
(12) United States Patent

US006530329B2

(10) Patent N0.: US 6,530,329 B2
Katzer (45) Date of Patent: *Mar. 11, 2003

(54) MODEL TRAIN CONTROL SYSTEM 5,475,818 A * 12/1995 Molyneaux et al. 701/20
5,493,642 A 2/1996 Dunsmuir et al.

(75) Inventor: Matthew A. Katzer, 1416 NW. 5,638,522 A 6/1997 Dunsmuif 91 ‘IL
Ben?eld Dr” Portland, OR (Us) 97229 5,681,015 A * 10/1997 Kull 246/167 R

5,696,689 A 12/1997 Okumura et al.
' . - 5,787,371 A * 7/1998 Balukin et al. 246/187 A

(73) Assignee. hézgtthew A. Katzer, Hrllsboro, OR 5,828,979 A 10/1998 Ploivka et a1‘
() 5,896,017 A 4/1999 Severson et al.

. 5 940005 A 8 1999 S I l.

(>1) Notice: SubJect' to any disclaimer, the term of IhlS 5:952j797 A 92999 R232? 6 a
Pawnt 1S mended 0r adlllsted under 35 6,065,406 A * 5/2000 KatZer 105/14
U-S-C- 154(b) by0 days- 6,267,061 B1 7/2001 KatZer

6,270,040 B1 8/2001 KaIZer
Th‘ I I ' b' I I I ' l d' -
daring? en 1s su Jec 0 a ermma 1s OTHER PUBLICATIONS

Chapell, David, Understanding ActiveX and OLE, 1996,
21 A 1. No.: 10/124,878 Microsoft Press, Redmond. PP

(22) Filed: Apr. 17, 2002 * cited by examiner

65 Prior Publication Data Primar Examiner—William A. Cuchlinski, Jr. y
Assistant Examiner—Olga Hernandez

Us 2002/0170458 A1 NOV' 21’ 2002 (74) Attorney, Agent, or Firm—Chernoff, Vilhauer,

Related US. Application Data Mcclung & Stenzel’ LLP

57 ABSTRACT
(63) Continuation of application No. 09/858,222, ?led on Apr. ()

17, 2002, HOW Pat- N0~ 6,460,467 A system Which operates a digitally controlled model rail

(51) Int. Cl.7 A63H 19/00 road trarlsmming a ?rst COmmaPd frPm a ?rst Client program
(52) U S C] 105/1 5, 246/167 R_ 246/197 to a resident external controllmg mterface through a ?rst

' l l " l ’ ’ 246/62’ communications transport. A second command is transmit

(58) Field of Search 105/1 5 1 4 29 2_ ted from a second client program to the resident external
"""""""""""" " ' ’ _' ’ ' ’ controlling interface through a second communications

246/187 A’ 167 R’ 197’ 62’ 701/20 transport. The ?rst command and the second command are

(56) References Cited received by the resident external controlling interface Which
queues the ?rst and second commands. The resident external

U.S. PATENT DOCUMENTS controlling interface sends third and fourth commands rep
resentative of the ?rst and second commands, respectively,

2 321:5 et al to a digital command station for execution on the digitally
4’307’302 A 12/1981 Russe?I ' controlled model railroad.
4,853,883 A * 8/1989 Nickles et al. 348/121

5,072,900 A 12/1991 Malon 27 Claims, 3 Drawing Sheets

14

CLIENT _ COMMUNICATIONS 10

PROGRAM /

[16
f 100 f 110 [114

QgLIIIAiHNRDONOUS SYNCHRONOUS SET/?g?“
PROCESSOR COMMAND CONTROL

, PROCESSOR LOGIC

LOCAL COMMAND EXTERNAL
2?;222? QUEUE DEVICES

\102 \104 116 J 10

EXTERNAL
ASYNCHRONOUS gg?g?gg'z“ DEVICE
RESPONSE STORAGE CONTROL
PROCESSOR \ LOGIC

10s “2 \ 114

US 6,530,329 B2
1

MODEL TRAIN CONTROL SYSTEM

This application is a continuation of US. patent appli
cation Ser. No. 09/858,222 ?led on Apr. 17, 2002 US. Pat.
No. 6,460,467.

BACKGROUND OF THE INVENTION

The present invention relates to a system for controlling
a model railroad.

Model railroads have traditionally been constructed With
of a set of interconnected sections of train track, electric
sWitches betWeen different sections of the train track, and
other electrically operated devices, such as train engines and
draW bridges. Train engines receive their poWer to travel on
the train track by electricity provided by a controller through
the track itself. The speed and direction of the train engine
is controlled by the level and polarity, respectively, of the
electrical poWer supplied to the train track. The operator
manually pushes buttons or pulls levers to cause the
sWitches or other electrically operated devices to function, as
desired. Such model railroad sets are suitable for a single
operator, but unfortunately they lack the capability of
adequately controlling multiple trains independently. In
addition, such model railroad sets are not suitable for being
controlled by multiple operators, especially if the operators
are located at different locations distant from the model
railroad, such as different cities.

Adigital command control (DDC) system has been devel
oped to provide additional controllability of individual train
engines and other electrical devices. Each device the opera
tor desires to control, such as a train engine, includes an
individually addressable digital decoder. Adigital command
station (DCS) is electrically connected to the train track to
provide a command in the form of a set of encoded digital
bits to a particular device that includes a digital decoder. The
digital command station is typically controlled by a personal
computer. A suitable standard for the digital command
control system is the NMRA DCC Standards, issued March
1997, and is incorporated herein by reference. While pro
viding the ability to individually control different devices of
the railroad set, the DCC system still fails to provide the
capability for multiple operators to control the railroad
devices, especially if the operators are remotely located from
the railroad set and each other.

DigiToys Systems of LaWrenceville, Ga. has developed a
softWare program for controlling a model railroad set from
a remote location. The softWare includes an interface Which
alloWs the operator to select desired changes to devices of
the railroad set that include a digital decoder, such as
increasing the speed of a train or sWitching a sWitch. The
softWare issues a command locally or through a netWork,
such as the internet, to a digital command station at the
railroad set Which executes the command. The protocol used
by the softWare is based on Cobra from Open Management
Group Where the softWare issues a command to a commu
nication interface and aWaits con?rmation that the command
Was executed by the digital command station. When the
softWare receives con?rmation that the command executed,
the softWare program sends the next command through the
communication interface to the digital command station. In
other Words, the technique used by the softWare to control
the model railroad is analogous to an inexpensive printer
Where commands are sequentially issued to the printer after
the previous command has been executed. Unfortunately, it
has been observed that the response of the model railroad to
the operator appears sloW, especially over a distributed

10

15

20

25

30

35

40

45

55

60

65

2
netWork such as the internet. One technique to decrease the
response time is to use high-speed netWork connections but
unfortunately such connections are expensive.
What is desired, therefore, is a system for controlling a

model railroad that effectively provides a high-speed con
nection Without the additional expense associated thereWith.

The foregoing and other objectives, features, and advan
tages of the invention Will be more readily understood upon
consideration of the folloWing detailed description of the
invention, taken in conjunction With the accompanying
draWings.

SUMMARY OF THE PRESENT INVENTION

The present invention overcomes the aforementioned
draWbacks of the prior art, in a ?rst aspect, by providing a
system for operating a digitally controlled model railroad,
that includes transmitting a ?rst command from a ?rst client
program to a resident external controlling interface through
a ?rst communications transport. A second command is
transmitted from a second client program to the resident
external controlling interface through a second communica
tions transport. The ?rst command and the second command
are received by the resident external controlling interface
Which queues the ?rst and second commands. The resident
external controlling interface sends third and fourth com
mands representative of the ?rst and second commands,
respectively, to a digital command station for execution on
the digitally controller model railroad.

Incorporating a communications transport betWeen the
multiple client program and the resident external controlling
interface permits multiple operators of the model railroad at
locations distant from the physical model railroad and each
other. In the environment of a model railroad club Where the
members Want to simultaneously control devices of the same
model railroad layout, Which preferably includes multiple
trains operating thereon, the operators each provide com
mands to the resistant external controlling interface, and
hence the model railroad In addition by queuing by com
mands at a single resident external controlling interface
permits controlled execution of the commands by the digi
tally controlled model railroad, Would may otherWise con
?ict With one another.

In another aspect of the present invention the ?rst com
mand is selectively processed and sent to one of a plurality
of digital command stations for execution on the digitally
controlled model railroad based upon information contained
therein. Preferably, the second command is also selectively
processed and sent to one of the plurality of digital command
stations for execution on the digitally controlled model
railroad based upon information contained therein. The
resident external controlling interface also preferably
includes a command queue to maintain the order of the
commands.
The command queue also alloWs the sharing of multiple

devices, multiple clients to communicate With the same
device (locally or remote) in a controlled manner, and
multiple clients to communicate With different devices. In
other Words, the command queue permits the proper execu
tion in the cases of: (1) one client to many devices, (2) many
clients to one device, and (3) many clients to many devices.

In yet another aspect of the present invention the ?rst
command is transmitted from a ?rst client program to a ?rst
processor through a ?rst communications transport. The ?rst
command is received at the ?rst processor. The ?rst proces
sor provides an acknowledgement to the ?rst client program
through the ?rst communications transport indicating that

US 6,530,329 B2
3

the ?rst command has properly executed prior to execution
of commands related to the ?rst command by the digitally
controlled model railroad. The communications transport is
preferably a COM or DCOM interface.

