
Product Review
HahtSite 4.0

A report by
TechMetrix Research

T A B L E O F C O N T E N T S

1. PRODUCT PROFILE ..3

2. PERFORMANCE MEASUREMENTS..7

2.1. INTRODUCTION...7
2.2. RESULTS ...11

3. FUNCTIONAL EVALUATION ...17

3.1. INTRODUCTION...17
3.2. DEVELOPMENT ENVIRONMENT QUALITY AND RICHNESS ...17
3.3. HTML INTERFACE GENERATION ...23
3.4. JAVA GRAPHICAL INTERFACE GENERATION...26
3.5. IDE PRODUCTIVITY FOR SERVER PROCESSING...27
3.6. APPLICATION SERVER ...32

4. ANNEXES...36

4.1. WORKLOAD METHODOLOGY...36
4.2. FUNCTIONAL EVALUATION CRITERIA ..41

Product profile

© TechMetrix Research 1999 3

1 . P r o d u c t p r o f i l e

Identification
Product composition HahtSite IDE and Application Server

Release 4.0

DBMSs supported Oracle, Sybase, Informix, MS/SQL Server, all ODBC and JDBC

Development platforms HP UX, Solaris Sparc, AIX, NT 4

Deployment platforms Same as development platform

Editor Haht Software

Haht Software is an American company created in 1995 by the founders of Q+E Software.
Their product, HahtSite, is a complete tool for transactional Web application development and
deployment. Thanks to a development environment with an integrated HTML WYSIWYG
graphics editor and an application server, HahtSite makes for good productivity right from the
beginning of the learning phase.

Simplicity and comprehensiveness were the two main strengths of previous releases of HahtSite. With a
script-oriented application server, a development tool that was both rich and intuitive, HahtSite seemed to
be one of the market leaders in this category. Since then however, the product has been beefed up quite
a bit and HahtSite is now playing in the big leagues. The first step in this transition was allowing server-
side load balancing and thus no longer limiting processing to one physical machine. Then, the arrival of
Java as a potential development language facilitated openness to existing information systems. Although
release 3.1 only offered a hybrid solution based on HahtTalk (version adapted from Microsoft VBA),
release 4 leaves the choice between HahtTalk scripting language and Java object language entirely up to
the developer.

At the same time, HahtSite benefited from other important improvements, notably concerning the
application server. For example, session failover support guarantees great availability for the deployed
applications. Other elements, presented as complementary modules, make interfacing with Tuxedo,
accessing CICS mainframes and reusing SAP applications possible. It is unfortunate that most of these
interfaces, called ESMs, are presented as components to be downloaded from the Haht Software Web
site. This factor prevents HahtSite from being a true packaged product. On the other hand, if we look at
the interface offered on the client station, we can see that HahtSite is entirely dedicated to HTML interface
applications.

The richness in terms of deployment and development can be seen in the functional evaluation conducted
for this report. With the exception of Java interface generation, a problem it is not designed to handle,
HahtSite received above-average marks in all of the evaluated areas. In terms of productivity, HahtSite’s
greatest strength remains its HTML page design workshop. This workshop makes graphically creating
high-quality HTML dynamic pages possible while allowing for the import/export of these pages from your
favorite design tool. The development environment can be characterized by its simplicity. However, it still
has some shortcomings in terms of its integration with other tools (modeling tool, project management,
etc.), which keeps it from being a true AGL. Finally, to improve productivity, HahtSite provides relatively
complete tools (debugger, source editor, etc.) which are a definite plus when creating specific processes.

The application server also obtained good results. As it was one of the weak points in past releases the
editor made considerable efforts to help HahtSite move up a notch. Whether it be database access,
language richness with high-level generic methods or its deployment potential, HahtSite has certainly

Product Review: HahtSite 4.0

4 © TechMetrix Research 1999

made a lot of progress. The only lack is in terms of its openness to existing elements, which is for the most
part due to the need to use ESMs that are not integrated into the packaged product.
Regarding performance, HahtSite, with an application entirely developed with Java, supported perfectly a
workload of 200 concurrent robots. On neither HTTP request or database transaction level did an error
occur. The response times recorded during the most sustained tests were good; while with a single-user
configuration they were mediocre for the chosen physical configuration. But the most important point
remains the application’s behavior during heavy use and in this context, HahtSite proves to be very good.
This problem comes mostly from the deployment configuration, where with a database connection per
user, the limitations could be seen during real-world business deployment (the number of database-
authorized licenses is rapidly exhausted if several applications access the same RDBMS).

In conclusion, HahtSite is without a doubt, from a technical point of view, one of the most mature and
complete environments available in the area of Intranet application servers. Offering most of the basic
services necessary to implement complex applications, thanks in particular to the application server’s
completeness, HahtSite can today be considered as a viable business solution. In addition, its
complementarity with its editor’s development tool makes it a complete product that covers the entire
development cycle, from the design stage to the administration phase. The biggest weakness of HahtSite
concerns its durability as the deployed applications could be in the balance should the company be
purchased.

Architecture

W
eb

 S
er

ve
r

CGI

ISAPI

NSAPI

Native,
ODBC,
JDBC

BROWSER

D
is

p
at

ch
er

Tuxedo,
DB2, CICS,

SAP...

Database

ESMPcode
(Java or
VBA) +
HTML

JVM

Scripting Server

HTTP

HahtSite respects the idea of universal client. An HTML interface is offered during deployment, while the
proprietary modules remain server-side. Here, the freedom to choose between the house VBA and Java
allows the tool to adapt to different profiles and different functional needs. HahtSite makes it possible to
spread different application processes across different physical servers and opens itself up to the
information system of a business thanks to ESMs.

The Pros The Cons
4 Help in creating an HTML interface

4 Ease of learning and use

4 Failover strength

4 Presence of two languages

4 Lacks API richness

4 No object modeling tool

4 Not open to Java graphical interfaces

Product profile

© TechMetrix Research 1999 5

Functional Evaluation

Interface
positioning

0

5

10

0 5 10

HTML Interface

Ja
va

 I
n

te
rf

ac
e

Overall rating

HTM L

J A V A

Application server
positioning

0

5

10

0 5 10
Productivity

P
o

te
n

ti
al

Overall Rating

Potential

Productivi ty

As we can clearly see in the first positioning graph, HahtSite is dedicated to HTML intranet application
elaboration. With a rating of 0, Java interface is not really the tool’s strong point. However, HahtSite’s
results in terms of HTML interface generation and assistance make it one of the best on the market. In
regards to server-side possibilities, HahtSite release 4.0 offers even more than its forerunners. It is the
addition of Java as an alternative to HahtTalk Basic in its latest release that will allow HahtSite to attack a
bigger market as a serious candidate for large enterprise projects. Its average rating of 8 out of 10 in this
area proves this point. Beyond the application server’s potential, it is important to note the development
tool’s productivity, as it makes quickly putting complex applications into place even easier.

Productivity

6 , 3

6 , 6

9 , 6

0 , 0

0 5 10

A.S. productivity

 Java interface

 HTML interface

IDE quality and richness

Application Server

6 , 9

7 , 9

8 , 8

0 5 10

RDBMS access

Deployment

Language richness, openness

Completeness is one of HahtSite's best qualities. In terms of IDE, the developer has on hand many assets
to be productive quickly. The only thing missing is a greater openness to complementary tools (search
engines, modeling tools, etc.) to broaden the development environment’s overall potential. Furthermore,
with the exception of Java interface generation for which HahtSite is not designed, the product provides
good productivity.

The application server can be characterized by the richness of its programming languages (Java and
HahtTalk) and good openness to other RDBMSs. But HahtSite’s biggest force resides in its deployment
potential, with high application availability via the possibility of session-level failover. This strong
characteristic of top-of-the-line environments is thus installed in a historically script-type environment
which allows to best reconcile simplicity and performance. The only lack is in terms of API richness and
openness, as low-level, fastidious programming is often necessary to meet specific needs.

Product Review: HahtSite 4.0

6 © TechMetrix Research 1999

Performances

180
This is the number of dynamic HTML pages delivered per second by the HahtSite
application server during the running of a “mixed” scenario (stringing together of 8
modules) with concurrent use of the application by 200 robots.

The HahtSite application was deployed
on the platform without any difficulty.
The first tests showed the application
server’s solidity, as it didn’t show the
slightest sign of weakness even with the
maximum workload. No error interfered
with this stage of the tests.

RELIABILITY

100%

HTTP Errors :
0

DBMS Errors :
0

HahtSite’s behavior during workload
tests reveals the reliability and
consistency of the application server.

The drop in server-side performance is
only slight (191 and 180 pages/second
during the transition from 50 to 200
robots), which means that heavy use of
the server does not result in a
debasement of behavior.

Transaction Rate

1 8 0
1 8 81 9 1

4 6

5

0

50

100

150

200

1 10 50 100 200

Number of robots

P
ag

es
/s

ec
o

n
d

With a single-user configuration,
HahtSite takes 5.1 seconds to deliver 24
HTML pages, which is not particularly
quick considering the material
configuration. With 10 robots, application
servers and data are better used
because there is hardly any deterioration
from the user’s point of view. This is also
true with 50 concurrent robots. Then, the
deterioration of response time is in
proportion to the increasing number of
robots.

Response time/scenario

5 . 1

5 . 2

6 . 3

1 2 . 8

2 6 , 7

0 5 10 15 20 25 30

N
u

m
b

er
 o

f
ro

b
o

ts

Seconds

200

100

50

10

1

Technical profile
Development license Approximately $2,000 per developer

Deployment license Approximately $7,500 for 25 connected users (then from, on average, $150 per
additional user depending on the bracket, tapering charges)

Configuration used for evaluation HahtSite 4.0 for Windows NT 4.0 workstation

Complementary modules ESM NLS (multilingual), ESM for Crystal Report, ESM for Adobe Acrobat

Performance measurements

© TechMetrix Research 1999 7

2 . P e r f o r m a n c e m e a s u r e m e n t s

2 . 1 . I n t r o d u c t i o n

2.1.1. Carrying out of measurements

The performance measurements are carried out on an application developed by the editor.
This application is installed on the TechMetrix platform and subjected to sustained workload
increases in order to assess and analyze the application server’s behavior in extreme
conditions. All measurements are carried out by TechMetrix consultants. After that,
optimizations made on the premises by the editor are evaluated. The complete specifications
of the application tested can be downloaded from the TechMetrix Web site.

