
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

F2MC-16 FAMILY
SOFTUNETM WORKBENCH

USER'S MANUAL

CM41-00313-3E

FUJITSU LIMITED

F2MC-16 FAMILY
SOFTUNETM WORKBENCH

USER'S MANUAL

PREFACE

■ What is the SOFTUNE Workbench?

SOFTUNE Workbench is support software for developing programs for the F2MC-
16 family of microprocessors / microcontrollers.

It is a combination of a development manager, simulator debugger, emulator
debugger, monitor debugger, and an integrated development environment for
efficient development.

Note:F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ Purpose of this manual and target readers

This manual explains functions of SOFTUNE Workbench.

This manual is intended for engineers designing several kinds of products using
SOFTUNE Workbench.

■ Trademarks

SOFTUNE is a trademark of FUJITSU LIMIITED.

REALOS (REAL time Operating System) is a trademark of FUJITSU LIMITED.
The company names and brand names herein are the trademarks or registered
trademarks of their respective owners.
Microsoft, Windows and Windows Media are either registered trademarks of
Microsoft Corporation in the United States and/or other countries.
i

■ Organization of This Manual

This manual consists of the following 2 chapters.

CHAPTER 1 “BASIC FUNCTIONS”

This chapter describes the basic functions on the SOFTUNETM Workbench.

CHAPTER 2 “DEPENDENCE FUNCTIONS”

This chapter describes the functions dependent on each debugger.

Copyrights © 2004-2007 FUJITSU LIMITED All rights reserved

• The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJITSU semiconductor device; FUJITSU does not warrant
proper operation of the device with respect to use based on such information. When you develop equipment incorporating the
device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU
assumes no liability for any damages whatsoever arising out of the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of
the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU or any third
party or does FUJITSU warrant non-infringement of any third-party's intellectual property right or other right by using such
information. FUJITSU assumes no liability for any infringement of the intellectual property rights or other rights of third parties
which would result from the use of information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and
manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e.,
nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support
system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and
artificial satellite).
Please note that FUJITSU will not be liable against you and/or any third party for any claims or damages arising in connection with
above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.

• If any products described in this document represent goods or technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of
those products from Japan.
ii

READING THIS MANUAL

■ Configuration of Page

In each section of this manual, the summary about the section is described certainly,
so you can grasp an outline of this manual if only you read these summaries.

And the title of upper section is described in lower section, so you can grasp the po-
sition where you are reading now.

■ Product Names

In this manual and this product, product name is designated as follows:

The Microsoft® Windows® 2000 Professional operating system is abbreviated to
Windows 2000.

The Microsoft® Windows® XP Professional operating system is abbreviated to Win-
dows XP.
iii

iv

CONTENTS

CHAPTER 1 Basic Functions .. 1
1.1 Workspace Management Function ... 2
1.2 Project Management Function .. 3
1.3 Project Dependence ... 5
1.4 Make/Build Function ... 6

1.4.1 Customize Build Function .. 7
1.5 Include Dependencies Analysis Function ... 9
1.6 Functions of Setting Tool Options ... 10
1.7 Error Jump Function ... 11
1.8 Editor Functions .. 13
1.9 Storing External Editors .. 14
1.10 Storing External Tools .. 16
1.11 Macro Descriptions Usable in Manager .. 17
1.12 Setting Operating Environment ... 21
1.13 Debugger Types ... 22
1.14 Memory Operation Functions ... 23
1.15 Register Operations .. 24
1.16 Line Assembly and Disassembly .. 25
1.17 Symbolic Debugging ... 26

1.17.1 Referring to Local Symbols ... 28
1.17.2 Referring to C Variables .. 29

CHAPTER 2 Dependence Functions .. 31
2.1 Simulator Debugger .. 32

2.1.1 Instruction Simulation .. 34
2.1.2 Memory Simulation .. 35
2.1.3 I/O Port Simulation .. 36
2.1.4 Interrupt Simulation ... 37
2.1.5 Reset Simulation ... 38
2.1.6 Power-Save Consumption Mode Simulation ... 39
2.1.7 STUB Function .. 40

2.2 Emulator Debugger (MB2141) .. 41
2.2.1 Setting Operating Environment ... 42
2.2.2 Notes on Commands for Executing Program .. 52
2.2.3 On-the-fly Executable Commands ... 54
2.2.4 On-the-fly Memory Access .. 55
2.2.5 Events .. 57
2.2.6 Control by Sequencer .. 65
2.2.7 Real-time Trace ... 74
2.2.8 Measuring Performance .. 92
2.2.9 Measuring Coverage ... 96
2.2.10 Measuring Execution Time Using Emulation Timer ... 100
2.2.11 Sampling by External Probe .. 101
v

2.3 Emulator Debugger (MB2147-01) ... 103
2.3.1 Setting Operating Environment ... 104
2.3.2 Notes on Commands for Executing Program .. 114
2.3.3 On-the-fly Executable Commands ... 116
2.3.4 Break ... 118
2.3.5 Control by Sequencer .. 119
2.3.6 Real-time Trace ... 123
2.3.7 Measuring Performance .. 141
2.3.8 Measuring Coverage ... 145
2.3.9 Real-time Monitoring ... 149
2.3.10 Measuring Execution Time Using Emulation Timer ... 150
2.3.11 Power-on Debugging ... 152
2.3.12 RAM Checker .. 153

2.4 Emulator Debugger (MB2147-05) ... 157
2.4.1 Setting Operating Environment ... 158
2.4.2 Notes on Commands for Executing Program .. 166
2.4.3 On-the-fly Executable Commands ... 168
2.4.4 Real-time Trace ... 169
2.4.5 Execution Cycle Measurement by Cycle Counter ... 180

2.5 Monitor Debugger ... 181
2.5.1 Resources Used by Monitor Program ... 182

2.6 Abortion of Program Execution (SIM, EML, MON) ... 183
2.6.1 Instruction Execution Breaks (SIM, EML) .. 184
2.6.2 Monitoring Data Breaks (MB2147-01 EML) ... 186
2.6.3 Data Access Breaks (SIM, EML) ... 187
2.6.4 Software Break (MON) .. 188
2.6.5 Sequential Break (EML) .. 189
2.6.6 Guarded Access Breaks (SIM, EML) ... 190
2.6.7 Trace-Buffer-Full Break (SIM, EML) .. 191
2.6.8 Performance-Buffer-Full Break (EML) ... 192
2.6.9 Task Dispatch Break (SIM, EML, MON) .. 193
2.6.10 System Call Break (SIM, EML, MON) ... 194
2.6.11 Forced Break (SIM, EML) .. 195
vi

CHAPTER 1
Basic Functions

This chapter describes the basic functions on the
SOFTUNE Workbench.

1.1 Workspace Management Function

1.2 Project Management Function

1.3 Project Dependence

1.4 Make/Build Function

1.5 Include Dependencies Analysis Function

1.6 Functions of Setting Tool Options

1.7 Error Jump Function

1.8 Editor Functions

1.9 Storing External Editors

1.10 Storing External Tools

1.11 Macro Descriptions Usable in Manager

1.12 Setting Operating Environment

1.13 Debugger Types

1.14 Memory Operation Functions

1.15 Register Operations

1.16 Line Assembly and Disassembly

1.17 Symbolic Debugging
1

CHAPTER 1 Basic Functions
1.1 Workspace Management Function

This section explains the workspace management function of SOFTUNE Workbench.

■ Workspace
SOFTUNE Workbench uses workspace as a container to manage two or more projects including subprojects.

For example, a project that creates a library and a project that creates a target file using the project can be

stored in one workspace.

■ Workspace Management Function
To manage two or more projects, workspace manages the following information:

-Project

-Active project

-Subproject

■ Project
The operation performed in SOFTUNE Workbench is based on the project. The project is a set of files and

procedures necessary for creation of a target file. The project file contains all data managed by the project.

■ Active Project
The active project is basic to workspace and undergoes [Make], [Build], [Compile/Assemble], [Start Debug],

and [Update Dependence] in the menu. [Make], [Build], [Compile/Assemble], and [Update Dependence]

affect the subprojects within the active project.

If workspace contains some project, it always has one active project.

■ Subproject
The subproject is a project on which other projects depend. The target file in the subproject is linked with the

parent project of the subproject in creating a target file in the parent project.

This dependence consists of sharing target files output by the subproject, so a subproject is first made and

built. If making and building of the subproject is unsuccessful, the parent project of the subproject will not

be made and built.

The target file in the subproject is however not linked with the parent project when:

-An absolute (ABS)-type project is specified as a subproject.

-A library (LIB)-type project is specified as a subproject.

■ Restrictions on Storage of Two or More Projects
Only one REALOS-type project can be stored in one workspace.
2

CHAPTER 1 Basic Functions
1.2 Project Management Function

This section explains the project management function of SOFTUNE Workbench.

■ Project Management Function
The project manages all information necessary for development of a microcontroller system. Especially, its

major purpose is to manage information necessary for creation of a target file.

The project manages the following information:

- Project configuration

- Active project configuration

- Information on source files, include files, other object files, library files

- Information on tools executed before and after executing language tools (customize build function)

■ Project Format
The project file supports two formats: a 'workspace project format,' and an 'old project format.'

The differences between the two formats are as follows:

Workspace project format

- Supports management of two or more project configurations

- Supports use of all macros usable in manager

- Does not support early Workbench versions(*)

Old project format

- Supports management of just one project configuration

- Limited number of macros usable in manager

For details, see Section 1.11 Macro Descriptions Usable in Manager.

- Supports early Workbench versions(*)

When a new project is made, the workspace project format is used.

When using an existing project, the corresponding project format is used.

If a project made by an early Workbench version(*) is used, a dialog asking whether to convert the file to the

workspace project format is displayed. For details, refer to Section 2.13 of SOFTUNE WORKBENCH

Operation Manual.

To open a project file in the workspace project format with an early Workbench version(*), it is necessary to

convert the file to the old project format. For saving the file in other project formats, refer to Section 4.2.7

Save As of SOFTUNE WORKBENCH Operation Manual.

*: F2MC-16: V30L26 or earlier

■ Project Configuration
The project configuration is a series of settings for specifying the characteristics of a target file, and making,

building, compiling and assembling is performed in project configurations.

Two or more project configurations can be created in a project. The default project configuration name is

Debug. A new project configuration is created on the setting of the selected existing project configuration.

In the new project configuration, the same files as those in the original project configuration are always used.
3

CHAPTER 1 Basic Functions
By using the project configuration, the settings of programs of different versions, such as the optimization

level of a compiler and MCU setting, can be created within one project.

In the project configuration, the following information is managed:

- Name and directory of target file

- Information on options of language tools to create target file by compiling, assembling and linking

source files

- Information on whether to build file or not

- Information on setting of debugger to debug target file

■ Active Project Configuration
The active project configuration at default undergoes [Make], [Build], [Compile/Assemble], [Start Debug],

and [Update Dependence].

The setting of the active project configuration is used for the file state displayed in the SRC tab of project

window and includes files detected in the Dependencies folder.

Note:

If a macro function newly added is used in old project format, the macro description is expanded at the
time of saving in old project format. For the macro description newly added, refer to Section 1.11
Macro Descriptions Usable in Manager.
4

CHAPTER 1 Basic Functions
1.3 Project Dependence

This section explains the project dependence of SOFTUNE Workbench.

■ Project Dependence
If target files output by other projects must be linked, a subproject is defined in the project required in

[Project]-[Project Dependence] menu. The subproject is a project on which other projects depend.

By defining project dependence, a subproject can be made and built to link its target file before making and

building the parent project.

The use of project dependence enables simultaneous making and building of two or more projects developed

in one workspace.

A project configuration in making and building a subproject in [Project]-[Project Configuration]-[Build

Configuration] menu can be specified.
5

CHAPTER 1 Basic Functions
1.4 Make/Build Function

This section explains the make/build function of SOFTUNE Workbench.

■ Make Function
Make function generates a target file by compiling/assembling only updated source files from all source files

registered in a project, and then joining all required object files.

This function allows compiling/assembling only the minimum of required files. The time required for

generating a target file can be sharply reduced, especially, when debugging.

For this function to work fully, the dependence between source files and include files should be accurately

grasped. To do this, SOFTUNE Workbench has a function for analyzing include dependence. To perform

this function, it is necessary to understand the dependence of a source file and include file. SOFTUNE

Workbench has the function for analyzing the include file dependence. For details, see Section 1.5.

■ Build Function
Build function generates a target file by compiling/assembling all source files registered with a project,

regardless of whether they have been updated or not, and then by joining all required object files. Using this

function causes all files to be compiled/assembled, resulting in the time required for generating the target file

longer. Although the correct target file can be generated from the current source files.

The execution of Build function is recommended after completing debugging at the final stage of program

development.

Note:

When executing the Make function using a source file restored from backup, the integrity between an
object file and a source file may be lost. If this happens, executing the Build function again.
6

CHAPTER 1 Basic Functions
1.4.1 Customize Build Function

This section describes the SOFTUNE Workbench to set the Customize Build function.

■ Customize Build function
In SOFTUNE Workbench, different tools can be operated automatically before and after executing the

Assembler, Compiler, Linker, Librarian, Converter, or Configurator started at Compile, Assemble, Make, or

Build.

The following operations can be performed automatically during Make or Build using this function:

- starting the syntax check before executing the Compiler,

- after executing the Converter, starting the S-format binary Converter (m2bs.exe) and converting

Motorola S-format files to binary format files.

■ Setting Options
An option follows the tool name to start a tool from SOFTUNE Workbench. The options include any file

name and tool-specific options. SOFTUNE Workbench has the macros indicating that any file name and

tool-specific options are specified as options.

If any character string other than parameters is specified, it is passed directly to the tool. For details about the

parameters, see Section 1.11 Macro Descriptions Usable in Manager.

■ Macro List
The Setup Customize Build dialog provides a macro list for macro input. The build file, load module file,

project file submenus indicate their sub-parameters specified.

The environment variable brackets must have any item; otherwise, resulting in an error.
7

CHAPTER 1 Basic Functions
Note:

When checking [Use the Output window], note the following:

• Once a tool is activated, Make/Build activated until the tool is terminated.

• The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user can not perform input while the Output window is in use, so the tool cannot be
terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C, or
Control - Z.

Table 1.4-1 Macro List

Macro List Macro Name

Build file %(FILE)

Load module file %(LOADMODULEFILE)

Project file %(PRJFILE)

Workspace file %(WSPFILE)

Project directory %(PRJPATH)

Target file directory %(ABSPATH)

Object file directory %(OBJPATH)

List file directory %(LSTPATH)

Project construction name %(PRJCONFIG)

Environment variable %(ENV[])

Temporary file %(TEMPFILE)
8

CHAPTER 1 Basic Functions
1.5 Include Dependencies Analysis Function

This section describes the function of the Include Dependencies Analysis of SOFTUNE
Workbench.

■ Analyzing Include Dependencies
A source file usually includes some include files. When only an include file has been modified leaving a

source file unchanged, SOFTUNE Workbench cannot execute the Make function unless it has accurate and

updated information about which source file includes which include files.

For this reason, SOFTUNE Workbench has a built-in Include Dependencies Analysis function. This function

can be activated by selecting the [Project] -[Include Dependencies] menu. By using this function, uses can

know the exact dependencies, even if an include file includes another include file.

SOFTUNE Workbench automatically updates the dependencies of the compiled/assembled files.

Note:

When executing the [Project] - [Include Dependencies] command, the Output window is redrawn and
replaced by the dependencies analysis result.

If the contents of the current screen are important (error message, etc.), save the contents to a file and
then execute the Include Dependencies command.
9

CHAPTER 1 Basic Functions
1.6 Functions of Setting Tool Options

This section describes the functions to set options for the language tools activated from
SOFTUNE Workbench.

■ Function of Setting Tool Options
To create a desired target file, it is necessary to specify options for the language tools such as a compiler,

assembler, and linker. SOFTUNE Workbench stores and manages the options specified for each tool in

project configurations.

Tool options include the options effective for all source files (common options) and the options effective for

specific source files (individual options). For details about the option setting, refer to Section 4.5.5 of

SOFTUNE WORKBENCH Operation Manual.

- Common options

These options are effective for all source files (excluding those for which individual options are

specified) stored in the project.

- Individual options

These options are compile/assemble options effective for specific source files. The common options

specified for source files for which individual options are specified become invalid.

■ Tool Options
SOFTUNE Workbench the macros indicating that any file name and directory name are specified as options.

If any character string other than parameters is specified, it is passed directly to the tool. For details about the

parameters, see Section 1.11 Macro Descriptions Usable in Manager. For details about the tool options for

each tool, see the manual of each tool.

■ Reference Section
Setup Project

Development Environment
10

CHAPTER 1 Basic Functions
1.7 Error Jump Function

This section describes the error jump function in SOFTUNE Workbench.

■ Error Jump Function
When an error, such as a compile error occurs, double-clicking the error message displayed in the Output

window, opens the source file where the error occurred, and automatically moves the cursor to the error line.

This function permits efficient removal of compile errors, etc.

The SOFTUNE Workbench Error Jump function analyzes the source file names and line number information

embedded in the error message displayed in the Output window, opens the matching file, and jumps

automatically to the line.

The location where a source file name and line number information are embedded in an error message, varies

with the tool outputting the error.

An error message format can be added to an existing one or modified into an new one. However, the modify

error message formats for pre-installed Fujitsu language tools are defined as part of the system, these can not

be modified.

A new error message format should be added when working the Error Jump function with user register. To

set Error Jump, execute the [Setup] - [Error Jump Setting] menu.

■ Syntax
An error message format can be described in Syntax. SOFTUNE Workbench uses macro descriptions as

shown in the Table 1.7-1 to define such formats.

To analyze up to where %f, %h, and %* continue, SOFTUNE Workbench uses the character immediately

after the above characters as a delimiter. Therefore, in Syntax, the description until a character that is used as

a delimiter re-appears, is interpreted as a file name or a keyword for help, or is skipped over. To use % as a

delimiter, describe as %%. The %[char] macro skips over as long as the specified character continues in

parentheses. To specify "]" as a skipped character, describe it as "\]". Blank characters in succession can be

specified with a single blank character.

[Example]

*** %f(%l) %h: or, %[*] %f(%l) %h:

The first four characters are "*** ", followed by the file name and parenthesized page number, and then the

keyword for help continues after one blank character.

Table 1.7-1 List of Special Characters String for Analyzing Error Message

Characters Semantics

%f Interpret as source file name and inform editor.

%l Interpret as line number and inform editor.

%h Become keyword when searching help file.

%* Skip any desired character.

%[char] Skip as long as characters in [] continues.
11

CHAPTER 1 Basic Functions
This represents the following message:

***C :\Sample\sample.c(100) E4062C: Syntax Error: near /int.

■ Reference Section
Setup Error Jump
12

CHAPTER 1 Basic Functions
1.8 Editor Functions

This section describes the functions of the SOFTUNE Workbench built-in standard
editor.

■ Standard Editor
SOFTUNE Workbench has a built-in editor called the standard editor. The standard editor is activated as the

Edit window in SOFTUNE Workbench. As many Edit windows as are required can be opened at one time.

The standard editor has the following functions in addition to regular editing functions.

- Keyword marking function in C/assembler source file

Displays reserved words, such as if and for, in different color

- Error line marking function

The error line can be viewed in a different color, when executing Error Jump.

- Bookmark setup function

A bookmark can be set on any line, and instantaneously jumps to the line. Once a bookmark is set,

the line is displayed in a different color.

- Ruler, line number display function

The Ruler is a measure to find the position on a line; it is displayed at the top of the Edit window. A

line number is displayed at the left side of the Edit window.

- Automatic indent function

When a line is inserted using the Enter key, the same indent (indentation) as the preceding line is set

automatically at the inserted line. If the space or tab key is used on the preceding line, the same use is

set at the inserted line as well.

- Function to display, Blank, Line Feed code, and Tab code

When a file includes a Blank, Line Feed code, and Tab code, these codes are displayed with special

symbols.

- Undo function

This function cancels the preceding editing action to restore the previous state. When more than one

character or line is edited, the whole portion is restored.

- Tab size setup function

Tab stops can be specified by defining how many digits to skip when Tab codes are inserted. The

default is 8.

- Font changing function

The font size for character string displayed in the Edit window can be selected.

■ Reference Section
Edit Window (The Standard Editor)
13

CHAPTER 1 Basic Functions
1.9 Storing External Editors

This section describes the function to set an external editor to SOFTUNE Workbench.

■ External Editor
SOFTUNE Workbench has a built-in standard editor, and use of this standard editor is recommended.

However, another accustomed editor can be used, with setting it, instead of an edit window. There is no

particular limit on which editor can be set, but some precautions (below) may be necessary. Use the [Setup] -

[Editor setting] menu to set an external editor.

■ Precautions
- Error jump function

The Error Jump cannot move the cursor to an error line if the external editor does not have a function

to specify the cursor location when activated the external editor.

- File save at compiling/assembling

SOFTUNE Workbench cannot control an external editor. Always save the file you are editing before

compiling/assembling.

■ Setting Options
When activating an external editor from SOFTUNE Workbench, options must be added immediately after

the editor name. The names of file to be opened by the editor and the initial location of the cursor (the line

number). can be specified. SOFTUNE Workbench has a set of special parameters for specifying any file

name and line number, as shown in the Table 1.9-1. If any other character string are described by these

parameters, such characters string are passed as is to the editor.

%f (File name) is determined as follows:

1. If the focus is on the SRC tab of Project window, and if a valid file name is selected, the selected file

name becomes the file name.

2. When a valid file name cannot be acquired by the above procedure, the file name with a focus in the

built-in editor becomes the file name.

%x (project path) is determined as follows:

1. If a focus is on the SRC tab of project window and a valid file name is selected, the project path is a

path to the project in which the file is stored.

2. If no path is obtained, the project path is a path to the active project.

Also file name cannot be given double-quotes in the expansion of %f macros.

Therefore, it is necessary for you to provide double-quotes for %f. Depending on the editor, there are line

numbers to which there will be no correct jump if the entire option is not given double-quotes.
14

CHAPTER 1 Basic Functions
■ Example of Optional Settings

■ Reference Section
Editor Setup

Note:

Regarding execution of error jump in Hidemaru:
To execute error jump in Hidemaru used as an external editor, use the [Others] - [Operating
Environment] - [Exclusive Control] command, and then set "When opening the same file in Hidemaru"
and "Opening two identical files is inhibited".

Table 1.9-1 List of Special Characters for Analyzing Error Message

Parameter Semantics

%% Means specifying % itself

%f Means specifying file name

%l Means specifying line number

%x Means specifying project path

Table 1.9-2 Example of Optional Settings

Editor name Argument

WZ Editor V4.0 %f /j%l

MIFES V1.0 %f+%l

UltraEdit32 %f/%l/1

TextPad32 %f(%l)

PowerEDITOR %f -g%l

Codewright32 %f -g%l

Hidemaru for Win3.1/95 /j%l:1 %f

ViVi /line=%l %f
15

CHAPTER 1 Basic Functions
1.10 Storing External Tools

This section describes the function to set an external tool to SOFTUNE Workbench.

■ External Tools
A non-standard tool not attached to SOFTUNE Workbench can be used by setting it as an external tool and

by calling it from SOFTUNE Workbench. Use this function to coordinate with a source file version control

tool.

If a tool set as an external tool is designed to output the execution result to the standard output and the

standard error output through the console application, the result can be specified to output the SOFTUNE

Workbench Output window. In addition, the allow description of additional parameters each time the tool is

activated.

To set an external tool, use the [Setup] - [Setting Tool] menu.

To select the title of a set tool, use the [Setup] - [Activating Tool] menu.

■ Setting Options
When activating an external tool from SOFTUNE Workbench, options must be added immediately after the

external tool name. Specify the file names, and unique options, etc.

SOFTUNE Workbench has a set of special parameters for specifying any file name and unique tool options.

If any characters string described other than these parameters, such characters string are passed as is to the

external tool.

For details about the parameters, see Section 1.11 Macro Descriptions Usable in Manager.

Note:

When checking [Use the Output window], note the following:

1. Once a tool is activated, neither other tools nor the compiler/assembler can be activated until the
tool is terminated.

2. The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user cannot perform input while the Output window is in use, so the tool cannot be
terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C, or
Control - Z.

■ Reference Section
Setting Tools

Starting Tools
16

CHAPTER 1 Basic Functions
1.11 Macro Descriptions Usable in Manager

This section explains the macro descriptions that can be used in the manager of
SOFTUNE Workbench.

■ Macros
SOFTUNE Workbench has special parameters indicating that any file name and tool-specific options are

specified as options.

The use of these parameters as tool options eliminates the need for options specified each time each tool is

started.

The type of macro that can be specified and macro expansion slightly vary depending on where to describe

macros. The macros usable for each function are detailed below. For the macros that can be specified for

‘‘Error Jump’’ and ‘‘External Editors’’ see Sections 1.7 ‘‘Error Jump Function’’ and 1.9 ‘‘Storing External

Editors’’.

■ Macro List
The following is a list of macros that can be specified in SOFTUNE Workbench.

The macros usable for each function are listed below.

- External tools: Table 1.11-1 and Table 1.11-2

- Customize build: Table 1.11-1 and Table 1.11-2

- Tool options: Table 1.11-2

The directory symbol \ is added to the option directories in Table 1.11-1 but not to the macro directories in

Table 1.11-2.

The sub-parameters in Table 1.11-3 can be specified in %(FILE), %(LOADMOUDLEFILE), %(PRJFILE).

The sub-parameter is specified in the form of %(PRJFILE[PATH]).

If the current directory is on the same drive, the relative path is used. The current directory is the workspace

directory for %(PRJFILE), and %(WSPFILE), and the project directory for other than them.
17

CHAPTER 1 Basic Functions
The macros in (*1) are determined as follows:

- Customize build

1. Source file before and after executing compiler and assembler

2. Target file before and after executing linker, librarian and converter

3. Configuration file before and after executing configuration

Table 1.11-1 List of Macros That Can Be Specified 1

Parameter Meaning

%f Passed as full-path name of file. (*1)

%F Passed as main file name of file. (*1)

%d Passed as directory of file. (*1)

%e Passed as extension of file. (*1)

%a Passed as full-path name of load module file.

%A Passed as main file name of load module file. (*2)

%D Passed as directory of load module file. (*2)

%E Passed as extension of load module file. (*2)

%x Passed as directory of project file. (*2)

%X Passed as main file name of project file. (*2)

%% Passed as %.

Table 1.11-2 List of Macros That Can Be Specified 2

Parameter Meaning

%(FILE) Passed as full-path name of file. (*1)

%(LOADMODULEFILE) Passed as full-path name of load module file. (*2)

%(PRJFILE) Passed as full-path name of project file. (*2)

%(WSPFILE) Passed as full-path name of workspace file. (*3)

%(PRJPATH) Passed as directory of project file. (*2)

%(ABSPATH) Passed as directory of target file. (*2)

%(OBJPATH) Passed as directory of object file. (*2)

%(LSTPATH) Passed as directory of list file. (*2)

%(PRJCONFIG) Passed as project configuration name. (*2) (*3)

%(ENV [Environment variable]) Environment variable specified in environment variable brackets is
passed.

%(TEMPFILE) Temporary file is created and its full-path name is passed. (*4)
18

CHAPTER 1 Basic Functions
- Tool options

Null character

- Others

1. File as focus is on the SRC tab of project window and valid file name is selected

2. File on which focus is in internal editor as no valid file name can be obtained in 1

3. Null character if no valid file name can be obtained

The macros in (*2) are determined as follows:

- Customize build and tool options

Information on configuration of project under building, making, compiling and assembling

- Others

1. Information on active configuration of project in which file is stored as focus is on the SRC tab of

project window and valid file name is selected

2. Information on active configuration of active project if no valid file name can be obtained in 1

Only project files in the workspace project format can be used for macros indicated by (*3).

Data in the temporary file in (*4) can be specified only for customize build.

The macro in (*) can be used only the project of workspace project format.

■ Examples of Macro Expansion
If the following workspace is opened, macro expansion is performed as follows:

Workspace : C:/Wsp/Wsp.wsp

Active project : C:/Wsp/Sample/Sample.prj

Active project configuration - Debug

Object directory : C:/Wsp/Sample/Debug/Obj/

Subproject : C:/Subprj/Subprj.prj

Active project configuration - Release

Object directory : C:/Subprj/Release/Obj/

Table 1.11-3 List of Sub parameters 1

Sub parameter Meaning

[PATH] Directory of file

[RELPATH] Relative Path of file

[NAME] Main file name of file

[EXT] Extension of file

[SHORTFULLNAME] Full path name of short file

[SHORTPATH] Directory of short file

[SHORTNAME] Main file name of short file

[FOLDER] Name of folder in which files are stored in the SRC tab of project window
(Can be specified only in %(FILE).)(*)
19

CHAPTER 1 Basic Functions
Target file : C:/Subprj/Release/Abs/Subprj.abs

[Example] Macro expansion in external tools

Focus is on Subprj project file in the SRC tab of project window.

