are out of operation range). 

Blinking 10 Hz Error status (service action is required, contact the reader 
supplier). 

 
Table 4.2 – RFID reader LEDs status   

4.2.3.1 Protocols – iP-X 

 

iP-X, acronym of Internetwork Packet eXchange, is an implementation of Internet 

Datagram Protocol (IDP) protocol of Xerox. Is a fast and connection orientated 

datagram protocol and it sends data using the network, each packet has to include 

destination address. 

It belongs to the network layer (level 3 of OSI model) and is similar with IP protocol, but 

iP-X is simpler and less trust. An iP-X packet consists of eleven fields; Checksum, 

packet length, Transport control, packet type, destination network, destination node, 

destination socket, source network, source node, source socket, upper-layer data. 

  

Figure 4.5 – iP-X packet structure 

 



18 
 

4.2.3.2 Protocols - ISO 18000-6 type A 

 

ISO 18000-6 A protocol is based on the concept of “interrogator talks first”. This means 

that the tag shall wait to receive a correctly decoded command from the interrogator 

before transmitting. 

So the protocol is based on an exchange of; a command from the interrogator to the 

tag, and a response from the tag(s) to the interrogator. 

Each command and each response are contained in a frame. Each command consists 

of the following fields; SoF, RFU field (reserved for protocol extension), command 

code, parameters (or RFU), CRC-5, Optional parameter fields (depending on the 

command), application data fields, CRC-16 and EoF. And each response consists of 

the following fields; SoF, flags, mandatory and optional parameters fields (depending 

on the command), application data fields, CRC-16 and EoF. 

This protocol is bit-oriented. A single field is transmitted most significant bit first. 

There are two forms of commands, short commands of 16 bits, Figure 4.6, and longer, 

Figure 4.7. 

 

Figure 4.6 – Short command format 

 

 

Figure 4.7 – Long command format 

 

The response from the tag, as explained before, has the structure of Figure 4.8. 

 

Figure 4.8- General response format 

 

4.2.3.3 Protocols - ISO 18000-6 type B 

 

ISO 18000-6 B protocol is based on the concept of “interrogator talks first”, like ISO 

18000-6 A. In this protocol data is encoded and presented in slightly different ways in 

the constituent fields. For interrogator-to-tag communication, data is sent using an on-

off key format. For tag-to-interrogator communication, data is sent using backscatter 

techniques. This requires that the interrogator provide steady power to the tag during 

the return link (tag-to-interrogator). This protocol is bit-oriented. 



19 
 

Each command and each response are contained in a frame. Each command are 

divided with the following fields; Preamble Detect (no modulation of the RF carrier), 

preamble, delimiter, command code, parameter fields (depending on the command), 

application data fields (depending on the command) and CRC-16. 

 

Figure 4.9 – General command format 

 

Each response consists of the following fields; quiet (no modulation of the RF carrier), 

return preamble, application data fields and CRC-16. 

 

Figure 4.10 – General response format 

 

4.2.3.4 Protocols - EPC Class 1 generation 2 

 

EPC Class 1 generation 2 protocol is similar with ISO 18000-6 A and B protocols. The 

main difference is that ISO 18000 protocols only defines air interface, while EPC 

protocol defines structure of data, physical reader implementation, networks, etc.  

This specification has some main points: 

- RFID tags can use any frequency between 860-960 MHz. 

- RFID tags are able to work with three different modulation schemes; DB-

ASK (Double Sideband-Amplitude Shift Keying), SS-ASK (Single Sideband-

Amplitude Shift Keying) and PR-ASK (Phase-Reversal Amplitude Shift 

Keying). RFID readers choose which scheme is used.  

- RFID tags can transmit with four different speeds; 80 Kbps, 160 Kbps, 320 

Kbps or 640 Kbps (What it means that RFID reader can read more than 

600 tags/sec). RFID readers choose which speed is used. 

- This protocol include one method for support multiple readers and reduce 

their interference. 

For above main points, this protocol is known as multiprotocol protocol. 

 

Each command has a specific structure. All starts with a preamble and a command or 

response fields. The following fields depend of command used. For example, query 

command has the structure of Figure 4.11. 



20 
 

 

Figure 4.11 – query command structure 

 

The ID and T field choose which tag population shall respond to the query, according to 

next table: 

 

Table 4.2 – ID and T fields 

 

IDS and IDL are identified flags of tags. 

 

4.2.3.5 Choice of protocol 

 

Finally, chosen protocol is EPC Class 1 generation 2 because it was designed to work 

internationally and has other enhancements that are significant, but the real benefit of 

Gen 2 is that it works anywhere in the world and major manufacturers of chips and tags 

have lined up behind it.   

And because EPC Class 1 generation 2 protocol can be seen as an update of ISO 

18000-6 A and B protocols, since it was approved as ISO 18000-6 type C.  

 

4.3 Communication with RFID reader 

4.3.1 General description of data packet 
 

Communication between computer and reader takes place through a virtual serial port. 

Every packet consists of three parts; header, data and footer. 

typedef struct{ 

 uint8_t SoF; // start of frame, every time 0x02 



21 
 

 uint8_t Len; // length of the data section 

 uint16_t Seq; // sequence number, 1..65535 (0 reserved) 

 uint16_t Time; // timestamp of packet, free running, in milliseconds 

 uint16_t Cmd; // code 

} CDC_PACKET_HEADER; 

… data part … 

typedef struct{ 

 uint8_t CRC; // control checksum CRC 

 uint8_t EoF; // end of frame, every time 0x03 

} CDC_PACKET_FOOTERS; 

The reader is managed by a computer. Every packet from the computer is confirmed or 

the reader sends some response. The response has the same sequence number as 

the command from the computer. This means that the computer have to generate a 

sequence number which has to be in range 1-65535. 

The reader can send packets without request, e.g. information about the tag ID, when 

inventory mode is turned on. In this case the reader generates a sequence number by 

an internal counter. These packets are not confirmed by the computer. Loss of a 

packet is recognized by the missing sequence number. 

Every packet from the reader has timestamp in the header from the free running 

counter with resolution to milliseconds. Packets form the computer can have this part 

zero. 

CRC is computed like simply 8-bit XOR from SoF to last data byte (without CRC and 

EoF). The multibyte numbers format is little-endian that means LSB first. 

 

Figure 4.12 – example of packet 

 

4.3.2 libusb-1.0.8 
 

Communication between computer and reader takes place through a virtual serial port, 

using USB connection. To get this communication is used an open source library which 

let to write and read to USB port.  

After check some libraries such as JSR-80, JUSB, javax-usb and JcommUSB. Finally, 

libusb library was the choice.  



22 
 

The main reason to choose this library is because it has a clear and simple explanation 

and examples. 

Libusb is a library for USB device access from Linux userspace. It is written in C and 

licensed under the LGPL-2.1, and was programed for Daniel Drake, Johannes Erdfelt 

and Nathan Hjelm. 

 

4.3.2.1 How to install 

 

It is necessary to install this library to configure the package for our system. It is easy 

and fast to install and only has to follow few commands. 

First of all, you have a zipped file with a .tar.bz2 format. First step consists of unzipped 

the file and enter to the unzipped folder. Once it has done, configure script has to be 

executed, which configure the package for our system. Running configure might take a 

while. When configure script finishes, it is time to compile the package using make 

command. Optionally, can use make check to run any self-tests that come with the 

package. Finally, to install the programs and any data files and documentation using 

make install. Optionally, can be removed the program binaries and objects files from 

the source code directory using make clean. 

Above explanation can be summarized with following points: 

1. Download libusb library from http://libusb.sourceforge.net 

 

2. Unzipped downloaded file. 

>> sudo tar –xvf libusb.tar.bz2 

 

3. Enter to unzipped folder 

>> sudo cd libusb 

 

4. Execute configure script 

>> sudo ./configure 

 

5. Execute make command 

>> sudo make 

 

6. Execute make install command 

>> sudo make install 

 

Optional: 

7. Execute make clean command 

>> sudo make clean 

 

http://libusb.sourceforge.net/


23 
 

8. Execute make distclean command 

>> sudo make distclean 

 

In this project this library has been modified, removing not necessary files for trying to 

minimize size of file. Also, a program which can read RFID tags has programmed.  

When ./configure is executed, an error could be produced:  

>> ./configure 

Check in for a BSD-compatible install … /usr/bin install –c checking whether 

build environment is sane… configure: error: newly created file is older than 

distributed files! 

This error is caused because operating system’s date is out of date. In this project the 

date was Thu Mar 15 09:14:15 GMT 2001. So, date has to be update: 

>> date –set=“YYYY-mm-DD HH:MM::SS” 

 

4.3.2.2 Basic Operations 

 

A communication between computer and RFID reader has some mandatory 

operations, which has to be executed every time reader has to read: 

- Initialize library and session 

- Look for RFID reader 

- Open RFID reader port and start communication 

- Liberalize RFID reader port, necessary to claim interface correctly. 

- Claim interface 

- Required  I/O instruction  

- Release interface 

- Close RFID reader port 

- Close session. 

I/O instructions are read or write. Both of them use bulk transfer type, instead of 

interrupt transfer type. Because communication reader-computer always use bulk type, 

but computer-reader communication can be interrupt or bulk type. To make it simple, 

only bulk transfer type is used. 

 

4.3.2.3 Functions and structure of program 

 

One part of program made is the RFID tag reading, so it is interesting to comment 

about this part. 



