

Robo-Erectus

Virtual Simulator Software

RE–VSS – CSR

User Manual

Version 1

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 2

TO CREATE A LEARNING ENVIRONMENT FOR TODAY,

AND TO FOSTER UNDERSTANDING AMONG HUMANS

AND TECHNOLOGY FOR TOMORROW

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 3

Copyright Warning

©2011 Robo-Erectus. All rights reserved.

No part of this training material may be reproduced, stored in a retrieval system or

transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or

otherwise, without the prior permission of the copyright owner.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 4

Contents

1. Introduction ... 6

2. Microsoft Robotics Developer Studio (MRDS) and Robo-Erectus Virtual Simulator

Software for CoSpace Rescue .. 7

3. Visual Simulated Environment ... 8

4. CoSpace Virtual Robot ... 9

5. 3D Virtual Environment .. 10

6. RE-VSS-CSR Control Panel ... 11

6.1 The Robot Control Panel .. 11

6.2 Competition Control Panel ... 16

7. AI Development Panel .. 20

7.1 Introduction of AI Development Environment .. 20

7.2 Project Management Section .. 21

7.3 Statement Management Section ... 25

7.4 Programming Section ... 33

7.5 C++ Programming Interface ... 43

8. Practical Guide .. 49

8.1 Manual control of robot .. 49

8.2 Working with ultrasonic sensors .. 50

8.3 Working with compass sensors .. 56

8.4 Working with colour sensors .. 63

9. MPLAB IDE, MPLAB C30 and PICkit 2 for PIC Microcontroller 67

9.1 Get Ready ... 67

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 5

9.2 Installation .. 68

9.3 Running MPLAB IDE .. 69

9.4 PICkit 2 Programming Interface .. 74

10. Working with Real Robots.. 76

10.1 Install ZigBee Modules .. 76

10.2 Manual Control of Real Robots .. 76

10.3 Fully Autonomous Robot ... 77

Appendix A. User Guide of Virtual Simulation Environment .. 83

A1. Starting Visual Simulation Environment.. 83

A2. Visual Simulation Environment Menus ... 84

A3. Visual Simulation Environment Keyboard and Mouse .. 87

Appendix B. ZigBee Communication Module Setup ... 90

Appendix C. RE – VSS – CSR Directory Structure .. 93

Appendix D. How to Control the Real and Virtual Robots Using Your Own C Code 95

Appendix E. Hardware Connection for CoSpace Robot ... 96

Appendix F. Communication Protocol ... 98

Appendix G. Action To Be Taken After the Treasures Found .. 100

Contact Us … ... 101

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 6

1. Introduction

Popular interest in robotics has increased astonishingly in the last few years. Robotics is seen

by many as offering major new benefits in education at all levels. Is it a fashion? No. Robots

are excellent tools to train students‟ competency in both academic and workplace. Robotics in

Education can enhance their knowledge in science, mathematics, physics, mechanics, and

programming, as well as time management, project management, problem solving skills,

creativity, and teamwork. Many schools have their own robotics lab for extra curricula

activities, but most schools still lack the resources. Students may not be able to own a robot

all by themselves. If it can be shown that robotics has sustained potential in education, the

virtual robot and easy programming tool will give students an alternative platform for

learning in the area of robotics.

Fig. 1 – 1 : Students participating in RoboCupJunior CoSpace Rescue (Demo) Challenge

RoboCupJunior CoSpace Rescue Challenge is an educational initiative to promote knowledge

and skills in engineering design, programming, electronic control, and the 3D simulation

through robotics for young minds. The CoSpace Challenge aims to fuse real and virtual

robotic technologies towards bridging two prominent areas of the future namely, Interactive

Digital Media and Robotics.

In CoSpace Rescue (Demo) Challenge – treasure hunt challenge, a treasure map with a list of

treasures will be provided to each participating team. The team has to develop appropriate

strategies for a virtual autonomous robot to navigate through the treacherous terrain by

avoiding obstacles and collecting treasures in the 3D virtual environment while competing

with another robot that is performing the same mission. The strategies will then be applied to

a real robot to search the treasures in the real world.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 7

2. Microsoft Robotics Developer Studio (MRDS) and Robo-Erectus

Virtual Simulator Software for CoSpace Rescue

Microsoft Robotics Developer Studio (MRDS) is a development platform for the robotics

community, supporting a wide variety of users, hardware, and application scenarios. MRDS

is not a tool to program code that will execute directly on the microcontroller of a robot.

Instead, researchers and scientists can use MRDS to develop a user friendly graphical

interactive programming interface and virtual environment for their own robots. Students

without programming experience can then use the programming interface and virtual

environment developed to program and control both real and virtual robots. The high

resolution visual simulation environment that integrates 3D software physics supplied by the

Ageia Technologies PhysX engine let students have an actual virtual 3D or CoSpace

experience.

The virtual robot and the user friendly interactive programming interface – the Virtual

Simulator Software for CoSpace Rescue, RE–VSS–CSR, is developed by the Advanced

Robotics and Intelligent Control Centre (ARICC), a Technology & Innovation Centre in

Singapore Polytechnic. This educational package is powered by Microsoft® Robotics

Developer Studio. It gives users an opportunity to work with both virtual and real robots. The

RE–VSS–CSR platform provides a venue for users to understand the physical structure,

sensors, motors, and the programming of a robot. Students will be able to program a robot to

perform its mission in both real and virtual environment using this educational package.

The RE–VSS–CSR offers hands on technological experience to motivate young minds to

learn and share knowledge with fellow participants. It also helps in the social and emotional

development of the students as they work together in groups and build inter-personal skills

required for their successful future in the real world.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 8

3. Visual Simulated Environment

The Visual Simulation Environment (VSE) simulates physical objects and their interactions

including collisions, friction and gravity. To launch the RE–VSS–CSR, you need to double

click the icon “ ” on desktop. Fig. 3 – 1 shows the Visual Simulation Environment*

(VSE) for CoSpace Rescue. It consists of many virtual entities, such as virtual robots, a

rescue arena, ground, sky, sun, and camera (invisible), etc.

Fig. 3-1: Microsoft visual simulation environment

When the simulator is running in the Visual Simulation Environment, you can move the

camera viewpoint by dragging the mouse pointer across the screen. It does not change the

camera position but it changes the point that the camera is looking at.

* You will need to fill up a registration form in order to launch the VSE.

The quick user guide for the Virtual Simulation Environment is attached in Appendix A.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 9

4. CoSpace Virtual Robot

The platform supports all types of real robots equipped with the RE-controller board. It can

be integrated with Lego brick, Vex components, and other commercial sensors, servos, and

motors. The CoSpace virtual robot RE-VWheelie02 is equipped with 4 ultrasonic sensors, 2

colour sensors, and 1 compass sensor as shown in Fig. 4 – 1. They are used to detect

obstacles/boundaries, colour objects and direction.

Fig. 4 – 1: CoSpace virtual Robot RE-VWheelie02

Left Ultrasonic Sensor

Front Ultrasonic Sensor

Right Ultrasonic Sensor

Back Ultrasonic Sensor

Compass Sensor

Right Colour Sensor

Left Colour Sensor

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 10

5. 3D Virtual Environment

Fig. 5 – 1 shows the 3D virtual environment for the CoSpace Rescue Challenge. It consists of

two virtual robots, some obstacles, and a set of different coloured objects. The information

centre displays the current date and time, the team name, and the score.

Obstacles

The obstacles are 10cm in height.

Virtual Objects

There are two types of objects – red objects and black objects.

Virtual Robots

Two virtual robots, red robot and blue robot are used to represent two teams.

Information Board

The Information board shows the team name, score, etc

Fig. 5 – 2: Information Board

Information Board

Virtual Robot

Obstacles

Virtual Object

Fig. 5 – 1: RE–VSS–CSR 3D virtual environment

Team name

Total score

Points for the treasures on the cart

Treasures on the cart

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 11

6. RE-VSS-CSR Control Panel

Fig. 6 – 1 shows the RE–VSS–CSR control panel. The control panel consists of two sub-

panels, namely Robot Control Panel and Competition control Panel.

Fig. 6 – 1: RE–VSS–CSR control panel.

6.1 The Robot Control Panel

Fig. 6 – 2 shows the robot control panel. In this panel, you are able to

 View the real-time sensor feedback of a selected robot;

 Control real/virtual robot(s) via dashboard or game controller;

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 12

Fig. 6 – 2: RE–VSS–CSR Robot Control Panel

Real-time Sensor Feedback

Robot Control

Robot Selection

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 13

Robot selection

Fig. 6 – 3 shows the robot selection. It allows user to select a robot and view the real-time

sensor reading. The real robot will only be selected once it is connected to the server.

Fig. 6 – 3: Robot selection

Real-time sensor feedback

Fig. 6 – 4 shows the real-time sensor feedback segment. It allows users to monitor the real-

time sensor readings when the selected virtual robot navigates through the 3D virtual

environment, or the selected real robot moves in the real world.