The model railroad application involves the use of
extremely slow real-time interfaces between the digital
command stations and the devices of the model railroad. In
order to increase the apparent speed of execution to the
client, other than using high-speed communication
interfaces, the resident external controller interface receives
the command and provides an acknowledgement to the
client program in a timely manner before the execution of
the command by the digital command stations. Accordingly,
the execution of commands provided by the resident exter
nal controlling interface to the digital command stations
occur in a synchronous manner, such as a ?rst-in-?rst-out
manner. The COM and DCOM communications transport
between the client program and the resident external con
trolling interface is operated in an asynchronous manner,
namely providing an acknowledgement thereby releasing
the communications transport to accept further communica
tions prior to the actual execution of the command. The
combination of the synchronous and the asynchronous data
communication for the commands provides the bene?t that
the operator considers the commands to occur nearly instan
taneously while permitting the resident external controlling
interface to verify that the command is proper and cause the
commands to execute in a controlled manner by the digital
command stations, all without additional high-speed com
munication networks. Moreover, for traditional distributed
software execution there is no motivation to provide an
acknowledgment prior to the execution of the command
because the command executes quickly and most commands
are sequential in nature. In other words, the execution of the
next command is dependent upon proper execution of the
prior command so there would be no motivation to provide
an acknowledgment prior to its actual execution.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary embodiment of
a model train control system.

FIG. 2 is a more detailed block diagram of the model train
control system of FIG. 1 including external device control
logic.

FIG. 3 is a block diagram of the external device control
logic of FIG. 2.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIG. 1, a model train control system 10
includes a communications transport 12 interconnecting a
client program 14 and a resident external controlling inter
face 16. The client program 14 executes on the model
railroad operator’s computer and may include any suitable
system to permit the operator to provide desired commands
to the resident external controlling interface 16. For
example, the client program 14 may include a graphical
interface representative of the model railroad layout where
the operator issues commands to the model railroad by
making changes to the graphical interface. The client pro
gram 14 also de?nes a set of Application Programming
Interfaces (API’s), described in detail later, which the opera
tor accesses using the graphical interface or other programs
such as Visual Basic, C++, Java, or browser based applica
tions. There may be multiple client programs interconnected

15

25

35

45

55

65

4
with the resident external controlling interface 16 so that
multiple remote operators may simultaneously provide con
trol commands to the model railroad.
The communications transport 12 provides an interface

between the client program 14 and the resident external
controlling interface 16. The communications transport 12
may be any suitable communications medium for the trans
mission of data, such as the internet, local area network,
satellite links, or multiple processes operating on a single
computer. The preferred interface to the communications
transport 12 is a COM or DCOM interface, as developed for
the Windows operating system available from Microsoft
Corporation. The communications transport 12 also deter
mines if the resident external controlling interface 16 is
system resident or remotely located on an external system.
The communications transport 12 may also use private or
public communications protocol as a medium for commu
nications. The client program 14 provides commands and
the resident external controlling interface 16 responds to the
communications transport 12 to exchange information. A
description of COM (common object model) and DCOM
(distributed common object model) is provided by Chappel
in a book entitled Understanding ActiveX and OLE,
Microsoft Press, and is incorporated by reference herein.

Incorporating a communications transport 12 between the
client program(s) 14 and the resident external controlling
interface 16 permits multiple operators of the model railroad
at locations distant from the physical model railroad and
each other. In the environment of a model railroad club
where the members want to simultaneously control devices
of the same model railroad layout, which preferably includes
multiple trains operating thereon, the operators each provide
commands to the resistant external controlling interface, and
hence the model railroad.
The manner in which commands are executed for the

model railroad under COM and DCOM may be as follows.
The client program 14 makes requests in a synchronous
manner using COM/DCOM to the resident external interface
controller 16. The synchronous manner of the request is the
technique used by COM and DCOM to execute commands.
The communications transport 12 packages the command
for the transport mechanism to the resident external con
trolling interface 16. The resident external controlling inter
face 16 then passes the command to the digital command
stations 18 which in turn executes the command. After the
digital command station 18 executes the command an
acknowledgement is passed back to the resident external
controlling interface 16 which in turn passes an acknowl
edgement to the client program 14. Upon receipt of the
acknowledgement by the client program 14, the communi
cations transport 12 is again available to accept another
command. The train control system 10, without more, per
mits execution of commands by the digital command sta
tions 18 from multiple operators, but like the DigiToys
Systems’ software the execution of commands is slow.
The present inventor came to the realiZation that unlike

traditional distributed systems where the commands passed
through a communications transport are executed nearly
instantaneously by the server and then an acknowledgement
is returned to the client, the model railroad application
involves the use of extremely slow real-time interfaces
between the digital command stations and the devices of the
model railroad. The present inventor came to the further
realiZation that in order to increase the apparent speed of
execution to the client, other than using high-speed com
munication interfaces, the resident external controller inter
face 16 should receive the command and provide an

US 6,530,329 B2
5

acknowledgement to the client program 12 in a timely
manner before the execution of the command by the digital
command stations 18. Accordingly, the execution of com
mands provided by the resident external controlling inter
face 16 to the digital command stations 18 occur in a
synchronous manner, such as a ?rst-in-?rst-out manner. The
COM and DCOM communications transport 12 between the
client program 14 and the resident external controlling
interface 16 is operated in an asynchronous manner, namely
providing an acknowledgement thereby releasing the com
munications transport 12 to accept further communications
prior to the actual execution of the command. The combi
nation of the synchronous and the asynchronous data com
munication for the commands provides the bene?t that the
operator considers the commands to occur nearly instanta
neously while permitting the resident external controlling
interface 16 to verify that the command is proper and cause
the commands to execute in a controlled manner by the
digital command stations 18, all without additional high
speed communication networks. Moreover, for traditional
distributed software execution there is no motivation to
provide an acknowledgment prior to the execution of the
command because the command executes quickly and most
commands are sequential in nature. In other words, the
execution of the next command is dependent upon proper
execution of the prior command so there would be no
motivation to provide an acknowledgment prior to its actual
execution. It is to be understood that other devices, such as
digital devices, may be controlled in a manner as described
for model railroads.

Referring to FIG. 2, the client program 14 sends a
command over the communications transport 12 that is
received by an asynchronous command processor 100. The
asynchronous command processor 100 queries a local data
base storage 102 to determine if it is necessary to package
a command to be transmitted to a command queue 104. The
local database storage 102 primarily contains the state of the
devices of the model railroad, such as for example, the speed
of a train, the direction of a train, whether a draw bridge is
up or down, whether a light is turned on or off, and the
con?guration of the model railroad layout. If the command
received by the asynchronous command processor 100 is a
query of the state of a device, then the asynchronous
command processor 100 retrieves such information from the
local database storage 102 and provides the information to
an asynchronous response processor 106. The asynchronous
response processor 106 then provides a response to the client
program 14 indicating the state of the device and releases the
communications transport 12 for the next command.

The asynchronous command processor 100 also veri?es,
using the con?guration information in the local database
storage 102, that the command received is a potentially valid
operation. If the command is invalid, the asynchronous
command processor 100 provides such information to the
asynchronous response processor 106, which in turn returns
an error indication to the client program 14.

The asynchronous command processor 100 may deter
mine that the necessary information is not contained in the
local database storage 102 to provide a response to the client
program 14 of the device state or that the command is a valid
action. Actions may include, for example, an increase in the
train’s speed, or turning on/off of a device. In either case, the
valid unknown state or action command is packaged and
forwarded to the command queue 104. The packaging of the
command may also include additional information from the
local database storage 102 to complete the client program 14
request, if necessary. Together with packaging the command

15

25

35

45

55

65

6
for the command queue 104, the asynchronous command
processor 100 provides a command to the asynchronous
request processor 106 to provide a response to the client
program 14 indicating that the event has occurred, even
though such an event has yet to occur on the physical
railroad layout.
As such, it can be observed that whether or not the

command is valid, whether or not the information requested
by the command is available to the asynchronous command
processor 100, and whether or not the command has
executed, the combination of the asynchronous command
processor 100 and the asynchronous response processor 106
both veri?es the validity of the command and provides a
response to the client program 14 thereby freeing up the
communications transport 12 for additional commands.
Without the asynchronous nature of the resident external
controlling interface 16, the response to the client program
14 would be, in many circumstances, delayed thereby result
ing in frustration to the operator that the model railroad is
performing in a slow and painstaking manner. In this
manner, the railroad operation using the asynchronous inter
face appears to the operator as nearly instantaneously
responsive.

Each command in the command queue 104 is fetched by
a synchronous command processor 110 and processed. The
synchronous command processor 110 queries a controller
database storage 112 for additional information, as
necessary, and determines if the command has already been
executed based on the state of the devices in the controller
database storage 112. In the event that the command has
already been executed, as indicated by the controller data
base storage 112, then the synchronous command processor
110 passes information to the command queue 104 that the
command has been executed or the state of the device. The
asynchronous response processor 106 fetches the informa
tion from the command cue 104 and provides a suitable
response to the client program 14, if necessary, and updates
the local database storage 102 to re?ect the updated status of
the railroad layout devices.

If the command fetched by the synchronous command
processor 110 from the command queue 104 requires execu
tion by external devices, such as the train engine, then the
command is posted to one of several external device control
logic 114 blocks. The external device control logic 114
processes the command from the synchronous command
processor 110 and issues appropriate control commands to
the interface of the particular external device 116 to execute
the command on the device and ensure that an appropriate
response was received in response. The external device is
preferably a digital command control device that transmits
digital commands to decoders using the train track. There
are several different manufacturers of digital command
stations, each of which has a different set of input
commands, so each external device is designed for a par
ticular digital command station. In this manner, the system
is compatible with different digital command stations. The
digital command stations 18 of the external devices 116
provide a response to the external device control logic 114
which is checked for validity and identi?ed as to which prior
command it corresponds to so that the controller database
storage 112 may be updated properly. The process of trans
mitting commands to and receiving responses from the
external devices 116 is slow.
The synchronous command processor 110 is noti?ed of

the results from the external control logic 114 and, if
appropriate, forwards the results to the command queue 104.
The asynchronous response processor 100 clears the results

US 6,530,329 B2
7

from the command queue 104 and updates the local database
storage 102 and sends an asynchronous response to the
client program 14, if needed. The response updates the client
program 14 of the actual state of the railroad track devices,
if changed, and provides an error message to the client
program 14 if the devices actual state Was previously
improperly reported or a command did not execute properly.