24 
 

Basically, the goal of this part is to implement all basic operations, seen in 4.3.2.2 

section, and understand how they work. 

Libusb-1.0.8 has implemented some useful functions, some of them have been used in 

program such as libusb_init, libusb_get_device_list, libusb_open_device_with_id_pid, 

libusb_free_device_list, libusb_reset_device, libsb_kernel_driver_active, 

libusb_detach_kernel_driver, libusb_set_configuration, libusb_close, libusb_exit, 

libusb_claim_interface, libusb_bulk_transfer and libusb_realease_interface.  

With these functions is possible to implement all basic operations above described, 

only is necessary to implement one more function, control checksum (CRC) 

calculation.  

The program is organized as follows; firstly there is a part to open session and connect 

with RFID reader which consists of eight functions, followed for a part of reader 

configuration. Third, there is a function called start_rfid which has two parts, one that 

sends needed commands to ask for Identification Number of RFID tags and another 

which reads tags response. Once all responses are read, stop_rfid function sends a 

command to stop the reader. Finally, two functions which close session and close 

handle for the reader. 

To obtain RFID reader handle is used the libusb_open_device_with_vid_pid() function, 

what it means that is necessary to know the IDVendor and IDProduct of reader used. In 

this project’s device, the IDVendor is 0xa600 and IDProduct is 0xe130. They have to 

be changed in case of use another reader. 

 

4.3.2.4 Bulk command 

 

The most important function of this program is libusb_bulk_transfer. It has been used 4 

times: 

- RFID reader configuration 

- Send command to tags 

- Read response of tags  

- Stop reading of the RFID reader. 

 

This command has following structure: 

int libusb_bulk_transfer ( struct libusb_device_handle * dev_handle, 

     unsigned char    endpoint, 

     unsigned char *   data, 

     int     length, 

     int *     transferred, 



25 
 

     unsigned int    timeout 

    ) 

The direction of the transfer is inferred from the direction bits of the endpoint address. 

For bulk reads, the length field indicates the maximum length of data you are expecting 

to receive. If less data arrives than expected, this function will return that data, so be 

sure to check the transferred output parameter. 

If libusb_bulk_transfer returns a 0, it indicates that the function worked correctly, if 

returns another value it means that an error was done. 

Two of these six areas need more attention, endpoint and data. Endpoint indicates if 

computer send commands or read data. If computer wants to send some command to 

reader, the endpoint used is 0x04, on the other hand, if computer wants to read some 

data from reader, the endpoint used is 0x83. 

About data, there are two opposite behaviours, when computer read some data from 

the reader; in this case the most important part is value of length, or computer send 

some command to reader. In the second case, data has to be structured like Figure 

4.11.  

An example of sent data to reader is when computer sets the reader. 

In this case, data is defined as: 

 

 data[0] = 0x02    SoF (start of frame) 

 data[1] = 0x2d    length 

 data[2] = 0x12    sequence number (low bytes) 

 data[3] = 0x00    sequence number (high bytes) header 

 data[4] = 0x00    time (low bytes)    

 data[5] = 0x00    time (high bytes) 

 data[6] = 0x02    command (low bytes) 

 data[7] = 0x40    command (high bytes) 

 data[8] = 0x04    LinkSpeed 

 data[9] = 0x01    LinkCoding 

 data[10] = 0x02   Tari 

 data[11] = 0x00   Session 

 data[12] = 0x00   PilotTone 



26 
 

 data[13] to data[16] = 0x00  Password (8 bytes)   data 

 data[17] = 0x01   maskBank 

 data[18] = 0x00   maskAddr 

 data[19] = 0x00   maskLen 

 data[20] to data[51] = 0x00  selectMask 

 data[52] = 0x0A   tryNo 

 data[53] = crc(data,53)  CRC     footer 

 data[54] = 0x03   EoF (end of frame) 

 

Above example shows: 

 Command send is 0x4002, which means cmd_ids2_config, or that this 

command configures parameters of the Gen2 protocol. These parameters are stored in 

the RAM. After reboot the reader there is necessary to set it again. 

 LinkSpeed = 0x04, which means a 160 kbps 

 LinkCoding = 0x01, which means a miller 2 codification 

 Tari = 0x02, which means 25 s 

 Session = 0x00, which means that us S0 

 PilotTone, Password, maskAddr, maskLen, selectMask are 0x00, which are not 

used for this communication 

 maskBank = 0x01, which means EPC 

 tryNo = 0x0A, which means it has 10 times before connection fails. 

After send this data, computer wait for a confirmation USB_ACK to know that this 

frame was receive correctly (USB_ACK command is 0x00). 

 

  



27 
 

Chapter 5  

Wireless communication 

 

5.1 Why needs wireless connection 
 

A wireless connection is a system that transmits and receives radio signals over the air.  

It is interesting for this project because it lets to access to the mini-pc without any wire, 

making it more simple and easier. Also, this kind of connection lets to access to the 

device more than one person at same time. 

So, goals of this wireless connection are: 

- Access to minipc from medium distance without wire. 

- More than one device can access to minipc at same time. 

- If there are more than one minipc, be able to know which one is each. 

- Limit coverage area of connection inside building. 

 

5.2 Kinds of wireless connection 
 

Wireless connections are organized according its coverage. So, they can be divided as 

Wireless PAN, wireless LAN, wireless MAN and wireless WAN. 

Wireless PAN, acronym of personal area network, is a small coverage network, 

generally a room. Typical technologies of WPAN are Bluetooth and Infrared Data 

Association. 

Wireless LAN, acronym of local area network, is a medium coverage network, 

generally a building. Typical technology of WLAN is IEEE 802.11 standards, marketed 

under the WiFi (Wireless Fidelity) brand name. 

Wireless MAN, acronym of metropolitan area network, is a big coverage network, 

generally a city. Typical technologies of WMAN are IEEE 802.16 standards; the most 

famous of these standards is WiMAX. 

Wireless WAN, acronym of wide area network, is a huge coverage network, generally a 

country or continent.  

  



28 
 

For this project, the most interesting wireless network is LAN because the goal of this 

wireless connection is to access to the minipc from anywhere in the factory, since it is 

necessary more coverage than PAN and less than MAN.  

 

5.3 IEEE 802.11 standards 
 

IEEE 802.11 standards or WiFi is a set of standards for implementing wireless LAN 

computer communication in the 2.4, 3.6 and 5 GHz frequency bands.  

The 802.11 family consists of a series of half-duplex over-the-air modulation 

techniques that use the same basic protocol. The most popular are those defined by 

the 802.11b and 802.11g protocols, which are amendments to the original standard. 

802.11b has a maximum raw data rate of 11 Mbps using 2.4 GHz band, and uses the 

same CSMA/CD media access method defined in the original standard. This protocol is 

used in a point-to-multipoint configuration, wherein an access point communicates via 

an omnidirectional antenna with one or more nomadic or mobile clients that are located 

in a coverage area around the access point.  

802.11g is the third modulation standard of wireless LANs. It works in the 2.4 GHz 

band but operates at a maximum raw data rate of 54 Mbps, or about 19 Mbps net 

throughput. The modulation scheme used in 802.11g is orthogonal frequency-division 

multiplexing (OFDM). 

 

5.4 Hardware 
 

5.5 Board configuration 
 

5.5.1 Server - client 
 

First of all, it is necessary to know if minipc will be the server or a client, because 

behaviour and configuration will be very different.  

If the minipc is a server it would be that it is always generating a network and everyone 

who want to connect only needs to know user and password of wifi network. This 

situation has the limitation that only can be connected one minipc at same time for the 

same device. 

If the minipc is a client it means that is connected only when the server is on and in 

minipc coverage. This situation has the limitation that only can be connected to the 

minipc one computer or device at same time. But, if there are some minipcs in the 

industry all of them could be connected at same time.  



29 
 

 

Figure 5.1 – client-server behavior 

 

 

To simplify access of a new device to the minipc the best situation is when minipc acts 

as server and devices as clients. 

 

5.5.2 Board files configuration 
 

To configure the minipc as a server, only has to modify or create 3 files; hostapd.conf, 

hostap and interfaces. 

Likely, Voyage Linux has installed hostapd [10][11][12] and wireless pci card drivers, so 

it is no necessary to install anything before modify files. 

/etc/network/interfaces  

interface file contains the configuration of how its system is connected to the network. 

Wifi network uses wlan0 interface. 

So, the file has the following content: 

 

mac80211_based drivers 

auto wlan0 

iface wlan0 inet static 

 address 10.1.10.1 

 network 10.1.10.0 

 netmask 255.255.255.0 



30 
 

 broadcast 10.1.10.255  

 

 

/etc/default/hostapd 

hostapd file is used to make /etc/hostapd/hostapd.conf work on boot, so every time that 

minipc is booted this configuration is load. 

To get this behavior only has to add two commands to this file: 

 

RUN_DAEMON=”yes” 

DAEMON_CONF=”/etc/hostapd/hostapd.conf” 

 

 

/etc/hostapd/hostapd.conf 

In hostapd.conf file is defined the parameters of wifi network generated, in its case 

wlan0. 