Fig 6 – 4: Real-time sensor feedback

Reading of front ultrasonic sensor, cm

Reading of back ultrasonic sensor, cm

Reading of left ultrasonic sensor, cm

Reading of right ultrasonic sensor, cm

Reading of compass sensor, degree

Reading of left colour senor

Reading of right colour sensor

 Timer, second

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 14

Robot control

The robot control segment as shown in Fig. 6 – 5 provides the real-time control of virtual/real

robots via a build-in dashboard controller and external game controller.

Fig. 6 – 5: Robot control segment

The configuration in Fig. 6 – 5 shows that the virtual robot #1 is controlled by Dashboard #1

and virtual robot #2 is controlled by dashboard #2. If you wish to use Dashboard #1 to control

the virtual robot #1 and #2, you just simply click on the corresponding “ ” which

connects virtual robot #1 and #2 and change it to “ ”. The Dashboard #1 will then

controls the virtual robot #1 and #2. The Dashboard #2 will only control the virtual robot #2.

Fig. 6 – 6 shows the configuration.

Virtual

Robot #1

Virtual

Robot #2

Real

Robot #1

Real

Robot #2

Dashboard #1

Dashboard #2

Game Controller #1

Game Controller #2

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 15

Fig. 6 – 6: Robot control configuration

Fig. 6 – 6 shows that the real robots and game controller are not connected. Session 10 shows

the procedure of connecting a real robot to the CoSpace server.

Dashboard and Game Controller

The dashboard and game controller are used to control both real and virtual robots movement

in their corresponding real world and 3D virtual environment. The sensor feedback segment

will display the real-time sensor reading during the robots navigation.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 16

6.2 Competition Control Panel

The Competition Control Panel as shown in Fig. 6 – 7 is used for both virtual and real

CoSpace Rescue competition.

Fig. 6 – 7: Competition Control Panel

Programming Interface

Competition Arena

Scoreboard

Game Control

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 17

Competition arena

The interactive competition arena allows you to place the virtual robot on to the virtual

competition arena by clicking at the designated place in the virtual arena. For example, if you

choose , the red robot will be selected and placed on the respective location in

the virtual competition arena.

Fig. 6 – 8: Interactive competition arena

Scoreboard

The scoreboard displays the team names, scores, and the running clock.

Fig. 6 – 9: Scoreboard

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 18

Game control

The game control as shown in Fig. 6 – 10 provides the overall control of the competition. It

allows judges to load the AI strategies and run the game.

Fig. 6 – 10: The game control

 Load Blue Team AI/Load Red Team AI – to load the AI strategy designated for Blue

Team or Red Team. The AI strategy is designed via AI Developmnt Panel. The AI

strategy file has an extension of “.dll” as shown in Fig. 6 – 11.

Fig. 6 – 11: Load a AI strategy

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 19

 Virtual Game / Start – to start a virtual game.

 Virtual Game / Pause – to pause a virtual game.

 Virtual game / Stop – to stop a virtual game.

 Virtual Game / Reset All – to reset the virtual game. Score will be reset to the initial

value.

 Real Game / Start – to start a real robot in the real world. The communication

between the server and real robot is via ZigBee communication protocol.

 Real Game / Stop – to stop a real game in the real world.

 Penalty / Red Team – the Red team will receive penalty as described in the rule.

 Penalty / Blue Team – the Blue team will receive penalty as described in the rule.

 Penalty / Both Teams – both teams will receive penalty as described in the rule.

Programming interface

The programming interface is to launch the AI development panel.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 20

7. AI Development Panel

7.1 Introduction of AI Development Environment

The RE – VSS – CSR Robot programming uses an event-driven approach. The graphical AI

development panel in the RE – VSS – CSR as shown in Fig. 7 – 1 is designed for participants

in three different levels.

If you are a new programmer without any programming knowledge and skills, the RE – VSS

– CSR provides a perception-action based programming techniques which allows you to

write a simple program using the graphical programming interface to control the robot. If you

have experience in using Lego NXT, VEX or other robot platforms, your knowledge in

programming will help you to program the CoSpace robot with ease as the RE – VSS – CSR

provides advanced programming techniques. The RE – VSS – CSR also provides a C++

programming interface which enables professional programmers to test the AI strategy using

the CoSpace platform.

Fig. 7 – 1 : RE – VSS – CSR AI development environment

The RE – VSS – CSR AI programming interface consists of 3 sections, i.e. project

management section, statement management section, and the programming section.

Project

Management

Section

Statement

Management

Section

Programming

Section

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 21

7.2 Project Management Section

Fig. 7 – 2 shows the project management section. In this section, you are able to

 Create and initialize a new project;

 Load a project;

 Save a project;

 Build a project;

 Define global variables;

 Define a team name;

 Select a controller board;

Fig. 7 – 2: Project management section

7.2.1 Create and initialize a new project

This function is to create and initialize a new project. When a new project is created, a project

folder will be created in the designated path. You may change the path if you wish. To create

a new project, double click on the new project “ ” button.

Fig. 7 – 3: Create a new project

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 22

7.2.2 Load a project

This function is to load a project. The project file has an extension of “.smp”. To load a

project, click the button. The project can be edited after loading.

Fig. 7 – 4 : Load a project

7.2.3 Save a project

This function is to save a project. The project file has an extension of “.smp”. To save a

project, click the button. The project can be loaded for editing using “Load a project”

function. The saved project will have the same file name as the project name by default. You

may wish to save it as another project by simply changing the project name..

Fig. 7 – 5: Save a project

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 23

7.2.4 Build a project

This function is to build a project. The built project has an extension of “.dll”. The built

project can be loaded in the control panel via loading AI function. To build a project, click

the button.

7.2.5 Define a new variable

The RE – VSS – CSR has a set of pre-defined variables. They are Duration, bGameEnd,

CurAction, and CurGame. In addition to the pre-defined global variables, additional variables

can be added for the project. Click on the “Add Variable” to add a variable. All

parameters, such as variable name, initial value, variable type, etc, associated with the

variable are to be set as shown in Fig. 7 – 6.

Fig. 7 – 6: Add a global variable

Parameter What it means …

ArrayLength The length of the array if the global variable is defined as an array. Set this

parameter to be 0 for other variable types.

Initial value The initial value of the variable.

Name Name of the variable. It can only contain „a ~ z‟, „A ~ Z‟, and „0 ~ 9‟.

VarType Type of the variable. It can be Byte, Int16, Boolean, Float, String, Byte

Array, and Int16 Array.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 24

Step 3: Click to add the defined variable to the list.

Step 4: Click to save.

If you wish to delete a global variable from the list, click on “ ”. If you do not wish to save,

click on “ ”.

7.2.6 Add a team name

This function is to add a team name to the designed project. To add a team name, click the

button “Team Name button ”. The team name must be less than 8 characters.

Fig. 7 – 7: Add a team name

The added team name will be displayed in the scoreboard as well as in the virtual

environment as shown in Fig. 7 – 8..

Fig. 7 – 8: New team nme is displayed

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 25

7.2.7. Select a controller board

There are two types of controller board, RE – CS01 board and RE – CS02 board (for Lego

sensors and motors) are used for the CoSpace robot. You can select the controller board used

from the dropdown list as shown in Fig. 7 – 9.

Fig. 7 – 9:Select a controller board

7.3 Statement Management Section

Fig. 7 – 10 shows the statement management section. In this section, you are able to

 Add a new statement and a new subroutine;

 Define the statement type and state;

Fig. 7 – 10: Statement management section

The RE – VSS – CSR CoSpace platform uses sequential programming technique. The

compiler executes the program statements sequentially in a “top-down” manner. Therefore,

the order of the statements in the program plays a very important role in deciding the priority

of statements with the same priority.

In order to synchronise the real and virtual robots and maintain real-time data updating, the

CoSpace platform RE – VSS – CSR automatically scans all sensors‟ readings in an interval

of 60 ms. In other words, all the variables associated with sensors will be updated every 60

ms. Fig. 7 – 11 shows the program execution flow.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 26

Fig. 7 – 11: Program execution flow

Scan Begins; Scan Time = 0

Begin

Default Statement

End

Wait until: Scan Time = 60 ms

CoSpace Program

Read all sensors’ value

Re-arrange all statements

according to the priorities

Is the statement with the highest

priority executed?

Is the statement with the 2nd-highest

priority executed?

Yes

Yes

No

No

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 27

7.3.1 Add a new statement

Statement specifies action. A program is formed by one or more statements in sequence. Each

statement will have an expression.

Procedure of adding new statement:

Step1: Select the statement/subroutine which you wish the new statement to be appended in

the project and then click the right mouse button. Choose “Add a new statement

within the Bundle” or “Add a new statement” as shown in Fig. 7 – 12.

 or

Fig. 7 – 12: Adding a new statement

Step 2: Assign a meaningful name to the statement created. The new statement will then be

added as shown in Fig 7 – 13.

Fig. 7 – 13: Assigning a new statement name

The statement type, conditions and actions associated with the new statement need to be

specified. It will be illustrated in later section.