DBMS
Server

Bi Xeon
(2 * 400 Mhz)

1 Go RAM
DELL PowerEdge 6300

Measurement station
• Performance monitor
• Network monitor

Processing
Server

Quadri Xeon
(4 * 500 Mhz)

1 Go RAM
DELL PowerEdge 6300

2 SilkPerformer Agents 1 SilkPerformer Controler
• Response time measurements PIII 450 128 Mo RAM
 PIII 450 128 Mo RAM

3 Test Robots

Ethernet Network
10 BaseT

Platform used for performance measurements

Product Review: HahtSite 4.0

8 © TechMetrix Research 1999

Ø Two types of measurements :

The application is broken up into eight distinct modules (or units), each of which represents
one of the main needs of transactional intranet applications. Each model is characterized by
its focus on a specific intranet need (simple search, update, calculations, etc.) while
remaining as simple as possible in order to put forward, in a precise manner, each of the
elements to be analyzed

A robot, which simulates an application user, carries out the modules in a predefined order
several times. The term “scenario” refers to the unitary stringing together of modules;
repeated many times in order to obtain an overall average time that is representative of the
length of time required to carry out a scenario. During workload increases, each robot carries
out the same scenario to simulate a sustained load equivalent to several concurrent users.

The «mixed » scenario:

In this context, the scenario consists in stringing together each module of the application.
Each robot carries out the first module, followed by the second module and so on and so
forth until the eighth module. Once module 8 is completed, the total time needed to carry out
all of the modules is noted. This is the time required to complete this scenario. We should
note that step 7, which only consists in storing information in memory, is carried out nine
times.

Once the total scenario time has been recorded, the robot carries the scenario out again and
again for several minutes. The average time is then recorded. This represents the single-user
measurement.

U1U1 U2U2 U4U4 U5U5 U6U6 U7U7 U8U8

9 times

Top departure Top arrival
Measurement analyzed (in seconds)

U3U3

Description of “mixed” scenario with eight modules

For workload increases, the same operation is carried out successively with 10, 50, 100 and
200 robots that concurrently launch the same scenario (stringing together of eight modules).
The average measurements are then recorded and correspond to the average response time
needed per robot to complete a scenario.

The «independent » scenarios:

The “mixed” measurements can have some fringe effects on measurement analysis by
saturating part of the application server (memory, HTTP server response, CPU consumption,
etc.) and thus resulting in artificially long response times for some modules. To underline the
product’s real potential regarding certain criteria, workload was only increased in modules 4,
5 and 7. In this context, each robot will repeatedly complete module 4 only several times.
Then once the times have been recorded, all of the robots are started again and carry out the
next module, 5, and then only module 7.

Performance measurements

© TechMetrix Research 1999 9

For each module, load increases are carried out with 10 and 50 concurrent robots. At one
instant “t”, all of the robots carry out the same module, in other words, first 4, then 5 and lastly
7.

2.1.2. Analysis of the results obtained

All of the measurements, times, behaviors, etc. are deduced from the physical configuration
of the TechMetrix platform and according to the application tested. It is for this reason, that
even if this context tries to be as representative of real world business needs as possible, all
of the results must nonetheless be situated in our specific context (See the sections Platform
and Annexes).

Ø Reliability (HTTP / SQL)

This is by far the most important point, as it indicates whether or not the application deployed
was able to support sustained workload increase without showing sign of weakness. To make
this assessment, we analyze the number of HTTP requests that are simulated by the robots
carrying out a scenario. We then compare this number of HTTP requests with the number of
those actually sent and check the database to see if all the database transactions were
indeed recorded.

Ø Measurements (time / transaction rate and flow)

The measurements obtained are presented in three ways:

• The response time: the average times obtained for a robot to complete a scenario.
Detailed measurements for each module are also given for information purposes. These
times are those of a robot, in other words, the average time a user will have to wait to
complete a scenario in its entirety.

• The transaction rate: knowing the number of HTML pages that are produced to run a
scenario, the number of pages per second is calculated using the average time needed
to carry out a scenario. Here, the number presented is the number of pages delivered or
the number of scenarios completed by the application server in one second. This
measurement gives a good idea of the number of dynamic pages delivered by the
application server and of the number of pages that a user receives per second.

• The transaction flow: the flow provides information on the processing time of one dynamic
HTML page. The “user” axis indicates the latency period for the display of an HTML page
while the “server” axis represents the amount of time that the server needs to deliver a
dynamic HTML page. As soon as there are several robots, the results on these two axes
differ.

Product Review: HahtSite 4.0

10 © TechMetrix Research 1999

Ø Configuration (database connections, number of processes, number of threads per process)

Here we provide information on the program architecture that the editor implements to get the
most out of his application server. These are interesting points that can be used to judge the
application server’s possibilities on this level and to better analyze the results obtained. In
addition, they make it possible to assess the potential behavior of a tool when faced with
much larger workload increases and identify potential bottlenecks in different physical
configurations.

Ø Consumption (memory, CPU)

The CPU and memory consumption of the two servers used is presented here. One physical
machine is used as both an HTTP server and an application server, while the other acts as
the database. CPU and memory consumption make deducing the physical configuration
required for the application server tested quite simple, in relation to the number of expected
concurrent users.

Performance measurements

© TechMetrix Research 1999 11

2 . 2 . R e s u l t s

2.2.1. Synthesis of the results

The application was entirely made with Java. Development complies, for the most part, with
traditional HahtSite development. Only the “DataAgents”, IDE objects that facilitate the link
between form data and the database request results were not kept.

Ø Reliability

Average 1 robot 10 robots 50 robots 100 robots 200 robots

HTTP re l iabi l i ty
100% 100% 100% 100% 100%

Database
transact ions 100% 100% 100% 100% 100%

The workload increases went off without a hitch with HahtSite. Whether it be in terms of
deployment, the running of the application or the application’s reliability with maximum
workloads, no problem was encountered. With 200 concurrent robots, which represent
roughly 1000 concurrent users in a real-world configuration, we can seriously talk about the
good reliability of HahtSite’s application server for an application with a high rate of usage.

Ø Analysis of user-side results

Average 1 robot 10 robots 50 robots 100 robots 200 robots

Response t ime per 24-page
scenar io (in seconds) 5.1 5.2 6.3 12.8 26.7

Response t ime per page
(in seconds) 0.2 0.2 0.3 0.5 1.1

We notice that with one, 10 or even 50 concurrent robots, the response times are practically
the same. This highlights the relative slowness of the application server in a single-user
configuration. The response times with a single robot are around 5 seconds for completion of
a scenario (stringing together of 8 modules, or 24 dynamic pages), which is rather slow
considering the physical configuration used.

With 50 robots, the times are practically identical, which is more than satisfactory at this level.
After that, during the transition to 100 and then 200 robots, we run into a bottleneck that
results in an increase in response time in direct proportion to the growing number of robots.

Product Review: HahtSite 4.0

12 © TechMetrix Research 1999

This consistency is extremely important as it shows the tool’s capacity of supporting heavy
use in a satisfactory manner.

Ø Analysis of server-side results

Average 1 robot 10 robots 50 robots 100 robots 200 robots

Transact ion rate (pages
del ivered per second) 5 46 191 188 180

Transact ion f low (t ime in
seconds between del ivery
of two pages)

0.212 0.022 0.005 0.005 0.006

With 200 robots, the rate of dynamic HTML pages delivered by the HahtSite application
server is roughly one page every 6 thousandth of a second. Even without using additional
servers dedicated to HTTP server management or complementary modules, this already
represents such a configuration in a particularly sustained usage situation.

From 50 concurrent users on, the transaction rate remains more or less stable (from 191 to
180 pages per second, or 7.9 to 7.5 complete scenarios), which goes to show the strength of
the application server. In fact, it is with a single-user configuration that HahtSite has the most
trouble using the physical configuration available.

2.2.2. General characteristics

Configuration 1 robot 10 robots 50 robots 100 robots 200 robots

Number of open
connect ions to Oracle
database

1 10 50 100 200

Number of instances
(or processes) started 8 8 8 8 8

Number of threads per
instance 1 1 1 1 1

Performance measurements

© TechMetrix Research 1999 13

The deployment configuration chosen for the application is very simple. Indeed, the number
of database connections is directly linked to the number of application users, while the
number of launched instances (or processes) and threads per instance remains steady
throughout the tests.

For database connections, this solution presents some disadvantages with regard to the use
of a connection pool that makes limiting the slots to a RDBMS possible. Systematic
connection can indeed pose problems in terms of the amount of server-side memory used or
the blocking of some users if the maximum number of connections has been reached. Even if
connection pooling is supported in HahtSite release 4, the editor opted for the systematic
connection solution.

In terms of launched instances, the small number (eight) saves server-side memory and
leaves the machine available for other tasks. The other advantage concerns the ease of the
application’s administration, as it need not be configured in relation to the number of users
present at a given instant. The configuration tested on our platform addresses most issues
and can thus satisfy applications destined to accommodate approximately one to 1000 (or
even more) concurrent users.

Ø CPU and memory consumption with 200 robots

CPU consumption (2*400 MHz) and memory used (1 Go of RAM) on the database server (in %)

Product Review: HahtSite 4.0

14 © TechMetrix Research 1999

CPU consumption (4*500 MHz) and memory used (1 Go of RAM) on the processing server (in %)

The above graphs clearly show at which workload level the bottleneck occurs. With 200
concurrent users, it is the processing server’s quadri processor (HTTP server and application
server) that is saturated. The four Xeon processors (P3 at 500 MHz) also find themselves
practically 100% occupied. Moreover, only 150 MB of RAM are required on this server. On
the database, the two Xeon processors (frequency of 400 MHz) are only 10-15% engaged,
while 150 MB are also required. It should be noted that at this level, the use of an Oracle 8
database significantly reduces consumption, as an Oracle 7 database already took up 700 Kb
* 200 connections ⇒ 140 MB for the database connections alone.

Ø CPU consumption with 10 then 50 robots on the processing server

CPU consumption (4*500 MHz) on the processing server (in %)

This graph highlights from which point on the bottleneck appears. With 10 robots, processing
server’s four processors are nearly 70% available. However, with 50 concurrent robots, the
limit of maximum use is already reached.

This thus explains the results obtained and confirms why the response times worsen starting
with 50 robots and then practically double. It is indeed from this point on that distributing
processes between other physical machines should be considered in order to guarantee
equivalent performance.