 

interface = wlan0 

driver = nl80211 

ssid = Itemlog 

hw_mode = g 

channel = 6 

wpa = 3 

ignore_broadcast_ssid = 0 

wpa_key_mgmt = WPA-PSK 

rsn_pairwise = CCMP 

wpa_passphrase = Itemlog1 

wpa_pairwise = TKIP 

logger_syslog = -1 

logger_syslog_level = 2 



31 
 

logger_stdout = -1 

logger_stdout_level = 2 

debug = 4 

dump_file = /tmp/hostapd.dump 

 

 

wpa = 3, is used to define wifi security protocol. There are three security protocol, 

WEP, WPA and WPA2.  WEP is a simple and non-secure protocol because is easy to 

infringe. So, in this project is used WPA. If wpa = 1 indicates that WPA protocol is 

used, if wpa = 2 indicates that WPA2 protocol is used and if wpa = 3, this situation, 

indicates that WPA and WPA2 are enable.  

Interface = wlan0 indicates which interface is configured. 

Ssid = Itemlog indicates the name of network generated.  

Hw_mode = g indicates which wifi standard is used. b or g standards can be chosen, 

but finally g standard is the choice because it is able to have fast transmitions. 

Ignore_broadcast_ssid = 0 indicates if broadcasting the ssid is enable or disable. In 

this case is not-allowed. 

Wpa_key_mgmt = WPA-PSK indicates what key management algorithms a client can 

authenticate with. 

Rsn_pairwise = CCMP indicates WPA2’s data encryption is CCMP. 

Wpa_pairwise = TKIP indicates WPA’s data encryption is TKIP.  

Wpa_passphrase = Itemlog1, write a pre-shared key that is used for wpa 

authentication. To log in you can use two option, use the encrypted key or the no-

encrypted key (key written in wpa_passphrase), if encrypted key is the choice, to know 

this key is needed to know the wpa_passphrase and the ssid. With these two values is 

possible to know the 64 hexadecimal digits key using an algorithm. For example if ssid 

= voyage and wpa_passphrase = voyage, WPA key is 

0x97d8be323ba90a716a5e2b443cdbe731f26855866d0d934faab13c8119f08a92. 

logger_x = -1, which x could be syslog or stdout, are two output methods. In this case 

are equal to -1, what it means that all possible modules are logged. The possible 

modules are; IEEE 802.11, IEEE 802.1X, RADIUS, WPA, driver interface, IAPP and 

MLME. 

logger_X_level = 2, which X could be syslog or stdout. It means that the minimum 

value for logged events is informational messages. 

dump_file  = /tmp/hostapd.dump make a file which is dumped all state information. 

Debug = 4 indicates that the debugging is excessive. 



32 
 

 

There are more commands that are not used in the configuration, such as macaddr_acl 

which controls mac address filtering, and auth_algs which is used in WEP 

configuration. 

 

5.5.3 Putty 
 

Once wifi network is made, all devices with wifi compatibilities can access to it. To get 

it, is necessary to use some software. 

First of all is basic being connected with minipc wifi network using the correct 

password. 

 

 

Figure 5.2 – wifi connection 

 



33 
 

 

Figure 5.3 – networks configuration of computer 

 

In the Figure 5.3 there is the computer network’s configuration, after do an ipconfig in 

windows 7, which shows the configuration of wireless connection. In the red box there 

are IP direction and default gateway. 

- IP direction: 10.1.10.165 

- Default gateway: 10.1.10.1 

The IP direction has to be in the 10.1.10.X range, and the default gateway is the IP 

direction of the host, which is configure before in point 5.5.2 in /etc/networks/interfaces 

file. It confirms the connection with the minipc. 

 

After, using appropriate access software it is possible to access to the minipc with the 

IP direction configured in /etc/networks/interfaces. Finally, only has to put your user 

and password of Voyage Linux O.S. 

Some access software is: 

- for Windows O.S.: Putty 

- for Linux O.S.: ssh command. 

- for mac O.S.: JellyFiSSH 

- for Android: ConnectBot 

 



34 
 

In this project, the computer, which wants to access the minipc, has Windows O.S., so 

putty software is used. 

The configuration of putty is: 

- host name (or iP address): 10.1.10.1 

- port: 22 (default) 

- connection type: SSH 

 

 

Figure 5.4 – putty configuration 

 

 

After this configuration, computer has access to minipc. 

 

 

Figure 5.5 – voyage terminal 

 



35 
 

Chapter 6 

Inductive proximity sensor 

 

6.1 What is it? 
 

A sensor is a device designed to receive information of external magnitude and 

transform it to another magnitude, generally to electricity that can be quantified and 

manipulated.  

Inductive proximity sensors are used for non-contact detection of metallic objects. Their 

operating principle is based on a coil and oscillator that creates an electromagnetic 

field in the close surroundings of the sensing surface. The presence of a metallic object 

(actuator) in the operating area causes a dampening of the oscillation amplitude. The 

rise of fall of such oscillation is identified by a threshold circuit that changes the output 

of the sensor.  

 

Figure 6.1 – sensor behaviour  

 

Figure 6.1 shows the two possible situations of inductive sensor. If metallic object is in 

the operating area electromagnetic field is deformed and affect coil. This affection 

generates an electrical inductive voltage drive by external wire to control system, which 

acts like it is programmed.  



36 
 

6.2 Features 
 

In this project is used an EI 1204pposs inductive proximity sensor of Carlo Gavazzi. 

 

 

Figure 6.2 – EI 1204pposs 

 

 

The sensor has the following features and specifications: 

- Stainless steel housing, cylindrical 

- Diameter: 12 mm 

- Rated operating distance: 4mm 

- Output type: transistor PNP, make switching (normally open) 

- LED-indication for output ON 

- 2m cable 

- Rated operational voltage: 10 to 40 VDC 

- Rated operational current: 0.2 mA 

- Frequency of operating cycles: 500 Hz 

 

6.3 Connection 
 

6.3.1 Diagrams 
 

The connection between ALIX board and the sensor is using serial port, or RS232 db9. 

To make serial plug on the sensor is essential to know how every wire work. Therefore, 

the best option is to know the wiring diagram [7]. 



37 
 

 

Figure 6.3 – Wiring Diagram PNP (make switching) 

 

 

Figure 6.4 – Wiring Diagram with transistor 

 

So, with these two diagrams, Figure 6.3 and Figure 6.4, it can be concluded that: 

- Blue wire: minus (input) 

- Brown wire: plus (input) 

- Black wire: output or signal 

 

6.3.2 rs232  
 

To connect the inductive proximity sensor with the board is used serial connection. The 

ALIX board has an rs232 db9 plug, so it is necessary to adapt three output sensor 

wires with an rs232 db9 connection [6]. 

First of all is essential to know the rs232 pins. It is achieve with Figure 6.5 and Table 

6.1. 

 

Figure 6.5 – rs232 



38 
 

 

Pin Signal IN/OUT behavior 

1 Carrier Detect INPUT 

2 Receive data INPUT 

3 Transmit data OUTPUT 

4 Data terminal ready OUTPUT 

5 Signal ground - 

6 Data set ready INPUT 

7 Request to send OUTPUT 

8 Clear to send INPUT 

9 Ring indicator INPUT 
 

Table 6.1 – relation between pin-signal and its behavior 

 

So, it is necessary to choose three pins. The first time, one input, one output and signal 

ground pins had been chosen: 

 Data terminal ready (4) as plus (brown wire) 

 Carrier detect (1) as output or signal (black wire) 

 Signal Ground (5) as minus (blue wire) 

 

Figure 6.6 – Voltage sensors output, first option 

 

But this choice had one problem, the received signal from Data terminal ready pin was 

instable, what it means that when sensor detects something its output was pulses, it 

was caused because the threshold was so close to the maximum and minimum values.  

This problem made more complex programming and it didn’t work like it has to work. 

To solve this problem, pins-rs232 connections were changed: 

 Data terminal ready (4) as plus (brown wire) 

 Carrier detect (1) as output or signal (black wire) 

 Request to send (7) as minus (blue wire) 

 

Figure 6.7 – Voltage sensor output, second option 



39 
 

 

With these new connections there is more difference between maximum and minimum 

values, and instability disappears. 

 

6.3.3 Serial-USB adapter 
 

Initially inductive proximity sensor has to be plugged using serial port, but ALIX board 

has a limitation, only RXD and TXD are available for control, handshake signals cannot 

be observed or controlled. So, a serial-usb adapter is necessary to connect the sensor 

with board. 

 

6.4 Basic operations 
 

To observe and control proximity sensor is used ioctl function. To use this function is 

necessary to include some libraries: 

- asm/ioctls.h 

- sys/ioctl.h [9] 

- termios.h 

This function is composed for three fields; 

 ioctl( int fd, int request, &argument) 

fd is the file descriptor of device, so it is necessary open and acquire this file descriptor 

with open() function.  

request describes the operation to realize. There are four possible operations: 

 TIOCMGET: in argument it is save the pattern of bits showing input and output 

status of device. 

 TIOCMBIS: activate (put value to one) outputs indicated in argument without 

modifying others. 

 TIMBIS: deactivate (put value to zero) outputs indicated in argument without 

modifying others. 

 TIOCMSET: activate outputs indicated in argument and deactivate others. 

argument indicates the pattern of bits which would be modified with the request. This 

field is an integer, but there are some variables defined: 

  

Pin String variable Integer value 

DTR TIOCM_DTR 0x002 



40 
 

RTS TIOCM_RTS 0x004 

CTS TIOCM_CTS 0x020 

DCD TIOCM_CAR 0x040 

DCD TIOCM_CD 0x040 

RI TIOCM_RNG 0x080 

RI TIOCM_RI 0x080 

DSR TIOCM_DSR 0x100 
 

Table 6.2 – relation between pin, string variable and integer value 

 

So, in this project only two operations are used; TIOCMGET and TIOCMSET. The first 

one is used to check pins status to know if sensor detects something, and the second 

one is used to configure the sensor, that how was seen before, DTR pin has to be one 

or true, and RTS has to be zero or false. 