You can continue to add more statements to the program.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 28

7.3.2 Add a new subroutine

A subroutine (also called procedure, method, function, or routine) is a portion of code within

a larger program that performs a specific task and is relatively independent of the remaining

code.

Procedures of adding a new subroutine:

Step 1: Select the previous statement/subroutine in the project that you wish to have the

subroutine appended and click the right mouse button. Choose “Add a new Bundle

within the Bundle” or “Add a new Bundle” as shown in Fig. 7 – 14.

 or

Fig. 7 – 14: Adding a subroutine

Step 2: Assign a meaningful name to the subroutine created. The new subroutine will then

be added as shown in Fig 7 – 15.

Fig. 7 - 15: Assigning a new subroutine name

The subroutine is a set of statements. You can add more statements or subroutines to an

existing subroutine.

http://en.wikipedia.org/wiki/Computer_code
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Task_(computers)

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 29

7.3.3 Managing statements and subroutines

You can delete, move up, move down, and change the statement or subroutine‟s name. To do

so, you need to select the statement or subroutine and right click to select the appropriate

action as shown in Fig. 7 – 16.

Fig. 7 - 16: Managing statement

7.3.4 Statement type

The type of the statement has to be specified when each new statement is added. There are

three types statements for different requirements, namely default action, non-interrupt action,

and super action as shown in Fig. 7 – 17.

Fig. 7 – 17: Statement types

 Default action

The default action statement has the lowest priority. A project can have many default

action statements.

 Non-interrupt action

The non-interrupt statement has the same priority as the default statement. When the

non-interrupt statement is executed, it will not be interrupted or terminated unless

1) The exit action condition is fulfilled.

2) The super action statement is executed.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 30

When the non-interrupt action is specified, it is necessary to define an exit condition

for this action. That means the non-interrupt statement will only be terminated when

the specified exit condition is true.

The Section 7.3.5 on managing states will illustrate the details.

A project can contain many non-interrupt action statements.

 Super action:

The super-action statement has the highest priority. Once the condition for the

statement is true, it will be executed immediately. All other actions will be

interrupted.

A project can contain many super action statements.

7.3.5 Managing states

State Manager allows you to add/delete new state variables and define the states.

Fig. 7 – 18: State manager

A state is needed for a non-interrupt statement. When a new state is defined, it is compulsory

to specify the exit-action condition. The non-interrupt statement will only be terminated when

the exit-condition is true. Fig. 7 – 19 shows the state manager environment.

Fig. 7 – 19: State manager

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 31

 Add a new state

To add a new state, double click the and specify the new state.

Fig. 7 – 20: Add a new state

The new state name can only contain „a ~ z‟, „A ~ Z‟, and „0 ~ 9‟.

 Delete a state

To delete a state, highlight the state you wish to delete and click the .

 Save a state

Just simply click on the button. The state manager window will be closed and

the states will be saved.

 Define an exit-action condition

In this platform, we can define the exit-condition based on the sensor readings from 4

ultrasonic sensors (Ultrasonic Sensor Front, Ultrasonic Sensor Back, Ultrasonic

Sensor Left, Ultrasonic Sensor Right), 1 Direction Sensors, 2 colour sensors (Colour

Sensor Left, Colour Sensor Right), time sequence and other self-defined variables.

For example,

 specifies the ultrasonic front sensor

reading is in between 10 and 50 cm. That means that distance between the front

obstacle and the front ultrasonic sensor is in between 10 – 50 cm.

 specifies the left colour sensor reading

is in between 10 – 30.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 32

Fig. 7 – 21: Define a state

Fig. 7 – 21 shows the front ultrasonic sensor reading is in between 10 – 50 and left

colour sensor reading is in between 10 – 30.

The advanced condition can be used to specify more complex conditions, such as

(US_Front>=10&&US_Front<=50)||(CS_Left>=10&&CS_Left<=30) . Fig. 7 – 22

shows the implementation of advanced condition.

Fig. 7 – 22: Define a state with advanced condition

The basic conditions can be combined with the advanced condition. Fig. 7 – 23 shows

(US_Front>=0&&US_Front<=50)&&(CS_Left<50). Fig. 7 – 24 shows

(US_Front>=0&&US_Front<=50)||(CS_Left<50).

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 33

Fig. 7 – 23: Define a state

Fig. 7 – 24: Define a state

7.4 Programming Section

Robot programming uses an event-driven approach. That means that the robot acts based on

the sensors‟ feedback. The condition and action section is to specify the perception-action of

a robot. Once a new statement is created, the corresponding conditions and actions have to be

specified.

This graphical perception-action programming interface as shown in Fig 7 – 25 is suitable for

a novice programmer. If you are an experienced programmer, the advanced function would

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 34

better suit your needs. Of course, the package also provides an interface for proficient C++

programmers to write their own C++ code.

Fig. 7 – 25: Graphical Programming Interface

7.4 1 Basic conditions

The following sensors readings are used for specifying conditions.

 US_Front – feedback value from the front ultrasonic sensor

 US_Back – feedback value from the back ultrasonic sensor

 US_Left – feedback value from the left ultrasonic sensor

 US_Right – feedback value from the right ultrasonic sensor

 CS_Left – feedback value from the left colour sensor

 CS_Right – feedback value from the right colour sensor

 Direction – feedback value from the compass sensor

 Time – Time sequence

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 35

You can also use self-defined variables.

RE–VSS–CSR uses a perception based programming strategy. You just need to specify the

conditions and action. Fig. 7 – 26 shows the condition/action panel.

Fig. 7 – 26: Programming panel

The simple conditions can be defined using the slider to specify the data range.

Examples

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

How do you

program…

Condition 40 ≤ Back Ultrasonic Sensor Reading ≤ 80

How do you

program…

Edit Max Value

Edit Min Value

Set motor speed

Set LED mode

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 36

Condition 0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

Condition 0
o
 ≤ Compass Sensor Reading ≤ 45

o

How do you

program…

You can combine any two or more conditions using the same method. Please note that the

relationship between these conditions will be “Logical AND”.

Examples

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

and

0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

or

0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

Use advanced condition

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 37

Condition 40 ≤ Back Ultrasonic Sensor Reading ≤ 80

and

Right Colour Sensor Reading ≥ 100

How do you

program…

Condition 40 ≤ Back Ultrasonic Sensor Reading ≤ 80

or

Right Colour Sensor Reading ≥ 100

How do you

program…

Use advanced condition

Condition 0 ≤ Left Colour Sensor Reading ≤ 60

and

45
o
 ≤ Compass Sensor Reading ≤ 90

o

How do you

program…

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 38

7.4.2 Basic action

 Define robot moving direction

Movement Left Wheel Right Wheel

Robot moves forward Positive Value, e.g. “+1” Positive Value

Robot turns right Positive Value Negative Value, e.g. “- 1”

Robot turns left Negative Value Positive Value

Robot moves backwards Negative Value Negative Value

 Define robot moving speed

Speed Setting Motor Speed

0 Stop

1 Robot moves at 20% of its full speed

2 Robot moves at 40% of its full speed

3 Robot moves at 60% of its full speed

4 Robot moves at 80% of its full speed

5 Robot moves at full speed

 Set LED display

LED Setting What it means…

0 LED – off

1 LED – blinks

2 LED – steady display

 Duration

 Duration is used to specify the duration for the action. The action will be continuously

executed for the period that is specified in duration. The unit for duration is 60ms.

 Game End

If the Game End box is checked, the entire game will end when this statement is

executed.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 39

Examples

Actions Robot moves forward with 40% of the full speed for 120 ms

How do you

program…

Actions Robot moves forward with 40% of the full speed for 120 ms while

LED is flashing.

How do you

program…

Actions Robot moves forward with 40% of the full speed for 120 ms. At mean

time, The internal variable “Alpha” is set to 5.

How do you

program…

Use advanced action.

7.4.3 Advanced programming function

In the advanced function, you can write simple codes for specific conditions and actions.

The Advanced programming supports the symbols for C arithmetic operations and relational

operators.

You can use all pre-defined variables and global variables specified in the advanced

conditions and actions.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 40

Advanced Conditions

The advanced conditions are used for more complicated combination of conditions.

Examples

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

and

0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

or

0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

Condition 40 ≤ Back Ultrasonic Sensor Reading ≤ 80

and

Right Colour Sensor Reading ≥ 100

How do you

program…

(US_Back>=40&&US_Back<=80)&&(CS_Right>=100)

Condition 40 ≤ Back Ultrasonic Sensor Reading ≤ 80

or

Right Colour Sensor Reading ≥ 100

How do you

program…

(US_Back>=40&&US_Back<=80)||(CS_Right>=100)

Condition 0 ≤ Left Colour Sensor Reading ≤ 60

and

45
o
 ≤ Compass Sensor Reading ≤ 90

o

How do you

program…

(CS_Left<=60)&&(Compass>=45&&Compass<=90)

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 41

The advanced conditions can be combined with the basic conditions to fulfill more

comprehensive requirement.