The use of tWo separate database storages, each of Which
is substantially a mirror image of the other, provides a
performance enhancement by a fast acknowledgement to the
client program 14 using the local database storage 102 and
thereby freeing up the communications transport 12 for
additional commands. In addition, the number of commands
forWarded to the external device control logic 114 and the
external devices 116, Which are relatively sloW to respond,
is minimiZed by maintaining information concerning the
state and con?guration of the model railroad. Also, the use
of tWo separate database tables 102 and 112 alloWs more
ef?cient multi-threading on multi-processor computers.

In order to achieve the separation of the asynchronous and
synchronous portions of the system the command queue 104
is implemented as a named pipe, as developed by Microsoft
for WindoWs. The queue 104 alloWs both portions to be
separate from each other, Where each considers the other to
be the destination device. In addition, the command queue
maintains the order of operation Which is important to
proper operation of the system.

The use of a single command queue 104 alloWs multiple
instantrations of the asynchronous functionality, With one
for each different client. The single command queue 104
also alloWs the sharing of multiple devices, multiple clients
to communicate With the same device (locally or remote) in
a controlled manner, and multiple clients to communicate
With different devices. In other Words, the command-queue
104 permits the proper execution in the cases of: (1) one
client to many devices, (2) many clients to one device, and
(3) many clients to many devices.

The present inventor came to the realiZation that the
digital command stations provided by the different vendors
have at least three different techniques for communicating
With the digital decoders of the model railroad set. The ?rst
technique, generally referred to as a transaction (one or more
operations), is a synchronous communication Where a com
mand is transmitted, executed, and a response is received
therefrom prior to the transmission of the next sequentially
received command. The DCS may execute multiple com
mands in this transaction. The second technique is a cache
With out of order execution Where a command is executed
and a response received therefrom prior to the execution of
the next command, but the order of execution is not neces
sarily the same as the order that the commands Were
provided to the command station. The third technique is a
local-area-netWork model Where the commands are trans
mitted and received simultaneously. In the LAN model there
is no requirement to Wait until a response is received for a
particular command prior to sending the next command.
Accordingly, the LAN model may result in many commands
being transmitted by the command station that have yet to be
executed. In addition, some digital command stations use
tWo or more of these techniques.

With all these different techniques used to communicate
With the model railroad set and the system 10 providing an
interface for each different type of command station, there
exists a need for the capability of matching up the responses
from each of the different types of command stations With
the particular command issued for record keeping purposes.

10

15

25

35

45

55

65

8
Without matching up the responses from the command
stations, the databases can not be updated properly.

Validation functionality is included Within the external
device control logic 114 to accommodate all of the different
types of command stations. Referring to FIG. 3, an external
command processor 200 receives the validated command
from the synchronous command processor 110. The external
command processor 200 determines Which device the com
mand should be directed to, the particular type of command
it is, and builds state information for the command. The state
information includes, for example, the address, type, port,
variables, and type of commands to be sent out. In other
Words, the state information includes a command set for a
particular device on a particular port device. In addition, a
copy of the original command is maintained for veri?cation
purposes. The constructed command is forWarded to the
command sender 202 Which is another queue, and preferably
a circular queue. The command sender 202 receives the
command and transmits commands Within its queue in a
repetitive nature until the command is removed from its
queue. A command response processor 204 receives all the
commands from the command stations and passes the com
mands to the validation function 206. The validation func
tion 206 compares the received command against potential
commands that are in the queue of the command sender 202
that could potentially provide such a result. The validation
function 206 determines one of four potential results from
the comparison. First, the results could be simply bad data
that is discarded. Second, the results could be partially
executed commands Which are likeWise normally discarded.
Third, the results could be valid responses but not relevant
to any command sent. Such a case could result from the
operator manually changing the state of devices on the
model railroad or from another external device, assuming a
shared interface to the DCS. Accordingly, the results are
validated and passed to the result processor 210. Fourth, the
results could be valid responses relevant to a command sent.
The corresponding command is removed from the command
sender 202 and the results passed to the result processor 210.
The commands in the queue of the command sender 202, as
a result of the validation process 206, are retransmitted a
predetermined number of times, then if error still occurs the
digital command station is reset, Which if the error still
persists then the command is removed and the operator is
noti?ed of the error.

APPLICATION PROGRAMMING INTERFACE

Train ToolsTM Interface Description
Building your oWn visual interface to a model railroad
Copyright 1992-1998 KAM Industries.
Computer Dispatcher, Engine Commander, The Conductor,
Train Server, and Train Tools are Trademarks of KAM
Industries, all Rights Reserved.
Questions concerning the product can be EMAILED to:
traintools@kam.rain.com
You can also mail questions to:
KAM Industries
2373 NW 185th Avenue Suite 416
Hillsboro, Oregon 97124
FAX - (503) 291-1221

Table of contents
1. OVERVIEW
1.1 System Architecture
2. TUTORIAL
2.1 Visual BASIC Throttle Example Application
2.2 Visual BASIC Throttle Example Source Code
3. IDL COMMAND REFERENCE

3.4

3.5

3.6

3.7

3.8

9

-continued

APPLICATION PROGRAMMING INTERFACE

Introduction
Data Types
Commands to access the server con?guration variable
database

KamCVGetValue
KamCVPutValue
KamCVGetEnable
KamCVPutEnable
KamCVGetName
KamCVGetMinRegister
KamCVGetMaXRegister

Commands to program con?guration variables
KamProgram
KamProgramGetMode
KamProgramGetStatus
KamProgramReadCV
KamProgramCV
KamProgramReadDecoderToDataBase
KamProgramDecoderFromDataBase

Commands to control all decoder types
KamDecoderGetMaXModels
KamDecoderGetModelName
KamDecoderSetModelToObj
KamDecoderGetMaXAddress
KamDecoderChangeOldNeWAddr
KamDecoderMovePort
KamDecoderGetPort
KamDecoderCheckAddrInUse
KamDecoderGetModelFromObj
KamDecoderGetModelFacility
KamDecoderGetObjCount
KamDecoderGetObjAtIndeX
KamDecoderPutAdd
KamDecoderPutDel
KamDecoderGetMfgName
KamDecoderGetPoWerMode
KamDecoderGetMaXSpeed

Commands to control locomotive decoders
KamEngGetSpeed
KamEngPutSpeed
KamEngGetSpeedSteps
KamEngPutSpeedSteps
KamEngGetFunction
KamEngPutFunction
KamEngGetFunctionMaX
KamEngGetName
KamEngPutName
KamEngGetFunctionName
KamEngPutFunctionName
KamEngGetConsistMaX
KamEngPutConsistParent
KamEngPutConsistChild
KamEngPutConsistRemoveObj

Commands to control accessory decoders
KamAccGetFunction
KamAccGetFunctionAll
KamAccPutFunction
KamAccPutFunctionAll
KamAccGetFunctionMaX
KamAccGetName
KamAccPutName
KamAccGetFunctionName
KamAccPutFunctionName
KamAccRegFeedback
KamAccRegFeedbackAll
KamAccDelFeedback
KamAccDelFeedbackAll

Commands to control the command station
KamOprPutTurnOnStation
KamOprPutStartStation
KamOprPutClearStation
KamOprPutStopStation
KamOprPutPoWerOn
KamOprPutPoWerOff
KamOprPutHardReset
KamOprPutEmergencyStop
KamOprGetStationStatus

US 6,530,329

10

15

25

35

45

55

65

B2
10

-continued

APPLICATION PROGRAMMING INTERFACE

3.9 Commands to con?gure the command station
communication port

KamPortPutCon?g
KamPortGetCon?g
KamPortGetName
KamPortPutMapController
KamPortGetMaXLogPorts
KamPortGetMaXPhysical

Commands that control command floW to the command
station

KamCmdConnect
KamCmdDisConnect
KamCmdCommand

Cab Control Commands
KamCabGetMessage
KamCabPutMessage
KamCabGetCabAddr
KamCabPutAddrToCab

Miscellaneous Commands
KamMiscGetErrorMsg
KamMiscGetClockTime
KamMiscPutClockTime
KamMiscGetInterfaceVersion
KamMiscSaveData
KamMiscGetControllerName
KamMiscGetControllerNameAtPort
KamMiscGetCommandStationValue
KamMiscSetCommandStationValue
KamMiscGetCommandStationIndeX
KamMiscMaXControllerID
KamMiscGetControllerFacility

I. OVERVIEW
This document is divided into tWo sections, the

Tutorial, and the IDL Command Reference. The tutorial
shoWs the complete code for a simple Visual BASIC program
that controls all the major functions of a locomotive.
This program makes use of many of the commands described
in the reference section. The IDL Command Reference
describes each command in detail.
I. TUTORIAL

A. Visual BASIC Throttle EXample Application
The folloWing application is created using the

Visual BASIC source code in the neXt section. It
controls all major locomotive functions such as speed,
direction, and auXiliary functions.
A. Visual BASIC Throttle EXample Source Code
' Copyright 1998, KAM Industries. All rights reserved.

3.10

3.12

This is a demonstration program shoWing the
integration of VisualBasic and Train Server(tm)
interface. You may use this application for non
commercial usage.

‘$Date: $
‘$Author: $
‘$Revision: $
‘$Log: $
' Engine Commander, Computer Dispatcher, Train Server,

Train Tools, The Conductor and kamind are registered
' Trademarks of KAM Industries. All rights reserved.

