
CIRCUIT CELLAR ® ONLINE December 1999 1www.circuitcellar.com/online

Speech-Recognition Control
Aids Disabled Sailors

t
For his engineering
design project at the
University of Calgary,
Todd and his team
created a prototype for
a voice-recognition
system that enables
quadriplegic sailors to
independently control
a Martin 16 sailboat.
Batten down the
hatches for a storm of
information about this
practical and
resourceful project.

FEATURE
ARTICLE
Mike Smith, Todd Turner,
& Steve Alvey

he Canadian
Engineering Ac-

creditation Board
(CEAB) now requires all

graduating engineering students to
have significant team design experi-
ence to prepare them for “real life” in
industry. At the University of
Calgary, to meet CEAB requirements,
students have the opportunity of de-
veloping a semiacademic project, but
many are taking an alternative ap-
proach that is more work, more fun,
and far more real.

Students are finding their own
projects from local industry or the
community, which gives them a full
year working with real projects and
customers. Four students must act as
project managers and engineers, work
as a team, and follow a proper life-
cycle approach to planning, designing,
implementing, and testing. A public
presentation of the work brings things
together and serves as the final accep-
tance test.

After completing a 16-month in-
ternship at MCK Communications,
Todd Turner returned for his final
year and his design project. His team
decided to create a prototype for a
voice-recognition system for a Martin
16 sailboat. Steve Alvey, Todd’s cus-
tomer, and the Disabled Sailing Asso-
ciation of Alberta had modified the
Martin 16, shown in Photo 1, so quad-
riplegic sailors could sail indepen-
dently. The boat, funded by a grant
from the Royal Bank of Canada, in-
cludes a 300-kg keel to prevent capsiz-
ing and a custom-designed seat to
support the disabled sailor.

Quadriplegic sailors have already
used this boat at regattas in Calgary
and throughout Canada. The
Autohelm, pictured in Photo 2, pro-
vides the necessary electronics to
control the sails and helm using a
joystick or a sip-and-puff mechanism.
The controller also accepts commands

Photo 1 —The Martin 16 sailboat,
Royal Liberty, funded by the Royal
Bank of Canada, has a 300-kg
keel and is designed for quadriple-
gic sailors. The sailor controls the
sails and helm using a sip-and-puff
mechanism. An able-bodied
companion comes along for the
ride. His hand can be seen near
the back of the boat.

Voice-
Recognition
Controlled
Sailboat

2 December 1999 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

SHARC CODEC

Flag LEDs

Emulator
connector

External link
connectors

(unpopulated)

Expansion
connectors

(unpopulated)

Pushbutton switches

Flag

IRQ

RESET

JTAG
port

Link
ports(2)

External
processor

bus

UART PROM

RS-232
drivers

Power
LED

Power
connector

Line in stereo
Mic in stereo
Line out stereo

External
serial port
connector

(unpopulated)

Asynchronous
serial port
connector

over a serial link from the
companion’s remote control. A vari-
ety of devices remotely send com-
mands or information to the
controller or each other over this link.
Todd’s team needed to add a voice-
control component to the serial link
without disturbing its other func-
tions.

The design project was divided into
three technical sections:

• conditioning voice input
• developing a speech-recognition

engine
• interfacing between the speech-

recognition engine and the Mar-
tin 16 controller using a 9-bit
UART

This article focuses on the inter-
face. The other sections will be cov-
ered in subsequent papers.

THE HARDWARE
They chose the Analog Devices

SHARC EZ-Kit Lite evaluation board
for a number of reasons. This board’s
main processor, the ADSP-21061
SHARC DSP, operates at 40 MIPS,
peaking at 120 MFLOPS. As you can
see in Figure 1, the board includes an
AD1847 stereo CODEC, which takes
voice input via a microphone. A syn-
chronous serial line to the SHARC
processor connects to the CODEC,
which is a sigma-delta oversampling
converter that digitally filters the
signal to avoid aliasing problems.

The development software includes
both an optimizing C compiler and an
assembler. Program development can
be handled using the onboard kernel

and a variety of basic
debugging tools.
CONTROLLING THE
MARTIN 16

With this device,
sailors can remotely
control the Martin 16,
adjusting both the sail
and helm, through the
speech-recognition
system. Because a high
degree of control is
needed, the voice-
control system sup-
ports both discrete

word commands and continuous
sound commands.