  



41 
 

Chapter 7 

Access to results 

 

7.1 How to access to results 
 

For this project there are three possibilities to access and see the results: 

- web page 

- ftp 

- access to the Operating system (explained in section 5.5.3) 

It is important to have a simple, easy and secure way to obtain results. For these 

reasons, the expectation is that web page and ftp would be two most used ways, 

because you only need a web browser or an ftp client. 

In each option, only is necessary to be in the minipc’s network to access, obviously it is 

necessary also a browser or an ftp client. 

 

7.2 Results format 
 

Before to explain two access methods implemented is important to know how its 

information is saved. 

For this project is necessary to save some information; ID tag, date of the first reading, 

date of the last reading, number of times read in total and number of times read today.  

ID TAG Date [first time] Date [last time] Total count Today count 
 

Figure 7.1 – information structure 

 

On the other hand, every day it is generated two files, one of them with total results 

since the first day that minipc is booted, and another which only has information about 

one day. 

These files are called; ITEMLOG and ITEMLOG_ddmmyy, which ddmmyy will be day 

(dd), month (mm) and year (yy) of the information saved in. 

Once is known the information and the number of files that is needed, is time to choose 

the best format of these. Firstly xml format was choose, because is a standard format 

and easy to understand. But, finally, csv format is the final choice because it is as 

simple as xml to implement and it can be directly interpreted using EXCEL software. 



42 
 

CSV format consists on write information separated by an element. In this project is 

used semicolon (;). 

So, every day will be generated one file (ITEMLOG_ddmmyy.csv) and modified 

another one (ITEMLOG.csv). 

Obviously, ITEMLOG_ddmmyy.csv count fields would have the same value. 

 

7.3 Web page 
 

The web page is the simplest and faster method to see the information of the 

ITEMLOG.csv file or the file with all information. Once you are in the minipc’s network 

only has to start a web browser and go to 10.1.10.1 direction. 

To connect to the web page, minipc has to be a web server. There are different web 

server distributions, apache2 distribution is the choice because is free and it has a big 

community. 

So, there are some package that have to be installed; apache2, mysql and php. 

Commands used to install its packages are: 

>> apt-get install apache2 

>> apt-get install mysql-common mysql-client mysql-server 

>> apt-get install php5 

>> apt-get install php5-gd 

During installation of mysql package is necessary to configure the root user. In this 

project was used the following configuration: 

User: root 

Password: voyage 

This web page has to have some characteristics:  

- Privacy, only allowed users can enter. 

- See information of ITEMLOG.csv (red square on Figure 7.2). 

- Delete one by one tags of the file (blue square on Figure 7.2). 

- Delete all tags of the file (orange square on Figure 7.2). 

 



43 
 

 

Figure 7.2 – final web page structure 

 

7.3.1 Privacy 
 

It is essential to manage the access of the web page because users can see and 

modify the information file. 

To get privacy a login and password access is implemented. Firstly was done using 

databases, form and php language. This was good to identify and allow or not the 

access from a user and login. But the problem was that an unauthorized user can 

access to the final web page writing the direction. So it was an unsecure method.  

To get more security and as apache server is used, it is possible to use htaccess and 

htpasswd method [14]. 



44 
 

 

Figure 7.3 – authentication popup 

 

htaccess is a configuration file for use on web servers running the Apache Web Server 

software. When a htaccess file is placed in a directory which is in turn “loaded via the 

Apache Web Server”, the htaccess file is detected and executed by the Apache Server 

software enabling/disabling additional functionality and features that Apache offers.  

So, there are two files that have to be modified. First of them is in /etc/apache2/sites-

enabled. In this project case it is called 000-default. In this file is necessary to comment 

two commands and add four more. 

First of all is necessary to look for the directory that has to be protected. In this projects 

case is /var/www. If your directory doesn’t appear you can add with the same structure 

that other ones. Once directory is found, inside it will be some commands, as only 

chosen users are allowed to open the webpage is necessary to comment or delete the 

following commands: 

#  order allow, deny 

#  allow from all 

 Once this commands or lines are commented, is necessary to add next commands 

inside <Directory /var/www> and </Directory> tags. 

AuthType Basic 

AuthName “” 

AuthFile /etc/apache2/.htpasswd 

Require valid-user 

 

The first and last commands indicate that it is used a basic authorization and that only 

valid users can enter. The second one is the route of the htpasswd file. 

 



45 
 

The other essential file is htpasswd, which has all users and passwords information. 

This file has to have the same route defined on the last file. In this project has been 

create this file with a dot at the beginning because to hide it. 

There is a basic command to add users: 

>> htpasswd [–c] /etc/apache2/.htpasswd <user> 

 

The first time that this command is used is necessary to use –c option, which indicates 

that it is necessary to create it, so <user> would be the unique user, all other would be 

removed.  Once this command is executed, would be answered for password twice. 

 

Figure 7.4 – example htpasswd command 

 

If only has to add one user, the command is the same above but without –c option, with 

same behaviour. 

 

Once you add a user, if you open .hpasswd, you will see something like Figure 7.5: 

 

Figure 7.5 – example htpasswd file 

 

What it means that the password is encrypted, because the password introduced was 

1234. 

If it is necessary to delete some user and password, only has to remove it from 

.htpasswd file. 

 

7.3.2 See information 
 

To see information is used two program languages; HTML and php.  

With HTML is structured the web page, using a table to show information. This table is 

composed of six fields, each one for an information field saved in csv file and another 

more to choose if you want to delete the tag. 



46 
 

On the other hand, there is a mechanism to refresh website every five seconds, to 

have the table updated. This is possible using the next command: 

<meta http-equiv=”refresh” content=”5”> 

These five seconds is a parameter that can be change. 

Php language is used to fill in the table. It is a good language to manage csv files 

because has the fgetcsv command, which can get a full csv field at same time. 

 

7.3.3 Delete tag by tag 
 

For this project is necessary the option to delete some tags. To get this is used a link 

programmed with php. This link links to a php script that with the number of file passed 

as a variable can open the file and write all tags less which one has to be deleted. After 

write all tags, only has to save this new table in the file. 

All this process is made without user’s perception. 

To get this method, is necessary that the file has read-write privileges, if not an error 

message will be send. 

The unique row that is impossible to delete is the first one, that is not a tag but it is the 

definition of all fields. 

 

7.3.4 Delete all 
 

For this project is necessary the option to delete all tags, so to have an empty csv file. 

Unlike the previous sections, to get this method is used Javascript. The main reason to 

use Javascript is because a confirmation message is implemented, so it is necessary 

an interaction with the host and php is a program language oriented to server. 

This method is composed for two things; one button with delete all text and a 

confirmation message that ask if you are sure to delete all tags. 

When button is pushed a popup window appears. This window asks if you are sure to 

delete all tags, and there are two optional buttons; one to confirm and another to 

cancel. If confirms button is pushed a php script starts, if cancels button is pushed you 

are sent to the previous web page. 



47 
 

 

Figure 7.6 – delete all popup 

 

The php script consists of open the file with the command fopen and w+ flag, which 

would create or reset the file. After this command, only needs to close the file 

descriptor and redirect to the previous web page. 

 

7.4 ftp server 
 

The second way to access to results is using ftp connection.  

FTP, acronym of file transfer protocol, is a standard network protocol used to transfer 

files from one host to another host over a TCP-based network. It is often used to 

upload web pages and other documents from a private development machine to a 

public web-hosting server. 

With ftp would be possible to get all csv files generated, not only ITEMLOG.csv file, but 

all ITEMLOG_ddmmyy.csv files and ITEMLOG_ERROR.csv. 

To connect via ftp minipc needs to be an ftp server [16]. 

The ftp server used is vsftpd because it has a simple configuration and is considered 

one of the most secure. 

To install it only needs to execute the following command: 

>> apt-get install vsftpd 

 

Once it has been installed, it is necessary to configure it. To configure vsftpd has to edit 

/etc/vsftpd.conf file. 

All has been commented less next lines: 

listen=YES 

local_enable=YES 

dirmessage_enable=YES 

use_localtime=YES 



48 
 

xferlog_enable=YES 

connect_from_port_20=YES 

chroot_list_enable=YES 

chroot_list_file=/etc/vsftpd.chroot_list 

secure_chroot_dir=/var/run/vsftpd/empty 

pam_service_name=vsftpd 

rsa_cert_file=/etc/ssl/private/vsftpd.pem 

The explanation of all this lines is in the same /etc/vsftpd.conf file, but highlights are: 

- it is running when start-up Operating System  

- only local users who are part in the file list (/etc/vsftpd.chroot_list) are allow 

to log in 

- Port transfer connections originate from port 20. 

Once ftp server is configured is necessary to add some users. To add users is used 

useradd command with some options. 

>> useradd –s /bin/false –d /var/itemlog <user> 

>>passwd <user> 

First of all /etc/shells file has to be modified, adding the following line: 

/bin/false 

This line will avoid that ftp users can use the console, making the server be more 

secure. 