%a : C:/Subprj/Release/Abs/Subprj.abs

%A : SUBPRJ.abs

%D : C:/Subprj/Release/Abs/

%E : .abs

%(FILE[FOLDER]) : Source Files/Common

%(PRJFILE) : C:Subprj/Subprj.prj

Focus is not in the SRC tab of project window.

%a : C:/Wsp/Sample/Debug/Abs/Sample.abs

%A : Sample.abs

%D : C:/Wsp/Sample/Debug/Abs/

%(PRJFILE) : C:/Wsp/Sample/Sample.prj

[Example] Macro expansion in customize build

Release configuration of Subprj project is built.

%(FILE) : C:/Subprj/LongNameFile.c

%(FILE[PATH]) : C:/Subprj

%(FILE[RELPATH]) : .

%(FILE[NAME]) : LongNameFile

%(FILE[EXT]) : .c

%(FILE[SHORTFULLNAME]) : C:/Subprj/LongFi~1.c

%(FILE[SHORTPATH]) : C:/Subprj

%(FILE[SHORTNAME]) : LongFi~1

%(PRJFILE[RELPATH]) : ../Subprj

%(PRJPATH) : C:/Subprj

%(OBJPATH) : C:/Subprj/Release/Obj

%(PRJCONFIG) : Release

%(ENV[FETOOL]) : C:/SOFTUNE

%(TEMPFILE) : C:/Subprj/Release/Opt/_fs1056.TMP

[Example] Macro expansion in tool options

Release configuration of Subprj project is built.

%(FILE) :

%(PRJFILE[RELPATH]) : ../Subprj

%(PRJPATH) : C:/Subprj

%(OBJPATH) : C:/Subprj/Release/Obj

%(PRJCONFIG) : Release

%(ENV[FETOOL]) : C:/SOFTUNE
20

CHAPTER 1 Basic Functions
1.12 Setting Operating Environment

This section describes the functions for setting the SOFTUNE Workbench operating
environment.

■ Operating Environment
Set the environment variables for SOFTUNE Workbench and some basic setting for the Project.

To set the operating environment, use the [Setup]-[Development Environment Setting] menu.

- Environment Variables

Environment variables are variables that are referred to mainly using the language tools activated from

SOFTUNE Workbench. The semantics of an environment variable are displayed in the lower part of

the Setup dialog. However, the semantics are not displayed for environment variables used by tools

added later to SOFTUNE Workbench.

When SOFTUNE Workbench and the language tools are installed in a same directory, it is not

especially necessary to change the environment variable setups.

- Basic setups for Project

The following setups are possible.

- Open the previously worked-on Project at start up

When starting SOFTUNE Workbench, it automatically opens the last worked-on Project.

- Display options while compiling/assembling

Compile options or assemble options can be viewed in the Output window.

- Save dialog before closing Project

Before closing the Project, a dialog asking for confirmation of whether or not to save the Project to the

file is displayed. If this setting is not made, SOFTUNE Workbench automatically saves the Project

without any confirmation message.

- Save dialog before compiling/assembling

Before compiling/assembling, a dialog asking for confirmation of whether or not to save a source file

that has not been saved is displayed. If this setting is not made, the file is saved automatically before

compile/assemble/make/build.

- Termination message is highlighted at Make/Build

At Compile, Assemble, Make, or Build, the display color of termination messages (Abort, No Error,

Warning, Error, Fatal error, or Failing During start) can be changed freely by the user.

■ Reference Section
Development Environment

Note:

Because the environment variables set here are language tools for the SOFTUNE Workbench, the
environment variables set on previous versions of SOFTUNE cannot be used. In particular, add the
set values of [User Include Directory] and [Library Search Directory] to [Tool Options Settings].
21

CHAPTER 1 Basic Functions
1.13 Debugger Types

This section describes the types of SOFTUNE Workbench debuggers.

■ Type of Debugger
SOFTUNE Workbench integrates three types of debugger: a simulator debugger, emulator debugger, and

monitor debugger. Any one can be selected depending on the requirement.

■ Simulator Debugger
The simulator debugger simulates the MCU operations (executing instructions, memory space, I/O ports,

interrupts, reset, etc.) with software to evaluate a program.

It is used for evaluating an uncompleted system and operation of individual units, etc.

■ Emulator Debugger
The emulator debugger is software to evaluate a program by controlling an emulator from a host through a

communications line (RS-232C, LAN, USB).

Before using this debugger, the emulator must be initialized.

■ Monitor Debugger
The monitor debugger evaluates a program by putting it into an evaluation system and by communicating

with a host. An RS-232C interface and an area for the debug program are required within the evaluation

system.

For further information on the MCU-related items, see Chapter 2 and later in this manual.
22

CHAPTER 1 Basic Functions
1.14 Memory Operation Functions

This section describes the memory operation functions.

■ Functions for Memory Operations
- Display/Modify memory data

Memory data can be display in the Memory window and modified.

- Fill

The specified memory area can be filled with the specified data.

- Copy

The data in the specified memory area can be copied to another area.

- Compare

The data in the specified source area can be compared with data in the destination area.

- Search

Data in the specified memory area can be searched.

For further details of the above functions, refer to "3.11 Memory Window" in "SOFTUNE WORKBENCH

Operation Manual".

- Display/Modify C variables

The names of variables in a C source file can be displayed in the Watch window and modified.

- Setting Watch point

By setting a watch point at a specific address, its data can be displayed in the Watch window.

For further details of the above functions, refer to "3.13 Watch Window" in "SOFTUNE WORKBENCH

Operation Manual".
23

CHAPTER 1 Basic Functions
1.15 Register Operations

This section describes the register operations.

■ Register Operations
The Register window is opened when the [View] - [Register] command is executed. The register and flag

values can be displayed in the Register window.

For further details about modifying the register value and the flag value, refer to "4.4.4 Register" in

"SOFTUNE WORKBENCH Operation Manual".

The name of the register and flag displayed in the Register window varies depending on each MCU in use.

For the list of register names and flag names for the MCU in use, refer to the Operational Manual Appendix.

■ Reference Section
Register Window
24

CHAPTER 1 Basic Functions
1.16 Line Assembly and Disassembly

This section describes line assembly and disassembly.

■ Line Assembly
To perform line-by-line assembly (line assembly), right-click anywhere in the Disassembly window to

display the short-cut menu, and select [Line Assembly]. For further details about assembly operation, refer

to "4.4.3 Assembly" in "SOFTUNE WORKBENCH Operation Manual".

■ Disassembly
To display disassembly, use the [View]-[Disassembly] command. By default, disassembly can be viewed

starting from the address pointed by the current program counter (PC). However, the address can be changed

to any desired address at start-up.

Disassembly for an address outside the memory map range cannot be displayed. If this is attempted, "???" is

displayed as the mnemonic.

■ Reference Section
Disassembly Window
25

CHAPTER 1 Basic Functions
1.17 Symbolic Debugging

The symbols defined in a source program can be used for command parameters
(address). There are three types of symbols as follows:
- Global Symbol
- Static Symbol within Module (Local Symbol within Module)
- Local Symbol within Function

■ Types of Symbols
A symbol means the symbol defined while a program is created, and it usually has a type. Symbols become

usable by loading the debug information file.

Furthermore, a type of the symbol in C is recognized and the command is executed.

There are three types of symbols as follows:

- Global symbol

A global symbol can be referred to from anywhere within a program. In C, variables and functions

defined outside a function without a static declaration are in this category. In assembler, symbols with

a PUBLIC declaration are in this category.

- Static symbol within module (Local symbol within module)

A static symbol within module can be referred to only within the module where the symbol is defined.

In C, variables and functions defined outside a function with a static declaration are in this category.

In assembler, symbols without a PUBLIC declaration are in this category.

- Local symbol within function

A local symbol within a function exists only in C. A static symbol within a function and an automatic

variable are in this category.

- Static symbol within function

Out of the variables defined in function, those with static declaration.

- Automatic variable

Out of the variables defined in function, those without static declaration and parameters for the

function.

■ Setting Symbol Information
Symbol information in the file is set with the symbol information table by loading a debug information file.

This symbol information is created for each module.

The module is constructed for each source file to be compiled in C, in assembler for each source file to be

assembled.

The debugger automatically selects the symbol information for the module to which the PC belongs to at

abortion of execution (Called "the current module"). A program in C also has information about which

function the PC belongs to.
26

CHAPTER 1 Basic Functions
■ Line Number Information
Line number information is set with the line number information table in SOFTUNE Workbench when a

debug information file is loaded. Once registered, such information can be used at anytime thereafter. Line

number is defined as follows:

[Source File Name] $Line Number
27

CHAPTER 1 Basic Functions
1.17.1 Referring to Local Symbols

This section describes referring to local symbols and Scope.

■ Scope
When a local symbol is referred to, Scope is used to indicate the module and function to which the local

symbol to be referred belongs.

SOFTUNE Workbench automatically scopes the current module and function to refer to local symbols in the

current module with preference. This is called the Auto-scope function, and the module and function

currently being scoped are called the Current Scope.

When specifying a local variable outside the Current Scope, the variable name should be specified by the

module and function to which the variable belongs. This method of specifying a variable is called a symbol

path name or a Search Scope.

■ Moving Scope
As explained earlier, there are two ways to specify the reference to a variable: by adding a Search Scope

when specifying the variable name, and by moving the Current Scope to the function with the symbol to be

referred to. The Current Scope can be changed by displaying the Call Stack dialog and selecting the parent

function. For further details of this operation, refer to "4.6.7 Stack" in "SOFTUNE WORKBENCH

Operation Manual". Changing the Current Scope as described above does not affect the value of the PC.

By moving the current scope in this way, you can search a local symbol in parent function with precedence.

■ Specifying Symbol and Search Procedure
A symbol is specified as follows:

When a symbol is specified using the module and function names, the symbol is searched. However, when

only the symbol name is specified, the search is made as follows:

1. Local symbols in function in Current Scope

2. Static symbols in module in Current Scope

3. Global symbols

If a global symbol has the same name as a local symbol in the Current Scope, specify "\" or "::" at the start of

global symbol. By doing so, you can explicitly show that is a global symbol.

An automatic variable can be referred to only when the variable is in memory. Otherwise, specifying an

automatic variable causes an error.

[[Module Name] [\Function Name] \] Symbol Name
28

CHAPTER 1 Basic Functions
1.17.2 Referring to C Variables

C variables can be specified using the same descriptions as in the source program
written in C.

■ Specifying C Variables
C variables can be specified using the same descriptions as in the source program. The address of C

variables should be preceded by the ampersand symbol "&". Some examples are shown in the Table 1-17-1.

Table 1.17-1 Examples of Specifying Variables

Example of Variables
Example of
Specifying
Variables

Semantics

Regular Variable int data; data Value of data

Pointer char *p; *p Value pointed to by p

Array char a[5]; a[1] Value of second element of a

Structure struct stag {
 char c;
 int i;
};
struct stag st;
struct stag *stp;

st.c
stp- >c

Value of member c of st
Value of member c of the structure
to which stp points

Union union utag {
 char c;
 int i;
} uni;

uni.i Value of member i of uni

Address of variable int data; &data Address of data

Reference type int i;
int &ri = i;

ri Same as i
29

CHAPTER 1 Basic Functions
■ Notes on C Symbols
The C compiler outputs symbol information with "_" prefixed to global symbols. For example, the symbol

main outputs symbol information _main. However, SOFTUNE Workbench permits access using the symbol

name described in the source to make the debug of program described by C language easier.

Consequently, a symbol name described in C and a symbol name described in assembler, which should both

be unique, may be identical.

In such a case, the symbol name in the Current Scope normally is preferred. To refer to a symbol name

outside the Current Scope, specify the symbol with the module name.

If there are duplicated symbols outside the Current Scope, the symbol name searched first becomes valid. To

refer to another one, specify the symbol with the module name.
30

CHAPTER 2
Dependence Functions

This chapter describes the functions dependent on each
Debugger.

2.1 Simulator Debugger

2.2 Emulator Debugger (MB2141)

2.3 Emulator Debugger (MB2147-01)

2.4 Emulator Debugger (MB2147-05)

2.5 Monitor Debugger

2.6 Abortion of Program Execution (SIM, EML, MON)
31

CHAPTER 2 Dependence Functions
2.1 Simulator Debugger

This section describes the functions of the simulator debugger for the F2MC-16 Family

■ Simulator Debugger
The simulator debugger simulates the MCU operations (executing instructions, memory space, I/O ports,

interrupts, reset, etc.) with software to evaluate a program.

It is used to evaluate an uncompleted system, the operation of single units, etc.

There are 2 types of simulator debuggers.

- Normal simulator debugger (normal)

- High-speed simulator debugger (fast)

This high-speed simulator debugger provides substantial reductions in simulation time due to a dramatic

review of normal simulator debugger's processing methods.

The high-speed simulator debugger can be instruction processing performance for 10MIPS when it is

operated by PC equipped with Pentium4 2.0GHz.

External I/F for simulator are equipped to high-speed simulator debugger to create peripheral simulation

modules.

Please refer to "Appendix I External I/F DLL for Simulator" in "SOFTUNE Workbench Operation Manual".

■ Operating Condition of High-speed Simulator Debugger
The high-speed simulator debugger requires much more RAM space on the host PC than that of normal

simulator debugger.

The required RAM size depends largely on your program size.

For the required available RAM space, see the table below:

Insufficient RAM space will lead to an extreme decrease in simulation speed.

Target program size

CODE XX(KB)

DATA YY(KB)

Required RAM space (MB) = 20 + (XX / 64) * 6 + (YY / 64) * 1.5

However, RAM space larger than the above may be needed depending on program allocation.

Consecutive areas should be reserved as much as possible.

Example: Program with 1 MB of CODE and DATA sizes

Required RAM space (MB) = 20 + (1024 / 64) * 6 + (1024 / 64) * 1.5 = 140MB

Basic use Fs907s.exe 20MB

CODE size of target program per 64 KB 6MB

DATA size of target program per 64 KB 1.5MB
32

CHAPTER 2 Dependence Functions
■ Simulation Range
The simulator debugger simulates the MCU operations (instruction operations, memory space, I/O ports,

interrupts, reset, power-save consumption mode, etc.) Peripheral I/Os, such as a timer, DMAC and serial I/O,

other than the CPU core of the actual chip are not supported as peripheral resources. I/O space to which

peripheral I/Os are connected is treated as memory space. There is a method for simulating interrupts like

timer interrupts, and data input to memory like I/O ports. For details, see the sections concerning I/O port

simulation and interrupt simulation.

- Instruction simulation

- Memory simulation

- I/O port simulation (Input port)

- I/O port simulation (Output port)

- Interrupt simulation

- Reset simulation

- Power-save consumption mode simulation
33

CHAPTER 2 Dependence Functions
2.1.1 Instruction Simulation

This section describes the instruction simulation executed by SOFTUNE Workbench.

■ Instruction Simulation

This simulates the operations of all instructions supported by the F2MC-16/16L/16LX/16H/16F. It also

simulates the changes in memory and register values due to such instructions.
34

CHAPTER 2 Dependence Functions
2.1.2 Memory Simulation

This section describes the memory simulation executed by SOFTUNE Workbench.

■ Memory Simulation
The simulator debugger must first secure memory space to simulate instructions because it simulates the

memory space secured in the host machine memory.

The following operation is required.

- To secure the memory area, either use the [Setup] - [Memory Map] command, or the SET MAP

command in the Command window.

- Load the file output by the Linkage Editor (Load Module File) using either the [Debug] - [Load target

file] command, or the LOAD/OBJECT command in the Command window.

■ Simulation Memory Space
Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map] command.

The access attribute of unspecified memory space is Undefined.

■ Memory Area Access Attributes
Access attributes for memory area can be specified as shown in Table 2.1-1. A guarded access break occurs

if access is attempted against such access attribute while executing a program. When access is made by a

program command, such access is allowed regardless of the attribute, CODE, READ or WRITE. However,

access to memory in an undefined area causes an error.

Table 2.1-1 Types of Access Attributes

Attribute Semantics

CODE Instruction operation enabled

READ Data read enabled

WRITE Data write enabled

undefined Attribute undefined (access prohibited)
35

CHAPTER 2 Dependence Functions
2.1.3 I/O Port Simulation

The output to I/O ports can be recorded in the specified buffer or file.This section
describes I/O port simulation executed by SOFTUNE Workbench.

■ I/O Port Simulation (Input Port)
There are two types of simulations in I/O port simulation: input port simulation, and output port simulation.

Input port simulation has the following types:

- Whenever a program reads the specified port, data is input from the pre-defined data input source.

- Whenever the instruction execution cycle count exceeds the specified cycle count, data is input to the

port.

To set an input port, use the [Setup] - [Debug Environment] - [I/O Port] command, or the SET IMPORT

command in the Command window.

Up to 4096 port addresses can be specified for the input port. The data input source can be a file or a

terminal. After reading the last data from the file, the data is read again from the beginning of the file. If a

terminal is specified, the input terminal is displayed at read access to the set port.

A text file created by an ordinary text editor, or a binary file containing direct code can be used as the data

input file. When using a text file, input the input data inside commas (,). When using a binary file, select the

binary radio button in the input port dialog.

■ I/O Port Simulation (Output Port)
At output port simulation, whenever a program writes data to the specified port, writing is executed to the

data output destination.

To set an output port, either use the [Setup] - [Debug Environment] - [I/O Port] command, or the SET

OUTPORT command in the Command window.

Up to 4096 port addresses can be set as output ports. Select either a file or terminal (Output Terminal

window) as the data output destination.

A destination file must be either a text file that can be referred to by regular editors, or a binary file. To

output a binary file, select the Binary radio button in the Output Port dialog.

Note:

The following method is not supported by high-speed simulator debugger.

• Whenever the instruction execution cycle count exceeds the specified cycle count, data is input to
the port.

Furthermore the setting of memory map is necessary to set I/O port. When deleting memory map, I/O
port is also deleted.
36

CHAPTER 2 Dependence Functions
2.1.4 Interrupt Simulation

This section describes the interrupt simulation executed by SOFTUNE Workbench.

■ Interrupt Simulation
Simulate the operation of the MCU (including intelligent I/O service) in response to an interrupt request.

Note that intelligent I/O service does not support any end request from the resource.

Provisions for the causes of interrupts and interrupt control registers are made by referencing data in the

install file read at simulator start up.

*Intelligent I/O service provides automatic data transfer between I/O and memory. This function allows

exchange of data between memory and I/O, which was done previously by the interrupt handling program,

using DMA (Direct Memory Access). (For details, refer to the user manual for each model.)

The methods of generating interrupts are as follows:

- Execute instructions for the specified number of cycles while the program is running (during

execution of executable commands) to generate interrupts corresponding to the specified interrupt

numbers and cancel the interrupt generating conditions.

- Continue to generate interrupts each time the number of instruction execution cycles exceeds the

specified number of cycles.

The method of generating interrupts is set by the [Setup]-[Debug environment]-[Interrupt] command. If

interrupts are masked by the interrupt enable flag when the interrupt generating conditions are established,

the interrupts are generated after they are unmasked.

MCU operation in response to an interrupt request is also supported for the following exception handling:

- Execution of undefined instructions

- Address error in program access

(Program access to internal RAM area and internal I/O area)

- Stack area error (only for 16F)

Note:

When an external interrupt is generated while under an interrupt mask at high-speed simulator
debugger, that interrupt factor is eliminated.
37

CHAPTER 2 Dependence Functions
2.1.5 Reset Simulation

This section describes the reset simulation executed by SOFTUNE Workbench.

■ Reset Simulation
The simulator debugger simulates the operation when a reset signal is input to the MCU using the [Debug]-

[Reset MCU] command and initializes the registers. The function for performing reset processing by

operation of MCU instructions (writing to RST bit in standby control register) is also supported. In this case,

the reset message (Reset) is displayed on the status bar.
38

CHAPTER 2 Dependence Functions
2.1.6 Power-Save Consumption Mode Simulation

This section describes the low power-save consumption SOFTUNE Workbench mode
simulation executed by SOFTUNE Workbench.

■ Power-Save Consumption Mode Simulation
The MCU enters the power-save consumption mode in accordance with the MCU instruction operation

(Write to SLEEP bit or STOP bit of standby control register). Once in the sleep mode or stop mode, a

message ("sleep" for sleep mode, "stop" for stop mode) is displayed on the Status Bar. The loop keeps

running until either an interrupt request is generated, or the [Debug] - [Abort] command is executed. Each

cycle of the loop increments the count by 1. During this period, I/O port processing can be operated.

Writing to the standby control register using a command is not prohibited.
39

CHAPTER 2 Dependence Functions
2.1.7 STUB Function

This section describes the STUB function which executes commands automatically when
the breakpoint hit occurs.

■ STUB Function
The STUB function is supported so that a series of commands in the command list can automatically be

executed when a specified breakpoint is hit. The use of this function enables spot processing, such as simple

I/O simulation, external interrupt generation, and memory reprogramming, without changing the main

program. This function is effective only when the simulator debugger is used.

■ Setting
The STUB function can be set by the following commands.

• Dialog

1. Breakpoint Set Dialog - [Code] tab

2. Breakpoint Set Dialog - [Data] tab

• Command

1. SET BREAK

2. SET DATABREAK

execution starts

Breakpoint is hit

Break (STUB) processing

execution ends

Is there a command list
in break point?

Re-execute (is NOBREAK
specified)?

Yes

Yes

No

No

Process a command list in break
point (execute commands).

Execution stops

Execution restarts
P

rogram
 execution
40

CHAPTER 2 Dependence Functions
2.2 Emulator Debugger (MB2141)

This section explains the functions of the emulator debuggers for the MB2141.

■ Emulator Debugger
When choosing the emulator debugger from the setup wizard, select one of the following emulators. Select

the MB2141.

MB2141

MB2147-01

MB2147-05

The emulator debugger for the MB2141 is software that controls an emulator from a host computer via a

communications line (RS-232C or LAN) to evaluate programs.

The following series can be debugged:

When MB2141-506 pod used

F2MC-16/16H

F2MC-16F

F2MC-16L

F2MC-16LX

When MB2141-507 pod used

F2MC-16F

F2MC-16L

F2MC-16LX

Before using the emulator, the emulator must be initialized. For father details, refer to "Appendix B.

Downloading Monitor Program", and "Appendix C. Setting LAN Interface" in "SOFTUNE WORKBENCH

Operation Manual".

For further details, refer to "Appendix B Download Monitor Program", and "Appendix C Setting up LAN

Interface" in "SOFTUNE WORKBENCH Operation Manual".
41

CHAPTER 2 Dependence Functions
2.2.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment
For the emulator debugger for the MB2141, it is necessary to set the following operating environment.

Predefined default settings for all these setup items are enabled at startup. Therefore, setup is not required

when using the default settings. Adjusted settings can be used as new default settings from the next time.

- MCU operation mode

- Debug area

- Memory mapping

- Timer minimum measurement unit
42

CHAPTER 2 Dependence Functions
2.2.1.1 MCU Operation Mode

There are two MCU operation modes as follows:
- Debugging Mode
- Native Mode

■ Setting MCU Operation Mode
Set the MCU operation mode.

There are two operation modes: the debugging mode, and the native mode. Choose either one using the SET

RUNMODE command.

At emulator start-up, the MCU is in the debugging mode.

When the MCU operation mode is changed, all the following are initialized:

- Data break points

- Event condition settings

- Sequencer settings

- Trace measurement settings and trace buffer

- Performance measurement settings and measured result

■ Debugging Mode
All the operations of evaluation chips can be analyzed, but their operating speed is slower than that of mass-

produced chips.

■ Native Mode
Evaluation chips have the same timing as mass-produced chips to control the operating speed. Note that the

restrictions the shown in Table 2.2-1 are imposed on the debug functions.

Table 2.2-1 Restrictions on debug functions in native mode

Applicable series Restrictions on debug functions

F2MC-16/16H - Memory mapping setting is disabled and each area is accessed to the MCU
specifications.

- Traces cannot be disassembled.

Common to all series - When a data read access occurs on the MCU internal bus, the internal bus
access information is not sampled and stored in the trace buffer.

- Even when a data break or event (data access condition) is set for data on
the MCU internal bus, it may not become a break factor or sequencer-trig-
gering factor.

- The coverage function may fail to detect an access to data on the MCU
internal bus.
43

CHAPTER 2 Dependence Functions
■ MCU Operation Speed
To support a broader range of MCU operation speeds, the emulator adjusts control of the MCU according to

the MCU operation speed.

Normally, set the low-speed operation mode. If the F2MC-16H/16F series is operated at high speed and

malfunctions occur, change the setting to the high-speed operation mode.

Also, to start at low speed and then change to high speed because of the gear setting, etc., use the SET

RUNMODE command to change the setting.
44

CHAPTER 2 Dependence Functions
2.2.1.2 Debug Area

Set the intensive debugging area out of the whole memory space. The area functions are
enhanced.

■ Setting Debug Area
There are two debug areas: DEBUG1, and DEBUG2. A continuous 512KB area (8 banks) is set for each

area.

Set the debug area using the SET DEBUG command.

Setting the debug area enhances the break points/data break points and the coverage measurement function.

- Enhancement of Break Points

Up to six break points (not including temporary break points set using GO command) can be set when

the debug area has not been set yet.

When setting the debug area as the CODE attribute, up to 65535 break points can be set if they are

within the area. At this time, up to six break points can be set for an area other than the debug area,

but the total count of break points must not exceed 65535.

- Enhancement of Data Break Points

Up to six data break points can be set when the debug area has not been set yet.

When setting the debug area of the data attribute (READ, WRITE), up to 65535 data break points can

be set if they are within the area and have the same attribute. At this time, up to six data break points

can be set for an area other than the area or for a different attribute, but the total number of data break

points must not exceed 65535.

- Enhancement of Coverage Measurement Function

Setting the debug area enables the coverage measurement function. In coverage measurement, the

measurement range can be specified only within the area specified as the debug area.

The attributes for the debug area are "Don't care" as long as it is being used for coverage

measurement. The coverage measurement attribute can be set, regardless of the debug area attributes.
45

CHAPTER 2 Dependence Functions
2.2.1.3 Memory Area Types

A unit in which memory is allocated is called an area. There are seven different area
types.

■ Memory Area Types
A unit to allocate memory is allocated is called an area. There are seven different area types as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user

memory. Up to eight user memory areas can be set with no limit on the size of each area.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for ROM area,

and READ, WRITE, etc. can be set for RAM area. If the MCU attempts access in violation of these

attributes, the MCU operation is suspended and an error is displayed (guarded access break).

To set the user memory area, use the SET MAP command. The F2MC-16/16H only allows this setup

in the debugging mode.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and this

memory is called emulation memory.

As emulation memory area, Using MB2145-506 emulation pod, up to seven areas (including mirror

area and internal ROM area described below) each with a maximum size of 64 KB can be set. An

area larger than 64 KB can be set, but the areas are managed internally in 64 KB units.

Using MB2145-507 emulation pod, up to seven areas (including mirror area and internal ROM area

described below) each with a maximum size of 512 KB can be set.

To set the emulation memory area, use the SET MAP command. Attributes are set as for user

memory area.

Note:

Even if the MCU internal resources are set as emulation memory area, access is made to the internal

resources. The F2MC-16/16H only allows this setup in the debugging mode.

- Mirror Area

The mirror area is a region in the emulator memory that makes copies of user memory accesses. The

memory in this area is called a mirror region.

The mirror area is used while it overlaps with a user memory area or undefined area. It is

implemented by the emulation memory. Up to five mirror areas can be defined including emulation

memory areas.

Mirror areas are used to reference the user memory during on-the-fly execution (For further details,

see 2.2.4 On-the-fly Memory Access).

Mirror areas can be set using the SET MAP command. If the memory contents copy option is

selected when a mirror area is set, the contents of the mirror area are always the same contents as the

user memory.
46

CHAPTER 2 Dependence Functions
Note:

When the F2MC-16/16H is used, mirror area setup can be performed only in the debugging mode.

- Internal ROM Area

The area where the emulator internal memory is substituted for internal ROM is called the internal

ROM area, and this memory is called the internal ROM memory.