Performance measurements

© TechMetrix Research 1999 15

2.2.3. Table of results

Ø Average time, in seconds, for each module of the “mixed” scenario

Modules

Number of robots 1 2 3 4 5 6 7 8
1 robot 0.24 0.24 0.24 0.41 0.39 0.62 2.24 0.66
10 robots 0.63 0.24 0.27 0.41 0.42 0.65 1.85 0.68
50 robots 0.43 0.38 0.33 0.44 0.54 0.94 2.26 0.94
100 robots 1.48 0.92 0.65 0.68 0.97 1.76 4.59 1.68
200 robots 4.09 2 1.36 1.4 2.01 3.43 9.15 3.24

The average times obtained per module logically go up with the number of robots. We found
nonetheless two situations in which this is not the case. Firstly, the mean time to complete
module 1 is longer with 10 robots (0.63 second) than with 50 (0.43 second). This can be
explained by the latency periods caused by the other robots that fluctuate in relation to robot
use, thus shifting idle time. Module 7 was completed more quickly with 10 robots (1.85
seconds) than with one robot (2.24 seconds). In this case, as we will see below, the
explanation lies more with the reuse of session-related objects.

Ø Average time, in seconds, for modules 4, 5 and 7 (independent scenarios)

Modules

Number of robots 4 5 7
1 robot 0.41 0.39 2.24
10 robots 0.41 0.4 1.97
50 robots 0.58 0.24 0.97

In analyzing these measurement details, we can see that larger the number of robots, better
the response time for module 7. Given that there are 8 instances of launched applications per
measurement, increasing the number of robots results in the reuse of session objects by
several robots, which means a reduction in the average response times. However, only
extremely in-depth analyses would allow us to explain HahtSite’s behavior during module 5
(insertions and data updates), during which better response times are obtained with 50
automates than with 10.

Product Review: HahtSite 4.0

16 © TechMetrix Research 1999

Ø Distribution of time per module

Distribution of time between 8 modules
(200 robots)

5.2%

5.1%

7.5%

15.3%

12.9%

7.5%

12.1%

34.3%

1

7

8

6
5

4

3

2

Distribution of response time between the 8 modules of a
with 200 robots (in %)

Module 7 uses the most time during the tests. However, the nine passages of this module
(designed to inflate the context for a mass insertion in module 8) generate 10 dynamic HTML
pages (module initialization, followed by 9 result pages). Thus, if we divide the time obtained
by 5 (2 pages for the other modules), module 7 of context management is not greedier than
the other modules.

In fact, it is therefore module 1 (large select in the database) and module 6 (algorithm) which
take the most time. However, the distribution is relatively consistent and HahtSite does not
present any weak point in particular.

Functional evaluation

© TechMetrix Research 1999 17

3 . F u n c t i o n a l e v a l u a t i o n

3 . 1 . I n t r o d u c t i o n

Created in 1995 by the founders of Q+E, Haht Software, the Raleigh, NC-based company
offers HahtSite, an environment dedicated to the development and implementation of intranet
applications. The release discussed in this study is HahtSite 4.0, on the market since
February 1, 1999.

3 . 2 . D e v e l o p m e n t e n v i r o n m e n t q u a l i t y a n d
r i c h n e s s

3.2.1. Installation

Ø Product description

In this release, HahtSite includes:

• a development tool or IDE (Integrated Development Environment)
• an application server reserved for tests
• the HTTP server, Apache 1.3.4

We will come back to the installation of a distributed application server in the chapter devoted
to deployment.

Ø Prerequisites

The development tool can be installed on either Windows 95/98 or Windows NT 4.0. The PC
must have at least a Pentium 90 with 32 MB of RAM and 60 MB of free space on the hard
drive.

It is recommended to have a browser and possibly an HTTP server should you wish to use
something other than Apache 1.3.4 that is provided with the HahtSite product.

It is equally recommended to have a pre-installed JDK, especially if you wish to develop with
Java. Nonetheless, these products can be installed later, but will thus necessitate
configuration of the IDE and the application server.

Product Review: HahtSite 4.0

18 © TechMetrix Research 1999

Ø Procedure

The installation program (“InstallShield”) begins by updating the JVM, if necessary, by
installing Microsoft’s version 5.00.3165.

The «complete distribution » option begins by installing Apache 1.3.4, and then the IDE by
selecting the default browser that will be used to display pages (Netscape or Internet
Explorer).

Finally, comes the installation of an application server dedicated to testing with automatic
detection of previously-installed HTTP servers and publication site configuration.

Ø Documentation and tutorials

The printed documentation is quite good and often includes code examples. It is made up of
the following volumes:

• for the IDE : installation manual, programming manual, user’s manual and a Widget
programming manual

• for the application server: installation manual and an administration manual, which is also
available in PDF or by download from the Haht Software Web site (www.haht.com)

HahtSite Tutorial

A complete tutorial, in “Shockwave” format, provides a presentation of the product and a
complete lesson in HTML format. The tutorial is made up of 11 lessons which become
progressively more difficult as well as two applications (VB and Java) which group together a
large part of tool’s features.

After a few hours, the user succeeds in creating a small application and gets a good idea of
the tool’s features.

Functional evaluation

© TechMetrix Research 1999 19

3.2.2. Composition of the product

Ø A complete environment

The development tool offers a good level of integration, grouping together the following on
the same IDE:

• HTML pages (static or dynamic)
• images (GIF, JPEG or PNG)
• style sheets (CSS1)
• client script files (JavaScript and/or VBScript)

• processing files (Java and/or VB)
• reusable HTML components («Clips »)
• publication sites

• database connections
• Widgets (server-side, code-generating components)

All of these objects are compiled on the project explorer; it is possible to create repertories to
regroup components by generic theme.

Depending on the project component, the editor plays the role of:

• an HTML WYSIWYG editor
• an HTML tag editor
• an image editor

• a client script editor
• server-side source code editor (VB or Java)

Only the image map editor is an external application, but it has a good level of integration
with the IDE.

Product Review: HahtSite 4.0

20 © TechMetrix Research 1999

The IDE allows for the creation of HTML pages and server-side source code (VB and/or Java)

Ø Openness to third-party tools

HahtSite does not provide developers with profile features, work group or versioning tools.
However, it enables interfacing, with a good level of integration, with Microsoft Visual Source
Safe but also with Merant Intersolv PVCS, StarBase StarTeam and MKS Source Integrity.

To create multilingual applications, HahtSite offers the use of ESM (Enterprise Solution
Module) NLS 3.0 (National Language support), which is downloadable from the Haht Web
site. This tool is based on a dictionary that can be enhanced with an editor. The translation
language is deduced in relation to the browser configuration or it can be imposed during page
loading.

HahtSite does not possess an HTTP-specific server. The application server is HTTP/1.1
client and thus recognizes most of the Web servers on the market: Apache, Microsoft,
Netscape, Oracle Web Request Broker, etc.

To create reports, HahtSite offers “ESM for Seagate Crystal Reports” which allows for easy
integration of reports coming from Seagate Crystal Reports 5.0 or higher. Another ESM
makes generating dynamic reports possible. This offers the possibility of browsing all of the
data in Adobe Acrobat (.PDF) and even modifying it provided the user have Adobe Acrobat
Exchange.

Functional evaluation

© TechMetrix Research 1999 21

Ø Incomplete building blocks

With regard to data modeling, whether it be Merise, UML or other, HahtSite does not possess
tools and does not offer an interface with another market tool such as Power AMC, Rational
Rose, Mega, etc. This clear-cut separation between modeling and creation is attributed to the
business object aspect that one can expect from a tool based on an object language such as
Java.

The development tool does not possess a true SQL editor to run SQL queries or to create
stored procedures. In fact, there is a trick that allows us to go through a shared query, but the
ergonomics of such a solution is questionable. In any case, if the application structure is
based on stored procedures, a creation tool, modification and deployment of stored
procedures are indispensable.

If the application requires a search engine, it is necessary to turn to the complementary HTTP
server or to another product on the market.

3.2.3. Evaluation

Ø Learning process

The product’s installation (IDE and development application server as well as definition of a
publication site) should not take more than half a day, even for a novice.

Thanks to tutorials with a thorough and convivial interface, learning to use the development
tool is not difficult.

Those having experience with the previous release (3.1) are not destabilized; general
ergonomics is more or less the same and the new features integrate without any unpleasant
surprises.

Ø Summary

The development environment provides a good balance between functional richness,
cohesion between the elements that make it up and simplicity of implementation.

The only hitches that demanding developers will find concern the lack of modeling tools
(object or relational), openness to other market tools, and an exhaustive dictionary that would
have the role of establishing cross references between all objects of an application (variables,
pages, routines, etc.) and even establish technical documentation.

IDE quality and richness Rating/10
Insta l la t ion, learning process, s impl ic i ty 8.8
Completeness of the product , openness to other
tools 4.5

Product Review: HahtSite 4.0

22 © TechMetrix Research 1999

The ease of installation and learning as well as the simplicity and ergonomics make for a
promising first contact with the client.

The product’s completeness has some shortcomings, notably its lack of a dictionary; also
some modules such as the report tool (under a form other than HTML) and multilingual
support are available as ESMs.

ESM designates all the modules that Haht Software provides by download from its Web site
(http://www.haht.com) and which fill the roles of some of the development tool’s missing
features. The interest of such a solution is that each person can enhance the standard
product with the modules that interest him. Each module is designed with a sufficiently
modular logic and offers a number of parameters. However not all ESMs offer the same level
of integration with the development environment and the “hot line” is not always guaranteed.

There are ESMs in different areas:

• report editing to create dynamic forms in PDF format (in Adobe Acrobat)

• e-commerce application access security
• LDAP feature support (single sign-on, workflow, etc)
• openness to Notes
• openness to mainframes by Shadow Direct (Neon Systems)

• multilingual support with NLS (National Language Support)
• openness to SAP R/3
• integration of reports in Seagate Crystal Reports format

Functional evaluation

© TechMetrix Research 1999 23

3 . 3 . H T M L i n t e r f a c e g e n e r a t i o n

3.3.1. HTML interface design and optimization

Ø HTML page creation

The HTML page editor provides a WYSIWYG mode. Page creation is made considerably
easier by the presence of a palette containing the standard form fields (static text, text box,
button, checkbox, etc.) and a dialogue box allowing for definition of their properties.