This ?rst command adds the reference to the Train
ServerT Interface object Dim EngCmd As NeW EngComIfc

Engine Commander uses the term Ports, Devices and
' Controllers

Ports —> These are logical ids Where Decoders are
assigned to. Train ServerT Interface supports a
limited number of logical ports. You can also think
of ports as mapping to a command station type. This
alloWs you to move decoders betWeen command station
Without losing any information about the decoder

Devices —> These are communications channels

con?gured in your computer.
You may have a single device (com1) or multiple
devices

US 6,530,329 B2
11

-continued

APPLICATION PROGRAMMING INTERFACE

‘ (COM 1 — COM8, LPT1, Other). You are required to
map a port to a device to access a command station.

‘ Devices start from ID 0 —> maX id (FYI; devices do
not necessarily have to be serial channel. Always
check the name of the device before you use it as
well as the maximum number of devices supported.

‘ The Command

‘ EngCmd.KamPortGetMaXPhysical(lMaXPhysical, lSerial,
lParallel) provides means that... lMaXPhysical =

‘ lSerial + lParallel + lOther

Controller — These are command the command station

‘ like LENZ, DigitraX
‘ Northcoast, EasyDCC, Marklin... It is recommend

that you check the command station ID before you
use it.

Errors — All commands return an error status. If

the error value is non Zero, then the
other return arguments are invalid. In
general, non zero errors means command was

not eXecuted. To get the error message,
you need to call KamMiscErrorMessage and
supply the error number

To Operate your layout you will need to perform a
mapping between a Port (logical reference), Device
(physical communications channel) and a Controller
(command station) for the program to work. All
references uses the logical device as the reference
device for access.

Addresses used are an object reference. To use an

address you must add the address to the command
‘ station using KamDecoderPutAdd One of the return

values from this operation is an object reference
that is used for control.

We need certain variables as global objects; since
the information is being used multiple times

Dim iLogicalPort, iController, iComPort
Dim iPortRate, iPortParity, iPortStop, iPortRetrans,

iPortWatchdog, iPortFlow, iPortData
Dim lEngineObject As Long, iDecoderClass As Integer,

iDecoderType As Integer
Dim lMaXController As Long
Dim lMaXLogical As Long, lMaXPhysical As Long, lMaXSerial

As Long, lMaXParallel As Long
U6******9‘************************

‘Form load function
‘— Turn of the initial buttons
‘— Set he interface information
UK*******************************

Private Sub Formiload()
Dim strVer As String, strCom As String, strCntrl As

String
Dim iError As Integer
‘Get the interface version information
SetButtonState (False)
iError = EngCmd.KamMiscGetInterfaceVersion(strVer)

If (iError) Then
MsgBoX ((“Train Server not loaded. Check

DCOM-95”))
iLogicalPort = 0

LogPort.Caption = iLogicalPort
ComPort.Caption = “7??”

Controller.Caption = “Unknown”
Else

MsgBoX ((“Simulation(COM1) Train Server —— ” &

strVer))
WK’K************************************

‘Con?guration information; Only need to
change these values to use a different
controller...

‘96**********96*9‘************************

‘ UNKNOWN 0 // Unknown control type
‘ SIMULAT 1 // Interface simulator

10

15

20

25

30

35

45

50

55

60

65

12

-continued

APPLICATION PROGRAMMING INTERFACE

‘ LENZflX 2 // LenZ serial support module
‘ LENZiZX 3 // LenZ serial support module
‘ DIGITiDT200 4 // DigitraX direct drive

support using DT200
‘ DIGITiDCS100 5 // DigitraX direct drive

support using DCS100
‘ MASTERSERIES 6 // North Coast engineering

master Series
‘ SYSTEMONE 7 // System One
‘ RAMFIX 8 // RAMFIXX system
‘ DYNATROL 9 // Dynatrol system
‘ Northcoast binary 10 // North Coast binary
‘ SERIAL 11 // NMRA Serial

interface
‘ EASYDCC 12 // NMRA Serial interface
‘ MRK6050 13 // 6050 Marklin interface

(AC and DC)
‘ MRK6023 14 // 6023 Marklin hybrid

interface (AC)
‘ ZTC 15 // ZTC Systems ltd
‘ DIGITiPR1 16 // DigitraX direct drive

support using PR1
‘ DIRECT 17 // Direct drive interface

routine
M6969696*96*9696*96*96*96*9696*9696969696969696*96*96*96*96*************************

iLogicalPort = 1 ‘Select Logical port 1 for
communications

iController = 1 ‘Select controller from the list
above.

iComPort = 0 ‘ use COM1; 0 means com1 (DigitraX must

use Com1 or Com2)
‘DigitraX Baud rate requires 16.4K!
‘Most COM ports above Com2 do not
‘support 16.4K. Check with the
‘manufacture of your smart com card
‘for the baud rate. Keep in mind that
‘Dumb com cards with serial port
‘support Com1 — Com4 can only support

‘2 com ports (like com1/com2
‘or com3/com4)
‘If you change the controller, do not
‘forget to change the baud rate to
‘match the command station. See your
‘user manual for details

M6969696*96*9696*96*96*96*9696*9696969696969696*96*96*96*96*************************

‘ 0: // Baud rate is 300
‘ 1: // Baud rate is 1200

‘ 2: // Baud rate is 2400
‘ 3: // Baud rate is 4800
‘ 4: // Baud rate is 9600
‘5: // Baud rate is 14.4
‘ 6: // Baud rate is 16.4
‘7: // Baud rate is 19.2
iPortRate = 4

‘ Parity values 0-4 —> no, odd, even, mark,
space

iPortParity = 0

‘ Stop bits 0,1,2 —> 1, 1.5, 2
iPortStop = 0

iPortRetrans = 10

iPortWatchdog = 2048
iPortFlow = 0

‘ Data bits 0 — > 7 Bits, 1—> 8 bits

iPortData = 1

‘Display the port and controller information
iError = EngCmd.KamPortGetMaXLogPorts(lMaXLogical)

iError = EngCmd.KamPortGetMaXPhysical(lMaXPhysical,

lMaXSerial, lMaXParallel)
‘ Get the port name and do some checking...

iError = EngCmd.KamPortGetName(iComPort, strCom)
SetError (iError)
If (iComPort > lMaXSerial) Then MsgBoX (“Com port

our of range”)
iError =

EngCmd.KamMiscGetControllerName(iController,
strCntrl)

If (iLogicalPort > lMaXLogical) Then MsgBoX

US 6,530,329 B2
13

—continued

APPLICATION PROGRAMMING INTERFACE

(“Logical port out of range”)
SetError (iError)

End If
‘Display values in Throttle.
LogPort.Caption = iLogicalPort
ComPort.Caption = strCom

Controller.Caption = strCntrl
End Sub
U6*****************************

‘Send Command
‘Note:
‘ Please folloW the command order. Order is important
‘ for the application to Work!
UK*****************************

Private Sub CommandiClick()
‘Send the command from the interface to the command
station, use the engineObject
Dim iError, iSpeed As Integer
If Not Connect.Enabled Then

‘TrainTools interface is a caching interface.
‘This means that you need to set up the CV’s or
‘other operations ?rst; then eXecute the
‘command.
iSpeed = Speed.TeXt
iError =

EngCmd.KamEngPutFunction(lEngineObject, O, FO.Value)
iError =

EngCmd.KamEngPutFunction(lEngineObject, 1,
F1.Value)
iError =

EngCmd.KamEngPutFunction(lEngineObject, 2,
F2.Value)
iError =

EngCmd.KamEngPutFunction(lEngineObject, 3,
F3.Value)
iError = EngCmd.KamEngPutSpeed(lEngineObject,

iSpeed, Direction.Value)
If iError = 0 Then iError =

EngCmd.KamCmdCommand(lEngineObject)
SetError (iError)

End If
End Sub
U696*96969696969696********************

‘Connect Controller
U696*$6**************************

Private Sub ConnectiClick()
Dim iError As Integer
‘These are the indeX values for setting up the port

for use

‘ PORTLRETRANS O // Retrans indeX
‘ PORTiRATE 1 // Retrans indeX
‘ PORTLPARITY 2 // Retrans indeX
‘ PORTLSTOP 3 // Retrans indeX
‘ PORTLWATCHDOG 4 // Retrans indeX
‘ PORTiFLOW 5 // Retrans indeX
‘ PORTLDATABITS 6 // Retrans indeX
‘ PORTLDEBUG 7 // Retrans indeX
‘ PORTLPARALLEL 8 // Retrans indeX

‘These are the indeX values for setting up the
port for use

‘ PORTLRETRANS O // Retrans indeX
‘ PORTLRATE 1 // Retrans indeX
‘ PORTiPARITY 2 // Retrans indeX
‘ PORTLSTOP 3 // Retrans indeX
‘ PORTLWATCHDOG 4 // Retrans indeX
‘ PORTiFLOW 5 // Retrans indeX
‘ PORTLDATABITS 6 // Retrans indeX
‘ PORTLDEBUG 7 // Retrans indeX
‘ PORTLPARALLEL 8 // Retrans indeX
iError = EngCmd.KamPortPutCon?g(iLogicalPort, O,

iPortRetrans, O) ‘ setting PORTLRETRANS
iError = EngCmd.KamPortPutCon?g(iLogicalPort, 1

iPortRate, O) ‘ setting PORTiRAT E
iError = EnqCmd.KamPortPutCon?g(iLogicalPort, 2,

iPortParity, O) ‘ setting PORTLPARITY
iError = EngCmd.KamPortPutCon?g(iLogicalPort, 3

iPortStop, O) ‘ setting PORTLSTOP

25

35

45

55

65

14

—continued

APPLICATION PROGRAMMING INTERFACE

iError = EngCmd.KamPortPutCon?g(iLogicalPort, 4

iPortWatchdog, O) ‘ setting PORTLWATCHDOG
iError = EngCmd.KamPortPutCon?g(iLogicalPort, 5,

iPortFloW, O) ‘ setting PORTLFLOW
iError = EngCmd.KamPortPutCon?g(iLogicalPort, 6,

iPortData, O) ‘ setting PORTLDATABITS
‘ We need to set the appropriate debug mode for display..
‘ this command can only be sent if the folloWing is true
‘ —Controller is not connected

‘ —port has not been mapped
‘ —Not share Ware version of application (ShareWare
‘ alWays set to 130)
‘ Write Display Log Debug
‘ File Win Level Value

‘ 1 + 2 + 4 = 7 —> LEVEL1 —— put packets into

‘ queues

‘ 1 + 2 + 8 = 11 —> LEVELZ —— Status messages

send to WindoW
‘1+2+16=19
‘1+2+32=35

-> LEVEL3 —

—> LEVEL4 —— All system

semaphores/critical sections
‘ 1 + 2 + 64 = 67 -> LEVELS -- detailed

debugging information
‘ 1 + 2 + 128 =0 131 —> COMMONLY —— Read comm Write

‘ comm ports

‘You probably only Want to use values of 130. This Will
‘give you a display What is read or Written to the
‘controller. If you Want to Write the information to
‘disk, use 131. The other information is not valid for
‘end users.