Examples

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

and

0 ≤ Left Ultrasonic Sensor Reading ≤ 40

or

0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

Condition 0 ≤ Front Ultrasonic Sensor Reading ≤ 50

or

0 ≤ Left Ultrasonic Sensor Reading ≤ 50

or

0 ≤ Left Colour Sensor Reading ≤ 60

How do you

program…

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 42

Advanced Actions

The advanced actions are used for more complicated combination of actions.

Examples

Actions Robot moves forward with 40% of the full speed for 120 ms

How do you

program…

Actions Robot moves forward with 40% of the full speed for 120 ms while LED is

flashing.

How do you

program…

Actions Robot moves forward with 40% of the full speed for 120 ms. At mean time,

The internal variable “Alpha” is set to 5.

How do you

program…

Please note that when the advanced action is created, it overwrites the basic actions for the

same variables.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 43

7.5 C++ Programming Interface

When a project is built, there will be two files, namely “ai.cs” and “ai.c” generated

automatically.

 “ai.cs” is a CSharp program. It is generated according to the graphical programming.

The “ai.cs” can be further modified and then be compiled and run in the virtual

environment.

 “ai.cs” can be opened using Note Pad or Microsoft Visual Studio.net.

using System;

namespace AI

{

 public static class AI

 {

 static int Duration = 0;

 static int SuperDuration = 0;

 static bool bGameEnd = false;

 static int CurAction = 0;

 static int CurGame = 0;

 static int US_Front = 0;

 static int US_Back = 0;

 static int US_Left = 0;

 static int US_Right = 0;

 static int CS_Left = 0;

 static int CS_Right = 0;

 static int Compass = 0;

 static int Time = 0;

 static int Wheel_Left = 0;

 static int Wheel_Right = 0;

 static int LED_1 = 0;

 public static string GetTeamName()

 {

 return "Happy";

 }

 public static void SetGameID(int GameID)

 {

 CurGame = GameID;

 bGameEnd = false;

 }

 public static int GetGameID()

 {

 return CurGame;

 }

 public static bool IsGameEnd()

 {

 return bGameEnd;

 }

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 44

 public static void OnTimer()

 {

 switch (CurGame)

 {

 case 100:

 break;

 case 101:

 Wheel_Left=0;

 Wheel_Right=0;

 LED_1=0;

 break;

 case 0:

 Game0();

 break;

 default:

 break;

 }

 }

 public static void SetData(int Sensor0 , int Sensor1 , int Sensor2

, int Sensor3 , int Sensor4 , int Sensor5 , int Sensor6 , int Sensor7)

 {

 US_Front = Sensor0;

 US_Back = Sensor1;

 US_Left = Sensor2;

 US_Right = Sensor3;

 CS_Left = Sensor4;

 CS_Right = Sensor5;

 Compass = Sensor6;

 Time = Sensor7;

 }

 public static void GetCommand(ref int Actuator0 , ref int Actuator1

, ref int Actuator2)

 {

 Actuator0 = Wheel_Left;

 Actuator1 = Wheel_Right;

 Actuator2 = LED_1;

 }

 private static void Game0()

 {

 if(SuperDuration>0)

 {

 SuperDuration--;

 }

 else if(Duration>0)

 {

 Duration--;

 }

 else if(US_Front>=0 && US_Front<=30)

 {

 Duration = 0;

 CurAction =0;

 }

 else if(true)

 {

 Duration = 0;

 CurAction =1;

 }

 switch(CurAction)

 {

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 45

 case 0:

 Wheel_Left=0;

 Wheel_Right=0;

 LED_1=0;

 break;

 case 1:

 Wheel_Left=2;

 Wheel_Right=2;

 LED_1=0;

 break;

 default:

 break;

 }

 }

 }

}

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 46

 “ai.c” is a C program. It is generated according to the graphical programming. The

“ai.c” can be further modified and then be compiled and downloaded onto the real

robot. The real robot will perform in the real environment according the program

edited in the environment.

////////////////////////////

//The ID : It must be three digital number. Value is from "001" to "999".

"000" is reserved.

char AI_MyID[3] = "002";

///////////////////////////////////

#define true 1

#define false 0

int AI_MotorType = 0;

int Duration = 0;

int SuperDuration = 0;

int bGameEnd = false;

int CurAction = 0;

int CurGame = 0;

int US_Front = 0;

int US_Back = 0;

int US_Left = 0;

int US_Right = 0;

int CS_Left = 0;

int CS_Right = 0;

int Compass = 0;

int Time = 0;

int Wheel_Left = 0;

int Wheel_Right = 0;

int LED_1 = 0;

int AI_SensorNum = 7;

void SetGameID(int GameID)

{

 CurGame = GameID;

 bGameEnd = false;

}

int GetGameID()

{

 return CurGame;

}

int IsGameEnd()

{

 return bGameEnd;

}

void SetData(int *packet, int *CCP , int *ADC , int compass, int play_time)

{

 int sum = 0;

 US_Front = CCP[0]; packet[0] = US_Front; sum += US_Front;

 US_Back = CCP[1]; packet[1] = US_Back; sum += US_Back;

 US_Left = CCP[2]; packet[2] = US_Left; sum += US_Left;

 US_Right = CCP[3]; packet[3] = US_Right; sum += US_Right;

 CS_Left = ADC[2]; packet[4] = CS_Left; sum += CS_Left;

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 47

 CS_Right = ADC[3]; packet[5] = CS_Right; sum += CS_Right;

 Compass = compass; packet[6] = Compass; sum += Compass;

 Time = play_time;

 packet[7] = sum;

}

void GetCommand(int *Motor, int *LegoMotor, int *LED)

{

 Motor[0] = Wheel_Left;

 Motor[2] = Wheel_Right;

 LED[0] = LED_1;

 LED[1] = LED_1;

}

void Game0()

{

 if(SuperDuration>0)

 {

 SuperDuration--;

 }

 else if(Duration>0)

 {

 Duration--;

 }

 else if(US_Front>=0 && US_Front<=30)

 {

 Duration = 0;

 CurAction =0;

 }

 else if(true)

 {

 Duration = 0;

 CurAction =1;

 }

 switch(CurAction)

 {

 case 0:

 Wheel_Left=0;

 Wheel_Right=0;

 LED_1=0;

 break;

 case 1:

 Wheel_Left=2;

 Wheel_Right=2;

 LED_1=0;

 break;

 default:

 break;

 }

}

void OnTimer()

{

 switch (CurGame)

 {

 case 100:

 break;

 case 101:

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 48

 Wheel_Left=0;

 Wheel_Right=0;

 LED_1=0;

 break;

 case 0:

 Game0();

 break;

 default:

 break;

 }

}

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 49

8. Practical Guide

8.1 Manual control of robot

The RE – VSS – CSR provides a manual control interface. When you use a mouse to control

the dashboard, the robot will move accordingly.

Fig. 8 – 1 Robot manual control

Up

Down

Left Right

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 50

8.2 Working with ultrasonic sensors

Task 1:

To program a robot to move forward. It stops when it approaches the front obstacle. i.e. the

distance between front obstacle and robot is less than 20 cm.

Fig. 8 – 2

Analysis:

Fig. 8 – 3

D <=20 cm

Begin

D <= 20cm ?

Stop

End

Move Forward

Yes

No

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 51

Procedure:

1. Launch the RE – VSS – CSR.

2. Launch the AI developer panel

3. Create a new project.

4. Add a statement namely “Stop”.

Type: Default Action

Condition: When the reading from front ultrasonic sensor <= 20 cm

Action: Both wheels speed = 0 (stop position)

Fig. 8 – 4

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 52

5. Add a statement namely “Forward”.

Type: Default Action

Condition: no restrictions

Action: Both wheels speed = “+2”

Fig. 8 – 5

6. Save project

The saved project has an extension of “smp”. It can be reloaded for editing.

7. Build project

The built project has an extension of “.dll”. This file can be loaded in the control

panel for execution.

8. Load the built project and start the simulation.

9. Monitor the robot performance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 53

Task 2:

To program a robot to avoid an obstacle. That means that the robot will turn right when the

front ultrasonic sensor detects an obstacle, i.e. the distance between front obstacle and robot

is less than 20 am.

Fig. 8 – 6

Analysis:

Fig. 8 – 7

Begin

D <= 20cm ?

Turn Right

End

Move Forward

Yes

No

D <=20 cm

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 54

Procedure:

1. Launch the RE – VSS – CSR.

2. Launch the AI developer panel

3. Create a new project.

4. Add a statement namely “Turn Right”.

Type : Default Action

Condition: When the reading from front ultrasonic sensor <= 20 cm

Action: Left wheel speed = “+2”, Right wheel speed = “- 2”

Fig. 8 – 8

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 55

5. Add a statement namely “Forward”.

Type: Default Action

Condition: no restrictions

Action: Both wheels speed = “+2”

Fig. 8 – 9

6. Save project (MyEx2.smp)

The saved project has an extension of “.smp”. It can be reloaded for editing.

7. Build project (MyEx2.dll)

The built project has an extension of “dll”. This file can be loaded in the control panel

for execution.