HahtSite provides page creation wizards (connection, master/detail, form, and list); they are
configurable and can be modified after their generation. One can complete the list by adding
one’s own page templates; the page template is not part of the project, but its availability
depends on the path configured in the IDE options.

To easily put headers and footers in place (or any other bit of HTML code that is recurrent on
all pages) the best solution is to define “Clips” and place them on HTML pages. Any change
to a clip is made to all pages containing it.

Style Sheets are another feature destined to optimize and homogenize HTML interface
creation. HahtSite fully supports W3C’s CSS1 recommendation (and CSS2 partially) and
offers an editor for creating style sheets.

Style sheets creation window

Product Review: HahtSite 4.0

24 © TechMetrix Research 1999

An import feature makes integrating a page or a repertory into a project possible. All pages,
even those imported, can be displayed in tag form. The editor thus offers syntax coloring and
validates the HTML code entered. In this way, one keeps total control over the HTML. The list
of HTML tags and the associated values can be accessed from the form field properties.

Table creation is incredibly simple. It is possible to include a table in a cell and merge cells
horizontally and vertically.

The image editor recognizes GIF, JPEG, and PNG formats. Even though an image map
editor is not integrated into the IDE, it allows for references to be made to project
components.

A spell checker allows for the verification of a selected page or section of text.

Finally, if despite all the features offered you wish to insert a Java applet or a multimedia
component (LiveAudio, LiveVideo, QuickTime, RealAudio, Shockwave), HahtSite offers a
wizard that helps you configure the object. For an ActiveX object, it is necessary to use the
Widget with the same name.

Ø Client-side processing

In addition to the HTML properties of a form field, it is possible to define the field validation
criteria.

Dialogue box allowing for the generation of input control JavaScript code

The associated JavaScript features are thus generated within the HTML page.

Note: it is possible to personalize the generated JavaScript source code by modifying the files
that are found in the repertory HAHTSiteIDEpath\scripts\FieldVal (to send messages back in
a specific language for example).

Functional evaluation

© TechMetrix Research 1999 25

HahtSite provides help with client script input by recovering the page’s DOM (Document
Object Model) as a hierarchical tree structure: the client script explorer. Here all of the
possible page and present field attributes, methods and events can be found, with an
indication regarding their compatibility with the main browsers on the market (Netscape
Navigator 2.0 and 3.0, Netscape Communicator 4.0 and Internet Explorer 3.0 and 4.0) for
each of them.

The client script explorer possesses a “client-side” node that groups together all of the
JavaScript features defined for the page by the developer.

It is possible to create client script files within the same file. The features contained in this file
will be accessible from any HTML page or script file.

The client script can also be coded in VBScript. However, HahtSite will only generate
JavaScript. It is recommended not to use VBScript except in the case of an intranet
application for which one is 100% sure that the browser target is Internet Explorer.

Finally, the client script can be present directly on an HTML page in WYSIWYG mode. Then
all one has to do is select it and “mark” it as client script: it then appears in a different color.
This manner of coding on the HTML page in WYSIWYG mode can be used for relatively
simple pages. However, it shows its limits with more complex pages, especially if the HTML
page is dynamic, in other words, if the page contains server-side code (see section 3.5, IDE
productivity for server processing).

3.3.2. Evaluation

The automation of HTML interface generation is close to perfection. The presence of wizards,
the possibility to make page templates, to define clips, the CSS1 style sheet support, and
nested table management allows for quick and easy generation of a good quality HTML
interface.

The flexibility and the freedom to choose client script as well as automatic generation of input
controls and the presentation of the page DOM make for good assistance in creating a
thorough and carefully prepared graphical interface.

HTML interface generation Rating/10
Automat ion of HTML interface generat ion 10
Assistance and potent ia l of HTML inter face creat ion 9.2

It is difficult to find a weak point in the HTML interface automation. The possibility of
personalizing wizards would have made the editor impeccable.

With regard to the assistance and potential of HTML interface creation, the only things really
missing are additional Java and ActiveX examples and a more complete HTML tag editor
(completion, tag list, truly contextual assistance).

Product Review: HahtSite 4.0

26 © TechMetrix Research 1999

3 . 4 . J a v a g r a p h i c a l i n t e r f a c e g e n e r a t i o n

3.4.1. Creation of the Java graphical interface

Concerning the graphical interface, HahtSite does not offer an alternative: it will be done in
HTML or it will be done with another tool.

If you want a tool which allows you to use Java for application and applet creation, HahtSite
is not the tool for you as it is difficult to imagine such type of development without a Java
WYSIWYG editor, without a components palette (AWT, JFC, Swing, JBCL, etc), without an
objects inspector, without the possibility of creating JavaBeans or without wizards.

Of course, HahtSite allows for applet creation, but offers no assistance whatsoever. The
developer would have to code everything.

3.4.2. Evaluation

No need to beat around the bush, with HahtSite creating applets is only possible if you are a
Java expert as no assistance is provided.

Java interface generation Rating/10
Automat ion and assistance in e laborat ing Java
graphical inter faces 0

Functional evaluation

© TechMetrix Research 1999 27

3 . 5 . I D E p r o d u c t i v i t y f o r s e r v e r p r o c e s s i n g

3.5.1. Assistance in generating server-side code

With release 4.0 HahtSite adapts even more to Java. Already in release 3.x, it was possible
to include Java classes (source or byte-code) in a project. Now, HahtSite offers the choice
between HahtTalk (which is largely based on Microsoft VBA) and Java as the programming
language.

As soon as the project is created, you must choose between HahtTalk (with the possibility of
including Java code) and a project entirely in Java. No matter the choice, the editor remains
the same for the HTML interface and the server code. In this way, on an HTML page in
WYSIWYG mode, it is possible to make the distinction between free form text, HTML form
fields, client script code in JavaScript and server-side code in HahtTalk or Java.

Display showing both the HTML page and the server-run code

The Privileges intermediary can handle user profile management. Once defined, privileges
can be attributed to different pages. It then suffices to indicate the current privilege level at
session level.

Some wizards make creating page types such as identification pages, or master/detail pages
possible. HahtSite then generates the corresponding server code and allows for the addition
of other processes.

With a concern for modularity, it is possible to create reusable modules called Widgets. Some
are included in the standard product, and a wizard and a volume of the printed
documentation are invaluable sources of assistance in creating new ones.

Product Review: HahtSite 4.0

28 © TechMetrix Research 1999

HahtSite allows for the creation of CORBA objects by defining their IDL, but no assistance is
provided. It is however impossible to create ActiveX components or JavaBeans.

Sending and receiving e-mail is very easy. The objects “smtp” and “pop3” complete this task
once the properties such as the gateway, the addressee and the sender are filled. It is also
possible to attach a document.

Context management is the application server’s responsibility. It is situated on the same level
as two fundamental objects, the application and the session. The application object is
common to all open sessions in an application on the same server. The user context is
managed at the session level. A unique session identifier (StateID) is generated by the
application server during the call for the first dynamic page. URL long or cookies will then
systematically transmit this identifier each time a page is called. This enables the user
context (variables, privileges, parameters, etc.) to be restored. The methods “put”, “get”, and
“remove” make manipulating session object variables possible. Caution: if a dynamic page
contains a link to a static page, the context is lost.

A dynamic page designates any HTML page containing server code. During compilation this
page will generate a byte-code file (.hbb for HahtTalk, .class for Java) that the application
server’s interpreter can run.

In looking at the server-side source code, we can see that the principle of dynamic pages is
to reproduce HTML code in the HTTP flow by the intermediary of the instruction “print”.

When sending files (text, images, etc.) from the client station to an application server, it is
necessary to use the File Upload mechanism. HahtSite offers a form field in its HTML
components palette. In addition, an example that inserts an image in the database is
provided and commented on in the help menu.

3.5.2. Tools and automation provided by the IDE to improve
productivity

Ø Editor

Java or HahtTalk source editors offer syntax coloring. This allows for searches and
cancellations, but not for completion, or property or method lists in a pop-up window.

Even if the information provided is often very good, assistance is not always contextual (only
for some words).

It is also unfortunate that there is no mapping tool between the application’s business objects
and interface, especially for a Java approach that turns towards object modeling.

Ø Compilation and debugger

Within the framework of an HahtTalk project, HahtSite uses the BasicScript compiler provided
with the tool.

Functional evaluation

© TechMetrix Research 1999 29

With Java, compilation is handled by the default compiler that is defined in the edit options. It
is however possible to select a different compiler at the file-source level as long as the
parameters for this compiler are positioned.

In either case, compiler returns error and alert information such as loss of a link, etc.

The debugger, for its part, provides vital services: stopping point, step by step, view of global
and local variables as well as their modification. It also allows for procedure stepping.

It even works in a configuration with a remote (distributed) application server. All debugger
activity is traced in a special log file on the application server and the number of debug
sessions is limited.

Ø Administration, optimization, and workload tests

The administration tool has the big advantage of having an HTML interface. It is thus possible
to administer it from any station.

This tool makes it possible to define compiled file transfer repertories, the number of
processes and threads, the JVM used, encryption implementation, etc., and of course, the
stopping and restarting of instances.

The application server gives access to static information for each group of application
servers:

• The current connections (number of sessions, pages, CPU time, etc.) per connected
station with a total for all the stations

• The same information but from the application server’s launch

• History of a given period can be traced

Product Review: HahtSite 4.0

30 © TechMetrix Research 1999

Application server administrator

It is also possible to implement an audit thus making it possible to trace, for a given user, the
form field values, the Web server environment variables, dynamic page output, etc.

We slightly regret the lack of optimization solutions, a testing tool and a workload tool.

Functional evaluation

© TechMetrix Research 1999 31

3.5.3. Evaluation

Server-side code generation assistance covers all of the tool’s possibilities, whether we
decide to code in Java or HahtTalk.

The simplicity and quality of the user context management is particularly noticeable, as is the
creation of data source transactions.

The product has a few shortcomings when it comes to tools. Although the debugger carries
out its task entirely, the editor could use some more work (completion, property and method
pop-up windows, etc.)

The administration tool is simple and its HTML interface is quite practical. Optimization
solutions, a testing tool and a workload tool would be welcomed additions.