‘ Note: 1. This does effect the performance of you
‘ system; 130 is a save value for debug
‘ display. AlWays set the key to 1, a value
‘ of 0 Will disable debug
‘ 2. The DigitraX control codes displayed are

encrypted. The information that you
‘ determine from the control codes is that

information is sent (S) and a response is
‘ received (R)

iDebugMode = 130
iValue = Value.TeXt‘ Display value for reference
iError = EngCmd.KamPortPutCon?g(iLogicalPort, 7, iDebug,

iValue)‘ setting PORTLDEBUG
‘NoW map the Logical Port, Physical device, Command

station and Controller
iError = EngCmd.KamPortPutMapController(iLogicalPort,

iController, iComPort)
iError = EngCmd.KamCmdConnect(iLogicalPort)
iError = EngCmd.KamOprPutTurnOnStation(iLogicalPort)

If (iError) Then
SetButtonState (False)

Else
SetButtonState (True)

End If
SetError (iError) ‘Displays the error message and error

number
End Sub
U696*96*9696969696********************

‘Set the address button
l******************************

Private Sub DCCAddriClick()
Dim iAddr, iStatus As Integer
‘ All addresses must be match to a logical port to

operate
iDecoderType = 1 ‘ Set the decoder type to an NMRA

baseline decoder (1 — 8 reg)
iDecoderClass = 1 ‘ Set the decoder class to Engine

decoder (there are only tWo classes of decoders;
Engine and Accessory
‘Once We make a connection, We use the lEngineObject
‘as the reference object to send control information
If (Address.TeXt > 1) Then

iStatus = EngCmd.KamDecoderPutAdd(Address.TeXt,
iLogicalPort, iLogicalPort, O,
iDecoderType, lEngineObject)

US 6,530,329 B2
15

-continued

APPLICATION PROGRAMMING INTERFACE

SetError (iStatus)
If(lEngineObject) Then

Command.Enabled = True ‘turn on the control

(send) button
Throttle.Enabled = True ‘Turn on the throttle

Else
MsgBoX (“Address not set, check error message”)
End If

Else
MsgBoX (“Address must be greater then 0 and

less then 128”)
End If

End Sub
v*******************

‘Disconenct button
I*******************

Private Sub DisconnectiClick()
Dim iError As Integer
iError = EngCmd.KamCmdDisConnect(iLogicalPort)

SetError (iError)
SetButtonState (False)

End Sub
v**********************

‘Display error messaqe
l**********************

Private Sub SetError(iError As Integer)
Dim sZError As String
Dim iStatus
‘ This shoWs hoW to retrieve a sample error message
from the interface for the status received.
iStatus = EngCmd.KamMiscGetErrorMsg(iError, sZError)
ErrorMsg.Caption = sZError

Result.Caption = Str(iStatus)
End Sub
U6*************************

‘Set the Form button state
UK*************************

Private Sub SetButtonState(iState As Boolean)
‘We set the state of the buttons; either connected
or disconnected

If (iState) Then
Connect.Enabled = False

Disconnect.Enabled = True

ONCmd.Enabled = True

OffCmd.Enabled = True

DCCAddr.Enabled = True

UpDoWnAddress.Enabled = True

‘NoW We check to see if the Engine Address has been
‘set; if it has We enable the send button
If (lEngineObject > 0) Then

Command.Enabled = True

Throttle.Enabled = True

Else
Command.Enabled = False

Throttle.Enabled = False

End If
Else

Connect.Enabled = True

Disconnect.Enabled = False

Command.Enabled = False

ONCmd.Enabled = False

OffCmd.Enabled = False

DCCAddr.Enabled = False

UpDoWnAddress.Enabled = False
Throttle.Enabled = False

End If
End Sub
v*******************

‘PoWer Off function
I*******************

Private Sub OffCmdiClick()
Dim iError As Integer
iError = EngCmd.KamOprPutPoWerOff(iLogicalPort)

SetError (iError)
End Sub
v******************

‘PoWer On function

10

15

25

35

45

55

65

16

-continued

APPLICATION PROGRAMMING INTERFACE

v******************

Private Sub ONCmdiClickO
Dim iError As Integer
iError = EngCmd.KamOprPutPoWerOn(iLogicalPort)

SetError (iError)
End Sub
1************************

‘Throttle slider control
l************************

Private Sub ThrottleiClick()
If (lEngineObject) Then

If (Throttle.Value > 0) Then
Speed.TeXt = Throttle.Value
End If

End If
End Sub
I. IDL COMMAND REFERENCE

A. Introduction
This document describes the IDL interface to

the KAM Industries Engine Commander Train Server. The
Train Server DCOM server may reside locally or on a
netWork node This server handles all the background
details of controlling your railroad. You Write simple,
front end programs in a variety of languages such as
BASIC, Java, or C++ to provide the visual interface to
the user While the server handles the details of
communicating With the command station, etc.

A. Data Types
Data is passed to and from the IDL interface using a
several primitive data types. Arrays of these simple
types are also used. The eXact type passed to and from
your program depends on the programming language your are
using.
The folloWing primitive data types are used:
IDL Type BASIC Type C++ Type Java Type Description
short short short short Short signed integer
int int int int Signed integer
BSTR BSTR BSTR BSTR TeXt string
long long long long Unsigned 32 bit value
Name ID CV Range Valid CV’s Functions Address Range Speed
Steps
NMRA Compatible 0 None None 2 1-99 14
Baseline 1 1-8 1-8 9 1-127 14

Extended 2 1—106 1-9, 17, 18, 19, 23, 24, 29, 30,
49, 66-95 9 1—10239 14,28,128
All Mobile 3 1—106 1—106 9 1—10239 14,28,128
Name ID CV Range Valid CV’s Functions Address Range
Accessory 4 513-593 513-593 8 0-511
All Stationary 5 513-1024 513-1024 8 O-511
A long /DecoderObject/D value is returned by the
KamDecoderPutAdd call if the decoder is successfully
registered With the server. This unique opaque ID should
be used for all subsequent calls to reference this
decoder.
A. Commands to access the server con?guration variable

database
This section describes the commands that access

the server con?guration variables (CV) database. These
CVs are stored in the decoder and control many of its
characteristics such as its address. For efficiency, a
copy of each CV value is also stored in the server
database. Commands such as KamCVGetValue and
KamCVPutValue communicate only With the server, not the
actual decoder. You then use the programming commands in
the neXt section to transfer CVs to and from the decoder.
OKamCVGetValue
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iCVRegint 1—1024 2 In CV register
pCVValue int * 3 Out Pointer to CV value
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Range is 1—1024. Maximum CV for this decoder is
given by KamCVGetMaXRegister.
3 CV Value pointed to has a range of O to 255.
Return Value Type Range Description
iError short 1 Error flag

US 6,530,329 B2
17

-continued

APPLICATION PROGRAMMING INTERFACE

1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg). KamCVGetValue takes the
decoder object ID and con?guration variable (CV) number
as parameters. It sets the memory pointed to by pCVValue
to the value of the server copy of the con?guration
variable.
OKamCVPutValue
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iCVRegint 1—1024 2 In CV register
iCVValue int 0-255 In CV value
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamCVPutValue takes the decoder object ID, con?guration
variable (CV) number, and a neW CV value as parameters.
It sets the server copy of the speci?ed decoder CV to
iCVValue.
OKamCVGetEnable
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 In CV number
pEnable int * 3 Out Pointer to CV bit mask
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.
3 OxOOO1 — SETLCVLINUSE OxOOO2 — SETLCVLREADLDIRTY

0x0004 - SETLCVLWRITELDIRTY OxOOOS -

SETLCVLERRORLREAD
OxOO1O - SETiCViERRORiWRITE

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg). KamCVGetEnable takes the
decoder object ID, con?guration variable (CV) number,
and a pointer to store the enable flag as parameters. It
sets the location pointed to by pEnable.
OKamCVPutEnable
Parameter List Type Range Direction Description
iDecoderObjectID long 1 In Decoder object ID
iCVRegint 1—1024 2 In CV number
iEnableint 3 In CV bit mask
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.
3 OxOOO1 — SETLCVLINUSE OxOOO2 — SETLCVLREADLDIRTY

0x0004 - SETLCVLWRITELDIRTY OxOOOS -

SETiCViERRORiREAD
0x0010 - SETLCVLERRORLWRITE

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamCVPutEnable takes the decoder object ID, con?guration
variable (CV) number, and a neW enable state as
parameters. It sets the server copy of the CV bit mask
to iEnable.
OKamCVGetName
Parameter List Type Range Direction Description
iCV int 1—1024 In CV number
pbsCVNameString BSTR * 1 Out Pointer to CV

name string
1 Exact return type depends on language. It is

Cstring * for C++. Empty string on error.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamCVGetName takes a con?guration variable (CV) number
as a parameter. It sets the memory pointed to by

10

15

25

35

45

55

65

18

-continued

APPLICATION PROGRAMMING INTERFACE

pbsCVNameString to the name of the CV as de?ned in NMRA
Recommended Practice RP 9.2.2.
OKamCVGetMinRegister
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
pMinRegister int * 2 Out Pointer to min CV

register number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Normally 1—1024. 0 on error or if decoder does not
support CVs.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamCVGetMinRegister takes a decoder object ID as a
parameter. It sets the memory pointed to by pMinRegister
to the minimum possible CV register number for the
speci?ed decoder.
OKamCVGetMaxRegister
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
pMaxRegister int * 2 Out Pointer to max CV
register number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Normally 1—1024. 0 on error or if decoder does not
support CVs.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamCVGetMaxRegister takes a decoder object ID as a
parameter. It sets the memory pointed to by pMaxRegister
to the maximum possible CV register number for the
speci?ed decoder.
A. Commands to program con?guration variables

This section describes the commands read and
Write decoder con?guration variables (CVs). You should
initially transfer a copy of the decoder CVs to the
server using the KamProgramReadDecoderToDataBase command.
You can then read and modify this server copy of the CVs.
Finally, you can program one or more CVs into the decoder

using the KamProgramCV or KamProgramDecoderFromDataBase
command. Not that you must ?rst enter programining mode
by issuing the KamProgram command before any programming
can be done.