Only one internal ROM area with a size up to 128 KB can be specified. The internal ROM area is

capable to set by the "Setup Map" dialog opening by "Debugger Memory Map... " from "Setup".

Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Internal ROM Image Area (F2MC-16L, F2MC-16LX, F2MC-16F only)

Some types of MCUs have data in a specific area of internal ROM appearing to 00 bank. This

specific area is called the internal ROM image area.

The internal ROM image area is capable to set by the "Debugger Setup Map" dialog opening by

"Memory Map... " from "Setup". This area attribute is automatically set to READ/CODE. The same

data as in the internal ROM area appears in the internal ROM image area.

Note that the debug information is only enabled for either one (one specified when linked). To debug

only the internal ROM image area, change the creation type of the load module file.

Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Internal Instruction RAM Area (F2MC-16H only)

Some types of MCUs have the internal instruction RAM, and this area is called the internal instruction

RAM area.

The internal instruction RAM area, it is capable to set by the "Internal Instruction RAM area" tab in

the "Setup CPU Information" dialog (select menu "project"-"setup project..." , select the "MCU" tab,

and push the "Set CPU Information..." button). The size must be specified to either H'100, H'200,

H'400, H'800, H'1000, H'2000 or H'4000 bytes.

Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Undefined Area

A memory area that does not belong to any of the areas described above is part of the user memory

area. This area is specifically called the undefined area.
47

CHAPTER 2 Dependence Functions
The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD

area, which cannot be accessed. Select either setup for the whole undefined area. If the area attribute

is set to GUARD, a guarded access error occurs if access to this area is attempted.

Note:

The F2MC-16/16H only allows this setup in the debugging mode.
48

CHAPTER 2 Dependence Functions
2.2.1.4 Memory Mapping

Memory space can be allocated to the user memory, the emulation memory, etc., and the
attributes of these areas can be specified.
However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

■ Access Attributes for Memory Areas
The access attributes shown in Table 2.2-2 can be specified for memory areas.

A guarded memory access break occurs if access is attempted in violation of these attributes while executing

a program.

When access to the user memory area and the emulation memory area is made using program commands,

such access is allowed regardless of the CODE, READ, WRITE attributes. However, access to memory with

the GUARD attribute in the undefined area, causes an error.

When access is made to an area without the WRITE attribute by executing a program, a guarded access break

occurs after the data has been rewritten if the access target is the user memory. However, if the access target

is the emulation memory, the break occurs before rewriting. In other words, write-protection (memory data

cannot be overwritten by writing) can be set for the emulation memory area by not specifying the WRITE

attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to access

by commands.

■ Creating and Viewing Memory Map
Use the following commands for memory mapping.

SET MAP: Set memory map.

SHOW MAP: Display memory map.

CANCEL MAP: Change memory map setting to undefined.

Table 2.2-2 Types of Access Attributes

Area Attribute Description

User Memory Emulation Memory CODE Instruction Execution Enabled

READ Data Read Enabled

WRITE Data Write Enabled

Undefined GUARD Access Disabled

NOGUARD No check of access attribute
49

CHAPTER 2 Dependence Functions
[Example]

 >SHOW MAP

address attribute type

000000 .. FFFFFF noguard

The rest of setting area numbers

user = 8 emulation = 5

 >SET MAP/USER H'0..H'1FF

 >SET MAP/READ/CODE/EMULATION H'FF0000..H'FFFFFF

 >SET MAP/USER H'8000..H'8FFF

 >SET MAP/MIRROR/COPY H'8000..H'8FFF

 >SET MAP/GUARD

 >SHOW MAP

address attribute type

000000 .. 0001FF read write user

000200 .. 007FFF guard

008000 .. 008FFF read write user

009000 .. FEFFFF guard

FF0000 .. FFFFFF read write code emulation

mirror address area

008000 .. 008FFF copy

The rest of setting area numbers

user = 6 emulation = 3

 >

■ Internal ROM Area Setting
The [Map Setting] dialog box is displayed using [Environment] - [Debugger Memory Map] command. You

can set the internal ROM area using the [Internal ROM Area] tab after the [Map Adding] dialog box is

displayed by clicking on the [Setting] button. Two areas can be set. Both ones require empty Emulation area

to be set. The region size by (Empty space of the emulation area) x (one area size) can be set.

Specify the internal ROM area from the ending address H'FFFFFF (fixed) for area 1. Also, it is possible to

delete the internal ROM area.
50

CHAPTER 2 Dependence Functions
2.2.1.5 Timer Minimum Measurement Unit

The timer minimum measurement unit affects the sequencer, the emulation timer and the
performance measurement timer.

■ Setting Timer Minimum Measurement Unit
Choose either 1 µs or 100 ns as the timer minimum measurement unit for the emulator for measuring time.

The minimum measurement unit for the following timers is changed depending on this setup.

-Timer values of sequencer (timer conditions at each level)

-Emulation timer

-Performance measurement timer

Table 2.2-3 shows the maximum measurement time length of each timer when 1 µs or 100 ns is selected as

the minimum measurement unit.

When the minimum measurement unit is changed, the measurement values of each timer are cleared as well.

The default setting is 1 µs.

Use the following commands to control timers.

SET TIMERSCALE command: Sets minimum measurement unit for timers

SHOW TIMERSCALE command: Displays status of minimum measurement unit setting for timers

[Example]

>SET TIMERSCALE/100N

>SHOW TIMERSCALE

Timer scale : 100ns

>

Table 2.2-3 Maximum Measurement Time Length of Each Timer

1 µs selected 100 ns selected

Sequencer timer About 16 seconds About 1.6 seconds

Emulation timer About 70 minutes About 7 minutes

Performance measurement timer About 70 minutes About 7 minutes
51

CHAPTER 2 Dependence Functions
2.2.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

■ Notes on GO Command
For the GO command, two break points that are valid only while executing commands can be set. However,

it is required to be careful in setting these break points.

- Invalid Break Points

No break occurs when a break point is set at the instruction immediately after the following

instructions.

- No break occurs when break point set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.

- Instruction for which break point set starts from odd-address,

- Preceding instruction longer than 2 bytes length, and break point already set at last 1-byte address

of preceding instruction (This "already-set" break point is an invalid break point that won't break,

because it has been set at an address other than the starting address of an instruction).

- Abnormal Break Point

Setting a break point at the instruction immediately after string instructions listed below, may cause a

break in the middle of the string instruction without executing the instruction to the end.

F2MC-16L/16LX/16/16H

PCB
NCC
SPB
MOV ILM,#imm8
OR CCR,#imm8

DTB
ADB
CNR
AND
CCR,#imm8
POPW PS

F2MC-16F
PCB
NCC
SPB

DTB
ADB
CNR
52

CHAPTER 2 Dependence Functions
■ Notes on STEP Command
- Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid break points and

abnormal break points, such instructions and the next instruction are executed as a single instruction.

Furthermore, if such instructions are continuous, then all these continuous instructions and the next

instruction are executed as a single instruction.

- Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met at one time.

- When step instruction longer than 2 bytes and last code ends at even address

- When break point already set at last address (This "already-set" break point is an invalid break

point that won't break, because it has been set at an address other than the starting address of an

instruction.)

■ Controlling Watchdog Timer
It is possible to select "No reset generated by watchdog timer counter overflow" while executing a program

using the GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

- ENABLE WATCHDOG : Reset generated by watchdog timer counter overflow

- DISABLE WATCHDOG : No reset generated by watchdog timer counter overflow

The start-up default in this program is "Reset generated by watchdog timer counter overflow".

[Example]

>DISABLE WATCHDOG

>GO

F2MC-16L/16LX/16/16H

MOVS
SECQ
WBTS
MOVSWI
SECQWI
MOVSD
SECQD
FILS
FILSW

MOVSW
SECQW
MOVSI
SECQI
WBTC
MOVSWD
SECQWD
FILSI
FILSWI

F2MC-16F

MOVS
SECQ
WBTS
MOVSWI
SECQWI
MOVSD
SECQD
FILS
FILSW
MOVM

MOVSW
SECQW
MOVSI
SECQI
WBTC
MOVSWD
SECQWD
FILSI
FILSWI
MOVMW
53

CHAPTER 2 Dependence Functions
2.2.3 On-the-fly Executable Commands

Certain commands can be executed even while executing a program. This is called "on-
the-fly" execution.

■ On-the-fly Executable Commands
Certain commands can be executed on-the-fly. If an attempt is made to execute a command that cannot be

executed on-the-fly, an error "MCU is busy" occurs. Table 2.2-4 lists major on-the-fly executable functions.

For further details, refer to "SOFTUNE WORKBENCH Command Reference Manual".

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the tool button.

On-the-fly commands cannot be executed when executing the GO command, etc., from the Command

window.

Table 2.2-4 Major Functions Executable in On-the-fly Mode

Function Restrictions Major Commands

MCU reset - RESET

Displaying MCU execution status - SHOW STATUS

Displaying execution time
measurement value (Timer)

-
SHOW TIMER

Memory operation (Read/Write) Emulation memory only operable
Read only enabled in mirror area

ENTER
EXAMINE
COMPARE
FILL
MOVE
DUMP
SEARCH MEMORY
SHOW MEMORY
SET MEMORY

Line assembly, Disassembly Emulation memory only enabled
Mirror area, Disassembly only enabled

ASSEMBLE
DISASSEMBLE

Load, Save program Emulation memory only enabled
Mirror area, save only enabled

LOAD
SAVE

Displaying coverage measurement
data

-
SHOW COVERAGE

Displaying event Disabled in performance mode SHOW EVENT
54

CHAPTER 2 Dependence Functions
2.2.4 On-the-fly Memory Access

While on-the-fly, the area mapped to the emulation memory is Read/Write enabled, but
the area mapped to the user memory area is Read-only enabled.

■ Read/Write Memory while On-the-fly
The user memory cannot be accessed while on-the-fly (when execute the MCU). However, the emulation

memory can be accessed. (The using cycle-steal algorithm eliminates any negative effect on the MCU

speed.)

This emulator allows the user to use part of the emulation memory as a mirror area. The mirror area holds a

copy of the user memory. Using this mirror area makes the Read-only enabled function available while on-

the-fly.

Each memory area operates as follows:

- User Memory Area

Access to the user memory is permitted only when the operation is suspended by a break.

- Emulation Memory Area

Access to the emulation memory is permitted regardless of whether the MCU is suspended, or while

on-the-fly.

- Mirror Area

The emulation memory with the MIRROR setting can be set up for the user memory area to be

referred to while on-the-fly. This area is specifically called the mirror area.

As shown in Figure 2.2-1, the mirror area performs access to the user memory while the MCU is

stopped, and such access is reflected simultaneously in the emulation memory specified as the mirror

area. (Read access is also reflected in the emulation memory specified as the mirror area).

In addition, as shown in Figure 2.2-2, access to the user memory by the MCU is reflected "as it is" in

the emulation memory of the mirror area.

While on-the -fly, the user memory cannot be accessed. However, the emulation memory specified as

the mirror area can be read instead. In other words, identical data to that of the user memory can be

read by accessing the mirror area

However, at least one time access must be allowed before the emulation memory of the mirror area

has the same data as the user memory. The following copy types allow the emulation memory of the

mirror area to have the same data as the user memory.

(1) Copying all data when setting mirror area

When, /Copy is specified with the mirror area set using the SET MAP command, the whole

area is specified, as the mirror area is copied.

(2) Copying only required portion using memory access commands

Data in the specified portion can be copied by executing a command that accesses memory.

The following commands access memory.
55

CHAPTER 2 Dependence Functions
- Memory operation commands

SET MEMORY, SHOW MEMORY, EXAMINE, ENTER,

COMPARE, FILL, MOVE, SEARCH MEMORY, DUMP,

COPY, VERIFY

- Data load/save commands

LOAD, SAVE

Figure 2.2-1 Access to Mirror Area while MCU Suspended

Figure 2.2-2 On-the-fly Access to Mirror Area

Note:

Memory access by a bus master other than the MCU is not reflected in the mirror area.

Executing
command

Emulation memory
(Mirror setting)

User memory

MCU

operation
(Suspended)

Memory access

Reflected

Executing
command

Emulation memory
(Mirror setting)

User memory

MCU

operation
(Operating)

Memory access

Reflected

Memory read
56

CHAPTER 2 Dependence Functions
2.2.5 Events

The emulator can monitor the MCU bus operation, and generate a trigger at a specified
condition called an event.
In this emulator, event triggers are used in order to determine which function event
triggers are used accounting to event modes for the following functions;

- Sequencer
- Sampling condition for multi-trace
- Measuring point in performance measurement

■ Setting Events
A sequencer trigger can be generated under specified conditions by monitoring the operation of the MCU

bus. This function is called an event.

The event provides code (/CODE) data access (/READ/WRITE).

Up to eight events can be set. Sharing hardware with trace triggers, however, the maximum settable count of

events is actually as follows:

Current maximum count of events set

= 8 - (current set count of trace triggers + current set count of data monitoring breaks)

Table 2.2-5 shows the conditions that can be set for events.

Note:

In instruction execution, an event trigger is generated only when an instruction is executed. This
status cannot be specified concurrently with other status.

Use the following commands to set an event.

SET EVENT: Sets event

SHOW EVENT: Display event setup status

CANCEL EVENT: Deletes event

ENABLE EVENT: Enable event

Table 2.2-5 Conditions for Setting Events

Condition Description

Address Memory location (Address bit masking enabled)

Data 8-bit data (data bit masking enable)
NOT specified enable

Status Select from among dada read, data write, instruction execution and data mod-
ify.

External 8-bit data (bit masking enable)
57

CHAPTER 2 Dependence Functions
DISABLE EVENT: Disable event

[Example]

 >SET EVENT 1,func1

 >SET EVENT/WRITE 2,data[2],!d=h'10

 >SET EVENT/MODIFY 3,102

An event can be set in the Event window as well.

■ Event Modes
There are three event modes as listed below. To determine which function event triggers are used for, select

one using the SET MODE command. The default is normal mode.

The event value setting are made for each mode, so switching the event mode changes the event settings as

well.

- Normal Mode

Event triggers used for sequencer.

Since the sequencer can perform control at 8 levels, it can control sequential breaks, time

measurement and trace sampling. Real-time tracing in the normal mode is performed by single trace

(tracing function that samples program execution continuously).

- Multi Trace Mode

Event triggers used for multitracing (trace function that samples data before and after event trigger

occurrence).

- Performance Mode

Event triggers are used for performance measurement to measure time duration between two event

trigger occurrences and count of event trigger occurrences.
58

CHAPTER 2 Dependence Functions
2.2.5.1 Operation in Normal Mode

As shown in the figure below, the event trigger set in the normal mode performs input to
the sequencer. In the sequencer, either branching to any level, or terminating the
sequencer, can be specified as an operation at event trigger occurrence. This enables
debugging (breaks, limiting trace, measuring time) while monitoring program flow.

■ Operation in Normal Mode
The termination of sequencer triggers the delay counter. When the delay counter reaches the specified count,

sampling for the single trace terminates. A break normally occurs at this point, but if necessary, the program

can be allowed to run on without a break.

Figure 2.2-3 Operation in Normal Mode

Events

SET EVENT

CANCEL EVENT

SHOW TRACE/STATUS

SHOW DELAY

DISABLE ENENT

ENABLE EVENT

SHOW EVENT

SHOW SEQUENCE level

SET
SEQUENCE/EVENT

CANCEL
SEQUENCE/EVENT

SHOW SEQUENCE/ALL SET DELAY

SET
SEQUENCE/TIMER

CANCEL
SEQUENCE/TIMER

SET SEQUENCE/DISABLE TRACE

SET SEQUENCE/ENABLE TRACE

SET SEQUENCE/NO TRACE
CLEAR TRACE

SEARCH TRACE

SHOW TRACE/DATA

ENABLE TRACE

DISABLE TRACE SET TRACE

Enable/Disable
 control

Enable

Disable

Select event number causing
trigger at each level, set
pass count value.

Timer setup
for each
condition

When each condition at each level met

When condition met

Delay
counter

Sequencer

Timer latch
When count ends

When count ends

Instructing MCU to
suspend operation

Buffer-full break
 control

Single trace measurement

Enable/Disable
 control

Measurement ends
59

CHAPTER 2 Dependence Functions
■ Event-related Commands in Normal Mode
Since the real-time trace function in the normal mode is actually the single trace function, the commands can

be used to control.

Table 2.2-6 shows the event-related commands that can be used in the normal mode.

Table 2.2-6 Event-related Commands in Normal Mode

Mode Usable Command Function

Normal Mode

SET EVENT
SHOW EVENT
CANCEL EVENT
ENABLE EVENT
DISABLE EVENT

Set event
Displays event setup status
Delete event
Enables event
Disables event

SET SEQUENCE
SHOW SEQUENCE
CANCEL SEQUENCE
ENABLE SEQUENCE
DISABLE SEQUENCE

Sets sequencer
Displays sequencer setup status
Cancels sequencer
Enables sequencer
Disables sequencer

SET DELAY
SHOW DELAY

Sets delay count
Displays delay count setup status

SET TRACE
SHOW TRACE
SEARCH TRACE
ENABLE TRACE
DISABLE TRACE
CLEAR TRACE

Sets trace buffer-full break
Displays trace data
Searches trace data
Enables trace function
Disables trace function
Clears trace data
60

CHAPTER 2 Dependence Functions
2.2.5.2 Operation in Multi Trace Mode

When the multitrace mode is selected as the event mode, the real-time trace function
becomes the multitrace function, and events are used as triggers for multitracing.

■ Operation in Multi Trace Mode
Multitracing is a trace function that samples data before and after an event trigger occurrence. When the

multitrace mode is selected as the event mode, the real-time trace function becomes the multitrace function,

and events are used as triggers for multitracing.

Figure 2.2-4 Operation in Multi Trace Mode

Events
Enable

Disable

All enabled events
generate trigger

Enable/Disable control Buffer full break control

Multitrace measurement

Instructing
MCU to
suspend
operation

SET EVENT

CANCEL EVENT DISABLE MULTITRACE

ENABLE MULTITRACE

SHOW MULTITRACE/STATUS

SET MULTITRACE

SEARCH MULTITRACE

SHOW MULTITRACE

CLEAR MULTITRACEDISABLE ENENT

ENABLE EVENT

SHOW EVENT
61

CHAPTER 2 Dependence Functions
■ Event-related Commands in Multi Trace Mode
Table 2.2-7 shows the event-related commands that can be used in the multi-race mode.

Table 2.2-7 Event-related Commands in Multi Trace Mode

Mode Usable Command Function

Multi Trace Mode

SET EVENT
SHOW EVENT
CANCEL EVENT
ENABLE EVENT
DISABLE EVENT

Sets event
Displays event setup status
Deletes event
Enables event
Disables event

SET MULTITRACE
SHOW MULTITRACE
SEARCH MULTITRACE
ENABLE MULTITRACE
DISABLE MULTITRACE
CLEAR MULTITRACE

Sets trace buffer-full break
Displays trace data
Searches trace data
Enables trace function
Disables trace function
Clears trace data
62

CHAPTER 2 Dependence Functions
2.2.5.3 Operation in Performance Mode

Event triggers set in the performance mode are used to measure performance. The time
duration between two event occurrences can be measured and the event occurrences
can be counted.

■ Operation in Performance Mode
The event triggers that are set in the performance mode are used to measure performance. The time duration

between two event occurrences can be measured and the event occurrences can be counted.

Figure 2.2-5 Operation in Performance Mode

Events
Enable

Disable

Limited to following
combinations:

1,2 3,4 5,6 7,8

Buffer full break control

Performance measurement

Instructing
MCU to
suspend
operation

SET EVENT

CANCEL EVENT

SHOW PERFORMANCE/STATUS

SET PEFFORMANCE

SHOW PERFORMANCE

CLEAR PERFORMANCEDISABLE ENENT

ENABLE EVENT

SHOW EVENT
63

CHAPTER 2 Dependence Functions
■ Event-related Commands in Performance Mode
Table 2.2-8 shows the event-related commands that can be used in the performance mode.

Table 2.2-8 Event-related Commands in Performance Mode

Mode Usable Command Function

Performance Mode

SET EVENT
SHOW EVENT
CANCEL EVENT
ENABLE EVENT
DISABLE EVENT

Sets event
Displays event setup status
Deletes event
Enables event
Disables event

SET PERFORMANCE
SHOW PERFORMANCE
CLEAR PERFORMANCE

Sets performance
Displays performance setup status
Clears performance measurement data
64

CHAPTER 2 Dependence Functions
2.2.6 Control by Sequencer

This emulator has a sequencer to control events. By using this sequencer, sampling of
breaks, time measurement and tracing can be controlled while monitoring program flow
(sequence). A break caused by this function is called a sequential break.
To use this function, set the event mode to normal mode using the SET MODE command.
Use the SET EVENT command to set events.

■ Control by Sequencer
As shown in Table 2.2-9, controls can be made at 8 different levels.

At each level, 8 events and 1 timer condition (9 conditions in total) can be set.

A timer condition is met when the timer count starts at entering a given level and the specified time is

reached.

For each condition, the next operation can be specified when the condition is met. Select any one of the

following.

- Move to required level.

- Terminate sequencer.

The conditions set for each level are determined by OR. Therefore, if any one condition is met, the

sequencer either moves to the required level, or terminates. In addition, trace sampling suspend/resume can

be controlled when a condition is met.

*:The minimum measurement unit for Timer value can be set to either 1 µs or 100 ns using the SET

TIMERSCALE command.

Table 2.2-9 Sequencer Specifications

Function Specifications

Level count 8 levels

Conditions settable for each level 8 event conditions (1 to 16777216 times pass count can be spec-
ified for each condition.)
1 timer condition (Up to 16 s. in µs units or up to 1.6 s. in 100 ns
units can be specified.*)

Operation when condition met Branches to required level or terminates sequence.
Controls trace sampling.

Other function Timer latch enable at level branching

Operation when sequencer terminates Starts delay counter
65

CHAPTER 2 Dependence Functions
2.2.6.1 Setting Sequencer

The sequencer operates in the following order:
(1) The sequencer starts from level 1 simultaneously with the start of program

executing.
(2) Depending on the setting at each level, branching to the required level is

performed when the condition is met.
(3) When sequencer termination is specified, the sequencer terminates when the

condition is met.
(4) When the sequencer terminates, the delay counter starts counting.

■ Setting Sequencer
Figure 2.2-6 shows the sequencer operation.

Figure 2.2-6 Operation of Sequencer

Start executing program. (Start sequencer.)

Set Conditions Operation when Condition Met

[Use event number 1-] [Pass counter]

[Use event number 2-] [Pass counter]

[Use event number 3-] [Pass counter]

[Use event number 4-] [Pass counter]

[Use event number 5-] [Pass counter]

[Use event number 6-] [Pass counter]

[Use event number 7-] [Pass counter]

[Use event number 8-] [Pass counter]

Timer condition [Waiting time]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

Terminat
sequencerBranch to specified level.

Start delay
66

CHAPTER 2 Dependence Functions
[Setup Examples]

- Terminate sequencer when event 1 occurs.

 >SET SEQUENCE/EVENT 1,1,J=0

- Terminate sequencer when event 2 occurs 16 times.

 >SET SEQUENCE/EVENT 1,2,16,J=0

- Terminate sequencer when event 2 occurs after event 1 occurred. However, do not terminate

sequencer if event 3 occurs between event 1 and event 2.

 >SET SEQUENCE/EVENT 1,1,J=2

 >SET SEQUENCE/EVENT 2,2,J=0

 >SET SEQUENCE/EVENT 2,3,J=1

- Terminate sequencer if and when event 2 occurs less than 300 µs after event 1 occurred.

 >SET SEQUENCE/EVENT 1,1,J=2

 >SET SEQUENCE/EVENT 2,2,J=0

 >SET SEQUENCE/TIMER 2,300,J=1

 >SHOW SEQUENCE

Sequencer Enable

 level1 level2 level3 level4 level5 level6 level7 level8

1 |1|->2 | | | | | | | | | | | | | |

2 | | |2|->end | | | | | | | | | | | |

3 | | | | | | | | | | | | | | | |

4 | | | | | | | | | | | | | | | |

5 | | | | | | | | | | | | | | | |

6 | | | | | | | | | | | | | | | |

7 | | | | | | | | | | | | | | | |

8 | | | | | | | | | | | | | | | |

T | | |T|->1 | | | | | | | | | | | |

 Latch 1 (->) = Latch 2 (->) =

>SHOW SEQUENCE 2

level no. = 2

event pass-count trace-cnt1 jmp-level1

2 1 enable end

timer 00:00:000:300:000 enable 1

Indicates
move to level
2 when event
1 occurs at
level 1

Indicate s terminating
sequencer when event 2
occurs at level 2.

Indicates move to level 1 if and
when 300 µs passed before
event 2 occurs at level 2
67

CHAPTER 2 Dependence Functions
2.2.6.2 Break by Sequencer

A program can suspend program execution when the sequencer terminates. This break
is called a sequential break.

■ Break by Sequencer
A program can suspend program execution when the sequencer terminates. This break is called a sequential

break.

As shown in Figure 2.2-7, the delay count starts when the sequencer terminates, and after delay count ends,

either "break" or "not break but tracing only terminates" is selected as the next operation.

To make a break immediately after the sequencer terminates, set delay count to 0 and specify "Break after

delay count terminates". Use the SET DELAY command to set the delay count and the operation after the

delay count.

The default is delay count 0, and Break after delay count.

Figure 2.2-7 Operation when sequencer terminates

[Examples of Delay Count Setups]

- Break when sequencer terminates.

 >SET DELAY/BREAK 0

- Break when 100-bus-cycle tracing done after sequencer terminates.

 >SET DELAY/BREAK 100

- Terminate tracing, but do not break when sequencer terminates.

 >SET DELAY/NOBREAK 0

- Terminate tracing, but do not break when 100-bus-cycle tracing done after sequencer terminates.

 >SET DELAY/NOBREAK 100

Delay
counter

Sequencer
terminates

Count ends

Tracing terminates

Break (Sequential break)

Tracing terminates

Not break

68

CHAPTER 2 Dependence Functions
2.2.6.3 Trace Sampling Control by Sequencer

When the event mode is in the normal mode, real-time trace executing tracing called
single trace.
If the trace function is enabled, single trace samples all the data from the start of
executing a program until the program is suspended.

■ Trace Sampling Control by Sequencer
Sets up suspend/resume trace sampling for each condition at each level of the sequencer. Figure 2.2-8 shows

the trace sampling flow.

For example, it is possible to suspend trace sampling when event 1 occurs, and then resume trace sampling

when event 2 occurs. Trace data sampling can be restricted.

Figure 2.2-8 Trace Sampling Control (1)

As shown in Figure 2.2-9, trace sampling can be disabled during the period from the start of a program

execution until the first condition occurs. For this setup, use the GO command or the SET GO command.

[Example]

 >GO/DISABLETRACE

 >SET GO/DISABLETRACE

 >GO

Figure 2.2-9 Trace Sampling Control (2)

Start Suspend

Program flow

Trace buffer

Resume Suspend
Resume

Suspend

Start Suspend

Program flow

Trace buffer

Resume Suspend
Resume

Suspend
Resume

69

CHAPTER 2 Dependence Functions
[Setup Example]

Suspend trace sampling when event 1 occurs, and then resume at event 2 and keep sampling data until event

3 occurs.

 >SET SEQUENCE/EVENT/DISABLETRACE 1,1,J=2

 >SET SEQUENCE/EVENT/ENABLETRACE 2,2,J=3

 >SET SEQUENCE/EVENT/DISABLETRACE 3,3,J=2

Start

Event 1
NO

Suspend trace sampling.

Level 1

YES

Event 2
NO

Resume trace sampling.

Level 2

YES

Event 3
NO

Suspend trace sampling.

Level 3

YES
70

CHAPTER 2 Dependence Functions
2.2.6.4 Time Measurement by Sequencer

Time can be measured using the sequencer. A time measurement timer called the
emulation timer is used for this purpose. When branching is made from a specified level
to another specified level, a timer value is specified. Up to two emulation timer values
can be fetched. This function is called the timer latch function.

■ Time Measurement by Sequencer
The time duration between two given points in a complex program flow can be measured using the timer

latch function.

The timing for the timer latch can be set using the SET SEQUENCE command; the latched timer values can

be displayed using the SHOW SEQUENCE command.

When a program starts execution, the emulation timer is initialized and then starts counting. Select either 1

µs or 100 ns as the minimum measurement unit for the emulation timer. Set the measurement unit using the

SET TIMESCALE command.