IDE productivity
for server processing

Rating/10

Server-s ide code generat ion assistance 7.5
Tools and automat ion provided by the IDE to improve
product iv i ty 5

Product Review: HahtSite 4.0

32 © TechMetrix Research 1999

3 . 6 . A p p l i c a t i o n s e r v e r

3.6.1. Database access

HahtSite uses ADO 2.0 to access databases. Then, we have the possibility of using native
drivers which can connect to MS-SQL Server 6.5 and 7.0, Oracle 7.x and 8.0, Informix 7.x
and Sybase 10 and 11. If not, there is the ODBC solution which allows us to access, among
others, MS-Access and micro databases. HahtSite also supports JDBC and OLE-DB.

SQL support is satisfactory as it allows for display/modification of standard blob fields (or long
raw) and recognizes specific SQL orders to DBMSs (such as getdate() of MS-SQL Server).

The DataSource folder that is present in the project explorer groups together all database
objects: tables, views, system tables, stored procedures and a new notion of shared queries.
For all of these objects, a dialog box displays their properties:

• List of fields (with their type),
• General survey of all result values
• List of parameters (with their type) for stored procedures and shared queries

Only the possibility to display the source of a view or a stored procedure is not provided.
Similarly, it is impossible to modify a table or a procedure. All of the features are natively
accessible from the IDE or by using the ODBC.

Shared queries can be helpful when accessing a database that does not offer the possibility
to make stored procedures because they have the disadvantage of not being able to be
compiled on the DBMS. However, their use is very practical especially if we do not have a
SQL query editor. A wizard makes it possible to build a query in a graphical manner, by
proposing the list of fields, table joins, sorts, etc.

In order to use a database connection on a page, it is necessary to go through the DataAgent
component. It acts as the link between the data source and the form fields that present this
data. This component also allows for the definition of query field display formats.

There can be as many DataAgents as we would like on one page and each of them can be
connected to DataSources referencing different databases.

In case of DBMS failure and restart, HahtSite is capable of restoring connections
automatically as long as the method «getSharedConnectionByName » is used.

To monitor the number of connections that an application can create on a DBMS, HahtSite
offers connection sharing. The definition of this parameter is linked to the number of
processes defined on the application server; there cannot be more connections than
processes. HahtSite also adds a configurable cache feature on the DBMS connection level,
keeping a connection open during a defined period of time; this connection can then be
reused, reducing the time necessary to open and to close the connection. This option can be
useful for applications that open the connection at each page.

Functional evaluation

© TechMetrix Research 1999 33

3.6.2. Language richness, openness

With this release of HahtSite, we have the choice between Java and HahtTalk (which is in
fact VBA). Both of these languages necessitate an interpreter.

The choice between these two languages needs to be made at the beginning of the project. It
depends more on the philosophy and culture of the company than on a difference in
performance, because even if on paper Java appears to offer more possibilities and better
performance, it is always possible to include Java classes in a project coded in HahtTalk.

With procedural aspects of third-generation languages and a strong object connotation, Java
provides a large array of possibilities: abstraction, encapsulation, inheritance, polymorphism
but also features and procedures. Most scalar-type data is supported. Tables are
multidimensional and can be dynamic. Structures are supported.

A library of mathematical functions, string manipulation, including format conversion, etc. is
present.

For its part, HahtTalk does not offer inheritance or polymorphism.

Variable management can be handled at session or application level with methods to add
variables, modify them, delete them and read them. The application server defines time out
by default, but it can be modified at the session object level. At the same time, a method of
this same object makes it possible to finish the session.

Ø Security

SSL integration takes place within the repertories “subsites”: it suffices to define some
repertories as “secure static” and to include the pages in them.

In an architecture with distributed application servers, HahtSite allows for easy integration of
a firewall. A standard configuration makes it possible for the firewall to separate an “extranet”
zone, in which “Foreground” application servers are found, from an “intranet” zone made up
of “Control” and “Background” servers and which is the only one to keep sensitive information
unique to the business and the user session.

Finally, the application server and the Web server communicate by using the encryption
algorithm Triple-DES.

It is interesting to note the presence of page access profiles (see section 3.5 User Privileges)
and an ESM destined to authenticate connections for e-commerce applications on Internet.

Ø ERP (Enterprise Resources Planning)

Openness to ERP is one of Haht Software’s key concerns. Through joint developments with
editors, Haht Software offers solutions for connecting to the main ERP market players,
integration middleware and transactional monitors, always using the same ESM principle:

• an ESM for SAP R/3 with BAPI and RFC support, jointly developed with SAP
• an ESM for DB2, CICS, VTAM, VSAM, IMS, provided by Neon Software

• an ESM for BEA Tuxedo

Product Review: HahtSite 4.0

34 © TechMetrix Research 1999

Ø CORBA

HahtSite’s application server partially implements the CORBA 2.0 norm as it integrates
Inprise’s ORB VisiBroker for Java, filling the naming service and the event service.

The desire to install VisiBroker’s must be specified at installation. It can thus act as a client
and a CORBA server.

To be a CORBA client, it suffices to recover the object IDL and add it to the project.

A HahtSite application can be a CORBA server in two different ways:

• Traditional: the object instances provide a service than can be called from different clients.
In this example, the application is launched as a service at the application server level.

• Session-oriented: a group of distinct instances is created for each application session.

Ø But also

The application server makes it possible to be a DCOM client and to instantiate ActiveX
components thanks to the “CreateObject” method.

ESM allows for the integration of LDAP, making the implementation of “single sign-on”, work
groups, etc. possible.

3.6.3. Deployment

Ø Multiple platforms

The application can be deployed on an application server installed on Windows NT 4.0,
Solaris Sparc 2.5.1, HP-UX 10.20 or AIX 4.2.1. It is nonetheless important to know the
deployment target beforehand to avoid using APIs specific to an operating system (this
information is indicated in the help menu of each feature).

It is unfortunate that the application server is not available on Linux and that nothing has
been announced to let us think that this might soon be the case. Digital Unix is not supported
either.

The idea of site greatly facilitates deployment. Publication sites are accessible from the IDE
project explorer. The publication consists only in copying static components (pages, style
sheets, etc.) on the Web server’s “DocumentRoot” and the compiled processing (dynamic
pages, code, etc.) on the application server’s project repertory.

The application server is not physically linked to the HTTP server. It can be made up of
several application servers spread across several machines, but belonging to the same group
of servers. It supports CGI 1.1 but also NSAPI 2.0 and 3.0 and ISAPI, making it possible to
communicate with the principle Web servers on the market (Apache, Netscape FastTrack
and Enterprise Server, Microsoft Information Server, etc.).

Functional evaluation

© TechMetrix Research 1999 35

Ø Failover

Failover and restart support depends on the selected configuration. To increase application
isolation, it is necessary to create several server groups on the same physical server.

Restart in case of failover is handled by replication: the “control host” can be associated with
a backup control host that will take over. A minimum of two “foreground” hosts on different
machines and especially “background “ hosts are necessary as they guarantee a transfer of
user sessions and thus guarantee that the context will be saved.

Ø Load balancing

In a distributed configuration, load balancing is based on the modularity of three types of
application servers (“control”, “foreground” and “background”).

The control host communicates with foreground and background hosts to balance the load of
each in considering their respective weights. It is the only parameter allowing for load
balancing configuration. The rest is left to the application servers that take a decision in
relation to the information gathered concerning the load of each server.

3.6.4. Evaluation

The data access module makes it possible to cover the whole array of possibilities offered by
the main DBMSs on the market.

With support for Java as a new server-side programming language, HahtSite opens itself up
to new horizons and brings a touch of object method to its IDE.

The main axes toward which HahtSite turns are e-business (security), ERP and CORBA.

Deployment facility has been one of HahtSite’s strengths for a long time. This new release of
the tool confirms this, with the contribution of an even more modular architecture, even if
some regret the fact that the application server is not available on Linux.

Application server Rating/10
Database access 8.8
Richness of language, openness 6.9
Deployment 7.9

Product Review: HahtSite 4.0

36 © TechMetrix Research 1999

4 . A n n e x e s

4 . 1 . W o r k l o a d m e t h o d o l o g y

Ø Introduction

Objective

To compare the performance and intrinsic behavior of intranet application servers, by testing
(through the use of workload tests) the various implementations of TMBench 1.0
specifications presented here.

How?

• By relying on HTTP and SQL standards, rather than on products considered as
references.

• By offering representative, independent intranet units instead of a complete integrated
intranet application.

• By making the implementation of test units easier (simple and straightforward HTML
layout).

Characteristics of the intranet architecture chosen

The application’s clients are standard browsers (the application generates only HTML).

The development tools used to implement TMBench 1.0 must have the following intranet
development features:

• The tool must have a programming or scripting language.
• The tool’s application server must allow for algorithmic calculation and processing.
• The tool must allow access to the standard databases available on the market.
• User context management must be possible.

• Finally, the application developed by the tool must operate in multiple-user mode (for
several concurrent users).

General principles of TMBench 1.0:

The tool specifications attempt to highlight the services provided by the intranet part by
relying on two standards: HTTP and SQL.

Annexes

© TechMetrix Research 1999 37

Intranet Tool

•User Context Management
•Server Specific Processing
•Multi-user capacity

H
 T

 T
 P

S
 Q

L

D
 A

 T
 A

 B
 A

 S
 ERequest

Response

B
 R

 O
 W

 S
 E

 R Request

Response

A basic transaction is defined by a pair (request, response). The request is an HTTP request
(the size and format of the URL are not specified). The expected HTTP response is entirely
standardized (the result and format of the answer are imposed).

In requests involving database access, DBMS access is normalized with a SQL query. Most
SQL queries cited in this document can be used as they are, but they can also be adapted to
a specific intranet tool, mostly concerning the data access possibilities that the tool offers.

Ø Database and SQL queries

The database model used is of a relational type. No particular DBMS product is specified,
and the choice of a database engine common to all TMBench 1.0 specifications is made at
the last moment during the tests. The SQL queries must be as standard as possible (in other
words, usable with the most popular DBMSs on the market).

The physical data model contains six tables, three relationships, 50 fields and a maximum of
60,000 records for a total data volume ranging from 10 to 100 MB. These contents may vary
at any time in order to accommodate the specific needs of different tests.