8. Load the “MyEx2.dll” in RE – VSS – CSR control panel and start the simulation.

9. Monitor the robot performance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 56

8.3 Working with compass sensors

Task 1:

To program a robot to turn 180
0
 until it faces west (Method 1 – using default action).

Fig. 8 – 10

Analysis:

Fig. 8 – 11

Begin

171 <=Compass Reading <= 190 ?

 Stop

End

Turn Right

Yes

No

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 57

Procedure:

1. Launch the RE – VSS – CDR.

2. Launch the AI developer panel

3. Create a new project.

4. Add a new statement “Stop”.

Type : Default Action

Condition: When Compass sensor reading is in between 171 and 190 degree.

Action: Left wheel speed = “0”, Right wheel speed = “0”

Fig. 8 – 12

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 58

5. Add a new statement “Turn Right”.

Type : Default Action

Condition: No restrictions.

Action: Left wheel speed = “+1”, Right wheel speed = “-1”

Fig. 8 – 13

6. Save the project as “MyEx3.smp”.

7. Build the project as “MyEx3.dll”.

8. Load the “MyEx3.dll” in RE – VSS – CSR control panel and start the simulation.

9. Monitor the robot performance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 59

Task 2:

To program a robot to turn 180
0
 until it faces west (Method 2 – using Non-interrupt action).

Fig. 8 – 14

Analysis:

Fig. 8 – 15

Begin

171 <=Compass Reading <= 190 ?

 Stop

End

Turn Right

Yes

No

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 60

Procedure:

1. Launch the RE – VSS – CSR.

2. Launch the AI developer panel.

3. Create a new project.

4. Add a new statement “Right Turn”.

Type : Non_Interrupt

Add a new exit state using state manager:

Fig. 8 – 16

Set the exit action condition to be , That

means that when 171 <= Compass Reading <= 190 is true, the Non Interrupt action

statement “Turn Right” will be terminated. The next statement in the program will be

executed.

Condition:

“(Compass>=0 && Compass<=170) || (Compass>=190 && Compass<=360)”

This statement means:

When the condition (0 <= Compass sensor reading <=170) or (191 <= Compass

sensor reading <=360) is fulfilled, the “Right Turn” statement will be executed.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 61

Action:

Left wheel speed = “+1”, Right wheel speed = “-1”

Fig. 8 – 17

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 62

5. Add a new statement “Stop”.

Type : Default Action

Condition: No restrictions.

Action: Left wheel speed = “0”, Right wheel speed = “0”

Fig. 8 – 18

6. Save the project as “MyEx4.smp”.

7. Build the project as “MyEx4.dll”.

8. Load the “MyEx4.dll” in RE – VSS – CSR control panel and start the simulation.

9. Monitor the robot performance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 63

8.4 Working with colour sensors

Task 1:

Program a robot to locate a black object in the field. The robot will stop with an LED on for

the successful identification.

Analysis:

Fig. 8 – 19

Procedure:

1. Launch the RE – VSS – CSR.

2. Manually move the robot over the black object and read the colour sensor feedback.

This value will be used for programming.

Fig. 8 – 20

This means that when the colour sensor senses the red object, the reading is about 40.

The robot in RE – VSS – CSR is installed with 2 colour sensors. Both left and right

colour sensors can detect the object. The readings for both left and right sensors are

the same.

Begin

Object Found?

Stop with LED on

End

Move Forward

Yes

No

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 64

3. Launch the AI developer panel.

4. Create a new project.

5. Add a new statement “Left Sensor Found Object”.

Type : Default Action

Condition: Left colour sensor reading is less than 85.

Action: Left wheel speed = “0”, Right wheel speed = “0”, LED is on

Fig. 8 – 21

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 65

6. Add a new statement “Right Sensor Found Object”.

Type : Default Action

Condition: Right colour sensor reading is less than 42.

Action: Left wheel speed = “0”, Right wheel speed = “0”, LED is on

Fig. 8 – 22

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 66

7. Add a new statement “Move Forward”.

Type : Default Action

Condition: No restrictions.

Action: Left wheel speed = “+1”, Right wheel speed = “+1”

Fig. 8 – 23

8. Save the project as “MyEx5.xml”.

9. Build the project as “MyEx5.dll”.

10. Load the “MyEx5.dll” in RE – VSS – CSR control panel and start the simulation.

11. Monitor the robot performance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 67

9. MPLAB IDE, MPLAB C30 and PICkit 2 for PIC Microcontroller

9.1 Get Ready

CoSpace robot is equipped with PIC microcontroller. Therefore, MPLAB IDE, MPLABC30

Compiler, and PICkit2 are required for program compiling and downloading to real robot

controller.

9.1.1 MPLAB Integrated Development Environment (IDE) and MPLAB C30 Compiler

MPLAB Integrated Development Environment (IDE) is a comprehensive editor, project

manager and design desktop for application development of embedded designs using

Microchip PIC MCUs and dsPIC DSCs.

MPLAB IDE provides the ability to:

 Create and edit source code using the built-in editor.

 Assemble, compile and link source code.

 Debug the executable logic by watching program flow with the built-in simulator or

in real time with in-circuit emulators or in-circuit debuggers.

 Make timing measurements with the simulator or emulator.

 View variables in watch windows.

 Program firmware into devices with device programmers (for details, consult the

user‟s guide for the specific device programmer).

9.1.2 PICkit 2 MCU Programmer/Debuger

The PICkit 2 Development Programmer/Debugger is a low-cost development programmer. It

is capable of programming most of Microchips Flash microcontrollers and serial EEPROM

devices.

Fig. 9 – 1: PICkit 2

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 68

9.2 Installation

9.2.1 Install/Uninstall MPLAB IDE

To install MPLAB IDE on your system:

 If installing from a CD-ROM, place the disk into a CD Drive. Follow the on-screen menu

to install MPLAB IDE. If no on-screen menu appears, use Windows Explorer to find and

execute the CD-ROM menu, menu.exe.

 If downloading MPLAB IDE from the Microchip website (www.microchip.com), locate

the download (.zip) file, select the file and save it to the PC. Unzip the file and execute

the resulting setup.exe file to install.

Please note: Before the installation is completed, you will be asked to install “HI-

TECH”. Please select “NO” to end.

To uninstall MPLAB IDE:

 Select Start > Settings > Control Panel to open the Control Panel.

 Double click on Add/Remove Programs. Find MPLAB IDE on the list and click on it.

 Click Change/Remove to remove the program from your system.

9.2.2 Install/Uninstall MPLAB C30 Compiler

To install MPLAB C30 Compiler on your system:

 Download and install the following compiler from Microchip website

(www.microchip.com):

MPLAB C Compiler for PIC24 MCUS and dsPIC DSCs, academic version.

To uninstall MPLAB C30 Compiler:

 Select Start > Settings > Control Panel to open the Control Panel.

 Double click on Add/Remove Programs. Locate & select the “MPLAB C for dsPIC DSCs

and PIC24 MCUs”.

 Click “uninstall” button to uninstall it from your system.

**Both MPLAB IDE & MPLAB C30 Compiler must be installed on the system. Failure

to do so may cause failure/errors when compiling the project.

http://www.microchip.com/
http://www.microchip.com/

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 69

9.2.3 Install/Uninstall PICkit 2 (PICkit2need to be purchased)

To install the PICkit 2 on your system

 Insert the PICkit™ 2 Starter Kit CD ROM into the CD ROM drive. In a few moments,

the introductory screen should appear. Follow the directions on the screen for installing

the PICkit™ 2 Programming Software. If the introductory screen does not appear, browse

to the CD ROM directory and select the Setup.exe program.

To install the PICkit 2 on your system

 Select Start > Settings > Control Panel to open the Control Panel.

 Double click on Add/Remove Programs. Locate & select the “PICkit 2”,

 Click “uninstall” button to uninstall it from your system.

9.3 Running MPLAB IDE

To start MPLAB IDE, double click on the icon installed on the desktop after installation or

select Start > Programs > Microchip > MPLAB IDE v8.xx > MPLAB IDE. A screen will

appear displaying the MPLAB IDE logo followed by the MPLAB IDE desktop as shown in

Fig. 9 – 2.

Fig. 9 – 2 : MPLAB IDE Desktop

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 70

In order to create code that is executable by the target PIC Microcontroller unit, source files

need to be put into a project. The codes can then be built into executable code using selected

language tools (assemblers, compilers, linkers, etc.). In MPLAB IDE, the project manager

controls this process. All projects will have these basic steps:

1. Create Project

2. Select Device

3. Select Language Tools

4. Put Files in Project

5. Create Code

6. Build Project

7. Test Code with Simulator

9.3.1 Creating a Project

A project is the way the files are organized to be compiled and assembled. A project can be

created using the Project Wizard.

Step 1: Choosing Project > Project Wizard

Fig. 9 – 3: Project Wizard – Welcome

From the Welcome dialog, click on “Next” to advance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 71

Step 2: Selecting a device

Fig. 9 – 4: Project Wizard – Select Device

From drop down list, choose the “dsPIC30F6014A” and follow by clicking on “Next” to

proceed to setup a programming language.