When 1 us is selected, the maximum measured time is about 70 minutes; when 100 ns is selected, the

maximum measured time is about 7 minutes. If the timer overflows during measurement, a warning message

is displayed when the timer value is displayed using the SHOW SEQUENCE command.
71

CHAPTER 2 Dependence Functions
2.2.6.5 Sample Flow of Time Measurement by Sequencer

In the following sample, when events are executed in the order of Event 1, Event 2 and
Event 3, the execution time from the Event 1 to the Event 3 is measured. However, no
measurement is made if Event 4 occurs anywhere between Event 1 and Event 3.

■ Sample Flow of Time Measurement by Sequencer

Start

Event 1
NO

Branch from level 1 to level 2 (Timer latch 1)

Level 1

YES

Event 4

Level 2

YES

Event 2
NO

YES

Sequencer terminates at level 3 (Timer latch 2)

Event 4

Level 3

YES

Event 3
NO

YES

End

72

CHAPTER 2 Dependence Functions
>SET SEQUENCE/EVENT 1,1,J=2

>SET SEQUENCE/EVENT 2,4,J=1

>SET SEQUENCE/EVENT 2,2,J=3

>SET SEQUENCE/EVENT 3,4,J=1

>SET SEQUENCE/EVENT 3,2,J=0

>SET SEQUENCE/LATCH 1,1,2

>SET SEQUENCE/LATCH 2,3,0

>SHOW SEQUENCE

Sequencer Enable

 level1 level2 level3 level4 level5 level6 level7 level8

1 |1|#>2 | | | | | | | | | | | | | |

2 | | |2|->3 | | | | | | | | | | | |

3 | | | | |3|#end | | | | | | | | | |

4 | | |4|->1 |4|->1 | | | | | | | | | |

5 | | | | | | | | | | | | | | | |

6 | | | | | | | | | | | | | | | |

7 | | | | | | | | | | | | | | | |

8 | | | | | | | | | | | | | | | |

T | | |T|->1 | | | | | | | | | | | |

 Latch 1 (1->2) = 00m02s060ms379.0µs Latch 2 (3->E) = 00m16s040ms650.0us

Indicates
that, if event
1 occurs at
level 1, move
to level 2 and
let the timer
latched.

Indicates that, if event 3
occurs at level 3, the
sequencer terminates and
let the timer latched.

Indicate time values of timer latch 1 and timer latch 2. The time
value, deducting the value of the timer latch 1 from the value of the
timer latch 2, represents the execution time.
Time is displayed in the following format.

00 m 00 s 000 ms 000.0 us
-

minutes
-

seconds
-

milliseconds
-

microseconds

73

CHAPTER 2 Dependence Functions
2.2.7 Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.
In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.
There are two types of trace sampling: single trace, which traces from the start of
executing the program until the program is suspended, and multitrace, which starts
tracing when an event occurs.

■ Trace Buffer
The data recorded by sampling in machine cycle units, is called a frame.

The trace buffer can store 32K frames (32768). Since the trace buffer has a ring structure, when it becomes

full, it automatically returns to the start to overwrite existing data.

■ Trace Data
Data sampled by the trace function is called trace data.

The following data is sampled:

- Address

- Data

- Status Information

- Access status: Read/Write/Internal access, etc.

- Device status: Instruction execution, Reset, Hold, etc.

- Queue status: Count of remaining bytes of instruction queue, etc.

- Data valid cycle information: Data valid/invalid

(Since the data signal is shared with other signals, it does

not always output data. Therefore, the trace samples

information indicating whether or not the data is valid.)

- External probe data

- Sequencer execution level

■ Data Not Traced
The following data does not leave access data in the trace buffer.

- Data after tool hold

The F2MC-16/16L/16LX/16H/16F family execute the following operation immediately after a break,

etc., lets MCU suspend (a tool hold). This data is not displayed because it is deleted from the trace

buffer.

- Access to address 100

- Access to FFFFDC to FFFFFF
74

CHAPTER 2 Dependence Functions
- Portion of access data while native mode.

When operating in the native mode, the F2MC-16/16L/16LX/16H/16F family of chips sometime
performs simultaneous multiple bus operations internally. However, in this emulator, monitoring of
the internal ROM bus takes precedence. Therefore, other bus data being accessed simultaneously may
not be sampled (in the debugging mode, all operations are sampled).
75

CHAPTER 2 Dependence Functions
2.2.7.1 Single Trace

The single trace traces all data from the start of executing a program until the program is
aborted.

■ Function of Single Trace
The single trace is enabled by setting the event mode to normal mode using the SET MODE command.

The single trace traces all data from the start of executing a program until the program is suspended.

If the real-time trace function is enabled, data sampling continues execution to record the data in the trace

buffer while the GO, STEP, CALL commands are being executed.

As shown in Figure 2.2-10, suspend/resume trace sampling can be controlled by the event sequencer. Since

the delay can be set between the sequencer terminating the trigger and the end of tracing, the program flow

after an given event occurrence can be traced. The delay count is counted in pass cycle units, so it matches

the sampled trace data count. However, nothing can be sampled during the delay count if trace sampling is

suspended when the sequencer is terminated.

After the delay count ends, a break occurs normally due to the sequential break, but tracing can be terminated

without a break.

Furthermore, a program can be allowed to break when the trace buffer becomes full. This break is called a

trace-buffer-full break.

Figure 2.2-10 Sampling in Single Trace

■ Frame Number and Step Number in Single Trace
The sampled trace data is numbered in frame units. This number is called the frame number.

When displaying trace data, the starting location in the trace buffer can be specified using the frame number.

The trace data at the point where the sequencer termination trigger occurs is numbered 0; trace data sampled

before reaching the trigger point is numbered negatively, and the data sampled after the trigger point is

numbered positively (See Figure 2.2-11).

If there is no sequencer termination trigger point available, the trace data sampled last is numbered 0.

Suspend
sampling

Start program

Program flow

Trace buffer

Delay

Sequencer Delay counter

Resume
sampling

Sequencer terminates
Trigger

Tracing
terminates
76

CHAPTER 2 Dependence Functions
Figure 2.2-11 Frame Number in Single Trace

This program can analyze the single trace result and sort the buffer data in execution instruction units (only

when the MCU execution mode is the debugging mode).

In this mode, the following information is grouped as one unit, and each information unit is numbered. This

number is called the step number.

- Execution instruction mnemonic information

- Data access information

- Device status information

The step number at the sequencer termination trigger is numbered 0; information sampled before reaching the

trigger point is numbered negatively, and information sampled after the trigger point is numbered positively.

If there is no sequencer termination trigger point, the information sampled last is numbered 0.

.

.

.

-3

-2

-1

0

+1

+2

+3

.

.

.

(Trigger point)

Delayed frames
77

CHAPTER 2 Dependence Functions
2.2.7.2 Setting Single Trace

The following settings (1) to (4) are required before executing single trace. Once these
settings have been made, trace data is sampled when a program is executed.

(1) Set event mode to normal mode.
(2) Enable trace function.
(3) Set events, sequencer, and delay count.
(4) Set trace-buffer-full break.

■ Setting Single Trace
The following settings are required before executing single trace. Once these settings have been made, trace

data is sampled when a program is executed.

(1) Set event mode to normal mode.

Use SET MODE command to make this setting.

(2) Enable trace function.

Use the ENABLE TRACE command. To disable the function, use the DISABLE TRACE command.

The default is Enable.

(3) Set events, sequencer, and delay count.

Trace sampling can be controlled by setting the sequencer for events. If this function is not needed, there

is no need of this setting.

To set events, use the SET EVENT command. To set the sequencer, use the SET SEQUENCE command.

Furthermore, set the delay count between sequencer termination and trace ending, and the break operation

(Break or Not Break) when the delay count ends. If the data after event occurrence is not required, there

is no need of this setting.

If Not Break is set, the trace terminates but no break occurs. To check trace data on-the-fly, use this setup

by executing the SET DELAY command.

Note:

When the sequencer termination causes a break (sequential break), the last executed machine cycle
is not sampled.
78

CHAPTER 2 Dependence Functions
(4) Set trace-buffer-full break.

The program can be allowed to break when the trace buffer becomes full. Use the SET TRACE

command for this setting. The default is Not Break. Display the setup status using the SHOW TRACE/

STATUS command.

Table 2.2-10 lists trace-related commands that can be used in the single trace function.

Table 2.2-10 Trace-related Commands That Can Be Used in The Single Trace Function

Usable Command Function

SET EVENT
SHOW EVENT
CANCEL EVENT
ENABLE EVENT
DISABLE EVENT

Sets events
Displays event setup status
Deletes event
Enables event
Disables event

SET SEQUENCE
SHOW SEQUENCE
CANCEL SEQUENCE
ENABLE SEQUENCE
DISABLE SEQUENCE

Sets sequencer.
Displays sequencer setting status
Cancels sequencer
Enables sequencer
Disables sequencer

SET DELAY
SHOW DELAY

Sets delay count value, and operation after delay
Displays delay count setting status

SET TRACE
SHOW TRACE
SEARCH TRACE
ENABLE TRACE
DISABLE TRACE
CLEAR TRACE

Set traces-buffer-full break
Displays trace data
Searches trace data
Enables trace function
Disables trace function
Clears trace data
79

CHAPTER 2 Dependence Functions
2.2.7.3 Multi trace

The multi trace samples data where an event trigger occurs for 8 frames before and after
the event trigger.

■ Multi Trace Function
Execute multitrace by setting the event mode to the multitrace mode using the SET MODE command.

The multitrace samples data where an event trigger occurs for 8 frames before and after the event trigger.

It can be used for tracing required only when a certain variable access occurs, instead of continuous tracing.

The trace data sampled at one event trigger (16 frames) is called a block. Since the trace buffer can hold 32K

frames, up to 2048 blocks can be sampled. Multi trace sampling terminates when the trace buffer becomes

full. At this point, a executing program can be allowed to break if necessary.

Figure 2.2-12 Multi Trace Sampling

■ Multi Trace Frame Number
Sixteen frames of data are sampled each time an event occurs. This data unit is called a block, and each

sampled block is numbered starting from 0. This is called the block number.

A block is a collection of 8 frames of sampled data before and after the event trigger occurs. At the event

trigger is 0, trace data sampled before reaching the event trigger point is numbered negatively, and trace data

sampled after the event trigger point is numbered positively. These frame numbers are called local numbers

(See Figure 2.2-13).

In addition to this local number, there is another set of frame numbers starting with the oldest data in the

trace buffer. This is called the global number. Since the trace buffer can hold 32K frames, frames are

numbered 1 to 32758 (See Figure 2.2-13).

To specify which frame data is displayed, use the global number or block and local numbers.

Start
execution

↓

Program flow

Trace buffer

Block

Event 1

↓

Event 2

↓

Event 3

↓

80

CHAPTER 2 Dependence Functions
Figure 2.2-13 Frame Number in Multi Trace

Block number Trace buffer Frame number

Global number Local number

 Event trigger

1 -7
2 –6
: :
: :
8 0
: :
: :

15 +7
16 +8
17 –7
18 –6

: :
: :

24 0
: :
: :

31 +7
32 +8

32752 -7
32753 -6

: :
: :

32759 0
: :
: :

32767 +7
32768 +8

1

 Event trigger

 Event trigger

2

2048

81

CHAPTER 2 Dependence Functions
2.2.7.4 Setting Multi Trace

Before executing the multitrace, the following settings must be made. After these
settings, trace data is sampled when a program is executed.

(1) Set event mode to multitrace mode.
(2) Enable trace function.
(3) Set event.
(4) Set trace-buffer-full break.

■ Setting Multi Trace
Before executing the multitrace, the following settings must be made. After these settings, trace data is

sampled when a program is executed.

(1) Set event mode to multitrace mode.

Use the SET MODE command for this setting.

(2) Enable trace function.

Use the ENABLE MULTITRACE command. To disable the function, use the DISABLE MULTITRACE

command.

(3) Set event.

Set an event that sampling. Use the SET EVENT command for this setting.

(4) Set trace-buffer-full break.

To break when the trace buffer becomes full, set the trace-buffer-full break. Use the SET MULTITRACE

command for this setting.

Table 2.2-11 shows the list of trace-related commands that can be used in multitrace mode.

Table 2.2-11 Trace-related Commands That Can Be Used in Multi Trace Mode

Usable Command Function

SET EVENT
SHOW EVENT
CANCEL EVENT
ENABLE EVENT
DISABLE EVENT

Sets events
Displays event setup status
Deletes event
Enables event
Disables event

SET MULTITRACE
SHOW MULTITRACE
SEARCH MULTITRACE
ENABLE MULTITRACE
DISABLE MULTITRACE
CLEAR MULTITRACE

Sets trace-buffer-full break
Displays trace data
Searches trace data
Enables multitrace
Disables multitrace
Clears trace data
82

CHAPTER 2 Dependence Functions
2.2.7.5 Displaying Trace Data Storage Status

It is possible to Displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command in the single
trace mode, and to the SHOW MULTITRACE command in the multitrace mode.

■ Displaying Trace Data Storage Status
It is possible to Displays how much trace data is stored in the trace buffer. This status data can be read by

specifying/STATUS to the SHOW TRACE command in the single trace mode, and to the SHOW MULTITRACE

command in the multitrace.

Frame numbers displayed in the multitrace mode is the global number.

[Example]

- In Single Trace

 >SHOW TRACE/STATUS

en/dis = enable Trace function enabled

buffer full = nobreak Buffer full break function disabled

sampling = end Trace sampling terminates

flame no. = -00120 to 00050 Frame -120 to 50 store data

step no. = -00091 to 00022 Step -91 to 22 store data

 >

- In Multi trace

 >SHOW MULTITRACE/STATUS

en/dis = enable Multi trace function enabled

buffer full = nobreak Buffer full break function disabled

sampling = end Trace sampling terminates

block no. = 1 to 5 Block 1 to 5 store data

frame no. = 00001 to 00159 Frame 1 to 159 store data

(Global number)
83

CHAPTER 2 Dependence Functions
2.2.7.6 Specify Displaying Trace Data Start

It is possible to specify from which data in the trace buffer to display. To do so, specify a
frame number with the SHOW TRACE command in the single trace mode, or specify
either a global number, or a block number and local number with the SHOW
MULTITRACE command in the multitrace mode. A range can also be specified.

■ Specifying Displaying Trace Data Start
It is possible to specify from which data in the trace buffer to displays. To do this, specify a frame number

with the SHOW TRACE command in the single trace, and specify either a global number, or a block number

and local number with the SHOW MULTITRACE command in the multitrace. A range can also be

specified.

[Example]

- In Single Trace Mode

 >SHOW TRACE/CYCLE -6 Start displaying from frame -6

 >SHOW TRACE/CYCLE -6..10 Display from frame -6 to frame 10

 >SHOW TRACE -6 Start displaying from step -6

 >SHOW TRACE -6..10 Displays from step -6 to step 10

Note:

A step number can only be specified when the MCU execution mode is set to the debugging mode.

- In Multi trace

 >SHOW MULTITRACE/GLOBAL 500 Start displaying from frame 500 (Global number)

 >SHOW MULTITRACE/LOCAL 2 Displaying block number 2

 >SHOW MULTITRACE/LOCAL 2,-5..5 Display from frame -5 to frame 5 of block number 2
84

CHAPTER 2 Dependence Functions
2.2.7.7 Display Format of Trace Data

A display format can be chosen by specifying a command identifier with the SHOW TRACE
command in the single trace, and with the SHOW MULTITRACE command in the multitrace.
The source line is also displayed if "Add source line" is selected using the SET SOURCE
command.
There are three formats to display trace data:

- Display in instruction execution order (Specify /INSTRUCTION.)
- Display all machine cycles (Specify /CYCLE.)
- Display in source line units (Specify /SOURCE.)

■ Display in instruction Execution Order (Specify /INSTRUCTION.)
Trace sampling is performed at each machine cycle, but the sampling results are difficult to Display because

they are influenced by pre-fetch, etc. This is why the emulator has a function to allow it to analyze trace data

as much as possible. The resultant data is displayed after processes such as eliminating pre-fetch effects,

analyzing execution instructions, and sorting in instruction execution order are performed automatically.

However, this function can be specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.
85

CHAPTER 2 Dependence Functions
■ Displaying All Machine Cycles (Specify /CYCLE.)
Detailed information at all sampled machine cycles can be displayed. In this mode, both single trace and

multitrace data can be displayed in almost identical formats. (In the multitrace mode, the local frame number

and block number are added.)

In this mode, data can be displayed in the following format. For further details, see the descriptions of the

SHOW TRACE, and SHOW MULTITRACE commands. In this mode, source is not displayed regardless of

the setup made using the SET SOURCE command.

[Example]

 >>SHOW TRACE/CYCLE -587

frame no. address data a-status d-status Qst dfg level ext-probe

-00587 :FF0106 0106 --- ------- FLH 4 11111111

-00586 :FF0106 0008 ECF EXECUTE --- @ 4 11111111

-00585 :FF0106 0106 --- EXECUTE --- 5 11111111

-00584 :1010E8 10E8 --- ------- --- 5 11111111

-00583 :1010E8 0102 EWA EXECUTE -- @ 5 11111111

-00582 :1010E8 0102 --- EXECUTE --- 5 11111111

Data

internal read access : Read access to
internal memory

internal write access : Write access to
internal memory

external read access : Read access to
external memory

external write access : Write access to
external memory

>SHOW TRACE/INSTRUCTION -194

step no. address mnemonic level

 \sub4:

-00194 : FF0106 LINK #00 4

-00193 : 000186 internal read access. 10F2 5

-00192 : 1010E6 external write access. 10F2 5

-00191 : 000186 internal write access. 10E6 5

-00190 : FF0108 ADDSP #F8 5

-00189 : FF010A MOVL A,001A 5

-00188 : 10001A external read access. 0000 5

-00187 : 10001C external read access. 4000 5

-00186 : FF010E MOVL @SP+04,A 5

-00185 : 1010E2 external write access. 0000 5

-00184 : FF0111 MOVL A,0016 5

-00183 : ** RESET **

>

Step Number

Addres

s

Disassemble Description

Data

Disassemble Description

Device Status

Decimal, signed

Hexadecimal Indecates instruction
executed

Hexadecimal

Indicates sequencer level
executed when trace sampled.

Indicates 0 if sequencer not
in use.

** STANDBY ** : Hardware standby

** RESET ** : Reset

** THOLD ** : Tool hold

** UHOLD ** : User hold

** WAIT ** : Ready pin input

** SLEEP ** : Sleep

** STOP ** : Stop
86

CHAPTER 2 Dependence Functions
-00581 :000186 0186 --- ------- 2by 5 11111111

-00580 :000186 10F2 IRA EXECUTE --- @ 5 11111111

-00579 :1010E6 10E6 --- ------- --- 5 11111111

-00578 :1010E6 10F2 EWA EXECUTE --- @ 5 11111111

-00577 :1010E6 10F2 --- EXECUTE --- 5 11111111

-00576 :000186 0186 --- ------- --- 5 11111111

How to read trace data

frame no. address data a-status d-status Qst dfg level ext-probe

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1):frame number (Decimal, number)

(2):executed instruction address, and data access address (Hexadecimal number)

(3):data (Hexadecimal number)

(4):access information (a-status)

IWA : write access to internal memory

EWA : write access to external memory

IRA : read access to internal memory

ERA : read access to external memory

ICF : code fetch to internal memory

ECF : code fetch to external memory

--- : valid "d-status" information

(5):device information (d-status)

STANDBY : hardware standby

THOLD : tool hold

UHOLD : user hold

WAIT : ready pin

SLEEP : sleep

STOP : stop

EXECUTE : execute instruction

RESET : reset

------- : invalid d-status information

(6):instruction queue status

FLH:flush queue

-by:number of remainder code of queue is -byte(-:1 to 8)

(7):valid flag

@:valid frame for this data

(8):sequencer level

(9):external probe data
87

CHAPTER 2 Dependence Functions
■ Display in Source Line Units (Specify /SOURCE.)
Only the source line can be displayed. This mode is enabled only in the single trace mode while in the

debugging mode.

[Example]

 >>SHOW TRACE/SOURCE -194

step no. source

-00194: gtg1.c$251 {

-00190: gtg1.c$255 sub5(nf, nd);

-00168: gtg1.c$259 {

-00164: gtg1.c$264 p = (char *) &df;

-00161: gtg1.c$264 p = (char *) &df;

-00157: gtg1.c$265 *(p++) = 0x00;

-00145: gtg1.c$266 *(p++) = 0x00;

-00133: gtg1.c$267 *(p++) = 0x80;

-00121: gtg1.c$268 *p = 0x7f;

-00116: gtg1.c$270 p = (char *) ⅆ

-00111: gtg1.c$271 *(p++) = 0xff;

-00099: gtg1.c$272 *(p++) = 0xff;
88

CHAPTER 2 Dependence Functions
2.2.7.8 Reading Trace Data On-the-fly

Trace data can be read while executing a program. However, this is not possible during
sampling. Disable the trace function or terminate tracing before attempting to read trace
data.

■ Reading Trace Data On-the-fly in Single Trace
To disable the trace function, use the DISABLE TRACE command. Check whether or not the trace function

is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by using the

built-in variable, %TRCSTAT.

Tracing terminates when the delay count ends after the sequencer has terminated. If Not Break is specified

here, tracing terminates without a break operation. It is possible to check whether or not tracing has

terminated by executing the SHOW TRACE command with /STATUS specified, or by using the built-in

variable, %TRCSAMP.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE

command. Use the SET DELAY command to set the delay count and break operation after the delay count.

[Example]

 >GO

 >>SHOW TRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = on <- Trace sampling continues.

 >>SHOW TRACE/STATUS

en/dis = enable

buffer ful = nobreak

sampling = end <- Trace sampling ends.

frame no. = -00805 to 00000

step no. = -00262 to 00000

 >>SHOW TRACE -52

step no. address mnemonic level

\sub5:

-00052 : FF0125 LINK #02 1

-00051 : 000186 internal read access. 10E6 1

-00050 : 1010D6 external write access. 10E6 1

-00049 : 000186 internal write access. 10D6 1

. . .

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-

executed by re-executing the sequencer from the beginning.
89

CHAPTER 2 Dependence Functions
■ Reading Trace Data On-the-fly in the Multi Trace
Use the DISABLE MULTITRACE command to disable the trace function before reading trace data. Check

whether or not the trace function is currently enabled by executing the SHOW MULTITRACE command

with /STATUS specified, or by using the built-in variable %TRCSTAT.

To read trace data, use the SHOW MULTITRACE command; to search trace data, use the SEARCH

MULTITRACE command.

[Example]

 >GO

 >>SHOW MULTITRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = on

 >>DISABLE MULTITRACE

 >>SHOW MULTITRACE/STATUS

en/dis = disable

buffer full = nobreak

sampling = end

block no. = 1 to 20

frame no. = 00001 to 00639

 >>SHOW MULTITRACE 1

frame no. address data a-status d-status Qst dfg level ext-probe

block no. = 1

00001 -7 : 10109C 109C --- ------- --- 1 11111111

00002 -6 : 10109C 0000 EWA EXECUTE 2by @ 1 11111111

00003 -5 : 10109C 0000 --- EXECUTE --- 1 11111111

00004 -4 : FF0120 0120 --- ------- --- 1 11111111

. . .

. . .
90

CHAPTER 2 Dependence Functions
2.2.7.9 Saving Trace Data

The debugger has function of saving trace data to a file.

■ Saving Trace Data
Save the trace data to the specified file.

For details on operations, refer to Sections 3.14 Trace Window, and 4.4.8 Trace in the SOFTUNE

Workbench Operation Manual; and Section 4.23 SHOW TRACE in the SOFTUNE Workbench Command

Reference Manual.
91

CHAPTER 2 Dependence Functions
2.2.8 Measuring Performance

It is possible to measure the time and pass count between two events. Repetitive
measurement can be performed while executing a program in real-time, and when done,
the data can be totaled and displayed.
Using this function enables the performance of a program to be measured. To measure
performance, set the event mode to the performance mode using the SET MODE
command.

■ Performance Measurement Function
The performance measurement function allows the time between two event occurrences to be measured and

the number of event occurrences to be counted. Up to 32767 event occurrences can be measured.

- Measuring Time

Measures time interval between two events.

Events can be set at 8 points (1 to 8). However, in the performance measurement mode, the intervals,

starting event number and ending event number are combined as follows. Four intervals have the

following fixed event number combination:

- Measuring Count

The specified events become performance measurement points automatically, and occurrences of that

particular event are counted.

Interval Starting Event Number Ending Event Number

1 1 2

2 3 4

3 5 6

4 7 8
92

CHAPTER 2 Dependence Functions
2.2.8.1 Performance Measurement Procedures

Performance can be measured by the following procedure:
- Set event mode.
- Set minimum measurement unit for timer.
- Specify performance-buffer-full break.
- Set events.
- Execute program.
- Display measurement result.
- Clear measurement result.

■ Setting Event Mode
Set the event mode to the performance mode using the SET MODE command. This enables the performance

measurement function.

[Example]

>SET MODE/PERFORMANCE

 >

■ Setting Minimum Measurement Unit for Timer
Using the SET TIMESCALE command, choose either 1 µs or 100 ns as the minimum measurement unit for

the timer used to measure performance. The default is 1 µs.

When the minimum measurement unit is changed, the performance measurement values are cleared.

[Example]

 >SET TIMERSCALE/1U <- Set 1 µs as minimum unit.

>

■ Setting Performance-Buffer-Full Break
When the buffer for storing performance measurement data becomes full, a executing program can be

broken. This function is called the performance-buffer-full break. The performance buffer becomes full

when an event occurs 32767 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but the program

does not break.

[Example]

 >SET PERFORMANCE/NOBREAK <- Specifying Not Break

 >
93

CHAPTER 2 Dependence Functions
■ Setting Events
Set events using the SET EVENT command.

The starting/ending point of time measurement and points to measure pass count are specified by events.

Events at 8 points (1 to 8) can be set. However, in the performance measurement, the intervals, starting event

number and ending event number are fixed in the following combination.

- Measuring Time

Four intervals have the following fixed event number combination.

- Measuring Count

The specified events become performance measurement points automatically.

■ Executing Program
Start measuring when executing a program by using the GO or CALL command. If a break occurs during

interval time measurement, the data for this specific interval is discarded.

■ Displaying Performance Measurement Data
Display performance measurement data by using the SHOW PERFORMANCE command.

■ Clearing Performance Measurement Data
Clear performance measurement data by using the CLEAR PERFORMANCE command.

[Example]

>CLEAR PERFORMANCE

 >

Interval Starting Event Number Ending Event Number

1 1 2

2 3 4

3 5 6

4 7 8
94

CHAPTER 2 Dependence Functions
2.2.8.2 Display Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE
command.

■ Displaying Measured Time
To display the time measured, specify the starting event number or the ending event number.

The lower time limit, upper time limit and display interval can be specified. The specified time value is in

1µs, when the minimum measurement unit timer is set to 1 us by the SET TIMESCALE command, and in

100 ns when the minimum is set to 100 ns.

>SHOW PERFORMANCE/TIME

event = 1 -> 2 time (µs) | count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 8999.0 | 0

avr time = 14538.0 9000.0 - 9999.0 | 0

10000.0 - 10999.0 | 0

11000.0 - 11999.0 | 2

12000.0 - 12999.0 | 19

13000.0 - 13999.0 | 52

14000.0 - 14999.0 | 283

15000.0 - 15999.0 | 92

16000.0 - 16999.0 | 3

17000.0 - 17999.0 | 1

18000.0 - 18999.0 | 0

19000.0 - | 0

-----------------------------+---------

 total | 452

Minimum
execution t ime

Event number

Maximum
execution t ime

Average
execution t ime

Count of measuring within given time interval

Total measuring count

>SHOW PERFORMANCE/TIME 1,13000,16999,500

event = 1 -> 2 time (µs) | count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 12999.0 | 21

avr time = 14538.0 13000.0 - 13499.0 | 13

13500.0 - 13999.0 | 39

14000.0 - 14499.0 | 121

14500.0 - 14999.0 | 162

15000.0 - 15499.0 | 76

15500.0 - 15999.0 | 16

16000.0 - 16499.0 | 2

16500.0 - 16999.0 | 1

17000.0 - 17499.0 | 1

-----------------------------+---------

 total | 452

Upper time limit for display

Lower time limit for display
95

CHAPTER 2 Dependence Functions
2.2.9 Measuring Coverage

This emulator has the C0 coverage measurement function. Use this function to find what
percentage of an entire program has been executed.