For example, the command “RUD-
DER” places the system into rudder-
control mode. The continuous sound
“EEEEE” causes the Autohelm to
change course by +1°. The course
change continues to increase as long
as the sailor holds the sound. Alterna-
tively, if the sailor holds the sound
“AAAAH,” the Autohelm alters the
course in –1° increments.

The system also greatly increases
the confidence of the disabled sailors
by adding the equivalent of a push-to-
talk command for the safety.

PLUG AND SAY
The SeaTalk bus from Raytheon

forms the serial connection between
the speech-recognition system and the
associated controller. Because the
controller already supports the
SeaTalk commands sent by the
companion’s safety
remote, we could
easily add the voice-
control system to the
existing system just
by plugging the
voice-control box
into the SeaTalk
port.

The serial com-
mands for the
SeaTalk bus are sent
in an asynchronous
format at 4800 bps
with 8 data bits, 1
address/data flag, 1
start, and 1 stop bit.
The first value in a
command sets the

address flag, so a device recognizes
when the address refers to it. The
remaining values define the command
to be acted on.

This approach is referred to as a
multidrop mode because the master
controller can direct commands to
multiple devices connected to the
same serial link. Each slave device is
programmed to recognize its own
address and a global-broadcast ad-
dress, enabling the master to effi-
ciently command slaves
simultaneously or individually. The
transmitting device first sends a 9-bit
value containing the receiver’s ad-
dress. When this address is recog-
nized, the receiver acts on the data
that follows.

CREATING A SOFTWARE UART
For this project, we need a univer-

sal asynchronous receiver transmitter
(UART) to transmit data asynchro-
nously. To avoid adding external de-
vices to the design, many
microcontrollers have on-chip
UARTs. In fact, the SHARC processor
has two on-chip time-division-
mulitplexing serial ports (known as
SPORTs), which it uses to transfer
data at up to 40 Mbps in numerically
intensive real-time applications.
However, these ports are synchro-
nous, not asynchronous.

As you can see in Figure 1, the EZ-
Kit Lite evaluation board has a stan-
dard 16550 PC UART. However, this
UART is not easily accessible as it is

Photo 2 —A joystick or a sip-and-puff controller allows a disabled person to
manage the Martin 16 Autohelm/Windlass System.

Figure 1— The SHARC EZ-Kit Lite evaluation board uses an ADSP-21061
SHARC DSP as its main processor. The chip operates at 40 MIPS and peaks at
120 MFLOPS.

CIRCUIT CELLAR ® ONLINE December 1999 3www.circuitcellar.com/online

intended for communications be-
tween the board kernel and diagnostic
tools running on the host PC.

The SHARC user’s manual suggests a
way around the problem by using the
pins on the evaluation board’s expansion
connector to clock out and receive bits
from the multidrop serial line. The
software UART uses the SHARC gen-
eral-purpose I/O flag pins as well as the
onboard programmable timer interrupt.
The UART is emulated by detecting the
start bit through programming and
oversampling the received signal. The
nine bits needed for communications
are clocked by reading one of the flag
pins. Similarly, transmission occurs by
setting and clearing a second flag pin to
clock out characters.

Although a software UART is fea-
sible, the implementation would take
a lot of time. More important, it was
not clear that there would be enough
room in the SHARC’s internal
memory for this and the speech-recog-
nition software. Clearly, we had to
develop a standard interface to an
external UART chip.

HARDWARE INTERFACE TO THE
SHARC

Interfacing between a UART and
a DSP bus involves interesting con-
tradictions. Although the UART
sends and receives 9-bit data, the
device has an external 8-bit wide
data port. The ADSP-21061 48-bit
external port handles a wide range of
data formats, including an interface
to an 8-bit device, such as a boot
EPROM or UART chip (see Figure
2). The timing control signals are
given in Figure 3.

The SHARC 21061(don’t forget

that SHARC stands for Super
Harvard ARChitecture) has 1
MB of internal RAM that can be
configured as independent pro-
gram and data memory. To read
and write to an off-chip external
memory location, you activate
the appropriate memory select
(MS) line. When the MS signal is
activated, an address is placed on
the memory bus and a read (RD)
or write (WR) signal is asserted.

This approach differs from
other processors, which multi-

plex READ/WRITE* control signals.
Some processors even require addi-
tional decoding logic, as there are no
external memory-select or chip-enable
signals generated directly by the pro-
cessor.