Step 3: Setting up a programming language

Fig. 9 – 5: Project Wizard – Select language tools

 Select “Microchip C30 Toolsuite” in the Active Toolsuite list box. Then MPLAB C30 C

compiler (pic30-gcc.exe) v3.25) should be listed in the Toolsuite Contents box.

 Click each one in the list and locate them from the respective directory. If you are not

sure the exact location of the file, use search function in Windows to find.

 Use the browse button to set them to the proper files in the MPLAB IDE subfolders.

When you finish, click “Next”.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 72

Step 4: Naming a new project and put it into a folder

Fig. 9 – 6: Name Project

In this example, we will create a sample project will be called C:\Projects\MyProject. Type

this into the text box and then click “Next”. You will be prompted to create the directory

since it does not exist. Click OK.

Step 5: Adding files

Select the necessary files (motherboard.o, motherboard.h, main.c, and main.h) and click

“Add” to add them into the right panel.

Fig. 9 – 7: Adding files

Once it is done, clicking “Next” will show up a project summary dialog.

The project summary dialog summaries the selected device, the toolsuite, and the new project

file name.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 73

Fig. 9-8: Project summary

Click on “Finish” to generate the project and proceed to the “MPLAB WorkSpace”

Step 6: Viewing the Project

You can select View > Project in menu bar to view the project created.

Fig. 9-9: MPLAB WorkSpace

Files can be added and project can be saved by clicking the right mouse button in the project

window. In case of error, files can be manually removed from the project by selecting them;

clicking the right mouse button and selecting “Remove” from the menu.

9.3.2 Building a project

“Build a project” is to compile and link all the source files for an application.

Double click on the project created. In the MPLAB IDE menu, select Project > Build All.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 74

The output window shows the result of build process. There should be no errors or warning at

any step. However, if you do receive errors, go back to the previous sections and check the

project assembly steps. Errors will prevent the project from building. If you receive warnings,

you may ignore them for this project as they will not prevent the project from building.

Fig. 9-10: Output window

If you follow all the steps mentioned previously, you will get the message “BUILD

SUCCEEDED” as shown in Fig. 9-10 shown above on your output window when you select

“Build All”.

9.4 PICkit 2 Programming Interface

Start the PICkit™ 2 Programming Software by selecting Start > Programs > Microchip >

PICkit 2. The programming interface appears as shown in Fig. 9 – 11.

Fig. 9 – 11: PICkit 2 programming interface

9.4.1 Checking Communication

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 75

Plug PICkit 2 into both computer and Robot controller board. To test the communication.

select the Tools > check communication. The message “PICkit 2 found and connected” will

be displayed in the status bar.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 76

10. Working with Real Robots

Upon successful compilation and building of a project, “ai.c” – a C code file, is automatically

generated. The “ai.c” can be downloaded to the real robot. Of course, you can open the ai.c

file to study the programming logics if you wish do. You can also modify the C code for

further improvement. This feature allows students to program a robot controlled by a

microcontroller without writing a C code for any specific microcontroller.

10.1 Install ZigBee Modules

The real robot communicates with the virtual control/competition panels via ZigBee

communication protocol. Hence, it is necessary to make sure that the ZigBee modules are

connected to the real robot and the computer properly. If this is your first time using ZigBee,

you need to install “FT232R USB UART Driver” for the ZigBee module. Appendix B shows

the procedures of determining the correct com port connected with the ZigBee module.

10.2 Manual Control of Real Robots

10.2.1 Connecting the real robot

Step 1: Identify the com port ID used to connect the ZigBee module.

Step 2: Double click the robot icon in the control panel as shown in Fig. 10 – 1.

Fig. 10 – 1: Robot control configuration

Step 3: Assign the correct com port and robot ID in the pop-up window. The robot ID must

be unique. It has to be the same as the robot ID assigned to the real robot.

Virtual

Robot #1

Virtual

Robot #2

Real

Robot #1

Real

Robot #2

Dashboard #1

Dashboard #2

Game Controller #1

Game Controller #2

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 77

Fig. 10 – 2: Connect real robot window

10.2.2 Testing

Step 1: Double click on the blue cross button as indicated in Fig. 10 – 3. It will turn to green

tick once it is connected.

Fig. 10 – 3: Manual control of a real robot

Step 2: Move the dashboard to control the real robot. The real robot will move accordingly.

10.3 Fully Autonomous Robot

10.3.1 Connecingt the real robot

Repeat the steps stated in 10.2.1 to establish the communication via ZigBee.

10.3.2 Download the Program into the Real Robot

Step 1: Copy the folder RealAI from the CD or from the following website to your own PC.

Real

Robot

#1

Dashboard

#1

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 78

Step 2: Substitute the file “ai.c” in the RealAI folder with the new “ai.c” generated. The

same file name must be retained. As the lighting condition in real environment

varies and it is certainly different from the virtual world, the sensor readings will

change. Therefore, it is important to do a sensor calibration and make necessary

changes in the program before downloading it onto the real robot.

Step 3: Launch the MPLAB workspace and open a project called RE2009PIC.mcp.

Step 4: In order to receive the real-time feedback from all sensors during the navigation

controlled by a program, it is compulsory to change the robot ID in the “ai.c” file.

Step 5: Build the project. The message “Build Succeeded” will appear upon successful

building. The compiled file will have an extension “.HEX”.

Fig. 10 – 4: Build a project

Build All

////////////////////////////

//The ID : It must be three digital number. Value is

from "001" to "999". "000" is reserved.

char AI_MyID[3] = "002"; Assign the correct robotID

///////////////////////////////////

#define true 1

#define false 0

int AI_MotorType = 0;

int Duration = 0;

int SuperDuration = 0;

int bGameEnd = false;

int CurAction = 0;

int CurGame = 0;

int US_Front = 0;

int US_Back = 0;

int US_Left = 0;

int US_Right = 0;

int CS_Left = 0;

int CS_Right = 0;

int Compass = 0;

int Time = 0;

int Wheel_Left = 0;

int Wheel_Right = 0;

int LED_1 = 0;

int AI_SensorNum = 7;

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 79

Step 6: Power off the robot and Connect the PKCKIT2 to controller board.

Fig. 10 – 5: PICKit 2 connection

Step 7: Launch the PICkit 2 programmer by clicking the “PICkit 2.exe”.

Step 8: Choose “Tool – Check Communication” from the menu bar. The message “PICkit 2

found and connected” will be displayed in the status bar as shown in Fig. 10 – 6.

Fig. 10 – 6: PICkit 2 Communication

PICkit 2
USB

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 80

Step 9: Click on “ ” button to erase the memory. This is to erase the program

memory, data EEPROM memory, ID and configuration bits.

Step 10: Import the correct “.HEX” file built in step 5 by choosing “File – Import HEX file”

function. The message “Hex file successfully imported” will be displayed in the

status bar.

Fig. 10 – 7: Import “.HEX” file

Step 11: Download the program to real robot by clicking the “Write” button. The message

“Programming Successful” will be displayed upon successful downloading.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 81

Fig. 10 – 8: Downloading program to Real Robot

Step 12: Remove the PICKit 2 and test the program.

10.3.3 Testing

Step 1: Power on the robot.

Step 2: Select the real robot from the “Robot Section” segment in the Robo Control Panel.

The real-time sensor readings will be displayed.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 82

Step 3: You can also control the robot in the competition panel.

Fig. 10 – 9: Real-time control of real robot

The sensor reading are displayed on the LCD panel attached on the controller board. The two

rows display segments shows eight readings.

 Left colour sensor Right colour sensor Compass sensor Front ultrasonic

sensor

Row 1 0 0 0 0

 Front ultrasonic

sensor

Back ultrasonic

sensor

Left ultrasonic

sensor

Right ultrasonic

sensor

Row 2 10 32 9 526

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 83

Appendix A. User Guide of Virtual Simulation Environment

A1. Starting Visual Simulation Environment

The Visual Simulation Environment (VSE) provides simulates physical objects and their

interactions including collisions, friction and gravity. It requires a reasonably powerful

graphics card. Please check the requirements below and ensure that your computer satisfies

them.

For best performance hide or close all pop-up windows that may appear on top of the

simulation window.

Microsoft Visual Simulation Environment Graphics Card Requirements

 Minimal Requirements

Graphics card supporting DirectX 9.0c (or later) and Shader Model 2.0+ with 64MB

of video memory or greater. Examples include, ATI Radeon 9800+ or NVIDIA FX

series or later.

 Recommended Requirements

Graphics card supporting DirectX 9.0c (or later) and Shader Model 3.0+ with 128MB

of video memory or greater. Examples include, ATI Radeon x1300 or NVIDIA 6

series or later.

 Minimal Requirements to use GPU Accelerated Physics

NVIDIA GeForce 8, GeForce 9, or GTX 200 series GPU or later, 256MB of video

memory or more required.