■ Coverage Measurement Function
When testing a program, the program is executed with various test data input and the results are checked for

correctness. When the test is finished, every part of the entire program should have been executed. If any

part has not been executed, there is a possibility that the test is insufficient.

This emulator coverage function is used to find what percentage of the whole program has been executed. In

addition, details such as which addresses were not accessed can be checked.

This enables the measurement coverage range to be set and the access attributes to be measured.

To execute the C0 coverage, set a range within the code area and set the attribute to Code attribute. In

addition, specifying the Read/Write attribute and setting a range in the data area, permits checking the access

status of variables such as finding unused variables, etc.

Execution of coverage measurement is limited to the address space specified as the debug area.

Therefore, set the debug area in advance. However, the measurement attribute for coverage measurement

can be specified regardless of attributes of the debug area.

■ Coverage Measurement Procedures
The procedure for coverage measurement is as follows:

- Set range for coverage measurement: SET COVERAGE

- Measuring coverage: GO, STEP, CALL

- Displaying measurement result: SHOW COVERAGE

■ Coverage Measurement Operation
The following operation can be made in coverage measurement:

- Load/Save of coverage data: LOAD/COVERAGE, SAVE/COVERAGE

- Abortion and resume of coverage measurement: ENABLE COVERAGE, DISABLE COVERAGE

- Clearing coverage data: CLEAR COVERAGE

- Canceling coverage measurement range: CANCEL COVERAGE

Reference:

With MB2141 emulator, the code coverage is affected by a prefetch by the MCU. Note the prefetch
when using the COVERAGE function.
96

CHAPTER 2 Dependence Functions
2.2.9.1 Coverage Measurement Procedures

The procedure for coverage measurement is as follows:
- Set range for coverage measurement : SET COVERAGE
- Measure coverage : GO, STEP, CALL
- Display measurement result : SHOW COVERAGE

■ Setting Range for Coverage Measurement
Use the SET COVERAGE command to set the measurement range. The measurement range can be set only

within the area defined as the debug area. Up to 32 ranges can be specified.

In addition, the access attribute for measurement can be specified. This attribute can be specified regardless

of the attributes of the debug area.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set

automatically. However, the library code area is not set when the C compiler library is linked.

[Example]

 >SET COVERAGE FF0000 .. FFFFFF

■ Measuring Coverage
When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.

■ Displaying Coverage Measurement Result
To display the coverage measurement result, use the SHOW COVERAGE command. The following can be

displayed:

- Display coverage rate of total measurement area

- Displaying coverage rate of load module

- Summary of 16 addresses as one block

- Details indicating access status of each address

- Displaying coverage measurement result per source line

- Displaying coverage measurement result per machine instruction

● Displaying coverage rate of total measurement area (specify /TOTAL for the command qualifier)

 >SHOW COVERAGE/TOTAL

total coverage : 82.3%

● Displaying coverage rate of load module (specify /MODULE for the command qualifier)

>SHOW COVERAGE/MODULE
sample.abs (84.03%)
 + - startup.asm (90.43%)
 + - sample.c (95.17%)
 + - samp.c (100.00%)

Displays the load modules and the coverage rate of each module.
97

CHAPTER 2 Dependence Functions
● Summary (Specify /GENERAL for command qualifier)

● Details (Specify /DETAIL for command qualifier)

>SHOW COVERAGE/GENERAL
 (HEX)0X0 +1X0 +2X0

+---------------+---------------+------ ------
address 0123456789ABCDEF0123456789ABCDEF0123456 ... ABCDEF C0(%)
FF0000 **3*F*....... 32.0

Display the access status of every 16 addresses

. : No access

1 to F : Display the number accessed in 16 addresses by the hexadecimal number.

* : Access all of the 16 addresses.

>SHOW COVERAGE/DETAIL FF0000

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F C0(%)
FF0000 - - - - - - - - - - - - - - - - 100.0
FF0010 - - - - - - - - - - - - - - - - 100.0
FF0020 - - - 18.6
FF0030 - - - - - - - - - - - - - - - - 100.0
FF0040 - . - - - - - - - - - - - - - - 93.7
FF0050 - - - - - - - - - - - - - - - - 100.0
FF0060 0.0
FF0070 0.0
FF0080 0.0

Display one line of a
coverage rate

Display the access status of every 1 address

. : No access

- : Access
98

CHAPTER 2 Dependence Functions
● Displays per source line (specify /SOURCE for the command qualifier)

● Displays per machine instruction (specify /INSTRUCTION for the command qualifier)

Note:

With MB2141 emulator, the code coverage measurement is affected by a prefetch. Note when
analyzing.

>SHOW COVERAGE/SOURCE main
 * 70: {
 71: int i;
 72: struct table *value[16];
 73:
 * 74: for (i=0; i<16; i++)
 * 75: value[i] = &target[i];
 76:
 * 77: sort_val(value, 16L);
 . 78: }

Displays access status of each source line.

 . : No Access

 * : Accessed

 Blank : Line which the code had not been generated or is outside the scope of the coverage measurement

>SHOW COVERAGE/INSTRUCTION F9028F
sample.c$70 {
* F9028F main:
* F9028F 0822
* F90291 4F01

sample.c$74 for (i=0; i<16; i++)
. F90293 D0
. F90294 CBFE
. F90296 BBFE
. F90298 3B1000
. F9029B FB18

sample.c$75 value[i] = &target[i];
. F9029D BBFE MOVW
. F9029F 0C
. F902A0 98
. F902A1 71F3DE
. F902A4 7700
. F902A6 4214
. F902A8 7833FE
. F902AB 38A001

Displays access status of each source line.

. : No Access

* : Accessed

Blank : Instruction outside the scope of the coverage measurement

LINK
PUSHW

MOVN
MOVW
MOVW
CMPW
BGE

LSLW
MOVW
MOVEA
ADDW
MOV
MULUW
ADDW

#22
RW0

A,#0
@RW3-02,A
A,@RW3-02
A,#0010
F902B5

A
RW0,A
A,@RW3-22
RW0,A
A,#14
A,@RW3-02
A,#01A0

A,@RW3-02
99

CHAPTER 2 Dependence Functions
2.2.10 Measuring Execution Time Using Emulation Timer

The timer for measuring time is called the emulation timer. This timer can measure the
time from the start of MCU operation until suspension.

■ Measuring Executing Time Using Emulation Timer
Choose either 1 µs or 100 ns as the minimum measurement unit for the emulation timer and set the

measurement unit using the SET TIMESCALE command.

When 1 µs is selected as the minimum unit, the maximum is about 70 minutes; when 100 ns is selected as the

minimum unit, the maximum is about 7 minutes.

The default is 1 µs.

By using this timer, the time from the start of MCU operation until the suspension can be measured.

The measurement result is displayed as two time values: the execution time of the preceding program, and

the total execution time of programs executed so far plus the execution time of the preceding program.

If the timer overflows during measurement, a warning message is displayed. Measurement is performed

every time a program is executed.

The emulation timer cannot be disabled but the timer value can be cleared instead.

Use the following commands to control the emulation timer.

SHOW TIMER: Displays measured time

CLEAR TIMER: Clear measured timer

[Example]

 >GO main,$25

Break at FF008D by breakpoint

 >SHOW TIMER

min s ms µs ns

from init = 00: 42: 108: 264: 000

from last executed = 00: 03: 623: 874: 000

 >CLEAR TIMER

 >SHOW TIMER

min s ms µs ns

from init = 00: 00: 000: 000: 000

from last executed = 00: 00: 000: 000: 000

 >

Note:

Note that the measured execution time is added about ten extra cycles per execution.
100

CHAPTER 2 Dependence Functions
2.2.11 Sampling by External Probe

An external probe can be used to sample (input) data. There are two sampling types:
sampling the trace buffer as trace data, and sampling using the SHOW SAMPLING
command.

■ Sampling by External Probe
There are two sampling types to sample data using an external probe: sampling the trace buffer as trace data,

and sampling using the SHOW SAMPLING command.

When data is sampled as trace data, such data can be displayed by using the SHOW TRACE command or

SHOW MULTITRACE command, just as with other trace data. Sampling using the SHOW SAMPLING

command, samples data and displays its state.

In addition, by specifying external probe data as events, such events can be used for aborting a program, and

as multitrace and performance trigger points.

Events can be set by using the SET EVENT command.

■ External Probe Sampling Timing
Choose one of the following for the sampling timing while executing a program.

- At rising edge of internal clock (clock supplied by emulator)

- At rising edge of external clock (clock input from target)

- At falling edge of external clock (clock input from target)

Use the SET SAMPLING command to set up; to display the setup status use the SHOW SAMPLING

command.

When sampling data using the SHOW SAMPLING command, sampling is performed when the command is

executed and has nothing to do with the above settings.

[Example]

>>SET SAMPLING/INTERNAL

 >>SHOW SAMPLING

sampling timing : internal

channel 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1

■ Displaying and Setting External Probe Data
When a command that can use external probe data is executed, external probe data is displayed in 8-digit

binary or 2-digit hexadecimal format. The displayed bit order is in the order of the IC clip cable color code

order (Table 2.2-12). The MSB is at bit 7 (Violet), and the LSB is at bit 0 (Black). The bit represented by 1

means HIGH, while the bit represented by 0 means LOW. When data is input as command parameters, these

values are also used for input.
101

CHAPTER 2 Dependence Functions
■ Commands for External Probe Data
Table 2.2-13 shows the commands that can be used to set or display external probe data.

Table 2.2-12 Bit Order of External Probe Data

IC Clip
Cable Color

Violet Blue Green Yellow Orange Red Brown Black

Bit Order
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

External probe data

Table 2.2-13 Commands that can be used External Probe Data

Usable Command Function

SET SAMPLING
SHOW SAMPLING

Sets sampling timing for external probe
Samples external probe data

SET EVENT
SHOW EVENT

Enables to specify external probe data as condition for event
Displays event setup status

SHOW TRACE Displays external probe trace-sampled (single trace)

SHOW MULTITRACE Displays external probe trace-sampled (multi-trace)
102

CHAPTER 2 Dependence Functions
2.3 Emulator Debugger (MB2147-01)

This section explains the functions of the emulator debuggers for the MB2147-01.

■ Emulator
When choosing the emulator debugger from the setup wizard, select one of the following emulators. Select

the MB2147-01.

MB2141

MB2147-01

MB2147-05

The emulator debugger for the MB2147-01 is software that controls an emulator from a host computer via a

communications line (RS-232C, LAN or USB) to evaluate programs.

The following series can be debugged:

F2MC-16L

F2MC-16LX

Before using the emulator, the emulator must be initialized. For details, refer to Appendix B, Monitoring

Program Download, and Appendix C, LAN Interface Setup, in the SOFTUNE WORKBENCH Operation

Manual.

For further details, refer to the Operation Manual Appendix B Download Monitor Program, and Appendix C

Setting up LAN Interface.
103

CHAPTER 2 Dependence Functions
2.3.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment
For the emulator debugger for the MB2147-01, it is necessary to set the following operating environment.

Predefined default settings for all these setup items are enabled at startup. Therefore, setup is not required

when using the default settings. Adjusted settings can be used as new default settings from the next time.

- Monitoring program automatic loading

- MCU operation mode

- Debug area

- Memory mapping

- Debug function

- Event mode
104

CHAPTER 2 Dependence Functions
2.3.1.1 Monitoring Program Automatic Loading

The MB2147-01 emulator can automatically update the monitoring program at emulator
startup.

■ Setting Monitoring Program Automatic Loading
When the MB2147-01 emulator is specified, data in the emulator can be checked at the beginning of

debugging to load an appropriate monitoring program and configuration binary data automatically into the

emulator.

The monitoring program and configuration binary data to be compared for update are in Lib\907 under the

directory where Workbench is installed.

Enable/disable the monitoring program automatic loading function by choosing [Environment] - [Debug

Environment Setup] - [Setup Wizard] menu.
105

CHAPTER 2 Dependence Functions
2.3.1.2 MCU Operation Mode

There are two MCU operation modes as follows:
- Debugging Mode
- Native Mode

■ Setting MCU Operation Mode
Set the MCU operation mode.

There are two operation modes: the debugging mode, and the native mode.

Choose either one using the SET RUNMODE command.

At emulator start-up, the MCU is in the debugging mode.

The data access to internal bus may not be detected by emulator in native mode. Therefore, when the MCU

operation mode is changed, all the following are initialized:

- Data break points

- Data monitoring break

- Event condition settings

- Sequencer settings

- Trace measurement settings and trace buffer

■ Debugging Mode
All the operations of evaluation chips can be analyzed, but their operating speed is slower than that of mass-

produced chips.

■ Native Mode
Evaluation chips have the same timing as mass-produced chips to control the operating speed. Note that the

restrictions the shown in Table 2.3-1 are imposed on the debug functions.

Table 2.3-1 Restrictions on debug functions

Applicable series Restrictions on debug functions

Common to all series - When a data read access occurs on the MCU internal bus, the internal bus
access information is not sampled and stored in the trace buffer.

- Even when a data break or event (data access condition) is set for data on the
MCU internal bus, it may not become a break factor or sequencer-triggering
factor.

- The coverage function may fail to detect an access to data on the MCU inter-
nal bus.
106

CHAPTER 2 Dependence Functions
2.3.1.3 Debug Area

Set the intensive debugging area out of the whole memory space. The area functions are
enhanced.

■ Setting Debug Area
There are two debug areas: DEBUG3, and DEBUG4. A continuous 1 MB area (16 banks) is set for each

area.

Set the debug area using the SET DEBUG command.

Setting the debug area enhances the coverage measurement function.

- Enhancement of Coverage Measurement Function

Setting the debug area enables the coverage measurement function. In coverage measurement, the

measurement range can be specified only within the area specified as the debug area. In 0x00 to 0x0F and

0x0F0 to 0x0FF, a break point can be set without specifying the debug area. (DEBUGGER1, DEBUGGER2)
107

CHAPTER 2 Dependence Functions
2.3.1.4 Memory Area Types

A unit in which memory is allocated is called an area. There are five different area types.

■ Memory Area Types
A unit to allocate memory is allocated is called an area. There are five different area types as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user

memory. Up to four user memory areas can be set with no limit on the size of each area. Define a

region on a 256-byte boundary.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for ROM area,

and READ, WRITE, etc. can be set for RAM area. If the MCU attempts access in violation of these

attributes, the MCU operation is suspended and an error is displayed (guarded access break).

Memory manipulation commands can be executed in relation to emulation memory areas while MCU

execution is in progress.

To set the user memory area, use the SET MAP command.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and this

memory is called emulation memory.

It is possible to set up to four areas of 1 MB maximum (including an internal ROM area described

later) as emulation memory area. Define a region on a 256-byte boundary. An area larger than 1 MB

can be specified at one time but is divided internally into two or more 1 MB areas for management

purposes.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU

execution is in progress.

Emulation memory areas can be set using the SET MAP command.

Further, the access attributes can be set as with user memory areas.

Note:

Even if the MCU internal resources are set as emulation memory area, access is made to the internal

resources. Re-executing this setup may damage data. The F2MC-16/16H only allows this setup in
the debugging mode.

- Internal ROM Area

The area where the emulator internal memory is substituted for internal ROM is called the internal

ROM area, and this memory is called the internal ROM memory.

The internal ROM area with a size up to 1 MB can be specified two areas.

An area larger than 1 MB can be specified at one time but is divided internally into two or more 1 MB

areas for management purposes.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU
108

CHAPTER 2 Dependence Functions
execution is in progress.

The internal ROM area is capable to set by the "Setup Map" dialog opening by "Debugger Memory

Map" from "Setup".

Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Internal ROM Image Area

Some types of MCUs have data in a specific area of internal ROM appearing to 00 bank. This

specific area is called the internal ROM image area.

The internal ROM image area is capable to set by the "Setup Map" dialog opening by "Debugger

Memory Map" from "Setup". This area attribute is automatically set to READ/CODE. The same data

as in the internal ROM area appears in the internal ROM image area.

Note that the debug information is only enabled for either one (one specified when linked). To debug

only the internal ROM image area, change the creation type of the load module file.

Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Undefined Area

A memory area that does not belong to any of the areas described above is part of the user memory

area. This area is specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD

area, which cannot be accessed. Select either setup for the whole undefined area. If the area attribute

is set to GUARD, a guarded access error occurs if access to this area is attempted.
109

CHAPTER 2 Dependence Functions
2.3.1.5 Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc., and
the attributes of these areas can be specified.
However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

■ Access Attributes for Memory Areas
The access attributes shown in Table 2.3-2 can be specified for memory areas.

A guarded access break occurs if access is attempted in violation of these attributes while executing a

program.

When access to the user memory area and the emulation memory area is made using program commands,

such access is allowed regardless of the CODE, READ, WRITE attributes. However, access to memory with

the GUARD attribute in the undefined area, causes an error.

When access is made to an area without the WRITE attribute by executing a program, a guarded access break

occurs after the data has been rewritten if the access target is the user memory. However, if the access target

is the emulation memory, the break occurs before rewriting. In other words, write-protection (memory data

cannot be overwritten by writing) can be set for the emulation memory area by not specifying the WRITE

attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to access

by commands.

■ Creating and Viewing Memory Map
Use the following commands for memory mapping.

SET MAP: Set memory map.

SHOW MAP: Display memory map.

CANCEL MAP: Change memory map setting to undefined.

Table 2.3-2 Types of Access Attributes

Area Attribute Description

User Memory Emulation Memory CODE Instruction Execution Enabled

READ Data Read Enabled

WRITE Data Write Enabled

Undefined GUARD Access Disabled

NOGUARD No check of access attribute
110

CHAPTER 2 Dependence Functions
[Example]

 >SHOW MAP

address attribute type

000000 .. FFFFFF noguard

The rest of setting area numbers

user = 8 emulation = 5

 >SET MAP/USER H'0..H'1FF

 >SET MAP/READ/CODE/EMULATION H'FF0000..H'FFFFFF

 >SET MAP/USER H'8000..H'8FFF

 >SET MAP/MIRROR/COPY H'8000..H'8FFF

 >SET MAP/GUARD

 >SHOW MAP

address attribute type

000000 .. 0001FF read write user

000200 .. 007FFF guard

008000 .. 008FFF read write user

009000 .. FEFFFF guard

FF0000 .. FFFFFF read write code emulation

mirror address area

008000 .. 008FFF copy

The rest of setting area numbers

user = 6 emulation = 3

 >

■ Internal ROM Area Setting
The [Map Setting] dialog box is displayed using [Environment] - [Debugger Memory Map]. You can set the

internal ROM area using the [Internal ROM Area] tab after the [Map Adding] dialog box is displayed by

clicking on the [Setting] button. You can set two areas. Both require empty Emulation area to be set. You

can set the region size by (Empty space of the emulation area) x (one area size).

Specify the internal ROM area from the ending address H'FFFFFF (fixed) for area 1. Also, it is possible to

delete the internal ROM area.
111

CHAPTER 2 Dependence Functions
2.3.1.6 Debug Function

The debug function has the following two types. Only the function of the selected mode
can be used. The selectable debug mode depends on the emulator or its connection
form.

• RAM Checker mode
• Trace Enhancement mode

■ Setting of Debug Function
Set the debug function. The debug function has the RAM Checker and the Trace Enhancement mode. The

selectable mode depends on the emulator or its connection form. These modes can be set by using [Setup] -

[Debug Environment] - [Debug Function] or the SET MODE command on the command window.

At the emulator activated, this is set to the RAM Checker mode.

When the debug function is changed, all the followings are initialized:

• Performance measurement data

• Trace buffer

■ RAM Checker mode
Enables the RAM Checker function. The history of accessing the monitoring addresses can be recorded into

the log file.

■ Trace Enhancement mode
Enable the trace enhancement.

The following functions become available.

1.Trace acquisition in the multitrace mode

2.Trace acquisition control by trace trigger (resumption/pausing/termination)

3.Trace control by data monitoring condition

4.Trace control by sequencer
112

CHAPTER 2 Dependence Functions
2.3.1.7 Event Mode

There are three event modes as listed below.
• Normal mode
• Multi trace mode
• Performance mode

■ Event Mode
Event mode is used to determine which function the event triggers are used for. To set the mode, use [Event]

tab on [Setup] - [Debug Environment] - [Debug Function] or the SET MODE command on the command

window. The default is normal mode.

There are three event modes as listed below.

• Normal mode

Event triggers are used for the single trace.

• Multi trace mode

Event triggers are used for the multitrace (trace function which samples data before and after the event

trigger occurred).

• Performance mode

Event triggers are used for the performance measurement. It enables to measure time duration between

two event trigger occurrence and count of event trigger occurrence.

Note:

The multi trace mode can be specified only when the debug function on MB2147-01 is set to Trace
Enhancement mode. For more details, see "2.3.1.6 Debug Function".
113

CHAPTER 2 Dependence Functions
2.3.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

■ Notes on GO Command
For the GO command, two break points that are valid only while executing commands can be set. However,

care is required in setting these break points.

- Invalid Breakpoints

- No break occurs when a break point is set at the instruction immediately after the following

instructions.

- No break occurs when break point set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.

- Instruction for which break point set starts from odd-address,

- Preceding instruction longer than 2 bytes length, and break point already set at last 1-byte

address of preceding instruction (This "already-set" break point is an invalid break point that

won't break, because it has been set at an address other than the starting address of an

instruction).

- Abnormal Break Point

Setting a break point at the instruction immediately after string instructions listed below, may cause a

break in the middle of the string instruction without executing the instruction to the end.

■ Notes on STEP Command
- Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid break points and

abnormal break points, such instructions and the next instruction are executed as a single instruction.

Furthermore, if such instructions are continuous, then all these continuous instructions and the next

instruction are executed as a single instruction.

F2MC-16L/16LX

PCB
NCC
SPB
MOV ILM,#imm8
OR CCR,#imm8

DTB
ADB
CNR
AND
CCR,#imm8
POPW PS

F2MC-16L/16LX

MOVS
SECQ
WBTS
MOVSWI
SECQWI
MOVSD
SECQD
FILS
FILSW

MOVSW
SECQW
MOVSI
SECQI
WBTC
MOVSWD
SECQWD
FILSI
FILSWI
114

CHAPTER 2 Dependence Functions
- Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met at one time.

- When step instruction longer than 2 bytes and last code ends at even address

- When break point already set at last address (This "already-set" break point is an invalid break

point that won't break, because it has been set at an address other than the starting address of an

instruction.)

■ Controlling Watchdog Timer
It is possible to select "No reset generated by watchdog timer counter overflow" while executing a program

using the GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

- ENABLE WATCHDOG: Reset generated by watchdog timer counter overflow

- DISABLE WATCHDOG: No reset generated by watchdog timer counter overflow

The start-up default in this program is "Reset generated by watchdog timer counter overflow".

[Example]

>DISABLE WATCHDOG

>GO
115

CHAPTER 2 Dependence Functions
2.3.3 On-the-fly Executable Commands

Certain commands can be executed even while executing a program. This is called "on-
the-fly" execution.

■ On-the-fly Executable Commands
Certain commands can be executed on-the-fly. If an attempt is made to execute a command that cannot be

executed on-the-fly, an error "MCU is busy" occurs. Table 2.3-3 lists major on-the-fly executable functions.

For further details, refer to the SOFTUNE WORKBENCH Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the tool button.

On-the-fly commands cannot be executed when executing the GO command, etc., from the Command

window.

Using the real-time monitoring function, it is also possible to display a specified memory region in the real-

time monitoring window and read (update) data even during an MCU execution.

Table 2.3-3 Major Functions Executable in On-the-fly Mode (1 / 2)

Function Restrictions Major Commands

MCU reset - RESET

Displaying MCU execution sta-
tus

- SHOW STATUS

Displaying trace data

1. Enabled only when trace execution

ended *1

2. Enabled only when the debug function is

in "Trace Enhancement" mode.*2

(only MULTITRACE)

SHOW TRACE,
SHOW MULTITRACE

Clear trace data

1. Enabled only when trace execution

ended *1

2. Enabled only when the debug function is

in "Trace Enhancement" mode.*2
(only MULTITRACE)

CLEAR TRACE,
CLEAR MULTITRACE

Search trace data

1. Enabled only when trace execution

ended *1

2. Enabled only when the debug function is

in "Trace Enhancement" mode.*2

(only MULTITRACE)

SEARCH TRACE,
SEARCH MULTITRACE

Set trace acquisition data Enabled only when trace execution ended *1 ENABLE TRACE,
DISABLE TRACE

Set trace trigger

1. Enabled only when trace execution

ended *1

2. Enabled only when the debug function is

in "Trace Enhancement" mode.*2

SET TRACETRIGGER,
SHOW TRACETRIGGER,
CANCEL TRACETRIGGER
116

CHAPTER 2 Dependence Functions
*1: For detail, see "2.3.6 Real-time Trace".

*2: For detail, see "2.3.1.6 Debug Function".

*3: For detail, see "2.2.1.4 Memory Mapping".

*4: For detail, see "2.3.4 Break".

Set filtering area

1. Enabled only when trace execution

ended *1

2. Enabled only when the debug function is

in "Trace Enhancement" mode.*2

SET DATATRACEAREA,
SHOW DATATRACEAREA,
CANCEL DATATRACEAREA

Set trace delay

1. Enabled only when trace execution

ended *1

2. Enabled only when the debug function is

in "Trace Enhancement" mode.*2

SET DELAY,
SHOW DELAY

Enable/Disable trace - ENABLE TRACE, DISABLE TRACE

Displaying execution cycle
measurement value (Timer)

- SHOW TIMER

Memory operation (Read/Write)
Emulation memory only operable
Read only enabled in real-time monitoring
area

ENTER, EXAMINE , DUMP,
SEARCH MEMORY,
SHOW MEMORY, SET MEMORY

Line assembly, Disassembly
Emulation memory only enabled
Real-time monitoring area, Disassembly
only enabled

ASSEMBLE
DISASSEMBLE

Load, Save program
Emulation memory only enabled
Real-time monitoring area, Save only
enabled

LOAD
SAVE

Break Point Settings

This is possible only when it is enabled by
setting a break point while executing in the
execution tabs [Environment] - [Debugging
Environment Setting] - [Debugging Envi-
ronment] menus.

SET BREAK, ENABLE BREAK,
DISABLE BREAK,
CANCEL BREAK,
SET DATABREAK,
ENABLE DATABREAK,
 DISABLE DATABREAK,
CANCEL DATABREAK

Table 2.3-3 Major Functions Executable in On-the-fly Mode (2 / 2)

Function Restrictions Major Commands
117

CHAPTER 2 Dependence Functions
2.3.4 Break

The Emulator can use the following functions:
- Code break
- Data monitoring break
- Data break

■ Code Break Setup
Code breaks can be set with no limits.

It is possible to set a break point while executing a user program if enabled by setting a break point while

executing in the execution tabs [Environment] - [Setup Debugging Environment] - [Debug Environment]

menus. However, when setting a break point, execution temporarily stops for a maximum of 1 ms.

■ Data Monitoring Breaks Setup
This is a particular function that aborts the program execution when the program reaches a specified address

during matching with specified data. There are two patterns of software and hardware.

The figure below shows the conditions of data monitoring break.

The maximum constant of data monitoring breaks is calculated as follows:

Current data monitoring break maximum constant

= 8 - (current trace trigger count setting + current event count setting)

Use the following command for data monitoring break setup:

SET BREAK /DATAWATCH

■ Data Break Setup
Up to two data breaks can be set. The number of measurements and generated event triggers can be

measured.

It is possible to set a break point while executing a user program if enabled by setting a break point while

executing in the execution tabs [Environment] - [Setup Debugging Environment] - [Debug Environment]

menus. However, when setting a break point, execution temporarily stops for a maximum of 1 ms.

Flow of program

Data area

Specified address

Monitor starts when specified
conditions are satisfied

Break occurs when
execution is completed

Specified address
118

CHAPTER 2 Dependence Functions
2.3.5 Control by Sequencer

This emulator has a sequencer to control events. By using this sequencer, sampling of
breaks or traces can be controlled while monitoring program flow (sequence). A break
caused by this function is called a sequential break.
Use the SET EVENT command to set events.

■ Control by Sequencer
As shown in Table 2.3-4, controls can be made at 3 different levels.

One event can be set for one level.

The sequencer always moves from Level 1 through Level 2 to Level 3. One event can be specified as a

sequencer restart condition.

When the debug function on MB2147-01 is set to Trace Enhancement mode, it is possible to control a trace

by a sequencer.

1. Complete the trace acquisition.

2. Transit to the next block (Only in multitrace mode)

■ Setting Events
The emulator can monitor the MCU bus operation, and generate a trigger for a sequencer at a specified

condition. This function is called an event.