After, useradd command can be used. This command is used with two options; the first 

one, -s, is to avoid that ftp users can use the console, and the second, -d, is to define 

the user’s folder. 

All users have the same user’s folder, the folder where there are all csv files. In this 

project is used /var/itemlog. 

After, to configure the user’s password is done with the second command, passwd 

which would ask for a password twice. 

Finally, the last thing to configure a new ftp user is add it to the ftp list. This list is in 

/etc/vsftpd.chroot_list. Only has to write user’s name. 

 

Once ftp server is configured, only needs to be connected in the minipc’s network and 

an ftp client. Using 10.1.10.1 as host direction and correct user and password you 

would be able to see and download all csv files.  



49 
 

Chapter 8 

Program made 

 

8.1 Goals 
 

The main of this program is that inductive proximity sensor and RFID reader work 

together to get ID tags information. 

This program has to be simple and robust, and it has to work well in extreme situation, 

warning when problems appear. 

It has to start without human interaction and try to fix for itself its problems. 

Finally, all information provided has to be correct. 

 

8.2 Flowchart diagram 
 

One way to make clearer the program’s structure is to draw a flowchart diagram. 

Figure 8.1 – programs flowchart 



50 
 

In Figure 8.1 can be distinct five situations; when program is waiting proximity sensor 

activation, program is waiting proximity sensor deactivation, RFID id tag detection, 

CRC checkout and update databases. 

 

8.2.1 Proximity sensor activation 
 

This situation of the program has two parts, first of all configure the proximity sensor 

and, after, detect proximity sensor activation. The sensor will be activated when detects 

some metallic object in its working space. 

To configure the proximity sensor has implemented one function: 

 void mcs (int fd) 

This function, mcs (int fd), configures output pins. As seen in section 6.3, it is 

necessary to have Data Terminal Ready pin with true value (on) and Request to Send 

pin with false value (off). To get this is used TIOCMSET operation and TIOCM_DTR 

flag. 

Once the device is configured, it is known that status is 2, only has activated DTR pin 

(in the program is called status_off). So to know if sensor detects something only 

needs to check its status (in the program is called status_on). So, using TIOCMGET 

operation, status_on is continuously updated until status_on and status_off are 

different, what it means that Carrier Detect pin is on or, in other words, sensor detects 

something. When it happens, status_on value changes from 2 to 66.   

 

8.2.2 Proximity sensor deactivation 
 

When sensor activation is detected, there is a while loop. To exit of this while loop 

status_off and status_on have to be equal, so when Carrier Detect pin is off. 

It is important not forget to update status_on inside while loop, using TIOCMGET, 

because if it is not done, it will be an infinite loop. 

 

8.2.3 RFID ID tag detection 
 

ID tag detection is implemented in two functions: 

 int reader() 

 static int start_rfid(libusb_device_handle *rfid_handle) 

These are the two essential functions to detect some ID tag.  



51 
 

int reader() function has to implement basic operations described in section 4.3.2.2, to 

open, configure, start and stop RFID reader, because it works correctly. So every time 

that is necessary to read a tag, all this operations have to be done. 

static int start_rfid(libusb_device_handle *rfid_handle) function is which read the ID tag. 

It is divided in two parts; the first one which send a message to tag and the second one 

which read the response. 

So, first is necessary to send 0x4001 command to indicate that reader has to look for 

tags. This command has to be sent with some configuration, shuch as slo_No, which 

sets the default number of slots for reading, and emptyTriesStopNo, which indicates 

how many attempts, where you hear no tags, is closed the repetition. A deep 

explanation of these parameters can be seen in Binary Protocol Specification RFI21.1 

of Metra Blansko [17]. 

Once 0x4001’s command is sent, it is reading moment. To read RFID reader response 

is used bulk function. It works like when it writes but using correct endpoint. Now in 

vector would be the reader response. It is necessary to read more than twice because 

two first responses are acknowledge of writings of configuration and 0x4001 

commands. Number of times of reading is managed with a parameter called 

REINTENTS. So, the maximum number of responses read would be REINTENTS -2 

(because there are two responses of acknowledges). This is the maximum because if 

one correct response is read before, it stops reading. 

A correct response has the following structure: 

 

Figure 8.2 - response structure 

 

So, elements seven and eight have to be 0x40f0, which it means that is the response 

of 0x4001’s command with a structure with ID tag. Also is needed to check if ID tag is 

empty or not, it is done checking element nine, ID tag length of the response. 

 

8.2.5 Update databases 
 

There are three two functions to update database and it has updated also in main: 

 int main() 

 int reader() 

 void check_and_send(char *sortida) 



52 
 

Function int main() update date and today count when a new detection is made and 

there are some tags detected some day before. So it has to put a cero the today 

counter and indicate that a new day has been started. 

On the other hand, int reader() update every time that a tag is read, the header of the 

csv file, so it writes the next sentence:  

ID tag;date [first time]; date[last time];total count;today count\n 

It is important to have always this header and exactly how it is wrote above. 

Finally, the main updates function is void check_and_send(char *sortida), which has to 

update or add new RFID tags on databases. So, there are two possibilities; the tag 

belongs to the database, so just has to update date [last time] field and each counters 

fields, or if the tag doesn’t belong to the database, so it is necessary to add all fields. 

 

8.3 functions 
 

In this section all functions made would be explained, what they do and why they are 

implemented like this. 

First of all, all functions implemented are: 

 static unsigned char crc(unsigned char data[], int length) 

 static char *temps() 

 char *prep(char *num) 

 void check_and_send(char *sortida) 

 static int conf_reader(libusb_device_handle *rfid_handle) 

 static int stop_rfid(libusb_device_handle *rfid_handle) 

 static int start_rfid(libusb_device_handle *rfid_handle) 

 int reader() 

 void mcs(int fd) 

 char *format_time() 

 int main() 

8.3.1  static unsigned char crc(unsigned char data[], int length) 
 

This function calculates CRC of the length first elements of one unsigned char vector, 

and returns calculated value. 



53 
 

CRC is computed like simply 8-bit XOR. 

It is essential to send correct frames to the RFID reader, because is a mandatory field. 

Also it works to check if a received frame is correct or no, because CRC value received 

can be compared with CRC calculated with all frame (less CRC and EoF fields). 

 

8.3.2 static char *temps() 
 

This function returns a string with following format: dd/mm/yy  HH:MM::SS. Where d is 

day, m is month, y is year, H is hour, M is minute and S is seconds. 

The time returned is local and actual machine time, so is the time of minipc. 

To get it is necessary to use time.h library. 

 

8.3.3 char *prep(char *num) 
 

This function is used to manage counter field numbers. It is important because it 

prepares counts numbers before to be updated. So, it receives a string of integers, it 

has to convert to integer, add one and convert to string again. To convert to string 

format is important to know the number of digits because string has to be three digits, 

not more or less is allowed.  

So, this is a limitation of this program, the maximum number of tags read is 999.  

This function returns a string with the integer value updated. 

 

8.3.4 void check_and_send(char *sortida) 
 

This function update database, csv file.  

It receives a file route and uses a global variable which has the read RFID tag.  

The main part is a do-while loop, which would check all tag saved on database with the 

read tag. This loop would finish when tag is found or if it is not on the database. 

Before to loop, database is opened. It is important to put the pointer in the correct 

place. To do this is used an fseek operation and the knowledge of databases structure. 

So is necessary to avoid header (which would have the description of all fields), so how 

it is described in section 8.2.5, only need to move the pointer 66 positions. So it is very 

important no modify the header because if it is modified the program will no work.  



54 
 

Within this loop, there is an if condition which  compare all tag of database with the 

read tag, if they are equal, a variable is modify to one and update date [last time], total 

count and today count fields using functions temps() and prep(), described above. 

Once do-while loop finishes, there is an if condition to know if the read tag was found 

on the database, if it was not found, the database is update with this new tag. 

Finally a system message is sent. This message is composed of the tag ID, time of last 

reading (twice) and number of times that this tag has been read. And it is in users’ 

syslog [13]. 

 

8.3.5 static int conf_reader(libusb_device_handle *rfid_handle) 
 

This function configures the RFID reader. It is necessary to configure every time before 

the start function. 

There are some parameters: 

LinkSpeed 0x04 

LinkCoding 0x01 

Tari 0x02 

Session 0x00 

PilotTone 0x00 

Password[4] 0x00 

maskBank 0x01 

maskAddr 0x00 

maskLen 0x00 

selectMask[32] 0x00 

TryNo 0x0A 
 

Table 8.1 – configuration reader parameters 

 

A deep explanation of these parameters can be seen in Binary Protocol Specification 

RFI21.1 of Metra Blansko [17]. 

The frame has the following structure: 

 

Figure 8.3 – reader’s configuration frame 

 

The fields SoF, Len, Cmd and EoF have to be these values. Data is all above 

parameters, so 45 bytes. 

CRC field has to be computed with crc() function. 

If it is received correctly for reader it will response with an acknowledge frame. 



55 
 

To configure the RFID reader is used three libusb functions; libusb_claim_interface, 

libusb_release_interface and libusb_bulk_transfer. These three functions are essential 

for every frame sent to the reader. 

 

8.3.6 static int stop_rfid(libusb_device_handle *rfid_handle) 
 

This function stops reading. It doesn’t use parameters, so the frame sent has the 

following structure: 

 

Figure 8.4 – reader’s stop frame 

 

If it is received correctly for reader it will response with an acknowledge frame.  