Starting Simulations

To start VSE, select one of the

entries in the VSE folder under

Microsoft Robotics Developer

Studio in the Start menu. (All of

the different simulation

environments are listed in there as

well as samples for each of the

simulated robots.) This will display

the VSE window and load the

relevant simulation. The

Simulation Tutorials provide

examples of simulated environments.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 84

When the simulator is running, you can move the camera viewpoint by dragging the mouse

pointer across the screen. It does not change the camera position but it changes the point that

the camera is looking at.

To move the camera, you can use the keyboard as follows

Key Action

w or Up Arrow moves forward

s or Down Arrow moves backward

a or Left Arrow moves left

d or Right Arrow moves right

q moves up

e moves down

If you hold down the Shift key while you hold one of the keys listed above, the camera

moves much faster. You can also use the mouse at the same time as you hold down a key.

This allows you to "fly" around by changing direction with the mouse and moving with the

keyboard.

A2. Visual Simulation Environment Menus

The following commands are provided on the Microsoft Visual Simulation Environment

(VSE) window.

The File Menu

 Open Scene - Loads a scene.

 Save Scene As - Saves a scene. When you save a scene, the simulator saves the

simulator state along with the state for every entity in the scene. It also saves a

manifest which can be used to re-initialize the scene and any services associated with

the entities.

 Save Material Changes - Saves changes made to materials in Edit mode.

 Open Manifest - Load a service manifest.

 Create Embedded Resources - Creates a single saved file containing all effects,

textures, meshes, etc.

 Capture Image As - Save the current view of the simulation to a file.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 85

 Exit - Exits the simulation and shutdown its Decentralized Software Services (DSS)

node. The Simulator will remember the window size and position for the next time it

is started.

The Entity Menu

The Entity Menu is only visible when you select Edit from the Mode menu.

 Undo - Undoes the previous change.

 Redo - Repeats the last change that was undone.

 Cut - Removes the currently checked entities.

 Copy - Copies the currently checked entities.

 Paste - Adds the last cut or copied entities back into the scene.

 Paste As Child - Pastes the last cut or copied entities as a child of the currently

checked entity.

 New - Displays a dialog that enables you to create a new entity.

 Load Entities - Loads entities from a file.

 Save Entities As - Saves the currently checked entities to a file.

The View Menu

 Playback bar - Displays the playback bar for recording and playing back recorded

sequences.

 Status bar - Displays or hides the status bar. The status bar shows you the current

frame rate in frames-per-second, the simulation time, as well as the current camera

position and look at point.

 Profiler - Brings up the Profiler UI dialog.

 Look Along - Sets the camera view to a specific viewing axis. Useful for accurately

re-orienting the camera after you have moved it around a lot.

The Render Menu

The first four entries in this menu enables you to change how entities in the simulation are

rendered. You can toggle between these modes using the F2 key.

 Visual - Renders a full 3D view. Meshes associated with each entity in the scene are

rendered with realistic lighting and shading.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 86

 Wireframe - Renders the scene as a wireframe view. This mode enables you to get a

rough idea of how many polygons make up each mesh and where the polygon edges

are.

 Physics - Renders the scene showing physics outlines. This mode enables you to see

how each entity is modeled in the physics engine. The scene is not rendered

completely if the physics engine is disabled.

 Combined - Renders the full 3D view with physics. This mode makes it easy for you

to determine how well the physics shapes match the visual mesh for each entity. The

physics part of this scene is not rendered completely if the physics engine is disabled.

 No Rendering - This option turns off the rendering to economize on CPU time. The

simulator continues to run.

 Graphics Settings - Enables you to change settings that control how the scene is

rendered.

 Physics View Settings - Allows you to select the items that are shown in Physics

View.

The Camera Menu

The Camera menu allows you to easily switch between cameras if you have more than

one in the scene. You can press F8 to quickly switch between cameras.

 Main Camera - Sets the view from the simulated camera provided by default.

 Other cameras - Sets the view from other cameras defined in the current scene. Note

that there are also options to display cameras in separate windows. This allows you to

have, for example, a view from a camera mounted on a robot at the same time as the

main view so that you can see not only what the robot sees but also what it is doing.

This is very useful for diagnosing computer vision programs.

The Physics Menu

 Enabled - Enables, or disables, physics forces in the simulation. You can also use the

F3 key to toggle physics on/off.

 Settings - Enables you to control whether default camera is treated as a rigid body and

the gravity setting. If the camera option is set, you can use the camera to bump objects

in the scene. You can also adjust the simulation speed.

The Mode Menu

 The settings on the Mode menu enable you to change how you can interact with

entities in the scene. Pressing F5 toggles between the options.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 87

 Run - The normal operation mode for running your simulation.

 Edit - The mode that enables you to edit state of entities in the simulation. This mode

automatically disables Physics.

The Help Menu

 Contents - Shows web pages that provide more information about how to use the

various features and controls of the VSE.

 About - Shows a dialog that displays information about the version of the VSE and

also information about the current graphics hardware.

A3. Visual Simulation Environment Keyboard and Mouse

The Visual Simulation Environment (VSE) simulation window provides keyboard and mouse

operations that can be used to control the view and elements in the simulation environment.

Using the Keyboard

The following keys control the movement and orientation of the camera in the simulation

environment when the Simulation pane has input focus. When the Simulation pane has input

focus, it is surrounded by a blue border. Click inside the pane or press the Tab key until the

blue border appears.

Key Action

w or Up Arrow Move forward

s or Down Arrow Move backward

a or Left Arrow Move to the left (slide sideways)

d or Right Arrow Move to the right (slide sideways)

q or Page Up Move up

e or Page Down Move down

Home Reset to initial position

Note that you can also use the numeric keypad, as long as it is not in numeric mode. In this

case the numeric keys 2, 4, 6 and 8 act as arrow keys.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 88

If you press the Shift key with these keys, the movement keys move 20 times faster.

Key Action

F2 Change the render mode

F3 Toggle the physics engine enable

F5 Toggle between Edit Mode and Run Mode

F8 Change the active camera

When the simulator is in Edit mode the navigation keys work the same but some additional

options are available when the left Ctrl key is held down. When the left Ctrl key is pressed,

the currently selected entity will be highlighted if it has a valid bounding sphere associated

with it. While the Ctrl key is pressed, the following additional keys are available:

Key Action

Up Arrow
View the selected object from above (a positive Y distance from the

object)

Shift+Up Arrow
View the selected object from below (a negative Y distance from the

object)

Left Arrow View the selected object from a positive X distance from the object

Shift+Left Arrow View the selected object from a negative X distance from the object

Right Arrow View the selected object from a positive Z distance from the object

Shift+Right Arrow View the selected object from a negative Z distance from the object

Using the Mouse

In most cases, dragging the mouse cursor through the Graphics pane by holding down the

left button and moving the mouse causes the camera viewpoint to change. In general,

keyboard commands affect the position of the camera while mouse movement affects the

orientation of the camera.

When the simulator is in Edit mode and the left control key is held down, the mouse behavior

can be different. If an entity is selected and the Position property is selected in the Property

window, the mouse movement affects the position of the entity. If any component of the

position vector is selected, the entity is constrained to move only along that axis. Similarly, if

the rotation property is selected in the Property window, the mouse movement affects the

orientation of the entity. If any component of the rotation vector is selected, the entity is

constrained to rotate only along that axis.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 89

Using an Xbox Controller

If you have an Xbox Controller connected to your PC, you can use it to control the camera as

well. The two thumbsticks on the controller can be used to move the camera around. Note

that you must press and hold the Left Shoulder button (just above the left thumbstick) while

you are moving the camera. This is not immediately obvious.

The movement of the camera is controlled using the left thumbstick and the right thumbstick

is used to pan and tilt the camera as follows (with Left Shoulder held down):

Thumbstick Direction Action

Left Up Move forward

Left Down Move backward

Left Left Move to the left (slide sideways)

Left Right Move to the right (slide sideways)

Right Up Rotate (tilt) up

Right Down Rotate (tilt) down

Right Left Rotate (pan) left

Right Right Rotate (pan) right

IMPORTANT NOTE: If you are using another application that uses the Xbox Controller,

such as the Simple Dashboard, you must make sure that the Simulation window has the input

focus in order to use the controller to move the camera. Click inside the simulation window

with the mouse to give it focus. A blue border appears around the simulation area when it has

focus. If another application has the focus, then you cannot control the simulation camera

using the Xbox Controller.

The simulation coordinate system

The simulator uses a right-handed coordinate system. The +Y axis represents elevation above

the ground plane. The X and Z axes are parallel to the ground plane. When facing in the +X

direction, the +Z axis is to the right. Some modeling tools use a different coordinate system

and it is important to export the models rotated in such a way that they appear correct in the

simulation environment.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 90

Appendix B. ZigBee Communication Module Setup

Step 1: Launch the Control Panel (Start Settings Control panel)

Fig. B – 1: Launch the Control Panel

Step 2: Double click on the icon. The system properties window appears as shown in

Fig. B – 2.