In the event, code (/CODE) and data access (/READ/WRITE) can be specified.

Up to eight events can be set. However, since hardware is shared with trace triggers, the actual numbers is

calculated as follows.

Current maximum constant of events

= 8 - (current number of trace trigger settings + current number of data monitoring break settings)

Table 2.3-5 shows the conditions that can be set for events.

Table 2.3-4 Sequencer Specifications

Function Specifications

Level count 3 levels+ restart condition

Conditions settable for each level 1 event conditions (1 to 16777215 times pass count can be spec-
ified for each condition.)

Restart conditions 1 event conditions (1 to 16777215 times pass count can be spec-
ified.)

Operation when conditions established Branching to another level or terminating sequencer
119

CHAPTER 2 Dependence Functions
Note:

In instruction execution (/CODE), an event trigger is generated only when an instruction is executed.
This cannot be specified concurrently with other status (/READ or /WRITE).

Use the following commands to set an event.

SET EVENT : Sets an event

SHOW EVENT : Displays the status of event setting

CANCEL EVENT : Deletes an event

[Example]

 >SET EVENT/CODE func1

 >SET EVENT/WRITE data[2],!d=h'10

 >SET EVENT/READ/WRITE 102

Table 2.3-5 Conditions for Event and Trace Trigger

Condition Description

Address Memory location (address bit masking disabled)

Data 16-bit data (data bit masking enabled)

Access size Byte, word

Status Select from code, data read or data write
120

CHAPTER 2 Dependence Functions
2.3.5.1 Setting Sequencer

The sequencer operates in the following order:
1) The sequencer starts after the program execution.
2) Depending on the setting at each level (1 & 2), branching to the next level is

performed when the condition is met.
3) The sequencer is restarted when the restart condition is met.
4) The sequencer is terminated and a break occurs when the level 3 condition is

met.

■ Setting Sequencer
The sequencer operates in the following order: The event can be set at each level and as a restart condition.

1. The sequencer starts after the program execution.

2. Depending on the setting at each level (1 & 2), branching to the next level is performed when the

condition is met.

3. The sequencer is restarted when the restart condition is met.

4. The sequencer is terminated and a break occurs when the level 3 condition is met.

Use the following commands to set the sequencer.

SET SEQUENCE: Setting an event for the sequencer

[Example]

 >SET SEQUENCE 1, 3, 2, r=4

Set event 1, 3, 2 to level 1, 2, 3 respectively, and event 4 for the restart condition.
121

CHAPTER 2 Dependence Functions
Figure 2.3-1 Operation of Sequencer

Start

Event1
NO

YES

Level1

Event4

NO Event3

YES

YES

NO Event2

YES

Break

Level3

Level2

Event4
YES

NO

NO
122

CHAPTER 2 Dependence Functions
2.3.6 Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.
In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.

■ Trace Buffer
The data recorded by sampling in machine cycle units, is called a frame.

The trace buffer can store 64K frames (65536). Since the trace buffer has a ring structure, when it becomes

full, it automatically returns to the start to overwrite existing data.

■ Trace Data
Data sampled by the trace function is called trace data.

The following data is sampled:

- Address

- Data

- Status Information

- Access status: Read/Write/Internal access, etc.

- Device status: Instruction execution, Reset, Hold, etc.

- Queue status: Count of remaining bytes of instruction queue, etc.

- Data valid cycle information: Data valid/invalid

(Since the data signal is shared with other signals, it does

not always output data. Therefore, the trace samples

information indicating whether or not the data is valid.)

- Execution time based on the previous trace frame (in 25-ns units)

■ Data Not Traced
The following data does not leave access data in the trace buffer.

- Portion of access data while in native mode.

When operating in the native mode, the F2MC-16L/16LX family of chips sometime performs

simultaneous multiple bus operations internally. However, in this emulator, monitoring of the internal

ROM bus takes precedence. Therefore, other bus data being accessed simultaneously may not be

sampled (in the debugging mode, all operations are sampled).

■ Frame number
A number is assigned to each frame of sampled trace data. This number is called a frame number.

The frame number is used to specify the display start position of the trace buffer. The value 0 is assigned to

trace data at the triggering position for sequencer termination. Negative values are assigned to trace data that

have been sampled before arrival at the triggering position (See Figure 2.3-1).

If there is no triggering position for sequencer termination, the value 0 is assigned to the last-sampled trace

data.
123

CHAPTER 2 Dependence Functions
Figure 2.3-2 Frame Numbering at Tracing

■ Trace Filter
To make effective use of the limited trace buffer capacity, in addition to the code fetch function, a trace filter

function is incorporated to provide a means of acquiring information about data accesses to a specific region.

The data trace filter function allows the following values to be specified for three regions:

- Address

- Address mask

- Access attribute (read/write)

Another function can be used so that sampling of redundant frames occupying two or more trace frames, such

as SLEEP and READY, can be reduced to sampling of one frame.

■ Trace Trigger Setup
When preselected conditions are met during MCU bus operation monitoring, a trigger for starting a trace can

be generated. This function is called a trace trigger.

For the use of the trace trigger function, specify the code (/CODE) and data access (/READ/WRITE).

Up to 8 trace triggers can be preset each for code attribute and data access attribute. However, actually, the

maximum number of trace triggers is determined as indicated below because the common hardware is used

with events.

Current trace trigger maximum constant

= 8 - (current data monitoring break count setting + current event count setting)

For the trace trigger setup conditions that can be defined, see Table 2.3-4.

For trace trigger setup, use the following commands:

- SET TRACETRIGGER : Trace trigger setup

- CANCEL TRACETRIGGER : Trace trigger deletion

- SHOW TRACE/STATUS : Trace setup status display

Figure 2.3-2 shows a trace sampling operation.

 .

 .

 .

 .

 -3

 -2

 -1

 0 (Trigger point)
124

CHAPTER 2 Dependence Functions
Figure 2.3-3 Trace Sampling Control (Trace Trigger)

■ Setting Data Monitoring Trace Trigger
When the debug function on MB2147-01 is set to Trace Enhancement mode, it is possible to set a trace

trigger by a data monitoring condition.

For the data monitoring condition, see the data monitoring break in "2.3.4 Break".

Current maximum constant of data monitoring trace triggers

 = 8 - (number of data monitoring break settings + number of trace trigger settings +

current number of event settings)

Use the following commands to set the data monitoring trace trigger.

SET TRACETRIGGER/DATAWATCH : Sets a data monitoring trace trigger

CANCEL TRACETRIGGER/DATAWATCH :Deletes a data monitoring trace trigger

SHOW TRACETRIGGER/DATAWATCH : Displays a data monitoring trace trigger

■ Trace Control during Executing User Program
In MB2147-01, the trace control is enabled while the user program is executed. However, it is necessary to

end the trace execution.

The parameter that can be controlled is as follows;

• Set trace trigger

• Set filtering area

• Display trace data

• Clear trace data

• Search trace data

• Set trace delay*

• Display measurement result of time*

• Forced termination/resumption of trace execution*

*: Only when the debugging is in trace enhancement mode.

Start Suspend

Program flow

Trace buffer

Resume Suspend
Resume

Suspend

125

CHAPTER 2 Dependence Functions
Note:

The trace execution means the trace data acquisition is "Tracing" or "Pause".

The following method exists to terminate the trace execution.

1. Forced termination of trace execution

• Trace window - Shortcut menu [Forced termination]

• Trace toolbar [Forced termination] button

2. Trace trigger (Termination)

• ET TRACE TRIGGER command

• Trace trigger setting dialog
126

CHAPTER 2 Dependence Functions
2.3.6.1 Setting Single Trace

To perform a single trace, follow steps 1 through 4 below. When a program is executed
after completion of the following steps, trace data is sampled.

1) Set an event mode to single trace mode.
2) Enable the trace function.
3) Perform the event and sequencer setup.
4) Perform trace buffer full break setup.

■ Setting Trace
To perform a single trace, complete the following setup steps. When a program is executed after completion

of the steps, trace data is sampled.

1) Set an event mode to single trace mode.

Use SET MODE command for this setting.

2) Enable the trace functions.

Enable the trace function using the ENABLE TRACE command.

To disable the trace function, use the DISABLE TRACE command.

Note that the trace function is enabled by default when the program is launched.

3) Perform the event and sequencer setup.

Use of a trace trigger makes it possible to control trace sampling and make effective use of the limited

trace buffer capacity. If there is no such necessity, setup need not be performed.

With a trace trigger, it is possible to specify the start and stop of trace sampling to be performed at a

trigger hit.

To use a trace trigger, input the SET TRACE/TRIGGER command and then perform trace trigger

setup using the SET TRACETRIGGER command.

4) Perform trace buffer full break setup.

A break can be invoked when the trace buffer becomes full.

To perform setup, use the SET TRACE command. This break feature is disabled when the program

starts. To view the setting, use SHOW TRACE/STATUS.

Table 2.3-6 lists trace-related commands in the single trace.

Table 2.3-6 Trace-related Commands Available in Single Trace

Available command Function

SET TRACETRIGGER
CANCEL TRACETRIGGER

Sets trace trigger
Deletes trace trigger

SET TRACE
SHOW TRACE
SEARCH TRACE
ENABLE TRACE
DISABLE TRACE
CLEAR TRACE

Sets trace buffer full break
Displays trace data
Searches for trace data
Enables trace function
Disables trace function
Cleares trace function
127

CHAPTER 2 Dependence Functions
2.3.6.2 Multi Trace

Only when an event trigger occurred, the multitrace samples data before and after the
event trigger.

■ Multi Trace
To use the multi trace function, the SET MODE command is set to the following mode.

Debug function: "Trace Enhancement" mode

Event mode: "Multi trace" mode

The multitrace samples data where an event trigger (trace end trigger) occurs before and after the event

trigger.

It can be used for tracing required only when a certain variable access occurs, instead of continuous tracing.

The trace data sampled at one event trigger is called a block. The trace buffer for multitrace in MB2147-01

can hold 64K frames. When dividing into blocks, select the size of one block from 128/256/512/1024 frame.

64 to 512 blocks can be sampled according to the block size.

There are the following two event triggers of the multi trace.

• Trace end trigger: Change to the next block in the point that becomes a hit.

• Multi trace end trigger: Terminate the trace acquisition in the point that becomes a hit.

Figure 2.3-4 Multi Trace Sampling

■ Multi Trace Frame Number
Data of 128 to 1024 frames can be sampled according to the block size at each time an event occurs (trace

end trigger). This data unit is called a block, and each sampled block is numbered starting from 0. This is

called the block number.

A block is a collection of sampled data before and after the event trigger occurs. At the event trigger is 0,

trace data sampled before reaching the event trigger point is numbered negatively, and trace data sampled

after the event trigger point is numbered positively. These frame numbers are called local numbers (See

Figure 2.3-5).

In addition to this local number, there is another set of frame numbers starting 1 with the oldest data in the

trace buffer. This is called the global number. Since the trace buffer can hold 64K frames, frames are

numbered 1 to 65536 (See Figure 2.3-5).

Start
execution

↓

Program flow

Trace buffer

Block

Event 1

↓

Event 2

↓

Event 3

↓

128

CHAPTER 2 Dependence Functions
To specify which frame data is displayed, use the global number or block and local numbers.

Figure 2.3-5 Frame Number in Multi Trace

■ Trace Delay
The trace data which is acquired after one event occurrence is called a trace delay. There are two types of

trace delay depending on the event hit.

When the trace end trigger (event) hit occurs, the delay can be set within the scope of the block size (128 to

1024 frames). A block is sampled data in combination with the trace data before the event hit and the trace

delay.

When the multitrace end trigger (event) hit occurs, the delay is acquired as many as the number of occurrence

of the subsequent trace end trigger hit.

Example: If you want to get the trace delay for three blocks, the event hit needs to occur four times.

 1 - 63
 2 - 62
 : :
 : :

 64 0
 : :
 : :

 127 +62
 128 +63
129 - 63
130 - 62
 : :
 : :

 192 0
 : :
 : :

 255 +62
256 +63

65409 - 63
65410 - 62

 : :
 : :

65472 0
 : :
 : :

65535 +62
65536 +63

Block number Trace buffer Frame number

Global number Local number

 Event trigger

 Event trigger

 Event trigger

1

2

512
129

CHAPTER 2 Dependence Functions
Note:

The multitrace function in MB2147-01 is exclusive with the RAM Checker function. For more details,
see "2.3.1.6 Debug Function".

Get four times of the hit to the trace end trigger

Trace buffer = 64 blocks

Multitrace end trigger

1 2 3 4
130

CHAPTER 2 Dependence Functions
2.3.6.3 Setting Methods of Multi Trace

Before executing the multitrace, the following settings must be made. After these
settings, trace data is sampled when a program is executed.

1. Set the debug function to "Trace Enhancement" mode.
2. Set event mode to multitrace mode.
3. Enable trace function.
4. Set event and sequencer.
5. Set trace-buffer-full break.

■ Setting Methods of Multi Trace
Before executing the multitrace, the following settings must be made. After these settings, trace data is

sampled when a program is executed.

1) Set the debug function to Trace Enhancement mode.

Use SET MODE command for this setting.

2) Set event mode to multitrace mode.

Use the SET MODE command for this setting.

3) Enable trace function.

Use the ENABLE MULTITRACE command for this setting. To disable the function, use the DISABLE

MULTITRACE command.

4) Set an event (trace trigger).

Set an event for sampling the multitrace. Use the SET TRACETRIGGER command for this setting.

5) Set trace-buffer-full break.

To break when the trace buffer becomes full, set the trace-buffer-full break. Use the SET MULTITRACE

command for this setting.

6) Set a block size.

Use SET MULTITRACE command to set this.

7) Set a trace delay.

Use SET DELAY command to set this.
131

CHAPTER 2 Dependence Functions
Table 2.3-7 shows the list of trace-related commands that can be used in multitrace mode.

Table 2.3-7 Trace-related Commands That Can Be Used in Multi Trace Mode

Mode Usable Command Function

Multi trace
mode

SET TRACETRIGGER
SHOW TRACETRIGGER
CANCEL TRACETRIGGER
ENABLE TRACETRIGGER
DISABLE TRACETRIGGER

Sets events
Displays event setup status
Deletes event
Enables event
Disables event

SET MULTITRACE
SHOW MULTITRACE
SEARCH MULTITRACE
ENABLE MULTITRACE
DISABLE MULTITRACE
CLEAR MULTITRACE

Sets trace-buffer-full break
Displays trace data
Searches trace data
Enables trace function
Disables trace function
Clears trace data

SET DELAY
SHOW DELAY

Sets trace delay
Displays trace delay
132

CHAPTER 2 Dependence Functions
2.3.6.4 Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command.

■ Displaying Trace Data Storage Status
It is possible to displays how much trace data is stored in the trace buffer. This status data can be read by

specifying /STATUS to the SHOW TRACE.

[Example]

>SHOW TRACE/STATUS

en/dis = enable Trace function enabled

buffer full = nobreak Buffer full break function disabled

sampling = end Trace sampling terminates

code = enable Code execution enabled

verbose = disable Verbose trace disabled

frame no. = -00120 to 00000 Frame -120 to 0 store data

>
133

CHAPTER 2 Dependence Functions
2.3.6.5 Specify Displaying Trace Data Storage Status

The data display start position in the trace buffer can be specified by inputting a step
number or frame number using the SHOW TRACE command. The data display range can
also be specified.

■ Specifying Displaying Trace Data Start
Specify the data display start position in the trace buffer by inputting a step number or frame number using

the SHOW TRACE command. The data display range can also be specified.

[Example]

- In Single Trace Mode

>SHOW TRACE/CYCLE -6 Start displaying from frame -6

>SHOW TRACE/CYCLE -6..0 Display from frame -6 to frame 0

>SHOW TRACE -6 Start displaying from frame -6

>SHOW TRACE -6..0 Displays from frame -6 to frame 0
134

CHAPTER 2 Dependence Functions
2.3.6.6 Display Format of Trace Data

The trace data display format can be selected by running the SHOW TRACE command
with a command modifier specified. If setup is completed with the SET SOURCE
command so as to select a source line addition mode, a source line is attached to the
displayed trace data.
There are three formats to display trace data:

- Display in instruction execution order (Specify /INSTRUCTION.)
- Display all machine cycles (Specify /CYCLE.)
- Display in source line units (Specify /SOURCE.)

■ Display in Instruction Execution Order (Specify /INSTRUCTION.)
Trace sampling is performed at each machine cycle, but the sampling results are difficult to display because

they are influenced by pre-fetch, etc. This is why the emulator has a function to allow it to analyze trace data

as much as possible. The resultant data is displayed after processes such as eliminating pre-fetch effects,

analyzing execution instructions, and sorting in instruction execution order are performed automatically.

However, this function can be specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.
135

CHAPTER 2 Dependence Functions
■ Displaying All Machine Cycles
Detailed information at all sampled machine cycles can be displayed.

In this mode, no source is displayed irrespective of the setup defined by the SET SOURCE command.

[Example]

>SHOW TRACE/CYCLE -672

frame no. address data a-status d-status Qst dfg event time stamp

-00672 : 018257 ---- EWA ------- --- & 125

-00671 : 018257 5F --- EXECUTE --- @ 125

-00670 : 018257 5F --- EXECUTE --- @ 125

-00669 : 018257 ---- EWA ------- --- & 125

-00668 : 018257 82 --- EXECUTE --- @ 125

-00667 : FF02C6 5F --- EXECUTE --- @ 125

-00666 : ------ ---- --- EXECUTE 4by C 125

-00665 : FF02C6 ---- ICF ------- --- & D 125

-00664 : FF02C6 5F06 --- EXECUTE FLH@ 125

-00663 : FF00D2 ---- ICF ------- --- & 125

Data Access

internal read access : Read access to
internal memory

internal write access : Write access to
internal memory

external read access : Read access to
external memory

external write access : Write access to
external memory

Step Number

Address Disassemble

Description Disassemble Description

Decimal, signed

Hexadecimal Indecates instruction
executed Indicates sequencer level

executed when trace sampled.

Indicates 0 if sequencer not
in use.

** WAIT **

>SHOW TRACE -194
frame no. address mnemonic time stamp
-00675 : FF0 2C1 PUSHW A 375
-00672 : 0 18257 ex ternal write access. 5F 375
-00669 : 018258 external write access. 5E 375
-00666 : FF 02C2 CALL \ sort_val 625
-00661 : 018 255 external write access. C5 625
-00658 : 018256 external write access. 02 625

 \ sort_val :
-00655 : FF00D2 LINK #0E 500
-00651 : 018253 external read access. 81 625
-00648 : 018254 external read access. 81 625
-00645 : 000186 in ternal write access. 0000 625
-00643 : ** RESET **
>

Data

Hardware standby

 Reset
** THOLD ** : Tool hold
** UHOLD ** : User hold

: Ready pin input
 ** SLEEP ** : Sleep

** STOP ** : Stop

Hexadecimal

Device Status

:

:

** STANDBY **

** RESET **
136

CHAPTER 2 Dependence Functions
-00662 : FF00D2 0E08 --- EXECUTE --- @ 125

-00661 : 018255 ---- EWA ------- --- & 125

How to read trace data

frame no. address data a-status d-status Qst dfg event time stamp

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1):frame number (Decimal number)

(2):executed instruction address, and data access address (Hexadecimal number)

(3):data (Hexadecimal number)

(4):access information (a-status)

IWA : write access to internal memory

EWA : write access to external memory

IRA : read access to internal memory

ERA : read access to external memory

ICF : code fetch to internal memory

ECF : code fetch to external memory

--- :valid "d-status" information

(5):device status (d-status)

STANDBY : hardware standby

THOLD : tool hold

UHOLD : user hold

WAIT : ready pin by waiting

SLEEP : sleep

STOP : stop

EXECUTE : execute instruction

RESET : reset

------- : invalid d-status information

(6):instruction queue status

FLH : flush queue

?by : number of remainder code of queue is ? byte (?: 1 to 8)

(7):information valid flag

& : address is valid

@ : data is valid

(8):event information

C : code event

D : data event

(9):time stamp display (ns unit)

displays difference of executed time between this frame and next frame (decimal)
137

CHAPTER 2 Dependence Functions
Note:

Information about event hits is excluded from the displayed information. For code execution, in
particular, the effect of a prefetch is eliminated in consideration of the count of data in the instruction
queue. Therefore, the information about hits is displayed for frames after a prefetch frame at an
address for which an event is set.

■ Display in Source Line Units (Specify /SOURCE.)
Only the source line can be displayed. This mode is enabled only in the debugging mode.

[Example]

>SHOW TRACE/SOURCE -1010..-86

step no. source

-01007 : sample.c$68 value[i] = &target[I];

-00905 : sample.c$68 value[i] = &target[I];

-00803 : sample.c$68 value[i] = &target[I];

-00698 : sample.c$70 sort_val(value, 16L);

-00655 : sample.c$9 {

-00594 : sample.c$13 for (k = max / 2; k >= 1; k--){

-00185 : sample.c$14 i = k;

-00149 : sample.c$15 p = tblp[i - 1];

-00088 : sample.c$16 while ((j = 2 * i) <= max){

Note:

The following operation may be subjected to trace sampling immediately after the MCU operation is
stopped (tool hold). Remember that the operation is unique to evaluation chips and not performed by
mass-produced products.

Access to address 0x000100 and addresses between 0x0FFFFDC and 0x0FFFFFF
138

CHAPTER 2 Dependence Functions
2.3.6.7 Reading Trace Data On-the-fly

Trace data can be read while executing a program. However, this is not possible during
sampling. Disable the trace function or terminate tracing before attempting to read trace
data.

■ Reading Trace Data On-the-fly
To disable the trace function, use the DISABLE TRACE command. Check whether or not the trace function

is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by using the

built-in variable, %TRCSTAT.

Tracing terminates when the delay count ends after the sequencer has terminated. If Not Break is specified

here, tracing terminates without a break operation. It is possible to check whether or not tracing has

terminated by executing the SHOW TRACE command with /STATUS specified, or by using the built-in

variable, %TRCSAMP.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE

command. Use the SET DELAY command to set the delay count and break operation after the delay count.

[Example]

>GO

>>SHOW TRACE/STATUS

en/dis = enable

buffer ful = nobreak

sampling = on <- Trace sampling continues.

code : enable

verbose : disable

>>SHOW TRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = end <- Trace sampling ends.

code : enable

verbose : disable

frame no. = -00805 to 00000

>>SHOW TRACE -52

step no. address mnemonic time stamp

sort_val:

-00655 : FF00D2 LINK #0E 625

-00651 : 018253 external read access. 81 500

-00648 : 013254 external read access. 81 625

-00645 : 000186 internal write access. 0000 625

. . .

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-

executed by re-executing the sequencer from the beginning.
139

CHAPTER 2 Dependence Functions
2.3.6.8 Saving Trace Data

The debugger has function of saving trace data to a file.

■ Saving Trace Data
Save the trace data to the specified file.

For details on operations, refer to Sections 3.14 Trace Window, and 4.4.8 Trace in the SOFTUNE

Workbench Operation Manual; and Section 4.23 SHOW TRACE in the SOFTUNE Workbench Command

Reference Manual.
140

CHAPTER 2 Dependence Functions
2.3.7 Measuring Performance

It is possible to measure the time and pass count between two events. Repetitive
measurement can be performed while executing a program in real-time, and when done,
the data can be totaled and displayed.
Using this function enables the performance of a program to be measured. To measure
performance, set the event mode to the performance mode using the SET MODE
command.

■ Performance Measurement Function
The performance measurement allows the time between two event occurrences to be measured and the

number of event occurrences to be counted. Up to 32765 event occurrences can be measured.

- Measuring Time

Measures time interval between two events.

Events can be set at 8 points (1 to 8). However, in the performance measurement mode, the intervals,

starting event number and ending event number are combined as follows. Four intervals have the

following fixed event number combination:

- Measuring Count

The specified events become performance measurement points automatically, and occurrences of that

event are counted.

Interval Starting Event Number Ending Event Number

1 1 2

2 3 4

3 5 6

4 7 8
141

CHAPTER 2 Dependence Functions
2.3.7.1 Performance Measurement Procedures

Performance can be measured by the following procedure:
- Set event mode.
- Set minimum measurement unit for timer.
- Specify performance-buffer-full break.
- Set events.
- Execute program.
- Display measurement result.
- Clear measurement result.

■ Setting Event Mode
Set the event mode to the performance mode using the SET MODE command. This enables the performance

measurement function.

[Example]

 >SET MODE/PERFORMANCE

>

■ Setting Minimum Measurement Unit for Timer
It is 1ns as the minimum measurement unit for the timer used to measure performance. And a resolution of

performance measurement data is 25ns.

■ Setting Performance-Buffer-Full Break
When the buffer for storing performance measurement data becomes full, a executing program can be

broken. This function is called the performance-buffer-full break. The performance buffer becomes full

when an event occurs 65535 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but the program

does not break.

[Example]

 >SET PERFORMANCE/NOBREAK <- Specifying Not Break

>

■ Setting Events
Set events using the SET EVENT command.

The starting/ending point of time measurement and points to measure pass count are specified by events.

Events at 8 points (1 to 8) can be set. However, in the performance measurement, the intervals, starting event

number and ending event number are fixed in the following combination.

- Measuring Time

Four intervals have the following fixed event number combination.
142

CHAPTER 2 Dependence Functions
- Measuring Count

The specified events become performance measurement points automatically.

■ Executing Program
Start measuring when executing a program by using the GO or CALL command. If a break occurs during

interval time measurement, the data for this specific interval is discarded.

■ Displaying Performance Measurement Data
Display performance measurement data by using the SHOW PERFORMANCE command.

■ Clearing Performance Measurement Data
Clear performance measurement data by using the CLEAR PERFORMANCE command.

[Example]

>CLEAR PERFORMANCE

>

Interval Starting Event Number Ending Event Number

1 1 2

2 3 4

3 5 6

4 7 8
143

CHAPTER 2 Dependence Functions
2.3.7.2 Display Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE
command.

■ Displaying Measured Time
To display the time measured, specify the starting event number or the ending event number.

>SHOW PERFORMANCE/TIME

event = 1 -> 2 time (µs) | count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 8999.0 | 0

avr time = 14538.0 9000.0 - 9999.0 | 0

10000.0 - 10999.0 | 0

11000.0 - 11999.0 | 2

12000.0 - 12999.0 | 19

13000.0 - 13999.0 | 52

14000.0 - 14999.0 | 283

15000.0 - 15999.0 | 92

16000.0 - 16999.0 | 3

17000.0 - 17999.0 | 1

18000.0 - 18999.0 | 0

19000.0 - | 0

-----------------------------+---------

 total | 452

Minimum
execution time

Event number

Maximum
execution time

Average
execution time

Count of measuring within given time interval

Total measuring count

>SHOW PERFORMANCE/TIME 1,13000,16999,500

event = 1 -> 2 time (µs) | count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 12999.0 | 21

avr time = 14538.0 13000.0 - 13499.0 | 13

13500.0 - 13999.0 | 39

14000.0 - 14499.0 | 121

14500.0 - 14999.0 | 162

15000.0 - 15499.0 | 76

15500.0 - 15999.0 | 16

16000.0 - 16499.0 | 2

16500.0 - 16999.0 | 1

17000.0 - 17499.0 | 1

-----------------------------+---------

 total | 452

Upper time limit for display

Lower time limit for display

144

CHAPTER 2 Dependence Functions
2.3.8 Measuring Coverage

This emulator has the C0 coverage measurement function. Use this function to find what
percentage of an entire program has been executed.

■ Coverage Measurement Function
When testing a program, the program is executed with various test data input and the results are checked for

correctness. When the test is finished, every part of the entire program should have been executed. If any

part has not been executed, there is a possibility that the test is insufficient.

This emulator coverage function is used to find what percentage of the whole program has been executed. In

addition, details such as which addresses were not accessed can be checked.

This enables the measurement coverage range to be set.

To execute the C0 coverage, set a range within the code area. In addition, setting a range in the data area,

permits checking the access status of variables such as finding unused variables, etc.

Execution of coverage measurement is limited to the address space specified as the debug area.

Therefore, set the debug area in advance.

This is operable by enabling the coverage function on the chip tabs: [Environment] - [Setup Debugging

Environment] - [Debug Environment] command.