To stop the RFID reader is used three libusb functions; libusb_claim_interface, 

libusb_release_interface and libusb_bulk_transfer. 

 

8.3.7 static int start_rfid(libusb_device_handle *rfid_handle) 
 

This function sends an order to read RFID tags and read readers response. 

About sent frame, it has the following parameters: 

sloNo 0x02 

adjustSlotNo 0x00 

emptyTriesStopNo 0x02 

oneLoop 0x00 

selectCmd 0x00 

targetCmd 0x00 

firstInitOnly 0x00 
 

Table 8.2 – start reader parameters 

 

A deep explanation of these parameters can be seen in Binary Protocol Specification 

RFI21.1 of Metra Blansko [17]. 

The frame has the structure of Figure 8.5. 

 

 

Figure 8.5 – reader’s start frame 

 



56 
 

The fields SoF, Len, Cmd and EoF have to be these values. Data is all above 

parameters, so 7 bytes. 

CRC field has to be computed with crc() function. 

If it is received correctly for reader it will response with an acknowledge frame and a 

cmd_ids2_epc frame. 

To read correctly the response, is essential to know the structure of this. A 

cmd_ids2_epc frame has the structure of Figure 8.6. 

 

Figure 8.6 – reader’s response frame 

 

Where first eight fields are the header, following seven fields are data and last two are 

footer. ID tag is EPC [Len] field. 

So to read an ID tag, after send starting frame, is necessary to save cmd_ids2_epc 

frame to a vector of unsigned char. The length of this vector is dependent of EPC Len, 

because is the unique variable field. 

A correct RFID tag has 12 bytes, so at least this vector has to have 28 elements. 

To read correctly the tag has implemented one security method which works with two 

parameters; REINTENTS and NUMBER_CHECKS and a global variable crc_ok. 

Before to enter to the while loop, crc_ok is equal to zero.  

Within loop there is another while loop. Within this second while loop is where 

response is read. To exit the second while loop is checked if the response has the 

correct structure, so is mandatory that it have 0xF0 in element 7, 0x40 in element 8 and 

cannot have 0x00 in element 9. So, if some response satisfies these conditions, it exits 

the loop. To avoid an infinite loop, parameter REINTENTS is implemented, which is the 

maximum number of times that this loop is swept.  

Once second while loop is swept, there are two possibility situations; it has read a 

correct response or a wrong response. If it has read a correct response it enter to an if 

condition which copy this vector to a global variable and check if this frame is correct, 

using crc method. To check if this frame is correct it is done a comparison between crc 

field and crc computed with crc() function. If crc comparison is correct, crc_ok variable 

is modify to one, if not nothing is done. 

To exit of the first loop there are two possibilities; if crc_ok is one or, to avoid infinite 

loop, a second parameter is implemented: NUMBER OF CHECKS, which controls the 

maximum times that a response has read. 

Finally, if no correct response has read after two loops, it is notified with an update of 

the ITEMLOG_ERROR.csv file, which registers that is a wrong tag error and the 

moment of this error. 



57 
 

To send a frame or read the response is used three libusb functions; 

libusb_claim_interface, libusb_release_interface and libusb_bulk_transfer. 

 

8.3.8 int reader() 
 

This function prepares and executes all needed functions to use correctly a RFID 

reader. 

So it is necessary to: 

 - initialize libusb library 

 - get all usb devices plugged in the ALIX board 

 - get RFID reader handle 

 - reset RFID reader 

 - activate driver, if it is not possible, detach it. 

 -  set configuration 

 - configure RFID reader connection. 

 - start read RFID tag 

 - stop read RFID tag 

Once ID tag is saved in a global variable, it is time to write databases. Each day would 

be three possible databases; the total database called ITEMLOG.csv, the day’s 

database called ITEMLOG_ddmmyy.csv and, optionally, can be 

ITEMLOG_ERROR.csv. This last one is not used or modified in this function. 

To avoid possible errors of segmentation fault, every time is created or opened 

databases. 

Also, every time the header of each database is overwritten. 

Once databases are ready to update, with the correct format to avoid pointers errors, 

check_and_send function is called twice, once for each database. 

Finally, RFID handle is close and libusb library closed. 

  

8.3.9 void mcs(int fd) 
 

This function set to on or set to off output pins of inductive proximity sensor. 



58 
 

Specifically set to on pin four or data terminal ready signal and set off pin seven or 

request to send signal. 

 

8.3.10 char *format_time() 
 

This function is similar to temps(), but the returned string has the following format; 

ddmmyy, where d is day, m is month and y is year. 

8.3.11 int main() 
 

This function has two parts; the initialization and the infinite while loop. 

The initialization part consists on: 

- Create databases if it doesn’t exist (it is used ITEMLOG.csv database) 

- Write header of databases 

- Get file descriptor and open inductive proximity sensor 

- Configure output pins of inductive proximity sensor 

- Check if output pins have been configured correctly 

- Initialize all variables that would be used. 

The infinite while loop part consists on: 

- Update status of output pins of sensor 

- If this status is different that initial one, it means that something has been 

detected. 

- Once something has been detected enter to a while loop. Within this loop, 

size of ITEMLOG.csv database is checked, if it is more than 70 it means 

that there is almost a tag saved, if it is less than 70 it means that there is 

not any tag saved. If there is almost one tag saved in, actual date is 

compared with date [last time] field. If they are different, date [last time] field 

and today count are updated. On contrast, if two dates are equal, doesn’t 

do anything.  

- The condition to exit from this while loop is that the sensor doesn’t detect 

anything, so to change again the output pin status to the initial one. 

- Once it is out of while loop, it enter to another while loop. This one consists 

on correct communication with RFID reader. reader() function is started and 

if all libusb functions work good, it exits the while loop and go back to 

update status of output pins of sensor and wait until it changes. On the 

other hand, libusb functions doesn’t work, it enters inside while loop. This 

while loop creates if it doesn’t exists or update the ITEMLOG_ERROR.csv 

database with this error and executes again reader() function. To avoid an 

infinite while loop there is a maximum number of errors in a row of 5. 

 



59 
 

8.4 Start-up 
 

This program has to work since board is booted, because it has to work without human 

interaction [15].  

This is achieved with a script in /etc/init.d. The script done is the following one: 

#!/bin/bash 

### BEGIN INIT INFO 

# Provides: Angel 

# Required-Start: $syslog 

# Required-Stop: $syslog 

# Default-Start: 2 3 4 5 

# Default-Stop: 0 1 6 

# Short-Description: 

#Description: 

# 

### END INIT INFO 

echo “start lsrfid…” 

/home/lsrfid/src/lsrfid & 

 

Above script has two parts, lines with # that are needed to execute update-rc.d 

command, and the script part, which has two lines, first one to write that lsrfid program 

starts and the second one which executes the program. It is very important to add & 

symbol after execution line because this program has an infinite while loop, so this 

program has to be executed on background, but the Operating System never would be 

loaded. This script is called startup_itemlog. 

After script is written, three commands have to be executed: 

>> update-rc.d startup_itemlog defaults 

>> ln –s /etc/init.d/startup_itemlog /etc/rc2d/startup_itemlog 

>> chmod 775 /etc/rc2d/startup_itemlog 

Which update start-up of all services, create a virtual link with /etc/rc2d/ and give it 

permissions. 



60 
 

If it is necessary to stop the program, one way is using command kill. 

To use it, first of all it is necessary to know the PID of the program, so ps –e  command 

is used with a pipe and grep lsrfid to obtain only the program with this name or lt-lsrfid 

that is the same. It is necessary to use grep command because ps –e shows a lot of 

process.  

 An example can be seen in the Figure 8.7. 

 

Figure 8.7 – example to close the program  



61 
 

Chapter 9 

Conclusions 

 

9.1 Projects development 
 

This project has been done in four months, since March to June of 2012. It has been 

divided in some tasks, each one independent that at the end had been joined. These 

tasks had been: 

- Make a program that read a tag from a RFID reader 

- Install Operating system to ALIX board 

- Execute RFID reader program on ALIX board 

- Configure a remote connection between computer and ALIX board 

- Weld inductive proximity sensor with rs232 connector. 

- Make a program that manages inductive proximity sensor 

- Make a program that manages RFID read and sensor at same time 

- Write csv output files of results 

- Programing of a web page that shows results 

- Install a web server on ALIX board 

- Install a FTP server on ALIX board 

- Configure start-up to add program made 

 

During this project some problems had to be fixed: 

 Working with RFID reader, at beginning it doesn’t work. After reboot it, it works 

once correctly but following times bad. It was like this until I found that after every read, 

when stop_rfid command is send, the RFID reader has to be reset. 

 Working with libusb library, when ALIX board is not connected to the Internet by 

Ethernet, it didn’t compile c file. It said that the last compilation had been in a later date, 

and in that moment I saw that the date was bad. To fix it only I had to change the date 

to actual hour. In my opinion, the date is always rebooted because battery is over. 

 The weld of inductive proximity sensor with RFID reader had been done twice. 

First time was used one pin to connect GND, but it did that the input signal had pulses, 

so it was instable. After change this output pin from GND to another one, the input 

signal was stable, easier to work with it. 

 At the moment when inductive proximity sensor has to be connected by serial 

port, it didn’t work. It was because ALIX board blocks the configuration of serial port. To 

fix it an USB adapter is used. 



62 
 

 Some memory problems had been found. For example, after a RFID reader 

error, the program had a segmentation fault. It was because the variable that has name 

of the ITEMLOG.csv file was removed and when it was tried to open, it sends an error. 