OKamProgram
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iProgLogPort int 1—65535 2 In Logical

programming
port ID

iProgMode int 3 In Programming mode
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value for this server given by
KamPortGetMaxLogPorts.
3 O — PROGRAMiMODEiNONE

1 — PROGRAMLMODELADDRESS

2 — PROGRAMLMODELREGISTER

3 — PROGRAMLMODELPAGE

4 — PROGRAMiMODEiDIRECT

5 — DCODELPRGMODELOPSLSHORT

6 — PROGRAMLMODELOPSLLONG

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg)
KamProgram take the decoder object ID, logical
programming port ID, and programming mode as parameters.
It changes the command station mode from normal operation
(PROGRAMLMODELNONE) to the speci?ed programming mode.
Once in programming modes, any number of programming
commands may be called. When done, you must call
KamProgram With a parameter of PROGRAMLMODELNONE to
return to normal operation.

US 6,530,329 B2
19

-continued

APPLICATION PROGRAMMING INTERFACE

0KamProgramGetMode
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iProgLogPort int 1-65535 2 In Logical

programming
port ID

piProgMode int * 3 Out Programming mode
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value for this server given by
KamPortGetMaXLogPorts.
3 0 — PROGRAMiMODEiNONE

1 — PROGRAMiMODEiADDRESS

2 — PROGRAMiMODEiREGISTER

3 — PROGRAMiMODEiPAGE

4 — PROGRAMiMODEiDIRECT

5 — DCODEiPRGMODEiOPSiSHORT

6 — PROGRAMiMODEiOPSiLONG

Return Value Type Range Description
iError short 1 Error ?ag Description
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamProgramGetMode take the decoder object ID, logical
programming port ID, and pointer to a place to store
the programming mode as parameters. It sets the memory
pointed to by piProgMode to the present programming mode.
0KamProgramGetStatus
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iCVRegint 0-1024 2 In CV number
piCVAllStatus int * 3 Out Or'd decoder pro

gramming status
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 0 returns OR'd value for all CVs. Other values
return status tor just that CV.
3 0X0001 — SETiCViINUSE

0X0002 — SETiCViREADiDIRTY

0X0004 — SETiCViWRITEiDIRTY

0X0008 — SETiCViERRORiREAD

0X0010 — SETiCViERRORiWRITE

Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamProgramGetStatus take the decoder object ID and
pointer to a place to store the OR'd decoder programming
status as parameters. It sets the memory pointed to by
piProgMode to the present programming mode.
0KamProgramReadCV
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iCVRegint 2 In CV number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 MaXimum CV is 1024. MaXimum CV for this decoder is
given by KamCVGetMaXRegister.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamProgramCV takes the decoder object ID, con?guration
variable (CV) number as parameters. It reads the
speci?ed CV variable value to the server database.
0KamProgramCV
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iCVRegint 2 In CV number
iCVValue int 0-255 In CV value
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 MaXimum CV is 1024. MaXimum CV for this decoder is
given by KamCVGetMaXRegister.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

APPLICATION PROGRAMMING INTERFACE

KamProgramCV takes the decoder object ID, con?guration
variable (CV) number, and a neW CV value as parameters.
It programs (Writes) a single decoder CV using the
speci?ed value as source data.
0KamProgramReadDecoderToDataBase
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamProgramReadDecoderToDataBase takes the decoder object
ID as a parameter. It reads all enabled CV values from
the decoder and stores them in the server database.
0KamProgramDecoderFromDataBase
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamProgramDecoderFromDataBase takes the decoder object ID
as a parameter. It programs (Writes) all enabled decoder
CV values using the server copy of the CVs as source
data.
A. Commands to control all decoder types

This section describes the commands that all
decoder types. These commands do things such getting the
maXimum address a given type of decoder supports, adding
decoders to the database, etc.
0KamDecoderGetMaXModels
Parameter List Type Range Direction Description
piMaXModels int * 1 Out Pointer to MaX

model ID
1 Normally 1-65535. 0 on error.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetMaXModels takes no parameters. It sets the
memory pointed to by piMaXModels to the maXimum decoder
type ID.
0KamDecoderGetModelName
Parameter List Type Range Direction Description
iModel int 1-65535 1 In Decoder type ID
pbsModelName BSTR * 2 Out Decoder name

string
1 MaXimum value for this server given by
KamDecoderGetMaXModels.
2 EXact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg). KamPortGetModelName takes a
decoder type ID and a pointer to a string as parameters.
It sets the memory pointed to by pbsModelName to a BSTR
containing the decoder name.
0KamDecoderSetModelToObj
Parameter List Type Range Direction Description
iModel int 1 In Decoder model ID
lDecoderObjectID long 1 In Decoder object ID
1 MaXimum value for this server given by
KamDecoderGetMaXModels.
2 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderSetModelToObj takes a decoder ID and decoder
object ID as parameters. It sets the decoder model type
of the decoder at address lDecoderObjectID to the type

US 6,530,329 B2
21

-continued

APPLICATION PROGRAMMING INTERFACE

speci?ed by iModel.
OKamDecoderGetMaxAddress
Parameter List Type Range Direction Description
iModel int 1 In Decoder type ID
piMaXAddress int * 2 Out Maximum decoder

address
1 Maximum value for this server given by
KamDecoderGetMaXModels
2 Model dependent. O returned on error.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetMaXAddress takes a decoder type ID and a
pointer to store the maXimum address as parameters. It
sets the memory pointed to by piMaXAddress to the maXimum
address supported by the speci?ed decoder.
OKamDecoderChangeOldNeWAddr
Parameter List Type Range Direction Description
lOldObjID long 1 In Old decoder object ID
iNeWAddr int 2 In NeW decoder address
plNeWObjID long * 1 Out NeW decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders. 0-511 for accessory decoders.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderChangeOldNeWAddr takes an old decoder object ID
and a neW decoder address as parameters. It moves the

speci?ed locomotive or accessory decoder to iNeWAddr and
sets the memory pointed to by plNeWObjID to the neW
object ID. The old object ID is noW invalid and should
no longer be used.
OKamDecoderMovePort
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iLogicalPortID int 1-65535 2 In Logical port ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 MaXimum value for this server given by
KamPortGetMaXLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderMovePort takes a decoder object ID and logical
port ID as parameters. It moves the decoder speci?ed by
lDecoderObjectID to the controller speci?ed by
iLogicalPortID.
OKamDecoderGetPort
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
piLogicalPortID int * 1-65535 2 Out Pointer to

logical port ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 MaXimum value for this server given by
KamPortGetMaXLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderMovePort takes a decoder object ID and pointer
to a logical port ID as parameters. It sets the memory
pointed to by piLogicalPortID to the logical port ID
associated With lDecoderObjectID.
OKamDecoderCheckAddrInUse
Parameter List Type Range Direction Description
iDecoderAddress int 1 In Decoder address
iLogicalPortID int 2 In Logical Port ID
iDecoderClass int 3 In Class of decoder
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 MaXimum value for this server given by

10

15

25

35

45

55

65

22

-continued

APPLICATION PROGRAMMING INTERFACE

KamPortGetMaXLogPorts.
3 1 - DECODERLENGINELTYPE,

2 - DECODERLSWII‘CHLTYPE,

3 - DECODERLSENSORLTYPE.