Ø Bench application

The TMBench 1.0 application is made up of eight independent units, each including two
pages (one request page and one response page). There is also a welcome page and a
page that references the eight units. TMBench 1.0 is therefore made up of a total of 18 HTML
pages. The application’s kinematics is as follows:

Product Review: HahtSite 4.0

38 © TechMetrix Research 1999

unit_ib_000_req.htm

TMBench10.htm unit_ib_001_req.htm

unit_ib_002_req.htm

unit_ib_003_req.htm

unit_ib_004_req.htm

unit_ib_005_req.htm

unit_ib_006_req.htm

unit_ib_007_req.htm

unit_ib_008_req.htm

unit_ib_001_res.htm

unit_ib_002_res.htm

unit_ib_003_res.htm

unit_ib_004_res_1.htm

unit_ib_005_res.htm

unit_ib_006_res.htm

unit_ib_007_res.htm

unit_ib_008_res.htm

Request pagesHome pages Answer pages

Start page

TMBench 1.0 application kinematics (all of the HTML links)

Role of each module

The eight modules of the scenario allow us to center the analyses on basic features.
The goal is thus to isolate each of the desired features and, using the dominant functional
features of the desired application, to be able to anticipate the behavior of the deployed
application in relation to the application server selected.

Modules Role (basic feature analyzed)
Module 1 Large «Select » (+ than 5000 records returned) without cache in a database

Module 2 Sum of the small «Select » without cache in a database

Module 3 Sum of the small «Select » with cache in a database

Module 4 Multi-criterion search with dynamic request, without cache

Module 5 Database updates (simple insertion and updates)

Module 6 Algorithmic calculation

Module 7 Storage of user context in memory

Module 8 Mass insertion

Technical constraints

The editor must respect HTML page content as described herein as much as possible while
keeping in mind the following constraints:

• HTML files names are given for example purposes only, you may choose others ;
• At the top of each page there must be an HTML title and label (standard HTML text)

indicating the test reference;
• A back to Start Page link must be found at the bottom of all “starting” HTML pages

(requests);

Annexes

© TechMetrix Research 1999 39

• A back to IB-00X link (previous page) enabling the request to be restarted quickly, must
be found at the bottom of all HTML “answer” pages (request results) ;

• No JavaScript data input monitor is mandatory in the HTML pages;
• The request pages of IB-002 and IB-003 units possess «hard coded » SQL requests.

These values can be modified at any time thus making application evolution possible.

• The only freedom concerns URLs and their format (URLs of the HTML links and the
SUBMIT buttons), as they cannot be imposed.

Format of normalized HTTP/HTML responses and requests

The format of HTML request and response pages must comply with the following guidelines
as closely as possible:

• Resulting data are to be put in tables as soon as possible.
• The default table border must be equal to one.

• No specific format is to be applied to displayed data.

Ø Performance measurements

Once we have received and validated the integration complying with all of the TMBench 1.0
specifications, a workload test, simulating at least 200 concurrent users, is conducted.
Breaking the application up into test modules makes it possible to define each unit as a test
transaction independent from the others. Each transaction (called a scenario) is subject to a
measurement of client response times. When a unit is used several times in sequence, the
whole of these iterations makes up a complete transaction.

Method used for workload tests:

Our method is based on pre-prepared test scenarios, which are conducted as shown in the
diagram below. These tests, which involve the entire application architecture, are applied to
each TMBench 1.0. implementation in the same way.

MEASUREMENTS

Results
collected in

database

Test Scripts

Test Scenario

1 MODULE = 1 TRANSACTION

WORKLOAD

WORKLOAD TOOLS

3 ROBOTS
SIMULATING

FROM 1 TO 200 USERS

APPLICATION

DBMS
SERVER

W
E

B

MIDDLEWARE

 PROCESS
 SERVER

SIMULATION

CLIENT RESPONSE
TIME MEASUREMENTS

SERVER MEASUREMENTS

TEST SCENARIO

Workload test architecture

Product Review: HahtSite 4.0

40 © TechMetrix Research 1999

To have a better understanding of the measurement analysis, note that each unit makes up a
test transaction, and therefore a measurement in its own right. This measurement
corresponds to a request and to the obtainment of its answer. The time required for a
complete IB-001 transaction is equal to the sum of the amount of time taken to send a
request and the amount of time taken to receive its result from the server. For unit IB-001,
this measurement corresponds to the time needed to go from page unit_ib_001_req.htm to
page unit_ib_001_res.htm.

Performance measurements and indicators

Measurements are made at three different levels:

• On the workload test robots, by collecting time values from HTTP server requests and
answers with which the simulated users are interacting.

• On the processing server, with a measurement station which traces and logs the
percentage of CPU time and the memory used up, which expresses the load generated
by the application server.

• On the DBMS server, by counting the number of connections opened by the application,
as well as the load generated by the SQL orders.

Functional Evaluation Criteria

© TechMetrix Research 1999 41

4 . 2 . F u n c t i o n a l e v a l u a t i o n c r i t e r i a

Each criterion is evaluated and then rated using one of the three following values:

PP or YES: criterion supported correctly
P or YES Minus: criterion supported partially or is complicated to use
M or NO: criterion not supported or is much too complicated to use

4.2.1. Development environment productivity

Ø Quality and richness of the development environment

Step 1: Installation, ease of learning, simplicity

N° Description Rating Comments

1 Quality of integration between tools
(respect of unique window).

PP All of the editors (HTML, VB or Java server code, client code, images, image
maps, and style sheets) are accessible from the same user interface.

2 Printed documentation and online help with
search options.

PP Printed documentation includes the following volumes:
- for the IDE: an installation manual, a programming manual, a user’s manual and
a Widget programming manual,
- for the application server: an installation manual and an administration manual
Online administration is accessible from the menu bar (or with the F1 key) and
includes an index and a key-word search.

3 Ease of use and installation. The installation
mustn’t call for too many prerequisites
(browser, DBMS, HTTP server). The
developer must be able to use the wizards
quickly.

PP An «InstallShield » installs the IDE easily: it starts by updating the JVM, if
necessary by installing Microsoft’s JVM 5.00.3165. If you wish to develop with
Java, it is recommended to install a JDK beforehand, as the IDE will detect it and
integrate it into its parameters automatically.
Complete installation begins by installing Apache 1.3.4; then the IDE by selecting
the default browser (Netscape or IE); finally comes the installation of a an
application server dedicated to testing with automatic detection of pre-installed
HTTP servers and publication site configuration. Installation of the distributed
application server is just as easy on NT. Deinstallation poses no problem; one
must not forget to delete the services in the database registries.
However, application server installation on Unix (Aix 4.3.2) is not as easy and
requires a numerous Unix-specific prerequisites (file system, group, user).

4 Richness and quality of the tutorials and
examples provided. The examples must
cover all internet-related problems (script
language, DBMS access, context
management, etc.).

P A «Getting started » menu offers a “Shockwave” presentation and a complete
lesson in HTML format: it proposes 11 lessons which become more and more
difficult as well as two applications (VB and Java) that group together a large part
of the tool’s features.

Product Review: HahtSite 4.0

42 © TechMetrix Research 1999

Step 2: Completeness of the product, openness to other tools

N° Description Rating Comments

1 Completeness of the product in terms of
development, deployment, administration.

PP In terms of development, the Haht Software product provides an IDE (Integrated
Development Environment) that allows for the generation of server-side HahtTalk
(VB) code and/or Java and client code (JavaScript, VB Script). There is also an
HTML editor in WYSIWYG mode (tag mode) and an image editor. A development
application server is provided, as is the Apache 1.3.4 HTTP server.
Finally, a multiple-user application server is necessary for deployment and test
site.

2 Presence of a project and project resource
manager, quality of the interface with PVCS,
VSS, etc, (check-in/check-out, versioning).

P HahtSite does not provide developers with profile features, work group tools or
versioning tools. It allows, among other things, for interfacing, with a good level of
integration, with Microsoft’s Visual Source Safe, but also with Merant Intersolv
PVCS, StarBase StarTeam and MKS Source Integrity.

3 Tool for developing multilingual applications
(listed in a dictionary, post-development
extraction).

P A multilingual solution is possible with ESMs (Enterprise Solution Modules are
components that can be downloaded from the Haht Software Web site) NLS 3.0
(National Language Support). The translation depends on browser configuration;
one can also impose a language using “functions”.

4 Test HTTP server and a local development
DBMS.

P Development distribution is provided with Apache 1.3.4. However, it does not
include a DBMS.

5 Presence of report-generating tool, the
possibility of interfacing with a report
generating tool (for DOC, RTF, HTML, or
PDF printing). The reports editor must allow
for controlled breaks and offer a test mode.

P It is possible to make reports in HTML by using either a page wizard or by going
through the Widgets “ADO Report Maker” and “ADO Report Next/Previous Link”.
An ESM (ESM for Seagate Crystal Reports) allows for easy report integration. It is
not necessary to install Crystal Reports 5.0 (or 6.0) on all development stations,
but only on those that will edit the reports (.RPT).
An ESM for Adobe Acrobat makes it possible to generate PDF format dynamic
reports (that can navigate throughout all data) and to modify them in Adobe
Acrobat Exchange.

6 Presence of a search engine and/or quality
of the interface with a search engine. M No search engine. The only solution is to configure that of the HTTP server.

7 Presence of a relational and/or object
modeling tool, possibility of interfacing with
Power AMC, Rational Rose, Mega, etc.

M HahtSite does not have any data modeling tools and does not offer an interface
with another market tool; it only offers a view of the database set-up (tables, views,
stored procedures, shared queries, but no table index) without being able to play
with the definition of these objects.

8 SQL query editor, with support for stored
procedures (run and display source code).
The editor must allow for query entry and
provide, in real time, without passing by the
application server, the result of this query.

P The only way to query the database is to create a shared query. This notion allows
for the generation of SQL code that can be reused by the editor with the possibility
of graphical assistance (list of tables, fields, joins, etc.)

9 Tree structure and application display
management tool. From a page, the tool
must propose all of the called pages and the
request pages. Any change in the page
name must be monitored or taken into
consideration by the calls. A graphical view
of the pages and/or window is a plus.

PP The project explorer offers a general overview of the project with all of the
elements that make it up. It is possible to create repertories that group together
components such as HTML pages, server code files, client script files, style
sheets, images, and also Widgets, database connections and publication sites.
A “Design” view gives a graphic view of how pages are linked together. It also
makes HTML page creation using templates easier, with drag&drop from the
palette. Finally, it can give an order to pages within a repertory. This makes their
linking easier in the case of a static site.