It was fixed updating this variable every time. 

 Another problem was with day change and today count field has to be reset. 

Firstly, it works correctly less when ITEMLOG.csv file was empty because it writes the 

actual date and 000 counter to the ID tags field. To fix it one new function was used, 

ftell, to know the size of the file. 

 Web authentication can be broken. If you write the correct password and add 

some letters behind, it allows you to enter. It has not been fixed. So, it is important to 

use longer passwords to avoid this problem. 

 

9.2 Project conclusions 
 

With this project we achieve an embedded machine with two devices that can control 

some kind of goods, without any commercial software. So it shows the big potential 

that free software has. 

Also, that easy is modifying Voyage Linux configuration to adapt for your personal 

project.  

On the other hand, the program made works correctly and has some security methods 

to avoid possible uncontrollable errors. Also it can be personalized its performance 

modifying some parameters. 

Finally, this method to identify and control goods is much better than bar codes, 

because with bar codes you need a direct sight, and with RFID tag you don’t. Also, the 

wifi connection makes it more comfortable, because you can check it without being 

close to it. 

 

9.3 Future work 
 

There are some features that can be improved or made: 

- Program the low level port serial and use it instead of an USB adapter.  

- Improve web security changing method used, to fix the problem above 

described. 

- Implement a more robust data access, to avoid possible problems with 

pointers. 

 

 

  



63 
 

A. Manual 

 

This manual would be divided in two sections; configuration manual and user manual. 

 

A.1 Configuration Manual 
 

With this manual you will be able to add or delete users, modify some parameters of 

the program and web page, and configure minipc’s network. 

 

A.1.1 Add/delete users 
 

There are two kinds of users, FTP users and web page users. These two groups are 

independent, so one user can be able to access to web page but not by ftp. 

FTP Add user 

To add a new user you have to use following command (don’t care in which directory is 

executed): 

>> useradd [-s] [-d] <user> 

 

Figure A.1 – useradd example 

 

Once user is successfully created, is time to allow him to access to the ftp server. 

Using your favourite text editor, in this case emacs, modify /etc/vsftpd.chroot_list (this 

file is specified in /etc/vsftpd.conf) 

 

Figure A.2 – open vsftpd.chroot_list example 

  

And when the file is opened, only has to write the new user like Figure A.3. 



64 
 

 

Figure A.3 – vsftpd.chroot_list document example 

 

In the Figure A.3 there are two users who are allowed to access to the ftp server; 

Itemlog and user_demo. 

FTP Delete user 

There are two options to deny access to ftp server for a user: 

- delete or comment its name from the /etc/vsftpd.chroot_list 

 

Figure A.4 – delete FTP user example 

 

- delete user from Operating system and /etc/vsftpd.chroot_list 

>> userdel <user> 

 

Figure A.5 – delete FTP user example 2 

 

About the second method is important don’t use –r , because this option would delete 

user’s home directory, and this directory is the same for all users. 

To verify is one user has been added or deleted there is the following command, which 

shows you all users of the Operating System. An example could be Figure A.6. 



65 
 

 

Figure A.6 – list of system users 

 

It is easy to see that user_demo user doesn’t exist after userdel command. 

 

Web page Add user 

 

There is a basic command to add users: 

>> htpasswd [–c] /etc/apache2/.htpasswd <user> 

 

The first time that this command is used is necessary to use –c option, which indicates 

that it is necessary to create it, so <user> would be the unique user, all other would be 

removed.  Once this command is executed, would be answered for password twice. 

 

Figure A.7 – add new web page user example 

 



66 
 

If only has to add one user, the command is the same above but without –c option, with 

same behaviour. 

Once you add a user, if you open .hpasswd, you will see something like Figure A.8. 

 

Figure A.8 – example htpasswd file 

 

What it means that the password is encrypted, because the password introduced was 

demo. 

 

Web page Delete user 

 

If it is necessary to delete some user, only has to remove or comment it from .htpasswd 

file, using your text editor. 

 

Figure A.9 – open .htpasswd file 

 

 

Figure A.10 – delete a web page user 

 

 

A.1.2 Program parameters 
 

There are two kinds of parameters; parameters of RFID reader and parameters of 

program made. 

About parameters of RFID reader they are explained in Binary Protocol Specification 

RFI21.1 of Metra Blansko [17], and can be modified in following functions: 

static int conf_reader(libusb_device_handle *rfid_handle) 

 static int start_rfid(libusb_device_handle *rfid_handle) 

On the other hand, parameters of program made are: 



67 
 

 IDVENDOR  

 IDPRODUCT 

 IN_READ 

 IN_WRITE 

 ENDPOINT_READ 

 ENDPOINT_WRITE 

 REINTENTS 

 NUMBER_CHECKS 

 LOG 

 DEVICE 

IDVENDOR and IDPRODUCT are parameters to connect with RFID reader, because 

are its Vendor and Product identification.  

Following 4 parameters, IN_READ, IN_WRITE, ENDPOINT_READ and 

ENDPOINT_WRITE are to configure input/output configuration, so libusb.h library 

defines that if you want to use libusb_bulk_transfer you need to know endpoints. And 

each time that you want to claim or release an interface a port has to be use. 

REINTENTS is a parameter to define maximum times that the reader reads or waits for 

a correct tag. 

NUMBER_CHECKS is a parameter to define maximum times that the reader reads a 

tag when it has a wrong CRC. 

LOG is a parameter to define where databases are and which names they have 

databases. 

DEVICE is a parameter to define the direction of inductive proximity sensor. 

 

A.1.3 Wifi network configuration 
 

To modify ssid or password of the wifi network you have to modify 

/etc/hostapd/hostapd.conf with text editor. 

 

Figure A.11 – open hostapd.conf file 

 



68 
 

 

Figure A.12 – ssid and password fields of wifi network 

 

In the picture above the ssid (name of the network) is Itemlog and the password is 

Itemlog1. 

After change it, is necessary to reboot the board. 

 

Figure A.13 – reboot board 

 

On the other hand, if what you want to change is the network’s direction you have to 

modify /etc/network/interfaces with text editor.  

 

Figure A.14 – open interfaces file 

 



69 
 

 

Figure A.15 – wifi network configuration 

 

 

And again the board has to be rebooted.  

 

A.2 user manual 
 

A.2.1 how it works 
 

In this manual would be described all necessary steps to keep the equipment in 

working order. 

1- Be sure that all wires are connected. 

2- Switch on the board (board’s led has to be on) 

3- Wait until sensor is working (when you put something metallic in sensors 

work area and its LED is switch on), usually is less than 3 minutes. 

4- Now equipment is ready to work. 

Once equipment is ready, to detect a RFID tag; 

5- Put a metallic object in sensors work area, sensor’s LED has to switch on. 

6- Take the metallic object away from sensors work area.  

7- Put a RFID correct tag in RFID readers work area. 



70 
 

8- RFID reader LED will be blinking. When it stops blinking it means that tag 

was read. 

9- Repeat from point 5. 

 

Figure A.16 – example of inductive proximity sensor detection 

 

 

 

Figure A.17 – example of RFID tag reading 

 

 

 

A.2.2 Interpretation of errors 
 

There are two kinds of errors, which program can fix (non-critic) and which program 

cannot (critic).  

If a non-critical error has happened, final user doesn’t know that it happens, but it is 

saved in a csv file, ITEMLOG_ERROR.csv. A non-critical error could be two situations; 

the tag is not correct or communication with RFID reader has some problem. This csv 

file has two columns, the first which indicates of which kind of non-critical error is and 

the second column which save time when this error has happened. 

If a critical error has happened program will stop working. It can be known because last 

tags are not saved or because sensors LED is not working. To fix it is necessary to 

enter to the minipc’s operating system and restart the program or reboot the minipc. 

This kind of error is because a program bug that has to be fixed. 



71 
 

 

A.2.3 How to access to the results 
 

Once some tags are saved, there are two ways to access the information; web page 

and ftp connection. 

1-  First of all you have to connect to the network. So you have to look for the 

name of the network generated. In default case Itemlog and write the 

password, in default case Itemlog1. 

2- Once you are in the Itemlog network, if you want to access by web page go 

to point 12, if you want to use ftp connection go to point 8. 

3- Open your web browser 

4- Write servers direction, in default case is 10.1.10.1 

5- A popup would appear, write user and password. In default case is user: 

Itemlog and password: Itemlog1 

6- Now you are able to see tags read, delete some of them or all of them. 

7- Your session will be until you close your web browser. 

8- If you want to access by ftp connection, open your ftp client. 

9- Write on server blank the servers direction, in default case is 10.1.10.1. 

10- Write ftp user and password, in default case is user: Itemlog and password: 

Itemlog1. 

11- Download csv file that you want to see or modify.   

12- Open csv file with a text editor or spreadsheet program. 