After the MS and RD or WR signal
asserts, the DSP places data on the
bus in a write operation (the periph-
eral does it with a read). To match the
slow speed of the external device,
wait states can be programmed for the
DSP to access a specific memory loca-
tion. On the 21061, you can control
the number of wait states through an
external acknowledge signal (ACK),
an internally programmed wait-state
register, or a combination of the two.

CONNECTING TO THE DUART
The Exar XR-88C681A

UART(actually a dual UART or
DUART since it has two separate
transceiver channels) handles the 9-
bit serial transmission to the SeaTalk
bus. Figure 4 shows the connections
necessary to interface the 88C681
DUART to the 21061 external data
port, address, and control signals.
Although the *INTR interrupt signal
output on the DUART can be pro-
grammed to assert a number of
events, in this application, it is assert-
ing *INTR on the reception of a char-
acter on channel A. This signal
activates the DSP’s IRQ0 interrupt

service routine to process the charac-
ter from the DUART.

CONFIGURING THE DSP FOR
UART ACCESS

The SHARC processor has four
external memory selects and three
IRQ pins. On the EZ-Kit Lite,
memory-select line MS3 and interrupt
line IRQ0 are available to manipulate
the DUART.

On microcontrollers, like the
68332, manipulating the chip-select
lines can get complicated. Each chip-
select line is mapped to a block of
addresses anywhere in memory space
and configured for 8- or 16-bit opera-
tions.

Things are a little more wasteful
on the 21061. Here you choose be-
tween 48-bit access or no access. As a
result, you manipulate bits to ensure
that the 8-bit value is correctly placed
for transmission and to clear unneces-
sary bits from received values.

There are four external memory
banks, which correspond to the
memory-select signals, on the
SHARC starting with memory bank 0
at address 0x00400000. Memory bank
1 follows memory bank 0, memory
bank 2 follows memory bank 1, and
so on. Each bank is the same size and
can be configured from 8-KB of 32-bit
words to 256-MB of words. Although
the base address of memory bank 0 is
the same, the base address of the fol-
lowing memory banks varies based on
the size of the preceding banks.

Only 16 registers are needed to
control the UART. We innocently
decided to code the setting for the
external memory banks to their mini-
mum 8-KB size, which makes the
base address of the DUART on
memory select line MS3 at
0x00406000. Only address lines A0 to
A3 are explicit in the schematic as
the line MS3 provides all the addi-
tional decoding necessary to specify

Figure 2 —The 48-bit SHARC external port handles a variety of
data and instruction formats. Transmission of 8-bit data requires
special positioning of the device on the SHARC data bus.

Figure 3 —Although the data bus of the
SHARC external port is unusual, the timing
of the control signals is conventional.

47 40

Data 47-0

39 32 31 24 23 16 15 8 7 0

16-bit packed

EPROM
boot

Float or fixed, D31-D0, 32-bit packed

Extended float

Instruction fetch

Clock

read address/write addressAddress

*MSx, *SW
*RD or *WR

Read data/ write dataData

Ack

4 December 1999 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

the memory locations.
What we didn’t realize was that the

DSP kernel’s 16550 UART is mapped
to memory-select line MS2. Changing
the size of the memory banks should
have changed the addresses for the
16550 registers, cutting the communi-
cations necessary for debugging.

However, somebody at Analog
Devices was way ahead of us, and we
got lucky! The kernel assumes that
the average user code is written by the
dim-witted. The kernel accounts for
this by recalculating the effective
address of the onboard 16550 before
every access just in case the user code
changes the bank size from the de-
fault value.

Because the DUART doesn’t pro-
duce an ACK signal suitable for con-
trolling the speed of memory
accesses, you use the internal WAIT
register to generate the six memory
wait states to synchronize the 21061
and DUART

TALKING TO THE DUART
The C program DuartAlive() (see

Listing 1) tests the bus connection. It
first sets the 21k processor interface
for 8-KB memory blocks and six wait
states. If the values stored or received
from the DUART Interrupt Vector
Register (IVR) are the same, the
DUART and SHARC are communi-
cating.

Any register in the DUART can be

accessed in C by casting a pointer to
the address of the register. Because
the EZ-SHARC g21k C compiler from
Analog Devices treats characters as a
32-bit number, care must be taken to
mask out the upper 24 bits when
reading the DUART registers.

The registers must be treated as
volatile char, which lets the compiler
know that the stored char values may
be changed by a process outside of the
C program. By assigning this, we
avoid the problem of the compiler
incorrectly replacing multiple reads
with a single read when the same
memory location is read repeatedly
without writes.