Functional Evaluation Criteria

© TechMetrix Research 1999 43

10 Repository, cross object references
(graphics, components, objects used by the
IDE, etc.), detection of unused objects,
export of standard objects, etc. For
example, during the deletion of a «database
connection » object, the IDE must inform the
developer of the different uses of this object.

M Relationships between components (static HTML pages, images, Java classes,
Widgets, style sheets) are presented graphically by the action “Show References”
(don’t forget an “Update Dependencies” to update the information).
HahtSite does not possess an exhaustive dictionary that references all project
components; such as calls between pages are only made in a dynamic manner (to
preserve the context); “Show References” does not allow us to establish complete
application kinematics. HahtSite does not offer any information on unused
declared variables either (not even on the compiler level); the only solution is to
use “find in files” (“grep” on project files).
Deleting a “database” object does not inform the developer of its use.

Ø HTML interface generation

Step 3: Automation of HTML interface generation

N° Description Rating Comments

1 Presence of a WYSIWYG HTML editor. The
developer does not need to know HTML in
order to design his pages.

PP The HTML page editor is WYSIWYG; one chooses the form fields from the
graphics palette. The project components (images, HTML pages, Widgets) are
inserted in the page by drag & drop from the project explorer. This editor makes it
possible to define style sheets (CSS1), clips (reusable HTML code) and frames.
The image editor recognizes GIF, JPEG, and PNG formats. An image map editor
can reference project components, even though it is not integrated in the IDE.

2 Numerous table manipulation possibilities
(cell mergers, cell breakdown, nested
tables)

PP The tool makes it possible to graphically merge cells horizontally and vertically,
split cells and to include a table within a cell of another table.

3 Presence of a repository for graphics
components (objects or groups of objects).

PP Besides the standardly provided form fields, it is possible to define “Clips” or
reusable parts of HTML pages (for example, headers and footers) that can be
used anywhere on a page and can be nested.

4 Possibility of creating style sheets (not
necessarily CSS generation, simply on the
IDE level), templates, and page models.

PP It is possible to define style sheets in respecting the CSS1 (Cascading Style Sheet
Level 1) standard and in partially respecting CSS2.
Creating templates (that will add themselves to the other page templates) from an
HTML page is possible (in the IDE options, it is necessary to configure the
template repertory as being shared by all developers).

5 HTML code generation during the insertion
of Java or ActiveX components and images
in HTML pages.

PP Inserting a Java applet in an HTML page is possible from the “Insert Object” menu;
applet properties can be indicated (position, parameters, style, etc.).
To insert an ActiveX component in an HTML page, the use of the “ActiveX” Widget
is necessary: one can thus select it in a list of all the ActiveX components present
on the machine. A dialogue makes it possible to configure the component. The tool
generates the adapted HTML code.

6 Client-side generation of monitoring scripts. PP Client-side monitoring scripts (JavaScript, VBScript) are generated automatically
for the form fields; they allow for the validation of entry zones (text, numeric, date,
and mask).

Product Review: HahtSite 4.0

44 © TechMetrix Research 1999

Step 4: HTML interface development assistance and potential

N° Description Rating Comments

1 Presence of an HTML display tool and/or an
HTML source editor with syntax recognition.

PP The HTML editor is WYSIWYG and allows for page display; it can be configured to
choose object visibility (code, images, objects, etc.). We can also display a page in
a browser among those referenced in the configuration options.
The HTML source editor provides the same automatic indent (when one passes in
WYSIWYG mode and then goes back to tag mode), find/replace functions, syntax
correction and coloring.

2 Presence of dynamic HTML page
generation wizards.

PP There are several page creation wizards (connection, master/detail, form, and list);
they are configurable and can be modified after their generation.

3 Import/export of HTML pages and total
command of HTML (static and dynamic, in
other words generating HTML code by
programming).

PP Importing makes it possible to copy an HTML page or even a repertory or site. A
project property allows for the definition of source visibility levels (none, possibility
to make links with URL, possibility to share code with another project – same site,
same session).
Export passes through page save as a file.
For all pages (static, dynamic, wizard generated), one keeps control over HTML
code. In the description of each graphic object there is a “custom” tab that lists all
of the HTML tags for this object and the properties attributed to it.
HahtSite also offers the possibility of modifying HTML code generation. One thus
has total control over the generated HTML.

4 Assistance in entering HTML (tag list,
completion, documentation, etc.) and client-
side script language (events, objects,
authorized attributes and methods,
documentation, etc.)

P The HTML editor offers neither a tag list nor completion: only script monitor
confirms the entered code’s validity.
For client script code, HahtSite provides entry help, by presenting the DOM
(Document Object Model) of the page and all the events offered in relation to the
browsers.

5 Presence of client-side script language
components and Java applets.

PP There are many JavaScript files, which are used for form field validation checks.
These can be personalized to display messages in a different language.
HahtSite also provides some Java applets.

6 HTML 4.0, DHTML and DOM are taken into
account.

PP HahtSite supports HTML 4.0, DHTML (DIV, SPAN, etc.) and DOM entirely. A
DHTML example (Layer and SPAN) is provided.
HahtSite offers client script entry assistance by recovering the page’s DOM
(Distributed Object Model) in the form of a hierarchical tree; here we find all of the
possible event pages and the present fields (with an indication concerning
compatibility with the main browsers and their versions) and manually coded
routines.

Functional Evaluation Criteria

© TechMetrix Research 1999 45

Ø Java graphical interface generation

Step 5: Java graphical interface elaboration automation and assistance

N° Description Rating Comments

1 Presence of a Java WYSIWYG editor. M No.

2 Presence of a components palette (AWT,
JFC, etc.)

M No.

3 Possibility of creating JavaBean
components. M No.

4 Possibility of creating Java applets. M Yes, but no wizard nor JDK is provided.

5 Possibility of enhancing the Java graphics
object palette and the presence of an
objects inspector.

M No.

6 Presence of dynamic transactional
application generation wizards with a Java
graphical interface.

M No.

Ø IDE Productivity for server processing

Step 6: Server-side code generation assistance

N° Description Rating Comments

1 Management of user profiles with
application and page access security.

PP To manage user profiles, it suffices to define “Privileges” on the project level and to
attribute them to pages. The code that monitors page access is thus generated
automatically. The only thing left to do is to program using the “addPrivilege” and
“removePrivilege” commands on the “session” object level in order to attribute
rights.

2 Configurable transactional application
creation wizards with the possibility of
touching up the code after it has been
generated.

PP Wizards make it possible to create pages (forms, lists, etc.) which handle data
source transactions. To personalize these wizards, it is necessary to create one’s
own components (Widgets).

3 Assistance in creating standard distributed
objects (ActiveX, CORBA, and EJB).

M Creating ActiveX components or EJBs is not possible. A CORBA object IDL can be
defined, but HahtSite offers no assistance whatsoever.

4 Server-side assistance in sending e-mail
(high-level API, examples, documentation).

PP The “Smtp” and “Message” objects make it possible to send an e-mail from the
application server by specifying a minimum amount of information (gateway,
addressee, sender, subject, contents). It is also possible to attach a document. An
example is provided within the help section.

5 Automatic management of the unique
session identifier.

PP The identifier (stateID) is generated by the application server when one makes
reference to a dynamic page for the first time. It then allows the user context to be
restored.

6 Freedom to choose the context
management used for transfer of the
identifier (URL longs, cookies, and hidden
variables).

PP HahtSite offers the choice between URL long and cookies for context
management; this parameter is one of the properties of publication site definition.

Product Review: HahtSite 4.0

46 © TechMetrix Research 1999

7 Freedom to choose between a client-side
and server-side stored context, with the
possibility of tracing the history.

M No. Context management is only handled server-side.

8 Assistance in File Uploading (interface,
examples of code, explanations).

PP A form field makes it possible to define the HTML interface. An example is given in
the help.

Step 7: Tools and automatic functions provided by the IDE to improve productivity

N° Description Rating Comments

1 Good quality source editor, with find and
replace features, context help, completion,
syntax parser, etc.

P The source editor offers syntax coloring. Contextual aid and completion would
make this editor impeccable.

2 Complete debugger (logs, step by step,
choice of the application or tracing in
functions/methods/procedures, modification
of variable content).

PP The debugger makes it possible to progress step by step, and to know the content
of local and global variables. It also allows for modification of variable content. It
leaves one the choice of tracing the already browsed features or not.
It should be noted that the application server includes a log and a log for debugs
mode.

3 Assistance in mapping between business
objects and the application interface. M There are not any tools that allow mapping between Java classes (could act as

business objects) and the application interface.

4 Presence of an application administration
tool.

PP Application servers can be managed from a distance thanks to their administration
tool’s HTML interface. These parameters can be modified on the fly.

5 Presence of an application use/consumption
administration tool with graphics and
optimization solutions.

P The application server gives access to statistics for each group of application
servers:
- current connections (number of sessions, number of pages, CPU time, etc.) per
connected station, with a total for all stations
- the same information but from the launch of the application server,
- history of a given period can be traced.
It is also possible to implement an audit, thus tracing form field values, Web server
environment values, dynamic page output, etc. for a given user.
Neither graphs nor proposed solutions for reducing response time.

6 Presence of a testing tool and/or workload
tool.

M No.

Functional Evaluation Criteria

© TechMetrix Research 1999 47

4.2.2. Application server productivity

Step 8: Database access

N° Description Rating Comments

1 Support of ODBC and/or JDBC type 1
driver.

PP HahtSite uses ADO 2.0 to access databases by ODBC. It is an ADO-specific
implementation that is used whether the project is developed with HahtTalk or
Java.

2 Native database access (SQL Net, Dblib-
CTLib, Inet) and/or via type 2 and/or type 4
JDBC.

PP HahtSite uses ADO 2.0 to access the following databases in native: MS-
SQLServer 6.5 and 7.0, Oracle 7.x and 8.0, Informix 7.x and Sybase 10 and 11.

3 Support of Blobs/Long Raw (reading and
insertion).

PP It is possible to display, modify and insert standard Blobs/Long Raw fields.
However, this can not be done using “DataAgents”, it is necessary to establish a
connection with the database and use a RecordSet.

4 Support of DBMS-specific SQL queries (Ex:
select getdate (), select banner from
v$version, etc).

PP The queries «select getdate() » for Sybase and «select banner from v$version »
for Oracle work.