■ Coverage Measurement Procedures
The procedure for coverage measurement is as follows:

1. Set range for coverage measurement: SET COVERAGE

2. Measuring coverage: GO, STEP, CALL

3. Displaying measurement result: SHOW COVERAGE

■ Coverage Measurement Operation
The following operation can be made in coverage measurement:

- Load/Save of coverage data: LOAD/COVERAGE, SAVE/COVERAGE

- Abortion and resume of coverage measurement: ENABLE COVERAGE, DISABLE COVERAGE

- Clearing coverage data: CLEAR COVERAGE

- Canceling coverage measurement range: CANCEL COVERAGE

Note:

When the coverage measurement function is used, the monitoring function in RAM area of the 0 bank
cannot be used. For more details, see "2.3.9 Real-time Monitoring".
145

CHAPTER 2 Dependence Functions
2.3.8.1 Coverage Measurement Procedures

The procedure for coverage measurement is as follows:
- Set range for coverage measurement : SET COVERAGE
- Measure coverage : GO, STEP, CALL
- Display measurement result : SHOW COVERAGE

■ Setting Range for Coverage Measurement
Use the SET COVERAGE command to set the measurement range. The measurement range can be set only

within the area defined as the debug area. Up to 32 ranges can be specified.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set

automatically. However, the library code area is not set when the C compiler library is linked.

[Example]

>SET COVERAGE FF0000 .. FFFFFF

■ Measuring Coverage
When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.

■ Displaying Coverage Measurement Result
To display the measurement result, use the SHOW COVERAGE command. The following can be displayed:

• Display coverage rate of total measurement area

• Displaying coverage rate of load module

• Summary of 16 addresses as one block

• Details indicating access status of each address

• Displaying coverage measurement result per source line

• Displaying coverage measurement result per machine instruction

● Display Coverage Rate of Total Measurement Area (Specify /TOTAL for command qualifier)

 >SHOW COVERAGE/TOTAL

total coverage : 82.3%

● Displaying coverage rate of load module (Specify /MODULE for the command qualifier)

>SHOW COVERAGE/MODULE
sample.abs . (84.03%)
+ - startup.asm (90.43%)
+ - sample.c (95.17%)
+ - samp.c (100.00%)

Displays the load modules and the coverage rate of each module ?
146

CHAPTER 2 Dependence Functions
● Summary (Specify /GENERAL for command qualifier)

● Details (Specify /DETAIL for command qualifier.)

>SHOW COVERAGE/GENERAL
 (HEX)0X0 +1X0 +2X0

+---------------+---------------+------ ------
address 0123456789ABCDEF0123456789ABCDEF0123456 ... ABCDEF C0(%)
FF0000 **3*F*....... 32.0

Display the access status of every 16 addresses

. : No access

1 to F : Display the number accessed in 16 addresses by the hexadecimal number.

* : Access all of the 16 addresses.

>SHOW COVERAGE/DETAIL FF0000

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F C0(%)
FF0000 - - - - - - - - - - - - - - - - 100.0
FF0010 - - - - - - - - - - - - - - - - 100.0
FF0020 - - - 18.6
FF0030 - - - - - - - - - - - - - - - - 100.0
FF0040 - . - - - - - - - - - - - - - - 93.7
FF0050 - - - - - - - - - - - - - - - - 100.0
FF0060 0.0
FF0070 0.0
FF0080 0.0

Display one line of a
coverage rate

Display the access status of every 1 address

. : No access

- : Access
147

CHAPTER 2 Dependence Functions
● Displays per source line (Specify /SOURCE for the command qualifier)

● Displays per machine instruction (Specify /INSTRUCTION for the command qualifier)

>SHOW COVERAGE/SOURCE main
 * 70: {
 71: int i;
 72: struct table *value[16];
 73:
 * 74: for (i=0; i<16; i++)
 * 75: value[i] = &target[i];
 76:
 * 77: sort_val(value, 16L);
 . 78: }

Displays access status of each source line.

. : No Access
Accessed

Blank: Line which the code had not been generated or is outside
 the scope of the coverage measurement

* :

>SHOW COVERAGE/INSTRUCTION F9028F
sample.c$70 {
 * F9028F main:
 * F9028F 0822 LINK #22
 * F90291 4F01 PUSHW RW0
sample.c$74 for (i=0; i<16; i++)
 . F90293 D0 MOVN A,#0
 . F90294 CBFE MOVW @RW3-02,A
 . F90296 BBFE MOVW A,@RW3-02
 . F90298 3B1000 CMPW A,#0010
 . F9029B FB18 BGE F902B5
sample.c$75 value[i] = &target[i];
 . F9029D BBFE MOVW A,@RW3-02
 . F9029F 0C LSLW A
 . F902A0 98 MOVW RW0,A
 . F902A1 71F3DE MOVEA A,@RW3-22
 . F902A4 7700 ADDW RW0,A
 . F902A6 4214 MOV A,#14
 . F902A8 7833FE MULUW A,@RW3-02

 . F902AB 38A001 ADDW A,#01A0

Displays access status of each source line.

. : No Access
Accessed

Blank: Instruction outside the scope of the coverage measurement
*:
148

CHAPTER 2 Dependence Functions
2.3.9 Real-time Monitoring

The real-time monitoring function is used to display the memory contents during
program execution.

■ Real-time Monitoring
The emulator can use the real-time monitoring function when the evaluation chip has the external trace bus

interface.

A real-time monitoring window is provided to display two 256-byte regions for real-time monitoring

purposes. The real-time monitoring window has a function for reading data from the actual memory and

displaying it before program execution (copy function), and a function for displaying updated data in red.

■ RAM Area Referencing of the 0 Bank
To use the real-time monitoring function in the RAM area of the 0 bank, the coverage function must be

disabled by the following methods.

• Command

DISABLE COVERAGE

See "4.15 DISABLE COVERAGE" in SOFTUNE Workbench Command Reference Manual.

• Dialog

[Chip] tab on the Setup debug environment dialog.

See "4.7.2.3 Debug Environment" in SOFTUNE Workbench Operation Manual.
149

CHAPTER 2 Dependence Functions
2.3.10 Measuring Execution Time Using Emulation Timer

The timer for measuring time is called the emulation timer. This timer can measure the
time from the start of MCU operation until suspension.

■ Measuring Executing Time Using Emulation Timer
With a resolution of 25 ns and 56 significant bits, the timer can measure the time of up to

72,057,594,037,927, multiply 935 by 25 ns.

The display shows the results of two time measurements: the time duration of the last program execution and

the total time duration of all the completed program executions. If the timer overflows, a notification is

displayed. Measurement is performed at each program execution. The emulation timer cannot be disabled.

However, the measured execution times can be cleared.

■ Execution Cycle Measurement by Cycle Counter
The cycle counter has 56 significant bits and permits measurement of up to 72,057,594,037,927,935 cycles.

The display shows the results of two cycles count measurements: the cycle count of the last program

execution, and the total cycle count of all completed program executions. If the timer overflows, a

notification is displayed. Measurement is performed at each program execution. The emulation timer cannot

be disabled. However, measured cycle count can be cleared.

Use the following commands for control:

- SHOW TIMER : Indicates execution time and measured cycle count

- CLEAR TIMER : Clears measurement results

[Example]

>GO main,$25

Break at FF008D by breakpoint

>SHOW TIMER

m s ms µs ns

from init = 42108264000

from last executed = 3623874000

>CLEAR TIMER

>SHOW TIMER

m s ms µs ns

from init =

from last executed =

>

m s ms µs ns

from init = 00: 00:000:000:000

from last executed = 00: 00:000:000:000

>
150

CHAPTER 2 Dependence Functions
Note:

Note that the measured execution time is added about ten extra cycles per execution.
151

CHAPTER 2 Dependence Functions
2.3.11 Power-on Debugging

This section explains power-on debugging by the emulators for the MB2147-01.

■ Power-on Debugging
Power-ON debugging refers to the operation to debug the operating sequence that begins when the power to

the target is switched on.

For products with a dedicated power-on debugging terminal, the MB2147-01 emulator can debug the

sequence performed immediately after power-on. The following functions are available:

Code break

Data monitoring break

Data break

Sequencer and event

Trace trigger

Trace measurement

Coverage measurement

The power-on debugging procedure is described below:

- Set the DIP switch on the adapter board mounted in the upper part of the emulator.

- Turn on the target board and emulator main unit.

- Launch Workbench to start debugging.

For debugging, set hardware breaks, etc.

- To start a power-on debugging, run [Execute] - [Power-ON Debug] command.

Input the lower limit value of the monitoring voltage from the [User Power Monitor Voltage]

dialog box to display PON in the input status bar.

- Run the program.

- Turn the target board off while running and then back on.

- Conduct debugging.

- To terminate the power-on debugging, run [Execute] - [Power-ON Debug] command.
152

CHAPTER 2 Dependence Functions
2.3.12 RAM Checker

This section describes the functions of the RAM Checker.

■ Overview
The RAM checker obtains history logs of accessing the monitoring addresses on SOFTUNE Workbench and

graphically displays log files using the accessory tool, RAM Checker Viewer.

SOFTUNE Workbench has the following functions

- Sets monitoring addresses at 16 points

- Logs data access history of monitoring addresses at intervals of 1 ms

- Monitors monitoring addresses at intervals of 100 ms

■ RAM Check Window
The debugging window "RAM Checker" has been added to SOFTUNE Workbench to log/monitor

monitoring addresses.

For operations of Ram check Window, refer to Section 3.21 of SOFTUNE Workbench Operation Manual.

■ Use Conditions
The RAM Checker operates under the following conditions.

- Emulator: MB2147-01

- Communication device: USB

The RAM Checker cannot be used for the MB2141/MB2147-05 emulator, or the RS/LAN communication

device. In those environments, the main menu [View] - [RAM Checker] is not disabled.

Note:
The RAM Checker is enabled only when the debug function on MB2147-01 is set to "RAM Checker"
mode. For more details, see "2.3.1.6 Debug Function".

■ Specifications List

• SOFTUNE format

- To display in the RAM Checker viewer (recommended)

- Default extension is "SRL".

• CSV format

- To display in other applications than the RAM Checker viewer

- Default extension is "CSV".

Monitoring Point Count 16 points

Size Bytes/word (16 bits)

Event Functions Max. 8 Points

Sampling Time 1 ms (Fixed)

Update Intervals 100 ms (Fixed)

Log File Formats SOFTUNE format or CSV format
153

CHAPTER 2 Dependence Functions
Note:

The CSV format requires size of data approximately 4 times that of the SOFTUNE format.

■ To Use the RAM Checker
User sets the monitoring points, Log File, logging status by GUI or Command to use the RAM Checker.

• GUI

- Set the debug function to "RAM Checker" mode by using [Debug] - [Debug Function].

- By short cut menu [Setup...] on the Ram check Window, user sets the monitoring points.

- By short cut menu [File...] on the Ram check Window, user sets the Log File.

- By checking the short cut menu: [Logging start] on the Ram check Window, a logging status of the

Ram Checker becomes to enable.

• COMMAND

- Set the debug function to "RAM Checker" mode by using SET MODE/CONFIG command.

- By command: SET RAMCHECK, user sets the monitoring points.

- By command: SET RAMCHECK, user sets the Log File.

- By command: ENABLE RAMCHECK, a logging status of the Ram Checker becomes to enable.

After these commands are set, user program execute and Log File is created by stopped user program. If it is

restarted, a Log File is overwritten.

Note:

If a setting of Overwrite control is enabled on Setup file dialog, a Log File is saved with different name
every other execution.

For details about settings of the RAM Checker viewer, refer to Section 3.21, SOFTUNE Workbench

Operation Manual and 4.35 - 4.39, SOFTUNE Workbench Command Reference Manual.

Note:

Execution state for MCU such as stop mode or sleep mode cannot be displayed at status bar during
logging.

■ About Log File
Following restrictions are made for the size of log file to be created depending on file system where log file is

stored.

FAT:Up to 2GB

FAT32: Up to 4GB

NTFS: No limit.

Others: No limit
154

CHAPTER 2 Dependence Functions
If the file system is FAT, FAT32, file name will be changed and continue logging when the size of file is

exceeded limitation.

Note:

If a file is already existed, log file will be overwritten

Example of an operation

If the size of file is exceeded it's limitation, log file will be created as

filename.srl --> filename#1.srl

If the size gets exceeded the limitation again, log will be shown and changes as follows.

 filename#1.srl --> filename#2.srl

•

•

filename#N-1.srl --> filename#N.srl

Notes:

1. Log files should only be saved to built-in HDD only. If network, external HDD or external disk (CD,
DVD, MO etc) are used as destination for saving files, files will not be saved.

2. More than 500MB memory is required for disk to save log file of RAM checker. If the capacity of
disk become less than 500MB, logging will be halted.

■ RAM Checker Viewer
The RAM Checker Viewer is a tool for graphically displaying changes in data values with the passage of

time. There are the following three types of data display formats:

- Bit display (Logic Analyzer image)

- Data value display (bent line graph)

- Bit/data value display (simultaneous display bit and data values)

It displays halting CPU, trigger points and the Data Lost as other information.

To halt the operation of CPU, stop mode for low power consumption and power off condition at power-on

debug function will be saved to log.

Trigger point uses event-hit in SOFTUNE Workbench. It is necessary to set event in SOFTUNE Workbench

to use trigger point. When the event-hit is appeared, its information is recorded in a log.

The Data Lost is appeared in the following two causes.

- The Data Lost caused by hardware

The emulator obtains data access history of RAM at intervals of 1 ms, but if two or more data access

the same address within 1 ms, the emulator obtains only the data of the last access.

Data loss caused by hardware indicates that several data accessed the same address.

- The Data Lost caused by software

SOFTUNE Workbench obtains data from the emulator at intervals of 100 ms. However, other

application may disable the SOFTUNE Workbench for obtaining data at intervals of 100 ms.

In such cases, the RAM Checker Viewer does not display a portion of the data, but displays the invalid
155

CHAPTER 2 Dependence Functions
time band graphically.

Note:

If logging is halted by break or stopping an execution, software lost could be appeared for 1ms ~
15ms. at the end of log. This happens because log after stopping an execution will be obtained until
logging is stopped, thus this is not an actual data lost.

For details of RAM Checker viewer, refer to FswbRViewE.pdf and Help.
156

CHAPTER 2 Dependence Functions
2.4 Emulator Debugger (MB2147-05)

This section explains the functions of the emulator debuggers for the MB2147-05.

■ Emulator
When choosing the emulator debugger from the setup wizard, select one of the following emulators. Select

the MB2147-05.

MB2141

MB2147-01

MB2147-05

The emulator debugger for the MB2147-05 is software that controls an emulator from a host computer via a

communications line (RS-232C or USB) to evaluate programs.

The following series can be debugged:

F2MC16L

F2MC16LX

Before using the emulator, it must be initialized. For details, refer to Appendix B, Downloading Monitor

Program in the SOFTUNE WORKBENCH Operation Manual.
157

CHAPTER 2 Dependence Functions
2.4.1 Setting Operating Environment

This section explains the operating environment setup.

■ Setting Operating Environment
For the emulator debugger for the MB2147-05, it is necessary to set the following operating environment.

Predefined default settings for all these setup items are enabled at startup. Therefore, setup is not required

when using the default settings. Adjusted settings can be used as new default settings from the next time.

- Monitoring program automatic loading

- MCU operation mode

- Debug area

- Memory mapping
158

CHAPTER 2 Dependence Functions
2.4.1.1 Monitoring Program Automatic Loading

Emulators for MB2147-05 can automatically update the monitoring program at emulator
startup.

■ Monitoring Program Automatic Loading
When the emulators for MB2147-05 is specified, data in the emulator can be checked at the beginning of

debugging to load an appropriate monitoring program and configuration binary data automatically into the

emulator.

The monitoring program and configuration binary data to be compared for update are in Lib\907 under the

directory where Workbench is installed.

Enable/disable the monitoring program automatic loading function by choosing [Environment] - [Debugging

Environment Setup] - [Setup Wizard] menu.
159

CHAPTER 2 Dependence Functions
2.4.1.2 MCU Operation Mode

There are two MCU operation modes as follows:
- Debugging Mode
- Native Mode

■ Setting MCU Operation Mode
Set the MCU operation mode.

There are two operation modes: the debugging mode, and the native mode. Choose either one using the SET

RUNMODE command.

At emulator start-up, the MCU is in the debugging mode.

The data access to internal bus may not be detected by emulator in native mode. Therefore, when the MCU

operation mode is changed, all the following are initialized:

- Data break points

- Trace measurement settings and trace buffer

■ Debugging Mode
All the operations of evaluation chips can be analyzed, but their operating speed is slower than that of mass-

produced chips.

■ Native Mode
Evaluation chips have the same timing as mass-produced chips to control the operating speed. Note that the

restrictions the shown in Table 2.4-1 are imposed on the debug functions.

Table 2.4-1 Restrictions on debug functions

Applicable series Restrictions on debug functions

Common to all series - When a data read access occurs on the MCU internal bus, the inter-
nal bus access information is not sampled and stored in the trace
buffer.

- Even when a data break or event (data access condition) is set for
data on the MCU internal bus, it may not become a break factor or
sequencer-triggering factor.

- The coverage function may fail to detect an access to data on the
MCU internal bus.
160

CHAPTER 2 Dependence Functions
2.4.1.3 Debug Area

Set the intensive debugging area out of the whole memory space. The area functions are
enhanced.

■ Setting Debug Area
There are two debug areas: DEBUG3, and DEBUG4. A continuous 1 MB area (16 banks) is set for each

area.

Set the debug area using the SET DEBUG command.

Setting the debug area enhances the break point function.

- Enhancement of Break Points

Up to six break points (not including temporary break points set using GO command) can be set when

the debug area has not yet been set.

When setting the debug area as the CODE attribute, up to 65535 break points can be set if they are

within the area. At this time, up to six break points can be set for an area other than the debug area,

but the total count of break points must not exceed 65535. In 0x00 to 0x0F and 0x0F0 to 0x0FF, a

break point can be set without specifying the debug area. (DEBUGGER1, DEBUGGER2)
161

CHAPTER 2 Dependence Functions
2.4.1.4 Memory Area Types

A unit in which memory is allocated is called an area. There are five different area types.

■ Memory Area Types
A unit to allocate memory is allocated is called an area. There are five different area types as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user

memory. Up to four user memory areas can be set with no limit on the size of each area. Define a

region on a 256-byte boundary.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for ROM area,

and READ, WRITE, etc. can be set for RAM area. If the MCU attempts access in violation of these

attributes, the MCU operation is suspended and an error is displayed (guarded access break).

To set the user memory area, use the SET MAP command.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and this

memory is called emulation memory.

It is possible to set up to four areas of 256-KB maximum (including an internal ROM area described

later) as emulation memory area. Define a region on a 256-byte boundary. An area larger than 256-

KB can be specified at one time but is divided internally into two or more 256-KB areas for

management purposes.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU

execution is in progress.

Emulation memory areas can be set using the SET MAP command.

Further, the access attributes can be set as with user memory areas.

Note:

Even if the MCU internal resources are set as emulation memory area, access is made to the internal
resources.

- Internal ROM Area

The area where the emulator internal memory is substituted for internal ROM is called the internal

ROM area, and this memory is called the internal ROM memory.

Only one internal ROM area with a size up to 256-KMB can be specified.

The internal ROM area with a size up to 1 MB can be specified 2 areas.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU

execution is in progress.

To set the internal ROM area, use "Setup CPU Information" from "Setup Project Basics". The area

attribute is set automatically to READ/CODE.
162

CHAPTER 2 Dependence Functions
Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Internal ROM Image Area

Some types of MCUs have data in a specific area of internal ROM appearing to 00 bank. This

specific area is called the internal ROM image area.

By using "Setup CPU Information" from "Setup Project Basics", specify whether or not to set the

internal ROM image area. This area attribute is automatically set to READ/CODE. The same data as

in the internal ROM area appears in the internal ROM image area.

Note that the debug information is only enabled for either one (one specified when linked). To debug

only the internal ROM image area, change the creation type of the load module file.

Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Undefined Area

A memory area that does not belong to any of the areas described above is part of the user memory

area. This area is specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD

area, which cannot be accessed. Select either setup for the whole undefined area. If the area attribute

is set to GUARD, a guarded access error occurs if access to this area is attempted.
163

CHAPTER 2 Dependence Functions
2.4.1.5 Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc., and
the attributes of these areas can be specified.
However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

■ Access Attributes for Memory Areas
The access attributes shown in Table 2.4-2 can be specified for memory areas.

A guarded memory access break occurs if access is attempted in violation of these attributes while executing

a program.

When access to the user memory area and the emulation memory area is made using program commands,

such access is allowed regardless of the CODE, READ, WRITE attributes. However, access to memory with

the GUARD attribute in the undefined area, causes an error.

When access is made to an area without the WRITE attribute by executing a program, a guarded access break

occurs after the data has been rewritten if the access target is the user memory. However, if the access target

is the emulation memory, the break occurs before rewriting. In other words, write-protection (memory data

cannot be overwritten by writing) can be set for the emulation memory area by not specifying the WRITE

attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to access

by commands.

■ Creating and Viewing Memory Map
Use the following commands for memory mapping.

SET MAP: Set memory map.

SHOW MAP: Display memory map.

CANCEL MAP: Change memory map setting to undefined.

Table 2.4-2 Types of Access Attributes

Area Attribute Description

User Memory Emulation Memory CODE Instruction Execution Enabled

READ Data Read Enabled

WRITE Data Write Enabled

Undefined GUARD Access Disabled

NOGUARD No check of access attribute
164

CHAPTER 2 Dependence Functions
[Example]

>SHOW MAP

address attribute type

000000 .. FFFFFF noguard

The rest of setting area numbers

user = 8 emulation = 5

>SET MAP/USER H'0..H'1FF

>SET MAP/READ/CODE/EMULATION H'FF0000..H'FFFFFF

>SET MAP/USER H'8000..H'8FFF

>SET MAP/MIRROR/COPY H'8000..H'8FFF

>SET MAP/GUARD

>SHOW MAP

address attribute type

000000 .. 0001FF read write user

000200 .. 007FFF guard

008000 .. 008FFF read write user

009000 .. FEFFFF guard

FF0000 .. FFFFFF read write code emulation

mirror address area

008000 .. 008FFF copy

The rest of setting area numbers

user = 6 emulation = 3

>

■ Internal ROM Area Setting
The [Map Setting] dialog box is displayed using [Environment] - [Debugger Memory Map] command. You

can set the internal ROM area using the [Internal ROM Area] after the [Map Adding] dialog box is displayed

by clicking on the [Setting] button. You can set two areas. Both require empty Emulation area to be set.

You can set the region size by (Empty space of the emulation area) x (one area size).

Specify the internal ROM area from the ending address H'FFFFFF (fixed) for area 1. Also, it is possible to

delete the internal ROM area.
165

CHAPTER 2 Dependence Functions
2.4.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

■ Notes on GO Command
For the GO command, two break points that are valid only while executing commands can be set. However,

care is required in setting these break points.

- Invalid Breakpoints

- No break occurs when a break point is set at the instruction immediately after the following

instructions.

- No break occurs when break point set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.

- Instruction for which break point set starts from odd-address,

- Preceding instruction longer than 2 bytes length, and break point already set at last 1-byte

address of preceding instruction (This "already-set" break point is an invalid break point that

won't break, because it has been set at an address other than the starting address of an

instruction).

- Abnormal Break Point

Setting a break point at the instruction immediately after string instructions listed below, may cause a

break in the middle of the string instruction without executing the instruction to the end.

■ Notes on STEP Command
- Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid break points and

abnormal break points, such instructions and the next instruction are executed as a single instruction.

Furthermore, if such instructions are continuous, then all these continuous instructions and the next

instruction are executed as a single instruction.

F2MC-16L/16LX

PCB
NCC
SPB
MOV ILM,#imm8
OR CCR,#imm8

DTB
ADB
CNR
AND
CCR,#imm8
POPW PS

F2MC-16L/16LX

MOVS
SECQ
WBTS
MOVSWI
SECQWI
MOVSD
SECQD
FILS
FILSW

MOVSW
SECQW
MOVSI
SECQI
WBTC
MOVSWD
SECQWD
FILSI
FILSWI
166

CHAPTER 2 Dependence Functions
- Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met at one time.

-When step instruction longer than 2 bytes length and last code ends at even address

-When break point already set at last address (This "already-set" break point is an invalid break point

that won't break, because it has been set at an address other than the starting address of an instruction.)

■ Controlling Watchdog Timer
It is possible to select "No reset generated by watchdog timer counter overflow" while executing a program

using the GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

-ENABLE WATCHDOG:Reset generated by watchdog timer counter overflow

-DISABLE WATCHDOG:No reset generated by watchdog timer counter overflow

The start-up default in this program is "Reset generated by watchdog timer counter overflow".

[Example]

>DISABLE WATCHDOG

 >GO
167

CHAPTER 2 Dependence Functions
2.4.3 On-the-fly Executable Commands

Certain commands can be executed even while executing a program. This is called "on-
the-fly" execution.

■ On-the-fly Executable Commands
Certain commands can be executed on-the-fly. If an attempt is made to execute a command that cannot be

executed on-the-fly, an error "MCU is busy" occurs. Table 2.4-3 lists major on-the-fly executable functions.

For further details, refer to the Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the tool button.

On-the-fly commands cannot be executed when executing the GO command, etc., from the Command

window.

Table 2.4-3 Major Functions Executable in On-the-fly Mode

Function Restrictions Major Commands

MCU reset - RESET

Displaying MCU execution status - SHOW STATUS

Displaying execution cycle mea-
surement value (cycle)

-
SHOW TIMER

Memory operation (Read/Write) Emulation memory only operable ENTER, EXAMINE,
COMPARE FILL, MOVE, DUMP,
SEARCH MEMORY,
SHOW MEMORY, SET MEMORY

Line assembly, Disassembly Emulation memory only enabled ASSEMBLE
DISASSEMBLE

Load, Save program Emulation memory only enabled LOAD
SAVE
168

CHAPTER 2 Dependence Functions
2.4.4 Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.
In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.

■ Trace Buffer
The data recorded by sampling in machine cycle units, is called a frame.

The trace buffer can store 64K frames (65536). Since the trace buffer has a ring structure, when it becomes

full, it automatically returns to the start to overwrite existing data.

■ Trace Data
Data sampled by the trace function is called trace data.

The following data is sampled:

- Address

- Data

- Status Information

- Access status: Read/Write/Internal access, etc.

- Device status: Instruction execution, Reset, Hold, etc.

- Queue status: Count of remaining bytes of instruction queue, etc.

- Data valid cycle information: Data valid/invalid

(Since the data signal is shared with other signals, it does

not always output data. Therefore, the trace samples

information indicating whether or not the data is valid.)

■ Data Not Traced
The following data does not leave access data in the trace buffer.

- Portion of access data while in native mode.

When operating in the native mode, the F2MC-16L/16LX family of chips sometime performs

simultaneous multiple bus operations internally. However, in this emulator, monitoring of the internal

ROM bus takes precedence. Therefore, other bus data being accessed simultaneously may not be

sampled (in the debugging mode, all operations are sampled).

■ Frame Number
A number is assigned to each frame of sampled trace data. This number is called a frame number.

The frame number is used to specify the display start position of the trace buffer. The value 0 is assigned to

trace data at the triggering position for sequencer termination. Negative values are assigned to trace data that

have been sampled before arrival at the triggering position (See Figure 2.4-1).

If there is no triggering position for sequencer termination, the value 0 is assigned to the last-sampled trace

data.
169

CHAPTER 2 Dependence Functions
Figure 2.4-1 Frame Number at Tracing

■ Trace Filter
To make effective use of the limited trace buffer capacity, in addition to the code fetch function, a trace filter

function is incorporated to provide a means of acquiring information about data accesses to a specific region.

The data trace filter function allows the following values to be specified for two regions:

- Address

- Address mask

- Access attribute (read/write)

Another function can be used so that sampling of redundant frames occupying two or more trace frames, such

as SLEEP and READY, can be reduced to sampling of one frame.

.

.

.

-3

-2

-1

0 (Trigger point)
170

CHAPTER 2 Dependence Functions
2.4.4.1 Setting Trace

To perform a trace, follow steps (1), (2) below. When a program is executed after
completion of the following steps, trace data is sampled.

(1) Enable the trace function.
(2) Perform trace buffer full break setup.

■ Setting Trace
To perform a trace, complete the following setup steps. When a program is executed after completion of the

steps, trace data is sampled.

1) Enable the trace function.

Enable the trace function using the ENABLE TRACE command.

To disable the trace function, use the DISABLE TRACE command.

The trace function is enabled by default when the program is launched.

2) Perform trace buffer full break setup.

A break can be invoked when the trace buffer becomes full.