Return Value Type Range
iError short 1 Error flag
1 iError = O for successful call and address not in
use. NonZero is an error number (see

KamMiscGetErrorMsg). IDSiERRiADDRESSEXIST returned if
call succeeded but the address eXists.
KamDecoderCheckAddrInUse takes a decoder address, logical
port, and decoder class as parameters. It returns Zero
if the address is not in use. It Will return
IDSLERRLADDRESSEXIST if the call succeeds but the address
already eXists. It Will return the appropriate non Zero
error number if the calls fails.
OKamDecoderGetModelFromObj
Parameter List Type Range Direction
lDecoderObjectID long 1 In
piModelint * 1-65535 2 Out

Description

Description
Decoder object ID
Pointer to decoder
type ID

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 MaXimum value for this server given by
KamDecoderGetMaXModels.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetModelFromObj takes a decoder object ID and
pointer to a decoder type ID as parameters. It sets the
memory pointed to by piModel to the decoder type ID
associated With iDCCAddr.
OKamDecoderGetModelFacility
Parameter List Type Range Direction
lDecoderObjectID long 1 In
pdWFacility long * 2 Out

Description

Description
Decoder object ID
Pointer to decoder
facility mask

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 O - DCODELPRGMODELADDR

1 - DCODELPRGMODELREG

2 - DCODEiPRGMODEiPAGE

3 - DCODELPRGMODELDIR

4 - DCODELPRGMODELFLYSHI‘

5 - DCODELPRGMODELFLYLNG

6 — Reserved

7 — Reserved

8 — Reserved

9 — Reserved

10 — Reserved

11 — Reserved

12 — Reserved

13 - DCODELFEATLDIRLIGHI‘

14 - DCODEiFEATiLNGADDR

15 - DCODELFEATLCVENABLE

16 - DCODELFEDMODELADDR

17 - DCODELFEDMODELREG

18 - DCODEiFEDMODEiPAGE

19 - DCODELFEDMODELDIR

2O - DCODELFEDMODELFLYSHI‘

21 - DCODELFEDMODELFLYLNG

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetModelFacility takes a decoder object ID and
pointer to a decoder facility mask as parameters. It
sets the memory pointed to by pdWFacility to the decoder

Description

facility mask associated With iDCCAddr.
OKamDecoderGetObjCount
Parameter List Type Range Direction Description
iDecoderClass int 1 In Class of decoder
piObjCount int * 0-65535 Out Count of active

decoders
1 1 - DECODERLENGINELTYPE,

2 — DECODERLSWITCHLTYPE,

US 6,530,329 B2
23

-continued

APPLICATION PROGRAMMING INTERFACE

3 — DECODERiSENSORiTYPE.

Return Value Type Range Description'
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetObjCount takes a decoder class and a pointer
to an address count as parameters. It sets the memory
pointed to by piObjCount to the count of active decoders
of the type given by iDecoderClass.
OKamDecoderGetObjAtIndex
Parameter List Type Range Direction Description'
iIndex int 1 In Decoder array index
iDecoderClass int 2 In Class of decoder
plDecoderObjectID long * 3 Out Pointer to decoder

object ID
1 O to (KamDecoderGetAddressCount — 1).
2 1 - DECODERLENGINELTYPE,

2 - DECODERLSWITCHLTYPE,

3 - DECODERLSENSORLTYPE.

3 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetObjCount takes a decoder index, decoder
class, and a pointer to an object ID as parameters. It
sets the memory pointed to by plDecoderObjectID to the
selected object ID.
OKamDecoderPutAdd
Parameter List Type Range Direction Description
iDecoderAddress int 1 In Decoder address
iLogicalCmdPortID int 1-65535 2 In Logical

command
port ID

iLogicalProgPortID int 1-65535 2 In Logical
programming
port ID

iClearState int 3 In Clear state flag
iModel int 4 In Decoder model type ID
plDecoderObjectID long * 5 Out Decoder

object ID
1 1—127 for short locomotive addresses. 1—10239 for
long locomotive decoders. 0-511 for accessory decoders.
2 Maximum value for this server given by
KamPortGetMaxLogPorts.
3 O — retain state, 1 — clear state.

4 Maximum value for this server given by
KamDecoderGetMaxModels.
5 Opaque object ID handle. The object ID is used to
reference the decoder.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderPutAdd takes a decoder object ID, command
logical port, programming logical port, clear flag,
decoder model ID, and a pointer to a decoder object ID as
parameters. It creates a neW locomotive object in the
locomotive database and sets the memory pointed to by
plDecoderObjectID to the decoder object ID used by the
server as a key.

OKamDecoderPutDel
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iClearState int 2 In Clear state flag
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 O — retain state, 1 — clear state.

Return Value Type Range Description'
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderPutDel takes a decoder object ID and clear flag
as parameters. It deletes the locomotive object speci?ed
by lDecoderObjectID from the locomotive database.
OKamDecoderGetMfgName

15

25

35

45

55

65

24

-continued

APPLICATION PROGRAMMING INTERFACE

Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
pbsMfgName BSTR * 2 Out Pointer to

manufacturer name

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetMfgName takes a decoder object ID and
pointer to a manufacturer name string as parameters. It
sets the memory pointed to by pbsMfgName to the name of
the decoder manufacturer.
OKamDecoderGetPoWerMode
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object TD
pbsPoWerMode BSTR * 2 Out Pointer to

decoder poWer
mode

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range Description'
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetPoWerMode takes a decoder object ID and a
pointer to the poWer mode string as parameters. It sets
the memory pointed to by pbsPoWerMode to the decoder
poWer mode.
OKamDecoderGetMaxSpeed
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
piSpeedStep int * 2 Out Pointer to max

speed step
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 14, 28, 56, or 128 for locomotive decoders. O for
accessory decoders.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetMaxSpeed takes a decoder object ID and a
pointer to the maximum supported speed step as
parameters. It sets the memory pointed to by piSpeedStep
to the maximum speed step supported by the decoder.
A. Commands to control locomotive decoders

This section describes the commands that
control locomotive decoders. These commands control
things such as locomotive speed and direction. For
e?iciency, a copy of all the engine variables such speed
is stored in the server. Commands such as KamEngGetSpeed
communicate only With the server, not the actual decoder.
You should ?rst make any changes to the server copy of
the engine variables. You can send all changes to the
engine using the KamCmdCommand command.
OKamEngGetSpeed
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
lpSpeed int * 2 Out Pointer to locomotive

speed
lpDirection int * 3 Out Pointer to locomotive

direction
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Speed range is dependent on Whether the decoder is
set to 14, 18, or 128 speed steps and matches the values
de?ned by NMRA 59.2 and RP 9.2.1. 0 is stop and 1 is
emergency stop for all modes.
3 ForWard is boolean TRUE and reverse is boolean
FALSE.
Return Value Range Type Description

US 6,530,329 B2
25

-continued

APPLICATION PROGRAMMING INTERFACE

iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetSpeed takes the decoder object ID and pointers
to locations to store the locomotive speed and direction
as parameters. It sets the memory pointed to by lpSpeed
to the locomotive speed and the memory pointed to by
lpDirection to the locomotive direction.
OKamEngPutSpeed
Parameter List Type Range Direction Description'
lDecoderObjectID long 1 In Decoder object ID
iSpeed int * 2 In Locomotive speed
iDirection int * 3 In Locomotive direction
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Speed range is dependent on Whether the decoder is
set to 14, 18, or 128 speed steps and matches the values
de?ned by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is
emergency stop for all modes.
3 ForWard is boolean TRUE and reverse is boolean
FALSE.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngPutSpeed takes the decoder object ID, neW
locomotive speed, and neW locomotive direction as
parameters. It sets the locomotive database speed to
iSpeed and the locomotive database direction to
iDirection. Note: This command only changes the
locomotive database. The data is not sent to the decoder
until execution of the KamCmdCommand command. Speed is
set to the maximum possible for the decoder if iSpeed
exceeds the decoders range.
OKamEngGetSpeedSteps
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
lpSpeedSteps int * 14,28,128 Out Pointer to number

of speed steps
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetSpeedSteps takes the decoder object ID and a
pointer to a location to store the number of speed steps
as a parameter. It sets the memory pointed to by
lpSpeedSteps to the number of speed steps.
OKamEngPutSpeedSteps
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iSpeedSteps int 14,28,128 In Locomotive speed

steps
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngPutSpeedSteps takes the decoder object ID and a neW
number of speed steps as a parameter. It sets the number
of speed steps in the locomotive database to iSpeedSteps.
Note: This command only changes the locomotive database.
The data is not sent to the decoder until execution of
the KamCmdCommand command. KamDecoderGetMaxSpeed returns
the maximum possible speed for the decoder. An error is
generated if an attempt is made to set the speed steps
beyond this value.
OKamEngGetFunction
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-8 2 In Function ID number
lpFunction int * 3 Out Pointer to function
value
1 Opaque object ID handle returned by
KamDecoderPutAdd.

15

25

35

45

55

65

26

-continued

APPLICATION PROGRAMMING INTERFACE

2 FL is O. F1—F8 are 1—8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax. 3
Function active is boolean TRUE and inactive is boolean
FALSE.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetFunction takes the decoder object ID, a function
ID, and a pointer to the location to store the speci?ed
function state as parameters. It sets the memory pointed
to by lpFunction to the speci?ed function state.
OKamEngPutFunction
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int O—8 2 In Function ID number
iFunction int 3 In Function value
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 FL is O. F1—F8 are 1—8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax.
3 Function active is boolean TRUE and inactive is
boolean FALSE.
Return Value Type Range Description'
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngPutFunction takes the decoder object ID, a function
ID, and a neW function state as parameters. It sets the
speci?ed locomotive database function state to
iFunction. Note: This command only changes the
locomotive database. The data is not sent to the decoder
until execution of the KamCmdCommand command.
OKamEngGetFunctionMax
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
piMaxFunction int * O—8 Out Pointer to maximum

function number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetFunctionMax takes a decoder object ID and a
pointer to the maximum function ID as parameters. It
sets the memory pointed to by piMaxFunction to the
maximum possible function number for the speci?ed
decoder.
OKamEngGetName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
pbsEngName BSTR * 2 Out Pointer to

locomotive name

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetName takes a decoder object ID and a pointer to
the locomotive name as parameters. It sets the memory
pointed to by pbsEngName to the name of the locomotive.
OKamEngPutName
Parameter List Type Range Direction Description'
lDecoderObjectID long 1 In Decoder object ID
bsEngName BSTR 2 Out Locomotive name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).