5 Support of stored procedures, with the
transfer of in/out parameters.

P Stored procedures are grouped together on an object connection that identifies a
connection to a data source with a diagram; the object connection also contains
tables, views and shared queries. It is necessary to update the diagram in order to
bring the list of object connections up to date; this operation even specifies
changes made to an object.

6 Support of failure and reconnections to the
DBMS. If the DBMS is stopped while there
is an existing connection pool, the
application will take care of restoring
connections itself. At least a programming
solution is possible.

PP Connection restart takes place as long as the method
“getSharedConnectionByName” is used. This is the method automatically used by
the wizards.

7 Support of multiple data sources within one
page or graphical window. Possibility of
creating standalone connections.

PP Access to a data source from a page is handled by the intermediary of
DataAgents, there can be as many DataAgents as one would like on a page and
each one can be connected on a different connection. One can also connect in a
controlled manner, by establishing a database connection within the code.

8 Extended management of connection pools
(multi-instances and maximum number of
connections).

P Connection pool management in HahtSite (“Connection sharing”) is associated
with a number of processes configured for the application server (“server group”);
that thus defines the maximum number of connections that the sessions must
share.
No multi-instance forecasting connections are possible.
Connection caching backs up the idea of database access optimization; which
consists in indicating the period of time during which a database connection is kept
to be possibly reused by another query (useful for applications that open and close
their connection with each page).

Product Review: HahtSite 4.0

48 © TechMetrix Research 1999

Step 9: Language richness, openness

N° Description Rating Comments

1 Creation of functional classes that support
object polymorphism.

PP Java supports polymorphism and Java classes can be included in an HahtTalk
project.

2 Support of all variable types (dates, multi-
dimensional tables, dynamic tables, and
structures).

PP With HahtTalk, the flaw concerns defining structure tables. No problem in Java.

3 Creation of features, with transfer of
variables and recursive elements.

PP Possibility of creating features and procedures in Java and HahtTalk, they can
even be recursive.

4 Variable management at session and
application level.

PP Variable management can be handled at session or application level using the
“put” method.

5 Presence of features/methods which define
the length of time-out (at session level,
dynamically, and at application level for all
of the sessions).

PP Yes.

6 Presence of complete log-out management
features/methods (possibility to force the
end of a session and launch a process
when an event «log-out » is received).

PP It is possible to force log out, and to launch server-side processing if the session
expires.

7 Server-side generation of print files using
values coming from the data source.

P Generation of print files goes through a specific development; indeed nothing is
planned for this. However, it is possible to dynamically feed PDF files.

8 Server-side generation of image files (GIF,
standard formats) using values coming from
the data source.

M No tool for generating GIF images; the solutions can turn to a component such as
ChartFX (which thus only works via OLE on NT) or other solutions such as “shared
library” on Unix.

9 Capacity to handle File Upload (the tool
must allow for the recovery of HTTP flow in
a string for example).

PP Yes.

10 Presence of an object/relational mapping
module. M No notion of business object mapping on the database.

11 Presence of a distributed objects system. PP The application server implements the CORBA 2.0 standard as it integrates
Inprise’s VisiBroker for Java, playing the role of an ORB, Naming Service and
Event Service (it is necessary to specify one’s desire to install VisiBroker at the
time of installation).
In this way, it can behave as a client and a CORBA server.

12 Possibility of interfacing with a standard
distributed object model (DCOM, CORBA,
and EJB).

PP Beyond CORBA support by VisiBroker, HahtSite’s application server also makes it
possible to be DCOM client and instantiate ActiveX components thanks to the
“CreateObject” method.

13 SMTP and POP3/IMAP4 and LDAP support. P SMTP and POP3 are supported; it suffices to use the objects (“Message” and
“Pop”). However, IMAP4 is not implemented.
For LDAP it is necessary to go through an ESM.

14 The processing server is an HTTP and FTP
client.

P Low-level API.

15 Possibility of proposing different levels of
security for applications (SSL, SET, use of
firewalls, etc.).

PP SSL integration takes place on the “subsites” repertory; it suffices to place the
pages concerned in this repertory.
Some pages can not be directly accessed by a bookmark; a parameter must be
specified in the page properties.
In a distributed application server architecture, HahtSite allows for the easy
integration of a firewall: a standard configuration allows the firewall to separate a
zone “extranet” in which one finds “Foreground” application servers from a zone
“intranet” made up of “Control” and “Foreground” servers and which is the only one
to keep information that is sensitive to business and user session.
Finally, the application server and the Web server communicate using the
encryption algorithm, Triple-DES.

Functional Evaluation Criteria

© TechMetrix Research 1999 49

16 Openness to ERP, with «business »
modules adapted to ERP (SAP, Peoplesoft,
etc.).

P It is possible to download an ESM (Enterprise Solution Module) from Haht
Software’s Web site. This ESM makes it possible to easily connect to SAP R/3;
this module provides, among others, components and wizards that support
BAPI/RFC.
HahtSite sells two e-Scenario applications created in cooperation with SAP.

17 Openness to transactional monitors
(Tuxedo, Encina, etc.), integration
middleware (MQ Series, etc.).

P Another ESM “Shadow Direct” developed in collaboration with Neon Systems
makes it possible to interface with such mainframes as CICS, IMS, DB2, VSAM,
etc. It is also possible to interface with Tuxedo via an ESM.

18 Consideration of XML (XML application
server, reuse of XML components, etc.). M An XML parser is available with HahtSite. Unfortunately, the documentation is only

available in “white paper” format for the moment.

Step 10: Deployment

N° Description Rating Comments

1 Multi-platform application server: Unix,
Linux, and Windows NT.

P For the application server, there is the choice between Windows NT 4.0, Solaris
Sparc 2.5.1, HP-UX 10.20, and AIX 4.2.1.
No Linux version planned.
The notion of site makes deployment much easier. However, environment-specific
configuration (DSN ODBC, alias of Web servers, etc.) is not taken into account.

2 Support of several types of interface with
HTTP servers: CGI, ISAPI, and NSAPI.

PP The application server supports CGI 1.1 and is totally independent of the HTTP
server which can be either of the following: Apache, Commerce builder, Microsoft
+ ISAPI, NCSA, Netscape + NSAPI 2.0 and 3.0, Oracle Web Request Broker,
Purveyor, Spry, Website, WebSTAR.

3 Possibility of deployment on other
application/object servers (ASP, LiveWire,
NCA cartridge, EJB, JSP, servlets etc.).

M Impossible to deploy the application on other servers on the market.

4 Support of application-level and session-
level failover.

PP Failover and restart support depends on the selected configuration:
- application isolation can be improved by the creation of several groups of
servers,
- failover is handled by replication: the “control host” can be associated with a
backup control host; the multiplicity of “foreground” and especially “background”
hosts guarantees user session transfer and thus that the context will be saved.

5 Possibility of modifying the application
without stopping the services («on the fly »
modifications).

PP An application can be updated at any time without having to stop the slightest
service. Just be careful to empty the browser caches to have the updates.

6 Possibility of spreading the server
processes across several physical
machines (distributed objects created with
the tool, or relying on the application
server), and of separating the HTTP server,
the application server and the DBMS server.

PP The application server is physically linked to neither the HTTP server nor data
server. It can be made up of several application servers spread out on several
machines, but belonging to the same group of servers.

7 Support of load balancing, with the
possibility of configuring the balancing
algorithm.

PP The principle of load balancing is based on the modularity of application servers.
Three kinds of application servers exist (“control”, “foreground” and “background”)
and can be answered on different systems. The control host communicates with
the foreground and background hosts to balance the load of each of them, taking
their respective balancing into account.
This is the only parameter allowing for configuration of load balancing. The rest is
handled by the application servers, which make a decision in relation to the
information received.

A study conducted by

TechMetrix Research

Authors
Franck Gonzales

Jean-Yves Haguet

Translation and editing
Gina Faucher

Contributors
Emmanuel Gourion
Christophe Lauer
Philippe Mougin

Publication date: September 1999

USA

TechMetrix Research
6 New England Executive

Park, Suite 400
Burlington, MA 01803

Tel. : 1 781-270-7486
Fax : 1 781-270-7487

http://www.techmetrix.com
info@techmetrix.com

EUROPEAN HEADQUARTERS

SQLI
55/57 Rue Saint Roch

75001 PARIS
FRANCE

Tel. : (33) 01 44 55 40 00
Fax : (33) 01 44 55 40 01

http://www.sqli.fr
r&d@sqli.fr

SWITZERLAND

SQLI
World Trade Center

Avenue Gratta-Paille 2
CH-1000 LAUSANNE 30

PO Box 476

Tel. : (41) 021 641 10 65
Fax : (41) 021 641 13 10

http://www.sqli.ch

WARNING: Intellectual Property Act.

Art. L 335 - 2: All publication of written works, musical compositions, paintings or any other literary output,
printed or engraved, in full or in part, in defiance of the laws and regulations relative to the property of
authors, constitutes forgery, and all forgery is a misdemeanor.

Forgery in France of works published in France or abroad is punishable by two years imprisonment and a
fine of 1,000,000 F (L. no. 94-102, 5 Feb. 1994, art. 1st)

Art. L 335 - 8: Legal entities may be held legally responsible under the provisions of article 121 - 2 of the
Penal Code for infractions defined under articles L 335-2 to L 335-4 of this act.

	Table of Contents
	1. Product profile
	2. Performance measurements
	2.1. Introduction
	2.1.1. Carrying out of measurements
	2.1.2. Analysis of the results obtained

	2.2. Results
	2.2.1. Synthesis of the results
	2.2.2. General characteristics
	2.2.3. Table of results

	3. Functional evaluation
	3.1. Introduction
	3.2. Development environment quality and richness
	3.2.1. Installation
	3.2.2. Composition of the product
	3.2.3. Evaluation

	3.3. HTML interface generation
	3.3.1. HTML interface design and optimization
	3.3.2. Evaluation

	3.4. Java graphical interface generation
	3.4.1. Creation of the Java graphical interface
	3.4.2. Evaluation

	3.5. IDE productivity for server processing
	3.5.1. Assistance in generating server-side code
	3.5.2. Tools and automation provided by the IDE to improve productivity
	3.5.3. Evaluation

	3.6. Application server
	3.6.1. Database access
	3.6.2. Language richness, openness
	3.6.3. Deployment
	3.6.4. Evaluation

	4. Annexes
	4.1. Workload methodology
	4.2. Functional evaluation criteria
	4.2.1. Development environment productivity
	4.2.2. Application server productivity