To perform setup, use the SET TRACE command. This break feature is disabled when the program

starts. To view the setting, use SHOW TRACE/STATUS.

Table 2.4-4 shows the commands related to a trace.

Table 2.4-4 Trace-related Commands

Available command Function

SET TRACE
SHOW TRACE
SEARCH TRACE
ENABLE TRACE
DISABLE TRACE
CLEAR TRACE

Sets trace buffer full break
Displays trace data
Searches for trace data
Enables trace function
Disables trace function
Clears trace function
171

CHAPTER 2 Dependence Functions
2.4.4.2 Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command.

■ Displaying Trace Data Storage Status
It is possible to displays how much trace data is stored in the trace buffer. This status data can be read by

specifying /STATUS to the SHOW TRACE.

[Example]

>SHOW TRACE/STATUS

en/dis = enable Trace function enabled

buffer full = nobreak Buffer full break function disabled

sampling = end Trace sampling terminates

flame no. = -00120 to 00050 Frame -120 to 50 store data

step no. = -00091 to 00022 Step -91 to 22 store data

>
172

CHAPTER 2 Dependence Functions
2.4.4.3 Specifying Displaying Trace Data Start

The data display start position in the trace buffer can be specified by inputting a step
number or frame number using the SHOW TRACE command. The data display range can
also be specified.

■ Specifying Displaying Trace Data Start
Specify the data display start position in the trace buffer by inputting a step number or frame number using

the SHOW TRACE command. The data display range can also be specified.

[Example]

- In Single Trace Mode

>SHOW TRACE/CYCLE -6 Start displaying from frame -6

>SHOW TRACE/CYCLE -6..10 Display from frame -6 to frame 10

>SHOW TRACE -6 Start displaying from step -6

>SHOW TRACE -6..10 Displays from step -6 to step 10
173

CHAPTER 2 Dependence Functions
2.4.4.4 Display Format of Trace Data

The trace data display format can be selected by running the SHOW TRACE command
with a command modifier specified. If setup is completed with the SET SOURCE
command so as to select a source line addition mode, a source line is attached to the
displayed trace data.
There are three formats to display trace data:

- Display in instruction execution order (Specify /INSTRUCTION.)
- Display all machine cycles (Specify /CYCLE.)
- Display in source line units (Specify /SOURCE.)

■ Display in Instruction Execution Order (Specify /INSTRUCTION.)
Trace sampling is performed at each machine cycle, but the sampling results are difficult to display because

they are influenced by pre-fetch, etc. This is why the emulator has a function to allow it to analyze trace data

as much as possible. The resultant data is displayed after processes such as eliminating pre-fetch effects,

analyzing execution instructions, and sorting in instruction execution order are performed automatically.

However, this function can be specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.
174

CHAPTER 2 Dependence Functions
■ Displaying All Machine Cycles
Detailed information at all sampled machine cycles can be displayed.

In this mode, no source is displayed irrespective of the setup defined by the SET SOURCE command.

[Example]

>SHOW TRACE/CYCLE -587

frame no. address data a-status d-statusQst dfg

-00587 : FF0106 0106 --- ------- FLH

-00586 : FF0106 0008 ECF EXECUTE--- @

-00585 : FF0106 0106 --- EXECUTE---

-00584 : 1010E8 10E8 --- ------- ---

-00583 : 1010E8 0102 EWA EXECUTE--- @

-00582 : 1010E8 0102 --- EXECUTE---

-00581 : 000186 0186 --- ------- 2by

-00580 : 000186 10F2 IRA EXECUTE--- @

-00579 : 1010E6 10E6 --- ------- ---

Data Access

internal read access : Read access to
internal memory

internal write access : Write access to
internal memory

external read access : Read access to
external memory

external write access : Write access to
external memory

>SHOW TRACE /INSTRUCTION -194
step no. address mnemonic
 \sub4:
-00194 : FF0106 LINK #00
-00193 : 000186 internal read access. 10F2
-00192 : 1010E6 external write access. 10F2
-00191 : 000186 internal write access. 10E6
-00190 : FF0108 ADDSP #F8
-00189 : FF010A MOVL A,001A
-00188 : 10001A external read access. 0000
-00187 : 10001C external read access. 4000
-00186 : FF010E MOVL @SP+04,A
-00185 : 1010E2 external write access. 0000
-00184 : FF0111 MOVL A,0016 5
-00183 : ** RESET **
>

Step Number

Address
Disassemble

Description

Data

Device Status

Decimal number,

Hexadecimal
Indecates instruction
executed

Hexadecimal

** STANDBY ** : Hardware standby

** RESET ** : Reset
** THOLD ** : Tool hold
** UHOLD ** : User hold

** WAIT ** : Ready pin input

** SLEEP ** : Sleep
** STOP ** : Stop

number

signed

number
175

CHAPTER 2 Dependence Functions
-00578 : 1010E6 10F2 EWA EXECUTE --- @

-00577 : 1010E6 10F2 --- EXECUTE---

-00576 : 000186 0186 --- ------- ---

How to read trace data

frame no. address data a-status d-status Qst dfg

(1) (2) (3) (4) (5) (6) (7)

(1):frame number (Decimal, signed)

(2):executed instruction address, and data access address (Hexadecimal number)

(3):data (Hexadecimal number)

(4):access information (a-status)

IWA:write access to internal memory

EWA:write access to external memory

IRA:read access to internal memory

ERA:read access to external memory

ICF:code fetch to internal memory

ECF:code fetch to external memory

---:valid "d-status" information

(5):device information (d-status)

STANDBY:hardware standby

THOLD :tool hold

UHOLD :user hold

WAIT :ready pin

SLEEP :sleep

STOP :stop

EXECUTE:execute instruction

RESET :reset

-------:invalid d-status information

(6):instruction queue status

FLH:flush queue

-by:number of remainder code of queue is -byte(-:1 to 8)

(7):valid flag

&:this frame address is valid

@:this frame data is valid
176

CHAPTER 2 Dependence Functions
■ Display in Source Line Units (Specify /SOURCE.)
Only the source line can be displayed. This mode is enabled only in the debugging mode.

[Example]

>SHOW TRACE/SOURCE -194

step no. source

-00194: gtg1.c$251 {

-00190: gtg1.c$255 sub5(nf, nd);

-00168: gtg1.c$259 {

-00164: gtg1.c$264 p = (char *) &df;

-00161: gtg1.c$264 p = (char *) &df;

-00157: gtg1.c$265 *(p++) = 0x00;

-00145: gtg1.c$266 *(p++) = 0x00;

-00133: gtg1.c$267 *(p++) = 0x80;

-00121: gtg1.c$268 *p = 0x7f;

-00116: gtg1.c$270 p = (char *) ⅆ

-00111: gtg1.c$271 *(p++) = 0xff;

-00099: gtg1.c$272 *(p++) = 0xff;

Note:

The following operation may be subjected to trace sampling immediately after the MCU operation is
stopped (tool hold). Remember that the operation is unique to evaluation chips and not performed by
mass-produced products.

Access to address 0x000100 and addresses between 0x0FFFFDC and 0x0FFFFFF
177

CHAPTER 2 Dependence Functions
2.4.4.5 Reading Trace Data On-the-fly

Trace data can be read while executing a program. However, this is not possible during
sampling. Disable the trace function or terminate tracing before attempting to read trace
data.

■ Reading Trace Data On-the-fly
To disable the trace function, use the DISABLE TRACE command. Check whether or not the trace function

is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by using the

built-in variable, %TRCSTAT.

Tracing terminates when the sequencer has terminated. If Not Break is specified here, tracing terminates

without a break operation. It is possible to check whether or not tracing has terminated by executing the

SHOW TRACE command with /STATUS specified, or by using the built-in variable, %TRCSAMP.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE

command.

[Example]

>GO

>>SHOW TRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = on <- Trace sampling continues.

>>SHOW TRACE/STATUS

en/dis = enable

buffer full = nobreak

sampling = end <- Trace sampling ends.

frame no. = -00805 to 00000

step no. = -00262 to 00000

>>SHOW TRACE -52

step no. address mnemonic level

\sub5:

-00052 : FF0125 LINK #02 1

-00051 : 000186 internal read access. 10E6 1

-00050 : 1010D6 external write access. 10E6 1

-00049 : 000186 internal write access. 10D6 1

. . .

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-

executed by re-executing the sequencer from the beginning.
178

CHAPTER 2 Dependence Functions
2.4.4.6 Saving Trace Data

The debugger has function of saving trace data to a file.

■ Saving Trace Data
Save the trace data to the specified file.

For details on operations, refer to Sections 3.14 Trace Window, and 4.4.8 Trace in the SOFTUNE

Workbench Operation Manual; and Section 4.23 SHOW TRACE in the SOFTUNE Workbench Command

Reference Manual.
179

CHAPTER 2 Dependence Functions
2.4.5 Execution Cycle Measurement by Cycle Counter

The counter for measuring the execution cycles is called a cycle counter. It is possible to
measure the number of cycles between the start and stop of MCU execution using this
counter.

■ Execution Cycle Measurement by Cycle Counter
The cycle counter has 56 significant bits and permits measurement of up to 72,057,594,037,927,935 cycles.

The display shows the results of two cycles count measurements: the cycle count of the last program

execution, and the total cycle count of all completed program executions. If the timer overflows, it is notified

by a display. Measurement is performed at each program execution. The emulation timer cannot be

disabled. However, the cycle values can be cleared.

Use the following commands for control:

- SOW TIMER : Indicates measured cycle count

- CLEAR TIMER : Clears measurement results

[Example]

>GO main,$25

Break at FF008D by breakpoint

>SHOW TIMER

 cycle

from init = 4210826410

from last executed = 362387415

>CLEAR TIMER

>SHOW TIMER

 cycle

from init =

from last executed =

>

Note:

Note that the measured number of execution cycles is added about ten extra cycles per execution.
180

CHAPTER 2 Dependence Functions
2.5 Monitor Debugger

This section describes the functions of the monitor debugger for the F2MC-16 family.

■ Monitor Debugger
The monitor debugger performs debugging by putting the target monitor program for debugging into the

target system and by communicating with the host.

Before using this debugger, the target monitor program must be ported to the target hardware.
181

CHAPTER 2 Dependence Functions
2.5.1 Resources Used by Monitor Program

The monitor program of the monitor debugger uses the I/O resources listed below. The
target hardware must have these resources available for the monitor program.

■ Required Resources
The following resources are required to build the monitor program into the target hardware.

1 UART Necessary For communication with host computer
4800/9600/19200/38400 bps

2 Monitor ROM Necessary Need about 10 KB (For details, refer to link map.)

3 Work RAM Necessary Need about 2 KB (For details, refer to link map.)

4 External-interrupt switch Option Uses for forced abortion of program. When the
resource is not built, the program can suspend by
only reset etc.

5 Timer Option Uses for SET TIMER/SHOW TIMER . Needs 32 bits
in 1 µs units.
182

CHAPTER 2 Dependence Functions
2.6 Abortion of Program Execution (SIM, EML, MON)

When program execution is aborted, the address where the break occurred and the break
source are displayed.

■ Abortion of Program Execution
When program execution is aborted, the address where the break occurred and the break source are

displayed.

In the emulator debugger, the following sources can abort program execution.

- Instruction Execution Breaks

- Data Access Breaks

- Sequential Break

- Guarded Access Breaks

- Trace-Buffer-Full Break

- Performance-Buffer-Full Break

- Task Dispatch Break

- System Call Break

- Forced Break

In the simulator debugger, the following sources can abort program execution.

- Instruction Execution Breaks

- Data Access Breaks

- Guarded Access Breaks

- Task Dispatch Break

- System Call Break

- Forced Break

In the monitor debugger, the following sources can abort program execution.

- Software Break

- Task Dispatch Break

- System Call Break

- Forced Break
183

CHAPTER 2 Dependence Functions
2.6.1 Instruction Execution Breaks (SIM, EML)

An instruction execution break is a function to let an instruction break through
monitoring bus, the chip built-in break points, etc.

■ Instruction Execution Breaks
An instruction execution break is a function to let an instruction break through monitoring bus, the chip built-

in break points, etc.

Use the following commands to control instruction execution breaks.

SET BREAK: Sets break points

SHOW BREAK: Displays current break point setup status

CANCEL BREAK: Cancels break point

ENABLE BREAK: Enables break point

DISABLE BREAK: Temporarily cancels break point

When a break occurs due to an instruction execution break, the following message is displayed.

Break at Address by breakpoint

The maximum count of break points are as follows:

[SIM] Max 65535 points

[EML] Within debugging area of Code attribute: 65535 points

Areas other than above: 6 points

Note:

In the emulator, if the debug area is set again, the break points within the area are all cleared.

■ Notes on Instruction Execution Breaks
There are several points to note in using execution breaks. First, some points affecting execution breaks are

explained.

- Invalid Breakpoints

- No break occurs when a break point is set at the instruction immediately after the following

instructions.

F2MC-16/16L/16LX/16H: - PCB - DTB - NCC - ADB - SPB - CNR

- MOV ILM,#imm8 - AND CCR,#imm8

- OR CCR,#imm8 - POPW PS

F2MC-16F: - PCB - DTB - NCC - ADB - SPB - CNR

- No break occurs when break point set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.

- Instruction for which break point set starts from odd-address,

- Preceding instruction longer than 2 bytes length, and break point already set at last 1-byte
184

CHAPTER 2 Dependence Functions
address of preceding instruction (This "already-set" break point is an invalid break point that

won't break, because it has been set at an address other than the starting address of an

instruction).

- Abnormal Break Point

Setting a break point at the instruction immediately after string instructions listed below, may cause a

break in the middle of the string instruction without executing the instruction to the end.

F2MC-16L/16LX/16/16H: - MOVS - MOVSW - SECQ - SECQW - WBTS - MOVSI

- MOVSWI - SECQI - SECQWI - WBTC - MOVSD

- MOVSWD - SECQD - SECQWD - FILS - FILSI - FILSW

- FILSWI

F2MC-16F: Above plus - MOVM- MOVMW

Here are some additional points about the effects on other commands.

- Dangerous Break Points

Never set a break point at an address other than the instruction starting address. If a break point is the

last 1 byte of an instruction longer than 2 bytes length, and if such an address is even, the following

abnormal operation will result:

- If instruction executed by STEP command, instruction execution not aborted.

- If break point specified with GO command, set at instruction immediately after such instruction,

the break point does not break.

Note:

In order to set breakpoints, it is required to set memory map to high-speed simulator debugger.
When the memory map defined area is changed to an undefined attribute, the breakpoints are
cancelled.
185

CHAPTER 2 Dependence Functions
2.6.2 Monitoring Data Breaks (MB2147-01 EML)

The monitoring data break is a function to halt the program execution, when the data in
the address of the specified data area is accessed and the program execution reaches
the specified code address.

■ Monitoring Data Breaks
The monitoring data break is a function to halt the program execution, when the specified data address is

accessed by MCU and the program execution reaches the specified code address (However, detect it before

the instruction is executed).

Monitoring data breaks can be controlled using the following commands:

SET BREAK/DATAWATCH: Sets monitoring data break

SHOW BREAK/DATAWATCH: Displays current monitoring data break setup status

CANCEL BREAK/DATAWATCH: Cancels monitoring data break

ENABLE BREAK/DATAWATCH: Enables monitoring data break

DISABLE BREAK/DATAWATCH: Temporarily cancels monitoring data break

When a break occurs due to a data access break, the following message is displayed:

Break at Address by datawatchbreak

The maximum count of break points are as follows.

MB2147-01 emulator Max: 8 points

Current data monitoring break maximum constant

= 8 - (current event constant + current trace trigger constant)

Note:

Monitoring data breaks is specific function in the MB2147-01 emulator.
186

CHAPTER 2 Dependence Functions
2.6.3 Data Access Breaks (SIM, EML)

A data access break is a function to abort a running program when data access (Read or
Write) is made to the specified address while the program is executing.

■ Data Access Breaks
A data access break is a function to abort a executing program when the MCU accesses data at the specified

address.

Data access breaks can be controlled using the following commands:

SET DATABREAK: Sets break point

SHOW DATABREAK: Displays current break point setup status

CANCEL DATABREAK: Cancels break point

ENABLE DATABREAK: Enables break point

DISABLE DATABREAK: Temporarily cancels break point

When a break occurs due to a data access break, the following message is displayed:

Break at Address by databreak at Access address

The maximum count of break points are as follows.

[SIM] Max 65535 points

[EML] Within debug area of Data attribute: 65535 points

Areas other than above: 6 points

Note:

1. In the emulator debugger, if the debug area is set up again, the break points in the area are all
cleared.

2. In order to set breakpoints, it is required to set memory map to high-speed simulator debugger.
When the memory map defined area is changed to an undefined attribute, the breakpoints are
cancelled.
187

CHAPTER 2 Dependence Functions
2.6.4 Software Break (MON)

A software break is a function to embed a break instruction within memory to enable a
break to occur by executing the instruction. The break occurs before executing the
instruction at the specified address.

■ Software Break
Up to 16 software break points can be set.

Software breaks can be controlled using the following settings and commands.

- [Debug]-[Breakpoints] command

- Setting break points in Source window

- Setting break points in Disassemble window

- SET BREAK/SOFT command

When a break occurs due to a software break, the following message is displayed on the status bar:

Break at Address breakpoint

■ Notes on Software Breaks
There are a couple of points to note when using software breaks.

- Software breaks cannot be set in an area that cannot be written, such as ROM. If attempted, a

verify error occurs at starting the program (when continuous execution, step execution, etc.,

started).

- Always set a software break at the instruction starting address. If a software break is set in the

middle of an instruction, it may cause a program null-function.
188

CHAPTER 2 Dependence Functions
2.6.5 Sequential Break (EML)

A sequential break is a function to abort a executing program, when the sequential
condition is met by event sequential control.

■ Sequential Break
Use a sequential break when the event mode is set to normal mode using the SET MODE command. Set a

sequential break as follows:

- Set event mode (SET MODE).

- Set events (SET EVENT).

- Set sequencer (SET SEQUENCE).

When a break occurs due to a sequential break, the following message is displayed:

Break at Address by sequential break (level = Level No.)
189

CHAPTER 2 Dependence Functions
2.6.6 Guarded Access Breaks (SIM, EML)

A guarded access break aborts a executing program when access is made in violation of
the access attribute set by using the [Setup]-[Memory Map] command, and access is
attempted to a guarded area (access-disabled area in undefined area).

■ Guarded Access Breaks
Guarded access breaks are as follows:

- Code Guarded

An instruction has been executed for an area having no code attribute.

- Read Guarded

A read has been attempted from the area having no read attribute.

- Write Guarded

A write has been attempted to an area having no write attribute.

If a guarded access occurs while executing a program, the following message is displayed on the Status Bar

and the program is aborted.

Break at Address by guarded access {code/read/write} at Access address

■ Notes on Using Emulator
Code Guarded is affected by pre-fetching.

The F2MC-16L/16LX/16/16H family pre-fetch up to 4 bytes. So, when setting the program area mapping,

set a little larger area (5 bytes max.) than the program area actually used.

Similarly, the F2MC-16F family pre-fetch up to 8 bytes. So, when setting the program area mapping, set a

little larger area (9 bytes max.) than the program area actually used.
190

CHAPTER 2 Dependence Functions
2.6.7 Trace-Buffer-Full Break (SIM, EML)

A trace-buffer-full break occurs when the trace buffer becomes full.

■ Trace-Buffer-Full Break
To set a trace-buffer-full break, use the [View]-[Trace] command in the short-cut menu of the [Set]-[Trace]

command, or use the SET TRACE/BREAK command.

When a break occurs due to a trace-buffer-full break, the following message is displayed:

Break at Address by trace buffer full
191

CHAPTER 2 Dependence Functions
2.6.8 Performance-Buffer-Full Break (EML)

A performance-buffer-full break is a function to abort an executing program when the
buffer for storing performance measurement data becomes full.

■ Performance-Buffer-Full Break
To set a performance-buffer-full break, use the SET PERFORMANCE command. If a performance-buffer-

full break is not specified, no break occurs even when the performance buffer becomes full.

When a break occurs due to a performance-buffer-full break, the following message is displayed:

Break at Address by performance buffer full
192

CHAPTER 2 Dependence Functions
2.6.9 Task Dispatch Break (SIM, EML, MON)

A task dispatch break is a break that occurs when a dispatch is made from the specified
dispatch source task to the dispatch destination task. In other words, the break occurs
when the dispatch destination task becomes the execution state. If the dispatch
destination task is currently in the execution state, then the break occurs when the task
enters the execution state again via another state.

■ Task Dispatch Break
Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded. For further details, see Operation

Manual Appendix F Embedding the REALOS Debug Module.

To control the task dispatch break, use either of the following commands.

- [Debug]-[Break Points]-[Task Dispatch] command

- SET XBREAK command

When a break occurs due to a task dispatch break, the following message is displayed on the Status Bar.

Break at Address by dispatch task from task ID= <Dispatch source task ID> to task ID= <Dispatch

destination task ID >
193

CHAPTER 2 Dependence Functions
2.6.10 System Call Break (SIM, EML, MON)

A system call break occurs at ending execution of a system call specified by the task
specified.

■ System Call Break
Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded. For further details, see Operation

Manual Appendix F Embedding the REALOS Debug Module.

To control the system call break, use either of the following commands.

- [Debug]-[Break Points]-[System Call] command

- Set Sbreak command

When a break occurs due to a system call break, the following message is displayed on the Status Bar.

Break at Address by system call <System call> on task ID= <Task ID>
194

CHAPTER 2 Dependence Functions
2.6.11 Forced Break (SIM, EML)

A executing program can be forcibly aborted by using the [Debug]-[Abort] command. In
the monitor debugger, the same result can be achieved by letting the target generate NMI.

■ Forced Break
When a break occurs due to a forced break, the following message is displayed on the Status Bar.

Break at Address by command abort request

■ Forced Break in Power-Save Mode and Hold State
A forced break is not allowed in the emulator while the MCU is in the power-save consumption mode or hold

state. When a forced break is requested by the [Debug]-[Abort] command while executing a program, the

command is disregarded if the MCU is in the power-save consumption mode or hold state. If a break must

occur, then reset the cause at user system side, or reset the cause by using the [Debug]-[Reset MCU]

command, after inputting the [Debug]-[Abort] command.

When the MCU enters the power-save consumption mode or hold state while executing, the status is

displayed on the Status Bar.
195

CHAPTER 2 Dependence Functions
196

CM41-00313-3E

FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL

F2MC-16 FAMILY

SOFTUNE WORKBENCH

USER’S MANUAL

January 2007 the third edition

Published FUJITSU LIMITED Electronic Devices

Edited Business Promotion Dept.

	CHAPTER 1 Basic Functions
	1.1 Workspace Management Function
	1.2 Project Management Function
	1.3 Project Dependence
	1.4 Make/Build Function
	1.4.1 Customize Build Function

	1.5 Include Dependencies Analysis Function
	1.6 Functions of Setting Tool Options
	1.7 Error Jump Function
	1.8 Editor Functions
	1.9 Storing External Editors
	1.10 Storing External Tools
	1.11 Macro Descriptions Usable in Manager
	1.12 Setting Operating Environment
	1.13 Debugger Types
	1.14 Memory Operation Functions
	1.15 Register Operations
	1.16 Line Assembly and Disassembly
	1.17 Symbolic Debugging
	1.17.1 Referring to Local Symbols
	1.17.2 Referring to C Variables

	CHAPTER 2 Dependence Functions
	2.1 Simulator Debugger
	2.1.1 Instruction Simulation
	2.1.2 Memory Simulation
	2.1.3 I/O Port Simulation
	2.1.4 Interrupt Simulation
	2.1.5 Reset Simulation
	2.1.6 Power-Save Consumption Mode Simulation
	2.1.7 STUB Function

	2.2 Emulator Debugger (MB2141)
	2.2.1 Setting Operating Environment
	2.2.1.1 MCU Operation Mode
	2.2.1.2 Debug Area
	2.2.1.3 Memory Area Types
	2.2.1.4 Memory Mapping
	2.2.1.5 Timer Minimum Measurement Unit

	2.2.2 Notes on Commands for Executing Program
	2.2.3 On-the-fly Executable Commands
	2.2.4 On-the-fly Memory Access
	2.2.5 Events
	2.2.5.1 Operation in Normal Mode
	2.2.5.2 Operation in Multi Trace Mode
	2.2.5.3 Operation in Performance Mode

	2.2.6 Control by Sequencer
	2.2.6.1 Setting Sequencer
	2.2.6.2 Break by Sequencer
	2.2.6.3 Trace Sampling Control by Sequencer
	2.2.6.4 Time Measurement by Sequencer
	2.2.6.5 Sample Flow of Time Measurement by Sequencer

	2.2.7 Real-time Trace
	2.2.7.1 Single Trace
	2.2.7.2 Setting Single Trace
	2.2.7.3 Multi trace
	2.2.7.4 Setting Multi Trace
	2.2.7.5 Displaying Trace Data Storage Status
	2.2.7.6 Specify Displaying Trace Data Start
	2.2.7.7 Display Format of Trace Data
	2.2.7.8 Reading Trace Data On-the-fly
	2.2.7.9 Saving Trace Data

	2.2.8 Measuring Performance
	2.2.8.1 Performance Measurement Procedures
	2.2.8.2 Display Performance Measurement Data

	2.2.9 Measuring Coverage
	2.2.9.1 Coverage Measurement Procedures

	2.2.10 Measuring Execution Time Using Emulation Timer
	2.2.11 Sampling by External Probe

	2.3 Emulator Debugger (MB2147-01)
	2.3.1 Setting Operating Environment
	2.3.1.1 Monitoring Program Automatic Loading
	2.3.1.2 MCU Operation Mode
	2.3.1.3 Debug Area
	2.3.1.4 Memory Area Types
	2.3.1.5 Memory Mapping
	2.3.1.6 Debug Function
	2.3.1.7 Event Mode

	2.3.2 Notes on Commands for Executing Program
	2.3.3 On-the-fly Executable Commands
	2.3.4 Break
	2.3.5 Control by Sequencer
	2.3.5.1 Setting Sequencer

	2.3.6 Real-time Trace
	2.3.6.1 Setting Single Trace
	2.3.6.2 Multi Trace
	2.3.6.3 Setting Methods of Multi Trace
	2.3.6.4 Displaying Trace Data Storage Status
	2.3.6.5 Specify Displaying Trace Data Storage Status
	2.3.6.6 Display Format of Trace Data
	2.3.6.7 Reading Trace Data On-the-fly
	2.3.6.8 Saving Trace Data

	2.3.7 Measuring Performance
	2.3.7.1 Performance Measurement Procedures
	2.3.7.2 Display Performance Measurement Data

	2.3.8 Measuring Coverage
	2.3.8.1 Coverage Measurement Procedures

	2.3.9 Real-time Monitoring
	2.3.10 Measuring Execution Time Using Emulation Timer
	2.3.11 Power-on Debugging
	2.3.12 RAM Checker

	2.4 Emulator Debugger (MB2147-05)
	2.4.1 Setting Operating Environment
	2.4.1.1 Monitoring Program Automatic Loading
	2.4.1.2 MCU Operation Mode
	2.4.1.3 Debug Area
	2.4.1.4 Memory Area Types
	2.4.1.5 Memory Mapping

	2.4.2 Notes on Commands for Executing Program
	2.4.3 On-the-fly Executable Commands
	2.4.4 Real-time Trace
	2.4.4.1 Setting Trace
	2.4.4.2 Displaying Trace Data Storage Status
	2.4.4.3 Specifying Displaying Trace Data Start
	2.4.4.4 Display Format of Trace Data
	2.4.4.5 Reading Trace Data On-the-fly
	2.4.4.6 Saving Trace Data

	2.4.5 Execution Cycle Measurement by Cycle Counter

	2.5 Monitor Debugger
	2.5.1 Resources Used by Monitor Program

	2.6 Abortion of Program Execution (SIM, EML, MON)
	2.6.1 Instruction Execution Breaks (SIM, EML)
	2.6.2 Monitoring Data Breaks (MB2147-01 EML)
	2.6.3 Data Access Breaks (SIM, EML)
	2.6.4 Software Break (MON)
	2.6.5 Sequential Break (EML)
	2.6.6 Guarded Access Breaks (SIM, EML)
	2.6.7 Trace-Buffer-Full Break (SIM, EML)
	2.6.8 Performance-Buffer-Full Break (EML)
	2.6.9 Task Dispatch Break (SIM, EML, MON)
	2.6.10 System Call Break (SIM, EML, MON)
	2.6.11 Forced Break (SIM, EML)