Because both mode registers have
the same address, the protocol for
accessing the DUART’s mode regis-
ters makes Listings 2 and 3 a little
confusing. After a read or write of a
value to the one-mode register, the

Figure 4 —Here you can see the necessary connections
of the XR-88C681 DUART to the SHARC external data
port.

DUART automatically switches to
allow access to the second-mode reg-
ister. The function ResetToMODE1()
ensures that the correct register is
accessed.

With the interface tested, the next
step is to set up routines to initialize
and control the DUART. Listing 2
shows you how to initialize both the
21k interface and the DUART.

Listing 3’s routine verifies that it’s
possible to send commands from the
SHARC to the multidrop bus for re-
ceipt by the Autohelm. The full proto-
col for handling bus collisions is not
given.

TEST RUN
When the voice-recognition system

was put to the test, the interface com-
ponent did well. Todd was able to
demonstrate that the voice-control
system was communicating via the

XR88C861

Data23
Data22
Data21
Data20
Data19
Data18
Data17
Data16

ADDR0
ADDR1
ADDR2
ADDR3

U5
ADSP-21061

U4
13 1
14 3
16 5
17 6

158 25
157 16
155 24
154 17
153 23
151 18
150 22
149 19

54 35
93 9
94 8
238 21

A0
A1
A2
A3

D0
D1
D2
D3
D4
D5
D6
D7

/CE
/RD
/WR
/INTR

MS3
/RD
/WR

/IRQ0
/ACK

Listing 1 —We used a dead-or-alive function test to check communications between the XR-88C681 UART
and the ADSP-21061 DSP.

#define SYSCON21K ((unsigned int *) 0x00)
 // 21K processor definitions
#define BANKS8K 0xFFFF0FFF
 // Set External Banks to 8K size
#define WAIT21K ((unsigned int *) 0x02)
 // Wait state register
#define BANK3MASK 0xFFF07FFF
 // Need 6 internally generated wait states for bank 3
#define WAIT6BANK3 0x000B8000

#define DUARTBASE 0x00406000 // DUART definitions
#define IVR ((volatile char *) 0x0C+DUARTBASE)
 // Memory mapped System Configuration Register
 // IVR register has 0x0C offset in the DUART

/************************************
 Function: char DuartAlive(void)
 Descriptions:
 Returns ALIVE if the DSP can talk to DUART.
 Returns DEAD if no communication
*************************************/
#define ALIVE 1
#define DEAD 0
#define TESTVALUE 0xA5

char DuartAlive(void){
 *SYSCON21K &= BANKS8K; // Set 21k bank size
 *WAIT21K &= BANK3MASK; // Clear Bank 3 bits
 *WAIT21K |= WAIT6BANK3; // 6 Waits to set

 // Try to say �hello� to DUART
*IVR = TESTVALUE; // Write a value to IVR
 if ((*IVR) & 0xFF) != TESTVALUE) // and then bring back
 return DEAD; // Oops!
 else return ALIVE; // Success!
}

CIRCUIT CELLAR ® ONLINE December 1999 5www.circuitcellar.com/online

Mike Smith is a professor of Engi-
neering at the University of Calgary.
He specializes in microprocessor
applications with a biomedical slant
or any project he thinks might be
interesting. You may reach Mike at
mailto:smith@enel.ucalgary.ca.

Todd Turner graduated in May
1999 with a B.Sc. in Electrical Engi-

Listing 2 —The XR-88C681A DUART goes into multidrop 9-bit operation and interrupt generation when a
character is received.

// Full DUART Register Definitions
#define MODE1 ((volatile char *) 0x00 + DUARTBASE)

// Mode 1 Register � Channel A
#define MODE2 ((volatile char *) 0x00 + DUARTBASE)

// Mode 2 Register � Channel A
#define TXDONE ((volatile char *) 0x01+ DUARTBASE)

// Status Register � Channel A
#define CLOCK ((volatile char *) 0x01+ DUARTBASE)

// Clock Select Register � Channel A
#define CMD ((volatile char *) 0x02+ DUARTBASE)

// Command Register � Channel A
#define INTMASK ((volatile char *) 0x05+ DUARTBASE)

// Interrupt Mask Register
#define TXHOLD ((volatile char *)0x03+ DUARTBASE)

// Transmit Hold Register
#define ResetToMODE1() *CMD = 0x10 | (*CMD & 0x0F)