 

 

Figure A.18 – example of web access 

 

 



72 
 

 

Figure A.19 – example of FTP access 

 



73 
 

B. Summary of figures and tables 

 

 

Figure 2.1: front of ALIX 2D3 board ......................................................................  5 

Figure 2.2: behind of ALIX 2D3 board  ..................................................................  5 

Figure 2.3 – CompactFlash Kingston 4GB standard card ......................................  6 

Figure 2.4 – Wifi miniPCI card ...............................................................................  6 

Figure 2.5– Wifi antenna, Wifi miniPCI card and board .........................................  6 

Figure 3.1 – minicom response ............................................................................. 12 

Figure 4.1 – RFID Reader ..................................................................................... 13 

Figure 4.2 – RFID tag ............................................................................................ 13 

Figure 4.3 – RFI21.1 Development Kit .................................................................. 15 

Figure 4.4 – RFA01 RFID antenna ........................................................................ 16 

Figure 4.5 – iP-X packet structure ......................................................................... 17 

Figure 4.6 – Short command format ...................................................................... 18 

Figure 4.7 – Long command format ...................................................................... 18 

Figure 4.8- General response format .................................................................... 18 

Figure 4.9 – General command format .................................................................. 19 

Figure 4.10 – General response format ................................................................. 19 

Figure 4.11 – query command structure ................................................................ 20 

Figure 4.12 – example of packet ........................................................................... 21 

Figure 5.1 – client-server behaviour ...................................................................... 29 

Figure 5.2 – wifi connection ................................................................................... 32 

Figure 5.3 – networks configuration of computer ................................................... 33 

Figure 5.4 – putty configuration ............................................................................. 34 

Figure 5.5 – voyage terminal ................................................................................. 34 

Figure 6.1 – sensor behaviour  .............................................................................. 35 



74 
 

Figure 6.2 – EI 1204pposs  ................................................................................... 36 

Figure 6.3 – Wiring Diagram PNP (make switching) .............................................. 37 

Figure 6.4 – Wiring Diagram with transistor ........................................................... 37 

Figure 6.5 – rs232 ................................................................................................. 37 

Figure 6.6 – Voltage sensors output, first option ................................................... 38 

Figure 6.7 – Voltage sensor output, second option ............................................... 38 

Figure 7.1 – information structure.......................................................................... 41 

Figure 7.2 – final web page structure .................................................................... 43 

Figure 7.3 – authentication popup ......................................................................... 44 

Figure 7.4 – example htpasswd command ............................................................ 45 

Figure 7.5 – example htpasswd file ....................................................................... 45 

Figure 7.6 – delete all popup ................................................................................. 47 

Figure 8.1 – programs flowchart ............................................................................ 49 

Figure 8.2 - response structure ............................................................................. 51 

Figure 8.3 – reader’s configuration frame .............................................................. 54 

Figure 8.4 – reader’s stop frame ........................................................................... 55 

Figure 8.5 – reader’s start frame ........................................................................... 56 

Figure 8.6 – reader’s response frame ................................................................... 56 

Figure 8.7 – example to close the program  .......................................................... 60 

Figure A.1 – useradd example .............................................................................. 63 

Figure A.2 – open vsftpd.chroot_list example........................................................ 63 

Figure A.3 – vsftpd.chroot_list document example ................................................ 64 

Figure A.4 – delete FTP user example .................................................................. 64 

Figure A.5 – delete FTP user example 2 ............................................................... 64 

Figure A.6 – list of system users ........................................................................... 65 

Figure A.7 – add new web page user example ..................................................... 65 

Figure A.8 – example htpasswd file ...................................................................... 66 

Figure A.9 – open .htpasswd file ........................................................................... 66 

Figure A.10 – delete a web page user .................................................................. 66 



75 
 

Figure A.11 – open hostapd.conf file ..................................................................... 67 

Figure A.12 – ssid and password fields of wifi network ......................................... 68 

Figure A.13 – reboot board ................................................................................... 68 

Figure A.14 – open interfaces file.......................................................................... 68 

Figure A.15 – wifi network configuration................................................................ 69 

Figure A.16 – example of inductive proximity sensor detection ............................. 70 

Figure A.17 – example of RFID tag reading .......................................................... 70 

Figure A.18 – example of web access .................................................................. 71 

Figure A.19 – example of FTP access .................................................................. 72 

 

Table 4.1 – RFID frequency bands ........................................................................ 15 

Table 4.2 – RFID reader LEDs status .................................................................... 17   

Table 4.3 – ID and T fields..................................................................................... 20 

Table 6.1 – relation between pin-signal and its behaviour ..................................... 38 

Table 6.2 – relation between pin, string variable and integer value ........................ 39 

Table 8.1 – configuration reader parameters ......................................................... 54 

Table 8.2 – start reader parameters ...................................................................... 55 

 

 

 

 

  



76 
 

C. Passwords 

 

Voyage Linux 

 User: root 

 Password: voyage 

Wifi network 

 Ssid: Itemlog 

 Password: Itemlog1 

Mysql 

 User: root 

 Password: voyage 

Phpmyadmin 

 User: root 

 Password: voyage 

Mysql application for phpmyadmin 

 Password: voyage 

Default access web page 

 User: Itemlog 

 Password: Itemlog1 

Default access FTP server 

 User: Itemlog 

 Password: Itemlog1 

  



77 
 

D. References 

 

[1] ALIX board serial console HOW TO. Online 

http://download.gooze.eu/embedded/doc/alix-board-serial-console-howto.pdf 

[2] Installation of Voyage Linux in ALIX board. Online 

http://download.gooze.eu/embedded/doc/alix-board-serial-console-howto.pdf 

[3] Voyage README file. Online http://download.gooze.eu/embedded/doc/alix-board-

serial-console-howto.pdf 

[4] How to install Build-essential. Online http://www.adslzone.net/postt226493.html 

[5] How to install wifi card. Online http://www.taringa.net/posts/linux/10242878/Instalar-

de-Tarjetas-Inalambricas-Atheros-en-Debian-Squeeze.html 

[6] RS232 serial cables pinout. Online http://www.lammertbies.nl/comm/cable/RS-

232.html 

[7] Inductive sensor diagram. Online http://sensoresdeproximidad.galeon.com/ 

[8] Inductive sensor. Programmable automatons. Online 

http://galia.fc.uaslp.mx/~cantocar/automatas/PRESENTACIONES_PLC_PDF_S/24_S

ENSORES_INDUCTIVOS.PDF 

[9] Source to sys/ioctl.h. Online 

http://unix.superglobalmegacorp.com/Net2/newsrc/sys/ioctl.h.html 

[10] Wifi Access point. Online http://enchufado.com/post.php?ID=341 

[11] Wifi access point. Online http://www.crice.org/?q=node/329 

[12] hostapd.conf datasheet. Online http://www.daemon-

systems.org/man/hostapd.conf.5.html 

[13] syslog datasheet. Online 

http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=%2Fcom.ibm.zt

pf-ztpfdf.doc_put.cur%2Fgtpc2%2Fcpp_syslog.html 

[14] .htaccess tutorial. Online http://www.sitedeveloper.ws/tutorials/htaccess.htm 

[15] start-up in Linux. Online http://luauf.com/2008/06/05/ejecutar-procesos-al-inicio-de-

gnulinux/ 

[16] configure an FTP server. Online 

http://jrballesteros05.blogspot.cz/2011/04/configurar-un-servidor-ftp-en-gnulinux.html 

[17] All RFID Metra Blansko document. Online http://www.metra.cz/en/measuring-

equipment/downloads/instructions-for-operators/#rfid 

  

http://download.gooze.eu/embedded/doc/alix-board-serial-console-howto.pdf
http://download.gooze.eu/embedded/doc/alix-board-serial-console-howto.pdf
http://download.gooze.eu/embedded/doc/alix-board-serial-console-howto.pdf
http://download.gooze.eu/embedded/doc/alix-board-serial-console-howto.pdf
http://www.adslzone.net/postt226493.html
http://www.taringa.net/posts/linux/10242878/Instalar-de-Tarjetas-Inalambricas-Atheros-en-Debian-Squeeze.html
http://www.taringa.net/posts/linux/10242878/Instalar-de-Tarjetas-Inalambricas-Atheros-en-Debian-Squeeze.html
http://www.lammertbies.nl/comm/cable/RS-232.html
http://www.lammertbies.nl/comm/cable/RS-232.html
http://sensoresdeproximidad.galeon.com/
http://galia.fc.uaslp.mx/~cantocar/automatas/PRESENTACIONES_PLC_PDF_S/24_SENSORES_INDUCTIVOS.PDF
http://galia.fc.uaslp.mx/~cantocar/automatas/PRESENTACIONES_PLC_PDF_S/24_SENSORES_INDUCTIVOS.PDF
http://unix.superglobalmegacorp.com/Net2/newsrc/sys/ioctl.h.html
http://enchufado.com/post.php?ID=341
http://www.crice.org/?q=node/329
http://www.daemon-systems.org/man/hostapd.conf.5.html
http://www.daemon-systems.org/man/hostapd.conf.5.html
http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=%2Fcom.ibm.ztpf-ztpfdf.doc_put.cur%2Fgtpc2%2Fcpp_syslog.html
http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=%2Fcom.ibm.ztpf-ztpfdf.doc_put.cur%2Fgtpc2%2Fcpp_syslog.html
http://www.sitedeveloper.ws/tutorials/htaccess.htm
http://luauf.com/2008/06/05/ejecutar-procesos-al-inicio-de-gnulinux/
http://luauf.com/2008/06/05/ejecutar-procesos-al-inicio-de-gnulinux/
http://jrballesteros05.blogspot.cz/2011/04/configurar-un-servidor-ftp-en-gnulinux.html
http://www.metra.cz/en/measuring-equipment/downloads/instructions-for-operators/#rfid
http://www.metra.cz/en/measuring-equipment/downloads/instructions-for-operators/#rfid