US 6,530,329 B2
27

-continued

APPLICATION PROGRAMMING INTERFACE

KamEngPutName takes a decoder object ID and a BSTR as
parameters. It sets the symbolic locomotive name to
bsEngName.
OKamEngGetFunctionName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-8 2 In Function ID number
pbsFcnNameString BSTR * 3 Out Pointer to

function name

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 FL is 0. F1—F8 are 1-8 respectively. MaXimum for
this decoder is given by KamEngGetFunctionMaX. 3 EXact
return type depends on language. It is Cstring * for
C++. Empty string on error.
Return Value Type Range Description
iError short 1 Error flag
1 iError' = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetFuncntionName takes a decoder object ID,
function ID, and a pointer to the function name as
parameters. It sets the memory pointed to by
pbsFcnNameString to the symbolic name of the speci?ed
function.
0KamEngPutFunctionName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0—8 2 In Function ID number
bsFcnNameString BSTR 3 In Function name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 FL is 0. F1—F8 are 1-8 respectively. MaXimum for
this decoder is given by KamEngGetFunctionMaX.
3 EXact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range Description
iError short 1 Error Flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngPutFunctionName takes a decoder object ID, function
ID, and a BSTR as parameters. It sets the speci?ed
symbolic function name to bsFcnNameString.
0KamEngGetConsistMaX
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
piMaXConsist int * 2 Out Pointer to maX consist

number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Command station dependent.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngGetConsistMaX takes the decoder object ID and a
pointer to a location to store the maXimum consist as
parameters. It sets the location pointed to by
piMaXConsist to the maXimum number of locomotives that
can but placed in a command station controlled consist.
Note that this command is designed for command station
consisting. CV consisting is handled using the CV
commands.
0KamEngPutConsistParent
Parameter List Type Range Direction Description
lDCCParentObjID long 1 In Parent decoder

object ID
iDCCAliasAddr int 2 In Alias decoder address
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngPutConsistParent takes the parent object ID and an
alias address as parameters. It makes the decoder

10

15

20

25

30

35

40

45

50

55

60

65

28

-continued

APPLICATION PROGRAMMING INTERFACE

speci?ed by lDCCParentObjID the consist parent referred
to by iDCCAliasAddr. Note that this command is designed
for command station consisting. CV consisting is handled
using the CV commands. If a neW parent is de?ned for a
consist; the old parent becomes a child in the consist.
To delete a parent in a consist Without deleting the
consist, you must add a neW parent then delete the old
parent using KamEngPutConsistRemoveObj.
0KamEngPutConsistChild
Parameter List Type Range Direction Description
lDCCParentObjID long 1 In Parent decoder

object ID
lDCCObjID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamEngPutConsistChild takes the decoder parent object ID
and decoder object ID as parameters. It assigns the
decoder speci?ed by lDCCObjID to the consist identi?ed
by lDCCParentObjID. Note that this command is designed
for command station consisting. CV consisting is handled
using the CV commands. Note: This command is invalid if
the parent has not been set previously using
KamEngPutConsistParent.
0KamEngPutConsistRemoveObj
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg)
KamEngPutConsistRemoveObj takes the decoder object ID as
a parameter. It removes the decoder speci?ed by
lDecoderObjectID from the consist. Note that this
command is designed for command station consisting. CV
consisting is handled using the CV commands. Note: If
the parent is removed, all children are removed also.
A. Commands to control accessory decoders

This section describes the commands that
control accessory decoders. These commands control
things such as accessory decoder activation state. For
e?iciency, a copy of all the engine variables such speed
is stored in the server. Commands such as
KamAccGetFunction communicate only With the server, not
the actual decoder. You should ?rst make any changes to
the server copy of the engine variables. You can send
all changes to the engine using the KamCmdCommand
command.
0KamAccGetFunction
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-31 2 In Function ID number
lpFunction int * 3 Out Pointer to function

value
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum for this decoder is given by
KamAccGetFunctionMaX.
3 Function active is boolean TRUE and inactive is
boolean FALSE.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccGetFunction takes the decoder object ID, a function
ID, and a pointer to the location to store the speci?ed
function state as parameters. It sets the memory pointed
to by lpFunction to the speci?ed function state.
0KamAccGetFunctionAll
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
piValue int * 2 Out Function bit mask

US 6,530,329 B2
29

-continued

APPLICATION PROGRAMMING INTERFACE

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Each bit represents a single function state.
Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description
iError short i Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccGetFunctionAll takes the decoder object ID and a
pointer to a bit mask as parameters. It sets each bit in
the memory pointed to by piValue to the corresponding
function state.
0KamAccPutFunction
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-31 2 In Function ID number
iFunction int 3 In Function value
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum for this decoder is given by
KamAccGetFunctionMax.
3 Function active is boolean TRUE and inactive is
boolean FALSE.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccPutFunction takes the decoder object ID, a function
ID, and a neW function state as parameters. It sets the
speci?ed accessory database function state to lFunction.
Note: This command only changes the accessory database.
The data is not sent to the decoder until execution of
the KamCmdCommand command.
0KamAccPutFunctionAll
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iValue int 2 In Pointer to function state

array
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Each bit represents a single function state.
Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccPutFunctionAll takes the decoder object ID and a
bit mask as parameters. It sets all decoder function
enable states to match the state bits in iValue. The
possible enable states are TRUE and FALSE. The data is
not sent to the decoder until execution of the
KamCmdCommand command.
OKamAccGetFunctionMax
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
piMaxFunction int * 0-31 2 Out Pointer to maximum

function number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccGetFunctionMax takes a decoder object ID and
pointer to the maximum function number as parameters. It
sets the memory pointed to by piMaxFunction to the
maximum possible function number for the speci?ed
decoder.
OKamAccGetName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
pbsAccNameString BSTP * 2 Out Accessory name
1 Opaque object ID handle returned by

10

15

20

25

30

35

40

45

50

55

60

65

30

-continued

APPLICATION PROGRAMMING INTERFACE

KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccGetName takes a decoder object ID and a pointer to
a string as parameters. It sets the memory pointed to by
pbsAccNameString to the name of the accessory.
0KamAccPutName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
bsAccNameString BSTR 2 In Accessory name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccPutName takes a decoder object ID and a BSTR as
parameters. It sets the symbolic accessory name to
bsAccName.
0KamAccGetFunctionName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-31 2 In Function ID number
pbsFcnNameString BSTR * 3 Out Pointer to
function name

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum for this decoder is given by
KamAccGetFunctionMax.
3 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range Description'
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccGetFuncntionName takes a decoder object ID,
function ID, and a pointer to a string as parameters. It
sets the memory pointed to by pbsFcnNameString to the
symbolic name of the speci?ed function.
0KamAccPutFunctionName
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-31 2 In Function ID number
bsFcnNameString BSTR 3 In Function
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum for this decoder is given by
KamAccGetFunctionMax.
3 Exact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccPutFunctionName takes a decoder object ID, function
ID, and a BSTR as parameters. It sets the speci?ed
symbolic function name to bsFcnNameString.
OKamAccRegFeedback
Parameter List Type Range Direction Description'
lDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 1 In Server node name
iFunctionID int 0-31 3 In Function ID number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
3 Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description
iError short 1 Error flag
1 iError' = 0 for success. NonZero is an error number

US 6,530,329 B2
31

-continued

APPLICATION PROGRAMMING INTERFACE

(see KamMiscGetErrorMsg).
KamAccRegFeedback takes a decoder object ID, node name
string, and function ID, as parameters. It registers
interest in the function given by iFunctionID by the
method given by the node name string bsAccNode.
bsAccNode identi?es the server application and method to
call if the function changes state. Its format is
“\\{Server}\{App}.{Method}” Where {Server} is the server
name, {App} is the application name, and {Method} is the
method name.

OKamAccRegFeedbackAll
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccRegFeedbackAll takes a decoder object ID and node
name string as parameters. It registers interest in all
functions by the method given by the node name string
bsAccNode. bsAccNode identi?es the server application
and method to call if the function changes state. Its
format is “\\{Server}\{App}.{Method}” Where {Server} is
the server name, {App} is the application name, and
{Method} is the method name.
OKamAccDelFeedback
Parameter List Type Range Direction Description
lDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
iFunctionID int 0-31 3 In Function ID number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
3 Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccDelFeedback takes a decoder object ID, node name
string, and function ID, as parameters. It deletes
interest in the function given by iFunctionID by the
method given by the node name string bsAccNode.
bsAccNode identi?es the server application and method to
call if the function changes state. Its format is
”\\{Server}\{App}.{Method}” Where {Server} is the server
name, {App} is the application name, and {Method} is the
method name.

OKamAccDelFeedbackAll
Parameter List Type Range Direction Description'
lDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamAccDelFeedbackAll takes a decoder object ID and node
name string as parameters. It deletes interest in all
functions by the method given by the node name string
bsAccNode. bsAccNode identi?es the server application
and method to call if the function changes state. Its
format is “\\{Server}\{App}.{Method}” Where {Server} is
the server name, {App} is the application name, and
{Method} is the method name.
A. Commands to control the command station

This section describes the commands that
control the command station. These commands do things

10

15

25

35

45

55

65

32

-continued

APPLICATION PROGRAMMING INTERFACE

such as controlling command station poWer. The steps to
control a given command station vary depending on the
type of command station.
OKamOprPutTurnOnStation
Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamOprPutTurnOnStation takes a logical port ID as a
parameter. It performs the steps necessary to turn on
the command station. This command performs a combination
of other commands such as KamOprPutStartStation,
KamOprPutClearStation, and KamOprPutPoWerOn.
OKamOprPutStartStation
Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamOprPutStartStation takes a logical port ID as a
parameter. It performs the steps necessary to start the
command station.
OKamOprPutClearStation
Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error ?ag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamOprPutClearStation takes a logical port ID as a
parameter. It performs the steps necessary to clear the
command station queue.
OKamOprPutStopStation
Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamOprPutStopStation takes a logical port ID as a
parameter. It performs the steps necessary to stop the
command station.
OKamOprPutPoWerOn
Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamOprPutPoWerOn takes a logical port ID as a parameter.
It performs the steps necessary to apply poWer to the
track.
OKamOprPutPoWerOff
Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. NonZero is an error number

(see KamMiscGetErrorMsg).
KamOprPutPoWerOff takes a logical port ID as a parameter.
It performs the steps necessary to remove poWer from the
track.