// Macro to force access to Mode Register 1

void Initialize21KplusDUART(void) {
// 21k processor configuration

 *SYSCON21K &= BANKS8K; // Set bank size
 *WAIT21K &= BANK3MASK; // Clear Bank 3 bits
 *WAIT21K |= WAIT6BANK3; // 6 Waits to set

// XR-88C681A Channel A Configuration
 *CLOCK = 0x99; // 4800 Baud
 *CMD = 0xD5; // TX and RX enabled
 ResetToMODE1(); // Access first-mode register
 *MODE1 = 0x1F; // 9-bit char, multidrop mode

// Interrupt asserted on RXRDY
 *MODE2 = 0x07;
 *INTMASK = 0x02; // Activate interrupt
}

Listing 3 —Transmitting a value using multidrop protocol is a two-stage operation. First, the drop address
must be sent, then the character. The protocol for handling bus contentions is not given.

#define SENDMultiDropADDRESS 0x80
// Transmit using multidrop protocol

#define WRITEREADY 0x04
#define CLOCKED 0x08

void MultiDropSend(char value, char dropaddress) {
 char temp;
 ResetToMODE1(); // Configure DUART to send 9-bit address
 temp = *MODE1;
 ResetToMODE1();
 *MODE1 = temp | SENDMultiDropADDRESS;
 while((TXDONE & WRITEREADY) != WRITEREADY)

// Wait till DUART can send

 TXHOLD = dropaddress; / Wait */ ;
 while((*TXDONE & CLOCKED) != CLOCKED)

// Wait till value has been clocked out
/* Wait */ ;

 ResetToMODE1(); // Configure DUART to send 9-bit value
 temp = *MODE1;
 ResetToMODE1();
 *MODE1 = temp & ~ SENDMultiDropADDRESS;

 while((*TXDONE & WRITEREADY) != WRITEREADY)
// Wait till DUART can send
/* Wait */ ;

 * TXHOLD = value;
 while((*TXDONE & CLOCKED) != CLOCKED)

// Wait till value has been clocked out
/* Wait */ ;

}

serial link correctly with the signals
coming in at the right time.

However, the voice-recognition
system was only responding appropri-
ately to approximately 20% of the
commands it was given. Both the
voice conditioning and speech-recog-
nition engine components are back on
the drawing board, waiting for another
team of students to pick the project
up. Certainly, the next crew will have
an easier time as Analog Devices has
donated its Visual DSP development
simulator as well as an in-circuit
emulator. Many of the problems of
this first team were exacerbated by a
lack of debugging tools.

In the meantime, Todd’s interface
is being put to work in other projects.
It’s currently playing a significant role
in an MP3 compression/decompres-
sion.

ACKNOWLEDGEMENTS
We appreciate the help of Con

Korirus of Analog Devices University
Support and Jim Forsythe and Stan
Parker of BBD Electronics, Calgary,
the local distributor for Analog De-
vices, who donated a class set of
SHARC EZ-Kit Lite demo boards,
documentation, and in-circuit emula-
tors. Rob Thompson at Raytheon
Marine, U.K. was only an e-mail away
with info on SeaTalk protocols.
Thanks to the project design team—
Stuart Bergen, Chris Leskiw, and
Sunny Sandu—for their expertise and
moral support. Thanks also to Ron
Johnston, head of Electrical and Com-
puter Engineering, for making the
laboratory facilities available after
hours. And, last but not least, without
the help and patience of Alberta Dis-
abled Sailing Association, this project
would have sunk. I

6 December 1999 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

Circuit Cellar, the Magazine for Computer Applications.
Reprinted by permission. For subscription information,
call (860) 875-2199, subscribe@circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

SOURCES
Analog Devices DSP applications
(800) ANALOGD
(617) 329-4700
Fax: (617) 329-1241
www.analogdevices.com

Disabled Sailing Association of
Alberta

www.inventmgmnt.ab.ca/
sipandpuff/

Exar XR-88C681A DUART refer-
ence manual

www.exar.com/products/
xr88c681.html

Raytheon Marine
www.autohelm.com

neering. He has returned to MCK
Communications to continue his
work with embedded systems. You
may reach Todd at
todd_turner@canada.com.

Steve Alvey continues to improve
the Martin 16’s control system. He’d
be pleased to hear from others who
would like to help get disabled sailors
on the water. He can be contacted at
salvey@arclite.com.