Fig. B – 2: System properties

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 91

Step 3: Select the Hardware Tab in the system property window.

Fig. B – 3: System Properties

Step 4: Double click on the Device Manager button to explore the device manager.

Fig. B – 4: Device Manager

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 92

Step 5: Double click on the Ports (COM & LPT) to identify the port which the Zigbee

module is connected.

Fig. B – 5: Device Manager

Step 6: Check the com port assigned to the USB Serial Port. The COM Port 8 is used in this

example.

Note: The com port assigned for ZigBee module is automatically generated by

computer. It is not the same for different computers. Users have to identify the com

port connected with Zigbee module.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 93

Appendix C. RE – VSS – CSR Directory Structure

The files, such as entity property, wheeled robot programming, humanoid robot gait tuning

data, performance file etc. are automatically organized by default, if you do not change the

file location manually. All files are stored in the Microsoft Robotics Developer Studio 2008

R3 directory.

To access it,

1. Click on Start All Programs Microsoft Robotics Dev Studio 2008 R3

Robotics Developer Studio,

2. Expend the Microsoft Robotics Developer Studio 2008 R3 directory; you will be

able to see the CoSpace file directory where the user guide, icon, all files

associated with the virtual environment, virtual robot, and manifest files, etc. for

CoSpace Dance are located as shown in Fig. C – 1.

Fig. C – 1: The structure of CoSpace Directory

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 94

The CoSpace directory contains four subdirectories: Dance, DIYBiped, DIYWheel and

Entity.

Directory Subdirectory Files stored

Dance Media Not applicable for RE – VSS - CSR

Property Not applicable for RE – VSS - CSR

DIYBiped Design Not applicable for RE – VSS - CSR

Gait Not applicable for RE – VSS - CSR

DIYWheel Design Robot design interface (rdi) files for wheeled robots

Project AI strategies (programing)

Each project will have its own folder. There are 4 files in

each project folder. There are

ai.cs – C# source code generated based on the graphical

programing developed in the AI development panel. ai.cs is

for virtual wheeled robot.

ai.c – C source code generated based on the graphical

programing developed in the AI development panel. ai.c is

for real wheeled robot.

MyAI.smp – Ai strategy file. It can be loaded for editing in

AI development panel.

MyAI.DLL – the dynamic link library file of the AI strategy.

It can be loaded to control a virtual/real wheeled robot.

RealAI Real robot AI strategy files.

VirtualAI Virtual robot AI strategy files.

Entity Not applicable for RE – VSS - CSR

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 95

Appendix D. How to Control the Real and Virtual Robots Using

Your Own C Code

The RE – VSS – CSR provides a C programming interface which enables professional

programmers to test the AI strategy using the CoSpace platform. Following are the steps of

creating your own AI strategy for both virtual and real robots.

AI strategy for virtual robot

If you like to write your own AI strategy in Visual C# or modify the ai.cs generated from

graphical programming, you need to

1. Install Visual C# compiler.

2. Copy ai.cs from the project directory to ..\VirtualAI\VirtualAI\ directory and replace

the existing ai.cs file.

3. Launch the visual C# project by double clicking VirtualAI.csproj. The ai.cs will be

the part of the project.

4. Edit the necessary C# code.

5. Build solution to generate the DLL file. The “virtualAI.dll” is created in

\VirtualAI\VirtualAI\bin\Release folder.

6. The “virtual.dll” file can be loaded.

AI strategy for real robot

If you like to write your own AI strategy in C or modify the ai.c generated from graphical

programming (only Game0), you need to

1. Install MPLAB and PICKit 2 downloader. Please refer to session 9 and 10.

2. Copy ai.c from the project directory to realAI directory and replace the existing ai.c

file.

3. Launch the real robot project by double clicking RE2009PIC.mcp. The ai.c will be the

part of the project.

4. Edit the necessary C code.

5. Build ALL to generate/update the RE2009PIC.hex. The “RE2009PIC.hex” is the AI

strategy in the machine language.

6. Download the “RE2009PIC.hex” to the real robot (Session 10 shows the details).

7. Observe the real robot performance.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 96

Appendix E. Hardware Connection for CoSpace Robot

The RE – VSS – CSR platform provides the same graphical programming interface for the

virtual robots and the real robots. It enables the communication between the real robots and

the CoSpace server. The synchronization of the real robots and the virtual

environment/virtual robots can be realized using the patform. Fig. E – 1 shows the connection

and communication of the CoSpace system.

Fig E – 1: CoSpace System

In order to program the real robot using the same AI development panel as for the virtual

robot, all sensors, motors and other hardware components must be connected to the controller

board (RE – CS01 or RE – CS02) according to the connection stated in table E – 1.

Table E – 1: The Connection of all Components of a CoSpace Rescue Robot

Component

PIN

Unit
RE-CS01

RE-CS02

(LEGO)

Wheel
Left Motor 1 [DUO] Motor 1 [LEGO]

Speed scale [-5, +5]
Right Motor 2 [DUO] Motor 3 [LEGO]

Ultrasonic

Sensor

Front CCP1 CCP1

Distance in centimeter.
Back CCP2 CCP2

Left CCP3 CCP3

Right CCP4 CCP4

Color Sensor
Left ADC2 ADC2

Brightness value
Right ADC3 ADC3

Compass Compass DI/01 I/01 Degree

CoSpace Server

ZigBee

Com
RE – CS

board

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 97

In the AI development panel, a prompt message will show you again the correct pin

connection when the mouse hover over a ComboBox, Slider or TextBox as shown in Fig. E –

2.

Fig. E – 2: The connection of each component.

Please refer to the RE – CS01 and RE – CS02 User Guide for the educational controller

board.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 98

Appendix F. Communication Protocol

One device is able to communicate with many devices via ZigBee communication. Hence,

the CoSpace server equipped with ZigBee transceiver is able to communicate with many real

robots with ZigBee module installed. In order to establish one-to-one communication, each

robot has to assign a unique ID. The ID is made up of three integer numbers. It is defined at

the end of main.h file of Real project. ZigBee utilizes Serial Port for communication. Fig. F

– 1 shows the setting of serial port properties.

Fig.F – 1: Serial Port Properties

All packets follow the communication protocol in the following format:

 “<!” (start code) , three integer number (real robot ID),

a char (command), data, “!>” (end code)

The communication protocol is listed in Table F – 1.

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 99

Table F – 1: The Communication Protocol for CoSpace Platform

Sender Command Function Packet Remark

Robot

„P‟
Feedback

Play State
<!006Pc!>

c is a char denoted Play State.

0: Normal Mode; 1: AI Mode.

„G‟
Feedback

Game ID
<!006Gc!>

c is a char denoted Game ID.

Its value is [„0‟,‟8‟];

„Q‟
Set Play

State
<!006Qc!>

c is a char denoted Play State.

0: Normal Mode; 1: AI Mode.

The Play state in Control center will

set to this value.

„I‟
Feedback

MyID
<!006I!>

„S‟

Feedback

Sensor

Value

<!006Ss1,

s2,s3,s4,

s5,s6,s7,

sum !>

S1 to s7 are sensor‟s value of front,

back, left and right ultrasonic sensor,

left and right color sensor and

compass sensor. Sum is the sum of all

sensors value. All this value is in

digital number, for example, if sensor

value 123, it sents three chars, i.e. „1‟,

„2‟ and „3‟;

CoSpace

Server

„V‟
Set Motor

Speed

<!006Vv1v

2v3v4!>

V1 to v4 are four chars denoted speed

of four wheels. Its value is [„0‟-5 ,

„0‟+5];

„G‟
Set Game

ID
<!006Gc!>

c is a char denoted Game ID.

Its value is [„0‟,‟8‟];

„L‟ Set LED <!006Lc!>
c is a char.

0:OFF; 1: TOGGLE; 2:ON

„H‟
Request

Game ID
<!006H!>

„P‟
Set Play

State
<!006Pc!>

c is a char denoted Play State.

0: Normal Mode; 1: AI Mode.

„Q‟
Request

Play State
<!006Q!>

„T‟
Request

Play time
<!006T!>

„S‟

Request

Sensor

Value

<!006S!>

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 100

Appendix G. Action To Be Taken After the Treasures Found

When a robot detects a treasure, it must stop and flash the LEDs for 2 seconds. In fact, if the

robot does not move away after 2 seconds, it will still sense the treasure. Hence, it will not

move away. Therefore, in order to let the robot move forward after the treasure is detected,

the following actions (or similar actions) are necessary.

1. If the “default” type condition is used, you need to write the following action in the

statement.

Fig. G – 1: The action in the default statement

2. If the “super” type condition is used, you need to write the following action in the

statement.

Fig. G – 2: The action in the super statement

RoboErectus Virtual Simulator Software RE – VSS – CSR User Guide 101

Contact Us

Advanced Robotics and Intelligent Control Centre (ARICC)

Singapore Polytechnic,

500 Dover Road,

Singapore 139651

E-mail: CoSpace@robocupsingapore.org

http://www.robocupsingapore.org

